WO2021218523A1 - Perovskite solar battery which contains laminated composite transport layer, and method for preparing same - Google Patents

Perovskite solar battery which contains laminated composite transport layer, and method for preparing same Download PDF

Info

Publication number
WO2021218523A1
WO2021218523A1 PCT/CN2021/083700 CN2021083700W WO2021218523A1 WO 2021218523 A1 WO2021218523 A1 WO 2021218523A1 CN 2021083700 W CN2021083700 W CN 2021083700W WO 2021218523 A1 WO2021218523 A1 WO 2021218523A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
preparing
film layer
perovskite
thickness
Prior art date
Application number
PCT/CN2021/083700
Other languages
French (fr)
Chinese (zh)
Inventor
侯奇成
颜步一
姚冀众
Original Assignee
杭州纤纳光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州纤纳光电科技有限公司 filed Critical 杭州纤纳光电科技有限公司
Publication of WO2021218523A1 publication Critical patent/WO2021218523A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of perovskite solar cell preparation, and particularly relates to a perovskite solar cell containing a superimposed composite transport layer and a preparation method thereof.
  • Existing perovskite solar cells generally adopt a transparent conductive electrode-hole transport layer-perovskite-electron transport layer-back electrode structure (inversion structure), or a transparent conductive electrode-electron transport layer-perovskite-hole Transmission layer-back electrode structure (positive structure); further, in order to improve the carrier extraction efficiency, some researchers have optimized the above structure by using a method between the transmission layer far away from the light incident surface and the back electrode For example, an insulating layer (or hole blocking layer) is added after the electron transport layer of the inversion structure, or an electron blocking layer is added to the hole transport layer of the positive structure, and the resulting structure is a transparent conductive electrode-hole transport Layer-Perovskite-Electron transport layer-Insulating layer (hole blocking layer)-Back electrode, or transparent conductive electrode-Electron transport layer-Perovskite-Hole transport layer-Insulating layer (electron blocking layer)-Back electrode ; Other researchers use a gradual energy level method to adjust the transport layer
  • the structure of the positive type perovskite solar cell is a transparent conductive electrode-electron transport layer-perovskite -Hole transport layer 1-Hole transport layer 2-...-Hole transport layer n-back electrode
  • the structure of the inverse perovskite solar cell is a transparent conductive electrode-hole transport layer-perovskite-electron transport Layer 1-Electron transport layer 2...
  • Electron transport layer n-back electrode in which the energy levels of the multi-layer hole transport layer or electron transport layer are graded, but the structure in the device is continuous, and there is no intervening other Functional layer; some researchers also add a functional layer between the transmission layer near the light incident surface and the perovskite layer to match the energy level through the action of electric dipole moment, etc.; there are also some special perovskite
  • the structure of the mine battery adopts a structure without a hole transport layer, and the battery structure is simply expressed as a transparent conductive electrode-an electron transport layer-a perovskite layer-a back electrode.
  • sputtering coating Since the principle of sputtering coating is to use energetic particles (usually positive ions of an inert gas) to bombard the surface of a solid target material to cause atoms or molecules on the surface of the target material to escape from it to the sample to be coated, sputtering coating is used When preparing the back electrode of the perovskite solar cell, the high-energy particles will contact the surface of the perovskite organic film layer (including perovskite is also a vulnerable inorganic-organic hybrid material), which will cause greater damage on the surface, which will seriously affect The interface performance in turn affects the overall performance of the solar cell.
  • the existing solution is to prepare an inorganic oxide layer on the organic transport layer to protect organic materials and perovskite materials from sputtering particles.
  • the perovskite solar cell has the following structure: transparent conductive electrode-transport layer-perovskite-organic transport layer-inorganic oxide sacrificial/protective layer-back electrode.
  • transparent conductive electrode-transport layer-perovskite-organic transport layer-inorganic oxide sacrificial/protective layer-back electrode There are some very obvious disadvantages in adopting this method: (1) The method of preparing the sacrificial layer of inorganic oxide is very limited. Generally, atomic layer vapor deposition is used. The coating speed of this method is slow, the cost of large-scale production is high, and it is difficult to large-scale.
  • the preparation method of the inorganic oxide sacrificial layer is too different from the preparation method of the commonly used functional layer of perovskite solar cells, which further increases the complexity of large-scale production, resulting in uncontrollable yield, etc.; (3) Once used With the inorganic oxide sacrificial layer, the integrity and energy level matching of the original battery structure will be affected, which will affect the hole/electron transport and reduce the efficiency; (4) The surface energy of the organic transport layer is less than that of the inorganic oxide sacrificial layer.
  • the inorganic oxide sacrificial/protective layer prepared on the transmission layer have low adhesion and poor bonding force, resulting in low interface mechanical strength, and it is easy to cause poor contact or even peeling during thermal cycles and other processes, resulting in The battery performance drops sharply.
  • the above factors make the above sputtering process unable to be used to prepare the back electrode of the perovskite solar cell.
  • the technical problem to be solved by the present invention is to provide a perovskite solar cell containing a superimposed composite transport layer and a preparation method thereof to solve the problem of the mismatch between the perovskite solar cell using an organic transport layer structure and the sputtering coating process,
  • the back electrode layer of perovskite solar cell can be prepared by sputtering coating process, so that the preparation of the back electrode layer of perovskite solar cell depends on the type and quantity of materials. , Coating speed, coating quality and mass production capacity are all improved.
  • the material is also an organic hole transport material or an organic electron transport material, and the preparation material of the n-th thin film layer B n is an organic insulating/blocking material.
  • the present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above.
  • the transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
  • a hole transport layer is prepared on the first electrode layer.
  • the method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods.
  • the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), sulfur Cuprous cyanide (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N, N-p-methoxyanilino)-9,9'-Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT), at least one hole
  • Step 13 Prepare a perovskite layer on the hole transport layer.
  • the method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods.
  • the materials for preparing the perovskite layer include MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3- x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 ,
  • Step 14 Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
  • Step 15 Prepare a back electrode layer on the superimposed composite transmission layer.
  • the method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods.
  • the material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm ⁇ 1000nm.
  • the present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above.
  • the materials of the zero-layer film layer A 0 , the first film layer A 1 and the second film layer A 2 are all made Poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), the materials of the first layer of film layer B 1 and the second layer of film layer B 2 are both polyethyleneimine (PEI), specifically including the following steps:
  • Step 21 The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
  • ITO indium tin oxide
  • Step 22 Prepare an electron transport layer on the first electrode layer.
  • the preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods .
  • the material for preparing the electron transport layer includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), Alkylfullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition
  • Step 23 Prepare a perovskite layer on the electron transport layer.
  • the method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods.
  • the materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 ,
  • Step 24 Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer film layer A 0 , the first film layer B 1 , the first film layer A 1 , the second film layer B 2 and the second film layer A 2 in sequence, wherein the zero layer The thickness of the thin film layer A 0 , the first thin film layer A 1 and the second thin film layer A 2 are 1nm ⁇ 100nm, and the thickness of the first thin film layer B 1 and the second thin film layer B 2 is 1nm ⁇ 20nm;
  • Step 25 Prepare a back electrode layer on the superimposed composite transmission layer.
  • the method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods.
  • the material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm ⁇ 1000nm.
  • the present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above.
  • the material of layer B 1 is selected as 4,7-diphenyl-1,10-phenanthroline (Bphen), which specifically includes the following steps:
  • Step 31 The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the side coated with the indium tin oxide conductive layer is used as the first electrode layer;
  • ITO indium tin oxide
  • Step 32 Prepare a hole transport layer on the first electrode layer.
  • the method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods.
  • the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) , At least one of cuprous thiocyanide (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), with a thickness of 5nm ⁇ 50nm;
  • Step 33 Prepare a perovskite layer on the hole transport layer.
  • the method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods.
  • the materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BAS
  • Step 34 Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer
  • the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm
  • the first thin film layer The thickness of B 1 is 1 nm to 20 nm
  • the thickness of the first film layer A 1 is 3 nm to 100 nm;
  • Step 35 Prepare a back electrode layer on the superimposed composite transport layer.
  • the method for preparing the back electrode layer includes any one of magnetron sputtering, plasma enhanced chemical vapor deposition, and single atomic layer deposition processing methods to prepare the material of the back electrode layer.
  • ITO indium tin oxide
  • AZO aluminum oxide doped zinc oxide
  • IZO indium oxide doped zinc oxide
  • FTO fluorine doped tin oxide
  • IZrO zirconium doped indium oxide
  • the present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above.
  • Step 41 The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the side coated with the indium tin oxide conductive layer is used as the first electrode layer;
  • ITO indium tin oxide
  • Step 42 Prepare an electron transport layer on the first electrode layer.
  • the preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods.
  • the material for preparing the electron transport layer includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), Alkylfullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition
  • Step 43 Prepare a perovskite layer on the electron transport layer.
  • the method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods.
  • the materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 ,
  • Step 44 Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer
  • the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm
  • the first thin film layer The thickness of B 1 is 1 nm to 20 nm
  • the thickness of the first film layer A 1 is 3 nm to 100 nm;
  • Step 45 Prepare a back electrode layer on the superimposed composite transmission layer.
  • the method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods.
  • the material for preparing the back electrode layer includes stainless steel. , Tin brass, tin bronze, nickel brass, silicon brass, and its thickness is 20nm ⁇ 1000nm.
  • the perovskite solar cell containing superimposed composite transport layer and the preparation method thereof of the present invention have the following characteristics:
  • the materials used in the superimposed composite transport layer are all commonly used organic materials in perovskite solar cells, which can form a band structure consistent with the perovskite materials without destroying the integrity and energy level matching of the battery structure. Does not sacrifice carrier extraction and transmission efficiency.
  • the superimposed composite transmission layer is configured through the transmission layer, so that sputtering damage only occurs on the surface of the outermost organic transmission composite structure.
  • the damage can be absorbed and passivated through the overall structure and energy band, without affecting the overall transmission layer The efficiency of transporting carriers.
  • the high kinetic energy particles in the process can be partially embedded in the superimposed composite transport layer, which enhances the coupling with the back electrode, improves the mechanical strength of the interface, and is more conducive to reducing the series resistance and improving the efficiency of carrier transmission and collection.
  • the materials used for the superimposed composite transmission layer are all organic materials, and the cost is controllable.
  • the equipment and processes are commonly used in perovskite solar cells, which can be used to prepare large-area modules.
  • perovskite solar cells 5.
  • the use of superimposed composite transmission layer in perovskite solar cells enables sputtering coating to be used to prepare various metal back electrodes of perovskite solar cells, including high melting point cheap metals and corrosion-resistant alloys, thereby reducing perovskite
  • the production cost of mineral solar cells improves the environmental stability of perovskite solar cells.
  • the use of the superimposed composite transport layer in the perovskite solar cell enables the sputtering coating to be used to prepare various transparent electrodes of the perovskite solar cell. It is a high-efficiency translucent perovskite solar cell and a laminated perovskite solar cell.
  • the development and application of mining solar cells lay a solid foundation.
  • Fig. 1 is a schematic plan view of the structure of the perovskite solar cell containing a superimposed composite transport layer of the present invention
  • FIG. 2 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 3 of the present invention.
  • Example 5 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Example 4 of the present invention.
  • FIG. 1 a preferred embodiment of the perovskite solar cell with superimposed composite transport layer of the present invention.
  • the internal structure of the perovskite solar cell from the light incident surface (the front of the cell) to the back of the cell is a transparent substrate 1 and a first electrode layer. 2.
  • Transmission layer 3 perovskite layer 4, superimposed composite transmission layer 5 and back electrode layer 6.
  • B n layer located on the n-th film layer is an organic insulating layer, the thin film layer can be modified zero A 0 layer and surface defects of the thin film layer A n n-th layer, reduce recombination of electrons and holes.
  • Preparation of Materials Preparation of material A 0 layer zero thin film layer and the film layer A n n-th layer can be the same material or different materials, but is also required to meet organic hole transport material, or an organic electron transport material, and Contrary to the material from which the transmission layer is made.
  • a thin film layer material preparation A zero layer material preparation A n 0 and n-th layer of the thin film layer is an organic electron transport material.
  • material preparation A 0 layer zero thin film layer and the thin film layer material preparation A n of the n-layer is a hole transport layer material.
  • the preparation material of the thin film layer B n of the nth layer is an organic insulating/barrier material.
  • Preparation of material A 0 prepared film layer zero thin film layer and the layer A n of the n-layer material comprises an electron transport material and a hole transport based-based material, wherein the electron transport material comprises based Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkanefullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and the new indene and C60 double adduct (IC 60 BA) or at least one of the above-mentioned fullerene-based organic compound variants and dopants; hole transport materials include poly(3,4-ethylene Dioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), 2,2',7
  • the thin film layer A 0 of the zero layer has a thickness of 1 nm to 100 nm, and undertakes the main task of extracting electrons or holes.
  • the thickness of the nth film layer An is 1nm ⁇ 100nm, which is responsible for contact with the transparent conductive oxide layer, passivating sputtering defects, and reduce the carrier tunneling from the nth film layer B n on the back.
  • the interface between the electrode layer and the organic layer has a recombination effect.
  • the material for preparing the n-th film layer B n includes 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthroline (Bphen), 9,10-bis[N,N-bis(p-tolyl)amino]anthracene (TTPA), polyethyleneimine (PEI), 1,3,5-tris(1- Any of phenyl-1H-benzimidazol-2-yl)benzene (TPBi), its thickness is 1nm ⁇ 20nm, and its band gap is not less than 2eV, often exceeding 2.5eV.
  • the materials for preparing the first electrode layer 2 include indium tin oxide (ITO), zinc aluminum oxide (AZO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zirconium-doped indium oxide (IZrO), tungsten-doped indium oxide Any one of (IWO) with a thickness of 100nm ⁇ 300nm.
  • the materials for preparing the transmission layer 3 include nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), cuprous thiocyanate (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N,N-p-methyl) Oxyanilino)-9,9'-Spiro-MeOTAD (Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly At least one hole transport layer material in [Bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), or includes titanium dioxide (TiO 2 ), tin dioxide (
  • the material for preparing the back electrode layer 6 includes any one of platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, or stainless steel, tin brass, tin bronze, nickel brass Any one of silicon brass with a thickness of 20nm ⁇ 1000nm; or indium tin oxide (ITO), zinc aluminum oxide (AZO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zirconium-doped oxide Either indium (IZrO) or tungsten-doped indium oxide (IWO), with a thickness of 10nm ⁇ 2000nm.
  • the band gap of the perovskite layer 4 is not greater than 3.0 eV, and the compound structural formula of the composition structure is GMX 3 , where G is a monovalent cation, G is an alkali metal cation or an organic cation, and G includes methylamine cation (CH 3 NH 3 + ), formamidine cation (NH 2 CHNH 2+ ), cesium cation (Cs + ), and rubidium cation (Rb + ), M is a divalent cation, M is a transition metal and a divalent element of group 13 to 15 any of a monovalent cation, M comprises Pb 2+, Ge 2+, Sn 2+ , Cu 2+, Bi 2+, X is a monovalent anion, X is a halogen anion or thiocyanate ion (SCN -) of Any one, and the positions of G, M, and X are occupied by various types of ions; the thickness of the perovskite
  • the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl At least one of 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x Cl 3-x , where 0 ⁇ x ⁇ 3.
  • the material of A 1 is selected as carbon 60 (C60) or carbon 70 (C70), which specifically includes the following steps:
  • Step 11 The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2.
  • ITO indium tin oxide
  • a hole transport layer is prepared on the first electrode layer 2.
  • the method for preparing the hole transport layer includes spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering. Any kind.
  • the materials for preparing the hole transport layer include nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), thiocyanate Copper (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N,N-pair Methoxyanilino)-9,9'-Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT) At least one hole transport
  • Step 13 Prepare the perovskite layer 3 on the hole transport layer.
  • the method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods.
  • the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3
  • Step 14 Prepare the superimposed composite transmission layer 5 on the perovskite layer 4, and the method of preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods.
  • the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 are sequentially prepared on the perovskite layer 4.
  • the thickness of the thin film layer A 0 of the zero layer is 1 nm to 100 nm
  • the thickness of the thin film layer B 1 of the first layer is 1 nm to 20 nm
  • the thickness of the thin film layer A 1 of the first layer is 3 nm to 100 nm.
  • Step 15 Prepare the back electrode layer 6 on the superimposed composite transmission layer 5.
  • the method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods to prepare the back electrode layer 6.
  • the materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or any alloy, with a thickness of 20nm ⁇ 1000nm.
  • the materials of the first layer of film layer B 1 and the second layer of film layer B 2 are both polyethyleneimine (PEI), specifically including the following steps:
  • Step 21 The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2.
  • ITO indium tin oxide
  • the first electrode layer 2 serves as the negative electrode connection of the battery, and the back electrode layer 6 is connected to the positive electrode;
  • Step 22 Prepare an electron transport layer on the first electrode layer 2.
  • the preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. kind.
  • the materials for preparing the electron transport layer include titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkane Fullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm-50nm.
  • Step 23 Prepare the perovskite layer 4 on the electron transport layer.
  • the method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods.
  • the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3
  • Step 24 Prepare the superimposed composite transmission layer 5 on the perovskite layer 4.
  • the method for preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods.
  • a zero-layer thin film layer A 0 , a first thin film layer B 1 , a first thin film layer A 1 , a second thin film layer B 2 and a second thin film layer A 2 are sequentially prepared, Among them, the thickness of the zero-layer thin-film layer A 0 , the first-layer thin-film layer A 1 and the second-layer thin-film layer A 2 are 1 nm to 100 nm, the first thin-film layer B 1 and the second thin-film layer B The thickness of 2 is 1nm ⁇ 20nm.
  • Step 25 Prepare a back electrode layer 6 on the superimposed composite transmission layer 5.
  • the method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods.
  • the material for preparing the back electrode layer 6 includes any metal or any alloy of platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, and the thickness thereof is 20 nm to 1000 nm.
  • a thin film layer material B was prepared first layer is selected to be 4,7-diphenyl-1,10-phenanthroline (Bphen), includes the following steps:
  • Step 31 The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2.
  • ITO indium tin oxide
  • Step 32 Prepare a hole transport layer on the first electrode layer 2.
  • the method for preparing the hole transport layer includes spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering. Any kind.
  • the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), thiocyanate At least one of CuSCN and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), with a thickness of 5nm-50nm.
  • Step 33 Prepare the perovskite layer 4 on the hole transport layer.
  • the method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods.
  • the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3
  • Step 34 Prepare the superimposed composite transmission layer 5 on the perovskite layer 4.
  • the method for preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods.
  • the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 are sequentially prepared on the ilmenite layer 4; among them, the thickness of the zero thin film layer A 0 is 1 nm to 100 nm, and the first The thickness of the thin film layer B 1 of the first layer is 1 nm to 20 nm, and the thickness of the thin film layer A 1 of the first layer is 3 nm to 100 nm.
  • Step 35 Prepare the back electrode layer 6 on the superimposed composite transport layer 5.
  • the method for preparing the back electrode layer 6 includes any one of magnetron sputtering, plasma enhanced chemical vapor deposition, and single atomic layer deposition processing methods.
  • the materials for preparing the back electrode layer 6 include indium tin oxide (ITO), aluminum oxide doped zinc oxide (AZO), indium oxide doped zinc oxide (IZO), fluorine doped tin oxide (FTO), zirconium doped indium oxide (IZrO), doped Any one of indium tungsten oxide (IWO), boron-doped zinc oxide (BZO), and its thickness is 20nm ⁇ 1000nm.
  • radio frequency or DC power supply is used as the sputtering power supply.
  • the background vacuum is less than 5 ⁇ 10 -4 Pa
  • the working vacuum is 0.1Pa ⁇ 2Pa
  • the working power is 30W ⁇ 200W.
  • a transparent conductive oxide such as boron-doped zinc oxide
  • the prepared perovskite solar cell is a translucent perovskite solar cell.
  • This type of translucent perovskite solar cell can effectively transmit light with a wavelength greater than the absorption limit of the perovskite material used, and can be used as a sub-cell to form a laminated solar cell with any solar cell that conforms to the principle of lamination. Therefore, using the translucent perovskite solar cell prepared by superimposing the composite transport layer in the present invention as the laminated cell of the sub-cell should also be regarded as the protection scope of the present invention.
  • Step 41 The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2.
  • ITO indium tin oxide
  • the first electrode layer 2 serves as the negative electrode connection of the battery, and the back electrode layer 6 is connected to the positive electrode.
  • Step 42 Prepare an electron transport layer on the first electrode layer 2.
  • the preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. kind.
  • the materials for preparing the electron transport layer include titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkane Fullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm-50nm.
  • Step 43 Prepare the perovskite layer 4 on the electron transport layer.
  • the method for preparing the perovskite layer 4 includes any one of coating, spraying, and thermal evaporation processing methods.
  • the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3
  • Step 44 Prepare the superimposed composite transmission layer 5 on the perovskite layer 4, and the method of preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods.
  • the zero-layer thin-film layer A 0 , the first-layer thin-film layer B 1 and the first-layer thin-film layer A 1 are sequentially prepared on the perovskite layer 4, wherein the thickness of the zero-layer thin-film layer A 0 is 1 nm to 100 nm, The thickness of the first thin film layer B 1 is 1 nm to 20 nm, and the thickness of the first thin film layer A 1 is 3 nm to 100 nm.
  • Step 45 Prepare the back electrode layer 6 on the superimposed composite transmission layer 5.
  • the method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods to prepare the back electrode layer 6.
  • the material includes any one of stainless steel, tin brass, tin bronze, nickel brass, silicon brass, and its thickness is 20nm ⁇ 1000nm.
  • the magnetron sputtering preparation of 1Cr18Ni9 stainless steel electrode Take the magnetron sputtering preparation of 1Cr18Ni9 stainless steel electrode as an example.
  • a target made of 1Cr18Ni9 stainless steel is used, and a radio frequency or DC power supply is used as the sputtering power source.
  • the background vacuum is less than 5 ⁇ 10 -4 Pa
  • the working vacuum is 0.1Pa ⁇ 2Pa
  • the working power is 30W ⁇ 300W.
  • a corrosion-resistant electrode such as stainless steel is used as the back electrode layer 6 of the perovskite solar cell, the perovskite solar cell will have better resistance to water and oxygen in the environment, thereby increasing the perovskite solar cell’s stability.

Abstract

The present invention relates to a perovskite solar battery which contains a laminated composite transport layer. The inner structure of the battery sequentially comprises, from the front face of the battery to the back face of the battery: a transparent substrate, a first electrode layer, a transport layer, a perovskite layer, the laminated composite transport layer and a back electrode layer, wherein the structure of the laminated composite transport layer is of an A0+n(BA) type, the zero-layer thin film layer A0 and the nth-layer thin film layer An are respectively organic transport layers and are both made from an organic hole transport material or an organic electron transport material, and the nth-layer thin film layer Bn is an organic insulation layer and made from an organic insulation/barrier material. Further disclosed is a method for preparing the perovskite solar battery. The present invention solves the problem whereby a perovskite solar battery having an organic transport layer structure does not match a sputtering coating process, such that preparation of a back electrode layer of a perovskite solar battery is improved in terms of material type and quantity selection, coating speed, coating quality and mass production capacity.

Description

一种含叠加复合传输层的钙钛矿太阳能电池及其制备方法Perovskite solar cell containing superimposed composite transmission layer and preparation method thereof 技术领域Technical field
本发明属于钙钛矿太阳能电池制备技术领域,特别涉及一种含叠加复合传输层的钙钛矿太阳能电池及其制备方法。The invention belongs to the technical field of perovskite solar cell preparation, and particularly relates to a perovskite solar cell containing a superimposed composite transport layer and a preparation method thereof.
背景技术Background technique
现有钙钛矿太阳能电池一般采用透明导电电极-空穴传输层-钙钛矿-电子传输层-背电极结构(反型结构),或透明导电电极-电子传输层-钙钛矿-空穴传输层-背电极结构(正型结构);进一步地,为了提升载流子提取效率,一些研究人员对上述结构进行了优化,采用的方式是在远离光入射面的传输层与背电极之间,如反型结构的电子传输层之后添加绝缘层(或称为空穴阻挡层),或者正型结构的空穴传输层之外添加电子阻挡层,形成的结构为透明导电电极-空穴传输层-钙钛矿-电子传输层-绝缘层(空穴阻挡层)-背电极,或透明导电电极-电子传输层-钙钛矿-空穴传输层-绝缘层(电子阻挡层)-背电极;另一些研究人员采用渐变能级的方式调控传输层,形成多层传输层来提高载流子提取能力,其正型钙钛矿太阳能电池的结构为透明导电电极-电子传输层-钙钛矿-空穴传输层1-空穴传输层2-…-空穴传输层n-背电极,其反型钙钛矿太阳能电池的结构为透明导电电极-空穴传输层-钙钛矿-电子传输层1-电子传输层2…电子传输层n-背电极,其中多层空穴传输层或电子传输层的能级是渐变的,但是其在器件中的结构是连续的,中间不存在***其它功能层;也有一些研究者在靠近光入射面的传输层与钙钛矿层之间添加一层功能层,通过电偶极矩等的作用起到能级匹配的作用;还有一些特殊的钙钛矿电池结构里采用了无空穴传输层的结构,其电池结构简单表达为透明导电电极-电子传输层-钙钛矿层-背电极。Existing perovskite solar cells generally adopt a transparent conductive electrode-hole transport layer-perovskite-electron transport layer-back electrode structure (inversion structure), or a transparent conductive electrode-electron transport layer-perovskite-hole Transmission layer-back electrode structure (positive structure); further, in order to improve the carrier extraction efficiency, some researchers have optimized the above structure by using a method between the transmission layer far away from the light incident surface and the back electrode For example, an insulating layer (or hole blocking layer) is added after the electron transport layer of the inversion structure, or an electron blocking layer is added to the hole transport layer of the positive structure, and the resulting structure is a transparent conductive electrode-hole transport Layer-Perovskite-Electron transport layer-Insulating layer (hole blocking layer)-Back electrode, or transparent conductive electrode-Electron transport layer-Perovskite-Hole transport layer-Insulating layer (electron blocking layer)-Back electrode ; Other researchers use a gradual energy level method to adjust the transport layer to form a multi-layer transport layer to improve the carrier extraction capacity. The structure of the positive type perovskite solar cell is a transparent conductive electrode-electron transport layer-perovskite -Hole transport layer 1-Hole transport layer 2-...-Hole transport layer n-back electrode, the structure of the inverse perovskite solar cell is a transparent conductive electrode-hole transport layer-perovskite-electron transport Layer 1-Electron transport layer 2... Electron transport layer n-back electrode, in which the energy levels of the multi-layer hole transport layer or electron transport layer are graded, but the structure in the device is continuous, and there is no intervening other Functional layer; some researchers also add a functional layer between the transmission layer near the light incident surface and the perovskite layer to match the energy level through the action of electric dipole moment, etc.; there are also some special perovskite The structure of the mine battery adopts a structure without a hole transport layer, and the battery structure is simply expressed as a transparent conductive electrode-an electron transport layer-a perovskite layer-a back electrode.
在上述结构中,虽然背电极的制备在理论上有多种方法,如热蒸镀、电子束蒸镀、脉冲激光蒸镀、真空离子镀膜、真空溅射镀膜、化学沉积等,实际操作中,由于考虑到制备成本限制,制备设备限制,以及制备速度和制备效果的平衡,绝大多数钙钛矿太阳能电池背电极采用热蒸镀来制备。溅射镀膜作为一种已广泛使用在光电器件镀膜领域的成熟技术,因为其镀膜速度快,镀膜质量高,镀膜种类丰富,设备投入相对较低,便于规模化生产镀膜等显著优势,被认为是最适合制备背电极的技术之一。然而该镀膜技术在钙钛矿背电极镀膜的应用中遇到了挑战。在高性能钙钛矿太阳能电池的方案中,一般都需要使用至少一层有机传输层材料来实现能级匹配,如正型电池在钙钛矿与背电极之间使用spiro-OMeTAD,或者在反型电池中,在钙钛矿与背电极之间使用PCBM。由于溅射镀膜的原理为使用荷能粒子(通常为惰性气体的正离子)去轰击固体靶材表面从而引起靶材表面上的原子或分子从其中逸出到待镀样品,在使用溅射镀膜制备钙钛矿太阳能电池背电极时,高能粒子会接触钙钛矿有机薄膜层表面(包括钙钛矿也是易受损的无机有机杂化材料)时会在表面产生较大的损伤,从而严重影响界面性能进而影响太阳能电池整体的性能。现有解决方案为在有机传输层上制备一层无机氧化物层,用于保护有机材料和钙钛矿材料免受溅射粒子的损伤,文献中一般称他们为牺牲层或保护层。在这种情况下,钙钛矿太阳能电池就形成了如下结构:透明导电电极-传输层-钙钛矿-有机传输层-无机氧化物牺牲/保护层-背电极。采用这种方式有一些非常明显的缺陷:(1)无机氧化物牺牲层制备的方式非常受限,一般采用原子层气相沉积,此方法的镀膜速度慢,规模化生产成本高,较难大规模实现;(2)无机氧化物牺牲层的制备方式与钙钛矿太阳能电池常用功能层制备方式区别过大,进一步增加了规模化生产的复杂度,导致良品率等不可控;(3)一旦使用了无机氧化物牺牲层,原有电池结构的整体性与能级匹配度将受到影响,导致空穴/电子的传输受到影响,效率降低;(4)有机传输层的表面能小于无机氧化物牺牲/保护层,使得在传输层上制备的无机氧化物牺牲/保护层的粘附度低结合力差,导致界面机械强度低,极易在冷热循环等过程中导致接触变差甚至剥离,导致电池性能骤降。以上这些因素导致上述溅射工艺无法用来制备钙钛矿太阳能电池的背电极。In the above structure, although there are theoretically many methods for preparing the back electrode, such as thermal evaporation, electron beam evaporation, pulsed laser evaporation, vacuum ion plating, vacuum sputtering, chemical deposition, etc., in actual operation, Due to the limitation of preparation cost, the limitation of preparation equipment, and the balance of preparation speed and preparation effect, most of the back electrodes of perovskite solar cells are prepared by thermal evaporation. As a mature technology that has been widely used in the field of photoelectric device coating, sputtering coating is considered to have significant advantages such as fast coating speed, high coating quality, rich coating types, relatively low equipment investment, and ease of large-scale production of coatings. One of the most suitable techniques for preparing back electrodes. However, this coating technology has encountered challenges in the application of perovskite back electrode coating. In the high-performance perovskite solar cell solution, it is generally necessary to use at least one layer of organic transport layer material to achieve energy level matching. In type batteries, PCBM is used between the perovskite and the back electrode. Since the principle of sputtering coating is to use energetic particles (usually positive ions of an inert gas) to bombard the surface of a solid target material to cause atoms or molecules on the surface of the target material to escape from it to the sample to be coated, sputtering coating is used When preparing the back electrode of the perovskite solar cell, the high-energy particles will contact the surface of the perovskite organic film layer (including perovskite is also a vulnerable inorganic-organic hybrid material), which will cause greater damage on the surface, which will seriously affect The interface performance in turn affects the overall performance of the solar cell. The existing solution is to prepare an inorganic oxide layer on the organic transport layer to protect organic materials and perovskite materials from sputtering particles. They are generally referred to as sacrificial layers or protective layers in the literature. In this case, the perovskite solar cell has the following structure: transparent conductive electrode-transport layer-perovskite-organic transport layer-inorganic oxide sacrificial/protective layer-back electrode. There are some very obvious disadvantages in adopting this method: (1) The method of preparing the sacrificial layer of inorganic oxide is very limited. Generally, atomic layer vapor deposition is used. The coating speed of this method is slow, the cost of large-scale production is high, and it is difficult to large-scale. Realization; (2) The preparation method of the inorganic oxide sacrificial layer is too different from the preparation method of the commonly used functional layer of perovskite solar cells, which further increases the complexity of large-scale production, resulting in uncontrollable yield, etc.; (3) Once used With the inorganic oxide sacrificial layer, the integrity and energy level matching of the original battery structure will be affected, which will affect the hole/electron transport and reduce the efficiency; (4) The surface energy of the organic transport layer is less than that of the inorganic oxide sacrificial layer. /Protective layer, making the inorganic oxide sacrificial/protective layer prepared on the transmission layer have low adhesion and poor bonding force, resulting in low interface mechanical strength, and it is easy to cause poor contact or even peeling during thermal cycles and other processes, resulting in The battery performance drops sharply. The above factors make the above sputtering process unable to be used to prepare the back electrode of the perovskite solar cell.
技术问题technical problem
本发明所要解决的技术问题在于,提供一种含叠加复合传输层的钙钛矿太阳能电池及其制备方法,解决使用有机传输层结构的钙钛矿太阳能电池与溅射镀膜工艺不匹配的问题,在不引入复杂的无机氧化物牺牲/保护层的前提下,能够使用溅射镀膜工艺制备钙钛矿太阳能电池的背电极层,使得钙钛矿太阳能电池背电极层的制备从材料选择种类与数量、镀膜速度、镀膜质量以及批量生产能力上均得以提高。The technical problem to be solved by the present invention is to provide a perovskite solar cell containing a superimposed composite transport layer and a preparation method thereof to solve the problem of the mismatch between the perovskite solar cell using an organic transport layer structure and the sputtering coating process, Under the premise of not introducing complicated inorganic oxide sacrificial/protective layer, the back electrode layer of perovskite solar cell can be prepared by sputtering coating process, so that the preparation of the back electrode layer of perovskite solar cell depends on the type and quantity of materials. , Coating speed, coating quality and mass production capacity are all improved.
技术解决方案Technical solutions
本发明是这样实现的,提供一种含叠加复合传输层的钙钛矿太阳能电池,其内部结构从光入射面(电池正面)到电池背面依次为透明基底、第一电极层、传输层、钙钛矿层、叠加复合传输层和背电极层,叠加复合传输层的结构形式为A 0+n(BA)类型,其中,n=1、2、3、…,位于零层的薄膜层A 0和位于第n层的薄膜层A n分别为有机传输层,位于第n层的薄膜层B n为有机绝缘层,零层的薄膜层A 0的制备材料与第n层的薄膜层A n的制备材料同时是有机空穴传输材料,或者是有机电子传输材料,第n层的薄膜层B n的制备材料为有机绝缘/阻挡材料。 The present invention is achieved in this way, providing a perovskite solar cell containing a superimposed composite transport layer, the internal structure of which is a transparent substrate, a first electrode layer, a transport layer, and calcium from the light incident surface (the front of the cell) to the back of the cell Titanium ore layer, superimposed composite transmission layer and back electrode layer, the structure of superimposed composite transmission layer is A 0 +n (BA) type, where n=1, 2, 3,..., the thin film layers A 0 and A 0 and preparation of the material located on the n-layer film layer a n are the organic transport layer, located on the n-layer film layer B n is the organic insulating layer, the thin film layer a zero layer 0 and a n of the thin film layer is n-th layer The material is also an organic hole transport material or an organic electron transport material, and the preparation material of the n-th thin film layer B n is an organic insulating/blocking material.
本发明是这样实现的,提供一种如前所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0的材料选取为烷富勒烯苯基-碳61-丁酸-甲酯或烷富勒烯苯基-碳72-丁酸-甲酯(PCBM),制备第1层的薄膜层B 1的材料选取为2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP),制备第1层的薄膜层A 1的材料选取为碳60或碳70,具体包括如下步骤: The present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above. The structure of the superimposed composite transport layer is A 0 + n (BA), where n=1 , That is, the structural form of the superimposed composite transmission layer is A 0 B 1 A 1 , and the material of the zero-layer thin film layer A 0 is selected as alkanofullerene phenyl-carbon 61-butyrate-methyl ester or alkanofullerene benzene -Carbon 72-butyric acid-methyl ester (PCBM), the material for preparing the first layer of film layer B 1 is 2,9-dimethyl-4,7-biphenyl-1,10-diazepine Philippine (BCP), the material of the first film layer A 1 is selected as carbon 60 or carbon 70, which specifically includes the following steps:
步骤11、透明基底采用镀有氧化铟锡导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 11. The transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
步骤12、在第一电极层上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、硫氰化亚铜(CuSCN)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD))、3,4-乙烯二氧噻吩(EDOT)、聚(3-己基噻吩-2,5-二基)(P3HT)、聚[双(4-苯基)(4-丁基苯基)胺](polyTPD)中的至少一种空穴传输层材料,其厚度为5nm~50nm;Step 12. A hole transport layer is prepared on the first electrode layer. The method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. One, the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), sulfur Cuprous cyanide (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N, N-p-methoxyanilino)-9,9'-Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT), at least one hole transport layer material in poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), the thickness of which is 5nm-50nm;
步骤13、在空穴传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 13. Prepare a perovskite layer on the hole transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3- x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x At least one of Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
步骤14、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 14. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
步骤15、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 15. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm~1000nm.
本发明是这样实现的,提供一种如前所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层的结构形式A 0+n(BA)类型中的n=2,即叠加复合传输层的结构形式为A 0B 1A 1B 2A 2,制备零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的材料均为聚[双(4-苯基)(4-丁基苯基)胺] (polyTPD),制备第1层的薄膜层B 1和第2层的薄膜层B 2的材料均为聚乙烯亚胺(PEI),具体包括如下步骤: The present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above. The structure of the superimposed composite transport layer is A 0 + n(BA), where n=2 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 B 2 A 2. The materials of the zero-layer film layer A 0 , the first film layer A 1 and the second film layer A 2 are all made Poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), the materials of the first layer of film layer B 1 and the second layer of film layer B 2 are both polyethyleneimine (PEI), specifically including the following steps:
步骤21、透明基底采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 21: The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
步骤22、在第一电极层上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述电子传输层的材料包括二氧化钛(TiO 2)、二氧化锡(SnO 2)、氧化锌(ZnO)、Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm; Step 22: Prepare an electron transport layer on the first electrode layer. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods , The material for preparing the electron transport layer includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), Alkylfullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition The finished product (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm~50nm;
步骤23、在电子传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 23: Prepare a perovskite layer on the electron transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI At least one of x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
步骤24、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1、第1层的薄膜层A 1、第2层的薄膜层B 2和第2层的薄膜层A 2,其中,零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的厚度为1nm~100nm,第1层的薄膜层B 1和第2层的薄膜层B 2的厚度为1nm~20nm; Step 24. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer film layer A 0 , the first film layer B 1 , the first film layer A 1 , the second film layer B 2 and the second film layer A 2 in sequence, wherein the zero layer The thickness of the thin film layer A 0 , the first thin film layer A 1 and the second thin film layer A 2 are 1nm~100nm, and the thickness of the first thin film layer B 1 and the second thin film layer B 2 is 1nm~20nm;
步骤25、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 25. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm~1000nm.
本发明是这样实现的,提供一种如前所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为碳60或碳70,制备第1层的薄膜层B 1的材料选取为4,7-二苯基-1,10-菲罗啉(Bphen),具体包括如下步骤: The present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above. The structure of the superimposed composite transport layer is A 0 + n (BA), where n=1 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 , the materials of the zero-layer film layer A 0 and the first film layer A 1 are carbon 60 or carbon 70, respectively, to prepare the first layer of film The material of layer B 1 is selected as 4,7-diphenyl-1,10-phenanthroline (Bphen), which specifically includes the following steps:
步骤31、透明基底采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 31: The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the side coated with the indium tin oxide conductive layer is used as the first electrode layer;
步骤32、在第一电极层上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、硫氰化亚铜(CuSCN)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)中的至少一种,其厚度为5nm~50nm;Step 32: Prepare a hole transport layer on the first electrode layer. The method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. One, the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) , At least one of cuprous thiocyanide (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), with a thickness of 5nm~50nm;
步骤33、在空穴传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 33: Prepare a perovskite layer on the hole transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , At least one of BASnI x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
步骤34、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 34. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
步骤35、在叠加复合传输层上制备背电极层,制备背电极层方法包括磁控溅射、等离子体增强化学气相沉积、单原子层沉积加工方式中的任意一种,制备背电极层的材料包括氧化铟锡(ITO)、氧化铝掺氧化锌(AZO)、氧化铟掺氧化锌(IZO)、掺氟氧化锡(FTO)、掺锆氧化铟(IZrO)、掺钨氧化铟(IWO)掺硼氧化锌(BZO)中任意一种,其厚度为20nm~1000nm。Step 35. Prepare a back electrode layer on the superimposed composite transport layer. The method for preparing the back electrode layer includes any one of magnetron sputtering, plasma enhanced chemical vapor deposition, and single atomic layer deposition processing methods to prepare the material of the back electrode layer. Including indium tin oxide (ITO), aluminum oxide doped zinc oxide (AZO), indium oxide doped zinc oxide (IZO), fluorine doped tin oxide (FTO), zirconium doped indium oxide (IZrO), tungsten doped indium oxide (IWO) doped Any one of boron zinc oxide (BZO) with a thickness of 20nm~1000nm.
本发明是这样实现的,提供一种如前所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD),制备第1层的薄膜层B 1的材料选取为9,10-双[N,N-二(对甲苯基)氨基]蒽(TTPA),具体包括如下步骤: The present invention is realized in this way, providing a method for preparing a perovskite solar cell containing a superimposed composite transport layer as described above. The structure of the superimposed composite transport layer is A 0 + n (BA), where n=1 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 , and the materials for preparing the zero-layer film layer A 0 and the first film layer A 1 are respectively 2,2',7,7'-four ( N,N-p-methoxyanilino)-9,9'-Spiro-MeOTAD (Spiro-MeOTAD), the material of the thin film layer B 1 of the first layer is selected as 9,10-bis[N,N-二( P-tolyl)amino]anthracene (TTPA) specifically includes the following steps:
步骤41、透明基底采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 41: The transparent substrate is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the side coated with the indium tin oxide conductive layer is used as the first electrode layer;
步骤42、在第一电极层上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述电子传输层的材料包括二氧化钛(TiO 2)、二氧化锡(SnO 2)、氧化锌(ZnO)、Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm; Step 42: Prepare an electron transport layer on the first electrode layer. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. , The material for preparing the electron transport layer includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), Alkylfullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition The finished product (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm~50nm;
步骤43、在电子传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 43: Prepare a perovskite layer on the electron transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI At least one of x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
步骤44、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 44. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
步骤45、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括不锈钢、锡黄铜、锡青铜、镍黄铜、硅黄铜中任意一种,其厚度为20nm~1000nm。Step 45. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes stainless steel. , Tin brass, tin bronze, nickel brass, silicon brass, and its thickness is 20nm~1000nm.
有益效果Beneficial effect
与现有技术相比,本发明的含叠加复合传输层的钙钛矿太阳能电池及其制备方法具有以下特点:Compared with the prior art, the perovskite solar cell containing superimposed composite transport layer and the preparation method thereof of the present invention have the following characteristics:
1. 叠加复合传输层所使用的材料均为在钙钛矿太阳能电池中的常用有机材料,能与钙钛矿材料形成吻合的能带结构,不破坏电池结构的整体性与能级匹配度,不牺牲载流子提取与传输效率。1. The materials used in the superimposed composite transport layer are all commonly used organic materials in perovskite solar cells, which can form a band structure consistent with the perovskite materials without destroying the integrity and energy level matching of the battery structure. Does not sacrifice carrier extraction and transmission efficiency.
2. 叠加复合传输层通过传输层构型,使得溅射损伤只发生在最外层有机传输复合结构的表面,可以通过整体结构和能带对损伤进行消纳和钝化,不影响整体传输层传输载流子的效率。2. The superimposed composite transmission layer is configured through the transmission layer, so that sputtering damage only occurs on the surface of the outermost organic transmission composite structure. The damage can be absorbed and passivated through the overall structure and energy band, without affecting the overall transmission layer The efficiency of transporting carriers.
3. 叠加复合传输层通过A+n(BA)型结构,n=1、2、3、…,在保证溅射损伤不影响电池的整体结构和功能的前提下,有机材料的使用使得溅射过程中的高动能粒子能够部分嵌入叠加复合传输层,增强了与背电极的耦合,提高界面机械强度的同时更有利于降低串联电阻,提升载流子传输和收集效率。3. The superimposed composite transmission layer adopts A+n(BA) type structure, n=1, 2, 3,..., under the premise that sputtering damage does not affect the overall structure and function of the battery, the use of organic materials makes sputtering The high kinetic energy particles in the process can be partially embedded in the superimposed composite transport layer, which enhances the coupling with the back electrode, improves the mechanical strength of the interface, and is more conducive to reducing the series resistance and improving the efficiency of carrier transmission and collection.
4. 叠加复合传输层所使用材料均为有机材料,成本可控,设备与工艺均为钙钛矿太阳能电池所常用,可用于制备大面积组件。4. The materials used for the superimposed composite transmission layer are all organic materials, and the cost is controllable. The equipment and processes are commonly used in perovskite solar cells, which can be used to prepare large-area modules.
5. 叠加复合传输层在钙钛矿太阳能电池中的使用,使得溅射镀膜能够用来制备钙钛矿太阳能电池的各类金属背电极,包括高熔点廉价金属与耐蚀合金,从而降低钙钛矿太阳能电池的制备成本,提升钙钛矿太阳能电池的环境稳定性。5. The use of superimposed composite transmission layer in perovskite solar cells enables sputtering coating to be used to prepare various metal back electrodes of perovskite solar cells, including high melting point cheap metals and corrosion-resistant alloys, thereby reducing perovskite The production cost of mineral solar cells improves the environmental stability of perovskite solar cells.
6. 叠加复合传输层在钙钛矿太阳能电池中的使用,使得溅射镀膜能够用来制备钙钛矿太阳能电池的各类透明电极,为高效半透明钙钛矿太阳能电池,与叠层钙钛矿太阳能电池的发展与应用打下坚实基础。6. The use of the superimposed composite transport layer in the perovskite solar cell enables the sputtering coating to be used to prepare various transparent electrodes of the perovskite solar cell. It is a high-efficiency translucent perovskite solar cell and a laminated perovskite solar cell. The development and application of mining solar cells lay a solid foundation.
附图说明Description of the drawings
图1为本发明的含叠加复合传输层的钙钛矿太阳能电池的结构平面示意图;Fig. 1 is a schematic plan view of the structure of the perovskite solar cell containing a superimposed composite transport layer of the present invention;
图2为本发明实施例1的含叠加复合传输层的钙钛矿太阳能电池的结构平面示意图;2 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 1 of the present invention;
图3为本发明实施例2的含叠加复合传输层的钙钛矿太阳能电池的结构平面示意图;3 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 2 of the present invention;
图4为本发明实施例3的含叠加复合传输层的钙钛矿太阳能电池的结构平面示意图;4 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Embodiment 3 of the present invention;
图5为本发明实施例4的含叠加复合传输层的钙钛矿太阳能电池的结构平面示意图。5 is a schematic plan view of the structure of a perovskite solar cell containing a superimposed composite transport layer according to Example 4 of the present invention.
本发明的最佳实施方式The best mode of the present invention
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the following further describes the present invention in detail with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not used to limit the present invention.
请参照图1所示,本发明含叠加复合传输层的钙钛矿太阳能电池的较佳实施例,其内部结构从光入射面(电池正面)到电池背面依次为透明基底1、第一电极层2、传输层3、钙钛矿层4、叠加复合传输层5和背电极层6。Please refer to FIG. 1, a preferred embodiment of the perovskite solar cell with superimposed composite transport layer of the present invention. The internal structure of the perovskite solar cell from the light incident surface (the front of the cell) to the back of the cell is a transparent substrate 1 and a first electrode layer. 2. Transmission layer 3, perovskite layer 4, superimposed composite transmission layer 5 and back electrode layer 6.
叠加复合传输层5的结构形式为A 0+n(BA)类型,其中,n=1、2、3、…。位于零层的薄膜层A 0和位于第n层的薄膜层A n分别为有机传输层,能够有效提取自由电子或空穴。位于第n层的薄膜层B n为有机绝缘层,能够修饰零层的薄膜层A 0和位于第n层的薄膜层A n的表面缺陷,减少电子与空穴的复合。零层的薄膜层A 0的制备材料与第n层的薄膜层A n的制备材料可以为同种材料或不同材料,但需要满足同时是有机空穴传输材料,或者是有机电子传输材料,且与制备传输层的材料相反。当制备传输层的材料为空穴传输层材料时,零层的薄膜层A 0的制备材料与第n层的薄膜层A n的制备材料是有机电子传输材料。当制备传输层的材料为电子传输层材料时,零层的薄膜层A 0的制备材料与第n层的薄膜层A n的制备材料为空穴传输层材料。第n层的薄膜层B n的制备材料为有机绝缘/阻挡材料。 The structure of the superimposed composite transmission layer 5 is A 0 +n(BA) type, where n=1, 2, 3,.... At zero level A 0 of the thin film layer and the n-th layer located on the thin film layer A n are the organic transport layer can be efficiently extracted free electrons or holes. B n layer located on the n-th film layer is an organic insulating layer, the thin film layer can be modified zero A 0 layer and surface defects of the thin film layer A n n-th layer, reduce recombination of electrons and holes. Preparation of Materials Preparation of material A 0 layer zero thin film layer and the film layer A n n-th layer can be the same material or different materials, but is also required to meet organic hole transport material, or an organic electron transport material, and Contrary to the material from which the transmission layer is made. When the material prepared transporting layer is a hole transport layer material, a thin film layer material preparation A zero layer material preparation A n 0 and n-th layer of the thin film layer is an organic electron transport material. When the material prepared transporting layer is an electron transport layer material, material preparation A 0 layer zero thin film layer and the thin film layer material preparation A n of the n-layer is a hole transport layer material. The preparation material of the thin film layer B n of the nth layer is an organic insulating/barrier material.
制备零层的薄膜层A 0的制备材料与第n层的薄膜层A n的材料包括电子传输类材料和空穴传输类材料,其中,电子传输类材料包括Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中至少一种;空穴传输类材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD)、3,4-乙烯二氧噻吩(EDOT)、聚(3-己基噻吩-2,5-二基)(P3HT)、聚[双(4-苯基)(4-丁基苯基)胺](polyTPD)中至少一种。零层的薄膜层A 0的厚度为1nm~100nm,承担电子或空穴提取的主要任务。第n层的薄膜层A n的厚度为1nm~100nm,承担同透明导电氧化物层接触,钝化溅射缺陷,减少由第n层的薄膜层B n隧穿而来的载流子在背电极层与有机层界面发生复合的作用。 Preparation of material A 0 prepared film layer zero thin film layer and the layer A n of the n-layer material comprises an electron transport material and a hole transport based-based material, wherein the electron transport material comprises based Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkanefullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and the new indene and C60 double adduct (IC 60 BA) or at least one of the above-mentioned fullerene-based organic compound variants and dopants; hole transport materials include poly(3,4-ethylene Dioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), 2,2',7 ,7'-Tetra(N,N-p-methoxyanilino)-9,9'-Spiro-MeOTAD (Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene- At least one of 2,5-diyl) (P3HT) and poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD). The thin film layer A 0 of the zero layer has a thickness of 1 nm to 100 nm, and undertakes the main task of extracting electrons or holes. The thickness of the nth film layer An is 1nm~100nm, which is responsible for contact with the transparent conductive oxide layer, passivating sputtering defects, and reduce the carrier tunneling from the nth film layer B n on the back. The interface between the electrode layer and the organic layer has a recombination effect.
制备第n层的薄膜层B n的材料包括2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、4,7-二苯基-1,10-菲罗啉(Bphen)、9,10-双[N,N-二(对甲苯基)氨基]蒽(TTPA)、聚乙烯亚胺(PEI)、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)中任意一种,其厚度为1nm~20nm,其禁带宽度不小于2eV,往往超过2.5eV。 The material for preparing the n-th film layer B n includes 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1, 10-phenanthroline (Bphen), 9,10-bis[N,N-bis(p-tolyl)amino]anthracene (TTPA), polyethyleneimine (PEI), 1,3,5-tris(1- Any of phenyl-1H-benzimidazol-2-yl)benzene (TPBi), its thickness is 1nm~20nm, and its band gap is not less than 2eV, often exceeding 2.5eV.
制备第一电极层2的材料包括氧化铟锡(ITO)、氧化锌铝(AZO)、氧化铟锌(IZO)、掺氟氧化锡(FTO)、掺锆氧化铟(IZrO)、掺钨氧化铟(IWO)中任意一种,其厚度为100nm~300nm。The materials for preparing the first electrode layer 2 include indium tin oxide (ITO), zinc aluminum oxide (AZO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zirconium-doped indium oxide (IZrO), tungsten-doped indium oxide Any one of (IWO) with a thickness of 100nm~300nm.
制备传输层3的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、硫氰化亚铜(CuSCN)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD)、3,4-乙烯二氧噻吩(EDOT)、聚(3-己基噻吩-2,5-二基)(P3HT)、聚[双(4-苯基)(4-丁基苯基)胺](polyTPD)中的至少一种空穴传输层材料,或者包括二氧化钛(TiO 2)、二氧化锡(SnO 2)、氧化锌(ZnO)、Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm。 The materials for preparing the transmission layer 3 include nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), cuprous thiocyanate (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N,N-p-methyl) Oxyanilino)-9,9'-Spiro-MeOTAD (Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT), poly At least one hole transport layer material in [Bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), or includes titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkanefullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene benzene -Carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and the new indene and C60 double adduct (IC 60 BA) or a variant of the above-mentioned fullerene-based organic compounds and any one of the electrons in the dopant The thickness of the transmission layer material is 5nm~50nm.
制备背电极层6的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者为不锈钢、锡黄铜、锡青铜、镍黄铜、硅黄铜中任意一种,其厚度为20nm~1000nm;或者为氧化铟锡(ITO)、氧化锌铝(AZO)、氧化铟锌(IZO)、掺氟氧化锡(FTO)、掺锆氧化铟(IZrO)、掺钨氧化铟(IWO)中任意一种,其厚度为10nm~2000nm。The material for preparing the back electrode layer 6 includes any one of platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, or stainless steel, tin brass, tin bronze, nickel brass Any one of silicon brass with a thickness of 20nm~1000nm; or indium tin oxide (ITO), zinc aluminum oxide (AZO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), zirconium-doped oxide Either indium (IZrO) or tungsten-doped indium oxide (IWO), with a thickness of 10nm~2000nm.
制备钙钛矿层4的带隙不大于3.0eV,其组成结构的化合物结构式为GMX 3,其中,G是一价阳离子,G为碱金属阳离子或有机阳离子,G包括甲胺阳离子(CH 3NH 3+)、甲脒阳离子(NH 2CHNH 2+)、铯阳离子(Cs +)和铷阳离子(Rb +)中任意一种,M是二价阳离子,M为过渡金属和13到15族元素的二价阳离子中的任意一种,M包括Pb 2+、Ge 2+、Sn 2+、Cu 2+、Bi 2+,X是一价阴离子,X为卤素阴离子或硫氰根离子(SCN -)中任意一种,而且,G、M和X的位置被多种类型的离子占据;钙钛矿层4的厚度为300nm~2μm。 The band gap of the perovskite layer 4 is not greater than 3.0 eV, and the compound structural formula of the composition structure is GMX 3 , where G is a monovalent cation, G is an alkali metal cation or an organic cation, and G includes methylamine cation (CH 3 NH 3 + ), formamidine cation (NH 2 CHNH 2+ ), cesium cation (Cs + ), and rubidium cation (Rb + ), M is a divalent cation, M is a transition metal and a divalent element of group 13 to 15 any of a monovalent cation, M comprises Pb 2+, Ge 2+, Sn 2+ , Cu 2+, Bi 2+, X is a monovalent anion, X is a halogen anion or thiocyanate ion (SCN -) of Any one, and the positions of G, M, and X are occupied by various types of ions; the thickness of the perovskite layer 4 is 300 nm-2 μm.
具体地,制备所述钙钛矿层4的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3。 Specifically, the material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl At least one of 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x Cl 3-x , where 0<x<3.
本发明的实施方式Embodiments of the present invention
下面结合具体实施例来进一步说明本发明的含叠加复合传输层的钙钛矿太阳能电池的制备方法。The method for preparing the perovskite solar cell containing the superimposed composite transport layer of the present invention will be further described below with reference to specific examples.
实施例1Example 1
请参照图2所示,本发明的第一种含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层5的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层5的结构形式为A 0B 1A 1,烷富勒烯苯基-碳61-丁酸-甲酯或烷富勒烯苯基-碳72-丁酸-甲酯(PCBM),制备第1层的薄膜层B 1的材料选取为2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP),制备第1层的薄膜层A 1的材料选取为碳60(C60)或碳70(C70),具体包括如下步骤: Please refer to FIG. 2, the first method for preparing a perovskite solar cell containing a superimposed composite transport layer of the present invention, the structure of the superimposed composite transport layer 5 is A 0 +n(BA) where n=1, That is, the structural form of the superimposed composite transmission layer 5 is A 0 B 1 A 1 , alkyl fullerene phenyl-carbon 61-butyric acid-methyl ester or alkyl fullerene phenyl-carbon 72-butyric acid-methyl ester (PCBM ), the material of the film layer B 1 of the first layer is selected as 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (BCP), and the film layer of the first layer is prepared The material of A 1 is selected as carbon 60 (C60) or carbon 70 (C70), which specifically includes the following steps:
步骤11、透明基底1采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有ITO导电层的一面作为第一电极层2。第一电极层2在钙钛矿电池制备完成时作为电池正极接线,背电极层6接负极。Step 11: The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2. When the preparation of the perovskite battery is completed, the first electrode layer 2 serves as the positive electrode connection of the battery, and the back electrode layer 6 is connected to the negative electrode.
步骤12、在第一电极层2上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种。制备空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、硫氰化亚铜(CuSCN)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD))、3,4-乙烯二氧噻吩(EDOT)、聚(3-己基噻吩-2,5-二基)(P3HT)、聚[双(4-苯基)(4-丁基苯基)胺](polyTPD)中的至少一种空穴传输层材料,其厚度为5nm~50nm。Step 12. A hole transport layer is prepared on the first electrode layer 2. The method for preparing the hole transport layer includes spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering. Any kind. The materials for preparing the hole transport layer include nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), thiocyanate Copper (CuSCN), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetra(N,N-pair Methoxyanilino)-9,9'-Spiro-MeOTAD), 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl) (P3HT) At least one hole transport layer material in poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), with a thickness of 5nm-50nm.
步骤13、在空穴传输层上制备钙钛矿层3,制备钙钛矿层4的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备钙钛矿层4的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm。 Step 13. Prepare the perovskite layer 3 on the hole transport layer. The method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods. The material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , At least one of BASnI x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm.
步骤14、在钙钛矿层4上制备叠加复合传输层5,制备叠加复合传输层5的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种。在钙钛矿层4上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1。其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm。 Step 14. Prepare the superimposed composite transmission layer 5 on the perovskite layer 4, and the method of preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods. The zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 are sequentially prepared on the perovskite layer 4. Among them, the thickness of the thin film layer A 0 of the zero layer is 1 nm to 100 nm, the thickness of the thin film layer B 1 of the first layer is 1 nm to 20 nm, and the thickness of the thin film layer A 1 of the first layer is 3 nm to 100 nm.
步骤15、在叠加复合传输层5上制备背电极层6,制备背电极层6的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层6的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 15. Prepare the back electrode layer 6 on the superimposed composite transmission layer 5. The method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods to prepare the back electrode layer 6. The materials include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, zinc, or any alloy, with a thickness of 20nm~1000nm.
实施例2Example 2
请参照图3所示,本发明的第二种含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层5的结构形式A 0+n(BA)类型中的n=2,即叠加复合传输层5的结构形式为A 0B 1A 1B 2A 2,制备零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的材料均为聚[双(4-苯基)(4-丁基苯基)胺] (polyTPD),制备第1层的薄膜层B 1和第2层的薄膜层B 2的材料均为聚乙烯亚胺(PEI),具体包括如下步骤: Please refer to FIG. 3, the second method for preparing a perovskite solar cell containing a superimposed composite transport layer of the present invention, the structure of the superimposed composite transport layer 5 is A 0 +n(BA) where n=2, That is, the structure of the superimposed composite transmission layer 5 is A 0 B 1 A 1 B 2 A 2 , and the materials of the zero-layer thin-film layer A 0 , the first-layer thin-film layer A 1 and the second-layer thin-film layer A 2 are all prepared. Poly[bis(4-phenyl)(4-butylphenyl)amine] (polyTPD), the materials of the first layer of film layer B 1 and the second layer of film layer B 2 are both polyethyleneimine (PEI), specifically including the following steps:
步骤21、透明基底1采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有ITO导电层的一面作为第一电极层2。第一电极层2在钙钛矿电池制备完成时作为电池负极接线,背电极层6接正极;Step 21: The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2. When the preparation of the perovskite battery is completed, the first electrode layer 2 serves as the negative electrode connection of the battery, and the back electrode layer 6 is connected to the positive electrode;
步骤22、在第一电极层2上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种。制备所述电子传输层的材料包括二氧化钛(TiO 2)、二氧化锡(SnO 2)、氧化锌(ZnO)、Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm。 Step 22: Prepare an electron transport layer on the first electrode layer 2. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. kind. The materials for preparing the electron transport layer include titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkane Fullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm-50nm.
步骤23、在电子传输层上制备钙钛矿层4,制备钙钛矿层4的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层4的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm。 Step 23: Prepare the perovskite layer 4 on the electron transport layer. The method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods. The material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3- At least one of x and BASnI x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm.
步骤24、在钙钛矿层4上制备叠加复合传输层5,制备叠加复合传输层5的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层4上依次制备零层的薄膜层A 0、第1层的薄膜层B 1、第1层的薄膜层A 1、第2层的薄膜层B 2和第2层的薄膜层A 2,其中,零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的厚度为1nm~100nm,第1层的薄膜层B 1和第2层的薄膜层B 2的厚度为1nm~20nm。 Step 24. Prepare the superimposed composite transmission layer 5 on the perovskite layer 4. The method for preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods. On the titanium ore layer 4, a zero-layer thin film layer A 0 , a first thin film layer B 1 , a first thin film layer A 1 , a second thin film layer B 2 and a second thin film layer A 2 are sequentially prepared, Among them, the thickness of the zero-layer thin-film layer A 0 , the first-layer thin-film layer A 1 and the second-layer thin-film layer A 2 are 1 nm to 100 nm, the first thin-film layer B 1 and the second thin-film layer B The thickness of 2 is 1nm~20nm.
步骤25、在叠加复合传输层5上制备背电极层6,制备背电极层6的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种。制备背电极层6的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 25: Prepare a back electrode layer 6 on the superimposed composite transmission layer 5. The method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer 6 includes any metal or any alloy of platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, and the thickness thereof is 20 nm to 1000 nm.
实施例3Example 3
请参照图4所示,本发明的第三种含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层5的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层5的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为碳60(C60)或碳70(C70),制备第1层的薄膜层B 1的材料选取为4,7-二苯基-1,10-菲罗啉(Bphen),具体包括如下步骤: Please refer to FIG. 4, the third method for preparing a perovskite solar cell containing a superimposed composite transport layer of the present invention, the structure of the superimposed composite transport layer 5 is A 0 +n(BA) where n=1, That is, the structure of the superimposed composite transmission layer 5 is A 0 B 1 A 1 , and the materials of the zero-layer thin-film layer A 0 and the first thin-film layer A 1 are carbon 60 (C60) or carbon 70 (C70), respectively. a thin film layer material B was prepared first layer is selected to be 4,7-diphenyl-1,10-phenanthroline (Bphen), includes the following steps:
步骤31、透明基底1采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有ITO导电层的一面作为第一电极层2。第一电极层2在钙钛矿电池制备完成时作为电池正极接线,背电极层6接负极。Step 31: The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2. When the preparation of the perovskite battery is completed, the first electrode layer 2 serves as the positive electrode connection of the battery, and the back electrode layer 6 is connected to the negative electrode.
步骤32、在第一电极层2上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种。制备所述空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、硫氰化亚铜(CuSCN)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)中的至少一种,其厚度为5nm~50nm。Step 32: Prepare a hole transport layer on the first electrode layer 2. The method for preparing the hole transport layer includes spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering. Any kind. The material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), thiocyanate At least one of CuSCN and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), with a thickness of 5nm-50nm.
步骤33、在空穴传输层上制备钙钛矿层4,制备钙钛矿层4的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层4的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm。 Step 33: Prepare the perovskite layer 4 on the hole transport layer. The method for preparing the perovskite layer 4 includes any one of coating, spraying and thermal evaporation processing methods. The material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3 At least one of -x , BASnI x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm.
步骤34、在钙钛矿层4上制备叠加复合传输层5,制备叠加复合传输层5的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层4上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm。 Step 34. Prepare the superimposed composite transmission layer 5 on the perovskite layer 4. The method for preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods. The zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 are sequentially prepared on the ilmenite layer 4; among them, the thickness of the zero thin film layer A 0 is 1 nm to 100 nm, and the first The thickness of the thin film layer B 1 of the first layer is 1 nm to 20 nm, and the thickness of the thin film layer A 1 of the first layer is 3 nm to 100 nm.
步骤35、在叠加复合传输层5上制备背电极层6,制备背电极层6的方法包括磁控溅射、等离子体增强化学气相沉积、单原子层沉积加工方式中的任意一种。制备背电极层6的材料包括氧化铟锡(ITO)、氧化铝掺氧化锌(AZO)、氧化铟掺氧化锌(IZO)、掺氟氧化锡(FTO)、掺锆氧化铟(IZrO)、掺钨氧化铟(IWO)掺硼氧化锌(BZO)中任意一种,其厚度为20nm~1000nm。以BZO为例,在磁控溅射制备BZO工艺层时,采用射频或直流电源作为溅射电源,本底真空小于5×10 -4Pa,工作真空为0.1Pa~2Pa,工作功率30W~200W。当使用如掺硼氧化锌等透明导电氧化物作为该钙钛矿太阳能电池的背电极层6时,所制备的钙钛矿太阳能电池为半透明钙钛矿太阳能电池。该类型半透明钙钛矿太阳能电池能够有效使波长大于所使用的钙钛矿材料吸收极限的光透过,可以作为子电池与任意符合叠层原理的太阳能电池构成叠层太阳能电池。因此使用本发明中叠加复合传输层制备的半透明钙钛矿太阳能电池作为子电池的叠层电池,也应视为本发明所保护范围。 Step 35: Prepare the back electrode layer 6 on the superimposed composite transport layer 5. The method for preparing the back electrode layer 6 includes any one of magnetron sputtering, plasma enhanced chemical vapor deposition, and single atomic layer deposition processing methods. The materials for preparing the back electrode layer 6 include indium tin oxide (ITO), aluminum oxide doped zinc oxide (AZO), indium oxide doped zinc oxide (IZO), fluorine doped tin oxide (FTO), zirconium doped indium oxide (IZrO), doped Any one of indium tungsten oxide (IWO), boron-doped zinc oxide (BZO), and its thickness is 20nm~1000nm. Taking BZO as an example, when preparing the BZO process layer by magnetron sputtering, radio frequency or DC power supply is used as the sputtering power supply. The background vacuum is less than 5×10 -4 Pa, the working vacuum is 0.1Pa~2Pa, and the working power is 30W~200W. . When a transparent conductive oxide such as boron-doped zinc oxide is used as the back electrode layer 6 of the perovskite solar cell, the prepared perovskite solar cell is a translucent perovskite solar cell. This type of translucent perovskite solar cell can effectively transmit light with a wavelength greater than the absorption limit of the perovskite material used, and can be used as a sub-cell to form a laminated solar cell with any solar cell that conforms to the principle of lamination. Therefore, using the translucent perovskite solar cell prepared by superimposing the composite transport layer in the present invention as the laminated cell of the sub-cell should also be regarded as the protection scope of the present invention.
实施例4Example 4
请参照图5所示,本发明的第四种含叠加复合传输层的钙钛矿太阳能电池的制备方法,叠加复合传输层5的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层5的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-MeOTAD),制备第1层的薄膜层B 1的材料选取为9,10-双[N,N-二(对甲苯基)氨基]蒽(TTPA),具体包括如下步骤: Please refer to FIG. 5, the fourth method for preparing a perovskite solar cell containing a superimposed composite transport layer of the present invention, the structure of the superimposed composite transport layer 5 is A 0 + n(BA), where n=1, That is, the structure of the superimposed composite transmission layer 5 is A 0 B 1 A 1 , and the materials for preparing the zero-layer film layer A 0 and the first film layer A 1 are respectively 2, 2', 7, 7'-four ( N,N-p-methoxyanilino)-9,9'-Spiro-MeOTAD (Spiro-MeOTAD), the material of the thin film layer B 1 of the first layer is selected as 9,10-bis[N,N-二( P-tolyl)amino]anthracene (TTPA) specifically includes the following steps:
步骤41、透明基底1采用镀有氧化铟锡(ITO)导电层的玻璃,玻璃面为光照入射面,镀有ITO导电层的一面作为第一电极层2。第一电极层2在钙钛矿电池制备完成时作为电池负极接线,背电极层6接正极。Step 41: The transparent substrate 1 is made of glass coated with an indium tin oxide (ITO) conductive layer, the glass surface is the light incident surface, and the surface coated with the ITO conductive layer is used as the first electrode layer 2. When the preparation of the perovskite battery is completed, the first electrode layer 2 serves as the negative electrode connection of the battery, and the back electrode layer 6 is connected to the positive electrode.
步骤42、在第一电极层2上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种。制备所述电子传输层的材料包括二氧化钛(TiO 2)、二氧化锡(SnO 2)、氧化锌(ZnO)、Di-PDI、ITCPTC-Th、碳60(C60)、碳70(C70)、烷富勒烯苯基-碳61-丁酸-甲酯(PC 61BM)、烷富勒烯苯基-碳72-丁酸-甲酯(PC 72BM)、PCBM和新型茚与C60双加成物(IC 60BA)或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm。 Step 42: Prepare an electron transport layer on the first electrode layer 2. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. kind. The materials for preparing the electron transport layer include titanium dioxide (TiO 2 ), tin dioxide (SnO 2 ), zinc oxide (ZnO), Di-PDI, ITCPTC-Th, carbon 60 (C60), carbon 70 (C70), alkane Fullerene phenyl-carbon 61-butyric acid-methyl ester (PC 61 BM), alkanefullerene phenyl-carbon 72-butyric acid-methyl ester (PC 72 BM), PCBM and new indene and C60 double addition (IC 60 BA) or any of the above-mentioned fullerene-based organic compounds and any one of the electron transport layer materials in the dopant, the thickness of which is 5nm-50nm.
步骤43、在电子传输层上制备钙钛矿层4,制备钙钛矿层4的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种。制备所述钙钛矿层4的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm。 Step 43: Prepare the perovskite layer 4 on the electron transport layer. The method for preparing the perovskite layer 4 includes any one of coating, spraying, and thermal evaporation processing methods. The material for preparing the perovskite layer 4 includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x Cl 3-x , where 0<x<3; and its thickness is 300nm~2μm.
步骤44、在钙钛矿层4上制备叠加复合传输层5,制备叠加复合传输层5的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种。在钙钛矿层4上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1,其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm。 Step 44: Prepare the superimposed composite transmission layer 5 on the perovskite layer 4, and the method of preparing the superimposed composite transmission layer 5 includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods. The zero-layer thin-film layer A 0 , the first-layer thin-film layer B 1 and the first-layer thin-film layer A 1 are sequentially prepared on the perovskite layer 4, wherein the thickness of the zero-layer thin-film layer A 0 is 1 nm to 100 nm, The thickness of the first thin film layer B 1 is 1 nm to 20 nm, and the thickness of the first thin film layer A 1 is 3 nm to 100 nm.
步骤45、在叠加复合传输层5上制备背电极层6,制备背电极层6的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层6的材料包括不锈钢、锡黄铜、锡青铜、镍黄铜、硅黄铜中任意一种,其厚度为20nm~1000nm。Step 45. Prepare the back electrode layer 6 on the superimposed composite transmission layer 5. The method for preparing the back electrode layer 6 includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods to prepare the back electrode layer 6. The material includes any one of stainless steel, tin brass, tin bronze, nickel brass, silicon brass, and its thickness is 20nm~1000nm.
以1Cr18Ni9不锈钢电极的磁控溅射制备为例,磁控溅射制备不锈钢电极时,使用1Cr18Ni9不锈钢制备的靶材,采用射频或直流电源作为溅射电源,本底真空小于5×10 -4Pa,工作真空为0.1Pa~2Pa,工作功率30W~300W。当使用不锈钢等耐蚀电极作为该钙钛矿太阳能电池的背电极层6时,该钙钛矿太阳能电池将具备更好的抵御环境中水和氧侵蚀的能力,从而增加钙钛矿太阳能电池的稳定性。 Take the magnetron sputtering preparation of 1Cr18Ni9 stainless steel electrode as an example. When preparing the stainless steel electrode by magnetron sputtering, a target made of 1Cr18Ni9 stainless steel is used, and a radio frequency or DC power supply is used as the sputtering power source. The background vacuum is less than 5×10 -4 Pa , The working vacuum is 0.1Pa~2Pa, and the working power is 30W~300W. When a corrosion-resistant electrode such as stainless steel is used as the back electrode layer 6 of the perovskite solar cell, the perovskite solar cell will have better resistance to water and oxygen in the environment, thereby increasing the perovskite solar cell’s stability.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only the preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement and improvement made within the spirit and principle of the present invention shall be included in the protection of the present invention. Within range.
工业实用性Industrial applicability
在此处键入工业实用性描述段落。Type a paragraph describing industrial applicability here.
序列表自由内容Sequence Listing Free Content
在此处键入序列表自由内容描述段落。Type here the free content description paragraph of the sequence listing.

Claims (10)

  1. 一种含叠加复合传输层的钙钛矿太阳能电池,其特征在于,其内部结构从光入射面到电池背面依次为透明基底、第一电极层、传输层、钙钛矿层、叠加复合传输层和背电极层,叠加复合传输层的结构形式为A 0+n(BA)类型,其中,n=1、2、3、…,位于零层的薄膜层A 0和位于第n层的薄膜层A n分别为有机传输层,位于第n层的薄膜层B n为有机绝缘层,零层的薄膜层A 0的制备材料与第n层的薄膜层A n的制备材料同时是有机空穴传输材料,或者是有机电子传输材料,第n层的薄膜层B n的制备材料为有机绝缘/阻挡材料。 A perovskite solar cell containing a superimposed composite transmission layer, characterized in that its internal structure from the light incident surface to the back of the battery is a transparent substrate, a first electrode layer, a transmission layer, a perovskite layer, a superimposed composite transmission layer and The back electrode layer, the structure of the superimposed composite transport layer is A 0 +n (BA) type, where n=1, 2, 3,..., the thin film layer A 0 located in the zero layer and the thin film layer A located in the nth layer the organic transfer layer each n, n-th layer located on the thin film layer is an organic insulating layer B n, a thin-film layer prepared zero layer material preparation a n 0 and n-th film layer is an organic layer, a hole transporting material while , Or an organic electron transport material, the preparation material of the n-th thin film layer B n is an organic insulating/blocking material.
  2. 如权利要求1所述的含叠加复合传输层的钙钛矿太阳能电池,其特征在于,制备零层的薄膜层A 0的制备材料与第n层的薄膜层A n的材料包括电子传输类材料和空穴传输类材料,其中,电子传输类材料包括Di-PDI、ITCPTC-Th、碳60、碳70、烷富勒烯苯基-碳61-丁酸-甲酯、烷富勒烯苯基-碳72-丁酸-甲酯、PCBM和新型茚与C60双加成物或上述富勒烯基有机物的变体以及掺杂物中至少一种,空穴传输类材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴、3,4-乙烯二氧噻吩(EDOT)、聚(3-己基噻吩-2,5-二基)、聚[双(4-苯基)(4-丁基苯基)胺]中至少一种;零层的薄膜层A 0的厚度为1nm~100nm,第n层的薄膜层A n的厚度为1nm~100nm。 As claimed in claim 1 containing overlay composite transport layer perovskite solar cell, characterized in that the preparation layer zero thin film layer material preparation A 0 and A n in the n-th film layer includes an electron transport layer materials based material And hole transport materials, among which electron transport materials include Di-PDI, ITCPTC-Th, carbon 60, carbon 70, alkyl fullerene phenyl-carbon 61-butyric acid-methyl ester, alkyl fullerene phenyl -Carbon 72-butyric acid-methyl ester, PCBM and new indene and C60 double adduct or at least one of the above-mentioned fullerene-based organic compound variants and dopants, hole transport materials include poly(3,4 -Ethylenedioxythiophene)-polystyrenesulfonic acid, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra( N,N-p-methoxyanilino)-9,9'-spirodifluorene, 3,4-ethylenedioxythiophene (EDOT), poly(3-hexylthiophene-2,5-diyl), poly[double (4-phenyl) (4-butylphenyl) amino] at least one; and the thickness of the film layer a 0 is the zero layer 1nm ~ 100nm, the thickness of the film layer a n of the n-th layer is 1nm ~ 100nm.
  3. 如权利要求2所述的含叠加复合传输层的钙钛矿太阳能电池,其特征在于,制备第n层的薄膜层B n的材料包括2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、4,7-二苯基-1,10-菲罗啉、9,10-双[N,N-二(对甲苯基)氨基]蒽、聚乙烯亚胺、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯中任意一种,其厚度为1nm~20nm。 The perovskite solar cell containing a superimposed composite transport layer according to claim 2, wherein the material for preparing the n-th thin film layer B n includes 2,9-dimethyl-4,7-biphenyl- 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 9,10-bis[N,N-bis(p-tolyl)amino]anthracene, polyethyleneimine Any one of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene with a thickness of 1nm~20nm.
  4. 如权利要求1所述的含叠加复合传输层的钙钛矿太阳能电池,其特征在于,制备第一电极层的材料包括氧化铟锡、氧化锌铝、氧化铟锌、掺氟氧化锡、掺锆氧化铟、掺钨氧化铟中任意一种,其厚度为100nm~300nm;制备传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、硫氰化亚铜、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴、3,4-乙烯二氧噻吩、聚(3-己基噻吩-2,5-二基)、聚[双(4-苯基)(4-丁基苯基)胺]中的至少一种空穴传输层材料,或者包括二氧化钛、二氧化锡、氧化锌、Di-PDI、ITCPTC-Th、碳60、碳70、烷富勒烯苯基-碳61-丁酸-甲酯、烷富勒烯苯基-碳72-丁酸-甲酯、PCBM和新型茚与C60双加成物或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm;制备背电极层的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者为不锈钢、锡黄铜、锡青铜、镍黄铜、硅黄铜中任意一种,其厚度为20nm~1000nm,或者为氧化铟锡、氧化锌铝、氧化铟锌、掺氟氧化锡、掺锆氧化铟、掺钨氧化铟中任意一种,其厚度为10nm~2000nm。The perovskite solar cell containing a superimposed composite transport layer according to claim 1, wherein the material for preparing the first electrode layer includes indium tin oxide, zinc aluminum oxide, indium zinc oxide, fluorine-doped tin oxide, and zirconium-doped Any one of indium oxide and tungsten-doped indium oxide, with a thickness of 100nm~300nm; materials for preparing the transmission layer include nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, and poly(3,4-ethylenedioxythiophene) )-Polystyrenesulfonic acid, cuprous thiocyanate, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra (N,N-p-methoxyanilino)-9,9'-spirodifluorene, 3,4-ethylenedioxythiophene, poly(3-hexylthiophene-2,5-diyl), poly(bis(4 -Phenyl) (4-butylphenyl)amine] at least one hole transport layer material, or including titanium dioxide, tin dioxide, zinc oxide, Di-PDI, ITCPTC-Th, carbon 60, carbon 70, Alkylfullerene phenyl-carbon 61-butyric acid-methyl ester, alkanefullerene phenyl-carbon 72-butyric acid-methyl ester, PCBM and new indene and C60 double adducts or the above-mentioned fullerenyl organic compounds Any one of the electron transport layer materials in the variants and dopants has a thickness of 5nm-50nm; the materials for preparing the back electrode layer include platinum, gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, and tin Any metal in zinc or stainless steel, tin brass, tin bronze, nickel brass, silicon brass, with a thickness of 20nm~1000nm, or indium tin oxide, zinc aluminum oxide, indium zinc oxide , Any one of fluorine-doped tin oxide, zirconium-doped indium oxide, and tungsten-doped indium oxide, with a thickness of 10nm~2000nm.
  5. 如权利要求1所述的含叠加复合传输层的钙钛矿太阳能电池,其特征在于,制备钙钛矿层的带隙不大于3.0eV,其组成结构的化合物结构式为GMX 3,其中,G是一价阳离子,G为碱金属阳离子或有机阳离子,G包括甲胺阳离子、甲脒阳离子、铯阳离子和铷阳离子中任意一种,M是二价阳离子,M为过渡金属和13到15族元素的二价阳离子中的任意一种,M包括Pb 2+、Ge 2+、Sn 2+、Cu 2+、Bi 2+,X是一价阴离子,X为卤素阴离子或硫氰根离子中任意一种,而且,G、M和X的位置被多种类型的离子占据;钙钛矿层的厚度为300nm~2μm。 The perovskite solar cell containing a superimposed composite transport layer according to claim 1, wherein the band gap of the perovskite layer is not greater than 3.0 eV, and the compound structural formula of the composition structure is GMX 3 , where G is one G is an alkali metal cation or an organic cation, G includes any one of methylamine cation, formamidine cation, cesium cation and rubidium cation, M is a divalent cation, and M is a transition metal and a divalent element of group 13 to 15 Any one of the valent cations, M includes Pb 2+ , Ge 2+ , Sn 2+ , Cu 2+ , Bi 2+ , X is a monovalent anion, and X is any one of a halogen anion or a thiocyanate ion, Moreover, the positions of G, M and X are occupied by various types of ions; the thickness of the perovskite layer is 300nm~2μm.
  6. 如权利要求5所述的含叠加复合传输层的钙钛矿太阳能电池,其特征在于,制备钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3。 The perovskite solar cell containing a superimposed composite transport layer according to claim 5, wherein the material for preparing the perovskite layer includes MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3-x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x At least one of, FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x Cl 3-x , where 0<x< 3.
  7. 一种如权利要求1至6所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,其特征在于,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0的材料选取为烷富勒烯苯基-碳61-丁酸-甲酯或烷富勒烯苯基-碳72-丁酸-甲酯,制备第1层的薄膜层B 1的材料选取为2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲,制备第1层的薄膜层A 1的材料选取为碳60或碳70,具体包括如下步骤: A method for preparing a perovskite solar cell containing a superimposed composite transport layer as claimed in claims 1 to 6, characterized in that the structure of the superimposed composite transport layer is A 0 + n (BA) where n=1 , That is, the structural form of the superimposed composite transmission layer is A 0 B 1 A 1 , and the material of the zero-layer thin film layer A 0 is selected as alkanofullerene phenyl-carbon 61-butyrate-methyl ester or alkanofullerene benzene Base-carbon 72-butyric acid-methyl ester, the material of the first film layer B 1 is selected to be 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, preparation The material of the film layer A 1 of the first layer is selected as carbon 60 or carbon 70, which specifically includes the following steps:
    步骤11、透明基底采用镀有氧化铟锡导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 11. The transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
    步骤12、在第一电极层上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、硫氰化亚铜、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴、3,4-乙烯二氧噻吩、聚(3-己基噻吩-2,5-二基)、聚[双(4-苯基)(4-丁基苯基)胺]中的至少一种空穴传输层材料,其厚度为5nm~50nm;Step 12. A hole transport layer is prepared on the first electrode layer. The method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. One, the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid, cuprous thiocyanate, Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra(N,N-p-anisino)-9, 9'-spirodifluorene, 3,4-ethylenedioxythiophene, poly(3-hexylthiophene-2,5-diyl), poly[bis(4-phenyl)(4-butylphenyl)amine] At least one hole transport layer material in, the thickness of which is 5nm-50nm;
    步骤13、在空穴传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 13. Prepare a perovskite layer on the hole transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3- x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x At least one of Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
    步骤14、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 14. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
    步骤15、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 15. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm~1000nm.
  8. 一种如权利要求1至6所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,其特征在于,叠加复合传输层的结构形式A 0+n(BA)类型中的n=2,即叠加复合传输层的结构形式为A 0B 1A 1B 2A 2,制备零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的材料均为聚[双(4-苯基)(4-丁基苯基)胺],制备第1层的薄膜层B 1和第2层的薄膜层B 2的材料均为聚乙烯亚胺,具体包括如下步骤: A method for preparing a perovskite solar cell containing a superimposed composite transport layer as claimed in claims 1 to 6, characterized in that the structure of the superimposed composite transport layer is A 0 + n (BA), where n=2 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 B 2 A 2. The materials of the zero-layer film layer A 0 , the first film layer A 1 and the second film layer A 2 are all made Is poly[bis(4-phenyl)(4-butylphenyl)amine], the materials for preparing the first layer of film layer B 1 and the second layer of film layer B 2 are polyethyleneimine, which specifically includes The following steps:
    步骤21、透明基底采用镀有氧化铟锡导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 21: The transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
    步骤22、在第一电极层上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述电子传输层的材料包括二氧化钛、二氧化锡、氧化锌、Di-PDI、ITCPTC-Th、碳60、碳70、烷富勒烯苯基-碳61-丁酸-甲酯、烷富勒烯苯基-碳72-丁酸-甲酯、PCBM和新型茚与C60双加成物或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm;Step 22: Prepare an electron transport layer on the first electrode layer. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods , The material for preparing the electron transport layer includes titanium dioxide, tin dioxide, zinc oxide, Di-PDI, ITCPTC-Th, carbon 60, carbon 70, alkane fullerene phenyl-carbon 61-butyric acid-methyl ester, alkane Fullerene phenyl-carbon 72-butyric acid-methyl ester, PCBM and new indene and C60 double adducts or the above-mentioned fullerene-based organic compound variants and dopants of any one of the electron transport layer materials, its thickness 5nm~50nm;
    步骤23、在电子传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 23: Prepare a perovskite layer on the electron transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI At least one of x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
    步骤24、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1、第1层的薄膜层A 1、第2层的薄膜层B 2和第2层的薄膜层A 2,其中,零层的薄膜层A 0、第1层的薄膜层A 1和第2层的薄膜层A 2的厚度为1nm~100nm,第1层的薄膜层B 1和第2层的薄膜层B 2的厚度为1nm~20nm; Step 24. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer film layer A 0 , the first film layer B 1 , the first film layer A 1 , the second film layer B 2 and the second film layer A 2 in sequence, wherein the zero layer The thickness of the thin film layer A 0 , the first thin film layer A 1 and the second thin film layer A 2 are 1nm~100nm, and the thickness of the first thin film layer B 1 and the second thin film layer B 2 is 1nm~20nm;
    步骤25、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括铂、金、银、铜、铝、铑、铟、钛、铁、镍、锡、锌中任意一种金属或者任意一种合金,其厚度为20nm~1000nm。Step 25. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes platinum. Any metal or any alloy of gold, silver, copper, aluminum, rhodium, indium, titanium, iron, nickel, tin, and zinc, with a thickness of 20nm~1000nm.
  9. 一种如权利要求1至6所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,其特征在于,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为碳60或碳70,制备第1层的薄膜层B 1的材料选取为4,7-二苯基-1,10-菲罗啉,具体包括如下步骤: A method for preparing a perovskite solar cell containing a superimposed composite transport layer as claimed in claims 1 to 6, characterized in that the structure of the superimposed composite transport layer is A 0 + n (BA) where n=1 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 , the materials of the zero-layer film layer A 0 and the first film layer A 1 are carbon 60 or carbon 70, respectively, to prepare the first layer of film The material of layer B 1 is selected as 4,7-diphenyl-1,10-phenanthroline, which specifically includes the following steps:
    步骤31、透明基底采用镀有氧化铟锡导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 31: The transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
    步骤32、在第一电极层上制备空穴传输层,所述空穴传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述空穴传输层的材料包括氧化镍、氧化钴、氧化钼、氧化钨、氧化钒、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、硫氰化亚铜、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]中的至少一种,其厚度为5nm~50nm;Step 32: Prepare a hole transport layer on the first electrode layer. The method for preparing the hole transport layer includes any of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. One, the material for preparing the hole transport layer includes nickel oxide, cobalt oxide, molybdenum oxide, tungsten oxide, vanadium oxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid, thiocyanate At least one of copper and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], the thickness of which is 5nm-50nm;
    步骤33、在空穴传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 33: Prepare a perovskite layer on the hole transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 , MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3- x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI x At least one of Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
    步骤34、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 34. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
    步骤35、在叠加复合传输层上制备背电极层,制备背电极层的方法包括磁控溅射、等离子体增强化学气相沉积、单原子层沉积加工方式中的任意一种,制备背电极层的材料包括氧化铟锡、氧化铝掺氧化锌、氧化铟掺氧化锌、掺氟氧化锡、掺锆氧化铟、掺钨氧化铟掺硼氧化锌中任意一种,其厚度为20nm~1000nm。Step 35. Prepare a back electrode layer on the superimposed composite transport layer. The method for preparing the back electrode layer includes any one of magnetron sputtering, plasma enhanced chemical vapor deposition, and single atomic layer deposition processing methods to prepare the back electrode layer. The material includes any one of indium tin oxide, aluminum oxide doped zinc oxide, indium oxide doped zinc oxide, fluorine doped tin oxide, zirconium doped indium oxide, tungsten doped indium oxide doped boron zinc oxide, and its thickness is 20nm~1000nm.
  10. 一种如权利要求1至6所述的含叠加复合传输层的钙钛矿太阳能电池的制备方法,其特征在于,叠加复合传输层的结构形式A 0+n(BA)类型中的n=1,即叠加复合传输层的结构形式为A 0B 1A 1,制备零层的薄膜层A 0和第1层的薄膜层A 1的材料分别为2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴,制备第1层的薄膜层B 1的材料选取为9,10-双[N,N-二(对甲苯基)氨基]蒽,具体包括如下步骤: A method for preparing a perovskite solar cell containing a superimposed composite transport layer as claimed in claims 1 to 6, characterized in that the structure of the superimposed composite transport layer is A 0 + n (BA) where n=1 , That is, the structure of the superimposed composite transmission layer is A 0 B 1 A 1 , and the materials for preparing the zero-layer film layer A 0 and the first film layer A 1 are respectively 2,2',7,7'-four ( N,N-p-methoxyanilino)-9,9'-spirodifluorene, the material of the first film layer B 1 is selected as 9,10-bis[N,N-bis(p-tolyl)amino ] Anthracene, specifically including the following steps:
    步骤41、透明基底采用镀有氧化铟锡导电层的玻璃,玻璃面为光照入射面,镀有氧化铟锡导电层的一面作为第一电极层;Step 41: The transparent substrate is made of glass coated with an indium tin oxide conductive layer, the glass surface is the light incident surface, and the surface coated with the indium tin oxide conductive layer is used as the first electrode layer;
    步骤42、在第一电极层上制备电子传输层,所述电子传输层的制备方法包括喷涂、涂布、电化学沉积、热蒸镀、电子束蒸镀以及溅射加工方式中的任意一种,制备所述电子传输层的材料包括二氧化钛、二氧化锡、氧化锌、Di-PDI、ITCPTC-Th、碳60、碳70、烷富勒烯苯基-碳61-丁酸-甲酯、烷富勒烯苯基-碳72-丁酸-甲酯、PCBM和新型茚与C60双加成物或上述富勒烯基有机物的变体以及掺杂物中任意一种电子传输层材料,其厚度为5nm~50nm;Step 42: Prepare an electron transport layer on the first electrode layer. The preparation method of the electron transport layer includes any one of spraying, coating, electrochemical deposition, thermal evaporation, electron beam evaporation, and sputtering processing methods. , The material for preparing the electron transport layer includes titanium dioxide, tin dioxide, zinc oxide, Di-PDI, ITCPTC-Th, carbon 60, carbon 70, alkane fullerene phenyl-carbon 61-butyric acid-methyl ester, alkane Fullerene phenyl-carbon 72-butyric acid-methyl ester, PCBM and new indene and C60 double adducts or the above-mentioned fullerene-based organic compound variants and dopants of any one of the electron transport layer materials, its thickness 5nm~50nm;
    步骤43、在电子传输层上制备钙钛矿层,制备钙钛矿层的方法包括涂布、喷涂以及热蒸镀加工方式中的任意一种,制备所述钙钛矿层的材料包括MAPbI 3、MAPbBr 3、MAPbI xBr 3-x、MAPbI xCl 3-x、FAPbI 3、FAPbBr 3、FAPbI xBr 3-x、FAPbIxCl 3-x、BAPbI 3、BAPbBr 3、BAPbI xBr 3-x、BAPbI xCl 3-x、MASnI 3、MASnBr 3、MASnI xBR 3-x、FASnI 3、FASnBr 3、FASnI xBr 3-x、FASnI xCl 3-x、BASnI 3、BASnBr 3、BASnI xBr 3-x、BASnI xCl 3-x中至少一种,其中0<x<3;其厚度为300nm~2μm; Step 43: Prepare a perovskite layer on the electron transport layer. The method for preparing the perovskite layer includes any one of coating, spraying and thermal evaporation processing methods. The materials for preparing the perovskite layer include MAPbI 3 and MAPbBr 3 , MAPbI x Br 3-x , MAPbI x Cl 3-x , FAPbI 3 , FAPbBr 3 , FAPbI x Br 3-x , FAPbIxCl 3-x , BAPbI 3 , BAPbBr 3 , BAPbI x Br 3-x , BAPbI x Cl 3 -x , MASnI 3 , MASnBr 3 , MASnI x BR 3-x , FASnI 3 , FASnBr 3 , FASnI x Br 3-x , FASnI x Cl 3-x , BASnI 3 , BASnBr 3 , BASnI x Br 3-x , BASnI At least one of x Cl 3-x , where 0<x<3; its thickness is 300nm~2μm;
    步骤44、在钙钛矿层上制备叠加复合传输层,制备叠加复合传输层的方法包括涂布、热蒸镀、电子束蒸镀、脉冲激光沉积加工方式中的任意一种,在钙钛矿层上依次制备零层的薄膜层A 0、第1层的薄膜层B 1和第1层的薄膜层A 1;其中,零层的薄膜层A 0的厚度为1nm~100nm,第1层的薄膜层B 1的厚度为1nm~20nm,第1层的薄膜层A 1的厚度为3nm~100nm; Step 44. Prepare a superimposed composite transmission layer on the perovskite layer, and the method for preparing the superimposed composite transmission layer includes any one of coating, thermal evaporation, electron beam evaporation, and pulsed laser deposition processing methods, on the perovskite layer Prepare the zero-layer thin film layer A 0 , the first thin film layer B 1 and the first thin film layer A 1 in sequence; among them, the zero-layer thin film layer A 0 has a thickness of 1 nm to 100 nm, and the first thin film layer The thickness of B 1 is 1 nm to 20 nm, and the thickness of the first film layer A 1 is 3 nm to 100 nm;
    步骤45、在叠加复合传输层上制备背电极层,制备背电极层的方法包括热蒸镀、电子束蒸镀、磁控溅射加工方式中的任意一种,制备背电极层的材料包括不锈钢、锡黄铜、锡青铜、镍黄铜、硅黄铜中任意一种,其厚度为20nm~1000nm。Step 45. Prepare a back electrode layer on the superimposed composite transmission layer. The method for preparing the back electrode layer includes any one of thermal evaporation, electron beam evaporation, and magnetron sputtering processing methods. The material for preparing the back electrode layer includes stainless steel. , Tin brass, tin bronze, nickel brass, silicon brass, and its thickness is 20nm~1000nm.
PCT/CN2021/083700 2020-04-28 2021-03-29 Perovskite solar battery which contains laminated composite transport layer, and method for preparing same WO2021218523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010351511.3 2020-04-28
CN202010351511.3A CN113571640A (en) 2020-04-28 2020-04-28 Perovskite solar cell containing superposed composite transmission layer and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021218523A1 true WO2021218523A1 (en) 2021-11-04

Family

ID=78158113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083700 WO2021218523A1 (en) 2020-04-28 2021-03-29 Perovskite solar battery which contains laminated composite transport layer, and method for preparing same

Country Status (2)

Country Link
CN (1) CN113571640A (en)
WO (1) WO2021218523A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094458A (en) * 2021-05-26 2022-09-23 山东省科学院能源研究所 Cu-doped NiO hole transport layer film, preparation method and application
CN116209289A (en) * 2023-05-06 2023-06-02 宁德时代新能源科技股份有限公司 Laminated solar cell, preparation method thereof and power utilization device
WO2024066584A1 (en) * 2022-09-29 2024-04-04 宁德时代新能源科技股份有限公司 Perovskite cell, photovoltaic module, photovoltaic power generation system, and electric device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132926B (en) * 2022-08-25 2022-11-25 中国华能集团清洁能源技术研究院有限公司 Hole transport layer and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024013A (en) * 2015-03-05 2015-11-04 苏州瑞晟纳米科技有限公司 Novel planar heterojunction perovskite solar cell with high efficiency and long life manufactured by adopting low-temperature solution method
CN106856223A (en) * 2016-12-29 2017-06-16 南京邮电大学 A kind of perovskite solar cell of unglazed hysteresis effect and preparation method thereof
CN106981574A (en) * 2017-04-18 2017-07-25 陈胜红 A kind of long-life perovskite photovoltaic cell and preparation method thereof
CN212695177U (en) * 2020-04-28 2021-03-12 杭州纤纳光电科技有限公司 Perovskite solar cell containing superimposed composite transmission layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024013A (en) * 2015-03-05 2015-11-04 苏州瑞晟纳米科技有限公司 Novel planar heterojunction perovskite solar cell with high efficiency and long life manufactured by adopting low-temperature solution method
CN106856223A (en) * 2016-12-29 2017-06-16 南京邮电大学 A kind of perovskite solar cell of unglazed hysteresis effect and preparation method thereof
CN106981574A (en) * 2017-04-18 2017-07-25 陈胜红 A kind of long-life perovskite photovoltaic cell and preparation method thereof
CN212695177U (en) * 2020-04-28 2021-03-12 杭州纤纳光电科技有限公司 Perovskite solar cell containing superimposed composite transmission layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094458A (en) * 2021-05-26 2022-09-23 山东省科学院能源研究所 Cu-doped NiO hole transport layer film, preparation method and application
WO2024066584A1 (en) * 2022-09-29 2024-04-04 宁德时代新能源科技股份有限公司 Perovskite cell, photovoltaic module, photovoltaic power generation system, and electric device
CN116209289A (en) * 2023-05-06 2023-06-02 宁德时代新能源科技股份有限公司 Laminated solar cell, preparation method thereof and power utilization device
CN116209289B (en) * 2023-05-06 2023-09-22 宁德时代新能源科技股份有限公司 Laminated solar cell, preparation method thereof and power utilization device

Also Published As

Publication number Publication date
CN113571640A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2021218523A1 (en) Perovskite solar battery which contains laminated composite transport layer, and method for preparing same
Wang et al. A review of perovskites solar cell stability
Lim et al. Semi-transparent perovskite solar cells with bidirectional transparent electrodes
Yan et al. Hole‐transporting materials in inverted planar perovskite solar cells
Back et al. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating
Guo et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes
CN212695177U (en) Perovskite solar cell containing superimposed composite transmission layer
Liu et al. Toward see‐through optoelectronics: Transparent light‐emitting diodes and solar cells
Kim et al. Strategy for large‐scale monolithic Perovskite/Silicon tandem solar cell: A review of recent progress
Wu et al. From Straw to Device Interface: Carboxymethyl‐Cellulose‐Based Modified Interlayer for Enhanced Power Conversion Efficiency of Organic Solar Cells
KR20110051821A (en) P-type nio conducting film for organic solar cell, the method for preparation of nio conducting film and organic solar cell with enhanced light to electric energy conversion using thereof
CN212934664U (en) Perovskite solar cell with composite transmission layer
Fan et al. Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells
CN111129315A (en) Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof
Liu et al. Recoverable Flexible Perovskite Solar Cells for Next‐Generation Portable Power Sources
Long et al. Flexible perovskite solar cells: device design and perspective
KR20220139497A (en) Perovskite solar cell and tandem solar cell including the same
Lyu et al. Counter electrodes for perovskite solar cells: materials, interfaces and device stability
Makenali et al. Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuO x as an efficient hole transporting layer
KR101693192B1 (en) Perovskite solar cell and preparation method thereof
WO2021218522A1 (en) Perovskite solar battery with composite transport layer, and method for preparing same
CN113782677A (en) Solar cell device and manufacturing method thereof
CN108365101A (en) Perovskite solar cell cathodic modification method
CN103201854A (en) Device for generating photovoltaic power and method for manufacturing same
CN104966783B (en) It is connecting layer organic thin film solar cell based on gradual change mixed active layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797842

Country of ref document: EP

Kind code of ref document: A1