JP2019061110A - 照明装置およびプロジェクター - Google Patents

照明装置およびプロジェクター Download PDF

Info

Publication number
JP2019061110A
JP2019061110A JP2017186229A JP2017186229A JP2019061110A JP 2019061110 A JP2019061110 A JP 2019061110A JP 2017186229 A JP2017186229 A JP 2017186229A JP 2017186229 A JP2017186229 A JP 2017186229A JP 2019061110 A JP2019061110 A JP 2019061110A
Authority
JP
Japan
Prior art keywords
light
diffusion
semiconductor laser
blue
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017186229A
Other languages
English (en)
Inventor
秋山 光一
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2017186229A priority Critical patent/JP2019061110A/ja
Publication of JP2019061110A publication Critical patent/JP2019061110A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】スペックルノイズの発生が少ない小型の照明装置を提供する。【解決手段】本発明の照明装置は、第1の波長を有する第1の光を射出する第1の発光装置と、第2の波長を有する第2の光を射出する第2の発光装置と、を備え、第1の光と第2の光とを含む光を射出する光源部と、光源部から射出された光を所定の集光位置に集光する集光光学系と、所定の集光位置に配置され、集光光学系から射出された光を拡散させる拡散部と、を備え、拡散部において、第1の光に対する拡散特性と第2の光に対する拡散特性とが互いに異なる。【選択図】図1

Description

本発明は、照明装置およびプロジェクターに関する。
近年、プロジェクターの高性能化を目的として、広色域かつ高効率な光源であるレーザー光源を用いたプロジェクターが注目されている。例えば、下記の特許文献1には、個別に配置された赤色、緑色、青色の3色のレーザーと、各色のレーザーから射出された光を順次合成する2個のダイクロイックプリズムと、を有する光源装置およびこれを備えたプロジェクターが開示されている。
特開2013−231940号公報
ところで、レーザー光源には、スペックルノイズの発生という問題がある。この問題を解決するために、レーザー光を透過させる光学素子を駆動する等の手法がよく用いられる。特許文献1では、表面に凹凸が形成された光学素子が2つのフライアイレンズ間に配置され、この光学素子を振動させる構成が採用されている。その他、モーターを用いて拡散板を回転させる手法も提案されている。
しかしながら、所望の色バランスを実現するために必要な光出力が発光色毎に同一でない、現状のレーザーチップ1個あたりの光出力が発光色毎に異なる、等の要因によって、発光色毎のレーザー光源の使用個数を同じにすることはできない。
レーザー光源の個数が発光色毎に異なる場合、拡散板への光の入射角が発光色毎に異なるため、拡散板の拡散特性も発光色毎に異ならせる必要がある。この問題は、各発光色の光の光路毎に異なる拡散特性を有する拡散板を別個に配置することによって解決することができる。ただし、この構成では、拡散板の使用枚数が多くなり、照明装置が大型化する、という新たな問題が発生する。
本発明の一つの態様は、上記の課題を解決するためになされたものであって、スペックルノイズの発生が少ない、小型の照明装置を提供することを目的の一つとする。また、本発明の一つの態様は、上記の照明装置を備えたプロジェクターを提供することを目的の一つとする。
上記の目的を達成するために、本発明の一つの態様の照明装置は、第1の波長を有する第1の光を射出する第1の発光装置と、前記第1の波長とは異なる第2の波長を有する第2の光を射出する第2の発光装置と、を備えており、前記第1の光と前記第2の光とを含む光を射出する光源部と、前記光源部から射出された光を所定の集光位置に集光する集光光学系と、前記所定の集光位置に配置され、前記集光光学系から射出された光を拡散させる拡散部と、を備え、前記拡散部において、前記第1の光に対する拡散特性と前記第2の光に対する拡散特性とが互いに異なる。
本発明の一つの態様の照明装置においては、拡散部における第1の光に対する拡散特性と第2の光に対する拡散特性とが互いに異なる。これにより、第1の発光装置の個数と第2の発光装置の個数が異なり、各発光色の光の入射角がそれぞれ異なっていても、第1の光の拡散角度分布と第2の光の拡散角度分布とを互いに近付けることができ、一方の光に対する拡散性能の不足を補うことができる。その結果、スペックルノイズの発生を抑制することができる。また、この構成によれば、波長の異なる光の光路毎に異なる拡散特性を有する拡散部を配置する必要がないため、小型の照明装置を実現することができる。
本発明の一つの態様の照明装置において、前記拡散部は、前記集光光学系から射出された光が入射する第1面と、前記第1面とは異なる第2面と、を有する透光性基板を備えていてもよく、前記第1面は、前記第1の光を透過および拡散させるとともに、前記第2の光を反射および拡散させ、前記第2面は、前記第1の光を反射させる構成であってもよい。
この構成によれば、集光光学系から射出された第1の光は、第1面を透過して透光性基板の内部に入射する際に1回拡散され、その後、第2面で反射して第1面を再度透過して透光性基板から射出する際に再度拡散される。一方、集光光学系から射出された第2の光は、第1面で反射する際に1回拡散され、透光性基板の内部に入射することはない。このように、第1の光が第1面で2回拡散され、第2の光が第1面で1回拡散されることにより、第1の光の拡散特性と第2の光の拡散特性とが異なる拡散部を実現することができる。
本発明の一つの態様の照明装置において、前記光源部は、前記第1の波長および前記第2の波長とは異なる第3の波長を有する第3の光を射出する第3の発光装置と、を備え、前記第1の光、前記第2の光および前記第3の光は、第1方向に射出され、前記第2の発光装置の個数は、前記第1の発光装置の個数よりも多く、前記第2の発光装置は、前記第1の発光装置を囲むように、前記第1の光の中心軸の周りに回転対称に設けられ、前記第3の発光装置の個数は、前記第1の発光装置の個数よりも多く、前記第3の発光装置は、前記第1の発光装置を囲むように、前記第1の光の前記中心軸の周りに回転対称に設けられていてもよい。
この構成によれば、第1の発光装置、第2の発光装置、および第3の発光装置を含む光源部の占有面積を小さくすることができる。これにより、異なる3色の光を含む光を射出することが可能な小型の光源部を実現することができる。また、第2の波長の第2の光の中心軸、および第3の波長の第3の光の中心軸を、第1の波長の第1の光の中心軸に一致させることができる。
本発明の一つの態様の照明装置において、前記拡散部は、前記第1の光に対する拡散特性と前記第3の光に対する拡散特性とが互いに異なり、前記第1面において、前記第3の光を反射および拡散させる構成であってもよい。
この構成によれば、集光光学系から射出された第1の光は、第1面を透過して透光性基板の内部に入射する際に1回拡散され、その後、第2面で反射して第1面を再度透過して透光性基板から射出する際に再度拡散される。一方、集光光学系から射出された第3の光は、第1面で反射する際に1回拡散され、透光性基板の内部に入射することはない。このように、第1の光が第1面で2回拡散され、第3の光が第1面で1回拡散されることにより、第1の光の拡散特性と第3の光の拡散特性とが異なる拡散部を実現することができる。
本発明の一つの態様の照明装置において、前記第1の光は青色であり、前記第2の光は緑色であり、前記第3の光は赤色であり、前記光源部は、1個の前記第1の発光装置と、3個の前記第2の発光装置と、3個の前記第3の発光装置と、を備えていてもよい。
この構成によれば、白色光を射出することが可能な小型の光源装置を実現することができる。
本発明の一つの態様の照明装置において、前記第1面は、前記第1の光の反射を防止する反射防止膜を備えていてもよい。
この構成によれば、第1の光が透光性基板の内部に入射する割合を高められるため、第1の光を十分に拡散させることができる。
本発明の一つの態様の照明装置において、前記拡散部は、前記集光光学系で集光された前記光が照射されるとともに前記光を拡散させる拡散板と、前記拡散板を回転させる回転部と、を備えていてもよい。
この構成によれば、拡散角度分布が時間的に変化する光が照明装置から射出されるため、スペックルノイズの少ない照明装置を提供することができる。
本発明の一つの態様のプロジェクターは、本発明の一つの態様の照明装置と、前記照明装置からの光を画像情報に応じて変調することにより画像光を形成する光変調装置と、前記画像光を投射する投射光学装置と、を備えたことを特徴とする。
この構成によれば、スペックルノイズの少ない画像を投射できる、小型のプロジェクターを実現することができる。
第1実施形態のプロジェクターの概略構成図である。 光源装置の斜視図である。 光源装置の正面図である。 照明装置の要部の拡大図である。 拡散板における青色光の光路を示す図である。 拡散板における緑色光の光路を示す図である。 拡散板における赤色光の光路を示す図である。 第2実施形態のプロジェクターの概略構成図である。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜図7を用いて説明する。
本実施形態のプロジェクターは、半導体レーザーを用いた光源装置を備えた液晶プロジェクターの一例である。
なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
本実施形態のプロジェクター10は、スクリーン(被投射面)SCR上にカラー画像を表示する投射型画像表示装置である。プロジェクター10は、赤色光LR2、緑色光LG2、青色光LB2の各色光に対応した3つの光変調装置を用いている。プロジェクター10は、光源装置の発光素子として、高輝度・高出力な光が得られる半導体レーザーを用いている。
図1は、本実施形態のプロジェクター10の概略構成図である。
図1に示すように、プロジェクター10は、照明装置700と、色分離導光光学系200と、赤色光用光変調装置400Rと、緑色光用光変調装置400Gと、青色光用光変調装置400Bと、合成光学系500と、投射光学装置600と、を備えている。赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bは、照明装置700からの光を画像情報に応じて変調することにより画像光を形成する。投射光学装置600は、画像光を投射する。
照明装置700は、光源装置710と、集光光学系720と、拡散装置740(拡散部)と、ピックアップ光学系730と、インテグレーター光学系780と、を備えている。照明装置700において、拡散装置740、ピックアップ光学系730およびインテグレーター光学系780は、照明装置700から射出される光LWの中心軸に一致する光軸AX0上に設けられている。光源装置710、集光光学系720および拡散装置740は、光軸AX0と直交する光軸AX1上に設けられている。
以下、照明装置700から光LWが射出される方向をY方向とし、光源装置710から光が射出される方向をX方向とし、X方向およびY方向と垂直な方向をZ方向として説明する。光軸AX1はX軸と平行であり、光軸AX0はY軸と平行である。
図2は、光源装置710の斜視図である。図2においては、図面を見やすくするため、一部の半導体レーザーの台座の図示を省略する。
図3は、光源装置710を光の射出方向から見た正面図である。
図2および図3に示すように、光源装置710は、光源部750と、保持部材712と、を備えている。光源部750は、少なくとも一つの青色半導体レーザー711B(第1の発光装置)と、複数の緑色半導体レーザー711G(第2の発光装置)と、複数の赤色半導体レーザー711R(第3の発光装置)と、を備えている。
本実施形態では、光源部750は、1個の青色半導体レーザー711Bと、3個の緑色半導体レーザー711Gと、3個の赤色半導体レーザー711Rと、を備えている。各発光色の半導体レーザーの個数として、上記の例が好ましい理由については後で説明する。
ただし、場合によっては、光源装置710は、複数の青色半導体レーザー711Bを備えていてもよく、少なくとも一つの青色半導体レーザー711Bを備えていればよい。また、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rの個数は、必ずしも3個でなくてもよい。また、緑色半導体レーザー711Gの個数と赤色半導体レーザー711Rの個数とが異なっていてもよい。
青色半導体レーザー711Bは、第1の波長を有する青色光LB(第1の波長を有する第1の光)をX方向(第1の方向)に射出する。第1の波長は、例えば455nm±20nmである。緑色半導体レーザー711Gは、第2の波長を有する緑色光線LG1をX方向(第1の方向)に射出する。第2の波長は、例えば550nm±30nmである。赤色半導体レーザー711Rは、第3の波長を有する赤色光線LR1をX方向(第1の方向)に射出する。第3の波長は、例えば635nm±20nmである。
すなわち、青色半導体レーザー711B、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rのそれぞれは、同一の方向に異なる色の色光LB,LG1,LR1を射出する。これにより、光源装置710(光源部750)の全体として、これら3色の色光LB,LG1,LR1を含む白色の光が射出される。
以下の説明では、3個の緑色半導体レーザー711Gから射出された3本の緑色光線LG1を合わせて緑色光LG(第1の波長とは異なる第2の波長を有する第2の光)と称する。3個の赤色半導体レーザー711Rから射出された3本の赤色光線LR1を合わせて赤色光LR(第1の波長および第2の波長とは異なる第3の波長を有する第3の光)と称する。
青色半導体レーザー711B、緑色半導体レーザー711G、および赤色半導体レーザー711Rのそれぞれは、CANパッケージタイプの半導体レーザーで構成されている。図2に示すように、台座713と台座713の一面側を覆う缶体714とからなるパッケージ716のそれぞれには、図3に示すように、一つ以上の半導体レーザーチップ715B、一つ以上の半導体レーザーチップ715G、または一つ以上の半導体レーザーチップ715Rが収容されている。
青色半導体レーザー711Bは、青色半導体レーザーチップ715Bと、青色半導体レーザーチップ715Bを内部に収容する青色光用パッケージ716Bと、を備えている。
緑色半導体レーザー711Gは、緑色半導体レーザーチップ715Gと、緑色半導体レーザーチップ715Gを内部に収容する緑色光用パッケージ716Gと、を備えている。
赤色半導体レーザー711Rは、赤色半導体レーザーチップ715Rと、赤色半導体レーザーチップ715Rを内部に収容する赤色光用パッケージ716Rと、を備えている。
青色光用筐体716B、緑色光用筐体716Gおよび赤色光用筐体716Rの各々は、台座713と、缶体714と、から構成されている。また、図3の例では、一つの半導体レーザーチップ715B,715G,715Rがそれぞれ各筐体716B,716G,716Rの内部に収容されているが、複数の半導体レーザーチップ715B,715G,715Rがそれぞれ各筐体716B,716G,716Rの内部に収容されていてもよい。
半導体レーザー(半導体レーザーチップ)の発光効率は発光色毎に異なるため、半導体レーザーの光出力も発光色毎に異なる。すなわち、青色半導体レーザー711Bの発光効率は、緑色半導体レーザー711Gの発光効率および赤色半導体レーザー711Rの発光効率よりも高い。半導体レーザーチップの発光効率が相対的に低い場合でも、当該半導体レーザーチップに入力する投入電力を増加させれば、半導体レーザーチップから射出される光出力を増加させることができるが、投入電力の増加は、半導体レーザーチップの温度を上昇させ、発光効率の低下や寿命の低下を生じさせる。したがって、投入電力が同じであれば、青色半導体レーザー711Bの光出力は、緑色半導体レーザー711Gの光出力および赤色半導体レーザー711Rの光出力よりも高い。
一例を示すと、日亜化学工業株式会社、ホームページ、製品情報、「レーザーダイオード(LD)」[online]、[平成29年09月14日検索]、インターネット〈URL:http://www.nichia.co.jp/jp/product/laser.html〉によれば、青色半導体レーザー(型番:NDB7K75)の光出力は例えば3.5W(使用温度:25℃)であり、緑色半導体レーザー(型番:NDG7K75T)の光出力は例えば1W(使用温度:25℃)である。上記のホームページに記載されていないが、青色半導体レーザーアレイ(型番:NUBM08-02)が提供されており、この青色半導体レーザーアレイは、光出力が4.5W(25℃)の青色半導体レーザーを複数備えている。
三菱電機株式会社、ホームページ、ニュースリリース、「プロジェクター用639nm赤色高出力半導体レーザー発売のお知らせ」[online]、[平成29年09月14日検索]、インターネット〈URL:http://www.mitsubishielectric.co.jp/news/2016/1214.html〉によれば、赤色光用半導体レーザー(型番:ML562G85)の光出力は例えば2.1W(25℃)である。
上記の温度25℃での光出力を実使用温度45℃での光出力に換算すると、各発光色の半導体レーザーの光出力は、下記の表1の通りである。
Figure 2019061110
すなわち、1個の青色半導体レーザー(型番:NDB7K75)の光出力は2.8Wとなり、青色半導体レーザーアレイ(型番:NUBM08-02)が備えている青色半導体レーザー1個の光出力は4.1Wとなり、1個の緑色半導体レーザー(型番:NDG7K75T)の光出力は0.8Wとなり、1個の赤色半導体レーザー(型番:ML562G85)の光出力は1.26Wとなる。
一方、明るさが1000lm、2000lm、3000lmのそれぞれの白色光(色温度6500K)を得るのに必要な発光色毎の半導体レーザーの光出力、およびこの白色光を得るのに必要な発光色毎の半導体レーザー(CANパッケージタイプの半導体レーザー)の個数は、下記の表2の通りである。
Figure 2019061110
表2の最下段に示すように、明るさが1000lmの白色光を得るのに必要な発光色毎の半導体レーザーの光出力は、青色半導体レーザーが1.23Wであり、緑色半導体レーザーが2.03Wであり、赤色半導体レーザーが2.92Wである。表2の必要光出力値[W]と表1の1個あたりの半導体レーザーの光出力[W/個]とから算出すると、明るさが1000lmの白色光を得るのに必要な半導体レーザーの個数は、青色半導体レーザー(型番:NDB7K75)が1個、緑色半導体レーザー(型番:NDG7K75T)が3個、赤色半導体レーザー(型番:ML562G85)が3個となる。これは、本実施形態の光源装置710(光源部750)の各半導体レーザー711B,711G,711Rの個数と一致する。ただし、表2において、明るさ3000lmに対しては、青色半導体レーザーアレイ(型番:NUBM08-02)が備えている青色半導体レーザー1個を用いている。
以上のことから、本実施形態の光源装置710の光出力は、光束が1000lm程度の小型プロジェクターの光源装置として好適である。
なお、一つの半導体レーザーが一つの半導体レーザーチップを備えている場合、半導体レーザーの発光効率は、半導体レーザーチップの発光効率と等しい。また、一つの半導体レーザーが複数の半導体レーザーチップを備えている場合、半導体レーザーの発光効率は、複数の半導体レーザーチップの発光効率の合計と等しい。
本発明者の推察によれば、今後、半導体レーザー技術の進歩により各発光色の半導体レーザー711B,711G,711Rの光出力が上記の数値よりも増加する可能性はあるが、白色光を得るのに必要な各色の半導体レーザー711B,711G,711Rの個数の比率は変わらない。したがって、本実施形態では、1個の青色半導体レーザー711B、3個の緑色半導体レーザー711G、および3個の赤色半導体レーザー711Rを備えた光源装置710を例示するが、各半導体レーザーの個数はこの例に限定されない。
保持部材712は、複数の半導体レーザー711B,711G,711Rの個数に対応し、缶体714の寸法に対応した7個の孔が設けられた円形の板材で構成されている。板材の材料は特に限定されないが、例えば熱伝導率が高い金属が望ましい。複数の半導体レーザー711B,711G,711Rの各々は、保持部材712の孔に缶体714が挿通された状態で台座713の一面が保持部材712の保持面712aに当接することによって保持部材712に支持されている。このように、保持部材712は、複数の半導体レーザー711B,711G,711Rからの光の射出方向とは反対側を向くように配置された保持面712aを有する。
図3に示すように、複数の半導体レーザー711B,711G,711Rのうち、青色半導体レーザー711Bは、光源部750の中心部に位置するように保持部材712に配置されている。複数の緑色半導体レーザー711Gおよび複数の赤色半導体レーザー711Rは、青色半導体レーザー711Bを取り囲むように、保持部材712における青色半導体レーザー711Bの周辺領域に配置されている。
緑色半導体レーザー711Gと赤色半導体レーザー711Rとは、青色半導体レーザー711Bを中心とする仮想円上に位置するように保持部材712に配置されている。緑色半導体レーザー711Gと赤色半導体レーザー711Rとは、仮想円の周方向に沿って交互に設けられている。
なお、当該仮想円の中心は、青色半導体レーザー711Bの青色光LBの光の中心軸C1(図5参照)に一致していてもよい。個々の赤色半導体レーザー711Rが射出する赤色光線LR1の光の中心軸は、当該仮想円上にあってもよい。個々の緑色半導体レーザー711Gが射出する緑色光線LG1の光の中心軸は、当該仮想円上にあってもよい。
以上の配置により、光源部750において、青色半導体レーザー711B、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rの発光中心同士を結んだ複数の直線mが互いになす角度は、互いに等しく、全て60°である。
また、3本の直線mが、青色半導体レーザー711Bの青色光LBの光の中心軸C1(図5参照)の周囲に形成する角度をそれぞれ中心角としたそれぞれの扇形の円弧の長さは、互いに等しい。なお、複数の扇形の中心角は、互いに等しく、全て60°である。
同様に、3本の直線mが、半導体レーザーチップ715Bおよびその近傍に形成する角度をそれぞれ中心角としたそれぞれの扇形の円弧の長さは、互いに等しい。なお、複数の扇形の中心角は、互いに等しく、全て60°である。
複数の半導体レーザー711B,711G,711Rにおいて、隣り合う半導体レーザー同士の青色光用筐体716B、緑色光用筐体716Gおよび赤色光用筐体716Rは、台座713の部分で互いに当接している。なお、複数の半導体レーザー711G,711Rの台座713は互いに当接していなくてもよい。すなわち、赤色半導体レーザー711Rが射出する赤色光線LR1の光の中心軸および緑色半導体レーザー711Gが射出する緑色光線LG1の光の中心軸が、仮想円上に交互に等間隔で配置されていてもよい。
このように、複数の緑色半導体レーザー711Gは、青色半導体レーザー711Bの周辺領域において、青色光LBの中心軸の周りに回転対称に設けられている。また、複数の赤色半導体レーザー711Rは、青色半導体レーザー711Bの周辺領域において、青色光LBの中心軸の周りに回転対称に設けられている。
複数の緑色半導体レーザー711Gが、青色半導体レーザー711Bを囲むように、青色光LBの中心軸の周りに回転対称に設けられる、とは、上述したような配置、位置関係を満たしていればよい。また同様に、複数の赤色半導体レーザー711Rが、青色半導体レーザー711Bを囲むように、青色光LBの中心軸の周りに回転対称に設けられる、とは、上述したような配置、位置関係を満たしていればよい。
青色半導体レーザー711Bと緑色半導体レーザー711Gおよび赤色半導体レーザー711Rとは、半導体レーザーチップ715B,715G,715Rの向き(矩形状の半導体レーザーチップの長辺)が同じ方向を向くように配置されている。図3に示す例では、青色半導体レーザー711B、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rは、半導体レーザーチップ715G,715Rの長辺がY軸と平行になるように配置されている。
このように、青色半導体レーザー711B、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rは、半導体レーザーチップ715B,715G,715Rの向き(矩形状の半導体レーザーチップの長辺)が同じに配置されているが、青色半導体レーザー711Bおよび緑色半導体レーザー711Gと、赤色半導体レーザー711Rとでは、発振モードの違いにより、互いに異なる方向の直線偏光を射出する。具体的には、青色半導体レーザー711Bおよび緑色半導体レーザー711Gとは、拡散板741に対するP偏光を射出し、赤色半導体レーザー711Rは、拡散板741に対するS偏光を射出する。この場合、各光変調装置400R、400G、400Bの偏光板を光の偏光方向に合わせて配置すればよい。また、赤色半導体レーザー711Rの半導体レーザーチップ715Rの向きを他の半導体レーザー711B、711Gの半導体レーザーチップ715B、715Gの向きに対して射出光(赤色光線LR1)の中心軸周りに90°回転させることにより、射出する直線偏光の方向を同じにすることができる。
以上の構成により、光源装置710は、青色光LB、緑色光LGおよび赤色光LRを含む白色の光LWを射出する。
図1に示すように、集光光学系720は、光源装置710から射出された光LWを所定の集光位置、具体的には後述する拡散装置740の拡散板741上に集光する。集光光学系720は、一つの凸レンズ721から構成されている。なお、集光光学系720は、複数のレンズから構成されていてもよい。
図4は、光源装置710、集光光学系720および拡散装置740を含む照明装置700の拡大図である。
図4に示すように、拡散装置740は、拡散板741と、拡散板741を回転させるためのモーター745(回転部)と、を備えている。拡散板741は、集光光学系720から射出された光が入射する第1面741aと、第1面741aとは異なり、第1面741aに対向する第2面741bと、を有している。拡散装置740は、集光光学系720の所定の集光位置に配置され、集光光学系720から射出された光を拡散させる。
拡散板741は、第1面741aおよび第2面741bが光軸AX0および光軸AX1のそれぞれに対して45°の角度をなすように配置されている。光LWは、拡散板741で拡散反射することにより、光軸AX0を中心とした所定の角度分布を有する拡散光となって拡散装置740から射出され、図1に示すインテグレーター光学系780に向かう。
図5は、拡散板741における青色光LBの光路を示す図である。図6は、拡散板741における緑色光LGの光路を示す図である。図7は、拡散板741における赤色光LRの光路を示す図である。
図5〜図7に示すように、拡散板741は、透光性基板742と、拡散構造体743と、波長選択膜746と、反射防止膜747と、反射膜748と、を備えている。なお、波長選択膜746と反射防止膜747とは、一体構造の膜(多層膜)であってもよい。青色光に対して反射防止機能を発揮し、緑色光と赤色光に対して反射機能を発揮する膜は、誘電体多層膜によって実現が可能である。
透光性基板742は、例えばガラス等の光透過性を有する材料で構成されている。拡散構造体743は、透光性基板742の第1面742aに形成された凹凸部からなり、その上層に波長選択膜746および反射防止膜747がコーティングできる程度の滑らかな表面を有している。拡散構造体743の具体例として、例えばマイクロレンズアレイ、ホログラフィックディフューザー、表面を僅かに溶融させた磨りガラス表面等が用いられる。
波長選択膜746は、透光性基板742の第1面742aにおける拡散構造体743の上に積層されている。波長選択膜746は、例えば拡散構造体743の上に誘電体多層膜をコーティングすることにより得られる。波長選択膜746は、青色域の光を透過させ、緑色域および赤色域の光を反射させる特性を有する。
反射防止膜747は、透光性基板742の第1面742aにおける波長選択膜746の上に積層されている。反射防止膜747は、例えば波長選択膜746の上に誘電体多層膜をコーティングすることにより得られる。反射防止膜747は、青色域の光の反射を防止する特性を有する。
反射膜748は、透光性基板742の第2面742bに形成されている。反射膜748は、例えば透光性基板742の第2面742bに誘電体多層膜、もしくは銀、アルミニウム等の金属膜をコーティングすることにより得られる。反射膜748は、青色域の光を反射させる特性を有する。なお、青色光に対して、第1面742aの拡散構造体743による拡散だけでは拡散特性が不足する場合には、透光性基板742の第2面742bにも、第1面742aと同様の凹凸構造体が設けられていてもよい。
以上の構成により、拡散板741の第1面741aは、青色光LBを透過および拡散させるとともに、緑色光LGおよび赤色光LRを反射および拡散させる機能を有する。拡散板741の第2面741bは、青色光LBを反射させる機能を有する。
図5に示すように、青色光LBは、第1面742aを透過して透光性基板742の内部に入射する際に拡散構造体743によって拡散され、その後、第2面742bで反射して第1面742aを再度透過して透光性基板742から射出する際に拡散構造体743によって再度拡散される。
図6に示すように、緑色光LGは、第1面742aで反射する際に拡散構造体743によって拡散され、透光性基板742の内部に入射することはない。同様に、図7に示すように、赤色光LRは、第1面742aで反射する際に拡散構造体743によって拡散され、透光性基板742の内部に入射することはない。このように、青色光LBは拡散構造体743によって2回拡散されるのに対して、緑色光LGおよび赤色光LRは拡散構造体743によって1回拡散される。すなわち、青色光LBに対する拡散特性と、緑色光LGおよび赤色光LRに対する拡散特性と、は互いに異なる。
図4に示すように、青色光LBは、光源装置710の中央に配置された1個の青色光用半導体レーザー711Bから射出される。その後、青色光LBは、集光光学系720で集光されて拡散板741に入射する。
これに対して、3本の緑色光線LG1からなる緑色光LGは、青色光LBの中心軸C1の周りに回転対称に設けられた3個の緑色光用半導体レーザー711Gから射出される。同様に、3本の赤色光線LR1からなる赤色光LRは、青色光LBの中心軸C1の周りに回転対称に設けられた3個の赤色光用半導体レーザー711Rから射出される。したがって、緑色光LGの中心軸C2と赤色光LRの中心軸C2とは一致し、中心軸C2は青色光LBの中心軸C1と一致する。
緑色光LGおよび赤色光LRは、集光光学系720で集光されて拡散板741に入射する。このとき、青色光LBの光束幅は緑色光LGおよび赤色光LRの光束幅よりも細く、拡散板741に対する青色光LBの入射角度分布α1は、拡散板741に対する緑色光LGおよび赤色光LRの入射角度分布α2よりも小さい。
ここで、仮に拡散板741における青色光LBの拡散回数と緑色光LGおよび赤色光LRの拡散回数が同じであったとすると、青色光LBは、緑色光LGおよび赤色光LRに比べて、入射角度分布が小さい分、拡散角度分布が小さくなり、スペックルノイズの抑制効果が小さくなる。ところが、本実施形態の場合、上述したように、青色光LBは拡散板741で2回拡散されるのに対して、緑色光LGおよび赤色光LRは拡散板741で1回拡散される。したがって、青色光LBは、緑色光LGおよび赤色光LRに比べて、入射角度分布が小さくても、拡散角度分布を同等に大きくすることができ、スペックルノイズの抑制効果を十分に得ることができる。
図1に戻って、ピックアップ光学系730は、コリメーターレンズ731を備えている。コリメーターレンズ731は、拡散板741から射出された光LWを平行化し、インテグレーター光学系780に向けて射出する。
インテグレーター光学系780は、第1のレンズアレイ781と、第2のレンズアレイ782と、重畳レンズ783と、を備えている。インテグレーター光学系780は、コリメーターレンズ731から射出された光LWの照度分布を赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bの各々の画像形成領域において均一化する。
第1のレンズアレイ781は、拡散装置740から射出された光LWを複数の部分光線束に分割するための複数のレンズ786を有する。複数のレンズ786は、光軸AX0と直交する面内にマトリクス状に配列されている。
第2のレンズアレイ782は、第1のレンズアレイ781の複数のレンズ786に対応する複数のレンズ787を備えている。第2のレンズアレイ782は、後段の重畳レンズ783とともに、第1のレンズアレイ781の各レンズ786の像を赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bの各々の画像形成領域もしくはその近傍に結像させる。複数のレンズ787は、光軸AX0に直交する面内にマトリクス状に配列されている。
重畳レンズ783は、第1のレンズアレイ781からの各部分光線束を集光して赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bの各々の画像形成領域もしくはその近傍で互いに重畳させる。
色分離導光光学系200は、ダイクロイックミラー240と、ダイクロイックミラー220と、反射ミラー210と、反射ミラー230と、反射ミラー250と、を備えている。色分離導光光学系200は、照明装置700から射出された白色の光LWを赤色光LR2、緑色光LG2、および青色光LB2に分離し、赤色光LR2、緑色光LG2、および青色光LB2をそれぞれ対応する赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bに導く。
色分離導光光学系200と、赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bとの間には、フィールドレンズ300R、フィールドレンズ300G、フィールドレンズ300Bがそれぞれ配置されている。
ダイクロイックミラー240は、青色光LB2を反射させ、赤色光LR2および緑色光LG2を透過させる。ダイクロイックミラー220は、緑色光LG2を反射させ、青色光LB2を透過させる。反射ミラー210および反射ミラー230は、赤色光LR2を反射させる。反射ミラー250は、青色光LB2を反射させる。
赤色光用光変調装置400R、緑色光用光変調装置400G、および青色光用光変調装置400Bのそれぞれは、入射された色光を画像情報に応じて変調して画像を形成する液晶パネルから構成されている。
図示を省略したが、フィールドレンズ300R、フィールドレンズ300G、フィールドレンズ300Bと、赤色光用光変調装置400R、緑色光用光変調装置400G、青色光用光変調装置400Bとの間には、それぞれ入射側偏光板が配置されている。赤色光用光変調装置400R、緑色光用光変調装置400G、青色光用光変調装置400Bと合成光学系500との間には、それぞれ射出側偏光板が配置されている。
合成光学系500は、赤色光用光変調装置400R、緑色光用光変調装置400G、青色光用光変調装置400Bから射出された各画像光を合成する。合成光学系500は、4つの直角プリズムを貼り合わせた平面視略正方形状をなしたクロスダイクロイックプリズムからなり、直角プリズム同士を貼り合わせた略X字状の界面に誘電体多層膜が設けられている。
合成光学系500から射出された画像光は、投射光学装置600によってスクリーンSCR上に拡大投射される。
本実施形態の光源装置710においては、各色の半導体レーザー711B,711G,711Rの発光効率と、白色光を得るのに必要な各色の半導体レーザー711B,711G,711Rの光出力と、に基づいて、各色の半導体レーザー711B,711G,711Rの個数が設定されている。すなわち、発光効率の高い青色半導体レーザー711Bの個数が1個と少なく、発光効率の低い緑色半導体レーザー711Gおよび赤色半導体レーザー711Rの個数が3個と多く設定されている。また、合計7個の半導体レーザー711B,711G,711Rが上記のように配置されている。これにより、小型であることに加え、射出光のホワイトバランスを調整しやすい光源装置710を実現することができる。
また、本実施形態の場合、図4を用いて説明したように、青色光LBと緑色光LGおよび赤色光LRとで共通の拡散板741を用いても、小さい入射角度分布で拡散板741に入射する青色光LBの拡散角度分布と、大きい入射角度分布で拡散板741に入射する緑色光LGおよび赤色光LRの拡散角度分布と、を同等に揃えることができる。これにより、スペックルノイズの発生が少ない照明装置700を実現することができる。また、各色光の光路に異なる拡散装置を別個に設ける必要がなく、小型の照明装置700を実現することができる。
本実施形態の光源装置710においては、隣り合う2つの半導体レーザー711B,711G,711Rの発光中心同士を結んだ複数の直線mが互いになす角度が互いに等しいため、光源部750の占有面積を小さくすることができる。また、緑色半導体レーザー711Gおよび赤色半導体レーザー711Rは、青色半導体レーザー711Bを囲み、青色半導体レーザー711Bを中心とする仮想円上に位置するように保持部材712に配置されている。さらに、隣り合う半導体レーザー711B,711G,711R同士は、青色光用筐体716B、緑色光用筐体716Gおよび赤色光用筐体716Rの各々が互いに当接するように配置されている。これにより、蛍光体等の波長変換素子を用いることなく、白色光を射出することが可能な、小型の光源装置710を実現することができる。
さらに本実施形態の場合、拡散板741の第1面741aに反射防止膜747が設けられているため、青色光LBが透光性基板742の内部に入射する割合を高められる。これにより、青色光LBの拡散角度分布をさらに広げることができる。なお、拡散板741の第2面741bは、青色光LBを正反射させてもよいし、青色光LBを拡散反射させてもよい。青色光LBを拡散反射させる場合、拡散板741の第2面741bにも、第1面741a側と同様の拡散構造体が設けられていればよい。この場合、青色光LBが拡散板741を通る間に3回の拡散が生じるため、青色光LBの拡散角度分布をより広げることができる。
本実施形態のプロジェクター10は、上記の照明装置700を備えているため、サイズが小型であり、スペックルノイズが少ない画像を投射することができる。
[第2実施形態]
以下、本発明の第2実施形態について、図8を用いて説明する。
第2実施形態のプロジェクターの構成は第1実施形態と略同様であり、照明装置の構成が第1実施形態と異なる。そのため、プロジェクター全体の説明は省略し、異なる部分についてのみ説明する。
図8は、本実施形態のプロジェクターの概略構成図である。
図8において、第1実施形態で用いた図1と共通の構成要素には同一の符号を付し、説明を省略する。
図8に示すように、プロジェクター15は、照明装置705と、色分離導光光学系200と、赤色光用光変調装置400Rと、緑色光用光変調装置400Gと、青色光用光変調装置400Bと、合成光学系500と、投射光学装置600と、を備えている。
照明装置705は、光源装置710と、アフォーカル光学系723と、偏光分離素子760と、位相差板770と、集光光学系725と、拡散装置740(拡散部)と、インテグレーター光学系780と、を備えている。上記の構成要素のうち、光源装置710、拡散装置740、およびインテグレーター光学系780の構成は第1実施形態と同様であり、説明を省略する。
照明装置700において、拡散装置740、集光光学系725、位相差板770、偏光分離素子760およびインテグレーター光学系780は、光軸AX0上に設けられている。光源装置710、アフォーカル光学系723および偏光分離素子760は、光軸AX1上に設けられている。第1実施形態では、拡散装置740は、拡散板741が光軸AX0と光軸AX1のそれぞれに対して45°の角度をなすように配置されていた。これに対し、本実施形態では、拡散装置740は、拡散板741が光軸AX0に対して垂直となるように配置されている。
アフォーカル光学系723は、光源装置710の後段に設けられている。アフォーカル光学系723は、光源装置710から射出された光LWのビーム径を縮小する。アフォーカル光学系723は、凸レンズ724と、凹レンズ726と、を備えている。
アフォーカル光学系723から射出された光LWは、偏光分離素子760に入射する。偏光分離素子760は、光軸AX0と光軸AX1のそれぞれに対して45°の角度をなすように配置されている。偏光分離素子760は、偏光分離素子760に入射する光を、偏光分離素子760に対するS偏光成分とP偏光成分とに分離する偏光分離機能を有する。具体的には、偏光分離素子760は、S偏光の光を反射させ、P偏光の光を透過させる。本実施形態の場合、光源装置710はS偏光の光を射出するように設定されており、S偏光の光は偏光分離素子760で反射し、位相差板770に向かって進む。
位相差板770は、偏光分離素子760と拡散装置740との間の光路中に配置された1/4波長板から構成されている。偏光分離素子760で反射したS偏光の光LWsは、位相差板770を透過することにより、例えば右回りの円偏光の光LWcに変換された後、集光光学系725に入射する。
集光光学系725は、位相差板770から射出された光LWcを所定の集光位置、具体的には拡散装置740の拡散板741上に集光する。集光光学系725は、一つの凸レンズ728から構成されている。なお、集光光学系725は、複数のレンズから構成されていてもよい。また、集光光学系725は、拡散板741で反射した光を受光するピックアップ光学系を兼ねている。
拡散板741に入射した右回りの円偏光の光LWcは、拡散板741で反射することによって、左回りの円偏光の光に変換される。左回りの円偏光の光は、位相差板770を透過することにより、P偏光の光LWpに変換される。P偏光の光LWpは、偏光分離素子760を透過してインテグレーター光学系780に入射する。なお、本実施形態においては、拡散板741から偏光分離素子760までの間の光路上を進行する光の偏光状態が乱れないようにする必要がある。その理由は、偏光状態が乱れた光がS偏光となって偏光分離素子760に入射すると、偏光分離素子760で反射して光源装置710の側に戻ってしまうからである。
本実施形態においても、スペックルノイズの発生が少なく、ホワイトバランスに優れた小型の照明装置705を実現できる、スペックルノイズの少ない画像を投射可能なプロジェクター15を実現できる、といった第1実施形態と同様の効果が得られる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば上記実施形態では、1個の青色半導体レーザーと、3個の緑色半導体レーザーと、3個の赤色半導体レーザーと、を備えた光源装置を例示したが、各半導体レーザーの個数はこれに限定されない。例えば、光源装置は、複数の青色半導体レーザーを備えていてもよい。その場合、複数の緑色半導体レーザーおよび複数の赤色半導体レーザーは、複数の青色半導体レーザーから射出された複数の青色光からなる光束全体の中心軸の周りに、回転対称に設けられていればよい。
さらに、光源装置は、例えば青色と赤色というように、少なくとも2色の半導体レーザーを備えていればよい。
上記実施形態では、拡散装置として、モーターによって回転可能とされた拡散板を備えた例を挙げたが、モーターを備えていない固定型の拡散板が用いられてもよい。また、拡散装置は、拡散板を回転させる構成に代えて、例えば拡散板を揺動させる、振動させる等の構成を備えていてもよい。
また、上記実施形態で例示した光源装置、照明装置、およびプロジェクターの各構成要素の数、配置、形状、材料、寸法等については、適宜変更が可能である。
上記実施形態では、3つの光変調装置を備えるプロジェクターを例示したが、一つの光変調装置でカラー映像を表示するプロジェクターに適用することも可能である。また、光変調装置として、デジタルミラーデバイスが用いられてもよい。
また、上記実施形態では、本発明に係る照明装置をプロジェクターに応用する例を示したが、これに限られない。本発明による照明装置を自動車用ヘッドライトなどの照明器具にも適用することができる。
10,15…プロジェクター、400B…青色光用光変調装置、400G…緑色光用光変調装置、400R…赤色光用光変調装置、600…投射光学装置、700,705…照明装置、710…光源装置、711B…青色光用半導体レーザー(第1の発光装置)、711G…緑色光用半導体レーザー(第2の発光装置)、711R…赤色光用半導体レーザー(第3の発光装置)、715B…青色光用半導体レーザーチップ(第1の発光素子)、715G…緑色光用半導体レーザーチップ(第2の発光素子)、715R…赤色光用半導体レーザーチップ(第3の発光素子)、720,725…集光光学系、740…拡散装置(拡散部)、741…拡散板、742…透光性基板、745…モーター(回転部)、747…反射防止膜、750…光源部。

Claims (8)

  1. 第1の波長を有する第1の光を射出する第1の発光装置と、前記第1の波長とは異なる第2の波長を有する第2の光を射出する第2の発光装置と、を備え、前記第1の光と前記第2の光とを含む光を射出する光源部と、
    前記光源部から射出された光を所定の集光位置に集光する集光光学系と、
    前記所定の集光位置に配置され、前記集光光学系から射出された光を拡散させる拡散部と、
    を備え、
    前記拡散部において、前記第1の光に対する拡散特性と前記第2の光に対する拡散特性とが互いに異なる、照明装置。
  2. 前記拡散部は、前記集光光学系から射出された光が入射する第1面と、前記第1面とは異なる第2面と、を有する透光性基板を備え、
    前記第1面は、前記第1の光を透過および拡散させるとともに、前記第2の光を反射および拡散させ、
    前記第2面は、前記第1の光を反射させる、請求項1に記載の照明装置。
  3. 前記光源部は、前記第1の波長および前記第2の波長とは異なる第3の波長を有する第3の光を射出する第3の発光装置と、
    を備え、
    前記第1の光、前記第2の光および前記第3の光は、第1方向に射出され、
    前記第2の発光装置の個数は、前記第1の発光装置の個数よりも多く、
    前記第2の発光装置は、前記第1の発光装置を囲むように、前記第1の光の中心軸の周りに回転対称に設けられ、
    前記第3の発光装置の個数は、前記第1の発光装置の個数よりも多く、
    前記第3の発光装置は、前記第1の発光装置を囲むように、前記第1の光の前記中心軸の周りに回転対称に設けられている、請求項2に記載の照明装置。
  4. 前記拡散部は、前記第1の光に対する拡散特性と前記第3の光に対する拡散特性とが互いに異なり、
    前記第1面において、前記第3の光を反射および拡散させる、請求項3に記載の照明装置。
  5. 前記第1の光は青色であり、
    前記第2の光は緑色であり、
    前記第3の光は赤色であり、
    前記光源部は、1個の前記第1の発光装置と、3個の前記第2の発光装置と、3個の前記第3の発光装置と、を備えた、請求項3または請求項4に記載の照明装置。
  6. 前記第1面は、前記第1の光の反射を防止する反射防止膜を備えた、請求項2から請求項5のいずれか一項に記載の照明装置。
  7. 前記拡散部は、前記集光光学系で集光された前記光が照射されるとともに前記光を拡散させる拡散板と、前記拡散板を回転させる回転部と、を備えた、請求項1から請求項6のいずれか一項に記載の照明装置。
  8. 請求項1から請求項7までのいずれか一項に記載の照明装置と、
    前記照明装置からの光を画像情報に応じて変調することにより画像光を形成する光変調装置と、
    前記画像光を投射する投射光学装置と、
    を備えた、プロジェクター。
JP2017186229A 2017-09-27 2017-09-27 照明装置およびプロジェクター Pending JP2019061110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186229A JP2019061110A (ja) 2017-09-27 2017-09-27 照明装置およびプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186229A JP2019061110A (ja) 2017-09-27 2017-09-27 照明装置およびプロジェクター

Publications (1)

Publication Number Publication Date
JP2019061110A true JP2019061110A (ja) 2019-04-18

Family

ID=66177326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186229A Pending JP2019061110A (ja) 2017-09-27 2017-09-27 照明装置およびプロジェクター

Country Status (1)

Country Link
JP (1) JP2019061110A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458967A (zh) * 2020-04-17 2020-07-28 歌尔微电子有限公司 颜色色温校准方法、校准装置和投影显示设备
JP2021063907A (ja) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
US11754914B2 (en) 2020-08-05 2023-09-12 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063907A (ja) * 2019-10-15 2021-04-22 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP7329731B2 (ja) 2019-10-15 2023-08-21 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
CN111458967A (zh) * 2020-04-17 2020-07-28 歌尔微电子有限公司 颜色色温校准方法、校准装置和投影显示设备
CN111458967B (zh) * 2020-04-17 2022-05-24 歌尔微电子有限公司 颜色色温校准方法、校准装置和投影显示设备
US11754914B2 (en) 2020-08-05 2023-09-12 Canon Kabushiki Kaisha Light source apparatus and image projection apparatus

Similar Documents

Publication Publication Date Title
US10168019B2 (en) Illumination unit, projection display unit, and direct-view display unit
US20120162614A1 (en) Light Source Device
JP2017204357A (ja) 光源装置及びプロジェクター
WO2015111145A1 (ja) 光源装置およびこれを用いた映像表示装置
US10564531B2 (en) Light source device and projector
JPWO2020137749A1 (ja) 光源装置および投写型映像表示装置
US10571788B2 (en) Light source device, illumination device, and projector
JP2019061110A (ja) 照明装置およびプロジェクター
JP6973457B2 (ja) プロジェクター
JP2012078537A (ja) 光源装置及び投写型映像表示装置
JP6544520B2 (ja) 照明装置およびプロジェクター
JP2018054780A (ja) 光源装置及びプロジェクター
JP2019061083A (ja) 光源装置およびプロジェクター
JP7330787B2 (ja) 光源装置およびこれを備える画像投射装置
JP6888458B2 (ja) 照明装置およびプロジェクター
CN113960867B (zh) 照明装置和投影仪
JP7463925B2 (ja) 光源装置およびプロジェクター
JP7468267B2 (ja) 光源装置およびプロジェクター
JP7257599B2 (ja) 光源装置及び投写型映像表示装置
US9860497B2 (en) Illumination device and projector
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置
JP7484605B2 (ja) 光源装置およびプロジェクター
JP7508964B2 (ja) 光源装置およびプロジェクター
JP7131590B2 (ja) 光源装置およびプロジェクター
JP2019061067A (ja) 光源装置、照明装置およびプロジェクター