WO2021219058A1 - 一种再生材料地坪砖及其制备方法 - Google Patents

一种再生材料地坪砖及其制备方法 Download PDF

Info

Publication number
WO2021219058A1
WO2021219058A1 PCT/CN2021/090860 CN2021090860W WO2021219058A1 WO 2021219058 A1 WO2021219058 A1 WO 2021219058A1 CN 2021090860 W CN2021090860 W CN 2021090860W WO 2021219058 A1 WO2021219058 A1 WO 2021219058A1
Authority
WO
WIPO (PCT)
Prior art keywords
red mud
floor tile
slag
petroleum coke
recycled
Prior art date
Application number
PCT/CN2021/090860
Other languages
English (en)
French (fr)
Inventor
高嵩
李绍纯
侯东帅
侯双明
李楠
金祖权
李秋义
张蕾
黄庆强
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021219058A1 publication Critical patent/WO2021219058A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/06Pavings made of prefabricated single units made of units with cement or like binders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical fields of civil engineering, solid waste resource recycling and construction materials, and in particular to a floor tile of recycled materials and a preparation method thereof.
  • Bayer process red mud particles are extremely fine and have high alkalinity, which is prone to dust pollution. Alkali or other heavy metal substances precipitated during the stacking process may also seep into the ground. Will cause soil alkalization or pollute groundwater sources.
  • red mud in my country mainly includes the following two methods: one is to take the useful ingredients, such as extracting valuable metals, etc.; the other is to use it as a raw material as a whole, such as environmental restoration materials or building materials .
  • the process for recovering valuable metal components is complicated and costly, and the process for environmental remediation materials is simple and the cost is relatively low, but it may cause secondary pollution in the application.
  • These two application methods reduce the discharge of red mud to a certain extent, but the consumption of it is still limited, and there is no guarantee that there will be no secondary pollution during the application process.
  • the large-scale oil refineries in the coastal areas of our province mainly import crude oil from the Middle East.
  • the content of sulfur, nitrogen and metal elements in heavy and inferior crude oil continues to increase, causing petroleum coke to be used only as fuel.
  • the commonly used high-sulfur petroleum coke treatment technology is burning in a circulating fluidized bed boiler.
  • the CaO produced by the high-temperature decomposition of limestone reacts with the sulfur produced by the burning of petroleum coke to form CaSO 4 , so as to achieve the purpose of desulfurization of petroleum coke.
  • These desulfurization The mixture of gypsum and other combustion products forms petroleum coke desulfurization ash.
  • Petroleum coke desulfurization ash is the water existing in the fuel and the water formed after the combustion of the hydrogen element in the fuel is in a gaseous state to form ash scale on the heating surface of the boiler.
  • the mineral impurities of petroleum coke desulfurization ash become ash, which basically exists in the form of metal and non-metal oxides, such as silicon, aluminum, iron, calcium, potassium, sodium, nickel, magnesium and other oxides.
  • the resource utilization technology of petroleum coke desulphurization ash has always been a hot and difficult research topic at home and abroad. Although there are many achievements, there are few practical applications and the level of resource utilization needs to be improved.
  • the present invention provides a floor tile with recycled materials and a preparation method thereof to achieve the dual resource utilization of alumina waste residue and oil refining industry solid waste, which can effectively reduce environmental pollution and lower the floor.
  • Brick manufacturing costs, and raw materials are readily available, and the preparation method is fast and simple, and is suitable for large-scale industrial production.
  • the raw materials of the floor tile of recycled materials include cementing materials and aggregates.
  • the cementing materials are 25%-50% of the total mass of the raw materials, and the aggregates are 50% to 75% of the total mass of raw materials, the mass percentage of each component in the cementing material is: 30% to 70% of red mud, 20% to 60% of petroleum coke desulfurization ash, and 0% of calcium carbide slag ⁇ 35%, slag powder is 7.5%-30%, water glass is 1%-2%, sodium sulfate is 1%-2%; the aggregate is river sand.
  • the mass percentage of each component in the cementitious material is: red mud is 45% to 70%, petroleum coke desulfurization ash is 20% to 55%, and calcium carbide slag is 0% to 30%. , Slag powder is 7.5%-25%, water glass is 1%-2%, sodium sulfate is 1%-2%.
  • the mass percentage of the red mud in the gelling material is 45% to 70%.
  • the mass percentage of the petroleum coke desulfurization ash in the cementing material is 20-55%.
  • the mass percentage of calcium carbide slag in the cementing material is 3-30%.
  • the mass percentage of the slag powder in the cementitious material is 7.5-25%.
  • the mass percentage of water glass in the cementing material is 1 to 2%.
  • the mass percentage of sodium sulfate in the gelling material is 1 to 2%.
  • the raw materials of the recycled material floor tiles also include externally mixed water, and the amount of the externally mixed water is 10% to 15% of the mass of the cementitious material, and the externally mixed water is not included in the The mass percentage of the recycled material floor brick raw material.
  • the red mud is Bayer process red mud
  • the Bayer process red mud is a mud-like residue discharged from the alumina in the bauxite leaching using the Bayer process
  • the petroleum coke desulfurization ash contains Heavy metal petroleum coke is burned in a boiler and mixed with lime powder to produce waste slag
  • the calcium carbide slag is a solid deposit produced after calcium carbide is hydrolyzed to produce acetylene gas.
  • the present invention also provides a preparation method of the above-mentioned recycled material floor tiles, characterized in that the preparation method includes the following steps:
  • the cementing material is 25% to 50% of the total mass of the raw materials
  • the aggregate is 50% to 75% of the total mass of the raw materials
  • the mass percentage of each component in the cementing material It is: 30% ⁇ 70% of red mud, 20% ⁇ 60% of petroleum coke desulfurization ash, 0% ⁇ 35% of calcium carbide slag, 7.5% ⁇ 30% of slag powder, 1% ⁇ 2% of water glass, Sodium sulfate is 1% to 2%.
  • the mass percentage of each component in the cementitious material is: red mud is 45% to 70%, petroleum coke desulfurization ash is 20% to 55%, and calcium carbide slag is 0% to 30%. %, slag powder is 7.5%-25%, water glass is 1%-2%, sodium sulfate is 1%-2%.
  • the amount of water used is 10% to 15% of the mass of the gelling material.
  • the water is not included in the mass percentage of the recycled material floor tiles.
  • the red mud is Bayer process red mud
  • the Bayer process red mud is a mud-like residue discharged from the alumina in the bauxite leaching using the Bayer process
  • the petroleum coke desulfurization ash contains Heavy metal petroleum coke is burned in a boiler and mixed with lime powder to produce waste slag
  • the calcium carbide slag is a solid deposit produced after calcium carbide is hydrolyzed to produce acetylene gas.
  • the invention also provides the application of the Bayer process red mud active stimulant prepared with oil refining waste ash as the main raw material in the preparation of floor tiles.
  • the present invention has the following advantages and positive effects:
  • the Bayer process red mud activation stimulant is prepared by using oil refinery waste ash as the main raw material, and is evenly mixed with the Bayer process red mud in a certain ratio to obtain a floor tile with better strength.
  • the invention can achieve the purpose of dual resource utilization of alumina waste residue and oil refining industry solid waste, can reduce the degree of pollution to the surrounding environment, reduce resource waste, and has huge economic value, social value and environmental protection value.
  • the manufacturing cost of floor tiles can also be reduced, the raw materials are easily available, the preparation method is fast and simple, and it is suitable for large-scale industrial production.
  • the present invention is a specific embodiment of recycled material floor tiles.
  • the raw materials of the recycled material floor tiles include cementitious materials and aggregates.
  • the cementitious materials are 25%-50% of the total mass of the raw materials.
  • the material is 50% to 75% of the total mass of the raw materials, and the mass percentage of each component in the cementitious material is: 30% to 70% of red mud, 20% to 60% of petroleum coke desulfurization ash, and calcium carbide slag 0%-35%, slag powder is 7.5%-30%, water glass is 1%-2%, sodium sulfate is 1%-2%; the aggregate is river sand.
  • the mass percentage of each component in the cementitious material is: red mud is 45% to 70%, petroleum coke desulfurization ash is 20% to 55%, calcium carbide slag is 0% to 30%, and slag powder is 7.5% to 25%, water glass is 1% to 2%, sodium sulfate is 1% to 2%.
  • the mass percentage of red mud in the gelling material is 45% to 70%.
  • the mass percentage of petroleum coke desulfurization ash in the cementitious material is 20-55%.
  • the mass percentage of calcium carbide slag in the cementitious material is 3-30%.
  • the mass percentage of slag powder in the cementitious material is 7.5-25%.
  • the mass percentage of water glass in the cementing material is 1 to 2%.
  • the mass percentage of sodium sulfate in the gelling material is 1 to 2%.
  • the raw materials of the recycled material floor tiles also include externally mixed water, and the amount of the externally mixed water is 10% to 15% of the mass of the cementitious material, and the externally mixed water is not included in the recycled material.
  • the mass percentage of ping brick raw materials is 10% to 15% of the mass of the cementitious material, and the externally mixed water is not included in the recycled material.
  • the red mud is a Bayer process red mud
  • the Bayer process red mud is a mud-like residue discharged from the aluminum oxide in the bauxite leaching using the Bayer process
  • the petroleum coke desulfurization ash is a petroleum coke containing heavy metals
  • the waste slag mixed with lime powder is burnt in a boiler
  • the calcium carbide slag is a solid deposit produced after the calcium carbide is hydrolyzed to produce acetylene gas.
  • the present invention also provides a specific embodiment of the method for preparing the above-mentioned recycled material floor tiles, which includes the following steps:
  • the raw material of the recycled material floor tiles further includes a polycarboxylic acid water reducing agent, the amount of the polycarboxylic acid water reducing agent is 0.2% or 0.5% of the mass of the gelling material, and the polycarboxylic acid water reducing agent The agent is not included in the mass percentage of the recycled material floor tile raw material.
  • the invention also provides the application of the Bayer process red mud active stimulant prepared with oil refining waste ash as the main raw material in the preparation of floor tiles.
  • the tailings bricks are made of Bayer process red mud, petroleum coke slag, calcium carbide slag, slag and river sand. Two molding methods were used in the experiment, namely static pouring molding and compression molding. The test method refers to (GB/T 4111-2013) "Test Methods for Concrete Blocks and Bricks" for mechanical properties, drying shrinkage, softening coefficient and frost resistance. Each performance meets the requirements of various indexes stipulated in "Non-sintered Waste Tailings Brick" (JC/T422-2007).
  • the Bayer process red mud, petroleum coke slag, calcium carbide slag and slag are dried and ground, then mixed in proportions, and part of the river sand is added to obtain a mixture. Put the mixture into a mortar mixing pot, add appropriate amount of water and stir, fully stir and pour into shape, place it indoors for 1d, then remove the mold, and finally cure it in a natural environment for 28d to obtain red mud non-burning tailings bricks.
  • the specific ratio of raw materials for red mud burn-free tailings bricks (mass percentage): Bayer process red mud 12.25%, petroleum coke desulfurization ash 3.5%, calcium carbide slag 1.75%, slag 7.5%, river sand 75%, plus 0.2% poly Carboxylic acid water reducing agent, 12.5% water.
  • the Bayer process red mud, petroleum coke slag, calcium carbide slag and slag are dried and ground, then mixed in proportion, and part of the river sand is added. Put the mixture into the mortar mixing pot, add appropriate amount of water and stir, fully stir and pour into shape, place it indoors for 1d, then remove the mold, and finally cure it in the natural environment for 28d to obtain the red mud non-burning tailings brick.
  • the specific ratio of raw materials for red mud burn-free tailings bricks (mass percentage): Bayer process red mud 24.5%, petroleum coke desulfurization ash 7%, calcium carbide slag 3.5%, slag 15%, river sand 50%, plus 0.5% poly Carboxylic acid water reducing agent, 15% water.
  • Pavement bricks of 40 ⁇ 100 ⁇ 200mm 3 formed by casting 28d flexural strength 10.3MPa, compressive strength 43.0MPa, average water absorption 2.6%, drying shrinkage 0.465mm/m, softening coefficient 1.0, 25 times slow freezing and thawing After the cycle, the mass loss rate was 0, and the strength loss rate was 1.88%.
  • the Bayer process red mud, petroleum coke slag, calcium carbide slag and slag are dried and ground, then mixed in proportion, and part of the river sand is added. Put the mixture into the mortar mixing pot, add appropriate amount of water and stir, fully stir and pour into shape, place it indoors for 1d, then remove the mold, and finally cure it in a natural environment for 28d to obtain the red mud non-burning tailings brick.
  • the specific ratio of raw materials for red mud burn-free tailings bricks (mass percentage): Bayer process red mud 24.5%, petroleum coke desulfurization ash 10.5%, slag 15%, river sand 50%, plus 0.5% polycarboxylic acid water reducer , 15% water.
  • Pavement tiles of 40 ⁇ 100 ⁇ 200mm 3 formed by casting 28d flexural strength of 8.9MPa, compressive strength of 36.9MPa, average water absorption of 2.5%, drying shrinkage of 0.467mm/m, softening coefficient of 1.03, 25 times of slow freezing and thawing After the cycle, the mass loss rate was 0, and the strength loss rate was 1.12%.
  • the Bayer process red mud, petroleum coke slag, calcium carbide slag and slag are dried and ground, then mixed in proportion, and part of the river sand is added. Put the mixture into the mortar mixing pot, add appropriate amount of water and stir, fully stir and use a pressure testing machine 80KN to press and shape, place it indoors for 1d, then remove the mold, and finally, cure in the natural environment for 28d to get the red mud non-burning tailings brick .
  • the specific ratio of raw materials for red mud burn-free tailings bricks (mass percentage): Bayer red mud 12.25%, petroleum coke desulfurization ash 3.5%, calcium carbide slag 1.75%, slag 7.5%, river sand 75%, plus 12.5% water. Compressed into 55 ⁇ 100 ⁇ 200mm 3 pavement bricks, 28d flexural strength of 8.4MPa, compressive strength of 29.6MPa, average water absorption rate of 11%, drying shrinkage 0.10mm/m, softening coefficient of 0.95, 25 slow freeze-thaw cycles The post mass loss rate was 0.6%, and the strength loss rate was 7.92%.
  • the present invention conducts experiments according to the formula.
  • the red mud is mixed with an activator, and the mold is removed after curing for 24 hours.
  • the test block is cemented and formed, which can be completely demolded and has a certain strength, up to 25MPa, and can be directly used for hardening the floor. And floor tiles.
  • the petroleum coke desulfurization ash further improves the activity of the red mud powder.
  • the active ingredients in the auxiliary materials such as high belite cement and water glass react with the red mud to form a substance with gelling properties, which improves the material's performance. Density and strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种再生材料地坪砖,原料包括胶凝材料和骨料,胶凝材料为原料总质量的25%~50%,骨料为原料总质量的50%~75%,胶凝材料中各组分包括:赤泥,石油焦脱硫灰渣,电石渣,矿渣粉,水玻璃及硫酸钠;骨料为河沙。再生材料地坪砖的制备方法是:按配比称取上述原料备用;将赤泥,石油焦脱硫灰渣及电石渣进行烘干和粉磨,与矿渣粉混合均匀,再加入河沙,得到混合均匀的混合料后,放入砂浆搅拌容器后加适量水搅拌,浇筑成型,放置在室内20~30小时后拆模,然后,养护至25~30天即可。

Description

一种再生材料地坪砖及其制备方法
本申请要求于2020年04月29日提交中国专利局、申请号为CN202010356648.8、发明名称为“一种再生材料地坪砖及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及土木工程、固体废弃物资源化再生利用及建筑材料技术领域,尤其涉及一种再生材料地坪砖及其制备方法。
背景技术
近年来我国氧化铝产量在全球产量的占比中超过50%,截至2017年3月我国的氧化铝产能达到7071万吨,巨大的产能同时推动着我国铝行业的发展。目前,生产氧化铝的方式以拜耳法为主,其产量约占全球氧化铝总产量的90%,其主要优势在于能够有效降低能耗。然而,拜耳法生产氧化铝的过程中通常加入烧碱、石灰等原料,在氧化铝溶出的同时,其它不溶于碱的物质被过滤出来,这种生产过程中产生的固体废渣就是赤泥。因氧化铝生产工艺、原料等因素的影响,拜耳法赤泥颗粒极细,且具有较高的碱性,容易产生粉尘污染,堆放过程中析出的碱或其它重金属物质也可能会渗入地下,也会造成土壤碱化或污染地下水源。
而且随着城镇化建设的发展,土地资源匮乏,环境问题也日益成为社会发展中首当其冲需要解决的问题,对氧化铝工业来说,解决赤泥的综合回收利用问题才能更好的实现可持续发展。目前,我国对赤泥的综合利用主要包括以下两个方式:一是取其中的有用成分,例如提取有价金属等;二是作为原料整体加以利用,如用作环境修复材料或用于建筑材料。回收有价金属成分的工艺复杂成本较高,用于环境修复材料工艺简单成本也相对较低,但可能在应用中产生二次污染。这两种应用方式在一定程度上降低了赤泥的排放量,但对它的消耗仍然有限,且无法保证在应用过程中不产生二次污染。
与此同时,我省沿海地区大型炼油厂主要从中东地区进口的原油,重质、劣质原油中的硫、氮和金属元素含量不断增加,导致石油焦只能作为 燃料。目前常用的高硫石油焦处理技术是通过循环流化床锅炉燃烧,通过添加石灰石,石灰石高温分解出的CaO与石油焦燃烧出的硫反应生成CaSO 4,从而达到石油焦脱硫的目的,这些脱硫石膏与其他燃烧产物的混合物形成石油焦脱硫灰渣。以某地的一家炼油厂为例,其石油焦脱硫石膏渣年排放量在50万吨以上。目前,石油焦脱硫灰渣只能露天堆放,尚无合适的途径开展大规模处理,造成了严重的环境污染。石油焦脱硫灰渣是燃料中存在的水分与燃料中的氢元素燃烧后形成的水分一起呈气态在锅炉受热面形成灰垢。石油焦脱硫灰渣的矿物杂质成为灰分,基本上以金属和非金属氧化物的形式存在,如硅、铝、铁、钙、钾、钠、镍、镁等氧化物。石油焦脱硫灰渣的资源化利用技术一直是国内外研究的热点和难点,虽然成果多,但实际推广应用的少,资源化利用的水平亟待提高。
无论是有价金属回收还是用于环境修复等方面,都很难实现拜耳法赤泥的大宗利用,成为赤泥资源化综合利用的一大难点。
如何利用炼油业固体废弃物石油焦脱硫灰渣为主要原料制备拜耳法赤泥的活性激发剂,掺加电石渣等废弃物制备地坪砖。发挥以废治废的思想,降低成本,利用大掺量石油焦脱硫灰渣和其他辅料对拜耳法赤泥进行活化处理,达到氧化铝废渣和炼油业固废双重资源化利用的目的。这是目前亟待解决的技术问题。
发明内容
针对现有技术存在的问题,本发明提供了一种再生材料地坪砖及其制备方法,达到氧化铝废渣和炼油业固废双重资源化利用的目的,能够有效地减少环境污染,降低地坪砖制造成本,且原料易得,制备方法快速、简单,适用于大规模工业化生产。
为解决以上问题,本发明的目的通过以下技术方案实现:
一种再生材料地坪砖,所述再生材料地坪砖的原料包括胶凝材料和骨料,其特征在于,所述胶凝材料为原料总质量的25%~50%,所述骨料为原料总质量的50%~75%,所述胶凝材料中各组分的质量百分比为:赤泥为30%~70%,石油焦脱硫灰渣为20%~60%,电石渣为0%~35%,矿渣粉为7.5%~30%,水玻璃为1%~2%,硫酸钠为1%~2%;所述骨料为河沙。
对上述技术方案的改进:所述胶凝材料中各组分的质量百分比为:赤 泥为45%~70%,石油焦脱硫灰渣为20%~55%,电石渣为0%~30%,矿渣粉为7.5%~25%,水玻璃为1%~2%,硫酸钠为1%~2%。
对上述技术方案的进一步改进:所述胶凝材料中赤泥的质量百分比为45%~70%。
对上述技术方案的进一步改进:所述胶凝材料中石油焦脱硫灰渣的质量百分比为20~55%。
对上述技术方案的进一步改进:所述胶凝材料中电石渣的质量百分比为3~30%。
对上述技术方案的进一步改进:所述胶凝材料中矿渣粉的质量百分比为7.5~25%。
对上述技术方案的进一步改进:所述胶凝材料中水玻璃的质量百分比为1~2%。
对上述技术方案的进一步改进:所述胶凝材料中硫酸钠的质量百分比为1~2%。
对上述技术方案的进一步改进:所述再生材料地坪砖的原料还包括外掺水,所述外掺水的用量为胶凝材料质量的10%~15%,所述外掺水不计入所述再生材料地坪砖原料的质量百分比。
对上述技术方案的进一步改进:所述赤泥为拜耳法赤泥,所述拜耳法赤泥是使用拜耳法浸出铝土矿中氧化铝排出的泥状残渣;所述石油焦脱硫灰渣为含重金属的石油焦在锅炉中燃烧与石灰粉混合产生的废渣;所述电石渣为电石水解出乙炔气体后产生的固体沉积物。
本发明还提供一种上述再生材料地坪砖的制备方法,其特征在于,制备方法包括以下步骤:
(1)按原料配合比称取赤泥、石油焦脱硫灰渣、电石渣、矿渣和河砂,备用;
(2)将所述赤泥、石油焦脱硫灰渣、电石渣及矿渣进行烘干和粉磨,按比例混合,再加入河砂,得到混合均匀的混合料;
(3)将所述混合料放入砂浆搅拌容器后加适量水搅拌,充分搅拌后浇筑成型,放置在室内20~30小时后拆模,然后,在自然环境中养护至25~30天,即可得到赤泥免烧尾矿砖。
对上述技术方案的改进:所述胶凝材料为原料总质量的25%~50%,所述骨料为原料总质量的50%~75%,所述胶凝材料中各组分的质量百分比为:赤泥为30%~70%,石油焦脱硫灰渣为20%~60%,电石渣为0%~35%,矿渣粉为7.5%~30%,水玻璃为1%~2%,硫酸钠为1%~2%。
对上述技术方案的进一步改进:所述胶凝材料中各组分的质量百分比为:赤泥为45%~70%,石油焦脱硫灰渣为20%~55%,电石渣为0%~30%,矿渣粉为7.5%~25%,水玻璃为1%~2%,硫酸钠为1%~2%。
对上述技术方案的改进:所述水的用量为胶凝材料质量的10%~15%。所述水不计入所述再生材料地坪砖原料的质量百分比。
对上述技术方案的进一步改进:所述赤泥为拜耳法赤泥,所述拜耳法赤泥是使用拜耳法浸出铝土矿中氧化铝排出的泥状残渣;所述石油焦脱硫灰渣为含重金属的石油焦在锅炉中燃烧与石灰粉混合产生的废渣;所述电石渣为电石水解出乙炔气体后产生的固体沉积物。
本发明还提供了炼油废灰为主要原料制备的拜耳法赤泥活性激发剂在制备地坪砖中的应用。
本发明与现有技术相比,具有如下优点和积极效果:
本发明拜耳法赤泥活性激发剂是利用炼油废灰为主要原料制备的,与拜耳法赤泥以一定比例混合均匀即可得到较好强度的地坪砖。本发明可以达到氧化铝废渣和炼油业固废双重资源化利用的目的,可以减少对周边环境的污染程度,减少资源浪费,具有巨大的经济价值、社会价值及环保价值。还可以降低地坪砖制造成本,且原料易得,制备方法快速、简单,适用于大规模工业化生产。
具体实施方式
下面结合实施例对本发明进一步说明。
本发明一种再生材料地坪砖的具体实施方式,所述再生材料地坪砖的原料包括胶凝材料和骨料,所述胶凝材料为原料总质量的25%~50%,所述骨料为原料总质量的50%~75%,所述胶凝材料中各组分的质量百分比为:赤泥为30%~70%,石油焦脱硫灰渣为20%~60%,电石渣为0%~35%,矿渣粉为7.5%~30%,水玻璃为1%~2%,硫酸钠为1%~2%;所述骨料为河沙。
优选地,所述胶凝材料中各组分的质量百分比为:赤泥为45%~70%,石油焦脱硫灰渣为20%~55%,电石渣为0%~30%,矿渣粉为7.5%~25%,水玻璃为1%~2%,硫酸钠为1%~2%。
优选地,所述胶凝材料中赤泥的质量百分比为45%~70%。
优选地,所述胶凝材料中石油焦脱硫灰渣的质量百分比为20~55%。
优选地,所述胶凝材料中电石渣的质量百分比为3~30%。
优选地,所述胶凝材料中矿渣粉的质量百分比为7.5~25%。
优选地,所述胶凝材料中水玻璃的质量百分比为1~2%。
优选地,所述胶凝材料中硫酸钠的质量百分比为1~2%。
进一步地,所述再生材料地坪砖的原料还包括外掺水,所述外掺水的用量为胶凝材料质量的10%~15%,所述外掺水不计入所述再生材料地坪砖原料的质量百分比。
具体而言:所述赤泥为拜耳法赤泥,所述拜耳法赤泥是使用拜耳法浸出铝土矿中氧化铝排出的泥状残渣;所述石油焦脱硫灰渣为含重金属的石油焦在锅炉中燃烧与石灰粉混合产生的废渣;所述电石渣为电石水解出乙炔气体后产生的固体沉积物。
本发明还提供一种上述再生材料地坪砖的制备方法的具体实施方式,包括以下步骤:
(1)按原材料配合比称取赤泥、石油焦脱硫灰渣、电石渣、矿渣和河砂,备用;
(2)将所述赤泥、石油焦脱硫灰渣、电石渣及矿渣进行烘干和粉磨,按比例混合,再加入河砂,得到混合均匀的混合料;
(3)将所述混合料放入砂浆搅拌容器后加适量水搅拌,充分搅拌后浇筑成型,放置在室内20~30小时后拆模,然后,在自然环境中养护至25~30天,得到赤泥免烧尾矿砖。
优选地,所述再生材料地坪砖的原料还包括聚羧酸减水剂,所述聚羧酸减水剂的用量为胶凝材料质量的0.2%或0.5%,所述聚羧酸减水剂不计入所述再生材料地坪砖原料的质量百分比。
本发明还提供了炼油废灰为主要原料制备的拜耳法赤泥活性激发剂在制备地坪砖中的应用。
以下为本发明再生材料地坪砖的具体实施例:
尾矿砖材料选用拜耳法赤泥、石油焦渣、电石渣、矿渣和河砂。试验采用两种成型方式,分别是静力浇筑成型和压制成型。试验检测方法参考(GB/T 4111-2013)《混凝土砌块和砖试验方法》进行力学性能、干燥收缩、软化系数和抗冻性能检测。各项性能满足《非烧结垃圾尾矿砖》(JC/T422-2007)规定的各项指标要求。
实施例1:
将拜耳法赤泥、石油焦渣、电石渣和矿渣进行烘干和粉磨,然后按比例混合,并加入部分河砂,得到混合料。将所述混合料放入砂浆搅拌锅后加适量水搅拌,充分搅拌后浇筑成型,放置于室内1d后拆模,最后在自然环境中养护28d,得到赤泥免烧尾矿砖。赤泥免烧尾矿砖的原料具体配比(质量百分比):拜耳法赤泥12.25%、石油焦脱硫灰渣3.5%、电石渣1.75%、矿渣7.5%、河砂75%,外加0.2%聚羧酸减水剂、12.5%的水。浇注成型的40×100×200mm 3的路面砖,28d抗折强度6.6MPa,抗压强度21.8MPa,平均吸水率8.4%,干燥收缩0.512mm/m,软化系数为1.07,25次慢冻冻融循环后质量损失率为0,强度损失率9.05%。
实施例2:
将拜耳法赤泥、石油焦渣、电石渣和矿渣进行烘干和粉磨,然后按比例混合,并加入部分河砂。将混合料放入砂浆搅拌锅后加适量水搅拌,充分搅拌后浇筑成型,放置于室内1d后拆模,最后在自然环境中养护28d,得到赤泥免烧尾矿砖。赤泥免烧尾矿砖的原料具体配比(质量百分比):拜耳法赤泥24.5%、石油焦脱硫灰渣7%、电石渣3.5%、矿渣15%、河砂50%,外加0.5%聚羧酸减水剂、15%的水。浇注成型的40×100×200mm 3的路面砖,28d抗折强度10.3MPa,抗压强度43.0MPa,平均吸水率2.6%,干燥收缩0.465mm/m,软化系数为1.0,25次慢冻冻融循环后质量损失率为0,强度损失率1.88%。
实施例3:
将拜耳法赤泥、石油焦渣、电石渣和矿渣进行烘干和粉磨,然后按比例混合,并加入部分河砂。将混合料放入砂浆搅拌锅后加适量水搅拌,充分搅拌后浇筑成型,放置于室内1d后拆模,最后在自然环境中养护28d, 得到赤泥免烧尾矿砖。赤泥免烧尾矿砖的原料具体配比(质量百分比):拜耳法赤泥24.5%、石油焦脱硫灰渣10.5%、矿渣15%、河砂50%,外加0.5%聚羧酸减水剂、15%的水。浇注成型的40×100×200mm 3的路面砖,28d抗折强度8.9MPa,抗压强度36.9MPa,平均吸水率2.5%,干燥收缩0.467mm/m,软化系数为1.03,25次慢冻冻融循环后质量损失率为0,强度损失率1.12%。
实施例4:
将拜耳法赤泥、石油焦渣、电石渣和矿渣进行烘干和粉磨,然后按比例混合,并加入部分河砂。将混合料放入砂浆搅拌锅后加适量水搅拌,充分搅拌使用压力试验机80KN压制成型,放置于室内1d后拆模,最后,在自然环境中养护28d即可得到赤泥免烧尾矿砖。赤泥免烧尾矿砖的原料具体配比(质量百分比):拜耳法赤泥12.25%、石油焦脱硫灰渣3.5%、电石渣1.75%、矿渣7.5%、河砂75%,外加12.5%的水。压制成55×100×200mm 3的路面砖,28d抗折强度8.4MPa,抗压强度29.6MPa,平均吸水率11%,干燥收缩0.10mm/m,软化系数为0.95,25次慢冻冻融循环后质量损失率为0.6%,强度损失率7.92%。
本发明根据配方进行实验,将赤泥中掺入激发剂,养护24h后拆模,此时试块胶结成型,可以完整脱模且具有一定强度,最高可达25MPa,可直接用于硬化地坪和铺地砖。在试块中,石油焦脱硫灰渣进一步提高赤泥粉体的活性,高贝利特水泥及水玻璃等辅助材料中的活性成分与赤泥复合反应生成具有胶凝性质的物质,提高材料的密实度和强度。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种再生材料地坪砖,所述再生材料地坪砖的原料包括胶凝材料和骨料,其特征在于,所述胶凝材料为原料总质量的25%~50%,所述骨料为原料总质量的50%~75%,所述胶凝材料中各组分的质量百分比为:赤泥为30%~70%,石油焦脱硫灰渣为20%~60%,电石渣为0%~35%,矿渣粉为7.5%~30%,水玻璃为1%~2%和硫酸钠为1%~2%;所述骨料为河沙。
  2. 根据权利要求1所述的再生材料地坪砖,其特征在于,所述胶凝材料中各组分的质量百分比为:赤泥为45%~70%,石油焦脱硫灰渣为20%~55%,电石渣为0%~30%,矿渣粉为7.5%~25%,水玻璃为1%~2%和硫酸钠为1%~2%。
  3. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中赤泥的质量百分比为45%~70%。
  4. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中石油焦脱硫灰渣的质量百分比为20~55%。
  5. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中电石渣的质量百分比为3~30%。
  6. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中矿渣粉的质量百分比为7.5~25%。
  7. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中水玻璃的质量百分比为1~2%。
  8. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述胶凝材料中硫酸钠的质量百分比为1~2%。
  9. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述再生材料地坪砖的原料还包括外掺水,所述外掺水的用量为胶凝材料质量的10%~15%,所述外掺水不计入所述再生材料地坪砖原料的质量百分比。
  10. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述再生材料地坪砖的原料还包括聚羧酸减水剂,所述聚羧酸减水剂的用量为胶凝材料质量的0.2%或0.5%,所述聚羧酸减水剂不计入所述再生材料地坪砖原料的质量百分比。
  11. 根据权利要求1或2所述的再生材料地坪砖,其特征在于,所述赤泥为拜耳法赤泥,所述拜耳法赤泥是使用拜耳法浸出铝土矿中氧化铝排出的泥状残渣;所述石油焦脱硫灰渣为含重金属的石油焦在锅炉中燃烧与石灰粉混合产生的废渣;所述电石渣为电石水解出乙炔气体后产生的固体沉积物。
  12. 根据权利要求4所述的再生材料地坪砖,其特征在于,所述赤泥为拜耳法赤泥,所述拜耳法赤泥是使用拜耳法浸出铝土矿中氧化铝排出的泥状残渣;所述石油焦脱硫灰渣为含重金属的石油焦在锅炉中燃烧与石灰粉混合产生的废渣;所述电石渣为电石水解出乙炔气体后产生的固体沉积物。
  13. 根据权利要求1~12任一项所述的再生材料地坪砖的制备方法,其特征在于,制备方法包括以下步骤:
    (1)按原料配合比称取赤泥、石油焦脱硫灰渣、电石渣、矿渣和河砂,备用;
    (2)将所述赤泥、石油焦脱硫灰渣、电石渣及矿渣进行烘干和粉磨,按比例混合,再加入河砂,得到混合均匀的混合料;
    (3)将所述混合料放入砂浆搅拌容器后加适量水搅拌,充分搅拌后浇筑成型,放置在室内20~30小时后拆模,然后,在自然环境中养护25~30天,得到赤泥免烧尾矿砖。
  14. 炼油废灰为主要原料制备的拜耳法赤泥活性激发剂在制备地坪砖中的应用。
PCT/CN2021/090860 2020-04-29 2021-04-29 一种再生材料地坪砖及其制备方法 WO2021219058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010356648.8A CN111559899A (zh) 2020-04-29 2020-04-29 一种再生材料地坪砖及其制备方法
CN202010356648.8 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021219058A1 true WO2021219058A1 (zh) 2021-11-04

Family

ID=72067977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090860 WO2021219058A1 (zh) 2020-04-29 2021-04-29 一种再生材料地坪砖及其制备方法

Country Status (2)

Country Link
CN (1) CN111559899A (zh)
WO (1) WO2021219058A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523559A (zh) * 2021-12-27 2022-05-24 昆明云能化工有限公司 一种电石渣的综合利用***
CN114620960A (zh) * 2022-04-26 2022-06-14 洛阳君江建材科技有限公司 一种赤泥制备建筑材料的方法
CN114644476A (zh) * 2022-03-18 2022-06-21 青岛理工大学 一种核壳结构混凝土骨料及其制备方法和应用
CN115124317A (zh) * 2022-07-14 2022-09-30 武汉工程大学 一种基于裹浆工艺复合活化再生微粉混凝土及其制备方法
CN115490447A (zh) * 2022-10-09 2022-12-20 碳达(深圳)新材料技术有限责任公司 一种全固废碱激发胶凝材料及其制备方法
CN115849750A (zh) * 2023-02-10 2023-03-28 中国科学院过程工程研究所 一种气化渣基复合胶凝材料及其制备方法与应用
CN116969698A (zh) * 2023-06-21 2023-10-31 山东省交通规划设计院集团有限公司 一种性能可调的固废基复合胶凝材料及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111559899A (zh) * 2020-04-29 2020-08-21 青岛理工大学 一种再生材料地坪砖及其制备方法
CN113582636A (zh) * 2021-07-30 2021-11-02 山东大学 一种赤泥基水稳骨料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215142A (zh) * 2008-01-04 2008-07-09 华中科技大学 一种拜耳法赤泥复合砖及其生产方法
CN104446050A (zh) * 2014-12-19 2015-03-25 青岛理工大学 一种以石油焦脱硫渣和赤泥为原料的硫铝酸盐水泥
CN104844141A (zh) * 2015-04-22 2015-08-19 中国矿业大学 一种基于赤泥原料的免蒸砖及其制备方法
CN109485286A (zh) * 2019-01-22 2019-03-19 山东淄创新材料科技有限公司 赤泥免烧砖用促进剂及其制备方法
KR101960394B1 (ko) * 2018-05-15 2019-03-20 박형준 석유코크스를 재활용하는 친환경 경량 점토벽돌의 제조방법 및 이에 의해 제조된 점토벽돌
CN111559899A (zh) * 2020-04-29 2020-08-21 青岛理工大学 一种再生材料地坪砖及其制备方法
CN112851213A (zh) * 2021-01-26 2021-05-28 江苏瑜工环保科技有限公司 一种含赤泥之环保高强度市政型砖材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557597A (zh) * 2012-01-06 2012-07-11 河南理工大学 一种赤泥河砂烧结砖的生产工艺
CN105316988A (zh) * 2014-08-05 2016-02-10 福建百花化学股份有限公司 透水地坪砖制备方法
CN106116390A (zh) * 2016-06-23 2016-11-16 长安大学 一种免烧无水泥环保砖及其生产方法
CN106854060B (zh) * 2016-12-26 2018-12-25 长春市城市快速路管理维护有限责任公司 一种生态透水砖及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215142A (zh) * 2008-01-04 2008-07-09 华中科技大学 一种拜耳法赤泥复合砖及其生产方法
CN104446050A (zh) * 2014-12-19 2015-03-25 青岛理工大学 一种以石油焦脱硫渣和赤泥为原料的硫铝酸盐水泥
CN104844141A (zh) * 2015-04-22 2015-08-19 中国矿业大学 一种基于赤泥原料的免蒸砖及其制备方法
KR101960394B1 (ko) * 2018-05-15 2019-03-20 박형준 석유코크스를 재활용하는 친환경 경량 점토벽돌의 제조방법 및 이에 의해 제조된 점토벽돌
CN109485286A (zh) * 2019-01-22 2019-03-19 山东淄创新材料科技有限公司 赤泥免烧砖用促进剂及其制备方法
CN111559899A (zh) * 2020-04-29 2020-08-21 青岛理工大学 一种再生材料地坪砖及其制备方法
CN112851213A (zh) * 2021-01-26 2021-05-28 江苏瑜工环保科技有限公司 一种含赤泥之环保高强度市政型砖材料及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523559B (zh) * 2021-12-27 2024-02-13 昆明云能化工有限公司 一种电石渣的综合利用***
CN114523559A (zh) * 2021-12-27 2022-05-24 昆明云能化工有限公司 一种电石渣的综合利用***
CN114644476A (zh) * 2022-03-18 2022-06-21 青岛理工大学 一种核壳结构混凝土骨料及其制备方法和应用
CN114620960B (zh) * 2022-04-26 2023-07-18 洛阳君江建材科技有限公司 一种赤泥制备建筑材料的方法
CN114620960A (zh) * 2022-04-26 2022-06-14 洛阳君江建材科技有限公司 一种赤泥制备建筑材料的方法
CN115124317B (zh) * 2022-07-14 2023-09-26 武汉工程大学 一种基于裹浆工艺复合活化再生微粉混凝土及其制备方法
CN115124317A (zh) * 2022-07-14 2022-09-30 武汉工程大学 一种基于裹浆工艺复合活化再生微粉混凝土及其制备方法
CN115490447B (zh) * 2022-10-09 2023-04-25 碳达(深圳)新材料技术有限责任公司 一种全固废碱激发胶凝材料及其制备方法
CN115490447A (zh) * 2022-10-09 2022-12-20 碳达(深圳)新材料技术有限责任公司 一种全固废碱激发胶凝材料及其制备方法
CN115849750B (zh) * 2023-02-10 2023-07-07 中国科学院过程工程研究所 一种气化渣基复合胶凝材料及其制备方法与应用
CN115849750A (zh) * 2023-02-10 2023-03-28 中国科学院过程工程研究所 一种气化渣基复合胶凝材料及其制备方法与应用
CN116969698A (zh) * 2023-06-21 2023-10-31 山东省交通规划设计院集团有限公司 一种性能可调的固废基复合胶凝材料及其制备方法与应用
CN116969698B (zh) * 2023-06-21 2024-05-03 山东省交通规划设计院集团有限公司 一种性能可调的固废基复合胶凝材料及其制备方法与应用

Also Published As

Publication number Publication date
CN111559899A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021219058A1 (zh) 一种再生材料地坪砖及其制备方法
CN110734257A (zh) 一种高抗渗混凝土的配制方法
CN107337400B (zh) 磨细煤气化粗渣水泥基仿古材料及其制备方法和应用
CN113213789B (zh) 基于生活垃圾焚烧飞灰制备的路面砖及其制备方法
CN103332877B (zh) 利用疏浚淤泥制备无机胶凝材料的方法
CN105622023B (zh) 一种利用炉渣的淤泥固化剂
CN111268979A (zh) 基于全固废的高强度、免烧护坡砖及其制备方法
CN105198336A (zh) 一种抗大风浪冲击的海岸建筑水泥
CN113603440B (zh) 一种基于花岗岩废料和燃煤渣的免烧透水砖及其制备方法
CN102320801B (zh) 一种赤泥、镁渣为主材压制成型生产免烧砖的方法
CN115215597A (zh) 一种盾构渣浆碱激发再生砂浆及其制备方法和应用
CN114988791A (zh) 一种掺富硫锂渣的烟道灌浆料及其制备方法和应用
CN112851162A (zh) 一种胶凝材料及其制备方法
Chen et al. Study on the hydration properties of a ternary cementitious material system containing activated gold tailings and granulated blast furnace slag
CN115340307A (zh) 一种固废基低碳型高铁相-贝利特体系混凝土及其协同固废固碳方法
CN101412595A (zh) 一种利用高岭土尾砂制备混凝土掺合料的方法
CN109467370A (zh) 一种高掺量混合瓷砖骨料c160uhpc及其制备方法
CN111559896A (zh) 一种发泡磷石膏砌块及其制备方法
CN110818339A (zh) 一种轻质高抗渗混凝土的配制方法
CN107382112A (zh) 一种复合胶凝材料
CN105198337A (zh) 一种海工水泥砌块的生产方法
CN115286348A (zh) 一种煤矿/煤化工固废合成混凝土材料及其制备方法
CN110143770B (zh) 一种现排炉渣三元复合无机胶凝材料的制备方法
CN108358664B (zh) 一种利用粉煤灰制作的胶凝材料及其制备方法
CN102060496A (zh) 一种石渣粉加气混凝土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795392

Country of ref document: EP

Kind code of ref document: A1