WO2021218888A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2021218888A1
WO2021218888A1 PCT/CN2021/089805 CN2021089805W WO2021218888A1 WO 2021218888 A1 WO2021218888 A1 WO 2021218888A1 CN 2021089805 W CN2021089805 W CN 2021089805W WO 2021218888 A1 WO2021218888 A1 WO 2021218888A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
link
qos parameter
relay terminal
service
Prior art date
Application number
PCT/CN2021/089805
Other languages
English (en)
French (fr)
Inventor
许胜锋
李濛
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21795702.6A priority Critical patent/EP4135395A4/en
Publication of WO2021218888A1 publication Critical patent/WO2021218888A1/zh
Priority to US17/974,282 priority patent/US20230046157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communication, and more specifically, to communication methods and devices.
  • D2D communication allows direct communication between terminals, and can share spectrum resources with cell users under the control of the cell network, effectively improving the utilization of spectrum resources.
  • a relay terminal UE can be used for assistance.
  • the current technical solution only involves link mapping, that is, how the relay terminal generates and saves the link between the source terminal and the relay terminal and the relationship between the relay terminal and the target terminal.
  • link mapping that is, how the relay terminal generates and saves the link between the source terminal and the relay terminal and the relationship between the relay terminal and the target terminal.
  • the corresponding relationship between the links has not yet considered other aspects of management such as quality of service (QoS).
  • QoS quality of service
  • the present application provides a communication method and device, which can take into account the QoS requirements of the service in the relay scenario.
  • the present application provides a communication method, the method includes: a first terminal obtains a first service, the target terminal of the first service is a second terminal; the first terminal according to the first service , Determining a first quality of service QoS parameter, the first QoS parameter corresponding to the link included between the first relay terminal and the second terminal, wherein the first relay terminal is the first terminal A relay terminal between and the second terminal; the first terminal sends the first QoS parameter to the first relay terminal.
  • the first terminal allocates QoS parameters for the link between the first relay terminal and the second terminal according to the first service, which can take into account the QoS requirements of the service in the relay scenario, which is helpful To achieve end-to-end QoS guarantee.
  • the target terminal of the first service is the second terminal, that is, the first service is a service sent by the first terminal to the second terminal.
  • the first terminal obtains the first service from the application layer.
  • the embodiment of the present application does not specifically limit the first service, and the first service may be a service that any first terminal needs to send.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service on the second link.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the second link.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • each QoS parameter in this application may include at least one of the following items: PQI (PC5 5QI), flow bit rate (flow bit rate), or link aggregate bit rate (link aggregated bit rate).
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS characteristic (PC5 QoS characteristic) one-to-one
  • PC5 QoS characteristic can include one or more of the following items: resource type (resource type), Priority level, packet delay budget, packet error rate, maximum data burst volume, averaging window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR, and the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the flow bit rate includes a guaranteed flow bit rate (GFBR) and a maximum flow bit rate (MFBR).
  • the first terminal may allocate QoS parameters for each link, so that all links as a whole can meet the QoS requirements of the first service.
  • the first QoS parameter corresponds to the second link.
  • the first terminal may divide the QoS requirement of the first service into two parts, the first part is allocated to the first link, and the second part is allocated to all subsequent links and indicated to the first relay terminal; The terminal then further divides the second part of the QoS requirements into two parts, the first part is allocated to the second link, and the second part is allocated to all subsequent links; and so on.
  • the first QoS parameter corresponds to all links between the first relay terminal and the second terminal.
  • the first terminal determining the first quality of service QoS parameter according to the first service includes: the first terminal determining the first service according to the first service 2.
  • QoS parameter, the second QoS parameter is used to instruct the first terminal to send the QoS requirement of the first service to the second terminal; the first terminal determines the QoS requirement according to the second QoS parameter The first QoS parameter.
  • the first terminal may first determine the end-to-end QoS requirement between the first terminal and the second terminal according to the first service, and then further determine the link between the first relay terminal and the second terminal.
  • QoS requirements can take into account the QoS requirements of the business in the relay scenario, which helps to achieve end-to-end QoS guarantee.
  • the method further includes: the first terminal determines a third QoS parameter, and the third QoS parameter is used to determine The QoS parameter corresponding to the first service on the first link, where the first link is a link between the first terminal and the first relay terminal.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service during transmission on the first link.
  • the first terminal determines the QoS parameters on the link between the first terminal and the first relay terminal, that is, the first terminal allocates QoS parameters for each link, so that each link The road as a whole meets the QoS requirements of the first service, thereby realizing end-to-end QoS guarantee.
  • the method further includes: the first terminal determines the first link according to the third QoS parameter The access layer configuration of the first terminal; the first terminal sends the access layer configuration of the first link to the first relay terminal; the first terminal sends the access layer configuration of the first link according to the access layer configuration of the first link The first relay terminal sends the first service.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter and sends it to the first relay terminal, so that the first relay terminal can configure the access layer configuration of the first link Correspond to the access layer configuration for forwarding the first service.
  • the first relay terminal receives the data corresponding to the first service sent by the first terminal on the access layer configuration of the first link, the first relay terminal can determine the access layer configuration for forwarding the data, so that it is correct The data corresponding to the first service is forwarded locally.
  • the first terminal determining a third QoS parameter includes: the first terminal determines according to the first service The third QoS parameter.
  • the first terminal determining the third QoS parameter includes: the first terminal obtains information from the first relay terminal Receive a fourth QoS parameter, where the fourth QoS parameter is the QoS parameter corresponding to the first service on the second link, and the second link is the difference between the first relay terminal and the second terminal Or the link between the first relay terminal and the second relay terminal, where the second relay terminal is a relay between the first relay terminal and the second terminal Terminal; the first terminal determines the third QoS parameter according to the second QoS parameter and the fourth QoS parameter.
  • the fourth QoS parameter is a QoS parameter corresponding to the first service on the second link.
  • the fourth QoS parameter is a QoS parameter corresponding to the first service during transmission on the second link.
  • the first terminal determines the QoS parameter corresponding to the second link according to the end-to-end QoS requirement of the first service and the first relay terminal, and determines the third QoS parameter, that is, when determining the third QoS
  • the overall QoS requirements of the first service and the QoS requirements that can be met by each link are considered at the same time.
  • Performing QoS allocation in the above manner can make the QoS requirements allocated to the first link more suitable.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter
  • the method includes: the first terminal receives a fourth QoS parameter from the first relay terminal, the fourth QoS parameter is a QoS parameter corresponding to the first service on a second link, and the second link Is the link between the first relay terminal and the second terminal or the link between the first relay terminal and the second relay terminal, and the second relay terminal is the first relay terminal.
  • a relay terminal between a relay terminal and the second terminal the first terminal determines a fifth QoS parameter according to the fourth QoS parameter and the third QoS parameter; the first terminal determines the fifth QoS parameter according to the The fifth QoS parameter determines the access layer configuration of the first link.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service on the first link.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service during transmission on the first link.
  • the first terminal can determine the third QoS parameter according to the QoS parameter corresponding to the second link fed back by the first relay terminal, which can make the QoS requirement allocated to the first link more suitable.
  • the first terminal determines a first quality of service QoS parameter according to the first service, including: the first The terminal determines the first QoS parameter according to the first service and link information, and the link information is used to indicate the chain through which the first terminal needs to send the first service to the second terminal road.
  • the first terminal allocates the QoS requirements of the first service according to the link information between the first terminal and the second terminal, for example, the number of links, which is beneficial for each link as a whole to satisfy the first The QoS requirement of a business, so as to realize the end-to-end QoS guarantee.
  • the method further includes: the first terminal determines a sixth QoS parameter according to the first service, and The sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link, and the third link is the link between the second relay terminal and the second terminal or the The link between the second relay terminal and the third relay terminal, the second relay terminal is a relay terminal between the first relay terminal and the second terminal, and the third relay terminal The relay terminal is a relay terminal between the second relay terminal and the second terminal; the first terminal sends the sixth QoS parameter to the first relay terminal.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the third link.
  • the first terminal can determine the QoS parameters of each link and forward it to each relay terminal through the first relay terminal.
  • the second relay terminal may also perform processing similar to that of the first relay terminal.
  • the present application provides a communication method, the method includes: a first relay terminal receives a first quality of service QoS parameter from the first terminal, and the first QoS parameter corresponds to the first relay terminal and the first relay terminal.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter, and the second link is the link between the first relay terminal and the second terminal Or the link between the first relay terminal and the second relay terminal, and the second relay terminal is a relay terminal between the first relay terminal and the second terminal;
  • the first link is the link between the first terminal and the first relay terminal, and the first link
  • the access layer configuration of the second link corresponds to the access layer configuration of the second link;
  • the first relay terminal receives the first terminal from the first terminal according to the access layer configuration of the first
  • the first terminal allocates QoS parameters for the link between the first relay terminal and the second terminal according to the first service, which can take into account the QoS requirements of the service in the relay scenario, which is helpful To achieve end-to-end QoS guarantee.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service on the second link.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the second link.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • each QoS parameter in this application may include at least one of the following items: PQI, streaming bit rate, or link aggregation bit rate.
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS feature one-to-one
  • PC5 QoS feature can include one or more of the following: resource type, priority level, data packet delay budget , Packet error probability, maximum data burst, average window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR
  • the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the streaming bit rate includes the guaranteed streaming bit rate and the maximum streaming bit rate.
  • the first terminal can allocate QoS parameters for each link
  • the first QoS parameter corresponds to the second link
  • the first terminal can divide the QoS requirement of the first service into two parts, the first part is allocated to the first link, and the second part is allocated to all subsequent links and indicated to the first relay terminal.
  • a QoS parameter corresponds to all links between the first relay terminal and the second terminal.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter
  • the method includes: the first relay terminal determines a fourth QoS parameter according to the first QoS parameter, where the fourth QoS parameter is a QoS parameter corresponding to the first service on the second link; The first relay terminal determines the access layer configuration of the second link according to the fourth QoS parameter.
  • the fourth QoS parameter is a QoS parameter corresponding to the first service on the second link.
  • the fourth QoS parameter is a QoS parameter corresponding to the first service during transmission on the second link.
  • the first relay terminal may determine whether the second link can meet the QoS requirement indicated by the first QoS parameter.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter.
  • the first relay terminal can determine the fourth QoS parameter according to the first QoS parameter, and the fourth QoS parameter corresponds to the first service on the second link According to the fourth QoS parameter, the first relay terminal determines the access layer configuration of the second link.
  • the first relay terminal can determine the QoS parameters that can be satisfied by the second link according to the actual situation of the second link.
  • the method further includes: the first relay terminal sends the fourth QoS parameter to the first terminal .
  • the first relay terminal feeds back the fourth QoS parameter to the first terminal, so that the first terminal can determine the QoS of the link between the first terminal and the first relay terminal according to the fourth QoS parameter. Parameters can make the QoS requirements allocated to the first link more suitable.
  • the method further includes: the first relay terminal receives a sixth QoS parameter from the first terminal, or , The first relay terminal determines a sixth QoS parameter according to the first QoS parameter, where the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link, and
  • the third link is the link between the second relay terminal and the second terminal or the link between the second relay terminal and the third relay terminal, and the third relay The terminal is a relay terminal between the second relay terminal and the second terminal; the first relay terminal sends the sixth QoS parameter to the second relay terminal.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the third link.
  • the QoS parameters of each link can be determined and forwarded to each relay terminal.
  • the second relay terminal may also perform processing similar to that of the first relay terminal.
  • the present application provides a communication method, the method includes: a first terminal obtains a first service, the target terminal of the first service is a second terminal; the first terminal according to the first service , Determine a second quality of service QoS parameter, where the second QoS parameter is used to instruct the first terminal to send the QoS requirement of the first service to the second terminal; the first terminal sends all the QoS requirements to the first relay terminal
  • the second QoS parameter, the first relay terminal is a relay terminal between the first terminal and the second terminal; the first terminal receives the third QoS from the first relay terminal Parameter, the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link, and the first link is the connection between the first terminal and the first relay terminal link.
  • the first terminal indicates the end-to-end QoS requirement of the first service to the first relay terminal, and then the first relay terminal is the link between the first relay terminal and the second terminal.
  • the allocation of QoS parameters can take into account the QoS requirements of the service in the relay scenario, which is helpful to realize the end-to-end QoS guarantee.
  • the target terminal of the first service is the second terminal, that is, the first service is a service sent by the first terminal to the second terminal.
  • the first terminal obtains the first service from the application layer.
  • the embodiment of the present application does not specifically limit the first service, and the first service may be a service that any first terminal needs to send.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service during transmission on the first link.
  • each QoS parameter in this application may include at least one of the following items: PQI, streaming bit rate, or link aggregation bit rate.
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS feature one-to-one
  • PC5 QoS feature can include one or more of the following: resource type, priority level, data packet delay budget , Packet error probability, maximum data burst, average window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR
  • the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the streaming bit rate includes the guaranteed streaming bit rate and the maximum streaming bit rate.
  • the method further includes: the first terminal determines the access layer configuration of the first link according to the third QoS parameter; The terminal sends the access stratum configuration of the first link to the first relay terminal; the first terminal sends the access stratum configuration of the first link to the first relay terminal according to the access stratum configuration of the first link The first business.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter and sends it to the first relay terminal, so that the first relay terminal can configure the access layer configuration of the first link Correspond to the access layer configuration for forwarding the first service.
  • the first relay terminal receives the data corresponding to the first service sent by the first terminal on the access layer configuration of the first link, the first relay terminal can determine the access layer configuration for forwarding the data, so that it is correct The data corresponding to the first service is forwarded locally.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter
  • the method includes: the first terminal determines a fifth QoS parameter according to the third QoS parameter, where the fifth QoS parameter is a QoS parameter corresponding to the first service on the first link; and the first terminal determines according to The fifth QoS parameter determines the access layer configuration of the first link.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service on the first link.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service during transmission on the first link.
  • the first terminal can determine the QoS parameters that can be satisfied by the first link according to the actual situation of the first link.
  • the method further includes: the first terminal sends the fifth QoS parameter to the first relay terminal .
  • the first terminal feeds back the fifth QoS parameter to the first terminal, so that the first relay terminal can determine the link between the first relay terminal and the second relay terminal according to the fifth QoS parameter
  • the QoS parameters can make the QoS requirements allocated to the second link more suitable.
  • the present application provides a communication method, the method includes: a first relay terminal receives a second quality of service QoS parameter from a first terminal, and the second QoS parameter is used to instruct the first terminal to The second terminal sends the QoS requirement of the first service, the first relay terminal is a relay terminal between the first terminal and the second terminal; the first relay terminal is based on the second QoS The parameter determines a first QoS parameter, and the first QoS parameter corresponds to a link included between the first relay terminal and the second terminal.
  • the first terminal indicates the end-to-end QoS requirement of the first service to the first relay terminal, and then the first relay terminal is the link between the first relay terminal and the second terminal.
  • the allocation of QoS parameters can take into account the QoS requirements of the service in the relay scenario, which is helpful to realize the end-to-end QoS guarantee.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service on the second link.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the second link.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • each QoS parameter in this application may include at least one of the following items: PQI, streaming bit rate, or link aggregation bit rate.
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS feature one-to-one
  • PC5 QoS feature can include one or more of the following: resource type, priority level, data packet delay budget , Packet error probability, maximum data burst, average window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR
  • the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the streaming bit rate includes the guaranteed streaming bit rate and the maximum streaming bit rate.
  • the first relay terminal may allocate QoS parameters for each link, so that all links as a whole can meet the QoS requirements of the first service.
  • the first QoS parameter corresponds to the second link.
  • the first relay terminal may divide the QoS requirement of the first service into two parts, the first part is allocated to the first link, and the second part is allocated to all subsequent links; further, the first relay terminal is further The second part of the business requirements is further divided into two parts, the first part is allocated to the second link, and the second part is allocated to all subsequent links; and so on.
  • the first QoS parameter corresponds to all links between the first relay terminal and the second terminal.
  • the method further includes: the first relay terminal determines a third QoS parameter according to the second QoS parameter, and the third QoS parameter is used to determine The QoS parameter corresponding to the first service on the first link, where the first link is the link between the first terminal and the first relay terminal; the first relay terminal The first terminal sends the third QoS parameter.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service during transmission on the first link.
  • the first terminal indicates the end-to-end QoS requirement of the first service to the first relay terminal, and the first relay terminal allocates QoS parameters for each link.
  • the first relay terminal can assign QoS parameters to the first link according to the received end-to-end QoS requirements of the first service, and can determine the QoS parameters of the first service during the transmission of the first link, which helps to achieve end-to-end End QoS guarantee.
  • the method further includes: the first relay terminal determines the second link according to the first QoS parameter
  • the second link is the link between the first relay terminal and the second terminal or the link between the first relay terminal and the second relay terminal ,
  • the second relay terminal is a relay terminal between the first relay terminal and the second terminal;
  • the first relay terminal receives the access of the first link from the first terminal Layer configuration, the access layer configuration of the first link corresponds to the access layer configuration of the second link;
  • the first relay terminal obtains data from the access layer configuration of the first link according to the access layer configuration of the first link
  • the first terminal receives the first service, and forwards the first service according to the access layer configuration of the second link.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameters, and receives the access layer configuration of the first link from the first terminal, so that the first relay terminal can Correspond the access layer configuration of the first link with the access layer configuration of forwarding the first service.
  • the first relay terminal receives the data corresponding to the first service sent by the first terminal on the access layer configuration of the first link, the first relay terminal can determine the access layer configuration for forwarding the data, so that it is correct The data corresponding to the first service is forwarded locally.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter
  • the method includes: the first relay terminal receives a fifth QoS parameter from the first terminal, where the fifth QoS parameter is a QoS parameter corresponding to the first service on the first link; the first relay The terminal determines a fourth QoS parameter according to the first QoS parameter and the fifth QoS parameter, where the fourth QoS parameter is a QoS parameter corresponding to the first service on the second link; the first relay terminal Determine the access layer configuration of the second link according to the fourth QoS parameter.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service on the first link.
  • the fifth QoS parameter is a QoS parameter corresponding to the first service during transmission on the first link.
  • the first relay terminal can determine the fourth QoS parameter according to the QoS parameter corresponding to the first link fed back by the first terminal, which can make the QoS requirement allocated to the second link more suitable.
  • the first relay terminal determines the first QoS parameter according to the second QoS parameter, including: A relay terminal determines a first QoS parameter according to the second QoS parameter and link information, and the link information is used to instruct the first terminal to send the first service to the second terminal. link.
  • the first relay terminal allocates the QoS requirements of the first service according to the link information between the first terminal and the second terminal, for example, the number of links, which is beneficial to the overall link. Meet the QoS requirements of the first service, thereby realizing end-to-end QoS guarantee.
  • the method further includes: the first relay terminal determines a sixth QoS parameter according to the second QoS parameter ,
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link
  • the third link is the link between the second relay terminal and the second terminal Or the link between the second relay terminal and the third relay terminal
  • the second relay terminal is a relay terminal between the first relay terminal and the second terminal
  • the third relay terminal is a relay terminal between the second relay terminal and the second terminal
  • the first relay terminal sends the sixth QoS parameter to the second relay terminal.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the third link.
  • the first relay terminal can determine the QoS parameter of each link and send it to each relay terminal.
  • the second relay terminal may also perform processing similar to that of the first relay terminal.
  • the present application provides a communication method, the method includes: a first terminal obtains a first service; the first terminal determines a QoS parameter according to the first service, and the QoS parameter is used to indicate The first terminal sends the QoS requirement of the first service to the second terminal; the first terminal receives first information from the first relay terminal, the first information includes information about the second link, and the first terminal
  • the second link is the link between the first relay terminal and the second terminal or the link between the first relay terminal and the second relay terminal, and the first relay terminal is A relay terminal between the first terminal and the second terminal, and the second relay terminal is a relay terminal between the first relay terminal and the second terminal;
  • the first The terminal sends second information to the access network device, where the second information includes the QoS parameters, information about the first link, and information about the second link, and the first link is the first terminal Link with the first relay terminal; the first terminal receives third information from the access network device, the third information includes the access layer configuration of the first link and the The information of the first terminal
  • the first terminal can obtain the QoS requirement of the first service, the information of the relay terminal and the information of the link, and feed it back to the access network device, so that the access network device can determine the access layer for each link Configuration and delivery, so that each relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • each QoS parameter in this application may include at least one of the following items: PQI, streaming bit rate, or link aggregation bit rate.
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS characteristic (PC5 QoS characteristic) one-to-one
  • PC5 QoS characteristic can include one or more of the following items: resource type, priority level, Data packet delay budget, data packet error probability, maximum data burst, average window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR
  • the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the streaming bit rate includes the guaranteed streaming bit rate and the maximum streaming bit rate.
  • the method further includes: the first terminal sends fourth information to the first relay terminal, where the fourth information includes the first link The access layer configuration.
  • the first terminal sends the access layer configuration of the first link to the first relay terminal, so that the first relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, so that the first The relay terminal can perform QoS processing according to the corresponding relationship configured in the access layer, thereby achieving end-to-end QoS guarantee.
  • the third information further includes the access layer configuration of the second link and the configuration of the second link.
  • Information; the fourth information also includes the access layer configuration of the second link and the information of the second link.
  • the access network device may issue the access layer configuration of the second link to the first terminal, and then the first terminal forwards it to the first relay terminal, so that the first relay terminal can generate and The corresponding relationship of the access layer configuration of the link is saved, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the first information further includes information of the first relay terminal; and/or, the second information It also includes the information of the first relay terminal.
  • the first terminal may obtain the information of the first relay terminal from the first relay terminal and send it to the access network device, so that the access network device can directly configure the access layer of the second link. It is sent to the first relay terminal without forwarding by the first terminal, which helps to improve the efficiency of QoS allocation.
  • the first information further includes information about a third link
  • the third link is the second medium Following the link between the terminal and the second terminal or the link between the second relay terminal and the third relay terminal
  • the third relay terminal is the link between the second relay terminal and the The relay terminal between the second terminals;
  • the second information also includes information about the third link.
  • the first terminal can obtain information of multiple links from the first relay terminal, so that the above technical solution can be applied to a scenario where the first terminal and the second terminal include multiple relay terminals.
  • the present application provides a communication method, the method includes: a first relay terminal sends first information to a first terminal, the first information includes information about a second link, and the second link The path is the link between the first relay terminal and the second terminal or the link between the first relay terminal and the second relay terminal, and the first relay terminal is the first relay terminal.
  • a relay terminal between a terminal and the second terminal is a relay terminal between the first relay terminal and the second terminal;
  • the first relay terminal receives The access layer configuration of the first link and the access layer configuration of the second link, the access layer configuration of the first link corresponds to the access layer configuration of the second link, and the first link A link is the link between the first terminal and the first relay terminal;
  • the first relay terminal receives the first terminal from the first terminal according to the access layer configuration of the first link A service, and forwarding the first service according to the access layer configuration of the second link.
  • the first relay terminal may send the information of the second link to the first terminal, so that the first terminal feeds back to the access network device, so that the access network device determines the access layer configuration for each link and Issue, so that the first relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the information of the first service may include service types and/or service requirements, where the service types may be video services, data services, or voice services, etc.
  • the service requirements may be service priority requirements and service reliability requirements And the delay requirements of the business.
  • the first relay terminal receiving the access layer configuration of the first link and the access layer configuration of the second link includes: the first The relay terminal receives fourth information from the first terminal, where the fourth information includes the access layer configuration of the first link, the access layer configuration of the second link, and the second link Information.
  • the access network device may send both the access layer configuration of the first link and the access layer configuration of the second link to the first terminal, and then the first terminal forwards it to the first relay.
  • Terminal so that the first relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the first information further includes information of the first relay terminal; the first relay terminal receives the first The access layer configuration of one link and the access layer configuration of the second link include: the first relay terminal receives fifth information from an access network device, and the fifth information includes the first At least one of the information of the link and the information of the second link, and the access layer configuration of the first link and the access layer configuration of the second link.
  • the first relay terminal can send the information of the first relay terminal to the first terminal, so that the first terminal can send it to the access network device, so that the access network device can directly connect to the second link.
  • the incoming layer configuration is issued to the first relay terminal without forwarding by the first terminal, which helps to improve the efficiency of QoS allocation.
  • the first information further includes information of the first relay terminal; the first relay terminal receives the first The access layer configuration of one link and the access layer configuration of the second link include: the first relay terminal receives fifth information from an access network device, and the fifth information includes the second Link information and the access layer configuration of the second link; the first relay terminal receives fourth information from the first terminal, and the fourth information includes the access of the first link Layer configuration.
  • the first relay terminal obtains the access layer configuration of the first link from the first terminal, and obtains the access layer configuration of the second link from the access network device, so that the first relay terminal can generate And save the corresponding relationship of the access layer configuration of the link, and then can perform QoS processing according to the corresponding relationship of the access layer configuration, so as to realize the end-to-end QoS guarantee.
  • the first information further includes information about a third link
  • the third link is the second medium Following the link between the terminal and the second terminal or the link between the second relay terminal and the third relay terminal
  • the third relay terminal is the link between the second relay terminal and the The relay terminal between the second terminal.
  • the first relay terminal can send information of multiple links to the first terminal, so that the above technical solution can be applied to a scenario where the first terminal and the second terminal include multiple relay terminals.
  • the present application provides a communication method.
  • the method includes: an access network device receives second information from a first terminal, where the second information includes quality of service QoS parameters, information about the first link, and the first terminal.
  • Information about the second link where the QoS parameter is used to instruct the first terminal to send the QoS requirement of the first service to the second terminal, and the first link is the first terminal and the first relay terminal.
  • the second link is the link between the first relay terminal and the second terminal or the link between the first relay terminal and the second relay terminal ,
  • the first relay terminal is a relay terminal between the first terminal and the second terminal, and the second relay terminal is a relay terminal between the first relay terminal and the second terminal
  • the access network device determines the access layer configuration of the first link and the access layer configuration of the second link according to the second information;
  • the access network device forwards The first terminal sends the access layer configuration of the first link and the information of the first link;
  • the access network device sends the information of the first link and
  • the access network device can determine the access layer configuration for each link and issue it according to the QoS parameters, the information of the first link, and the information of the second link, so that the first relay terminal can The corresponding relationship of the access layer configuration of the link is generated and saved, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the access network device sends at least one of the information of the first link and the information of the second link, and the second link
  • the access layer configuration includes: the access network device sends the access layer configuration of the second link and the information of the second link to the first terminal.
  • the access network device may send both the access layer configuration of the first link and the access layer configuration of the second link to the first terminal, and then the first terminal forwards it to the first relay.
  • Terminal so that the first relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, so that the first relay terminal can perform QoS processing according to the corresponding relationship of the access layer configuration, thereby achieving end-to-end QoS guarantee.
  • the second information further includes information of the first relay terminal
  • the access network device sends the At least one of the information of the first link and the information of the second link
  • the access layer configuration of the second link includes: the access network device sends to the first relay terminal The access layer configuration of the second link and the information of the second link; or, the access network device sends the information of the first link and the information of the first link to the first relay terminal At least one of the information of the two links, and the access layer configuration of the first link and the access layer configuration of the second link.
  • the first relay terminal obtains the access layer configuration of the first link from the first terminal, and obtains the access layer configuration of the second link from the access network device, or the first relay terminal obtains the access layer configuration of the second link from the access network device.
  • the access network device obtains the access layer configuration of the first link and the access layer configuration of the second link, so that the first relay terminal can generate and save the corresponding relationship of the access layer configuration of the link, and then can according to the connection QoS processing is performed on the corresponding relationship of the in-layer configuration, so as to realize end-to-end QoS guarantee.
  • the present application provides a communication device.
  • the communication device may be a terminal or a component in the terminal.
  • the communication device may include various modules or units used to execute the method in the first aspect or any one of the possible implementation manners of the first aspect, or include the third aspect or any one of the possible implementation manners of the third aspect
  • the present application provides a communication device, which may be a relay terminal or a component in a relay terminal.
  • the communication device may include various modules or units used to execute the method in the second aspect or any one of the possible implementation manners of the second aspect, or include the fourth aspect or any one of the possible implementation manners of the fourth aspect
  • the present application provides a communication device.
  • the communication device may be an access network device or a component in the access network device.
  • the communication device may include various modules or units for executing the method in the seventh aspect or any one of the possible implementation manners of the seventh aspect.
  • the units in each of the foregoing devices may include a processing unit and a transceiving unit, where the transceiving unit is used to transmit and receive information, and the processing unit performs the processing in the foregoing method.
  • the present application provides a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the foregoing first aspect or the first aspect, or implement any of the foregoing third aspect or the third aspect
  • the present application provides a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing second aspect or the second aspect, or implement any of the foregoing fourth aspect or the fourth aspect.
  • this application provides a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in the seventh aspect or any one of the possible implementation manners of the seventh aspect.
  • the foregoing various communication devices including a processor further include a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information, and the information includes at least one of instructions or data.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • this application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the methods in the above-mentioned various aspects.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • this application provides a processing device, including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions or data.
  • the processor is used to execute a computer program, so that the processing device executes the methods in the above-mentioned various aspects.
  • this application provides a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so that the processing device executes the methods in the above-mentioned various aspects.
  • processors there are one or more processors. If there is a memory, there can also be one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving instruction information may be a process of inputting received instruction information to the processor.
  • the information output by the processing may be output to the transmitter, and the input information received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the devices in the fifteenth and sixteenth aspects described above may be chips, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.;
  • the processor When implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • this application provides a computer program product
  • the computer program product includes: a computer program (also called code, or instruction), when the computer program is run, the computer executes the above aspects In the method.
  • this application provides a computer-readable medium that stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above aspects In the method.
  • a computer program also called code, or instruction
  • this application provides a communication system that includes the aforementioned terminal and relay device, or includes the aforementioned terminal, relay device, and access network device.
  • Fig. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of another network architecture suitable for an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a QoS model based on a QoS flow in an embodiment of the present application.
  • Figure 4 is a schematic diagram of a link establishment process.
  • Figure 5 is a schematic diagram of a link establishment process in a relay scenario.
  • Fig. 6 is a schematic flowchart of the communication method provided by the present application.
  • Fig. 7 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 8 is a schematic flowchart of another communication method provided by the present application.
  • Fig. 9 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 10 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 11 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 12 is a schematic flowchart of another communication method provided by the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal or relay terminal in the embodiment of this application may be a user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal equipment, wireless communication equipment, user agents, user devices, handheld terminals, notebook computers, cellular phones, smart phones, tablet computers, handheld devices, augmented reality (AR) equipment, virtual reality (VR) Equipment, machine type communication terminal or other equipment that can be connected to the network.
  • UE user equipment
  • AR augmented reality
  • VR virtual reality
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or terminals in the future evolved public land mobile network (PLMN), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN personal digital assistant
  • This embodiment of the present application does not limit this.
  • a certain air interface technology such as NR or LTE technology
  • a certain air interface technology (such as NR or LTE technology) may be used to communicate with each other.
  • the air interface technology can also be other technologies besides NR and LTE technologies.
  • the communication terminal uploaded by the vehicle is a kind of terminal device, and a roadside unit (RSU) can also be used as a terminal.
  • the drone is loaded with a communication terminal, which can be regarded as a kind of terminal.
  • the access network device in the embodiment of the present application may be a device used to communicate with a terminal, and is mainly responsible for functions such as radio resource management, service quality management, data compression, and encryption on the air interface side.
  • the access network equipment may include various forms of base stations.
  • the access network equipment can be a base transceiver station (BTS) in the CDMA system of the global mobile communications system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station (evoled) in the LTE system.
  • BTS base transceiver station
  • NodeB, NB base station
  • evoled evolved base station
  • NodeB, eNB or eNodeB it can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the access network device can be a relay station, access point, vehicle-mounted device, or wearable device
  • the access network equipment in the future 5G network or the access network equipment in the future evolved PLMN network one or a group of (including multiple antenna panels) antenna panels of the base station in the 5G system, or can also be configured as
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal, the relay terminal, or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal or an access network device, or a functional module that can call and execute the program in the terminal or the access network device.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • the network architecture includes: terminal 101, (radio access network, (R)AN) 102, user plane function (UPF) network element 103, and data network (data network, DN) network element 104, authentication server function (authentication server function, AUSF) network element 105, AMF network element 106, session management function (session management function, SMF) network element 107, network exposure function , NEF) network element 108, network repository function (NRF) network element 109, policy control function (PCF) network element 110, unified data management (udified data management, UDM) network element 111 And NSSF network element 112.
  • R radio access network
  • UPF user plane function
  • UDM network element 111 and NSSF network element 112 are referred to as UPF103, DN104, AUSF105, AMF106, SMF107, NEF108, NRF109, PCF110, UDM111, NSSF112, unified data repository (UDR) 113 for short.
  • the terminal 101 mainly accesses the 5G network through a wireless air interface and obtains services.
  • the terminal interacts with the RAN through the air interface, and interacts with the AMF of the core network through non-access stratum (NAS).
  • the RAN102 is responsible for air interface resource scheduling and air interface connection management for the terminal to access the network.
  • UPF103 is responsible for forwarding and receiving user data in the terminal.
  • the UPF can receive user data from the data network and transmit it to the terminal through the access network device, and can also receive user data from the terminal through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions of the UPF103 that provide services for the terminal are managed and controlled by the SMF network element.
  • AUSF105 is a core network control plane network element, which is mainly responsible for user authentication and authorization to ensure that the user is a legitimate user.
  • AMF106 is a core network element and is mainly responsible for signaling processing, such as: access control, mobility management, attach and detach, and gateway selection functions. AMF106 can also provide services for sessions in the terminal. The storage resources of the control plane will be provided for the session to store the session identifier, the SMF network element identifier associated with the session identifier, and so on.
  • SMF107 is responsible for user plane network element selection, user plane network element redirection, internet protocol (IP) address allocation, bearer establishment, modification and release, and QoS control.
  • IP internet protocol
  • NEF108 is a core network control plane network element, which is responsible for opening up mobile network capabilities.
  • NRF109 belongs to the core network control plane network element, which is responsible for the dynamic registration of the service capability of the network function and the discovery of the network function.
  • PCF110 mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is responsible for obtaining user subscription information related to policy decisions.
  • UDM111 belongs to the control plane network element of the core network and belongs to the user server. It can be used for unified data management and supports functions such as 3GPP authentication, user identity operation, authorization grant, registration, and mobility management.
  • NSSF112 is used to complete the network slice selection function for the terminal.
  • NSSF112 belongs to the core network control plane entity and is responsible for the selection of the target NSI.
  • UDR113 is responsible for the storage and provision of terminal subscription data, or the storage and provision of terminal policy data.
  • Nausf is the service-based interface displayed by AUSF105
  • Namf is the service-based interface displayed by AMF106
  • Nsmf is the service-based interface displayed by SMF107
  • Nnef is the service-based interface displayed by NEF108
  • Nnrf is displayed by NRF109.
  • Npcf is the service-based interface displayed by PCF110
  • Nudm is the service-based interface displayed by UDM111
  • Nnssf is the service-based interface displayed by NSSF112
  • Nudr is the service-based interface displayed by UDR113.
  • N1 is the interface between UE101 and AMF106
  • N2 is the interface between (R)AN102 and AMF106, used to send non-access stratum (NAS) messages, etc.
  • N3 is between (R)AN102 and UPF103 The interface is used to transmit user plane data, etc.
  • N4 is the interface between SMF107 and UPF103, used to transmit information such as tunnel identification information of the N3 connection, data buffer indication information, and downlink data notification messages
  • N6 interface is UPF103 The interface between DN104 and DN104 is used to transmit user plane data.
  • Fig. 2 is a schematic diagram of another network architecture suitable for an embodiment of the present application.
  • D2D Device-to-Device
  • UE User Equipment
  • UE relay terminal
  • FIG. 2 through the communication between the terminal 1 and the terminal 2, and the communication between the terminal 2 and the terminal 3, the D2D communication between the terminal 1 and the terminal 3 can be realized.
  • the terminal 1 and the terminal 2 and the terminal 2 and the terminal 3 can communicate through an interface, which can be used for information transmission between the data plane and the control plane.
  • the interface can be a PC5 interface.
  • the PC5 interface is used as example.
  • the terminal 2 is a relay terminal between the terminal 1 and the terminal 3. It should be noted that there may be more relay terminals between terminal 1 and terminal 3.
  • the end-to-end (UE-to-UE, U2U) relay scenario shown in FIG. 2 is referred to as a relay scenario below for short.
  • one or more links may be established between the terminal and the terminal, for example, one or more PC5 links may be established between the terminal and the terminal.
  • the terminal assigns a link identifier (link identifier) to each link to identify different links; the terminal can also assign a layer 2 identifier (layer 2 identifier) to each link to send and receive corresponding Link data.
  • the layer 2 identifier assigned by the terminal to the link can be understood as the source layer 2 identifier.
  • the layer 2 identification may also be referred to as a layer 2 address, and is collectively referred to as a layer 2 identification hereinafter.
  • Each link corresponds to a pair of application layer IDs, which can be understood as the link used to transmit data between the pair of application layer IDs.
  • link 1 and link 2 are established between terminal A and terminal B.
  • Link 1 corresponds to the application layer ID 1 of terminal A and the application layer ID 2 of terminal B
  • link 2 corresponds to The application layer ID 3 of terminal A corresponds to the application layer ID 4 of terminal B.
  • a QoS model based on QoS flow can be adopted.
  • One or more QoS flows can be established in each link.
  • Each QoS flow can be identified by a QoS flow identifier (PFI), and the PFI uniquely identifies a QoS flow in the link.
  • PFI QoS flow identifier
  • two QoS flows are established in link 1, namely QoS flow #1 for transmitting services A and E and QoS flow #2 for transmitting service B, and link 2 is established
  • Two QoS flows namely QoS flow #3 for transmitting service C and QoS flow #4 for transmitting service D.
  • the QoS flow in D2D communication can be further divided into a guaranteed bit rate (GBR) QoS flow and a non-guaranteed bit rate (non-GBR) QoS flow.
  • GRR guaranteed bit rate
  • non-GBR non-guaranteed bit rate
  • the terminal can obtain the QoS mapping configuration from the PCF when registering.
  • the PCF is sent to the terminal through the AMF in the terminal configuration update (UE configuration update, UCU) process.
  • the way for the PCF to obtain the QoS mapping configuration may be that the application server generates the QoS mapping configuration, and sends the QoS mapping configuration to the UDR through the NEF network element, and the UDR notifies the PCF of the QoS mapping configuration as the terminal's subscription data.
  • the QoS mapping configuration can include:
  • the service type can be a video service, a data service or a voice service, etc.
  • the service requirement can be a priority requirement of a service, a reliability requirement of a service, and a delay requirement of a service, etc.
  • the QoS parameters may include at least one of the following items: PQI (PC5 5QI), flow bit rate (flow bit rate), or link aggregate bit rate (link aggregated bit rate).
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS characteristic (PC5 QoS characteristic) one-to-one
  • PC5 QoS characteristic can include one or more of the following items: resource type (resource type), Priority level, packet delay budget, packet error rate, maximum data burst volume, averaging window, etc.
  • resource types include GBR and non-GBR.
  • the average window can be used to calculate the rate corresponding to the GBR, and the data packet delay budget can refer to the delay of the data packet from terminal A to terminal B.
  • the flow bit rate includes a guaranteed flow bit rate (GFBR) and a maximum flow bit rate (MFBR).
  • the access layer configuration may include at least one of a side link radio bear configuration and a logical channel configuration.
  • side link radio bearer configuration may include PDCP entity configuration and RLC entity configuration, etc.
  • logical channel configuration may include logical channel priority configuration, etc.
  • the terminal obtains the service type or service requirement from the application layer, and according to the above configuration 1), the QoS parameter can be determined.
  • the terminal When the terminal is not in the network service, it can further determine the access layer configuration not under the network service, that is, the autonomous scheduling mode, according to the QoS parameters corresponding to the service and the above configuration 2).
  • the fact that the terminal is not in network service can be understood as the terminal is not under network coverage (out of coverage).
  • the terminal When the terminal is serving the network, the terminal requests the RAN for access layer configuration, that is, the RAN scheduling mode. Specifically, the terminal sends QoS parameters, link information, communication mode, etc. to the RAN, and the RAN determines the access layer configuration corresponding to the QoS parameter and issues it to the terminal.
  • the link information may include destination layer 2 identification or link identification, etc.; the communication mode may include unicast, multicast, or broadcast.
  • the terminal's network service can be understood as the terminal being under network coverage (in coverage).
  • Figure 4 is a schematic diagram of a link establishment process.
  • the procedure for establishing a link between terminals is as follows.
  • the terminal 2 determines a layer 2 identifier for receiving a direct communication request message (direct communication request), and this layer 2 identifier is configured on the terminal 2 side.
  • Terminal 3 is similar to terminal 4.
  • the terminal 1 obtains service information and application layer ID information from the application layer.
  • the business information includes at least one of the following items: business type or business demand.
  • the terminal 1 sends a direct communication request message to the terminal 2, and the direct communication request message is sent using the source layer 2 identification (source L2 ID) and the destination layer 2 identification (destination L2 ID).
  • the source layer 2 identifier is the layer 2 identifier of terminal 1, which is allocated by terminal 1.
  • the destination layer 2 identifier is the layer 2 identifier configured by the system for sending the direct communication request message.
  • the direct communication request message can be sent in a unicast or broadcast manner.
  • the terminal 1 and the terminal 2 establish a secure connection. After the establishment of the secure connection is completed, the terminal 1 sends the QoS flow information to the terminal 2.
  • the QoS flow information includes PFI and QoS parameters corresponding to the PFI.
  • the QoS parameters here may be determined by the terminal 1 according to service information. Further, the terminal 1 generates a QoS flow for transmitting the corresponding service, and the PFI is an identifier of the QoS flow.
  • the terminal 2 sends a direct communication accept message to the terminal 1.
  • the source layer 2 identifier is the layer 2 identifier of the terminal 2
  • the destination layer 2 identifier is the layer 2 identifier of the terminal 1.
  • terminal 1 and terminal 2 communicate to determine the layer 2 identities of the sender and receiver of D2D communication, and the layer 2 identities of the sender and receiver can uniquely identify a link; terminal 1 and terminal 2 can also use the link identity to identify the link between the two
  • the link identifiers used in terminal 1 and terminal 2 can be the same or different.
  • terminal 1 and terminal 2 can transmit data to each other through the link established in the above steps. Specifically, through the link established in the above steps, data between the application layer ID of the terminal 1 and the application layer ID of the terminal 2 is transmitted.
  • QoS flow information is negotiated between the terminals to establish a QoS flow (for example, through the foregoing step 404).
  • the QoS flow information includes PFI and QoS parameters corresponding to the PFI.
  • the terminal can derive QoS rules (QoS rules), which are used to indicate the correspondence between service types or service requirements and PFI.
  • QoS rules QoS rules
  • services A and E correspond to QoS flow #1
  • service B corresponds to QoS flow #2
  • service C corresponds to QoS flow #3
  • service D corresponds to QoS flow #4.
  • the terminal can obtain the access layer configuration corresponding to the QoS flow according to the QoS parameters corresponding to the QoS flow (for example, through the RAN scheduling mode or the autonomous scheduling mode described above).
  • the terminal When sending data, the terminal maps the application layer data to the QoS flow identification PFI according to the QoS rules, then obtains the access layer configuration according to the QoS flow identification PFI, and then sends the corresponding data according to the access layer configuration.
  • the link establishment process shown in FIG. 4 does not involve the presence of a relay terminal between the terminal 1 and the terminal 2.
  • Figure 5 is a schematic diagram of a link establishment process in a relay scenario. Since the distance between the terminal 1 and the terminal 3 may be relatively long, the terminal 1 and the terminal 3 cannot establish a direct communication link. Taking the establishment of a link between the terminal 1 and the terminal 3 as an example, the link establishment process in the relay scenario is as follows. It should be noted that the direct communication request message below may also be an indirect communication request message.
  • the relay terminal completes network registration and obtains relay policy parameters.
  • the relay terminal determines the layer 2 identifier for receiving the direct communication request message. Specifically, the relay terminal indicates the relay capability when registering with the network, and the network side issues the relay policy parameter according to the relay capability information.
  • the relay policy parameter may include at least one of the following items: a PLMN that allows the relay terminal to relay data or a service that the relay terminal allows to relay.
  • the terminal 3 determines a layer 2 identifier for receiving a direct communication request message.
  • Terminal 2 is similar to terminal 4.
  • the terminal 1 sends a direct communication request message.
  • the direct communication request message includes the application layer ID of the terminal 3.
  • the terminal 1 may send the direct communication request message in a broadcast manner.
  • the relay terminal receives the direct communication request message.
  • the relay terminal receives the direct communication request message sent by the terminal 1, it is determined that the application layer ID in the message does not belong to the relay terminal, and the direct communication request message is forwarded.
  • the message includes the application layer ID of the terminal 3.
  • the relay terminal can forward the direct communication request message in a broadcast manner. Accordingly, the terminal 3 receives the direct communication request message.
  • the terminal 1 and the terminal 3 establish a secure connection, and the interaction information between the terminal 1 and the terminal 3 is forwarded through the relay terminal during the establishment process. Specifically, the terminal 3 determines that the application layer ID in the message belongs to the terminal, and requests the terminal 1 to establish a secure connection through the relay terminal.
  • terminal 3 sends a direct communication accept message to the relay terminal, and the relay terminal completes after receiving the direct communication accept message sent by terminal 3 The establishment of the link between the relay terminal and the terminal 3.
  • the relay terminal After receiving the direct communication accept message sent by the terminal 3, the relay terminal sends a direct communication accept message to the terminal 1. After receiving the direct communication accept message sent by the relay terminal, the terminal 1 completes the terminal 1. The establishment of the link with the relay terminal.
  • the terminal 1 communicates with the terminal 3 through the link between the terminal 1 and the relay terminal and the link between the relay terminal and the terminal 3.
  • the relay terminal generates and stores the correspondence between the link between the terminal 1 and the relay terminal and the link between the relay terminal and the terminal 3, that is, link mapping.
  • the relay terminal forwards the data between the terminal 1 and the terminal 3 according to the stored correspondence relationship.
  • the link between terminal 1 and the relay terminal is link 1
  • the link between the relay terminal and terminal 3 is link 2
  • link 1 corresponds to link 2
  • the link is stored in the relay terminal The correspondence relationship between 1 and link 2.
  • terminal 1 sends data to terminal 3
  • terminal 1 sends data to the relay terminal through link 1
  • the relay terminal determines through the stored correspondence between link 1 and link 2.
  • the data sent by the terminal 1 through the link 1 needs to be forwarded to the terminal 3 through the link 2, so as to realize the data transmission between the terminal 1 and the terminal 3.
  • the current technical solution only involves the relay link establishment process, mainly about how the relay terminal generates and saves the corresponding relationship between the link and the link, and has not considered other management such as QoS.
  • the present application provides a communication method that can take into account the QoS requirements of the service in the relay scenario, which helps to achieve end-to-end QoS guarantee.
  • the technical solution of the present application can be applied to a scenario where one or more relay terminals exist between the source terminal and the target terminal.
  • the source terminal is collectively referred to as the first terminal
  • the target terminal is collectively referred to as the second terminal.
  • the first and second classes are used to distinguish QoS parameters. It should be understood that different QoS parameters can be understood as including parameter types and/or different values of parameters of various types. It should also be understood that the first, second, etc. are only used to distinguish QoS parameters, and do not constitute any limitation on QoS parameters.
  • Scenario 1 There is a relay terminal between the first terminal and the second terminal
  • Fig. 6 is a schematic flowchart of the communication method provided by the present application.
  • the method shown in FIG. 6 may be executed by the first terminal, the first relay terminal, and the second terminal, or may be executed by the chips or modules in the first terminal, the first relay terminal, and the second terminal.
  • Fig. 6 uses the first terminal, the first relay terminal, and the second terminal as the execution subject as an example to describe the communication method of the embodiment of the present application.
  • the method shown in FIG. 6 may include at least part of the following content.
  • the link between the first terminal and the first relay terminal is referred to as the first link
  • the link between the first relay terminal and the second terminal is referred to as the second link.
  • the first terminal obtains the first service.
  • the target terminal of the first service is the second terminal, that is, the first service is a service sent by the first terminal to the second terminal.
  • the first terminal obtains the first service from the application layer.
  • the embodiment of the present application does not specifically limit the first service, and the first service may be any service that the first terminal needs to send.
  • the information of the first service may include service type and/or service requirement, where the service type may be video service, data service or voice service, etc.
  • the service requirement may be the priority requirement of the service and the reliability of the service. Sexual requirements and business delay requirements, etc.
  • the first terminal determines the first QoS parameter according to the first service.
  • the first QoS parameter corresponds to a link included between the first relay terminal and the second terminal, and the first relay terminal is a relay terminal between the first terminal and the second terminal.
  • the first relay terminal is directly connected to the second terminal, and the link included between the first relay terminal and the second terminal is the first relay terminal.
  • a link between a relay terminal and a second terminal that is, the second link.
  • the two terminals are directly connected, that is, there is no relay terminal between the two terminals, and the assistance of the relay terminal may not be required.
  • the first QoS parameter corresponds to the link included between the first relay terminal and the second terminal, that is, the first QoS parameter corresponds to the second link.
  • the first QoS parameter is used to determine the QoS parameter corresponding to the first service on the second link or is used to determine the QoS parameter corresponding to the first service when the first service is transmitted on the second link.
  • the first QoS parameter may include at least one of the following items: PQI, streaming bit rate, or link aggregation bit rate, and so on.
  • PQI is a special type of 5QI
  • each PQI value corresponds to PC5 QoS feature one-to-one
  • PC5 QoS feature can include one or more of the following: resource type, priority level, data packet delay budget , Packet error probability, maximum data burst, average window, etc.
  • the streaming bit rate includes the guaranteed streaming bit rate and the maximum streaming bit rate.
  • resource types include GBR and non-GBR, etc.; the average window can be used to calculate the rate corresponding to GBR, and the data packet delay budget can refer to the delay of data packets from terminal A to terminal B.
  • the first terminal may also determine a third QoS parameter.
  • the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link or to determine the transmission of the first service on the first link.
  • Step 603 is executed for the QoS parameter corresponding to the time.
  • the first terminal determine the first QoS parameter and the third QoS parameter.
  • the first terminal may determine the third QoS parameter according to the QoS requirement that can be guaranteed by the first link.
  • the QoS requirement that can be guaranteed by the first link can be understood as the QoS that can be guaranteed when the first terminal sends the first service to the first relay terminal through the first link.
  • the first terminal may determine the service requirement of the first service according to the first service, for example, the transmission rate requirement and/or the transmission delay requirement. Further, the first terminal determines the first QoS parameter and the third QoS parameter according to the service requirement of the first service.
  • the first terminal may determine the second QoS parameter according to the service requirement of the first service.
  • the second QoS parameter is used to instruct the first terminal to send the QoS requirement of the first service to the second terminal;
  • the second QoS parameter is to determine the first QoS parameter and the third QoS parameter. That is, the first terminal can determine the end-to-end QoS requirement between the first terminal and the second terminal according to the service requirement of the first service, and then further determine the QoS requirement between the first terminal and the first relay terminal And the QoS requirements between the first relay terminal and the second terminal.
  • end-to-end QoS requirement can be specifically understood as the QoS requirement of the first service when the first terminal (source terminal) sends the first service to the second terminal (destination terminal).
  • the first terminal determines the first QoS parameter and the third QoS parameter according to the service requirements of the first service and the QoS requirements that can be guaranteed by the first link.
  • the QoS requirement that can be guaranteed by the first link can be understood as the QoS that can be guaranteed when the first terminal sends the first service to the first relay terminal through the first link.
  • the transmission delay requirement is 10ms
  • the first terminal determines that the guaranteed transmission delay of the first link is 2ms, then the first terminal allocates the remaining 8ms to the remaining links, that is, the second
  • the QoS parameter indicates that the transmission delay is 10 ms
  • the third QoS parameter indicates that the transmission delay is 2 ms
  • the first QoS parameter indicates that the transmission delay is 8 ms.
  • the transmission rate requirement is 10 Mbps
  • the transmission rate in the second QoS parameter is 10 Mbps
  • the transmission rate in the third QoS parameter is 10 Mbps
  • the transmission rate in the first QoS parameter is 10 Mbps.
  • the first terminal may determine the first QoS parameter and the third QoS parameter according to the first service and link information, where the link information may instruct the first terminal to send the first service location to the second terminal. The link to be traversed.
  • the terminal may determine the first QoS parameter and the third QoS parameter, the third QoS parameter corresponds to the first link, and the first QoS parameter corresponds to the second link.
  • the first terminal sends the first QoS parameter to the first relay terminal.
  • the first relay terminal receives the first QoS parameter from the first terminal.
  • 605-610 can also be performed.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter.
  • the first relay terminal may determine whether the second link can meet the QoS requirement indicated by the first QoS parameter. When the second link can meet the QoS requirement indicated by the first QoS parameter, the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter.
  • the first relay terminal determines the fourth QoS parameter according to the first QoS parameter, and the fourth QoS parameter is the first QoS parameter on the second link.
  • the transmission delay in the first QoS parameter is 10ms, but the transmission delay that can be satisfied by the second link is 6ms, then the transmission delay in the fourth QoS parameter can be determined to be 6ms, and the other parameters in the fourth QoS parameter can be compared with The parameters in the first QoS parameter are the same.
  • the transmission rate in the first QoS parameter is 10Mbps, but the transmission rate that the second link can meet is 8Mbps, then the transmission rate in the fourth QoS parameter can be determined to be 8Mbps, and the other parameters in the fourth QoS parameter can be the same as those in the first The parameters in the QoS parameters are the same.
  • the first relay terminal determines whether the second link can meet the QoS requirement indicated by the first QoS parameter.
  • the first relay terminal may determine by itself whether the second link meets the QoS requirement indicated by the first QoS parameter. When it is determined that the second link does not meet the QoS requirement indicated by the first QoS parameter, the first relay terminal may determine the fourth QoS parameter by itself.
  • the first relay terminal may negotiate with the second terminal to determine whether the second link meets the QoS requirement indicated by the first QoS parameter. When it is determined that the second link does not meet the QoS requirement indicated by the first QoS parameter, the first relay terminal may negotiate with the second terminal to determine the fourth QoS parameter.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter or the fourth QoS parameter. It can be understood that the first relay terminal corresponds to the QoS flow in the second link.
  • the first QoS parameter or the fourth QoS parameter determines the access layer configuration corresponding to the QoS flow.
  • a possible implementation manner is that the first relay terminal generates a QoS flow according to the first QoS parameter or the fourth QoS parameter, and obtains the access layer configuration corresponding to the QoS parameter of the QoS flow through the RAN scheduling mode or the autonomous scheduling mode.
  • the access layer configuration please refer to the above description, which will not be repeated here.
  • the first relay terminal may also feed back the fourth QoS parameter to the first terminal.
  • the first terminal receives the fourth QoS parameter from the first relay terminal.
  • the first terminal determines the access layer configuration of the first link.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter obtained above.
  • the first terminal may determine the third QoS parameter according to the received fourth QoS parameter and the above-mentioned second QoS parameter, and the first terminal may determine the third QoS parameter according to the obtained third QoS parameter, Determine the access layer configuration of the first link.
  • the first terminal may also update the third QoS parameter according to the received fourth QoS parameter, and determine the access of the first link according to the updated third QoS parameter Layer configuration. Specifically, the first terminal determines the fifth QoS parameter according to the fourth QoS parameter and the third QoS parameter. Wherein, the fifth QoS parameter is the updated third QoS parameter, which is the QoS parameter corresponding to the first service on the first link.
  • the first terminal may reversely adjust the third QoS parameter, so as to meet the service requirements of the first service. For example, taking the first terminal and the second terminal to implement D2D communication through the first link and the second link as an example, assuming that the transmission delay requirement in the service requirement of the first service is 10 ms, the transmission time indicated by the first QoS parameter The transmission delay indicated by the third QoS parameter is 4 ms.
  • the first relay terminal adjusts the first QoS parameter to obtain the fourth QoS parameter.
  • the transmission delay indicated by the fourth QoS parameter is 7 ms.
  • the first terminal may adjust the third QoS parameter to obtain the fifth QoS parameter, and the transmission delay indicated by the fifth QoS parameter is 3 ms.
  • the first terminal may also negotiate with the first relay terminal whether the first link can meet the QoS requirement indicated by the third QoS parameter.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter.
  • the first terminal can negotiate with the first relay terminal to determine the seventh QoS parameter, and the first terminal determines the connection of the first link according to the seventh QoS parameter. Into the layer configuration.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter, the fifth QoS parameter, or the seventh QoS parameter, which can be understood as the first terminal according to the QoS flow in the first link
  • the corresponding third QoS parameter, fifth QoS parameter or seventh QoS parameter determines the access layer configuration corresponding to the QoS flow.
  • the first terminal generates a QoS flow according to the third QoS parameter, the fifth QoS parameter or the seventh QoS parameter, and obtains the access layer configuration corresponding to the QoS parameter of the QoS flow through the RAN scheduling mode or the autonomous scheduling mode .
  • the specific information of the access layer configuration please refer to the above description, which will not be repeated here.
  • the first terminal sends the access layer configuration of the first link to the first relay terminal.
  • the first terminal may use the PC5-S message corresponding to the first link to send the access layer configuration.
  • the PC5-S message may be a link modification request (link modification request) message.
  • the first relay terminal receives the access layer configuration of the first link from the first terminal.
  • the first relay terminal may send a link modification response (link modification response) message to the first terminal.
  • link modification response link modification response
  • the first terminal sends the first service on the access layer configuration of the first link.
  • the first terminal sends the data corresponding to the first service on the access layer configuration of the first link.
  • the first relay terminal receives the data corresponding to the first service from the access layer configuration of the first link.
  • the first terminal maps the data of the first service to the QoS flow according to the QoS rules, obtains the access layer configuration according to the QoS flow, and further sends the data corresponding to the first service according to the access layer configuration.
  • the first relay terminal forwards the first service on the access layer configuration of the second link.
  • the first relay terminal forwards the data corresponding to the first service on the access layer configuration of the second link.
  • the second terminal receives the data corresponding to the first service from the access layer configuration of the second link.
  • the first relay terminal may generate and save the correspondence between the first link and the second link, and the correspondence between the access layer configuration of the first link and the access layer configuration of the second link; The first relay terminal forwards the data corresponding to the first service according to the obtained corresponding relationship. Specifically, the first relay terminal determines, according to the correspondence between the first link and the second link, that the data corresponding to the first service received on the first link is to be forwarded to the second link, and then according to the first link The corresponding relationship between the access layer configuration of the second link and the access layer configuration of the second link. It is determined that the data corresponding to the first service received on the access layer configuration of the first link should be in the access layer of the second link. Configure to send.
  • step 604 may be the same as step 504 c in FIG. 5
  • step 607 may be the same as step 506 in FIG. 5.
  • the communication method shown in FIG. 6 may also be a separate process, for example, the steps are executed after the link establishment process in the relay scenario is completed.
  • the first relay terminal performs QoS parameter allocation.
  • Fig. 7 is a schematic flowchart of another communication method provided by the present application. The method shown in FIG. 7 has a similar scenario to the method shown in FIG. 6, and will not be repeated here.
  • the first terminal obtains the first service.
  • Step 701 is similar to step 601 and will not be repeated here.
  • the first terminal determines a second QoS parameter according to the first service, and the second QoS parameter is used to instruct the first terminal to send the QoS requirement of the first service to the second terminal.
  • the first terminal sends the second QoS parameter to the first relay terminal.
  • the first relay terminal receives the second QoS parameter from the first terminal.
  • the first terminal sends the end-to-end QoS requirement of the first service to the first relay terminal, so that the first relay terminal can allocate QoS parameters.
  • the first terminal may also send the service type and/or service requirement information to the first relay terminal, and the first relay terminal then determines the second QoS parameter according to the service type and/or service requirement information.
  • the first relay terminal determines the first QoS parameter according to the second QoS parameter.
  • the first QoS parameter corresponds to a link included between the first relay terminal and the second terminal, and the first relay terminal is a relay terminal between the first terminal and the second terminal.
  • the first QoS parameter in FIG. 7 is similar to the QoS parameter in FIG. 6, and will not be explained in detail.
  • the first relay terminal may also perform steps 705-706. That is, the first relay terminal determines and sends the QoS parameter corresponding to the first service on the first link.
  • the first relay terminal determines a third QoS parameter, and the third QoS parameter is used to determine the QoS parameter corresponding to the first service on the first link or to determine where the first service is transmitted on the first link. Corresponding QoS parameters.
  • the first relay terminal sends the third QoS parameter to the first terminal.
  • the first terminal receives the third QoS parameter from the first relay terminal.
  • the first relay terminal determine the first QoS parameter and the third QoS parameter.
  • the first relay terminal determines the first QoS parameter and the third QoS parameter according to the second QoS parameter and the QoS requirement that can be guaranteed by the second link.
  • the QoS requirement that can be guaranteed by the second link can be understood as the QoS that can be guaranteed when the first relay terminal sends the first service to the second terminal through the second link.
  • the transmission delay requirement is 10ms
  • the first relay terminal determines that the guaranteed transmission delay of the second link is 2ms
  • the first relay terminal allocates the remaining 8ms to the remaining links , That is, the second QoS parameter indicates that the transmission delay is 10ms, the third QoS parameter indicates that the transmission delay is 2ms, and the first QoS parameter indicates that the transmission delay is 8ms.
  • the transmission rate requirement in the first service is 10 Mbps
  • the transmission rate in the first QoS parameter is 10 Mbps
  • the transmission rate in the third QoS parameter is 10 Mbps
  • the transmission rate in the first QoS parameter is 10 Mbps.
  • the first relay terminal may determine the first QoS parameter and the third QoS parameter according to the second QoS parameter and link information, where the link information may instruct the first terminal to send the second terminal to the second terminal.
  • the link information may instruct the first terminal to send the second terminal to the second terminal.
  • the relay terminal may determine the first QoS parameter and the third QoS parameter, the third QoS parameter corresponds to the first link, and the first QoS parameter corresponds to the second link.
  • 707-713 can also be performed.
  • the first terminal determines the access layer configuration of the first link.
  • the first terminal determines the access layer configuration of the first link according to the received third QoS parameter.
  • the first terminal may determine whether the first link can meet the QoS requirement indicated by the third QoS parameter. When the first link can meet the QoS requirement indicated by the third QoS parameter, the first terminal determines the access layer configuration of the first link according to the third QoS parameter.
  • the first terminal determines the fifth QoS parameter according to the third QoS parameter, and the fifth QoS parameter is the first service location on the first link.
  • the first terminal determines the access layer configuration of the first link according to the fifth QoS parameter.
  • the transmission delay in the third QoS parameter is 10ms, but the transmission delay that can be satisfied by the first link is 6ms, then the transmission delay in the fifth QoS parameter can be determined to be 6ms, and the other parameters in the fifth QoS parameter can be compared with The parameters in the third QoS parameter are the same.
  • the transmission rate in the third QoS parameter is 10 Mbps, but the transmission rate that the first link can meet is 8 Mbps, then the transmission rate in the fifth QoS parameter can be determined to be 8 Mbps, and other parameters in the fifth QoS parameter can be the same as those in the first link.
  • the parameters in the QoS parameters are the same.
  • the first terminal determines whether the first link can meet the QoS requirement indicated by the third QoS parameter.
  • the first terminal may determine by itself whether the first link meets the QoS requirement indicated by the third QoS parameter. When it is determined that the first link does not meet the QoS requirement indicated by the third QoS parameter, the first terminal may determine the fifth QoS parameter by itself.
  • the first terminal may negotiate with the first relay terminal to determine whether the first link meets the QoS requirement indicated by the third QoS parameter.
  • the first terminal may negotiate with the first relay terminal to determine the fifth QoS parameter.
  • the first terminal determines the access layer configuration of the first link according to the third QoS parameter or the fifth QoS parameter, which can be understood as the first terminal according to the third QoS corresponding to the QoS flow in the first link
  • the parameter or the fifth QoS parameter determines the access layer configuration corresponding to the QoS flow.
  • a possible implementation manner is that the first terminal generates a QoS flow according to the third QoS parameter or the fifth QoS parameter, and obtains the access layer configuration corresponding to the QoS parameter of the QoS flow through the RAN scheduling mode or the autonomous scheduling mode.
  • the specific information of the access layer configuration please refer to the above description, which will not be repeated here.
  • step 709 may also be performed. That is, the first terminal may also feed back the fifth QoS parameter to the first relay terminal, so that the first relay terminal can adjust the QoS parameter.
  • the first terminal sends the fifth QoS parameter to the first relay terminal.
  • the first relay terminal receives the fifth QoS parameter from the first terminal.
  • the first terminal may send the access layer configuration of the first link to the first relay terminal.
  • Step 710 is similar to step 609, and will not be repeated here.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter.
  • the first relay terminal may determine the access layer configuration of the second link using the first QoS parameter obtained above.
  • the first relay terminal may also update the first QoS parameter according to the received fifth QoS parameter, and determine the first link according to the updated first QoS parameter Access layer configuration. Specifically, the first terminal determines the fourth QoS parameter according to the first QoS parameter and the fifth QoS parameter.
  • the fourth QoS parameter is the updated first QoS parameter, which is the QoS parameter corresponding to the first service on the second link or the QoS parameter corresponding to the first service during transmission on the first link.
  • the first relay terminal may reversely adjust the first QoS parameter, so as to meet the service requirements of the first service. For example, taking the first terminal and the second terminal to implement D2D communication through the first link and the second link as an example, assuming that the transmission delay requirement in the service requirement of the first service is 10 ms, the transmission time indicated by the first QoS parameter The delay is 6ms, the transmission delay indicated by the third QoS parameter is 4ms, the first terminal adjusts the third QoS parameter to obtain the fifth QoS parameter, and the transmission delay indicated by the fifth QoS parameter is 7ms, if conditions permit , The first relay terminal can adjust the first QoS parameter to obtain the fourth QoS parameter, and the transmission delay indicated by the fourth QoS parameter is 3 ms.
  • the first relay terminal may also negotiate with the second terminal whether the second link can meet the QoS requirement indicated by the first QoS parameter.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter.
  • the first relay terminal may negotiate with the second terminal to determine the fourth QoS parameter, and the first relay terminal determines the second link according to the fourth QoS parameter The access layer configuration.
  • the first relay terminal determines the access layer configuration of the second link according to the first QoS parameter or the fourth QoS parameter. It can be understood that the first relay terminal corresponds to the QoS flow in the second link.
  • the first QoS parameter or the fourth QoS parameter determines the access layer configuration corresponding to the QoS flow.
  • a possible implementation manner is that the first relay terminal generates a QoS flow according to the first QoS parameter or the fourth QoS parameter, and obtains the access layer configuration corresponding to the QoS parameter of the QoS flow through the RAN scheduling mode or the autonomous scheduling mode.
  • the access layer configuration please refer to the above description, which will not be repeated here.
  • the first terminal sends the first service on the access layer configuration of the first link.
  • the first relay terminal forwards the first service on the access layer configuration of the second link.
  • Step 712 is similar to step 610, and step 713 is similar to step 611, which will not be repeated here.
  • step 703 may be the same as step 504c in FIG. 5
  • step 706 may be the same as step 506 in FIG.
  • the communication method shown in FIG. 7 may also be a separate process, for example, the steps are executed after the link establishment process in the relay scenario is completed.
  • FIG. 8 is a schematic flowchart of another communication method provided by the present application.
  • the method shown in FIG. 8 can be executed by the first terminal, the first relay terminal, the second terminal, and the access network device, or can be executed by the first terminal, the first relay terminal, the second terminal, and the access network device.
  • the chip or module is implemented.
  • FIG. 8 uses the first terminal, the first relay terminal, the second terminal, and the access network device as the execution subject as an example to describe the communication method of the embodiment of the present application.
  • the method shown in FIG. 8 may include at least part of the following content.
  • steps 801-802 reference may be made to the related descriptions of steps 701-702, which will not be repeated here.
  • the first relay terminal sends the first information to the first terminal.
  • the first terminal receives the first information from the first relay terminal.
  • the first information includes information about the second link.
  • the first relay terminal may use the PC5-S message corresponding to the first link to send the first information.
  • the PC5-S message may be a link modification request message.
  • the information of the link may be at least one of the identification of the link and the target layer 2 identification of the link.
  • the link identifier may be a PC5 link identifier (PC5 link identifier).
  • the first information may also include information of the first relay terminal, so that the access network device can send the information to the first relay terminal.
  • the information of the first relay terminal may be at least one of the identity of the first relay terminal and a temporary cell radio network identifier (C-RNTI).
  • C-RNTI temporary cell radio network identifier
  • step 803, step 801, and step 802 the order of step 801 and steps 502-506 in FIG. 5, and the order of step 802 and steps 502-506 in FIG. 5 are not limited.
  • the first terminal sends the second information to the access network device.
  • the access network device receives the second information from the first terminal.
  • the first terminal may use an RRC message to send the second information.
  • the RRC message may be a sidelink UE information message (sidelink UE information message).
  • the second information includes the second QoS parameter, the information of the first link, and the information of the second link.
  • the second information may include the information of the first relay terminal, so that the access network device sends the information to the first relay terminal.
  • step 804 may follow step 506 in FIG. 5.
  • Step 803 is before step 804,
  • the access network device determines the access layer configuration of the first link and the access layer configuration of the second link.
  • the access network device determines the access layer configuration of the first link and the access layer configuration of the second link according to the second QoS parameter.
  • the transmission delay requirement in the second QoS parameter is 10 ms
  • the access network device determines the access layer configuration of the first link and the access layer configuration of the second link to meet the transmission delay requirement, where the first link
  • the access layer configuration of the second link can meet the transmission delay of 6ms
  • the access layer configuration of the second link can meet the transmission delay of 4ms.
  • the transmission rate in the second QoS parameter is 10 Mbps
  • the access network device determines the access layer configuration of the first link and the access layer configuration of the second link to meet the transmission rate requirement.
  • the incoming layer configuration can meet the transmission rate of 10 Mbps
  • the access layer configuration of the second link can meet the transmission rate of 10 Mbps.
  • the access network device may send the determined access layer configuration of the first link and the access layer configuration of the second link to the first terminal and the first relay terminal.
  • the access network device may send the access layer configuration of the first link and the access layer configuration of the second link in the following manners 1-3.
  • Method 1 As shown in 806-807.
  • the access network device sends third information to the first terminal.
  • the first terminal receives the third information from the access network device.
  • the access network device may use an RRC message to send the third information.
  • the RRC message may be an RRC reconfiguration message (RRC Reconfiguration message).
  • the third information includes the access layer configuration of the first link and the information of the first link.
  • the third information may also include the access layer configuration of the second link and the information of the second link.
  • the access network device sends fifth information to the first relay terminal.
  • the first relay terminal receives the fifth information from the access network device.
  • the access network device may use the RRC message to send the fifth information.
  • the RRC message may be an RRC reconfiguration message.
  • the fifth information includes at least one of the information of the first link and the information of the second link, and the access layer configuration of the first link and the access layer configuration of the second link.
  • the fifth information includes the first link. At least one of the information of the link and the information of the second link may be sufficient.
  • the access network device sends third information to the first terminal.
  • the first terminal receives the third information from the access network device.
  • the third information includes the access layer configuration of the first link, the information of the first link, the access layer configuration of the second link, and the information of the second link.
  • the access network device may use an RRC message to send the third information.
  • the RRC message may be an RRC reconfiguration message.
  • the first terminal sends the fourth information to the first relay terminal.
  • the first relay terminal receives the fourth information from the first terminal.
  • the fourth information includes the access layer configuration of the first link, the access layer configuration of the second link, and the information of the second link.
  • the fourth information further includes information about the first link.
  • the access network device sends third information to the first terminal.
  • the first terminal receives the third information from the access network device.
  • the third information includes the access layer configuration of the first link and the information of the first link.
  • the access network device may use an RRC message to send the third information.
  • the RRC message may be an RRC reconfiguration message.
  • the third information further includes the access layer configuration of the second link and the information of the second link.
  • the first terminal sends the fourth information to the first relay terminal.
  • the first relay terminal receives the fourth information from the first terminal.
  • the fourth information includes the access layer configuration of the first link.
  • the fourth information further includes information about the first link.
  • the first relay terminal of the access network device sends the fifth information.
  • the first relay terminal receives the fifth information from the access network device.
  • the fifth information includes the information of the second link and the access layer configuration of the second link.
  • the access network device may use the RRC message to send the fifth information.
  • the RRC message may be an RRC reconfiguration message.
  • the first terminal can execute 813, that is, the first terminal sends the first service.
  • the first terminal sends the first service according to the access layer configuration of the first link.
  • the first relay terminal forwards the first service according to the access layer configuration of the second link.
  • Step 813 is similar to step 610, and step 814 is similar to step 611, which will not be repeated here.
  • Some steps in the embodiment of the present application may be the same as some steps of the link establishment process in the relay scenario shown in FIG. 5.
  • the communication method shown in FIG. 8 may also be a separate process, for example, the steps are executed after the link establishment process in the relay scenario is completed.
  • Scenario 2 There are multiple relay terminals between the first terminal and the second terminal
  • At least one relay terminal may be included between the first relay terminal and the second terminal, so that the first relay terminal and the second terminal include At least two links.
  • the first terminal and the second terminal include a first relay terminal, a second relay terminal, and a third relay terminal.
  • the first relay terminal is directly connected to the first terminal and the second relay terminal, respectively.
  • the two relay terminals are directly connected to the first relay terminal and the third relay terminal, respectively, and the third relay terminal is directly connected to the second relay terminal and the second terminal, respectively, so that the first relay terminal and the second terminal are directly connected to each other.
  • the room includes a second relay terminal and a third relay terminal.
  • the first relay terminal and the second terminal include the link between the first relay terminal and the second relay terminal, the link between the second relay terminal and the third relay terminal, and the third relay terminal.
  • the first terminal can allocate QoS parameters for each link, so that all links as a whole can meet the QoS requirements of the first service. At this time, the first QoS parameter corresponds to the second link.
  • the first terminal can divide the service requirements of the first service into N+1 parts and allocate them to N+1 parts respectively.
  • the service requirements of each part may be reflected by QoS parameters.
  • the service requirements corresponding to the first link may be reflected by the third QoS parameter, and the service requirements corresponding to the second link may be reflected by the first QoS parameter.
  • Method B The first terminal can divide the service requirements of the first service into two parts, the first part is allocated to the first link, and the second part is allocated to all subsequent links and indicated to the first relay terminal; the first relay The terminal further divides the second part of the service requirements into two parts, the first part is allocated to the second link, and the second part is allocated to all subsequent links; and so on.
  • the first terminal and the second terminal include a first relay terminal and a second relay terminal
  • the first terminal determines the first QoS parameter and the third QoS parameter
  • the third QoS parameter corresponds to the first link
  • the first QoS parameter corresponds to the second link and the third link
  • the third link is the link between the second relay terminal and the second terminal
  • the first relay terminal further determines the first QoS parameter according to the first QoS parameter.
  • the fourth QoS parameter corresponds to the second link
  • the sixth QoS parameter corresponds to the third link.
  • the link between the first terminal and the first relay terminal is referred to as the first link
  • the link between the first relay terminal and the second relay terminal is referred to as the second link
  • the link between the second relay terminal and the second terminal is called the third link.
  • Fig. 9 is a schematic flowchart of another communication method provided by the present application.
  • the method shown in FIG. 9 corresponds to the method A above.
  • the method shown in FIG. 9 can be executed by the first terminal, the first relay terminal, the second relay terminal, and the second terminal, and can also be executed by the first terminal, the first relay terminal, the second relay terminal, and the second terminal.
  • the chip or module in the terminal is executed.
  • FIG. 9 uses the first terminal, the first relay terminal, the second relay terminal, and the second terminal as the execution subject as an example to describe the communication method of the embodiment of the present application.
  • the method shown in FIG. 9 may include at least part of the following content.
  • Steps 901-911 can refer to steps 601-611 in FIG. 6, which will not be repeated here.
  • the first terminal may also perform steps 912-917.
  • the first terminal determines the sixth QoS parameter.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link or to determine the corresponding QoS parameter when the first service is transmitted on the third link. QoS parameters.
  • the first terminal sends the sixth QoS parameter to the first relay terminal.
  • the first relay terminal receives the sixth QoS parameter from the first terminal.
  • the first QoS parameter and the sixth QoS parameter may be sent to the first relay terminal in the same message.
  • the first relay terminal forwards the sixth QoS parameter to the second relay terminal.
  • the second relay terminal receives the QoS parameter from the first relay terminal.
  • the second relay terminal determines the access layer configuration of the third link according to the sixth QoS parameter.
  • step 605 The specific implementation manner is similar to that of the first relay terminal determining the access layer configuration of the second link, and reference may be made to the related description of step 605, which will not be repeated here.
  • the first relay terminal sends the access layer configuration of the second link to the second relay terminal.
  • the first relay terminal may use the PC5-S message corresponding to the second link to send the access layer configuration.
  • the PC5-S message may be a link modification request message.
  • the second relay terminal receives the access layer configuration of the first link from the first relay terminal.
  • the second relay terminal may send a link modification response message to the first relay terminal.
  • the second relay terminal after receiving the first service on the access layer configuration of the second link, forwards the first service to the second terminal on the access layer configuration of the third link.
  • the second relay terminal forwards the data corresponding to the first service on the access layer configuration of the third link.
  • the second terminal receives the data corresponding to the first service from the access layer configuration of the third link.
  • the second relay terminal may generate and save the correspondence between the second link and the third link, and the correspondence between the access layer configuration of the second link and the access layer configuration of the third link ;
  • the second relay terminal forwards the data corresponding to the first service according to the obtained corresponding relationship.
  • the second relay terminal determines, according to the correspondence between the second link and the third link, that the data corresponding to the first service received on the second link is to be forwarded to the third link, and then according to the second link Correspondence between the access layer configuration of the third link and the access layer configuration of the third link. It is determined that the data corresponding to the first service received on the access layer configuration of the second link should be in the access layer of the third link. Configure to send.
  • step 914 may be executed first, and then step 907 may be executed, or step 907 may be executed first, and then step 914 may be executed, or step 914 and step 907 may be executed simultaneously.
  • FIG. 10 is a schematic flowchart of another communication method provided by the present application.
  • the method shown in FIG. 10 corresponds to the method B above.
  • the first terminal determines the sixth QoS parameter and sends it to the first relay terminal, and then the first relay terminal forwards it to the second relay terminal.
  • the first QoS parameter in Figure 10 corresponds to the second link and the third link.
  • the first relay terminal needs to determine the sixth QoS parameter according to the received first QoS parameter, and send it to the second Relay terminal.
  • the description of other steps can refer to FIG. 9, which will not be repeated here.
  • Manner C The first relay terminal can allocate QoS parameters for each link, so that all links as a whole can meet the QoS requirements of the first service. At this time, the first QoS parameter corresponds to the second link.
  • the way C is similar to the above way A, and will not be repeated here.
  • Method D The first relay terminal can divide the service requirements of the first service into two parts, the first part is allocated to the first link, and the second part is allocated to all subsequent links; further, the first relay terminal divides The second part of the business requirements is further divided into two parts, the first part is allocated to the second link, and the second part is allocated to all subsequent links; and so on.
  • Method D is similar to the above-mentioned method B, except that the first relay terminal first allocates QoS parameters.
  • the link between the first terminal and the first relay terminal is referred to as the first link
  • the link between the first relay terminal and the second relay terminal is referred to as the second link
  • the link between the second relay terminal and the second terminal is called the third link.
  • FIG. 11 is a schematic flowchart of another communication method provided by the present application.
  • the method shown in FIG. 11 corresponds to the method D above.
  • the method shown in FIG. 11 is similar to the method shown in FIG. 9 in a scenario, and will not be described again.
  • Steps 1101-1113 can refer to steps 701-713 in FIG. 7, which will not be repeated here.
  • the first terminal may also perform steps 1114-1118.
  • the first relay terminal determines the fourth QoS parameter and the sixth QoS parameter.
  • the fourth QoS parameter is used to determine the QoS parameter corresponding to the first service on the second link or to determine whether the first service is in the second link.
  • the sixth QoS parameter is used to determine the QoS parameter corresponding to the first service on the third link or to determine the QoS corresponding to the first service on the third link. parameter.
  • the first relay terminal determining the access layer configuration of the second link according to the first QoS parameter includes: the first relay terminal determines the fourth QoS parameter according to the first QoS parameter, and according to the fourth QoS parameter The parameter determines the access layer configuration of the second link.
  • the first relay terminal sends the sixth QoS parameter to the second relay terminal.
  • the second relay terminal receives the sixth QoS parameter from the first relay terminal.
  • the second relay terminal determines the access layer configuration of the third link according to the sixth QoS parameter.
  • step 711 The specific implementation manner is similar to that of the first relay terminal determining the access layer configuration of the second link, and reference may be made to the related description of step 711, which will not be repeated here.
  • the first relay terminal sends the access layer configuration of the second link to the second relay terminal.
  • the second relay terminal after receiving the first service on the access layer configuration of the second link, forwards the first service to the second terminal on the access layer configuration of the third link.
  • Step 1117 is similar to step 916, and step 1118 is similar to step 917, which will not be repeated here.
  • step 1115 and step 1106 step 1115 may be performed first, and then step 1106, or step 1106 may be performed first, and then step 1115 may be performed, or step 1115 and step 1106 may be performed at the same time.
  • FIG. 12 is a schematic flowchart of another communication method provided by the present application.
  • the method shown in FIG. 12 corresponds to the method C above.
  • the first QoS parameter corresponds to the second link and the third link.
  • the first relay terminal needs to determine the fourth QoS parameter and the sixth QoS parameter according to the first QoS parameter, and set the sixth QoS parameter Sent to the second relay terminal.
  • the first QoS parameter in FIG. 12 corresponds to the second link, and the first relay terminal determines the sixth QoS parameter according to the received second QoS parameter, and sends it to the second relay terminal.
  • FIG. 11 which will not be repeated here.
  • the first terminal and the second terminal can communicate through different paths, for different paths, the first terminal can perform QoS through the methods described in FIG. 9, FIG. 10, FIG. 11, or FIG. 12, respectively. manage.
  • the first terminal and the second terminal can communicate with each other through a first path and a second path, where the first path is for the first terminal to connect to the second terminal through the first relay terminal, and the second path is for the first terminal.
  • the first terminal can perform QoS management on the first path and the second path respectively.
  • the first information may include information about the link used by each relay terminal to forward the first service; second The information may also include the information of the link used by each relay terminal to forward the first service; the access network device may determine the access layer configuration corresponding to each link and issue it.
  • the first information and the second information may also include the information of the third link, and the third link is the first The link between the second relay terminal and the second terminal; the access network equipment can determine the access layer configuration of the first link, the second link and the third link and send it to the first terminal. The first terminal forwards to the first relay terminal and the second relay terminal.
  • the first information may include information about each relay terminal and each relay terminal forwards the first service.
  • the information of the link used; the second information can also include the information of each relay terminal and the information of the link used by each relay terminal to forward the first service;
  • the access network equipment can determine the information corresponding to each relay The terminal forwards and issues the access layer configuration of the link used by the first service.
  • the first information and the second information may also include the information of the second relay terminal and the information of the third link.
  • the third link is the link between the second relay terminal and the second terminal; the access network device can determine the access layer configuration of the first link, the second link, and the third link and download Send to the first terminal, the first relay terminal, and the second relay terminal.
  • the terminal, the relay terminal, and the access network device may perform part or all of the steps in the embodiments. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations.
  • each step may be performed in a different order presented in each embodiment, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the size of the sequence number of each step does not mean the order of execution.
  • the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 13, the communication device 1300 may include a processing unit 1310 and a transceiving unit 1320.
  • the communication device 1300 may correspond to the first terminal, the first relay terminal, the second relay terminal, or the access network device in the above method embodiment, for example, it may be the first terminal, the first terminal Relay terminal, second relay terminal, or access network equipment, or components (such as circuits, chips, or chip systems, etc.) configured in the first terminal, first relay terminal, second relay terminal, or access network equipment .
  • the communication apparatus 1300 may include a unit for executing the method executed by the first terminal, the first relay terminal, the second relay terminal, or the access network device in the methods shown in FIG. 6 to FIG. 12.
  • each unit in the communication device 1300 and other operations and/or functions described above are used to implement the corresponding processes of the methods shown in FIG. 6 to FIG. 12, respectively.
  • the processing unit can be used to perform steps other than transceiving, and the transceiving unit performs transceiving steps.
  • the processing unit 1310 can be used to perform steps 601-603 and 608, and the transceiver unit 1320 can be used to perform steps 604, 607, 609, and 610.
  • the processing unit 1310 can be used to perform steps 701, 702, 707, and 708, and the transceiver unit 1320 can be used to perform steps 703, 706, 709, 710, and 712. .
  • the communication device 1300 is used to perform the steps performed by the first terminal in FIG.
  • the processing unit 1310 can be used to perform steps 801 and 802, and the transceiver unit 1320 can be used to perform steps 803, 804, 806, 808-811, and 813.
  • the processing unit 1310 can be used to perform steps 901-903, 908, and 912, and the transceiver unit 1320 can be used to perform steps 904, 913, 907, 909, and 910.
  • the processing unit 1310 can be used to perform steps 1001-1003 and 1008, and the transceiver unit 1320 can be used to perform steps 1004, 1007, 1009, and 1010.
  • the processing unit 1310 can be used to perform steps 1101, 1102, 1108, and 1107, and the transceiver unit 1320 can be used to perform steps 1103, 1106, 1109, 1110, and 1112. .
  • the processing unit 1310 can be used to perform steps 1201, 1202, 1208, and 1207, and the transceiver unit 1320 can be used to perform steps 1203, 1206, 1209, 1210, and 1212. .
  • the processing unit 1310 can be used to perform steps 605 and 606, and the transceiving unit 1320 can be used to perform steps 604, 607, 609, 610, and 611.
  • the processing unit 1310 can be used to perform steps 705, 704, and 711, and the transceiver unit 1320 can be used to perform steps 703, 706, 709, 710, and 712. And 713.
  • the communication device 1300 is used to perform the steps performed by the first relay terminal in FIG.
  • the transceiving unit 1320 can be used to perform steps 803, 807, 809, 811, 812, 813, and 814.
  • the processing unit 1310 can be used to perform steps 906 and 905, and the transceiver unit 1320 can be used to perform steps 904, 913, 907, 909, 916, and 910. And 911.
  • the processing unit 1310 can be used to perform steps 1006, 1012, and 1005, and the transceiver unit 1320 can be used to perform steps 1004, 1007, 1013, 1009, and 1015. , 1010, and 1011.
  • the processing unit 1310 can be used to perform steps 1104, 1105, 1114, and 1111, and the transceiver unit 1320 can be used to perform steps 1103, 1106, 1115, and 1109. , 1110, 1117, 1112, and 1113.
  • the processing unit 1310 can be used to perform steps 1204, 1205, 1214, and 1211, and the transceiver unit 1320 can be used to perform steps 1203, 1206, 1215, and 1209. , 1210, 1217, 1212, and 1213.
  • the processing unit 1310 can be used to perform step 915, and the transceiving unit 1320 can be used to perform steps 914, 916, 911 and 917.
  • the processing unit 1310 can be used to perform step 1014, and the transceiver unit 1320 can be used to perform steps 1013, 1015, 1011, and 1016.
  • the processing unit 1310 can be used to perform step 1116, and the transceiving unit 1320 can be used to perform steps 1115, 1117, 1113, and 1118.
  • the processing unit 1310 can be used to perform step 1216
  • the transceiving unit 1320 can be used to perform steps 1215, 1217, 1213, and 1218.
  • the processing unit 1310 can be used to perform step 805, and the transceiver unit 1320 can be used to perform steps 804, 806-808, 810, 812, and 814.
  • the transceiver unit 1320 in the communication device 1300 may be implemented by a transceiver, and the processing unit 1310 may Realized by at least one processor.
  • the transceiver unit 1320 in the communication device 1300 can pass through
  • the input/output interface, circuit, etc. are implemented, and the processing unit 1310 may be implemented by a processor, microprocessor, or integrated circuit integrated on the chip or chip system.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1400 includes a processor 1410 and an interface circuit 1420.
  • the processor 1410 and the interface circuit 1420 are coupled with each other.
  • the interface circuit 1420 may be a transceiver or an input/output interface.
  • the communication device 1400 may further include a memory 1430 configured to store instructions executed by the processor 1410 or input data required by the processor 1410 to run the instructions or store data generated after the processor 1410 runs the instructions.
  • the processor 1410 is used to perform the functions of the above-mentioned processing unit 1410
  • the interface circuit 1420 is used to perform the functions of the above-mentioned transceiving unit 1420.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, and can also be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • register hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the first node, the donor node, or the first upper-level node.
  • the processor and the storage medium may also exist as discrete components in the first node, the donor node, or the first upper-level node.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了通信方法和装置,在本申请的技术方案中,可以由源终端或中继终端为各中继链路分配QoS参数,源终端或中继终端根据分配的QoS参数确定接入层配置,或者由接入网设备确定各链路的接入层配置并下发,源终端与中继终端以及相邻的两个中继终端之间可以交互接入层配置,使得中继终端可以生成并保存链路的接入层配置的对应关系,并根据接入层配置的对应关系进行QoS处理,有助于实现端到端的QoS保证。

Description

通信方法和装置
本申请要求于2020年04月28日提交中国专利局、申请号为202010349874.3、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法和装置。
背景技术
随着移动通信的高速发展,新业务类型,如视频聊天、虚拟现实(virtual reality,VR)/增强现实(augmented reality,AR)等数据业务的普遍使用提高了用户对带宽的需求。设备到设备(device-to-device,D2D)通信允许终端之间直接进行通信,可以在小区网络的控制下与小区用户共享频谱资源,有效的提高频谱资源的利用率。当进行D2D通信的源终端和目标终端距离较远时,可以通过中继终端(relay UE)进行辅助。
对于存在中继终端的通信场景,目前的技术方案仅涉及链路映射(link mapping),即中继终端如何生成和保存源终端与中继终端之间的链路和中继终端与目标终端之间的链路的对应关系,尚未考虑其他诸如服务质量(quality of service,QoS)等方面的管理。
发明内容
本申请提供通信方法和装置,能够在中继场景下考虑到业务的QoS需求。
第一方面,本申请提供了一种通信方法,所述方法包括:第一终端获取第一业务,所述第一业务的目标终端为第二终端;所述第一终端根据所述第一业务,确定第一服务质量QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路,其中,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;所述第一终端向所述第一中继终端发送所述第一QoS参数。
在上述技术方案中,由第一终端根据第一业务,为第一中继终端到第二终端之间的链路进行QoS参数分配,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
第一业务的目标终端是第二终端,也就是说,第一业务是第一终端发给第二终端的业务。可选地,第一终端从应用层获取第一业务。本申请实施例对第一业务不作具体限定,第一业务可以是任意第一终端需要发送的业务。
第一QoS参数用于确定第二链路上第一业务所对应的QoS参数,换句话说,第一QoS参数用于确定第一业务在第二链路传输时所对应的QoS参数。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
可选地,在本申请中各QoS参数可以包括以下各项中的至少一项:PQI(PC5 5QI)、流比特速率(flow bit rate)或链路聚合比特速率(link aggregated bit rates)。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征(PC5 QoS characteristic)一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型(resource type)、优先级级别(priority level)、数据包时延预算(packet delay budget)、数据包错误概率(packet error rate)、最大数据突发量(maximum data burst volume)、平均窗口(averaging window)等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率(guaranteed flow bit rate,GFBR)和最大流比特速率(maximum flow bit rate,MFBR)。
可选地,第一终端可以为每个链路分配QoS参数,使得全部链路整体可以满足第一业务的QoS需求。此时,第一QoS参数对应于第二链路。
可选地,第一终端可以将第一业务的QoS需求划分为两部分,第一部分分配给第一链路,第二部分分配给后续全部链路并指示给第一中继终端;第一中继终端再将第二部分QoS需求进一步划分为两部分,第一部分分配给第二链路,第二部分分配给后续全部链路;以此类推。此时,第一QoS参数对应于第一中继终端与第二终端之间的全部链路。
结合第一方面,在一种可能的实现方式中,所述第一终端根据所述第一业务,确定第一服务质量QoS参数,包括:所述第一终端根据所述第一业务,确定第二QoS参数,所述第二QoS参数用于指示所述第一终端向所述第二终端发送所述第一业务的QoS需求;所述第一终端根据所述第二QoS参数,确定所述第一QoS参数。
在上述技术方案中,第一终端可以先根据第一业务确定第一终端与第二终端之间的端到端QoS需求,再进一步确定第一中继终端到第二终端之间的链路的QoS需求,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一终端确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路。
第三QoS参数用于确定第一链路上第一业务所对应的QoS参数,换句话说,第三QoS参数用于确定第一业务在第一链路传输时所对应的QoS参数。
在上述技术方案中,由第一终端确定第一终端和第一中继终端之间的链路上QoS参数,也就是说,由第一终端为各链路进行QoS参数分配,可以使得各链路整体上满足第一业务的QoS需求,从而实现端到端的QoS保证。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置;所述第一终端向所述第一中继终端发送所述第一链路的接入层配置;所述第一终端根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
在上述技术方案中,第一终端根据第三QoS参数确定第一链路的接入层配置并发送给第一中继终端,这样第一中继终端可以将第一链路的接入层配置和转发第一业务的接入层配置对应起来。当第一中继终端接收到第一终端在第一链路的接入层配置上发送的第一业务对应的数据时,第一中继终端可以确定转发该数据的接入层配置,从而正确地对第一 业务对应的数据进行转发。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一终端确定第三QoS参数,包括:所述第一终端根据所述第一业务,确定所述第三QoS参数。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一终端确定第三QoS参数,包括:所述第一终端从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;所述第一终端根据所述第二QoS参数和所述第四QoS参数,确定所述第三QoS参数。
第四QoS参数为第二链路上第一业务所对应的QoS参数,换句话说,第四QoS参数为第一业务在第二链路传输时所对应的QoS参数。
在上述技术方案中,第一终端根据第一业务的端到端QoS需求和第一中继终端确定第二链路所对应的QoS参数,确定第三QoS参数,也就是说在确定第三QoS参数时,同时考虑整体上满足第一业务的QoS需求和各链路能够满足的QoS需求。通过上述方式进行QoS分配,可以使分配给第一链路的QoS需求更合适。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置,包括:所述第一终端从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;所述第一终端根据所述第四QoS参数和所述第三QoS参数,确定第五QoS参数;所述第一终端根据所述第五QoS参数,确定所述第一链路的接入层配置。
第五QoS参数为第一链路上第一业务所对应的QoS参数,换句话说,第五QoS参数为第一业务在第一链路传输时所对应的QoS参数。
在上述技术方案中,第一终端可以根据第一中继终端反馈的第二链路所对应的QoS参数,确定第三QoS参数,可以使分配给第一链路的QoS需求更合适。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一终端根据所述第一业务,确定第一服务质量QoS参数,包括:所述第一终端根据所述第一业务和链路信息,确定所述第一QoS参数,所述链路信息用于指示所述第一终端向所述第二终端发送所述第一业务所需经过的链路。
在上述技术方案中,第一终端根据第一终端和第二终端之间的链路信息,例如,链路的数量,对第一业务的QoS需求进行分配,有利于各链路整体上满足第一业务的QoS需求,从而实现端到端的QoS保证。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一终端根据所述第一业务,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中 继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;所述第一终端向所述第一中继终端发送所述第六QoS参数。
第六QoS参数用于确定第三链路上第一业务所对应的QoS参数,换句话说,第六QoS参数用于确定第一业务在第三链路传输时所对应的QoS参数。
当第一终端和第二终端之间存在多个中继终端时,通过上述技术方案,第一终端可以确定各链路的QoS参数,并通过第一中继终端转发给各中继终端。
需要说明的是,如果有必要(比如其与第二终端之间还有其他中继终端),第二中继终端也可以执行与第一中继终端类似的处理。
第二方面,本申请提供了一种通信方法,所述方法包括:第一中继终端从第一终端接收第一服务质量QoS参数,所述第一QoS参数对应于第一中继终端与第二终端之间包括的链路,其中,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端,所述第二终端为第一业务的目标终端;所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为第一中继终端与第二终端之间的中继终端;所述第一中继终端从所述第一终端接收第一链路的接入层配置,所述第一链路为所述第一终端与所述第一中继终端之间的链路,所述第一链路的接入层配置与所述第二链路的接入层配置对应;所述第一中继终端根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
在上述技术方案中,由第一终端根据第一业务,为第一中继终端到第二终端之间的链路进行QoS参数分配,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
第一QoS参数用于确定第二链路上第一业务所对应的QoS参数,换句话说,第一QoS参数用于确定第一业务在第二链路传输时所对应的QoS参数。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
可选地,在本申请中各QoS参数可以包括以下各项中的至少一项:PQI、流比特速率或链路聚合比特速率。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型、优先级级别、数据包时延预算、数据包错误概率、最大数据突发量、平均窗口等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率和最大流比特速率。
可选地,当第一终端可以为每个链路分配QoS参数时,第一QoS参数对应于第二链路。
可选地,当第一终端可以将第一业务的QoS需求划分为两部分,第一部分分配给第一链路,第二部分分配给后续全部链路并指示给第一中继终端时,第一QoS参数对应于第一中继终端与第二终端之间的全部链路。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一 中继终端根据所述第一QoS参数,确定第二链路的接入层配置,包括:所述第一中继终端根据所述第一QoS参数,确定第四QoS参数,所述第四QoS参数为所述第二链路上所述第一业务所对应的QoS参数;所述第一中继终端根据所述第四QoS参数,确定所述第二链路的接入层配置。
第四QoS参数为第二链路上第一业务所对应的QoS参数,换句话说,第四QoS参数为第一业务在第二链路传输时所对应的QoS参数。
可选地,第一中继终端可以确定第二链路是否能够满足第一QoS参数指示的QoS需求。当第二链路可以满足第一QoS参数指示的QoS需求时,第一中继终端根据第一QoS参数,确定第二链路的接入层配置。当第二链路不满足第一QoS参数指示的QoS需求时,第一中继终端可以根据第一QoS参数,确定第四QoS参数,第四QoS参数为第二链路上第一业务所对应的QoS参数,第一中继终端根据第四QoS参数,确定第二链路的接入层配置。
通过上述技术方案第一中继终端可以根据第二链路的实际情况,确定第二链路可以满足的QoS参数。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一中继终端向所述第一终端发送所述第四QoS参数。
在上述技术方案中,第一中继终端将第四QoS参数反馈给第一终端,可以使得第一终端根据第四QoS参数,确定第一终端和第一中继终端之间的链路的QoS参数,可以使分配给第一链路的QoS需求更合适。
结合第一方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一中继终端从所述第一终端接收第六QoS参数,或者,所述第一中继终端根据所述第一QoS参数,确定第六QoS参数,其中,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;所述第一中继终端向所述第二中继终端发送所述第六QoS参数。
第六QoS参数用于确定第三链路上第一业务所对应的QoS参数,换句话说,第六QoS参数用于确定第一业务在第三链路传输时所对应的QoS参数。
当第一终端和第二终端之间存在多个中继终端时,通过上述技术方案,可以确定各链路的QoS参数并转发给各中继终端。
需要说明的是,如果有必要(比如其与第二终端之间还有其他中继终端),第二中继终端也可以执行与第一中继终端类似的处理。
第三方面,本申请提供了一种通信方法,所述方法包括:第一终端获取第一业务,所述第一业务的目标终端为第二终端;所述第一终端根据所述第一业务,确定第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送所述第一业务的QoS需求;所述第一终端向第一中继终端发送所述第二QoS参数,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;所述第一终端接收来自所述第一中继终端的第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路。
在上述技术方案中,由第一终端将第一业务的端到端QoS需求指示给第一中继终端,再由第一中继终端为第一中继终端到第二终端之间的链路进行QoS参数分配,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
第一业务的目标终端是第二终端,也就是说,第一业务是第一终端发给第二终端的业务。可选地,第一终端从应用层获取第一业务。本申请实施例对第一业务不作具体限定,第一业务可以是任意第一终端需要发送的业务。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
第三QoS参数用于确定第一链路上第一业务所对应的QoS参数,换句话说,第三QoS参数用于确定第一业务在第一链路传输时所对应的QoS参数。
可选地,在本申请中各QoS参数可以包括以下各项中的至少一项:PQI、流比特速率或链路聚合比特速率。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型、优先级级别、数据包时延预算、数据包错误概率、最大数据突发量、平均窗口等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率和最大流比特速率。
结合第三方面,在一种可能的实现方式中,所述方法还包括:所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置;所述第一终端向所述第一中继终端发送所述第一链路的接入层配置;所述第一终端根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
在上述技术方案中,第一终端根据第三QoS参数确定第一链路的接入层配置并发送给第一中继终端,这样第一中继终端可以将第一链路的接入层配置和转发第一业务的接入层配置对应起来。当第一中继终端接收到第一终端在第一链路的接入层配置上发送的第一业务对应的数据时,第一中继终端可以确定转发该数据的接入层配置,从而正确地对第一业务对应的数据进行转发。
结合第三方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置,包括:所述第一终端根据所述第三QoS参数,确定第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;所述第一终端根据所述第五QoS参数,确定所述第一链路的接入层配置。
第五QoS参数为第一链路上第一业务所对应的QoS参数,换句话说,第五QoS参数为第一业务在第一链路传输时所对应的QoS参数。
通过上述技术方案第一终端可以根据第一链路的实际情况,确定第一链路可以满足的QoS参数。
结合第三方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一终端向所述第一中继终端发送所述第五QoS参数。
在上述技术方案中,第一终端将第五QoS参数反馈给第一终端,可以使得第一中继终端根据第五QoS参数,确定第一中继终端和第二中继终端之间的链路的QoS参数,可 以使分配给第二链路的QoS需求更合适。
第四方面,本申请提供了一种通信方法,所述方法包括:第一中继终端从第一终端接收第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送第一业务的QoS需求,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;所述第一中继终端根据所述第二QoS参数,确定第一QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路。
在上述技术方案中,由第一终端将第一业务的端到端QoS需求指示给第一中继终端,再由第一中继终端为第一中继终端到第二终端之间的链路进行QoS参数分配,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
第一QoS参数用于确定第二链路上第一业务所对应的QoS参数,换句话说,第一QoS参数用于确定第一业务在第二链路传输时所对应的QoS参数。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
可选地,在本申请中各QoS参数可以包括以下各项中的至少一项:PQI、流比特速率或链路聚合比特速率。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型、优先级级别、数据包时延预算、数据包错误概率、最大数据突发量、平均窗口等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率和最大流比特速率。
可选地,第一中继终端可以为每个链路分配QoS参数,使得全部链路整体可以满足第一业务的QoS需求。此时,第一QoS参数对应于第二链路。
可选地,第一中继终端可以将第一业务的QoS需求划分为两部分,第一部分分配给第一链路,第二部分分配给后续全部链路;进一步地,第一中继终端再将第二部分业务需求进一步划分为两部分,第一部分分配给第二链路,第二部分分配给后续全部链路;以此类推。此时,第一QoS参数对应于第一中继终端与第二终端之间的全部链路。
结合第四方面,在一种可能的实现方式中,所述方法还包括:所述第一中继终端根据所述第二QoS参数,确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路;所述第一中继终端向所述第一终端发送所述第三QoS参数。
第三QoS参数用于确定第一链路上第一业务所对应的QoS参数,换句话说,第三QoS参数用于确定第一业务在第一链路传输时所对应的QoS参数。
在上述技术方案中,由第一终端将第一业务的端到端QoS需求指示给第一中继终端,再由第一中继终端为各链路进行QoS参数分配。第一中继终端可以根据接收到的第一业务的端到端QoS需求为第一链路分配QoS参数,可以确定第一业务在第一链路传输时的QoS参数,有助于实现端到端的QoS保证。
结合第四方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二 中继终端之间的链路,所述第二中继终端为所述第一中继终端和所述第二终端之间的中继终端;所述第一中继终端从所述第一终端接收第一链路的接入层配置,所述第一链路的接入层配置与所述第二链路的接入层配置对应;所述第一中继终端根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
在上述技术方案中,第一中继终端根据第一QoS参数确定第二链路的接入层配置,并从第一终端接收第一链路的接入层配置,这样第一中继终端可以将第一链路的接入层配置和转发第一业务的接入层配置对应起来。当第一中继终端接收到第一终端在第一链路的接入层配置上发送的第一业务对应的数据时,第一中继终端可以确定转发该数据的接入层配置,从而正确地对第一业务对应的数据进行转发。
结合第四方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,包括:所述第一中继终端从所述第一终端接收第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;所述第一中继终端根据所述第一QoS参数和第五QoS参数,确定第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数;所述第一中继终端根据所述第四QoS参数,确定所述第二链路的接入层配置。
第五QoS参数为第一链路上第一业务所对应的QoS参数,换句话说,第五QoS参数为第一业务在第一链路传输时所对应的QoS参数。
在上述技术方案中,第一中继终端可以根据第一终端反馈的第一链路所对应的QoS参数,确定第四QoS参数,可以使分配给第二链路的QoS需求更合适。
结合第四方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一中继终端根据所述第二QoS参数,确定第一QoS参数,包括:所述第一中继终端根据所述第二QoS参数和链路信息,确定第一QoS参数,所述链路信息用于指示所述第一终端向所述第二终端发送所述第一业务所经过的链路。
在上述技术方案中,第一中继终端根据第一终端和第二终端之间的链路信息,例如,链路的数量,对第一业务的QoS需求进行分配,有利于各链路整体上满足第一业务的QoS需求,从而实现端到端的QoS保证。
结合第四方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述方法还包括:所述第一中继终端根据所述第二QoS参数,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;所述第一中继终端向所述第二中继终端发送所述第六QoS参数。
第六QoS参数用于确定第三链路上第一业务所对应的QoS参数,换句话说,第六QoS参数用于确定第一业务在第三链路传输时所对应的QoS参数。
当第一终端和第二终端之间存在多个中继终端时,通过上述技术方案,第一中继终端可以确定各链路的QoS参数,并发送给各中继终端。
需要说明的是,如果有必要(比如其与第二终端之间还有其他中继终端),第二中继 终端也可以执行与第一中继终端类似的处理。
第五方面,本申请提供了一种通信方法,所述方法包括:第一终端获取第一业务;所述第一终端根据所述第一业务,确定QoS参数,所述QoS参数用于指示所述第一终端向第二终端发送所述第一业务的QoS需求;所述第一终端从第一中继终端接收第一信息,所述第一信息包括第二链路的信息,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第一中继终端为所述第一终端与所述第二终端之间的中继终端,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;所述第一终端向接入网设备发送第二信息,所述第二信息包括所述QoS参数、第一链路的信息以及所述第二链路的信息,所述第一链路为所述第一终端与所述第一中继终端之间的链路;所述第一终端从所述接入网设备接收第三信息,所述第三信息包括所述第一链路的接入层配置和所述第一链路的信息;所述第一终端根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
在上述技术方案中,第一终端可以获取第一业务的QoS需求、中继终端的信息和链路的信息,并反馈给接入网设备,以便接入网设备为各链路确定接入层配置并下发,进而使得各中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
可选地,在本申请中各QoS参数可以包括以下各项中的至少一项:PQI、流比特速率或链路聚合比特速率。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征(PC5 QoS characteristic)一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型、优先级级别、数据包时延预算、数据包错误概率、最大数据突发量、平均窗口等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率和最大流比特速率。
结合第五方面,在一种可能的实现方式中,所述方法还包括:所述第一终端向所述第一中继终端发送第四信息,所述第四信息包括所述第一链路的接入层配置。
在上述技术方案中,第一终端向第一中继终端发送第一链路的接入层配置,以便第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
结合第五方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第三信息还包括所述第二链路的接入层配置和所述第二链路的信息;所述第四信息还包括所述第二链路的接入层配置和所述第二链路的信息。
在上述技术方案中,接入网设备可以将第二链路的接入层配置下发给第一终端,再由第一终端转发给第一中继终端,以便第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
结合第五方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一 信息还包括所述第一中继终端的信息;和/或,所述第二信息还包括所述第一中继终端的信息。
在上述技术方案中,第一终端可以从第一中继终端获取第一中继终端的信息,并发送给接入网设备,以便接入网设备直接将第二链路的接入层配置下发给第一中继终端,而无需第一终端转发,有助于提高QoS分配的效率。
结合第五方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一信息还包括第三链路的信息,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;所述第二信息还包括所述第三链路的信息。
第一终端可以从第一中继终端获取多个链路的信息,使得上述技术方案可以适用于第一终端与第二终端包括多个中继终端的场景。
第六方面,本申请提供了一种通信方法,所述方法包括:第一中继终端向第一终端发送第一信息,所述第一信息包括第二链路的信息,所述第二链路为所述第一中继终端与第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第一中继终端为所述第一终端与所述第二终端之间的中继终端,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;所述第一中继终端接收第一链路的接入层配置和所述第二链路的接入层配置,所述第一链路的接入层配置与所述第二链路的接入层配置对应,所述第一链路为所述第一终端与所述第一中继终端之间的链路;所述第一中继终端根据所述第一链路的接入层配置从所述第一终端接收第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
在上述技术方案中,第一中继终端可以向第一终端发送第二链路的信息,以便第一终端反馈给接入网设备,使得接入网设备为各链路确定接入层配置并下发,进而使得第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
可选地,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
结合第六方面,在一种可能的实现方式中,所述第一中继终端接收第一链路的接入层配置和所述第二链路的接入层配置,包括:所述第一中继终端从所述第一终端接收第四信息,所述第四信息包括所述第一链路的接入层配置、所述第二链路的接入层配置和所述第二链路的信息。
在上述技术方案中,接入网设备可以将第一链路的接入层配置和第二链路的接入层配置均下发给第一终端,再由第一终端转发给第一中继终端,以便第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
结合第六方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一信息还包括所述第一中继终端的信息;所述第一中继终端接收第一链路的接入层配置和所述第二链路的接入层配置,包括:所述第一中继终端从接入网设备接收第五信息,所述第五信息包括所述第一链路的信息和所述第二链路的信息中的至少一个,以及所述第一链路 的接入层配置和所述第二链路的接入层配置。
在上述技术方案中,第一中继终端可以向第一终端发送第一中继终端的信息,以便第一终端发送给接入网设备,使得接入网设备可以直接将第二链路的接入层配置下发给第一中继终端,而无需第一终端转发,有助于提高QoS分配的效率。
结合第六方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一信息还包括所述第一中继终端的信息;所述第一中继终端接收第一链路的接入层配置和所述第二链路的接入层配置,包括:所述第一中继终端从接入网设备接收第五信息,所述第五信息包括所述第二链路的信息和所述第二链路的接入层配置;所述第一中继终端从所述第一终端接收第四信息,所述第四信息包括所述第一链路的接入层配置。
在上述技术方案中,第一中继终端从第一终端获取第一链路的接入层配置,从接入网设备获取第二链路的接入层配置,这样第一中继终端可以生成并保存链路的接入层配置的对应关系,进而可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
结合第六方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第一信息还包括第三链路的信息,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端。
第一中继终端可以向第一终端发送多个链路的信息,使得上述技术方案可以适用于第一终端与第二终端包括多个中继终端的场景。
第七方面,本申请提供了一种通信方法,所述方法包括:接入网设备从第一终端接收第二信息,所述第二信息包括服务质量QoS参数、第一链路的信息以及第二链路的信息,其中,所述QoS参数用于指示所述第一终端向第二终端发送第一业务的Qos需求,所述第一链路为所述第一终端与第一中继终端之间的链路,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第一中继终端为所述第一终端与所述第二终端之间的中继终端,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;所述接入网设备根据所述第二信息,确定所述第一链路的接入层配置和所述第二链路的接入层配置;所述接入网设备向所述第一终端发送所述第一链路的接入层配置和所述第一链路的信息;所述接入网设备发送所述第一链路的信息和所述第二链路的信息中的至少一个,以及所述第二链路的接入层配置。
在上述技术方案中,接入网设备可以根据QoS参数、第一链路的信息以及第二链路的信息,为各链路确定接入层配置并下发,进而使得第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
结合第七方面,在一种可能的实现方式中,所述接入网设备发送所述第一链路的信息和所述第二链路的信息中的至少一个,以及所述第二链路的接入层配置,包括:所述接入网设备向所述第一终端发送所述第二链路的接入层配置和所述第二链路的信息。
在上述技术方案中,接入网设备可以将第一链路的接入层配置和第二链路的接入层配置均下发给第一终端,再由第一终端转发给第一中继终端,以便第一中继终端可以生成并保存链路的接入层配置的对应关系,使得第一中继终端可以根据接入层配置的对应关系进 行QoS处理,从而实现端到端的QoS保证。
结合第七方面和上述任一种可能的实现方式,在另一种可能的实现方式中,所述第二信息还包括所述第一中继终端的信息,所述接入网设备发送所述第一链路的信息和所述第二链路的信息中的至少一个,以及所述第二链路的接入层配置,包括:所述接入网设备向所述第一中继终端发送所述第二链路的接入层配置和所述第二链路的信息;或者,所述接入网设备向所述第一中继终端发送所述第一链路的信息和所述第二链路的信息中的至少一个,以及所述第一链路的接入层配置和所述第二链路的接入层配置。
在上述技术方案中,第一中继终端从第一终端获取第一链路的接入层配置,从接入网设备获取第二链路的接入层配置,或者,第一中继终端从接入网设备获取第一链路的接入层配置和第二链路的接入层配置,这样第一中继终端可以生成并保存链路的接入层配置的对应关系,进而可以根据接入层配置的对应关系进行QoS处理,从而实现端到端的QoS保证。
第八方面,本申请提供了一种通信装置,该通信装置可以是终端,或终端中的部件。该通信装置可以包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元,或者包括用于执行第三方面或第三方面中任一种可能实现方式中的方法的各个模块或单元,或者包括用于执行第五方面或第五方面中任一种可能实现方式中的方法的各个模块或单元。
第九方面,本申请提供了一种通信装置,该通信装置可以是中继终端,或中继终端中的部件。该通信装置可以包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的各个模块或单元,或者包括用于执行第四方面或第四方面中任一种可能实现方式中的方法的各个模块或单元,或者包括用于执行第六方面或第六方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,本申请提供了一种通信装置,该通信装置可以是接入网设备,或接入网设备中的部件。该通信装置可以包括用于执行第七方面或第七方面中任一种可能实现方式中的方法的各个模块或单元。
上述各装置中的这些单元可以包括处理单元和收发单元,其中,收发单元用于执行信息的收发,处理单元则执行上述方法中的处理。
第十一方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法,或者实现上述第五方面或第五方面中任一种可能实现方式中的方法。
第十二方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第四方面或第四方面中任一种可能实现方式中的方法,或者实现上述第六方面或第六方面中任一种可能实现方式中的方法。
第十三方面,本申请提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第七方面或第七方面中任一种可能实现方式中的方法。
可选地,上述包括处理器的各种通信装置还包括存储器。可选地,该通信装置还包括 通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令或数据中的至少一项。
在一种实现方式中,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为芯片或芯片***。当该通信装置为芯片或芯片***时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十四方面,本申请提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述各个方面中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十五方面,本申请提供了一种处理装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令或数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述各个方面中的方法。
第十六方面,本申请提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述处理装置执行上述各个方面中的方法。
可选地,上述处理器为一个或多个。如果有存储器,存储器也可以为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十五方面和第十六方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十七方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机 程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述各个方面中的方法。
第十八方面,本申请提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述各个方面中的方法。
第十九方面,本申请提供了一种通信***,包括前述的终端和中继设备,或者包括前述的终端、中继设备和接入网设备。
附图说明
图1是适用于本申请实施例的一种网络架构的示意图。
图2是适用于本申请实施例的另一种网络架构的示意图。
图3是本申请实施例的基于QoS流的QoS模型的示意图。
图4是链路建立流程的示意图。
图5是在中继场景下链路建立流程的示意图。
图6是本申请提供的通信方法的示意性流程图。
图7是本申请提供的另一通信方法的示意性流程图。
图8是本申请提供的另一通信方法的示意性流程图。
图9是本申请提供的另一通信方法的示意性流程图。
图10是本申请提供的另一通信方法的示意性流程图。
图11是本申请提供的另一通信方法的示意性流程图。
图12是本申请提供的另一通信方法的示意性流程图。
图13是本申请实施例提供的通信装置的示意性框图。
图14是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)通信***或未来的新无线(new radio,NR)通信***等。
本申请实施例中的终端或中继终端可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理、用户装置、手持终端、笔记本电脑、蜂窝电话、智能电话、平板型电脑、手持设备、增强现实(augmented reality,AR)设备、虚拟现实(virtual  reality,VR)设备、机器类型通信终端或是其他可以接入网络的设备。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。在本申请中,终端与接入网设备之间可以采用某种空口技术(如NR或LTE技术)相互通信。类似地,终端与终端之间、终端与中继终端之间,以及中继终端与中继终端之间都可以是采用某种空口技术(如NR或LTE技术)相互通信。当然,空口技术还可以是除了NR和LTE技术之外的其他技术。
在车联网通信中,车辆上载的通信终端是一种终端设备,路边单元(road side unit,RSU)也可以作为一种终端。无人机上载有通信终端,可以看做是一种终端。
本申请实施例中的接入网设备可以是用于与终端通信的设备,主要负责空口侧的无线资源管理、服务质量管理、数据压缩和加密等功能。所述接入网设备可以包括各种形式的基站。该接入网设备可以是全球移动通信GSM***CDMA中的基站(base transceiver station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备,5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成下一代基站(next generation NodeB或gNB)或传输点的网络节点,如基带单元(baseband unit,BBU),或分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端、中继终端或接入网设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的 计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备,或者,是终端或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是适用于本申请实施例的一种网络架构的示意图。以5G网络架构为例,该网络架构包括:终端101、(无线)接入网设备(radio access network,(R)AN)102、用户面功能(user plane function,UPF)网元103、数据网络(data network,DN)网元104、认证服务器功能(authentication server function,AUSF)网元105、AMF网元106、会话管理功能(session management function,SMF)网元107、网络开放功能(network exposure function,NEF)网元108、网络功能库功能(network repository function,NRF)网元109、策略控制功能模块(policy control function,PCF)网元110、统一数据管理(udified data management,UDM)网元111和NSSF网元112。下述将UPF网元103、DN网元104、AUSF网元105、AMF网元106、SMF网元107、NEF网元108、NRF网元109、策略控制功能(policy control function,PCF)网元110、UDM网元111、NSSF网元112简称为UPF103、DN104、AUSF105、AMF106、SMF107、NEF108、NRF109、PCF110、UDM111、NSSF112、统一的数据存储库(unified data repository,UDR)113。
其中,终端101,主要通过无线空口接入5G网络并获得服务,终端通过空口和RAN进行交互,通过非接入层信令(non-access stratum,NAS)和核心网的AMF进行交互。RAN102负责终端接入网络的空口资源调度和空口的连接管理。UPF103负责终端中用户数据的转发和接收。例如,UPF可以从数据网络接收用户数据,并通过接入网设备传输给终端,还可以通过接入网设备从终端接收用户数据,转发到数据网络。UPF103中为终端提供服务的传输资源和调度功能由SMF网元管理控制的。AUSF105属于核心网控制面网元,主要负责对用户的鉴权、授权以保证用户是合法用户。AMF106属于核心网网元,主要负责信令处理部分,例如:接入控制、移动性管理、附着与去附着以及网关选择等功能,且AMF106还可以在为终端中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。SMF107负责用户面网元选择,用户面网元重定向,因特网协议(internet protocol,IP)地址分配,承载的建立、修改和释放以及QoS控制。NEF108属于核心网控制面网元,用于负责移动网络能力的对外开放。NRF109属于核心网控制面网元,用于负责网络功能的服务能力的动态注册以及网络功能发现。PCF110主要支持提供统一的策略框架来控制网络行为,提供策略规则给控 制层网络功能,同时负责获取与策略决策相关的用户签约信息。UDM111属于核心网控制面网元,归属用户服务器,可以用于统一数据管理,支持3GPP认证、用户身份操作、权限授予、注册和移动性管理等功能。NSSF112用于完成对终端的网络切片选择功能。NSSF112属于核心网控制面实体,用于负责目标NSI的选择。UDR113负责终端签约数据的存储和提供,或者终端策略数据的存储和提供。
在该网络架构中,Nausf为AUSF105展现的基于服务的接口,Namf为AMF106展现的基于服务的接口,Nsmf为SMF107展现的基于服务的接口,Nnef为NEF108展现的基于服务的接口,Nnrf为NRF109展现的基于服务的接口,Npcf为PCF110展现的基于服务的接口,Nudm为UDM111展现的基于服务的接口,Nnssf为NSSF112展现的基于服务的接口,Nudr为UDR113展现的基于服务的接口。N1为UE101和AMF106之间的接口,N2为(R)AN102和AMF106的接口,用于非接入层(non-access stratum,NAS)消息的发送等;N3为(R)AN102和UPF103之间的接口,用于传输用户面的数据等;N4为SMF107和UPF103之间的接口,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF103和DN104之间的接口,用于传输用户面的数据等。
图2是适用于本申请实施例的另一种网络架构的示意图。随着移动通信的高速发展,新业务类型,如视频聊天、VR/AR等数据业务的普遍使用提高了用户对带宽的需求。设备到设备(Device-to-Device,D2D)通信允许终端(User Equipment,UE)之间直接进行通信,可以在小区网络的控制下与小区用户共享频谱资源,有效的提高频谱资源的利用率。当进行D2D通信的两个终端距离较远时,可以通过中继终端(relay UE)进行辅助。例如,如图2所示,通过终端1与终端2之间的通信,以及终端2与终端3之间的通信,可以实现终端1与终端3的D2D通信。其中,终端1与终端2之间以及终端2和终端3之间可以通过接口进行通信,可用于数据面和控制面的信息传输,该接口可以是PC5接口,为方便描述,后面以PC5接口为例。该终端2为终端1与终端3之间的中继终端。需要说明的是,终端1和终端3之间可以有更多的中继终端。
为了描述方便,下文将图2所示的端到端(UE-to-UE,U2U)的中继场景简称为中继场景。
在5G的D2D通信中,终端与终端之间可以建立一个或者多个链路(link),例如,终端和终端之间可以建立一个或者多个PC5链路。终端为每个链路分配一个链路标识(link identifier),用以识别不同的链路;终端还可以为每个链路分配一个层2标识(layer 2 identifier),用于发送和接收相应的链路的数据。终端为链路分配的层2标识又可以理解为源层2标识。层2标识也可以称为层2地址,下文统一称为层2标识。每个链路与一对应用层ID对应,可以理解为该链路用于传输这对应用层ID之间的数据。例如,如图3所示,终端A和终端B之间建立了链路1和链路2,链路1与终端A的应用层ID 1和终端B的应用层ID 2对应,链路2与终端A的应用层ID 3和终端B的应用层ID 4对应。
在5G的D2D通信中,可以采用基于QoS流(flow)的QoS模型。每个链路中可以建立一个或者多个QoS流。每个QoS流可以由一个QoS流标识(QoS flow identifier,PFI)识别,并且PFI在链路中唯一标识一个QoS流。例如,如图3所示,链路1中建立了2个QoS流,即用于传输业务A和E的QoS流#1和用于传输业务B的QoS流#2,链路2 中建立了两个QoS流,即用于传输业务C的QoS流#3和用于传输业务D的QoS流#4。
D2D通信中的QoS流又可以分为保证比特速率(guaranteed bit rate,GBR)QoS流和非保证比特速率(non-guaranteed bit rate,non-GBR)QoS流。
对于D2D场景下的QoS管理,终端在注册时可以从PCF获取QoS映射配置。具体地,PCF在终端配置更新(UE configuration update,UCU)流程中通过AMF发送至终端。PCF获取QoS映射配置的方式可以是,应用服务器生成QoS映射配置,将QoS映射配置通过NEF网元发送给UDR,UDR将QoS映射配置作为终端的签约数据通知PCF。其中,QoS映射配置可以包括:
1)业务类型或业务需求与QoS参数(如PQI,MFBR/GFBR等)对应关系;
2)QoS参数与接入层(access stratum,AS)配置的对应关系。
其中,业务类型可以是视频业务、数据业务或语音业务等;业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
QoS参数可以包括以下各项中的至少一项:PQI(PC5 5QI)、流比特速率(flow bit rate)或链路聚合比特速率(link aggregated bit rates)。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征(PC5 QoS characteristic)一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型(resource type)、优先级级别(priority level)、数据包时延预算(packet delay budget)、数据包错误概率(packet error rate)、最大数据突发量(maximum data burst volume)、平均窗口(averaging window)等。其中,资源类型包括GBR和non-GBR等。平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。流比特速率包括保证流比特速率(guaranteed flow bit rate,GFBR)和最大流比特速率(maximum flow bit rate,MFBR)。
接入层配置可以包括侧行链路无线承载(side link radio bear)配置、逻辑信道(logical channel)配置中的至少一个。其中,侧行链路无线承载配置可以包括PDCP实体配置和RLC实体配置等;逻辑信道配置可以包括逻辑信道优先级配置等。
终端从应用层获取业务类型或业务需求,根据上述配置1),可以确定QoS参数。
当终端不在网络服务时,可以进一步根据业务对应的QoS参数和上述配置2),确定不在网络服务下的接入层配置,即自主调度模式。其中,终端不在网络服务可以理解为终端没有处于网络覆盖下(out of coverage)。
当终端在网络服务时,终端向RAN请求接入层配置,即RAN调度模式。具体地,终端向RAN发送QoS参数、链路信息和通信模式等,由RAN确定该QoS参数对应的接入层配置并下发给终端。链路信息可以包括目的层2标识或链路标识等;通信模式可以包括单播、组播或广播等。其中,终端在网络服务可以理解为终端处于网络覆盖下(in coverage)。
图4是链路建立流程的示意图。在5G***中,如图4所示,以终端1和终端2之间建立链路为例,终端之间链路建立流程如下。
在401中,终端2确定用于接收直接通信请求消息(direct communication request)的层2标识,这个层2标识配置在终端2侧。终端3和终端4类似。
在402中,终端1从应用层获取业务信息和应用层ID信息。
其中,业务信息包括以下各项中的至少一项:业务类型或业务需求。
在403中,终端1向终端2发送直接通信请求消息,直接通信请求消息使用源层2标 识(source L2 ID)和目的层2标识(destination L2 ID)进行发送。其中,源层2标识为终端1的层2标识,是由终端1分配的。目的层2标识为***配置的用于发送直接通信请求消息的层2标识。其中,直接通信请求消息可以通过单播或者广播的方式发送。
在404中,终端1和终端2建立安全连接,在安全连接建立完成后,终端1将QoS流信息发送给终端2。
其中,QoS流信息包括PFI和与PFI对应的QoS参数。这里的QoS参数可以是终端1根据业务信息确定的。进一步,终端1为传输对应业务生成QoS流,PFI为QoS流的标识。
在405中,终端2向终端1发送直接通信接受消息(direct communication accept),直接通信接受消息中源层2标识为终端2的层2标识,目的层2标识为终端1的层2标识。
这样,终端1和终端2沟通确定了D2D通信的收发双方的层2标识,收发双方的层2标识可以唯一标识一个链路;终端1和终端2还可以使用链路标识来标识两者之间的链路,终端1和终端2中使用的链路标识可以相同,也可以不同。
在406中,终端1和终端2可以通过上述步骤建立的链路相互传输数据。具体地,通过上述步骤建立的链路,传输终端1的应用层ID和终端2的应用层ID之间的数据。
在上述链路建立流程或链路更新流程中,终端之间会协商QoS流信息,建立QoS流(例如,通过上述步骤404)。对于每个QoS流,QoS流信息包括PFI以及PFI对应的QoS参数。终端可以推导出QoS规则(QoS rule),用于表示业务类型或业务需求与PFI的对应关系,例如图3中业务A和E对应于QoS流#1、业务B对应于QoS流#2、业务C对应于QoS流#3和业务D对应于QoS流#4。在链路建立或链路更新后,终端可以根据QoS流对应的QoS参数得到QoS流对应的接入层配置(例如,通过上文所述的RAN调度模式或者自主调度模式)。
在发送数据时,终端根据QoS规则将应用层数据映射到QoS流标识PFI,再根据QoS流标识PFI得到接入层配置,再根据接入层配置发送相应数据。
图4所示的链路建立流程中并未涉及终端1和终端2之间存在中继终端的情况。
图5是在中继场景下链路建立流程的示意图。由于终端1和终端3距离可能比较远,终端1和终端3不能建立直接通信的链路,以终端1和终端3之间建立链路为例,中继场景下链路建立流程如下。需要说明的是,下文中直接通信请求消息还可以是非直接通信请求消息。
在500中,中继终端完成网络注册和获取中继策略参数。中继终端确定用于接收直接通信请求消息的层2标识。具体地,中继终端在向网络注册时指示中继能力,网络侧根据中继能力信息下发中继策略参数。中继策略参数可以包括以下各项中的至少一项:允许该中继终端中继数据的PLMN或该中继终端允许中继的业务。
在501中,终端3确定用于接收直接通信请求消息的层2标识。终端2和终端4类似。
在502中,终端1发送直接通信请求消息。直接通信请求消息包括终端3的应用层ID。终端1可以广播方式发送直接通信请求消息。相应地,中继终端接收该直接通信请求消息。
在503中,在中继终端接收到终端1发送的直接通信请求消息后,确定消息中应用层ID不属于该中继终端,转发该直接通信请求消息,该消息包括终端3的应用层ID。中继终端可以广播方式转发直接通信请求消息。相应地,终端3接收该直接通信请求消息。
在504中,终端1和终端3建立安全连接,在建立过程中终端1和终端3之间的交互信息通过中继终端转发。具体地,终端3确定消息中应用层ID属于该终端,通过中继终端向终端1请求建立安全连接。
在505中,在终端1和终端3之间的安全连接建立完成后,终端3向中继终端发送直接通信接受消息,中继终端在接收到终端3发送的直接通信接受消息后,即完成了中继终端与终端3之间的链路的建立。
在506中,在接收到终端3发送的直接通信接受消息后,中继终端向终端1发送直接通信接受消息,终端1在接收到中继终端发送的直接通信接受消息后,即完成了终端1与中继终端之间的链路的建立。
这样,终端1通过终端1和中继终端之间的链路,以及中继终端和终端3之间的链路与终端3进行通信。中继终端会生成并存储终端1和中继终端之间的链路与中继终端和终端3之间的链路的对应关系,即链路映射(link mapping)。
在507中,当终端1和终端3之间需要传输数据时,中继终端根据存储的对应关系对终端1和终端3之间的数据进行转发。例如,终端1和中继终端之间的链路为链路1,中继终端与终端3之间的链路为链路2,链路1与链路2对应,中继终端中存储链路1和链路2的对应关系,当终端1向终端3发送数据时,终端1通过链路1向中继终端发送数据,中继终端通过存储的链路1和链路2的对应关系,确定终端1通过链路1发送的数据需要通过链路2转发给终端3,从而实现终端1和终端3之间的数据传输。
对于中继场景,目前的技术方案仅涉及中继链路建立流程,主要关于中继终端如何生成和保存链路和链路之间的对应关系,尚未考虑其他诸如QoS等方面的管理。
针对上述问题,本申请提供了一种通信方法,能够在中继场景下考虑到业务的QoS需求,有助于实现端到端的QoS保证。
本申请的技术方案可以应用于源终端与目标终端之间存在一个或者多个中继终端的场景。为了描述方便,下文将源终端统一称为第一终端,将目标终端统一称为第二终端。
在本申请中,使用第一和第二等对QoS参数进行区分,应理解,QoS参数不同可以理解为包括的参数类型和/或各类型的参数的取值不同。还应理解,第一和第二等仅用于对QoS参数进行区分,对QoS参数不构成任何限定。
场景一:第一终端与第二终端之间存在一个中继终端
1)由第一终端进行QoS参数分配
图6是本申请提供的通信方法的示意性流程图。图6所示的方法可以由第一终端、第一中继终端和第二终端执行,也可以由第一终端、第一中继终端和第二终端中的芯片或模块执行。图6以第一终端、第一中继终端和第二终端为执行主体为例对本申请实施例的通信方法进行描述。图6所示的方法可以包括以下内容的至少部分内容。
为了方便描述,下文将第一终端与第一中继终端之间的链路称为第一链路,将第一中继终端与第二终端之间的链路称为第二链路。
在601中,第一终端获取第一业务。第一业务的目标终端是第二终端,也就是说,第一业务是第一终端发给第二终端的业务。
可选地,第一终端从应用层获取第一业务。
本申请实施例对第一业务不作具体限定,第一业务可以是任意第一终端需要发送的业 务。
在一些实施例中,第一业务的信息可以包括业务类型和/或业务需求,其中,业务类型可以是视频业务、数据业务或语音业务等,业务需求可以是业务的优先级需求、业务的可靠性需求和业务的时延需求等。
在602中,第一终端根据第一业务,确定第一QoS参数。其中,第一QoS参数对应于第一中继终端与第二终端之间包括的链路,第一中继终端为第一终端和第二终端之间的中继终端。
在第一终端与第二终端之间仅存在第一中继终端的场景下,第一中继终端与第二终端直接连接,第一中继终端与第二终端之间包括的链路为第一中继终端与第二终端之间的链路,即第二链路。在本申请中,两个终端直接连接即两个终端之间不存在中继终端,可以不需要中继终端的辅助。
第一QoS参数对应于第一中继终端与第二终端之间包括的链路,即第一QoS参数对应于第二链路。换句话说,第一QoS参数用于确定第二链路上第一业务所对应的QoS参数或用于确定第一业务在第二链路传输时所对应的QoS参数。
第一QoS参数可以包括以下各项中的至少一项:PQI、流比特速率或链路聚合比特速率等。其中,PQI是一种特殊的5QI,每一个PQI值与PC5 QoS特征一一对应,PC5 QoS特征可以包括以下各项中的一项或多项:资源类型、优先级级别、数据包时延预算、数据包错误概率、最大数据突发量、平均窗口等。流比特速率包括保证流比特速率和最大流比特速率。其中,资源类型包括GBR和non-GBR等;平均窗口可以用于计算GBR对应的速率,数据包时延预算可以指的是数据包从终端A到终端B的时延。
本申请涉及的各种QoS参数与第一QoS参数包含的参数类似,下文将不再重复描述。
在一些实施例中,第一终端还可以确定第三QoS参数,第三QoS参数用于确定第一链路上第一业务所对应的QoS参数或用于确定第一业务在第一链路传输时所对应的QoS参数,即执行步骤603。
在本申请中,第一终端确定第一QoS参数和第三QoS参数的方式有很多。
作为一个示例,第一终端可以根据第一链路可以保证的QoS需求,确定第三QoS参数。第一链路可以保证的QoS需求,可以理解为,第一终端通过第一链路向第一中继终端发送第一业务时可以保障的QoS。
作为另一个示例,第一终端可以根据第一业务,确定第一业务的业务需求,例如,传输速率需求和/或传输时延需求等。进一步地,第一终端根据第一业务的业务需求,确定第一QoS参数和第三QoS参数。
作为另一个示例,第一终端可以根据第一业务的业务需求,确定第二QoS参数,第二QoS参数用于指示第一终端向第二终端发送第一业务的QoS需求;第一终端根据第二QoS参数,确定第一QoS参数和第三QoS参数。也就是说,第一终端可以根据第一业务的业务需求,确定第一终端与第二终端之间的端到端QoS需求,再进一步确定第一终端和第一中继终端之间的QoS需求和第一中继终端与第二终端之间的QoS需求。
应理解,端到端QoS需求具体可以理解为第一终端(源终端)发送第一业务到第二终端(目的终端)时第一业务的QoS需求。
作为另一个示例,第一终端根据第一业务的业务需求、以及第一链路可以保证的QoS 需求,确定第一QoS参数和第三QoS参数。第一链路可以保证的QoS需求,可以理解为,第一终端通过第一链路向第一中继终端发送第一业务时可以保障的QoS。
例如,在第一业务的业务需求中传输时延需求为10ms,第一终端确定第一链路可以保证的传输时延为2ms,则第一终端将剩余8ms分配给剩余链路,即第二QoS参数指示传输时延为10ms,第三QoS参数指示传输时延为2ms,第一QoS参数指示传输时延为8ms。
再例如,在第一业务的业务需求中传输速率需求为10Mbps,则第二QoS参数中传输速率为10Mbps,第三QoS参数中传输速率为10Mbps,第一QoS参数中传输速率为10Mbps。
作为另一个示例,第一终端可以根据第一业务以及链路信息,确定第一QoS参数和第三QoS参数,其中,链路信息可以指示第一终端向所述第二终端发送第一业务所需经过的链路。
例如,第一终端和第二终端之间仅存在第一中继终端,链路信息指示第一终端向所述第二终端发送第一业务需经过第一链路和第二链路,第一终端可以确定第一QoS参数和第三QoS参数,第三QoS参数对应于第一链路,第一QoS参数对应于第二链路。
在604中,第一终端向第一中继终端发送第一QoS参数。
相应地,第一中继终端接收来自第一终端的第一QoS参数。
在一些实施例中,还可以执行605-610。
在605中,第一中继终端根据第一QoS参数,确定第二链路的接入层配置。
可选地,第一中继终端可以确定第二链路是否能够满足第一QoS参数指示的QoS需求。当第二链路可以满足第一QoS参数指示的QoS需求时,第一中继终端根据第一QoS参数,确定第二链路的接入层配置。
当第二链路不满足第一QoS参数指示的QoS需求时,可以执行606,第一中继终端根据第一QoS参数,确定第四QoS参数,第四QoS参数为第二链路上第一业务所对应的QoS参数或第一业务在第二链路传输时所对应的QoS参数;第一中继终端根据第四QoS参数,确定第二链路的接入层配置。
例如,第一QoS参数中传输时延为10ms,但第二链路能满足的传输时延为6ms,那么第四QoS参数中传输时延可以确定为6ms,第四QoS参数中其他参数可以与第一QoS参数中参数相同。
又例如,第一QoS参数中传输速率为10Mbps,但第二链路能满足的传输速率为8Mbps,那么第四QoS参数中传输速率可以确定为8Mbps,第四QoS参数中其他参数可以与第一QoS参数中参数相同。
在本申请中,第一中继终端确定第二链路是否能够满足第一QoS参数指示的QoS需求的方式有很多。
作为一个示例,第一中继终端可以自己确定第二链路是否满足第一QoS参数指示的QoS需求。当确定第二链路不满足第一QoS参数指示的QoS需求时,第一中继终端可以自己确定第四QoS参数。
作为另一个示例,第一中继终端可以与第二终端协商,确定第二链路是否满足第一QoS参数指示的QoS需求。当确定第二链路不满足第一QoS参数指示的QoS需求时,第一中继终端可以与第二终端协商确定第四QoS参数。
在一些实施例中,第一中继终端根据第一QoS参数或第四QoS参数,确定第二链路 的接入层配置,可以理解为第一中继终端根据第二链路中QoS流对应的第一QoS参数或第四QoS参数,确定QoS流对应的接入层配置。一种可能的实现方式为第一中继终端根据第一QoS参数或第四QoS参数生成QoS流,通过RAN调度模式或者自主调度模式获得该QoS流的QoS参数对应的接入层配置。接入层配置的具体信息可参见上文所述,在此不再赘述。
在607中,第一中继终端还可以向第一终端反馈第四QoS参数。
相应地,第一终端接收来自第一中继终端的第四QoS参数。
在608中,第一终端确定第一链路的接入层配置。
在一种可能的实现方式中,第一终端根据上文得到的第三QoS参数,确定第一链路的接入层配置。
在另一种可能的实现方式中,第一终端可以根据接收到的第四QoS参数和上文所述的第二QoS参数,确定第三QoS参数,第一终端根据得到的第三QoS参数,确定第一链路的接入层配置。
在另一种可能的实现方式中,第一终端还可以根据接收到的第四QoS参数,对第三QoS参数进行更新,并根据更新后的第三QoS参数,确定第一链路的接入层配置。具体地,第一终端根据第四QoS参数和第三QoS参数,确定第五QoS参数。其中,第五QoS参数为更新后的第三QoS参数,为第一链路上第一业务所对应的QoS参数。
例如,第四QoS参数中对第一QoS参数的部分或全部进行调整时,第一终端可以对第三QoS参数进行反向调整,以期满足第一业务的业务需求。例如,以第一终端和第二终端通过第一链路和第二链路实现D2D通信为例,假设第一业务的业务需求中的传输时延需求为10ms,第一QoS参数指示的传输时延为6ms,第三QoS参数指示的传输时延为4ms,第一中继终端对第一QoS参数进行调整得到第四QoS参数,第四QoS参数指示的传输时延为7ms,在条件允许的情况下,第一终端可以对第三QoS参数进行调整,得到第五QoS参数,第五QoS参数指示的传输时延为3ms。
在另一种可能的实现方式中,第一终端还可以与第一中继终端协商第一链路是否可以满足第三QoS参数指示的QoS需求。当第一链路可以满足第三QoS参数指示的QoS需求时,第一终端根据第三QoS参数,确定第一链路的接入层配置。当第一链路不满足第三QoS参数指示的QoS需求时,第一终端可以与第一中继终端协商确定第七QoS参数,第一终端根据第七QoS参数,确定第一链路的接入层配置。
在一些实施例中,第一终端根据第三QoS参数、第五QoS参数或第七QoS参数,确定第一链路的接入层配置,可以理解为第一终端根据第一链路中QoS流对应的第三QoS参数、第五QoS参数或第七QoS参数,确定QoS流对应的接入层配置。一种可能的实现方式为第一终端根据第三QoS参数、第五QoS参数或第七QoS参数生成QoS流,通过RAN调度模式或者自主调度模式获得该QoS流的QoS参数对应的接入层配置。接入层配置的具体信息可参见上文所述,在此不再赘述。
在609中,第一终端向第一中继终端发送第一链路的接入层配置。
可选地,第一终端可以使用第一链路对应的PC5-S消息发送接入层配置。
例如,PC5-S消息可以是链路修改请求(link modification request)消息。
相应地,第一中继终端接收来自第一终端的第一链路的接入层配置。
可选地,第一中继终端接收到第一链路的接入层配置后,可以向第一终端发送链路修改响应(link modification response)消息。
在610中,第一终端在第一链路的接入层配置上发送第一业务。
可以理解的是,第一终端在第一链路的接入层配置上发送第一业务对应的数据。
相应地,第一中继终端从第一链路的接入层配置上接收第一业务对应的数据。
可选地,第一终端根据QoS规则将第一业务的数据映射到QoS流上,再根据QoS流得到接入层配置,进一步根据接入层配置发送第一业务对应的数据。
在611中,第一中继终端在第二链路的接入层配置上转发第一业务。
可以理解的是,第一中继终端在第二链路的接入层配置上转发第一业务对应的数据。
相应地,第二终端从第二链路的接入层配置上接收第一业务对应的数据。
可选地,第一中继终端可以生成并保存第一链路与第二链路的对应关系,和第一链路的接入层配置与第二链路的接入层配置的对应关系;第一中继终端根据得到的对应关系,对第一业务对应的数据进行转发。具体地,第一中继终端根据第一链路与第二链路的对应关系,确定在第一链路上接收的第一业务对应的数据要转发到第二链路,再根据第一链路的接入层配置与第二链路的接入层配置的对应关系,确定在第一链路的接入层配置上接收的第一业务对应的数据要在第二链路的接入层配置上发送。
本申请实施例中部分步骤可以与图5所示的中继场景下链路建立流程的部分步骤相同,例如步骤604可以与图5中步骤504c相同,步骤607可以与图5中步骤506相同。当然,图6所示的通信方法也可以是单独的流程,例如,在完成中继场景下链路建立流程后再执行步骤。
2)由第一中继终端进行QoS参数分配。
图7是本申请提供的另一通信方法的示意性流程图。图7所示的方法与图6所示方法的场景类似,不再赘述。
在701中,第一终端获取第一业务。
步骤701与步骤601类似,在此不再赘述。
在702中,第一终端根据第一业务,确定第二QoS参数,第二QoS参数用于指示第一终端向第二终端发送第一业务的QoS需求。
在703中,第一终端向第一中继终端发送第二QoS参数。
相应地,第一中继终端接收来自第一终端的第二QoS参数。
即第一终端将第一业务的端到端QoS需求发送给第一中继终端,以便第一中继终端进行QoS参数分配。
可选的,第一终端还可以是将业务类型和/或业务需求信息发给第一中继终端,第一中继终端再根据业务类型和/或业务需求信息确定第二QoS参数。
在704中,第一中继终端根据第二QoS参数,确定第一QoS参数。其中,第一QoS参数对应于第一中继终端与第二终端之间包括的链路,第一中继终端为第一终端和第二终端之间的中继终端。
图7中的第一QoS参数与图6中的QoS参数类似,不再详细解释。
在一些实施例中,第一中继终端还可以执行步骤705-706。即由第一中继终端确定并发送第一链路上第一业务所对应的QoS参数。
在705中,第一中继终端确定第三QoS参数,第三QoS参数用于确定第一链路上第一业务所对应的QoS参数或用于确定第一业务在第一链路传输时所对应的QoS参数。
在706中,第一中继终端向第一终端发送第三QoS参数。
相应地,第一终端接收来自第一中继终端的第三QoS参数。
在本申请中,第一中继终端确定第一QoS参数和第三QoS参数的方式有很多。
作为一个示例,第一中继终端根据第二QoS参数、以及第二链路可以保证的QoS需求,确定第一QoS参数和第三QoS参数。第二链路可以保证的QoS需求,可以理解为,第一中继终端通过第二链路向第二终端发送第一业务时可以保障的QoS。
例如,在第一业务的业务需求中传输时延需求为10ms,第一中继终端确定第二链路可以保证的传输时延为2ms,则第一中继终端将剩余8ms分配给剩余链路,即第二QoS参数指示传输时延为10ms,第三QoS参数指示传输时延为2ms,第一QoS参数指示传输时延为8ms。
再例如,在第一业务的业务需求中传输速率需求为10Mbps,则第一QoS参数中传输速率为10Mbps,第三QoS参数中传输速率为10Mbps,第一QoS参数中传输速率为10Mbps。
作为另一个示例,第一中继终端可以根据第二QoS参数以及链路信息,确定第一QoS参数和第三QoS参数,其中,链路信息可以指示第一终端向所述第二终端发送第一业务所需经过的链路。
例如,第一终端和第二终端之间仅存在第一中继终端,链路信息指示第一终端向所述第二终端发送第一业务需经过第一链路和第二链路,第一中继终端可以确定第一QoS参数和第三QoS参数,第三QoS参数对应于第一链路,第一QoS参数对应于第二链路。
在一些实施例中,还可以执行707-713。
在707中,第一终端确定第一链路的接入层配置。
在一种可能的实现方式中,第一终端根据接收到的第三QoS参数,确定第一链路的接入层配置。
在另一种可能的实现方式中,第一终端可以确定第一链路是否能够满足第三QoS参数指示的QoS需求。当第一链路可以满足第三QoS参数指示的QoS需求时,第一终端根据第三QoS参数,确定第一链路的接入层配置。
当第一链路不满足第三QoS参数指示的QoS需求时,可以执行708,第一终端根据第三QoS参数,确定第五QoS参数,第五QoS参数为第一链路上第一业务所对应的QoS参数或第一业务在第一链路传输时所对应的QoS参数;第一终端根据第五QoS参数,确定第一链路的接入层配置。
例如,第三QoS参数中传输时延为10ms,但第一链路能满足的传输时延为6ms,那么第五QoS参数中传输时延可以确定为6ms,第五QoS参数中其他参数可以与第三QoS参数中参数相同。
又例如,第三QoS参数中传输速率为10Mbps,但第一链路能满足的传输速率为8Mbps,那么第五QoS参数中传输速率可以确定为8Mbps,第五QoS参数中其他参数可以与第一QoS参数中参数相同。
在本申请中,第一终端确定第一链路是否能够满足第三QoS参数指示的QoS需求的方式有很多。
作为一个示例,第一终端可以自己确定第一链路是否满足第三QoS参数指示的QoS需求。当确定第一链路不满足第三QoS参数指示的QoS需求时,第一终端可以自己确定第五QoS参数。
可选地,第一终端可以与第一中继终端协商,确定第一链路是否满足第三QoS参数指示的QoS需求。当确定第一链路不满足第三QoS参数指示的QoS需求时,第一终端可以与第一中继终端协商确定第五QoS参数。
在一些实施例中,第一终端根据第三QoS参数或第五QoS参数,确定第一链路的接入层配置,可以理解为第一终端根据第一链路中QoS流对应的第三QoS参数或第五QoS参数,确定QoS流对应的接入层配置。一种可能的实现方式为第一终端根据第三QoS参数或第五QoS参数生成QoS流,通过RAN调度模式或者自主调度模式获得该QoS流的QoS参数对应的接入层配置。接入层配置的具体信息可参见上文所述,在此不再赘述。
在一些实施例中,还可以执行步骤709。即第一终端还可以向第一中继终端反馈第五QoS参数,以便第一中继终端进行QoS参数调整。
在709中,第一终端向第一中继终端发送第五QoS参数。
相应地,第一中继终端接收来自第一终端的第五QoS参数。
在710中,第一终端可以向第一中继终端发送第一链路的接入层配置。
步骤710与步骤609类似,在此不再赘述。
在711中,第一中继终端根据第一QoS参数,确定第二链路的接入层配置。
在一种可能的实现方式中,第一中继终端可以上文得到的第一QoS参数,确定第二链路的接入层配置。
在另一种可能的实现方式中,第一中继终端还可以根据接收到的第五QoS参数,对第一QoS参数进行更新,并根据更新后的第一QoS参数,确定第一链路的接入层配置。具体地,第一终端根据第一QoS参数和第五QoS参数,确定第四QoS参数。其中,第四QoS参数为更新后的第一QoS参数,为第二链路上第一业务所对应的QoS参数或第一业务在第一链路传输时所对应的QoS参数。
例如,第五QoS参数中对第三QoS参数的部分或全部进行调整时,第一中继终端可以对第一QoS参数进行反向调整,以期满足第一业务的业务需求。例如,以第一终端和第二终端通过第一链路和第二链路实现D2D通信为例,假设第一业务的业务需求中的传输时延需求为10ms,第一QoS参数指示的传输时延为6ms,第三QoS参数指示的传输时延为4ms,第一终端对第三QoS参数进行调整得到第五QoS参数,第五QoS参数指示的传输时延为7ms,在条件允许的情况下,第一中继终端可以对第一QoS参数进行调整,得到第四QoS参数,第四QoS参数指示的传输时延为3ms。
在另一种可能的实现方式中,第一中继终端还可以与第二终端协商第二链路是否可以满足第一QoS参数指示的QoS需求。当第二链路可以满足第一QoS参数指示的QoS需求时,第一中继终端根据第一QoS参数,确定第二链路的接入层配置。当第二链路不满足第一QoS参数指示的QoS需求时,第一中继终端可以与第二终端协商确定第四QoS参数,第一中继终端根据第四QoS参数,确定第二链路的接入层配置。
在一些实施例中,第一中继终端根据第一QoS参数或第四QoS参数,确定第二链路的接入层配置,可以理解为第一中继终端根据第二链路中QoS流对应的第一QoS参数或 第四QoS参数,确定QoS流对应的接入层配置。一种可能的实现方式为第一中继终端根据第一QoS参数或第四QoS参数生成QoS流,通过RAN调度模式或者自主调度模式获得该QoS流的QoS参数对应的接入层配置。接入层配置的具体信息可参见上文所述,在此不再赘述。
在712中,第一终端在第一链路的接入层配置上发送第一业务。
在713中,第一中继终端在第二链路的接入层配置上转发第一业务。
步骤712与步骤610类似,步骤713与步骤611类似,在此不再赘述。
本申请实施例中部分步骤可以与图5所示的中继场景下链路建立流程的部分步骤相同,例如步骤703可以与图5中步骤504c相同,步骤706可以与图5中步骤506相同。当然,图7所示的通信方法也可以是单独的流程,例如,在完成中继场景下链路建立流程后再执行步骤。
3)由接入网设备确定各链路的接入层配置
图8是本申请提供的另一通信方法的示意性流程图。图8所示的方法可以由第一终端、第一中继终端、第二终端和接入网设备执行,也可以由第一终端、第一中继终端、第二终端和接入网设备中的芯片或模块执行。图8以第一终端、第一中继终端、第二终端和接入网设备为执行主体为例对本申请实施例的通信方法进行描述。图8所示的方法可以包括以下内容的至少部分内容。
步骤801-802可以参考步骤701-702的相关描述,在此不再赘述。
在803中,第一中继终端向第一终端发送第一信息。
相应地,第一终端接收来自第一中继终端的第一信息。其中,第一信息包括第二链路的信息。
可选的,第一中继终端可以使用第一链路对应的PC5-S消息发送第一信息。
例如,PC5-S消息可以是链路修改请求消息。
可选地,链路的信息可以为链路的标识、链路的目标层2标识中的至少一个。可选地,链路的标识可以为PC5链路标识(PC5 link identifier)。
在一些实施例中,第一信息还可以包括第一中继终端的信息,以便接入网设备向第一中继终端发送信息。
可选地,第一中继终端的信息可以为第一中继终端的标识、临时小区无线网络标识(cell access radio network temporary identifier,C-RNTI)中的至少一个。
本申请实施例对步骤803、步骤801和步骤802先后顺序,对步骤801与图5中步骤502-506的先后顺序,和步骤802与图5中步骤502-506的先后顺序不限定。
在804中,第一终端向接入网设备发送第二信息。
相应地,接入网设备接收来自第一终端的第二信息。
可选的,第一终端可以使用RRC消息发送第二信息。例如,RRC消息可以是侧行链路终端信息消息(sidelink UE information message)。
其中,第二信息包括第二QoS参数、第一链路的信息以及第二链路的信息。
在一些实施例中,当第一信息包括第一中继终端的信息时,第二信息可以包括第一中继终端的信息,以便接入网设备向第一中继终端发送信息。
可选地,步骤804可以在图5中步骤506之后。
步骤803在步骤804之前,
在805中,接入网设备在接收到第二信息后,确定第一链路的接入层配置和第二链路的接入层配置。
作为一个示例,接入网设备根据第二QoS参数,确定第一链路的接入层配置和第二链路的接入层配置。
例如,第二QoS参数中传输时延需求为10ms,接入网设备确定第一链路的接入层配置和第二链路的接入层配置以满足传输时延需求,其中第一链路的接入层配置可以满足传输时延为6ms,第二链路的接入层配置可以满足传输时延为4ms。
再例如,第二QoS参数中传输速率为10Mbps,接入网设备确定第一链路的接入层配置和第二链路的接入层配置以满足传输速率需求,其中第一链路的接入层配置可以满足传输速率为10Mbps,第二链路的接入层配置可以满足传输速率为10Mbps。
之后接入网设备可以将确定的第一链路的接入层配置和第二链路的接入层配置发送给第一终端和第一中继终端。
接入网设备发送第一链路的接入层配置和第二链路的接入层配置的方式有很多。例如,接入网设备可以通过以下的方式1-3发送第一链路的接入层配置和第二链路的接入层配置。
方式1:如806-807所示。
在806中,接入网设备向第一终端发送第三信息。
相应地,第一终端接收来自接入网设备的第三信息。
可选的,接入网设备可以使用RRC消息发送第三信息。例如,RRC消息可以是RRC重新配置消息(RRC Reconfiguration message)。
其中,第三信息包括第一链路的接入层配置和第一链路的信息。
可选地,第三信息还可以包括第二链路的接入层配置和第二链路的信息。
在807中,接入网设备向第一中继终端发送第五信息。
相应地,第一中继终端接收来自接入网设备的第五信息。
可选的,接入网设备可以使用RRC消息发送第五信息。例如,RRC消息可以是RRC重新配置消息。
其中,第五信息包括第一链路的信息和第二链路的信息中的至少一个,以及第一链路的接入层配置和第二链路的接入层配置。
由于在建立中继链路后,即完成link mapping后,第一中继终端中存储了第一链路的信息与第二链路的信息的对应关系,所以,在第五信息中包括第一链路的信息和第二链路的信息中的至少一个即可。
方式2:如808-809所示。
在808中,接入网设备向第一终端发送第三信息。
相应地,第一终端接收来自接入网设备的第三信息。
其中,第三信息包括第一链路的接入层配置、第一链路的信息、第二链路的接入层配置和第二链路的信息。
可选的,接入网设备可以使用RRC消息发送第三信息。例如,RRC消息可以是RRC重新配置消息。
在809中,第一终端向第一中继终端发送第四信息。
相应地,第一中继终端接收来自第一终端的第四信息。
其中,第四信息包括第一链路的接入层配置、第二链路的接入层配置和第二链路的信息。
可选地,第四信息还包括第一链路的信息。
方式3:如810-812所示。
在810中,接入网设备向第一终端发送第三信息。
相应地,第一终端接收来自接入网设备的第三信息。
其中,第三信息包括第一链路的接入层配置和第一链路的信息。
可选的,接入网设备可以使用RRC消息发送第三信息。例如,RRC消息可以是RRC重新配置消息。
可选地,第三信息还包括第二链路的接入层配置和第二链路的信息。
在811中,第一终端向第一中继终端发送第四信息。
相应地,第一中继终端接收来自第一终端的第四信息。
其中,第四信息包括第一链路的接入层配置。
可选地,第四信息还包括第一链路的信息。
在812中,接入网设备第一中继终端发送第五信息。
相应地,第一中继终端接收来自接入网设备的第五信息。
其中,第五信息包括第二链路的信息和第二链路的接入层配置。
可选的,接入网设备可以使用RRC消息发送第五信息。例如,RRC消息可以是RRC重新配置消息。
在协商完接入层配置之后,第一终端可以执行813,即第一终端发送第一业务。
具体地,第一终端根据第一链路的接入层配置发送第一业务。
在814中,第一中继终端根据第二链路的接入层配置,对第一业务进行转发。
步骤813与步骤610类似,步骤814与步骤611类似,在此不再赘述。
本申请实施例中部分步骤可以与图5所示的中继场景下链路建立流程的部分步骤相同。当然,图8所示的通信方法也可以是单独的流程,例如,在完成中继场景下链路建立流程后再执行步骤。
场景二:第一终端与第二终端之间存在多个中继终端
当第一终端与第二终端之间存在多个中继终端时,第一中继终端与第二终端之间可以包括至少一个中继终端,这样第一中继终端与第二终端之间包括至少两条链路。
例如,第一终端与第二终端之间包括第一中继终端、第二中继终端和第三中继终端,第一中继终端分别与第一终端和第二中继终端直接连接,第二中继终端分别与第一中继终端和第三中继终端直接连接,第三中继终端分别与第二中继终端和第二终端直接连接,这样第一中继终端与第二终端之间包括第二中继终端和第三中继终端。第一中继终端与第二终端之间包括第一中继终端与第二中继终端之间的链路、第二中继终端与第三中继终端之间的链路、以及第三中继终端与第二终端之间的链路。
1)由第一终端进行QoS参数分配
方式A:第一终端可以为每个链路分配QoS参数,使得全部链路整体可以满足第一 业务的QoS需求。此时,第一QoS参数对应于第二链路。
例如,假设第一终端和第二终端之间包括N个中继终端,N为大于1的整数,第一终端可以将第一业务的业务需求分成N+1部分,分别分配给N+1个链路,各部分业务需求可以通过QoS参数体现,例如,对应于第一链路的业务需求可以通过第三QoS参数体现,对应于第二链路的业务需求可以通过第一QoS参数体现。
方式B:第一终端可以将第一业务的业务需求划分为两部分,第一部分分配给第一链路,第二部分分配给后续全部链路并指示给第一中继终端;第一中继终端再将第二部分业务需求进一步划分为两部分,第一部分分配给第二链路,第二部分分配给后续全部链路;以此类推。
例如,假设第一终端和第二终端之间包括第一中继终端和第二中继终端,第一终端确定第一QoS参数和第三QoS参数,第三QoS参数对应于第一链路,第一QoS参数对应于第二链路和第三链路,第三链路为第二中继终端与第二终端之间的链路;第一中继终端根据第一QoS参数,进一步确定第四QoS参数和第六QoS参数,第四QoS参数对应于第二链路,第六QoS参数对应于第三链路。
下面以第一终端和第二终端之间包括第一中继终端和第二中继终端为例,对本申请的技术方案进行描述。
为了方便描述,下文将第一终端与第一中继终端之间的链路称为第一链路,将第一中继终端与第二中继终端之间的链路称为第二链路,将第二中继终端与第二终端之间的链路称为第三链路。
图9是本申请提供的另一通信方法的示意性流程图。图9所示的方法对应于上文的方式A。图9所示的方法可以由第一终端、第一中继终端、第二中继终端和第二终端执行,也可以由第一终端、第一中继终端、第二中继终端和第二终端中的芯片或模块执行。图9以第一终端、第一中继终端、第二中继终端和第二终端为执行主体为例对本申请实施例的通信方法进行描述。图9所示的方法可以包括以下内容的至少部分内容。
步骤901-911可以参考图6中的步骤601-611,在此不再赘述。
在图6的基础上,第一终端还可以执行步骤912-917。
在912中,第一终端确定第六QoS参数,第六QoS参数用于确定第三链路上第一业务所对应的QoS参数或用于确定第一业务在第三链路上传输时所对应的QoS参数。
在913中,第一终端向第一中继终端发送第六QoS参数。
相应地,第一中继终端接收来自第一终端的第六QoS参数。
可选地,第一QoS参数和第六QoS参数可以在同一条消息中发送给第一中继终端。
在914中,第一中继终端向第二中继终端转发第六QoS参数。
相应地,第二中继终端接收来自第一中继终端的QoS参数。
在915中,第二中继终端根据第六QoS参数,确定第三链路的接入层配置。
具体实现方式与第一中继终端确定第二链路的接入层配置类似,可以参考步骤605的相关描述,在此不再赘述。
在916中,第一中继终端向第二中继终端发送第二链路的接入层配置。
可选地,第一中继终端可以使用第二链路对应的PC5-S消息发送接入层配置。
例如,PC5-S消息可以是链路修改请求消息。
相应地,第二中继终端接收来自第一中继终端的第一链路的接入层配置。
可选地,第二中继终端接收到第一链路的接入层配置后,可以向第一中继终端发送链路修改响应消息。
在917中,第二中继终端在第二链路的接入层配置上接收到第一业务后,在第三链路的接入层配置上向第二终端转发第一业务。
可以理解的是,第二中继终端在第三链路的接入层配置上转发第一业务对应的数据。
相应地,第二终端从第三链路的接入层配置上接收第一业务对应的数据。
可选地,第二中继终端可以生成并保存第二链路与第三链路的对应关系,和第二链路的接入层配置与第三链路的接入层配置配的对应关系;第二中继终端根据得到的对应关系,对第一业务对应的数据进行转发。具体地,第二中继终端根据第二链路与第三链路的对应关系,确定在第二链路上接收的第一业务对应的数据要转发到第三链路,再根据第二链路的接入层配置与第三链路的接入层配置的对应关系,确定在第二链路的接入层配置上接收的第一业务对应的数据要在第三链路的接入层配置上发送。
需要说明的是,本申请实施例不限定各步骤的先后顺序。例如,对于步骤914和步骤907,可以先执行步骤,914,再执行步骤907,也可以先执行步骤907,再执行步骤914,还可以同时执行步骤914和步骤907。
图10是本申请提供的另一通信方法的示意性流程图。图10所示的方法对应于上文的方式B。在图9中,由第一终端确定第六QoS参数,并发送给第一中继终端,再由第一中继终端转发给第二中继终端。与图9不同,图10中的第一QoS参数对应于第二链路和第三链路,第一中继终端需要根据接收到的第一QoS参数确定第六QoS参数,并发送给第二中继终端。其他步骤的描述可以参考图9,在此不再赘述。
2)由第一中继终端进行QoS参数分配
方式C:第一中继终端可以为每个链路分配QoS参数,使得全部链路整体可以满足第一业务的QoS需求。此时,第一QoS参数对应于第二链路。方式C与上述方式A类似,在此不再赘述。
方式D:第一中继终端可以将第一业务的业务需求划分为两部分,第一部分分配给第一链路,第二部分分配给后续全部链路;进一步地,第一中继终端再将第二部分业务需求进一步划分为两部分,第一部分分配给第二链路,第二部分分配给后续全部链路;以此类推。方式D与上述方式B类似,不同的是首先由第一中继终端进行QoS参数分配。
下面以第一终端和第二终端之间包括第一中继终端和第二中继终端为例,对本申请的技术方案进行描述。为了方便描述,下文将第一终端与第一中继终端之间的链路称为第一链路,将第一中继终端与第二中继终端之间的链路称为第二链路,将第二中继终端与第二终端之间的链路称为第三链路。
图11是本申请提供的另一通信方法的示意性流程图。图11所示的方法对应于上文的方式D。图11所示的方法与图9所示方法的场景类似,不再赘述。
步骤1101-1113可以参考图7中的步骤701-713,在此不再赘述。
在图7的基础上,第一终端还可以执行步骤1114-1118。
在1114中,第一中继终端确定第四QoS参数和第六QoS参数,第四QoS参数用于确定第二链路上第一业务所对应的QoS参数或用于确定第一业务在第二链路上传输时所 对应的QoS参数,第六QoS参数用于确定第三链路上第一业务所对应的QoS参数或用于确定第一业务在第三链路上传输时所对应的QoS参数。相应地,在步骤1111中,第一中继终端根据第一QoS参数确定第二链路的接入层配置包括:第一中继终端根据第一QoS参数确定第四QoS参数,根据第四QoS参数确定第二链路的接入层配置。
在1115中,第一中继终端向第二中继终端发送第六QoS参数。
相应地,第二中继终端接收来自第一中继终端的第六QoS参数。
在1116中,第二中继终端根据第六QoS参数,确定第三链路的接入层配置。
具体实现方式与第一中继终端确定第二链路的接入层配置类似,可以参考步骤711的相关描述,在此不再赘述。
在1117中,第一中继终端向第二中继终端发送第二链路的接入层配置。
在1118中,第二中继终端在第二链路的接入层配置上接收到第一业务后,在第三链路的接入层配置上向第二终端转发第一业务。
步骤1117与步骤916类似,步骤1118与步骤917类似,在此不再赘述。
需要说明的是,本申请实施例不限定各步骤的先后顺序。例如,对于步骤1115和步骤1106,可以先执行步骤1115,再执行步骤1106,也可以先执行步骤1106,再执行步骤1115,还可以同时执行步骤1115和步骤1106。
图12是本申请提供的另一通信方法的示意性流程图。图12所示的方法对应于上文的方式C。在图11中,第一QoS参数对应于第二链路和第三链路,第一中继终端需要根据第一QoS参数,确定第四QoS参数和第六QoS参数,并将第六QoS参数发送给第二中继终端。与图11不同,图12中第一QoS参数对应于第二链路,第一中继终端根据接收到的第二QoS参数确定第六QoS参数,并发送给第二中继终端。其他步骤的描述可以参考图11,在此不再赘述。
需要说明的是,当第一终端与第二终端可以通过不同的路径进行通信时,针对不同的路径,第一终端可以分别通过图9、图10、图11或图12所述的方法进行QoS管理。例如,第一终端与第二终端之间可以通过第一路径和第二路径实现通信,其中第一路径为第一终端通过第一中继终端连接到第二终端,第二路径为第一终端通过第一中继终端和第二中继终端连接到第二终端,第一终端可以针对第一路径和第二路径分别进行QoS管理。
3)由接入网设备确定各链路的接入层配置
在一种可能的实现方式中,当第一终端和第二终端之间包括多个中继终端时,第一信息可以包括每个中继终端转发第一业务使用的链路的信息;第二信息同样可以包括每个中继终端转发第一业务使用的链路的信息;接入网设备则可以确定对应于每个链路的接入层配置,并下发。
例如,当第一终端和第二终端之间包括第一中继终端和第二中继终端时,第一信息和第二信息中还可以包括第三链路的信息,第三链路为第二中继终端与第二终端之间的链路;接入网设备则可以确定第一链路、第二链路和第三链路的接入层配置并下发给第一终端,再由第一终端转发给第一中继终端和第二中继终端。
在另一种可能的实现方式中,当第一终端和第二终端之间包括多个中继终端时,第一信息可以包括每个中继终端的信息以及每个中继终端转发第一业务使用的链路的信息;第二信息同样可以包括每个中继终端的信息以及每个中继终端转发第一业务使用的链路的 信息;接入网设备则可以确定对应于每个中继终端转发第一业务使用的链路的接入层配置,并下发。
例如,当第一终端和第二终端之间包括第一中继终端和第二中继终端时,第一信息和第二信息中还可以包括第二中继终端的信息和第三链路的信息,第三链路为第二中继终端与第二终端之间的链路;接入网设备则可以确定第一链路、第二链路和第三链路的接入层配置并下发给第一终端、第一中继终端和第二中继终端。
应理解,在上文各实施例中,终端、中继终端和接入网设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图6至图12详细说明了本申请实施例提供的通信方法。以下,结合图13至图14详细说明本申请实施例提供的通信装置。
图13是本申请实施例提供的通信装置的示意性框图。如图13所示,该通信装置1300可以包括处理单元1310和收发单元1320。
可选地,该通信装置1300可对应于上文方法实施例中的第一终端、第一中继终端、第二中继终端或者接入网设备,例如,可以为第一终端、第一中继终端、第二中继终端或者接入网设备,或者配置于第一终端、第一中继终端、第二中继终端或者接入网设备中的部件(如电路、芯片或芯片***等)。
应理解,该通信装置1300可以包括用于执行图6至图12所示的方法中第一终端、第一中继终端、第二中继终端或者接入网设备执行的方法的单元。并且,该通信装置1300中的各单元和上述其他操作和/或功能分别为了实现图6至图12所示的方法的相应流程。处理单元可用于执行除了收发之外步骤,收发单元则执行收发的步骤。
比如,当该通信装置1300用于执行图6中第一终端执行的步骤时,处理单元1310可用于执行步骤601-603和608,收发单元1320可用于执行步骤604、607、609和610。当该通信装置1300用于执行图7中第一终端执行的步骤时,处理单元1310可用于执行步骤701、702、707和708,收发单元1320可用于执行步骤703、706、709、710和712。当该通信装置1300用于执行图8中第一终端执行的步骤时,处理单元1310可用于执行步骤801和802,收发单元1320可用于执行步骤803、804、806、808-811和813。当该通信装置1300用于执行图9中第一终端执行的步骤时,处理单元1310可用于执行步骤901-903、908和912,收发单元1320可用于执行步骤904、913、907、909、和910。当该通信装置1300用于执行图10中第一终端执行的步骤时,处理单元1310可用于执行步骤1001-1003和1008,收发单元1320可用于执行步骤1004、1007、1009、和1010。当该通信装置1300用于执行图11中第一终端执行的步骤时,处理单元1310可用于执行步骤1101、1102、1108和1107,收发单元1320可用于执行步骤1103、1106、1109、1110和1112。当该通信装置1300用于执行图12中第一终端执行的步骤时,处理单元1310可用于执行步骤1201、1202、1208和1207,收发单元1320可用于执行步骤1203、1206、1209、1210和1212。
当该通信装置1300用于执行图6中第一中继终端执行的步骤时,处理单元1310可用 于执行步骤605和606,收发单元1320可用于执行步骤604、607、609、610和611。当该通信装置1300用于执行图7中第一中继终端执行的步骤时,处理单元1310可用于执行步骤705、704和711,收发单元1320可用于执行步骤703、706、709、710、712和713。当该通信装置1300用于执行图8中第一中继终端执行的步骤时,收发单元1320可用于执行步骤803、807、809、811、812、813和814。当该通信装置1300用于执行图9中第一中继终端执行的步骤时,处理单元1310可用于执行步骤906和905,收发单元1320可用于执行步骤904、913、907、909、916、910和911。当该通信装置1300用于执行图10中第一中继终端执行的步骤时,处理单元1310可用于执行步骤1006、1012和1005,收发单元1320可用于执行步骤1004、1007、1013、1009、1015、1010和1011。当该通信装置1300用于执行图11中第一中继终端执行的步骤时,处理单元1310可用于执行步骤1104、1105、1114和1111,收发单元1320可用于执行步骤1103、1106、1115、1109、1110、1117、1112和1113。当该通信装置1300用于执行图12中第一中继终端执行的步骤时,处理单元1310可用于执行步骤1204、1205、1214和1211,收发单元1320可用于执行步骤1203、1206、1215、1209、1210、1217、1212和1213。
当该通信装置1300用于执行图9中第二中继终端执行的步骤时,处理单元1310可用于执行步骤915,收发单元1320可用于执行步骤914、916、911和917。当该通信装置1300用于执行图10中第二中继终端执行的步骤时,处理单元1310可用于执行步骤1014,收发单元1320可用于执行步骤1013、1015、1011和1016。当该通信装置1300用于执行图11中第一中继终端执行的步骤时,处理单元1310可用于执行步骤1116,收发单元1320可用于执行步骤1115、1117、1113和1118。当该通信装置1300用于执行图12中第一中继终端执行的步骤时,处理单元1310可用于执行步骤1216,收发单元1320可用于执行步骤1215、1217、1213和1218。
当该通信装置1300用于执行图8中接入网设备执行的步骤时,处理单元1310可用于执行步骤805,收发单元1320可用于执行步骤804、806-808、810、812和814。
还应理解,该通信装置1300为第一终端、第一中继终端、第二中继终端或者接入网设备时,该通信装置1300中的收发单元1320可以通过收发器实现,处理单元1310可通过至少一个处理器实现。
还应理解,该通信装置1300为配置于第一终端、第一中继终端、第二中继终端或者接入网设备中的芯片或芯片***时,该通信装置1300中的收发单元1320可以通过输入/输出接口、电路等实现,处理单元1310可以通过该芯片或芯片***上集成的处理器、微处理器或集成电路等实现。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图14是本申请实施例提供的通信装置的另一示意性框图。如图14所示,通信装置1400包括处理器1410和接口电路1420。处理器1410和接口电路1420之间相互耦合。可以理解的是,接口电路1420可以为收发器或输入输出接口。可选的,通信装置1400还可以包括存储器1430,用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。
当通信装置1400用于实现图6至图12所示的方法时,处理器1410用于执行上述处 理单元1410的功能,接口电路1420用于执行上述收发单元1420的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于第一节点、donor节点或者第一上级节点中。当然,处理器和存储介质也可以作为分立组件存在于第一节点、donor节点或者第一上级节点中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    第一终端获取第一业务,所述第一业务的目标终端为第二终端;
    所述第一终端根据所述第一业务,确定第一服务质量QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路,其中,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;
    所述第一终端向所述第一中继终端发送所述第一QoS参数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端根据所述第一业务,确定第一服务质量QoS参数,包括:
    所述第一终端根据所述第一业务,确定第二QoS参数,所述第二QoS参数用于指示所述第一终端向所述第二终端发送所述第一业务的QoS需求;
    所述第一终端根据所述第二QoS参数,确定所述第一QoS参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置;
    所述第一终端向所述第一中继终端发送所述第一链路的接入层配置;
    所述第一终端根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
  5. 根据权利要求4所述的方法,其特征在于,所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置,包括:
    所述第一终端从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;
    所述第一终端根据所述第四QoS参数和所述第三QoS参数,确定第五QoS参数;
    所述第一终端根据所述第五QoS参数,确定所述第一链路的接入层配置。
  6. 根据权利要求3、4或5所述的方法,其特征在于,所述第一终端确定第三QoS参数,包括:
    所述第一终端根据所述第一业务,确定所述第三QoS参数。
  7. 根据权利要求3、4或5所述的方法,其特征在于,所述第一终端确定第三QoS参数,包括:
    所述第一终端从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;
    所述第一终端根据所述第二QoS参数和所述第四QoS参数,确定所述第三QoS参数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一终端根据所述第一业务,确定第一服务质量QoS参数,包括:
    所述第一终端根据所述第一业务和链路信息,确定所述第一QoS参数,所述链路信息用于指示所述第一终端向所述第二终端发送所述第一业务所需经过的链路。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端根据所述第一业务,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述第一终端向所述第一中继终端发送所述第六QoS参数。
  10. 一种通信方法,其特征在于,所述方法包括:
    第一中继终端从第一终端接收第一服务质量QoS参数,所述第一QoS参数对应于第一中继终端与第二终端之间包括的链路,其中,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端,所述第二终端为第一业务的目标终端;
    所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为第一中继终端与第二终端之间的中继终端;
    所述第一中继终端从所述第一终端接收第一链路的接入层配置,所述第一链路为所述第一终端与所述第一中继终端之间的链路,所述第一链路的接入层配置与所述第二链路的接入层配置对应;
    所述第一中继终端根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
  11. 根据权利要求10所述的方法,其特征在于,所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,包括:
    所述第一中继终端根据所述第一QoS参数,确定第四QoS参数,所述第四QoS参数为所述第二链路上所述第一业务所对应的QoS参数;
    所述第一中继终端根据所述第四QoS参数,确定所述第二链路的接入层配置。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一中继终端向所述第一终端发送所述第四QoS参数。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一中继终端从所述第一终端接收第六QoS参数,或者,所述第一中继终端根据所述第一QoS参数,确定第六QoS参数,
    其中,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述第一中继终端向所述第二中继终端发送所述第六QoS参数。
  14. 一种通信装置,其特征在于,所述通信装置包括:
    处理单元,用于获取第一业务,所述第一业务的目标终端为第二终端;
    所述处理单元,还用于根据所述第一业务,确定第一服务质量QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路,其中,所述第一中继终端为所述通信装置和所述第二终端之间的中继终端;
    收发单元,用于向所述第一中继终端发送所述第一QoS参数。
  15. 根据权利要求14所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一业务,确定第二QoS参数,所述第二QoS参数用于指示所述通信装置向所述第二终端发送所述第一业务的QoS需求;
    根据所述第二QoS参数,确定所述第一QoS参数。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述处理单元还用于:
    确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述通信装置与所述第一中继终端之间的链路。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述处理单元,还用于根据所述第三QoS参数,确定所述第一链路的接入层配置;
    所述收发单元,还用于向所述第一中继终端发送所述第一链路的接入层配置;
    所述收发单元,还用于根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述收发单元,还用于从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;
    所述处理单元,具体用于所述通信装置根据所述第四QoS参数和所述第三QoS参数,确定第五QoS参数;根据所述第五QoS参数,确定所述第一链路的接入层配置。
  19. 根据权利要求16、17或18所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一业务,确定所述第三QoS参数。
  20. 根据权利要求16、17或18所述的通信装置,其特征在于,
    所述收发单元,还用于从所述第一中继终端接收第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端;
    所述处理单元,具体用于根据所述第二QoS参数和所述第四QoS参数,确定所述第三QoS参数。
  21. 根据权利要求14至20中任一项所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一业务和链路信息,确定所述第一QoS参数,所述链路信息用于指示所述通信装置向所述第二终端发送所述第一业务所需经过的链路。
  22. 根据权利要求14至21中任一项所述的通信装置,其特征在于,
    所述处理单元,还用于根据所述第一业务,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述收发单元,还用于向所述第一中继终端发送所述第六QoS参数。
  23. 一种通信装置,其特征在于,所述通信装置包括:
    收发单元,用于从第一终端接收第一服务质量QoS参数,所述第一QoS参数对应于通信装置与第二终端之间包括的链路,其中,所述通信装置为所述第一终端和所述第二终端之间的中继终端,所述第二终端为第一业务的目标终端;
    处理单元,用于根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述通信装置与所述第二终端之间的链路或者所述通信装置与第二中继终端之间的链路,所述第二中继终端为通信装置与第二终端之间的中继终端;
    所述收发单元,还用于从所述第一终端接收第一链路的接入层配置,所述第一链路为所述第一终端与所述通信装置之间的链路,所述第一链路的接入层配置与所述第二链路的接入层配置对应;
    所述收发单元,还用于根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
  24. 根据权利要求23所述的通信装置,其特征在于,所述处理单元具体用于:
    根据所述第一QoS参数,确定第四QoS参数,所述第四QoS参数为所述第二链路上所述第一业务所对应的QoS参数;
    根据所述第四QoS参数,确定所述第二链路的接入层配置。
  25. 根据权利要求24所述的通信装置,其特征在于,所述收发单元还用于:
    向所述第一终端发送所述第四QoS参数。
  26. 根据权利要求23至25中任一项所述的通信装置,其特征在于,
    所述收发单元还用于从所述第一终端接收第六QoS参数,或者,所述处理单元还用于根据所述第一QoS参数,确定第六QoS参数,
    其中,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述收发单元,还用于向所述第二中继终端发送所述第六QoS参数。
  27. 一种通信方法,其特征在于,所述方法包括:
    第一终端获取第一业务,所述第一业务的目标终端为第二终端;
    所述第一终端根据所述第一业务,确定第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送所述第一业务的QoS需求;
    所述第一终端向第一中继终端发送所述第二QoS参数,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;
    所述第一终端接收来自所述第一中继终端的第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置;
    所述第一终端向所述第一中继终端发送所述第一链路的接入层配置;
    所述第一终端根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
  29. 根据权利要求28所述的方法,其特征在于,所述第一终端根据所述第三QoS参数,确定所述第一链路的接入层配置,包括:
    所述第一终端根据所述第三QoS参数,确定第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;
    所述第一终端根据所述第五QoS参数,确定所述第一链路的接入层配置。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第一终端向所述第一中继终端发送所述第五QoS参数。
  31. 一种通信方法,其特征在于,所述方法包括:
    第一中继终端从第一终端接收第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送第一业务的QoS需求,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;
    所述第一中继终端根据所述第二QoS参数,确定第一QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    所述第一中继终端根据所述第二QoS参数,确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路;
    所述第一中继终端向所述第一终端发送所述第三QoS参数。
  33. 根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端和所述第二终端之间的中继终端;
    所述第一中继终端从所述第一终端接收第一链路的接入层配置,所述第一链路的接入层配置与所述第二链路的接入层配置对应;
    所述第一中继终端根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
  34. 根据权利要求33所述的方法,其特征在于,所述第一中继终端根据所述第一QoS参数,确定第二链路的接入层配置,包括:
    所述第一中继终端从所述第一终端接收第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;
    所述第一中继终端根据所述第一QoS参数和第五QoS参数,确定第四QoS参数,所 述第四QoS参数为第二链路上所述第一业务所对应的QoS参数;
    所述第一中继终端根据所述第四QoS参数,确定所述第二链路的接入层配置。
  35. 根据权利要求31至34中任一项所述的方法,其特征在于,所述第一中继终端根据所述第二QoS参数,确定第一QoS参数,包括:
    所述第一中继终端根据所述第二QoS参数和链路信息,确定第一QoS参数,所述链路信息用于指示所述第一终端向所述第二终端发送所述第一业务所经过的链路。
  36. 根据权利要求31至35中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一中继终端根据所述第二QoS参数,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述第一中继终端向所述第二中继终端发送所述第六QoS参数。
  37. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于获取第一业务,所述第一业务的目标终端为第二终端;
    所述处理单元,还用于根据所述第一业务,确定第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送所述第一业务的QoS需求;
    收发单元,用于向第一中继终端发送所述第二QoS参数,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;
    所述收发单元,还用于接收来自所述第一中继终端的第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路。
  38. 根据权利要求37所述的装置,其特征在于,
    所述处理单元,还用于根据所述第三QoS参数,确定所述第一链路的接入层配置;
    所述收发单元,还用于向所述第一中继终端发送所述第一链路的接入层配置;
    所述收发单元,还用于根据所述第一链路的接入层配置向所述第一中继终端发送所述第一业务。
  39. 根据权利要求38所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第三QoS参数,确定第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;
    根据所述第五QoS参数,确定所述第一链路的接入层配置。
  40. 根据权利要求39所述的装置,其特征在于,所述收发单元还用于:
    向所述第一中继终端发送所述第五QoS参数。
  41. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于从第一终端接收第二服务质量QoS参数,所述第二QoS参数用于指示所述第一终端向第二终端发送第一业务的QoS需求,所述第一中继终端为所述第一终端和所述第二终端之间的中继终端;
    处理单元,用于根据所述第二QoS参数,确定第一QoS参数,所述第一QoS参数对应于第一中继终端与所述第二终端之间包括的链路。
  42. 根据权利要求41所述的装置,其特征在于,
    所述处理单元,还用于根据所述第二QoS参数,确定第三QoS参数,所述第三QoS参数用于确定第一链路上所述第一业务所对应的QoS参数,所述第一链路为所述第一终端与所述第一中继终端之间的链路;
    所述收发单元,还用于向所述第一终端发送所述第三QoS参数。
  43. 根据权利要求41或42所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一QoS参数,确定第二链路的接入层配置,所述第二链路为所述第一中继终端与所述第二终端之间的链路或者所述第一中继终端与第二中继终端之间的链路,所述第二中继终端为所述第一中继终端和所述第二终端之间的中继终端;
    所述收发单元,还用于从所述第一终端接收第一链路的接入层配置,所述第一链路的接入层配置与所述第二链路的接入层配置对应;
    所述收发单元,还用于根据所述第一链路的接入层配置从所述第一终端接收所述第一业务,以及根据所述第二链路的接入层配置转发所述第一业务。
  44. 根据权利要求43所述的装置,其特征在于,
    所述收发单元,还用于从所述第一终端接收第五QoS参数,所述第五QoS参数为第一链路上所述第一业务所对应的QoS参数;
    所述处理单元,具体用于根据所述第一QoS参数和第五QoS参数,确定第四QoS参数,所述第四QoS参数为第二链路上所述第一业务所对应的QoS参数;根据所述第四QoS参数,确定所述第二链路的接入层配置。
  45. 根据权利要求41至44中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第二QoS参数和链路信息,确定第一QoS参数,所述链路信息用于指示所述第一终端向所述第二终端发送所述第一业务所经过的链路。
  46. 根据权利要求41至45中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述第二QoS参数,确定第六QoS参数,所述第六QoS参数用于确定第三链路上所述第一业务所对应的QoS参数,所述第三链路为所述第二中继终端与所述第二终端之间的链路或者所述第二中继终端与第三中继终端之间的链路,所述第二中继终端为所述第一中继终端与所述第二终端之间的中继终端,所述第三中继终端为所述第二中继终端与所述第二终端之间的中继终端;
    所述收发单元,还用于向所述第二中继终端发送所述第六QoS参数。
  47. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至13中任一项所述的方法,或者实现如权利要求27至36中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中任一项所述的方法,或者执行如权利要求27至36中任一项所述的方法。
PCT/CN2021/089805 2020-04-28 2021-04-26 通信方法和装置 WO2021218888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21795702.6A EP4135395A4 (en) 2020-04-28 2021-04-26 COMMUNICATION METHOD AND DEVICE
US17/974,282 US20230046157A1 (en) 2020-04-28 2022-10-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349874.3 2020-04-28
CN202010349874.3A CN113573355B (zh) 2020-04-28 2020-04-28 通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/974,282 Continuation US20230046157A1 (en) 2020-04-28 2022-10-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021218888A1 true WO2021218888A1 (zh) 2021-11-04

Family

ID=78158051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089805 WO2021218888A1 (zh) 2020-04-28 2021-04-26 通信方法和装置

Country Status (4)

Country Link
US (1) US20230046157A1 (zh)
EP (1) EP4135395A4 (zh)
CN (2) CN113573355B (zh)
WO (1) WO2021218888A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167618A1 (en) * 2022-03-04 2023-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service (qos) configuration and management for ue-to-ue (u2u) relay based communication
WO2023173283A1 (en) * 2022-03-15 2023-09-21 Nec Corporation Communication for u2u relay

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938982A (zh) * 2020-06-29 2022-01-14 华硕电脑股份有限公司 无线通信***中侧链路数据无线电承载建立的方法和设备
CN116938304A (zh) * 2022-04-02 2023-10-24 华为技术有限公司 中继通信方法与装置
CN117278179A (zh) * 2022-06-15 2023-12-22 维沃移动通信有限公司 QoS参数分割方法、装置、通信设备、通信***及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027475A1 (en) * 2015-04-03 2018-01-25 Huawei Technologies Co., Ltd. Data Transmission Method, User Equipment, and Base Station
US20180124633A1 (en) * 2015-04-13 2018-05-03 Samsung Electronics Co., Ltd Method and apparatus for controlling relay traffic in wireless communication system supporting d2d communication
CN108616926A (zh) * 2016-12-27 2018-10-02 北京信威通信技术股份有限公司 一种层2中继中d2d接口的qos控制方法
CN109479189A (zh) * 2016-07-21 2019-03-15 三星电子株式会社 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的***和方法
CN110268787A (zh) * 2017-02-10 2019-09-20 高通股份有限公司 对基于层2的设备到设备中继的服务质量支持

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015068732A1 (ja) * 2013-11-05 2017-03-09 シャープ株式会社 通信制御方法、リレー端末装置、端末装置、基地局装置、制御装置、サーバ装置および移動通信システム
CN106162512A (zh) * 2015-04-09 2016-11-23 中兴通讯股份有限公司 一种中继承载控制方法和装置
US10439682B2 (en) * 2016-08-19 2019-10-08 FG Innovation Company Limited Access mechanism for proximity-based service UE-to-network relay service
WO2018085568A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Quality of service support over evolved universal terrestrial radio access based sidelink system
CN108366355B (zh) * 2017-01-26 2023-05-02 中兴通讯股份有限公司 数据发送方法、数据发送终端以及基站
US10433203B1 (en) * 2017-04-19 2019-10-01 Sprint Spectrum L.P. Providing a quality of service to wireless devices attached to relay access nodes
CN110831075A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 数据传输方法及装置,业务切换方法及装置
US11540163B2 (en) * 2018-09-07 2022-12-27 Qualcomm Incorporated Half duplex techniques for wireless communications
CN110602801B (zh) * 2019-08-09 2022-04-05 北京紫光展锐通信技术有限公司 链路配置方法及装置
WO2021212383A1 (zh) * 2020-04-22 2021-10-28 Oppo广东移动通信有限公司 QoS控制方法、装置及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180027475A1 (en) * 2015-04-03 2018-01-25 Huawei Technologies Co., Ltd. Data Transmission Method, User Equipment, and Base Station
US20180124633A1 (en) * 2015-04-13 2018-05-03 Samsung Electronics Co., Ltd Method and apparatus for controlling relay traffic in wireless communication system supporting d2d communication
CN109479189A (zh) * 2016-07-21 2019-03-15 三星电子株式会社 设备到设备(d2d)通信中通过侧链路发现用户设备(ue)的***和方法
CN108616926A (zh) * 2016-12-27 2018-10-02 北京信威通信技术股份有限公司 一种层2中继中d2d接口的qos控制方法
CN110268787A (zh) * 2017-02-10 2019-09-20 高通股份有限公司 对基于层2的设备到设备中继的服务质量支持

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Key points on sidelink relay SID", 3GPP DRAFT; RP-192791, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Sitges, Spain; 20191209 - 20191212, 2 December 2019 (2019-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051834383 *
See also references of EP4135395A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167618A1 (en) * 2022-03-04 2023-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Quality of service (qos) configuration and management for ue-to-ue (u2u) relay based communication
WO2023173283A1 (en) * 2022-03-15 2023-09-21 Nec Corporation Communication for u2u relay

Also Published As

Publication number Publication date
US20230046157A1 (en) 2023-02-16
CN117279037A (zh) 2023-12-22
CN113573355B (zh) 2023-11-03
CN113573355A (zh) 2021-10-29
EP4135395A4 (en) 2023-09-13
EP4135395A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2021218888A1 (zh) 通信方法和装置
EP3509371B1 (en) Method and device for transmitting message
WO2019158102A1 (zh) 一种确定QoS描述信息的方法和装置
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
WO2018127018A1 (zh) 多链接通信方法、设备和终端
US11968694B2 (en) Communication method and apparatus, and device
WO2020015727A1 (zh) 路径选择的方法、终端设备和网络设备
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2018228558A1 (zh) 一种传输数据的方法、网络设备和终端设备
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2019196788A1 (zh) 通信方法和通信装置
WO2021138807A1 (zh) 服务质量QoS参数配置方法及相关装置
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2021097858A1 (zh) 一种通信方法及装置
US20230086410A1 (en) Communication method and communication apparatus
US20220263879A1 (en) Multicast session establishment method and network device
US20220272577A1 (en) Communication method and communication apparatus
WO2022012361A1 (zh) 一种通信方法及装置
US20240163714A1 (en) Communication method and communication apparatus
WO2021174377A1 (zh) 切换方法和通信装置
WO2018145292A1 (zh) 通信方法、装置和***
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2020078248A1 (zh) 无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795702

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021795702

Country of ref document: EP

Effective date: 20221109

NENP Non-entry into the national phase

Ref country code: DE