WO2021218499A1 - 投影显示装置 - Google Patents

投影显示装置 Download PDF

Info

Publication number
WO2021218499A1
WO2021218499A1 PCT/CN2021/082502 CN2021082502W WO2021218499A1 WO 2021218499 A1 WO2021218499 A1 WO 2021218499A1 CN 2021082502 W CN2021082502 W CN 2021082502W WO 2021218499 A1 WO2021218499 A1 WO 2021218499A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
prism
display device
projection display
Prior art date
Application number
PCT/CN2021/082502
Other languages
English (en)
French (fr)
Inventor
杨乐宝
谢直聪
田波
张京
赵飞
张敬飞
谢振霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/922,235 priority Critical patent/US20230176461A1/en
Priority to EP21795522.8A priority patent/EP4130872A4/en
Priority to JP2022565981A priority patent/JP2023523358A/ja
Publication of WO2021218499A1 publication Critical patent/WO2021218499A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • This application relates to the field of projection display technology, and in particular to a projection display device.
  • Existing projection display devices usually include a light-emitting module, a modulation module, and a lens module that are connected in sequence. After the light-emitting module is modulated by the modulation module, it is projected by the lens module to a specific position (such as a screen) for display. Out the image.
  • modulation modules based on liquid crystal on silicon or reflective liquid crystal on silicon (liquid crystal on silicon, LCOS) modulators usually use multiple polarization beam splitters (PBS) and a light combining prism ( It is also called X prism) to combine beams.
  • PBS polarization beam splitters
  • X prism light combining prism
  • the present application provides a projection display device to solve the problems of a relatively large number of components and a complex structure of a modulation module in the related art.
  • the embodiment of the application provides a projection display device.
  • the projection display device includes an opto-mechanical module.
  • the opto-mechanical module includes a light-emitting module and a modulation module.
  • the light-emitting module includes a light source for emitting linearly polarized light
  • the modulation module Including modulation components, the modulation components include a light combining prism and an LCOS modulator, the LCOS modulator is used to generate modulated light and unmodulated light, the light combining prism includes four right-angle prisms, the light combining prism has four sides and is formed by four right-angle prisms
  • the LCOS modulator includes the first LCOS modulator, the second LCOS modulator and the third LCOS modulator.
  • the first LCOS modulator, the second LCOS modulator and the third LCOS modulator are respectively arranged in three On the light-emitting side of different sides, at least two of the four intersecting surfaces are used to split the light emitted by the light source in the light combining prism, and at least two of the four intersecting surfaces are used to make the light emitted from the light source in the light combining prism Heguang.
  • the light combining assembly in the modulation module of the present application only includes light combining prisms and LCOS modulators, that is, multiple polarization splitting prisms are omitted. This can reduce the components of the light combining assembly and has a simple structure, thereby reducing the cost of the projection display device. Manufacturing cost molding volume.
  • the light source includes a red laser light source for emitting red light, a green laser light source for emitting green light, and a blue laser light source for emitting blue light, one of red, green and blue
  • the monochromatic light is in the first linear polarization state, the other two monochromatic lights are in the second linear polarization state, and the first linear polarization state is different from the second linear polarization state.
  • a single monochromatic light with a first linear polarization state and two monochromatic lights with a second linear polarization state are used to form white light, so that the white light can be incident on the light combining prism from the first high-transmission surface or the second high-transmission surface It can be emitted from the light combining prism from the third high transmission surface or the fourth high transmission surface.
  • two of the intersecting surfaces are polarization splitting surfaces, and the other two intersecting surfaces are dichroic surfaces, and the polarization splitting surfaces and the dichroic surfaces are staggered, so that the splitting and combining of white light can be realized.
  • the polarization splitting surface that can split two monochromatic lights with different linear polarization states is provided with a metal wire grid, so that the splitting effect of blue and green light (that is, the transmission of P state light and the The reflected S-state light) is better, or the beam splitting angle is larger.
  • the two polarization splitting surfaces are both provided with metal wire grids, so that the polarization splitting effect of the red light itself can also be better.
  • the light emitting module further includes a homogenizing prism, which is arranged on the light exit side of the green laser light source, and the homogenizing prism is used to reduce speckle during laser projection.
  • the speckle of laser projection can be reduced by setting the homogenizing prism.
  • the homogenizing prism is arranged on the light emitting side of the green laser light source and the red laser light source. In this way, the cost and volume of the projection display device can be further saved without affecting the projection effect.
  • the homogenizing prism includes a plurality of parallelogram prisms arranged in sequence, and the hypotenuse of each parallelogram prism is provided with a transflective film;
  • the length of the horizontal side of the parallelogram prism is greater than the coherence length of the incident light incident on the parallelogram prism. Since the optical path difference of the light emitted from different paths is equal to the length of the horizontal side of the parallelogram prism, when the length of the horizontal side of the parallelogram prism is greater than the coherence length of the incident light into the parallelogram prism, the coherence of the laser itself can be weakened , Which can reduce the speckle during laser projection.
  • the homogenization prism includes two rows, and the two rows of homogenization prisms are arranged symmetrically along the horizontal side of the parallelogram prism, so that the intensity of the emitted light can be more uniform, so that the speckle contrast is smaller. As a result, the speckle during laser projection can be reduced more.
  • the light-emitting module further includes a beam combining component, a first focusing lens, a diffuser wheel, and a collimating lens arranged in sequence along the light path of the light source.
  • the beam combining component is used to perform red, green, and blue light.
  • the homogenizing prism is arranged between the green laser light source and the beam combining component corresponding to the green laser light source, so that the light emitted by the light-emitting module can be more uniform and the speckle effect is less.
  • the modulation module further includes a homogenization component.
  • the homogenization component includes a fly-eye lens array and a focusing lens along the optical path.
  • the fly-eye lens array is arranged on the light exit side of the collimator lens, and the modulation component is arranged on the focusing lens.
  • On the light-emitting side it is possible to achieve uniform illumination on the LCOS modulator and realize the local dimming function at the same time.
  • FIG. 1 is a schematic structural diagram of a projection display device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the structure of the opto-mechanical module in the projection display device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the structure of the light-emitting module in the optical-mechanical module shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the structure of the light-emitting module shown in FIG. 3 after the first upper cover is removed;
  • FIG. 5 is a schematic structural diagram of a homogenizing prism provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a homogenizing prism provided by another embodiment of the application.
  • FIG. 7 is an exploded schematic diagram of the modulation module in the light-emitting module shown in FIG. 3;
  • FIG. 8 is a schematic diagram of the structure of the light combining component in the modulation module shown in FIG. 7;
  • FIG. 9 is a schematic diagram of the structure of the lens module in the light emitting module shown in FIG. 3;
  • FIG. 10 is a schematic diagram of an application scenario of the projection display device provided by an embodiment of the application.
  • the projection display device includes a housing 5 (the upper cover provided on the housing 5 is omitted in FIG. 1), and an opto-mechanical module 1, a cooling module 2 and a control module housed in the housing 5 Module 3, where: the opto-mechanical module 1 includes a light-emitting module 11, a modulation module 12, and a lens module 13 connected in sequence (see Figure 2); the cooling module 2 is used to cool the opto-mechanical module 1 and control Module 3; The control module 3 is used to control the operation of the optomechanical module 1 and the cooling module 2.
  • the cooling module 2 includes an air-cooled module 21 and a liquid-cooled module 22.
  • the air-cooled module 21 and the liquid-cooled module 22 can be fixed on the side wall of the housing 5, of course, can also be fixed at other positions of the housing 5.
  • the air-cooled module 21 includes a first fan 211.
  • the air-cooled module 21 in FIG. 1 includes two first fans 211. 211 is opposite to the modulating module 12 of the optomechanical module 1, because the light emitting module 11 and the modulating module 12 are the two parts that generate the largest heat in the optomechanical module 1.
  • the light-emitting module 11 is the part that generates the largest heat in the opto-mechanical module 1.
  • the liquid cooling module 22 includes a heat dissipation patch 221 (see FIG.
  • the heat dissipation patch 221 is attached to the outside of the light source 111 (see FIG. 4) of the light emitting module 11 to quickly and effectively absorb the heat generated by the light source 111, thereby effectively improving the heat dissipation effect of the projection display device.
  • the control module 3 includes a signal transmitter 31, a driver 32 connected to the modulator of the modulation module 12, and a main controller 33 respectively connected to the signal transmitter 31 and the modulator.
  • components such as the signal transmitter 31, the driver 32, and the main controller 33 may all be PCB boards, and functional modules or devices capable of realizing the functions of the above components are provided on the PCB board.
  • the external image signal is transmitted to the main controller 33 through the signal transmitter 31.
  • the main controller 33 controls the driver 32 to act according to the received image signal.
  • the driver 32 controls the modulator to modulate the light emitted by the light source to obtain and input the projection display. The same image signal of the device.
  • the main controller 33 may also include, but is not limited to, capable of controlling the light emission of the light source 111 and the operation of the cooling module 2. It is understandable that the control module 3 also generates heat when it is working, and the driver 32 may be arranged adjacent to the modulation module 12. For example, the first fan 211 in FIG. 1 may be connected to the driver 32 and the modulation module 12. relatively. It should be noted that each modulator is connected to a driver 32. Illustratively, there are three drivers 32 in FIG. One-chip modulator or two-chip modulator can also be used according to actual needs. The type of the driver 32 may be a field-programmable gate array (FPGA) chip, an application specific integrated circuit (ASIC) chip, or a digital signal processor (DSP) chip, etc. .
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • the projection display device further includes a power source 4, which can be electrically connected to the opto-mechanical module 1, the cooling module 2 and the control module 3, respectively, to supply power to the above three.
  • the type of the power source 4 may be, for example, a lead storage battery, a lithium battery, etc., which is not specifically limited in this application.
  • optical machine module 1 The various parts of the optical machine module 1 will be described below.
  • the light emitting module 11 includes a light source 111 for emitting polarized light.
  • the light source 111 referred to in this application includes both the light source 111 being a light-emitting element that directly emits polarized light (such as semiconductor light-emitting element, semiconductor light-emitting element array, bulb light source, etc.), and the light source 111 being a light-emitting element combined with other optical elements
  • the obtained light-emitting module 11 capable of emitting polarized light (for example, a light-emitting module 11 in which a light-emitting element and a lens are combined, and a light-emitting module 11 in which a light-emitting element and a polarization conversion element are combined).
  • the light source described in this application can be regarded as a light-emitting "black box", and the "black box” can contain any kind of optical elements.
  • the light source 111 is a laser light source, such as a laser diode light source, a laser diode array light source, or a laser light source.
  • the light source 111 has the characteristics of small optical expansion, so that the emitted polarized light has a small spot, a small light divergence angle, and a small optical expansion when entering the modulation module 12, avoiding a large amount of light due to divergence The angle is too large to be used, which improves the light utilization rate. If other light sources 111, such as bulb light sources and LED light sources, are used, their optical extension is much greater than that of laser light sources. In order to make the light spot incident on the modulator device meet the size of the incident surface, the divergence angle of the light will be enlarged. A large amount of light cannot be used by the modulation module 12, but is absorbed and converted into heat outside the effective optical surface of the modulation module 12.
  • a bulb or an LED light source can also be used as the light source 111 of the light-emitting module 11.
  • FIG. 4 is an exploded schematic diagram of FIG. 3.
  • the light-emitting module 11 includes a red laser light source 111a, a green laser light source 111b, and a blue laser light source 111c.
  • the light-emitting module 11 further includes a beam combining component for combining the above three laser light sources, such as It can be a combination of a dichroic mirror and a focusing lens, for example, it can also be a combination of a dichroic mirror, a reflecting mirror, and a focusing lens.
  • the red laser light source 111a is located on one side, the green laser light source 111b and the blue laser light source 111c are located on a side perpendicular to the red laser light source 111a; the light output side of the red laser light source 111a is provided with a first dichroic mirror 112a , The first dichroic mirror 112a is used to transmit red light and reflect blue and green light; the light exit side of the green laser light source 111b is provided with a reflector, and the reflector is used to reflect green light; the light exit side of the blue laser light source 111c is provided with The second dichroic mirror 112c is used to transmit blue light and reflect green light.
  • the specific light path is as follows: the red laser light source 111a emits red light, after passing through the first dichroic mirror 112a, it is incident on the first focusing lens 113; the blue laser light source 111c emits blue light, passing through the second dichroic mirror 112c and the first focusing lens 113. After the dichroic mirror 112a, it is incident on the first focusing lens 113; the green laser light source 111b emits green light, after passing through the first reflecting mirror 112b, the second dichroic mirror 112c, and the first dichroic mirror 112a, it is incident on the first focusing lens 113. A focusing lens 113.
  • the light-emitting module 11 further includes a diffuser wheel 114 and a collimating lens 115.
  • the diffuser wheel 114 is used to eliminate laser speckle.
  • the collimating lens 115 can make the light parallel and uniform over a longer distance. In effect, the light emitted from the first focusing lens 113 is emitted through the diffusion wheel 114 and the collimating lens 115 in sequence, and is incident into the modulation module 12.
  • the diffuser wheel 114 may be connected with a motor to control its rotation by the motor, that is, the diffuser wheel 114 uniformly reflects the light incident on the diffuser wheel 114 by rotating.
  • the diffuser wheel 114 can be replaced by a diffuser. The difference between the diffuser and the diffuser 114 is that the diffuser is fixed. From the perspective of eliminating laser speckle, the effect of the diffuser 114 is better than that of the diffuser.
  • the light-emitting side of the green laser light source 111b (specifically, between the green laser light source 111b and the reflecting mirror) is provided with a homogenizing prism 116, and the function of the homogenizing prism 116 is to weaken the coherence of the laser light source itself, thereby Can reduce speckle during projection.
  • the visual function it can be seen that in the visible spectrum, the human eye is most sensitive to the middle part of the spectrum (yellow-green), and the closer it is to the two ends of the spectrum, the less sensitive it is. Therefore, at least a homogenizing prism 116 needs to be provided on the light exit side of the green laser light source 111b to reduce the impact of human eyes on the speckle of green light during projection.
  • a homogenizing prism 116 can also be provided on the light exit side of the red laser light source 111a (specifically between the red laser light source 111a and the first dichroic mirror 112a) or on the light exit side of the blue laser light source 111c. (Specifically, between the green laser light source 111b and the reflecting mirror) a homogenizing prism 116 is provided.
  • the light emitting side of the green laser light source 111b is provided with a homogenizing prism 116
  • the light emitting side of the red laser light source 111a is also provided with a homogenizing prism.
  • the homogenizing prism 116 is not provided on the light exit side of the blue laser light source 111c, so as to further save cost and reduce the volume without affecting the projection effect.
  • the light emitting module 11 includes a first upper cover 117 and a first lower cover 118 fixed to the first upper cover 117, and a first upper cover 117 and the first lower cover 118 form a first In the cavity, the light-emitting module 11 is further provided with a first connector 119 for connecting with the modulation module 12, and the first connector 119 is fixed on the first upper cover 117 and the first lower cover 118.
  • the above components such as red laser light source 111a, green laser light source 111b and blue laser light source 111c, homogenizing prism 116, first dichroic mirror 112a, second dichroic mirror 112c, first reflecting mirror 112b, first focusing
  • the lens 113, the diffusion wheel 114 and the collimating lens 115 are all contained in the first cavity, so that the first upper cover 117 and the first lower cover 118 are used to protect the above components.
  • the homogenizing prism 116 includes a plurality of parallelogram prisms 116a arranged in sequence.
  • the plane on which the light enters and exits is called the side surface
  • the plane perpendicular to the side surface is called the main section.
  • the main section it can be divided into three prisms, right-angle prisms, pentagonal prisms, and parallelogram prisms.
  • each parallelogram prism 116a is provided with a transflective film 116b, that is, when light is incident on the transflective film 116b, half of the light will be reflected and the other half of the light will be transmitted.
  • the parallelogram prism 116a located at both ends of the homogenization prism 116 is excluded. This is because the parallelogram prism 116a has total reflection from the outside (can be regarded as gas), so when incident light enters the homogenization prism 116 When the parallelogram prisms 116a at both ends are used, the light will be completely reflected.
  • the angle between the hypotenuse of each parallelogram prism 116a and the horizontal side is 45 degrees.
  • the incident light is LDn (LDn is not incident light at both ends of the homogenizing prism 116, that is, LDn is not LD1)
  • the emitted light from the incident light LDn after passing through the parallelogram prism 116a is LDn1, LDn2, LDn3, etc.
  • the optical path of LDn1 is d1
  • the optical path of LDn2 is d1+d2
  • the optical path of LDn3 is d1+2d2, and so on.
  • d1 is the distance between the two horizontal sides of a parallelogram prism 116a
  • d2 is the length of the horizontal side of a parallelogram prism 116a.
  • the principle of application is: each laser beam emitted by the light source is divided into multiple laser beams after passing through the homogenizing prism 116, and different laser beams will travel different paths, so that the length of the path traveled by different outgoing lights such as LDn1 and LDn2 is different.
  • the coherence of the laser itself can be weakened, so that the speckle during laser projection can be weakened.
  • the optical path difference between LDn1 and LDn2 is d2.
  • d2 is greater than the coherence length of LDn, the coherence of the laser itself can be weakened, and the speckle during laser projection can be reduced.
  • FIG. 6 it is a schematic diagram of another structure of the homogenizing prism 116.
  • the incident light is LDn
  • the emitted light after the incident light LDn passes through the parallelogram prism 116a is LDn1, LDn2, LDn3, etc., in which the optical path of LDn1 is 2d1+d2, the optical path of LDn2 is 2d1, and LDn3
  • the optical path of LDn4 is 2d1+d2, the optical path of LDn4 is 2d1+3d2, and so on. It can be known that when LDn is LD1, the optical path of LD11 is 2d1+2d2, the optical path of LD22 is 2d1+d2, the optical path of LD23 is 2d1+2d2, and so on.
  • the optical path difference of two adjacent outgoing lights is both d2, which is consistent with the foregoing embodiment.
  • this embodiment is also based on the principle that the size of the speckle is characterized by the speckle contrast, and the speckle contrast depends on the uniformity of the light intensity.
  • C is the speckle contrast
  • N is the number of independent patterns. For example, when there are three outgoing lights, N is equal to 3.
  • the light intensity of the incident light LDn is I.
  • the light intensity of LDn1 is 1/2I
  • the light intensity of LDn2 is 1/4I
  • the light intensity of LDn3 is 1/ Compared with LDn1 and LDn2, the light intensity after 8I and LDn3 is smaller and can be ignored.
  • the light intensity of the incident light LDn is I.
  • the light intensity of LDn1 is about 1/3I
  • the light intensity of LDn2 is about 1/3I
  • the light intensity of LDn3 and beyond is about 1/3I.
  • the emitted light of LDn2 is smaller and can be ignored. Therefore, by comparing the light intensities of LDn1 and LDn2 in FIG. 5 and the light intensities of LDn1 and LDn2 in FIG. 6, it can be seen that the speckle contrast of LDn1 and LDn2 in FIG. Compared with the uniform light prism 116 shown in FIG. 5, the light intensity of the emitted light is more uniform, so that the speckle during laser projection can be further reduced.
  • the modulation module 12 includes a second upper cover 123 and a second lower cover 124 fixed to the second upper cover 123, and a second cavity is formed between the second upper cover 123 and the second lower cover 124, The second cavity is used for accommodating the homogenizing component 121; the modulation module 12 also includes a third upper cover 125 and a third lower cover 126 fixed to the third upper cover 125, one of the third upper cover 125 and the third lower cover 126 A third cavity is formed in between, and the third cavity is used for accommodating the light combining component 122; the modulation module 12 further includes a second connecting member 127, and the second connecting member 127 is used for connecting the light homogenizing component 121 and the light combining component 122, such as the first One end of the second connecting member 127 is fixed to the second upper cover 123 and the second lower cover 124, and the other end is fixed to the third upper cover 125 and the third lower cover 126.
  • the light homogenizing component 121 is disposed on the light emitting side of the light emitting module 11, specifically, the light homogenizing component 121 is disposed on the light emitting side of the collimating lens 115.
  • the light-emitting module 11 is connected to the second upper cover 123 and the second lower cover 124 of the modulation module 12 through the first connecting member 119.
  • the homogenizing component 121 includes a fly-eye lens array and a focusing lens.
  • the light emitted by the light-emitting module 11 first passes through the fly-eye lens array, and then through the focusing lens, so that the light irradiates the LCOS modulator; and by using the fly-eye lens array and the focusing lens, Realize the uniform illumination on the LCOS modulator, while realizing the local dimming function.
  • the fly-eye lens array can be replaced with a light rod, which can be a solid light rod or a hollow light rod.
  • the fly-eye lens array includes two parallel rows of a first fly-eye lens array 121a and a second fly-eye lens array 121b, and the focusing lens includes a second focusing lens 121c and a third focusing lens 121e, so that uniform illumination can be achieved.
  • the specific implementation principle will not be repeated here.
  • the two can be arranged vertically, which can increase the compactness of the structure.
  • a reflecting mirror may be provided in the homogenizing component 121, for example, a second reflecting mirror 121d may be provided between the first focusing lens 113 and the second focusing lens 121c.
  • the light homogenizing component 121 and the light combining component 122 can also be arranged in parallel, so the light homogenizing component 121 does not need to be provided with a mirror, and the first focusing lens 113 and the second focusing lens 121c are also arranged in parallel at this time.
  • the light combining component 122 includes a light combining prism 122a and an LCOS modulator.
  • the light combining prism 122a is composed of four right-angle prisms.
  • the light combining prism 122a has four sides and four right-angle prisms. Intersecting surfaces, two adjacent ones of the four side surfaces are perpendicular to each other, and two adjacent ones of the four intersecting surfaces are perpendicular to each other.
  • the four side surfaces are the first high-transmission surface 122a1, the second high-transmission surface 122a2, the third high-transmission surface 122a3, and the fourth high-transmission surface 122a4, respectively. In this way, it is possible to realize that white light can be incident on the composite with high transparency.
  • the light is emitted from the light prism 122a or from the light combining prism 122a, thereby improving the utilization of light;
  • the four intersecting surfaces are the first intersecting surface 122a5, the second intersecting surface 122a6, the third intersecting surface 122a7, and the fourth intersecting surface 122a8. At least two of the four intersecting surfaces are used to make the light emitted by the light source 111 split in the light combining prism 122a, and at least two of the four intersecting surfaces are used to make the light emitted from the light source 111 in the light combining prism 122a. Zhongheguang.
  • the first intersection surface 122a5 and the second intersection surface 122a6 can make the light emitted by the light source 111 split in the light combining prism 122a, and the second intersection surface 122a6 and the third intersection surface 122a7 can make the light emitted by the light source 111 fall on the light combining prism.
  • first intersecting surface 122a5 intersects the first high-transmittance surface 122a1 and the second high-transmittance surface 122a2, respectively, and the second intersecting surface 122a6 intersects the second high-transmittance surface 122a2 and the third high-transmission surface 122a3, respectively, and the third The intersection surface 122a7 intersects the third high-transmission surface 122a3 and the fourth high-transmission surface 122a4, respectively, and the fourth intersecting surface 122a8 intersects the fourth high-transmission surface 122a4 and the first high-transmission surface 122a1, respectively.
  • the number of LCOS modulators is three, namely the first LCOS modulator 122c, the second LCOS modulator 122d, and the third LCOS modulator 122e, and each LCOS modulator is respectively disposed on the light combining prism 122a.
  • One side of the light-emitting side After the light enters the light combining prism 122a, it splits light through two of the four intersecting surfaces, that is, split into red light, green light and blue light; the decomposed monochromatic light passes through the opposite of each LCOS modulator.
  • the set side enters the LCOS modulator for modulation.
  • the modulated monochromatic light passes through the side set opposite to each LCOS modulator and enters the light combining prism 122a to be combined.
  • the combined light is then combined by one of the Shooting from the side.
  • the structure of the modulation module disclosed in the related technology is relatively complicated, and there are many components.
  • the patent application number 200910251608.0 the modulation module based on the LCOS modulator provided in the patent uses multiple polarization splitting prisms and a light combining prism for beam combination
  • the structure of the modulation module is complex, and it also increases the projection display
  • the molding volume of the device the light combining component 122 in the modulation module 12 of the present application only includes the light combining prism 122a and the LCOS modulator, that is, multiple polarization beam splitting prisms are omitted, so the parts of the light combining component 122 can be reduced, and the structure is simple.
  • the molding volume of the projection display device can be reduced.
  • a heat sink 128 is also provided on the outside of the light combining assembly 122.
  • the heat sink 128 can be fixed (for example, pasted) to the third upper cover 125 and/or the third lower cover 126, and each LCOS modulator corresponds to a heat sink outside.
  • a component 128 is provided to achieve good heat dissipation for each LCOS modulator by providing a heat dissipation component 128.
  • the heat sink 128 may be a fin.
  • the first LCOS modulator 122c is disposed on one side of the first high transmission surface 122a1
  • the second LCOS modulator 122d is disposed on one side of the second high transmission surface 122a2
  • the third The LCOS modulator 122e is arranged on one side of the third high-transmittance surface 122a3; the light emitted from the light-emitting module 11 is white light, and one of the monochromatic lights is in the first linear polarization state (for example, the S state or the P state), and the other two Each monochromatic light is in the second linear polarization state (for example, P state or S state).
  • the white light can be incident on the light combining prism 122a from the first high transmission surface 122a1 or the second high transmission surface 122a2, and can be transmitted by the third The high transmission surface 122a3 or the fourth high transmission surface 122a4 emits from the light combining prism 122a.
  • the first LCOS modulator 122c is used to modulate red light
  • the second LCOS modulator 122d is used to modulate blue light
  • the third LCOS modulator 122e is used to modulate green light
  • the light emitted from the light emitting module 11 is White light, where green light is P-state polarized light, red light and blue light are S-state polarized light.
  • the white light enters the light combining prism 122a from the second high transmission surface 122a2, and is combined by the fourth high transmission surface 122a4.
  • the first intersecting surface 122a5 has the optical characteristics of high transmittance of red light and high reflection of blue and green light, that is, the first intersecting surface 122a5 is a dichroic surface; the second intersecting surface 122a6 has the ability to transmit P-state polarization.
  • the optical characteristics of light and reflecting S-state polarized light that is, the second intersection surface 122a6 is a polarization splitting surface;
  • the third intersection surface 122a7 has the optical characteristics of high transmission of blue and green light and high reflection of red light, that is, the third intersection surface 122a7 It is a dichroic surface;
  • the fourth intersecting surface 122a8 has the optical characteristics of transmitting P-state polarized light and reflecting S-state polarized light, that is, the fourth intersecting surface 122a8 is a polarization beam splitting surface. That is, two of the intersecting surfaces are polarization splitting surfaces, and the other two intersecting surfaces are dichroic surfaces, and the polarization splitting surfaces and the dichroic surfaces are staggered, so that the white light can be split and combined.
  • the monochromatic light modulated by the first LCOS modulator 122c, the second LCOS modulator 122d, and the third LCOS modulator 122e is not limited, see Table 1; a monochromatic light that composes the white light is the first Linear polarization state (for example, S state or P state), the other two monochromatic lights are in the second linear polarization state (for example, P state or S state); the sides of the white light incident on the light combining prism 122a are two adjacent high-transmittance surfaces One of the two (for example, the first high transmission surface 122a1 or the second high transmission surface 122a2), the side surface of the combined light exit light combining prism 122a is one of the other two adjacent high transmission surfaces (for example, the third high transmission surface). Surface 122a3 or fourth high-transmittance surface 122a4), the above situations can be freely combined.
  • a monochromatic light that composes the white light is the first Linear polarization state (for example, S state or
  • the light path of the light in the light combining component 122 (that is, the homogenizing component 121 is omitted here) will be described below with the situation shown in the above example.
  • the white light emitted from the light-emitting module 11 passes through the second high-transmittance surface 122a2 and then enters the first intersection surface 122a5.
  • the red light in the S state will pass through the first intersection surface 122a5 and then enter the fourth intersection surface 122a8.
  • the red light in the S state will be reflected and incident on the first high-transmittance surface 122a1.
  • the red light transmitted through the first high-transmission surface 122a1 is incident on the first LCOS modulator 122c, and then passes through the first LCOS.
  • the modulation of the modulator 122c becomes the red light in the P state.
  • the red light in the P state is reflected by the first LCOS modulator 122c and passes through the first high-transmittance surface 122a1, the fourth intersection surface 122a8, and the third intersection surface 122a7 in sequence. Reflected on the third intersection surface 122a7 and incident on the fourth high-transmission surface 122a4, and finally modulated red light exits from the fourth high-transmission surface 122a4;
  • the white light emitted from the light-emitting module 11 passes through the second high-transmittance surface 122a2 and then enters the first intersecting surface 122a5.
  • the blue light in the S state will pass through the first intersecting surface 122a5 and then be reflected to the second intersecting surface 122a6.
  • the blue light in the S state will be reflected and incident on the second high transmission surface 122a2, and the blue light transmitted through the second high transmission surface 122a2 is incident on the second LCOS modulator 122d, and then passes through the second LCOS modulator 122d.
  • the blue light in the P state is reflected by the second LCOS modulator 122d and passes through the second high transmission surface 122a2, the second intersection surface 122a6, the third intersection surface 122a7, and the fourth high transmission surface 122a4 in sequence. Finally, the modulated blue light is emitted from the fourth high transmission surface 122a4;
  • the white light emitted from the light-emitting module 11 passes through the second high-transmittance surface 122a2 and then enters the first intersection surface 122a5.
  • the green light in the P state will pass through the first intersection surface 122a5 and then be reflected to the second intersection surface 122a6.
  • the green light in the P state will be incident on the third high-transmission surface 122a3, and the green light transmitted through the third high-transmission surface 122a3 will enter the third LCOS modulator 122e, and then pass through the third LCOS modulator.
  • the modulation of 122e becomes green light in the S state, and the green light in the S state is reflected by the third LCOS modulator 122e and passes through the third high-transmittance surface 122a3, the second intersection surface 122a6, the third intersection surface 122a7, and the fourth high-transmission surface in turn. On the surface 122a4, the finally modulated green light exits from the fourth high transmission surface 122a4.
  • the second intersection surface 122a6 can be considered to be provided with a metal wire grid 122b, for example, the metal wire grid 122b can be pasted on the second intersection surface 122a6. That is, two monochromatic lights with different linear polarization states are provided with a metal wire grid 122b through the polarization splitting surface where the light is split.
  • the coating surface with polarization splitting characteristics can realize the role of polarization splitting of the red light itself.
  • a metal wire grid 122b may also be provided on the fourth intersecting surface 122a8.
  • the lens module 13 is connected to the light combining component 122, and the light emitted by the light combining component 122 can enter the lens module 13.
  • the lens module 13 includes a first lens group 131, a third reflector 132, a second lens group 133, and a fourth reflector 134 that are sequentially connected, wherein the first lens group 131 and the light combining assembly 122 After the connection, the emitted light of the projection display device is finally emitted from the fourth reflecting mirror 134.
  • the specific composition of the lens module 13 described above is only an example of the lens module 13 in this embodiment.
  • the lens module 13 can be set according to actual needs.
  • the lens module 13 can only be provided with an exit lens (for example, the first lens group 131).
  • the projection display device provided by this application can include engineering projectors, cinema projectors, laser TVs, home theaters, educational projectors, portable miniature projectors, etc., and the projection display device can be placed on a horizontal surface or through a hanging column Hang on the roof.
  • the projection display device may be placed on a horizontal surface such as the ground or a table (such as a TV cabinet) for magnifying and projecting image light onto a projection surface such as a wall or a screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种投影显示装置,包括光机模组(1),光机模组(1)包括发光模组(11)和调制模组(12),发光模组(11)包括用于发出线偏振光的光源(111),调制模组(12)包括调制组件,调制组件包括合光棱镜(122a)和LCOS调制器,合光棱镜(122a)包括四个直角棱镜,合光棱镜(122a)具有四个侧面和由四个直角棱镜形成的四个相交面;LCOS调制器包括第一LCOS调制器(122c)、第二LCOS调制器(122d)和第三LCOS调制器(122e),第一LCOS调制器(122c)、第二LCOS调制器(122d)和第三LCOS调制器(122e)分别设置于三个不同侧面的出光侧;四个相交面中的至少两个用于使光源(111)发出的光在合光棱镜(122a)中分光,四个相交面中的至少两个用于使光源(111)发出的光在合光棱镜(122a)中合光。投影显示装置能够解决调制模组(12)的构成零部件较多和结构较复杂的问题。

Description

投影显示装置 技术领域
本申请涉及投影显示技术领域,尤其涉及一种投影显示装置。
背景技术
现有的投影显示装置通常包括依次连接的发光模组、调制模组和镜头模组,发光模组发出的光经过调制模组调制后,被镜头模组投射到特定位置(例如屏幕)上显示出图像。
然而在相关技术中,基于硅基液晶或反射式液晶光阀(liquid crystal on silicon,LCOS)调制器的调制模组通常采用多个偏振分光棱镜(polarizing beam splitter,PBS)和一个合光棱镜(也称X棱镜)进行合束,构成此种方式的零部件较多,结构较为复杂。
因此,目前亟待需要一种投影显示装置来解决上述问题。
申请内容
本申请提供了一种投影显示装置,以解决相关技术中的调制模组的构成零部件较多和结构较复杂的问题。
本申请实施例提供了一种投影显示装置,投影显示装置包括光机模组,光机模组包括发光模组和调制模组,发光模组包括用于发出线偏振光的光源,调制模组包括调制组件,调制组件包括合光棱镜和LCOS调制器,LCOS调制器用于产生调制光和非调制光,合光棱镜包括四个直角棱镜,合光棱镜具有四个侧面和由四个直角棱镜形成的四个相交面,LCOS调制器包括第一LCOS调制器、第二LCOS调制器和第三LCOS调制器,第一LCOS调制器、第二LCOS调制器和第三LCOS调制器分别设置于三个不同侧面的出光侧,四个相交面中的至少两个用于使光源发出的光在合光棱镜中分光,四个相交面中的至少两个用于使光源发出的光在合光棱镜中合光。
光入射到合光棱镜后,通过四个相交面中的两个相交面而实现分光,即分解为红光、绿光和蓝光;分解后的单色光再经过与每一个LCOS调制器相对设置的侧面后进入LCOS调制器中进行调制,调制后的单色光再经由与每一个LCOS调制器相对设置的侧面后进入合光棱镜中进行合光,合光后的光再由其中一个侧面出射。本申请的调制模组中的合光组件仅包括合光棱镜和LCOS调制器,即省略了多个偏振分光棱镜,如此可以减少合光组件的零部件,结构简单,从而可以降低投影显示装置的制造成本成型体积。
在一种可能的设计中,光源包括用于发出红光的红色激光光源、用于发出绿光的绿色激光光源和用于发出蓝光的蓝色激光光源,红光、绿光和蓝光中的一个单色光为第一线偏振态,另外两个单色光为第二线偏振态,第一线偏振态和第二线偏振态不同。采用具有第一线偏振态的一个单色光和具有第二线偏振态的两个单色光形成白色光,使得该白色光可以由第一高透面或第二高透面入射到合光棱镜中,并可以由第三高透面或第四高透面从合光棱镜中出射。
在一种可能的设计中,其中两个相交面为偏振分光面,另外两个相交面为二向色面,偏振分光面和二向色面交错分布,如此可以实现白光的分光和合光。
在一种可能的设计中,能够将具有不同线偏振态的两个单色光进行分光的偏振分光面设置有金属线栅,如此可使蓝光和绿光的分光效果(即透射P态光且反射S态光)更好,或分光角度更大。
在一种可能的设计中,两个偏振分光面均设置有金属线栅,如此也可使红光的本身的偏振分光的效果更好。
在一种可能的设计中,发光模组还包括匀光棱镜,匀光棱镜设置于绿色激光光源的出光侧,匀光棱镜用于减弱激光投影时的散斑。通过设置匀光棱镜可以减弱激光投影时的散斑。
在一种可能的设计中,匀光棱镜设置于绿色激光光源和红色激光光源的出光侧。如此可以在不影响投影效果的前提下,进一步节省投影显示装置的成本和减小体积。
在一种可能的设计中,匀光棱镜包括多个依次排列的平行四边形棱镜,每个平行四边形棱镜的斜边均设置有半透半反膜;
平行四边形棱镜的水平边的长度大于入射到平行四边形棱镜的入射光的相干长度。由于不同路径出射光的光程差等于平行四边形棱镜的水平边的长度,因此当平行四边形棱镜的水平边的长度大于入射到平行四边形棱镜的入射光的相干长度时,可减弱激光自身的相干性,从而可以减弱激光投影时的散斑。
在一种可能的设计中,匀光棱镜包括两排,两排匀光棱镜沿平行四边形棱镜的水平边成对称设置,如此可使出射光的光强更加均匀,以使散斑对比度越小,从而越能够减弱激光投影时的散斑。
在一种可能的设计中,发光模组还包括沿光源的光路依次设置的合束组件、第一聚焦透镜、扩散轮和准直透镜,合束组件用于将红光、绿光和蓝光进行合束,匀光棱镜设置于绿色激光光源和与绿色激光光源对应的合束组件之间,如此可以实现由发光模组发出的光更加均匀且散斑影响更小。
在一种可能的设计中,调制模组还包括匀光组件,匀光组件沿光路依次包括复眼透镜阵列和聚焦透镜,复眼透镜阵列设置于准直透镜的出光侧,调制组件设置于聚焦透镜的出光侧,如此可以实现在LCOS调制器上产生均匀的照明,同时实现局部调光功能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例提供的投影显示装置的结构示意图;
图2为图1所示投影显示装置中光机模组的结构示意图;
图3为图2所示光机模组中发光模组的结构示意图;
图4为图3所示发光模组去除第一上盖后的结构示意图;
图5为本申请一个实施例提供的匀光棱镜的结构示意图;
图6为本申请另一个实施例提供的匀光棱镜的结构示意图;
图7为图3所示发光模组中调制模组的分解示意图;
图8为图7所示调制模组中合光组件的结构示意图;
图9为图3所示发光模组中镜头模组的结构示意图;
图10为本申请实施例提供的投影显示装置的一种应用场景示意图。
附图标记:
1-光机模组;
11-发光模组;
111-光源;
111a-红色激光光源;
111b-绿色激光光源;
111c-蓝色激光光源;
112a-第一二向色镜;
112b-第一反射镜;
112c-第二二向色镜;
113-第一聚焦透镜;
114-扩散轮;
115-准直透镜;
116-匀光棱镜;
116a-平行四边形棱镜;
116b-半透半反膜;
117-第一上盖;
118-第一下盖;
119-第一连接件;
12-调制模组;
121-匀光组件;
121a-第一复眼透镜阵列;
121b-第二复眼透镜阵列;
121c-第二聚焦透镜;
121d-第二反射镜;
121e-第三聚焦透镜;
122-合光组件;
122a-合光棱镜;
122a1-第一高透面;
122a2-第二高透面;
122a3-第三高透面;
122a4-第四高透面;
122a5-第一相交面;
122a6-第二相交面;
122a7-第三相交面;
122a8-第四相交面;
122b-金属线栅;
122c-第一LCOS调制器;
122d-第二LCOS调制器;
122e-第三LCOS调制器;
123-第二上盖;
124-第二下盖;
125-第三上盖;
126-第三下盖;
127-第二连接件;
128-散热件;
13-镜头模组;
131-第一镜头组;
132-第三反射镜;
133-第二镜头组;
134-第四反射镜;
2-冷却模组;
21-风冷模块;
211-第一风扇;
22-液冷模块;
221-散热贴片;
222-液冷散热器;
223-第二风扇;
224-液泵;
3-控制模组;
31-信号传输器;
32-驱动器;
33-主控制器;
4-电源;
5-壳体。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
如图1所示,该投影显示装置包括壳体5(图1中省略盖设于壳体5上的上盖)以及容纳于壳体5内的光机模组1、冷却模组2和控制模组3,其中:光机模组1包括依次连接的发光模组11、调制模组12和镜头模组13(可参见图2);冷却模组2用于冷却光机模组1和控制模组3;控制模组3用于控制光机模组1和冷却模组2工作。
冷却模组2包括风冷模块21和液冷模块22,风冷模块21和液冷模块22可以固定在壳体5的侧壁上,当然还可固定在壳体5的其它位置。风冷模块21包括第一风扇211,例如图1中风冷模块21包括两个第一风扇211,其中一个第一风扇211与光机模组1的发光模组11相对,另一个第一风扇211与光机模组1的调制模组12相对,这是因为发光模组11和调制模组12是光机模组1中产生热量最大的两个部分。进一步来说,发光模组11是光机模组1中产生热量最大的部分。液冷模块22包括散热贴片221(可参见图3)、液冷散热器222、连接散热贴片221和液冷散热器222之间的冷却管路(图中未示出)、与液冷散热器222相对的第二风扇223以及设置在冷却管路上的液泵224。在一些实施方式中,散热贴片221贴设在发光模组11的光源111(可参见图4)的外部,以快速有效地吸收光源111产生的热量,从而有效提高投影显示装置的散热效果。
控制模组3包括信号传输器31、与调制模组12的调制器连接的驱动器32以及分别与信号传输器31和调制器连接的主控制器33。在一些实现方案中,信号传输器31、驱动器32和主控制器33等部件均可以为PCB板,在PCB板上设置有能够实现上述部件功能的功能模块或器件。外部的图像信号通过信号传输器31向主控制器33传输,主控制器33根据接收到的图像信号控制驱动器32动作,驱动器32控制调制器对光源发出的光进行调制,以得到与输入投影显示装置相同的图像信号。此外,主控制器33还可包括但不限于能够控制光源111的发光和冷却模组2的工作等。可以理解的是,控制模组3在工作时也会产生热量,驱动器32可以设置在与调制模组12相邻的位置,例如图1中的第一风扇211可以与驱动器32和调制模组12相对。需要说明的是,每一个调制器均连接有一个驱动器32,示例性的,图1中的驱动器32为三个,即本申请采用的是三片式调制器的投影显示装置,当然投影显示装置也可根据实际需要采用一片式调制器或两片式调制器。其中,驱动器32的类型可以是现场可编程门阵列(field-programmable gate array,FPGA)芯片、专用集成电路(application specific integrated circuit,ASIC)芯片或者数字信号处理单元(digital signal processor,DSP)芯片等。
此外,该投影显示装置还包括电源4,电源4能分别与光机模组1、冷却模组2和控制模组3电连接,以对上述三者供电。电源4的类型例如可以是铅蓄电池、锂电池等,在此本申请不进行具体限定。
下面对光机模组1的各个部分进行说明。
<发光模组11>
发光模组11包括用于发出偏振光的光源111。本申请所指的光源111,既包括光源111为直接发出偏振光的发光元件(如半导体发光元件、半导体发光元件阵列、灯泡光源等)的情况,也包括光源111为发光元件与其它光学元件组合得到的能够发出偏振光的发光模组11(例如,发光元件与透镜组合的发光模组11、发光元件与偏振转换元件的发光模组11)。可以将本申请所述的光源看作一个发光的“黑盒子”,“黑盒子”中可以包含任何种类的光学元件。
在本实施例中,光源111为激光光源,如激光二极管光源、激光二极管阵列光源或激光器光源。该光源111具有光学扩展量小的特点,使得发出的偏振光在进入调制模组12时具有较小的光斑、较小的光发散角和较小的光学扩展量,避免了大量的光因发散角大而无法被利用,提高了光利用率。如果采用其他光源111,如灯泡光源、LED光源,其光学扩展量远大于激光光源的光学扩展量,为使入射到调制器装置的光斑满足入射面的大小,将会扩大光的发散角,这将使得大量的光无法被调制模组12利用,而在调制模组12的有效光学面之外被吸收转换成热量。
当然,在对光利用率要求不高的环境下,也可以采用灯泡或LED光源作为发光模组11的光源111。
如图4所示,图4为图3的分解示意图。在本实施例中,发光模组11包括红色激光光源111a、绿色激光光源111b和蓝色激光光源111c,发光模组11还包括用于将上述三种激光光源进行合束的合束组件,例如可以是二向色镜和聚焦透镜的组合,例如还可以是二向色镜、反射镜和聚焦透镜的组合。示例性的,红色激光光源111a位于一侧,绿色激光光源111b和蓝色激光光源111c位于与红色激光光源111a垂直设置的一侧;红色激光光源111a的出光侧设置有第一二向色镜112a,第一二向色镜112a用于透射红光且反射蓝光和绿光;绿色激光光源111b的出光侧设置有反射镜,反射镜用于反射绿光;蓝色激光光源111c的出光侧设置有第二二向色镜112c,第二二向色镜112c用于透射蓝光且反射绿光。具体的光路为:红色激光光源111a发出红光,经过第一二向色镜112a后,入射到第一聚焦透镜113;蓝色激光光源111c发出蓝光,经过第二二向色镜112c和第一二向色镜112a后,入射到第一聚焦透镜113;绿色激光光源111b发出绿光,经过第一反射镜112b、第二二向色镜112c和第一二向色镜112a后,入射到第一聚焦透镜113。
在一些实施方式中,发光模组11还包括扩散轮114和准直透镜115,扩散轮114用于消除激光散斑,准直透镜115起到能够使光在更长距离范围内平行且均匀的作用,从第一聚焦透镜113出射的光依次经过扩散轮114和准直透镜115射出,并入射到调制模组12中。该扩散轮114可以与电机相连,以通过电机控制其旋转,即扩散轮114通过旋转的方式将入射到扩散轮114上的光均匀反射。在一些实现方案中,扩散轮114可以由扩散片代替,扩散片和扩散轮114的区别在于:扩散片是固定不动的。从消除激光散斑的角度而言,扩散轮114的效果要优于扩散片。
当光源采用激光光源时,在投影时会存在散斑。在一些实施方式中,绿色激光光源111b的出光侧(具体是绿色激光光源111b和反射镜之间)设置有匀光棱镜116,该匀光棱镜116的作用为减弱激光光源自身的相干性,从而可以减弱投影时的散斑。根据视见函数可知:在可见光谱中,人眼对光谱中部(黄绿色)最敏感,越靠近光谱两端,越不敏感。因此,至少需要在绿色激光光源111b的出光侧设置匀光棱镜116,以降低人眼对绿光在投影时产生散斑的影响。
当然,为了提高投影效果,也可以在红色激光光源111a的出光侧(具体是红色激光光源111a和第一二向色镜112a之间)设置匀光棱镜116或者在蓝色激光光源111c的出光侧(具体是绿色激光光源111b和反射镜之间)设置匀光棱镜116。示例性的,如图4所示,绿色激光光源111b的出光侧设置有匀光棱镜116,红色激光光源111a的出光侧也设置有匀光棱。在该实施方式中未在蓝色激光光源111c的出光侧设置匀光棱镜116,以在不影响投影效果的前提下,进一步节省成本和减小体积。
请继续参阅图3和图4,发光模组11包括第一上盖117和与第一上盖117固定的第一下盖118,第一上盖117和第一下盖118之间形成第一腔体,发光模组11还设置有用于与调制模组12连接的第一连接件119,第一连接件119固定于第一上盖117和第一下盖118上。上述部件,诸如红色激光光源111a、绿色激光光源111b和蓝色激光光源111c、匀光棱镜116、第一二向色镜112a、第二二向色镜112c、第一反射镜112b、第一聚焦透镜113、扩散轮114和准直透镜115均收容于该第一腔体内,以利用第一上盖117和第一下盖118对上述部件进行保护。
下面对匀光棱镜116的结构、作用和原理进行说明。
如图5所示,其为匀光棱镜116的一种结构示意图。在该实施方式中,匀光棱镜116包括多个依次排列的平行四边形棱镜116a。其中对于棱镜而言,光线入射出射的平面叫侧面,与侧面垂直的平面叫主截面。根据主截面的形状可分成三棱镜、直角棱镜、五角棱镜、平行四边形棱镜。
每个平行四边形棱镜116a的斜边均设置有半透半反膜116b,即光入射到该半透半反膜116b后,会使一半的光反射,另一半的光透射。需要说明的是,位于匀光棱镜116两端的平行四边形棱镜116a除外,这是因为该平行四边形棱镜116a与外界(可认为是气体)存在全反射,因此当有入射光入射到位于匀光棱镜116两端的平行四边形棱镜116a时,光会完全反射。为保证反射的光与入射的光垂直,每个平行四边形棱镜116a的斜边均与水平边的夹角为45度。示例性的,入射光为LDn(LDn非处于匀光棱镜116两端的入射光,即LDn不是LD1),由该入射光LDn经过平行四边形棱镜116a后的出射光依次为LDn1、LDn2、LDn3等,其中LDn1的光程为d1,LDn2的光程为d1+d2,LDn3的光程为d1+2d2,以此类推。可以知道的是,当LDn为LD1时,其中LD11的光程为d1+d2,LD22的光程为d1+2d2,LD23的光程为d1+3d2,以此类推。其中,d1为一个平行四边形棱镜116a两个水平边之间的距离,d2为一个平行四边形棱镜116a的水平边的长度。应用的原理为:光源发出的每一束激光经过匀光棱镜116后分为多束激光,不同束激光之间会行进不同路径,使得LDn1、LDn2等不同出射光所行进路径的长度不同,当不同路径出射光的光程差大于入射光的相干长度时,可以减弱激光自身的相干性,从而可以减弱激光投影时的散斑。 示例性的,LDn1和LDn2的光程差为d2,当使d2大于LDn的相干长度时,即可减弱激光自身的相干性,从而可以减弱激光投影时的散斑。
如图6所示,其为匀光棱镜116的又一种结构示意图。该实施方式提供的匀光棱镜116相比图5所示匀光棱镜116的区别在于:该匀光棱镜116包括两排对称设置的图5所示匀光棱镜116。具体来说,两排图5所示匀光棱镜116沿平行四边形棱镜116a的水平边成对称设置。
示例性的,入射光为LDn,由该入射光LDn经过平行四边形棱镜116a后的出射光依次为LDn1、LDn2、LDn3等,其中LDn1的光程为2d1+d2,LDn2的光程为2d1,LDn3的光程为2d1+d2,LDn4的光程为2d1+3d2,以此类推。可以知道的是,当LDn为LD1时,其中LD11的光程为2d1+2d2,LD22的光程为2d1+d2,LD23的光程为2d1+2d2,以此类推。也就是说,在该实施方式中,相邻的两个出射光的光程差均为d2,与前述实施方式一致。然而,在该实施方式中除了基于图5中的原理之外,还基于的原理包括:散斑的大小由散斑对比度来表征,而散斑对比度取决于光强的均匀性。当各出射光的光强相等时,依据公式
Figure PCTCN2021082502-appb-000001
其中C为散斑对比度,N为独立图样个数,例如当出射光为三条时,N等于3,
Figure PCTCN2021082502-appb-000002
而当出射光为一条(可以理解为三条或多条出射光均叠加为一条出射光)时,C=1,也就是说,只有当出射光的光强更加均匀时,散斑对比度越小,越接近
Figure PCTCN2021082502-appb-000003
即出射光的光强越均匀,越能够减弱激光投影时的散斑。
以图5的LDn为例,入射光LDn的光强为I,根据半透半反的原理,LDn1的光强为1/2I,LDn2的光强为1/4I,LDn3的光强为1/8I,LDn3之后的出射光相比LDn1和LDn2的光强较小,可以忽略不计。而以图6的LDn为例,入射光LDn的光强为I,根据半透半反的原理,LDn1的光强约为1/3I,LDn2的光强约为1/3I,LDn3及其之后的出射光相比LDn1和LDn2的光强较小,可以忽略不计。因此,可以通过比较图5中的LDn1和LDn2的光强以及图6中LDn1和LDn2的光强可知,图6中的LDn1和LDn2的散斑对比度更小,因此图6所示匀光棱镜116相较于图5所示匀光棱镜116的出射光的光强更加均匀,从而能够进一步减弱激光投影时的散斑。
<调制模组12>
如图7所示,调制模组12包括第二上盖123和与第二上盖123固定的第二下盖124,第二上盖123和第二下盖124之间形成第二腔体,第二腔体用于容纳匀光组件121;调制模组12还包括第三上盖125和与第三上盖125固定的第三下盖126,第三上盖125和第三下盖126之间形成第三腔体,第三腔体用于容纳合光组件122;调制模组12还包括第二连接件127,第二连接件127用于连接匀光组件121和合光组件122,例如第二连接件127的一端与第二上盖123和第二下盖124固定,另一端与第三上盖125和第三下盖126固定。
匀光组件121设置于发光模组11的出光侧,具体来说,匀光组件121设置于准直透镜115的出光侧。例如,发光模组11通过第一连接件119与调制模组12的第二上盖123和第二下盖124连接。匀光组件121包括复眼透镜阵列和聚焦透镜,由发光模组11出射的光首先通过复眼透镜阵列,然后通过聚焦透镜,会使光照射LCOS调制器上;而且通过利用复眼透镜阵列和聚焦透镜可以实现在LCOS调制器上产生均匀的照明,同时实现局部调光功能。在另一些实现的方案中,复眼透镜阵列可以替换为光棒,光棒可以是实心光棒 或空心光棒。在本实施方式中,复眼透镜阵列包括两列平行排列的第一复眼透镜阵列121a和第二复眼透镜阵列121b,聚焦透镜包括第二聚焦透镜121c和第三聚焦透镜121e,如此可以实现均匀照明,具体的实现原理在此不进行赘述。
在本实施方式中,匀光组件121和合光组件122之间具有夹角,例如二者可以为垂直设置,如此可增加结构的紧凑性。为此,可以在匀光组件121中设置反射镜,例如可以在第一聚焦透镜113和第二聚焦透镜121c之间设置第二反射镜121d。当然,匀光组件121和合光组件122之间也可以平行设置,如此匀光组件121也不再需设置反射镜,而且此时第一聚焦透镜113和第二聚焦透镜121c也为平行设置。
如图8所示,合光组件122包括合光棱镜122a和LCOS调制器,合光棱镜122a由四个直角棱镜组成,该合光棱镜122a具有四个侧面和由四个直角棱镜形成的四个相交面,四个侧面中相邻两个互相垂直,四个相交面中相邻两个互相垂直。在本实施方式中,四个侧面分别为第一高透面122a1、第二高透面122a2、第三高透面122a3和第四高透面122a4,如此可以实现白光能够高透地入射到合光棱镜122a中或从合光棱镜122a中出射,从而可以提高光的利用率;四个相交面分别为第一相交面122a5、第二相交面122a6、第三相交面122a7和第四相交面122a8,四个所述相交面中的至少两个用于使光源111发出的光在合光棱镜122a中分光,四个相交面中的至少两个用于使光源111发出的光在合光棱镜122a中合光。例如,第一相交面122a5和第二相交面122a6可以使光源111发出的光在合光棱镜122a中分光,第二相交面122a6和第三相交面122a7可以使光源111发出的光在合光棱镜122a中合光,具体描述参见下文。因此,通过设置该四个相交面具有不同的光学特性,以实现白色光的分光和合光。例如,可以规定第一相交面122a5分别与第一高透面122a1和第二高透面122a2相交,第二相交面122a6分别与第二高透面122a2和第三高透面122a3相交,第三相交面122a7分别与第三高透面122a3和第四高透面122a4相交,第四相交面122a8分别与第四高透面122a4和第一高透面122a1相交。
在本实施方式中,LCOS调制器的数量为三个,分别为第一LCOS调制器122c、第二LCOS调制器122d和第三LCOS调制器122e,每一个LCOS调制器分别设置于合光棱镜122a的一个侧面的出光侧。光入射到合光棱镜122a后,通过四个相交面中的两个相交面而实现分光,即分解为红光、绿光和蓝光;分解后的单色光再经过与每一个LCOS调制器相对设置的侧面后进入LCOS调制器中进行调制,调制后的单色光再经由与每一个LCOS调制器相对设置的侧面后进入合光棱镜122a中进行合光,合光后的光再由其中一个侧面出射。
需要说明的是,相关技术中所披露的调制模组的结构都相对复杂,构成的零部件较多。例如申请号为200910251608.0的专利,该专利中提供的基于LCOS调制器的调制模组采用多个偏振分光棱镜和一个合光棱镜进行合束,该调制模组的结构复杂,同时也增加了投影显示装置的成型体积。然而,本申请的调制模组12中的合光组件122仅包括合光棱镜122a和LCOS调制器,即省略了多个偏振分光棱镜,如此可以减少合光组件122的零部件,结构简单,从而可以降低投影显示装置的成型体积。
合光组件122的外部还设置有散热件128,例如散热件128可以固定(例如粘贴)于第三上盖125和/或第三下盖126,每一个LCOS调制器的外部均对应有一个散热件128,以通过设置散热件128实现对每一个LCOS调制器良好的散热。在一些实现方案中,散热件128可以是翅片。
请继续参阅图8,在本实施方式中,第一LCOS调制器122c设置于第一高透面122a1的一侧,第二LCOS调制器122d设置于第二高透面122a2的一侧,第三LCOS调制器122e设置于第三高透面122a3的一侧;从发光模组11出射的光为白色光,其中一个单色光为第一线偏振态(例如S态或P态),另外两个单色光均为第二线偏振态(例如P态或S态),该白色光可以由第一高透面122a1或第二高透面122a2入射到合光棱镜122a中,并可以由第三高透面122a3或第四高透面122a4从合光棱镜122a中出射。
在一种示例中,第一LCOS调制器122c用于调制红光,第二LCOS调制器122d用于调制蓝光,第三LCOS调制器122e用于调制绿光;从发光模组11出射的光为白色光,其中绿光为P态偏振光,红光和蓝光为S态偏振光,该白色光由第二高透面122a2入射到合光棱镜122a中,并由第四高透面122a4从合光棱镜122a中出射。在该示例中,第一相交面122a5具有可以高透红光且高反蓝绿光的光学特性,即第一相交面122a5是一个二向色面;第二相交面122a6具有可以透射P态偏振光且反射S态偏振光的光学特性,即第二相交面122a6是一个偏振分光面;第三相交面122a7具有可以高透蓝绿光且高反红光的光学特性,即第三相交面122a7是一个二向色面;第四相交面122a8具有可以透射P态偏振光且反射S态偏振光的光学特性,即第四相交面122a8是一个偏振分光面。即,其中两个相交面为偏振分光面,另外两个相交面为二向色面,偏振分光面和二向色面交错分布,从而可以实现对白色光的分光和合光。
在其他示例中,此处不进行具体赘述。需要说明的是,第一LCOS调制器122c、第二LCOS调制器122d和第三LCOS调制器122e所调制的单色光不限,可参见表1;组成白色光的一个单色光为第一线偏振态(例如S态或P态),另外两个单色光均为第二线偏振态(例如P态或S态);白光入射合光棱镜122a的侧面为其中两个相邻高透面中的一个(例如第一高透面122a1或第二高透面122a2),合光后的光出射合光棱镜122a的侧面为另外两个相邻高透面中的一个(例如第三高透面122a3或第四高透面122a4),以上情形可以自由组合。
表1
Figure PCTCN2021082502-appb-000004
下面以上述示例所示的情形对光在合光组件122中的光路(即在此处忽略匀光组件121)进行说明。
(1)从发光模组11发出的白光经过第二高透面122a2后入射到第一相交面122a5,其中S态的红光会透过第一相交面122a5后入射到第四相交面122a8,经过第四相交面122a8后,S态的红光会反射并入射到第一高透面122a1,从第一高透面122a1透过的红光入射到第一LCOS调制器122c,经过第一LCOS调制器122c的调制变成P态的红光,P 态的红光由第一LCOS调制器122c反射并依次经过第一高透面122a1、第四相交面122a8和第三相交面122a7,红光在第三相交面122a7反射并入射到第四高透面122a4,最后调制后的红光从第四高透面122a4出射;
(2)从发光模组11发出的白光经过第二高透面122a2后入射到第一相交面122a5,其中S态的蓝光会透过第一相交面122a5后反射到第二相交面122a6,经过第二相交面122a6后,S态的蓝光会反射并入射到第二高透面122a2,从第二高透面122a2透过的蓝光入射到第二LCOS调制器122d,经过第二LCOS调制器122d的调制变成P态的蓝光,P态的蓝光由第二LCOS调制器122d反射并依次经过第二高透面122a2、第二相交面122a6、第三相交面122a7和第四高透面122a4,最后调制后的蓝光从第四高透面122a4出射;
(3)从发光模组11发出的白光经过第二高透面122a2后入射到第一相交面122a5,其中P态的绿光会透过第一相交面122a5后反射到第二相交面122a6,经过第二相交面122a6后,P态的绿光会入射到第三高透面122a3,从第三高透面122a3透过的绿光入射到第三LCOS调制器122e,经过第三LCOS调制器122e的调制变成S态的绿光,S态的绿光由第三LCOS调制器122e反射并依次经过第三高透面122a3、第二相交面122a6、第三相交面122a7和第四高透面122a4,最后调制后的绿光从第四高透面122a4出射。
此外,对于第二相交面122a6而言,由于第二相交面122a6起到的是对蓝光和绿光的偏振分光的作用,为使蓝光和绿光的分光效果(即透射P态光且反射S态光)更好,或分光角度更大,第二相交面122a6可以考虑设置金属线栅122b,例如可以将金属线栅122b粘贴于第二相交面122a6上。即,不同线偏振态的两个单色光经过进行分光的偏振分光面设置有金属线栅122b。而对于第四相交面122a8而言,由于第四相交面122a8起到的是对红光本身的偏振分光的作用,因此具有偏振分光特性的镀膜面便能实现对红光本身的偏振分光的作用。当然,为使第四相交面122a8的偏振分光的效果更好,也可在第四相交面122a8设置金属线栅122b。
<镜头模组13>
如图9所示,镜头模组13与合光组件122连接,合光组件122出射的光能够入射到镜头模组13中。在一些实施方式中,该镜头模组13包括依次连接的第一镜头组131、第三反射镜132、第二镜头组133和第四反射镜134,其中第一镜头组131与合光组件122连接,最终投影显示装置的出射光从第四反射镜134射出。上述镜头模组13的具体组成仅作为本实施方式中镜头模组13的一种示例。镜头模组13可以根据实际需要进行设置,例如镜头模组13可仅设置出射镜头(例如第一镜头组131)。
本申请提供的投影显示装置可以包括工程投影机、影院投影机、激光电视、家庭影院、教育投影机和便携式微型投影机等,而且该投影显示装置既可以放置在水平面上,也可以通过吊柱吊挂在屋顶上。示例性的,如图10所示,投影显示装置可以被放置在例如地面或桌子(例如电视柜)等的水平面上,用于将图像光向墙壁或屏幕等投射面放大投射。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种投影显示装置,其特征在于,所述投影显示装置包括光机模组,所述光机模组包括:
    发光模组,包括用于发出线偏振光的光源;
    调制模组,包括调制组件,所述调制组件包括合光棱镜和LCOS调制器,所述LCOS调制器用于产生调制光和非调制光;
    所述合光棱镜包括四个直角棱镜,所述合光棱镜具有四个侧面和由四个所述直角棱镜形成的四个相交面;
    所述LCOS调制器包括第一LCOS调制器、第二LCOS调制器和第三LCOS调制器,所述第一LCOS调制器、所述第二LCOS调制器和所述第三LCOS调制器分别设置于三个不同所述侧面的出光侧;
    四个所述相交面中的至少两个用于使所述光源发出的光在所述合光棱镜中分光,四个所述相交面中的至少两个用于使所述光源发出的光在所述合光棱镜中合光。
  2. 根据权利要求1所述的投影显示装置,其特征在于,所述光源包括用于发出红光的红色激光光源、用于发出绿光的绿色激光光源和用于发出蓝光的蓝色激光光源,所述红光、所述绿光和所述蓝光中的一个单色光为第一线偏振态,另外两个单色光为第二线偏振态,所述第一线偏振态和所述第二线偏振态不同。
  3. 根据权利要求2所述的投影显示装置,其特征在于,其中两个所述相交面为偏振分光面,另外两个所述相交面为二向色面,所述偏振分光面和所述二向色面交错分布。
  4. 根据权利要求3所述的投影显示装置,其特征在于,不同线偏振态的两个单色光经过的所述偏振分光面设置有金属线栅。
  5. 根据权利要求3所述的投影显示装置,其特征在于,两个所述偏振分光面均设置有金属线栅。
  6. 根据权利要求2所述的投影显示装置,其特征在于,所述发光模组还包括匀光棱镜,所述匀光棱镜设置于所述绿色激光光源的出光侧,所述匀光棱镜用于减弱激光投影时的散斑。
  7. 根据权利要求6所述的投影显示装置,其特征在于,所述匀光棱镜设置于所述绿色激光光源和所述红色激光光源的出光侧。
  8. 根据权利要求6所述的投影显示装置,其特征在于,所述匀光棱镜包括多个依次排列的平行四边形棱镜,每个所述平行四边形棱镜的斜边均设置有半透半反膜;
    所述平行四边形棱镜的水平边的长度大于入射到所述平行四边形棱镜的入射光的相干长度。
  9. 根据权利要求8所述的投影显示装置,其特征在于,所述匀光棱镜包括两排,两排所述匀光棱镜沿所述平行四边形棱镜的水平边成对称设置。
  10. 根据权利要求6所述的投影显示装置,其特征在于,所述发光模组还包括沿所述光源的光路依次设置的合束组件、第一聚焦透镜、扩散轮和准直透镜,所述合束组件用于将所述红光、所述绿光和所述蓝光进行合束,所述匀光棱镜设置于所述绿色 激光光源和与绿色激光光源对应的所述合束组件之间。
  11. 根据权利要求10所述的投影显示装置,其特征在于,所述调制模组还包括匀光组件,所述匀光组件沿光路依次包括复眼透镜阵列和聚焦透镜,所述复眼透镜阵列设置于所述准直透镜的出光侧,所述调制组件设置于所述聚焦透镜的出光侧。
  12. 根据权利要求1-11中任一项所述的投影显示装置,其特征在于,所述投影显示装置还包括冷却模组和控制模组,所述冷却模组用于冷却所述光机模组和所述控制模组,所述控制模组用于控制所述光机模组和所述冷却模组工作。
  13. 根据权利要求12所述的投影显示装置,其特征在于,所述冷却模组包括风冷模块和液冷模块,所述风冷模块分别与所述发光模组和所述调制模组相对,所述液冷模块包括散热贴片,所述散热贴片贴设在所述光源的外部。
  14. 根据权利要求12所述的投影显示装置,其特征在于,所述投影显示装置还包括壳体,所述光机模组、所述冷却模组和所述控制模组容纳于所述壳体内。
PCT/CN2021/082502 2020-04-30 2021-03-24 投影显示装置 WO2021218499A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/922,235 US20230176461A1 (en) 2020-04-30 2021-03-24 Projection Display Apparatus
EP21795522.8A EP4130872A4 (en) 2020-04-30 2021-03-24 PROJECTION DISPLAY DEVICE
JP2022565981A JP2023523358A (ja) 2020-04-30 2021-03-24 投影ディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010368408.X 2020-04-30
CN202010368408.XA CN113589627A (zh) 2020-04-30 2020-04-30 投影显示装置

Publications (1)

Publication Number Publication Date
WO2021218499A1 true WO2021218499A1 (zh) 2021-11-04

Family

ID=78237833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082502 WO2021218499A1 (zh) 2020-04-30 2021-03-24 投影显示装置

Country Status (5)

Country Link
US (1) US20230176461A1 (zh)
EP (1) EP4130872A4 (zh)
JP (1) JP2023523358A (zh)
CN (1) CN113589627A (zh)
WO (1) WO2021218499A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光***和投影设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326139B (zh) * 2020-09-30 2023-10-20 华为技术有限公司 一种消散斑装置、激光光源及投影设备
CN114594585B (zh) * 2022-03-31 2023-11-10 歌尔光学科技有限公司 一种光学模组以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070242239A1 (en) * 2006-04-12 2007-10-18 Arthur Berman Method and Apparatus for Placing Light Modifying Elements in a Projection Lens
US7556382B1 (en) * 2003-05-13 2009-07-07 Lightmaster Systems, Inc. Illuminator that outputs linearly polarized light and that is suitable for use in microdisplay based light engine applications
US20090213333A1 (en) * 2008-02-25 2009-08-27 Young Optics Inc. Projection display apparatus
CN101546045A (zh) * 2008-03-28 2009-09-30 红蝶科技(深圳)有限公司 偏振转换装置及使用其的投影***
CN102696157A (zh) * 2010-07-30 2012-09-26 索尼公司 光源单元、照明装置及显示器
US20190072840A1 (en) * 2017-09-01 2019-03-07 Panasonic Intellectual Property Management Co. Ltd Light source device and projection display apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW407222B (en) * 1998-05-14 2000-10-01 Primax Electronics Ltd The projective display apparatus used to show the image
JP3370010B2 (ja) * 1999-03-31 2003-01-27 三洋電機株式会社 液晶プロジェクタ装置
JP5495041B2 (ja) * 2010-03-31 2014-05-21 カシオ計算機株式会社 プロジェクタ
JP5673046B2 (ja) * 2010-12-06 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
CN105137610A (zh) * 2015-10-22 2015-12-09 海信集团有限公司 一种激光消散斑光路及双色、三色激光光源
CN110376755A (zh) * 2019-08-15 2019-10-25 浙江水晶光电科技股份有限公司 消激光散斑装置及扫描投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556382B1 (en) * 2003-05-13 2009-07-07 Lightmaster Systems, Inc. Illuminator that outputs linearly polarized light and that is suitable for use in microdisplay based light engine applications
US20070242239A1 (en) * 2006-04-12 2007-10-18 Arthur Berman Method and Apparatus for Placing Light Modifying Elements in a Projection Lens
US20090213333A1 (en) * 2008-02-25 2009-08-27 Young Optics Inc. Projection display apparatus
CN101546045A (zh) * 2008-03-28 2009-09-30 红蝶科技(深圳)有限公司 偏振转换装置及使用其的投影***
CN102696157A (zh) * 2010-07-30 2012-09-26 索尼公司 光源单元、照明装置及显示器
US20190072840A1 (en) * 2017-09-01 2019-03-07 Panasonic Intellectual Property Management Co. Ltd Light source device and projection display apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光***和投影设备
CN117590678B (zh) * 2024-01-19 2024-05-28 宜宾市极米光电有限公司 合光***和投影设备

Also Published As

Publication number Publication date
EP4130872A1 (en) 2023-02-08
CN113589627A (zh) 2021-11-02
EP4130872A4 (en) 2023-10-11
JP2023523358A (ja) 2023-06-02
US20230176461A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2021218499A1 (zh) 投影显示装置
US7210793B2 (en) Light source unit and projector
JP5047735B2 (ja) 照明装置および画像表示装置
US10754162B2 (en) Projection apparatus and head-mounted display device
CN114391251B (zh) 光束调制设备和投影***
US20230007218A1 (en) Laser projection apparatus
CN104251464A (zh) 显示模块与光导引装置
WO2021127277A1 (en) Polarizing edge coupled light in backlight
TWI731073B (zh) 照明系統
WO2011103807A1 (zh) 图像投影***及其光路合成器
JP2019061110A (ja) 照明装置およびプロジェクター
CN113589628B (zh) 投影显示装置及其校准方法
JP4815301B2 (ja) 光源モジュール及び投影型表示装置
JP2008015299A (ja) 照明装置及びプロジェクタ
US7350927B2 (en) Image display apparatus
JP2005309125A (ja) 反射型液晶照明光学系および画像表示光学系
US20110134398A1 (en) Projection System
CN218601591U (zh) 光学模块和头戴显示设备
CN218122458U (zh) 光源装置
CN219958062U (zh) 投影***
CN211979407U (zh) 一种投影吊灯
CN216310513U (zh) 照明***及投影装置
CN221281397U (zh) 合像装置和投影仪
US20240231206A9 (en) Light source device and projector
WO2023082666A1 (zh) 光源和激光投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565981

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021795522

Country of ref document: EP

Effective date: 20221031

NENP Non-entry into the national phase

Ref country code: DE