WO2021218085A1 - 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法 - Google Patents

一种用于卤化反应的丁基橡胶基础胶溶液的制备方法 Download PDF

Info

Publication number
WO2021218085A1
WO2021218085A1 PCT/CN2020/124844 CN2020124844W WO2021218085A1 WO 2021218085 A1 WO2021218085 A1 WO 2021218085A1 CN 2020124844 W CN2020124844 W CN 2020124844W WO 2021218085 A1 WO2021218085 A1 WO 2021218085A1
Authority
WO
WIPO (PCT)
Prior art keywords
butyl rubber
tower
solvent
diluent
preparation
Prior art date
Application number
PCT/CN2020/124844
Other languages
English (en)
French (fr)
Inventor
朱德权
Original Assignee
朱德权
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朱德权 filed Critical 朱德权
Publication of WO2021218085A1 publication Critical patent/WO2021218085A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/02Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule

Definitions

  • the invention belongs to the technical field of butyl rubber manufacturing, and particularly relates to a method for preparing a butyl rubber base rubber solution for halogenation reaction.
  • halogenated butyl rubber generally adopts a continuous process.
  • the process includes the preparation of basic glue, the storage and preparation of liquid chlorine and bromine, the halogenation reaction and the neutralization of the halogenated glue, the degassing and steam stripping of the halogenated glue. And solvent recovery, halogen acid gas treatment, halogenated butyl rubber post-treatment drying and other processes.
  • the water condensate dissolution method means that after the polymerization slurry overflowing from the polymerization reactor is mixed with hot water and steam, the methyl chloride is gasified, and the rubber is precipitated into rubber particles in the hot water, and most of the rubber particles are removed by a vibrating screen and an extruder.
  • the method of dissolving into hexane solution after water is described in detail below.
  • the solvent replacement method means that the polymerization slurry overflowing from the polymerization reactor is directly mixed with hot hexane, and the rubber is dissolved while the methyl chloride is gasified to form a rubber solution.
  • the solvent replacement method Compared with the water condensate dissolution method, the solvent replacement method has the advantages of short process flow, low energy consumption, greener production process, reduced equipment corrosion, significantly reduced "three wastes", less equipment footprint, and lower operating costs.
  • the current conventional solvent replacement method still has shortcomings such as low efficiency, operational stability and lack of flexibility.
  • Patent No. 201410003515.7 the butyl rubber solution, diluent and unreacted monomers are separated by a one-step method, and there may be a part of the solvent in the gas phase at the top of the tower, and the gas phase components at the top of the tower are complicated, resulting in large solvent loss.
  • the purpose of the present invention is to provide a method for preparing a butyl rubber base rubber solution for halogenation reaction.
  • the invention has the advantages of reasonable design, strong practicability, environmental protection and low energy consumption.
  • a method for preparing a butyl rubber base rubber solution for halogenation reaction includes the following steps:
  • Step 1 Pass the butyl rubber slurry, solvent, terminator and diluent into the first mixer, and then enter the second mixer to further mix with the butyl rubber solution to obtain the butyl rubber solution after the reaction is terminated;
  • Step 2 Pass the butyl rubber solution obtained in Step 1 into the low-temperature dissolution tank and mix with the solvent and dissolve completely;
  • Step 3 The butyl rubber solution obtained in step 2 is pressurized into the flash tank through a pump, and part of the diluent and unreacted monomers are removed by flash evaporation to obtain a butyl group with preliminary removal of part of the diluent and unreacted monomers. Rubber solution
  • Step 4 Pass the butyl rubber solution obtained in step 3 with the diluent and unreacted monomers removed into the dechloromethane tower, the reactor of the dechloromethane tower is fed with solvent vapor, and the butyl rubber solution and solvent vapor are in The countercurrent contact mass transfer in the tower completely removes the diluent and unreacted monomer in the butyl rubber solution;
  • Step 5 Pass the diluent and unreacted monomer removed in step 3 and step 4 into the solvent recovery tower, and separate the solvent, diluent and unreacted monomer by distillation, and the solvent content in the overhead gas obtained is less than 0.1 wt%.
  • the bottom of the tower is basically free of diluent and unreacted monomer;
  • Step 6 Pass the butyl rubber solution obtained in Step 4 into the gum solution concentration tower for concentration, the solvent in the butyl rubber solution is vaporized and removed in the tower, the gum solution concentration is increased, and butyl rubber that can be used for halogenation reaction is obtained Basic glue solution.
  • the first mixer and the second mixer of the step one are one or a combination of a dynamic mixer, a static mixer, a micro mixer, and a high gravity mixer.
  • the terminator in step 1 is a mixture of one or more of monohydric alcohol, dihydric alcohol, and polyhydric alcohol, and the terminator is preferably methanol, ethanol, propanol, butanol , Tert-butyl alcohol, triethylene glycol, one or more mixtures of tetraethylene glycol.
  • the diluent of the step one is methyl chloride.
  • the solvent in the step one and the second step is hexane.
  • the butyl rubber solution in the step 1 is partially reused from the butyl rubber solution in the low-temperature dissolution tank.
  • the terminator in the step one needs to be dissolved in the diluent, and then the solvent is added.
  • the concentration of the terminator in the step 1 is 0.5%-10%, preferably 1%-4%.
  • the solvent temperature in the second step is 20°C to 80°C
  • the temperature of the low-temperature dissolving tank is -20°C to 20°C
  • the pressure is 50KPag to 300KPag.
  • the quality of the butyl rubber in the butyl rubber solution obtained is 100%.
  • the sub-content is 1% ⁇ 15%.
  • the operating temperature of the flash tank in the step 3 is 30°C-100°C, and the pressure is 200KPag-800KPag, and the gas phase obtained by the flash tank contains unreacted monomers, diluents and solvents;
  • the liquid phase of the flash tank is a fully dissolved butyl rubber solution, and the mass percentage of butyl rubber is 5%-18%.
  • the dechlorination tower in step 4 adopts a through-flow corrugated sieve tray or a valve tray.
  • the butyl rubber hexane solution is separated from the unreacted monomer by the through-flow corrugated sieve tower.
  • the gas passes through the crest and the holes at the side and is sprayed into the liquid.
  • the liquid falls from the trough holes, avoiding the through-flow sieve.
  • the plate operation is unstable and the operation flexibility is small, which overcomes the uneven gas-liquid distribution of the large-diameter plate and the low plate efficiency, which can make the liquid distribution uniform and increase turbulence.
  • the operating temperature of the dechlorination tower in step 4 is 50-180°C, preferably 110-150°C; and the operating pressure is 100-800KPag, preferably 200-500KPag.
  • the mixed gas is obtained from the top of the dechloromethane tower in step 4, wherein the mass percentage of the solvent is 30% to 60%, and the mass percentage of methyl chloride is 40% to 70%.
  • the butyl rubber solution is obtained from the tower kettle, in which the methyl chloride content does not exceed 50 ppm, the isobutylene content does not exceed 20 ppm, and the isoprene content does not exceed 500 ppm.
  • the viscosity of the butyl rubber solution in the dechloromethane tower is 50-100 cp.
  • the operating temperature of the hexane recovery tower in step 5 is 50-150°C, preferably 80-120°C; and the operating pressure is 100-800KPag, preferably 200-500KPag.
  • the top of the solvent recovery tower in step 5 is unreacted gas phase monomer and diluent gas, wherein the solvent mass percentage is 0.1% to 2%; the tower still obtains a high-purity solvent , Its purity is greater than 99%.
  • the operating temperature of the gum solution concentration tower in step 6 is 50-150°C, preferably 60-90°C; and the operating pressure is 10KPag-100KPag, preferably 30-80KPag.
  • the solvent in the step 6 is separated and removed in the gum solution concentration tower, and the top of the tower is solvent gas; the tower kettle obtains the basic gum solution that can be used for the halogenation reaction, and the quality of the butyl rubber in the basic gum solution is The concentration is 10%-25%, preferably 15%-20%.
  • the present invention realizes the rapid and full mixing of the terminator and the butyl rubber slurry at low temperature through the mixer, can realize the rapid termination of the reaction, improves the product quality, and shortens the process time.
  • the butyl rubber hexane solution is reused to the second mixer and the separated hexane is reused, which can save resources and reduce costs.
  • the preparation method of the halogenated butyl rubber base rubber solution of the present invention has reasonable technological process design, low energy consumption and strong practicability.
  • FIG. 1 Schematic diagram of the process flow of the present invention.
  • the first mixer 2. The second mixer; 3. Low-temperature dissolving tank; 4. Flash distillation kettle; 5. Dechloromethane tower; 6. Solvent recovery tower; 7. Glue concentration tower.
  • Figure 1 is a schematic diagram of the process flow of the present invention.
  • the device for implementing the present invention includes a first mixer 1, a second mixer 2, a low-temperature dissolving tank 3, a flash tank 4, a dechlorination tower 5, a hexane recovery tower 6, and a glue concentration tower 7, which are connected in sequence .
  • a method for preparing a butyl rubber base rubber solution for halogenation reaction includes the following steps:
  • Step 1 Pass the butyl rubber slurry, solvent hexane, terminator and diluent methyl chloride into the first mixer 1; then the butyl rubber slurry from the first mixer 1 and the butyl rubber returned from the low-temperature dissolving tank The base rubber solution is mixed and passed into the second mixer 2 to finally obtain the butyl rubber solution after the reaction is terminated.
  • Step 2 Pass the butyl rubber solution obtained in step 1 and hexane with a temperature of 20°C into the low-temperature dissolving tank 3 for mixing and dissolving.
  • the low-temperature dissolving tank has a temperature of -10°C and a pressure of 100 KPag to obtain a mass percentage of 5 % Butyl rubber solution.
  • Step 3 The butyl rubber solution obtained in step 2 is pressurized into the flash tank 4 through a pump.
  • the operating temperature of the flash tank 4 is 70°C; the pressure is 200KPag; the obtained gas phase product includes unreacted monomer and diluent Methyl chloride and solvent hexane; the liquid phase of the flash tank is a butyl rubber solution with a mass percentage of about 6%.
  • Step 4 Pass the butyl rubber solution obtained in step 3 and the steam containing unreacted monomers, diluent methyl chloride and solvent hexane into the dechloromethane tower 5, which uses a through-flow corrugated sieve plate. Heat is provided by passing hexane steam from the tower kettle.
  • the operating temperature of the dechloromethane tower is 120°C and the operating pressure is 300KPag.
  • Step 5 Pass the top gas phase of step 4 into the hexane recovery tower 6.
  • the operating temperature of the hexane recovery tower 6 is 80°C and the operating pressure is 350KPag.
  • the mass percentage of hexane is less than 0.1%, and the tower still obtains solvent hexane, and the tower still hexane can be further heated and gasified by a heat exchanger to enter the dechloromethane tower as the heat source of the dechloromethane tower for recycling.
  • Step 6 Pass the butyl rubber solution obtained in step 4 into the gum solution concentration tower 7.
  • the operation temperature of the gum solution concentration tower is 60°C; the operating pressure is 30KPag, and the hexane in the gum solution is partially removed in the concentration tower .
  • the tower kettle obtains a butyl rubber solution with a mass concentration of 15%.
  • a method for preparing a butyl rubber base rubber solution for halogenation reaction includes the following steps:
  • Step 1 Pass the butyl rubber slurry, solvent hexane, terminator and diluent methyl chloride into the first mixer 1; then the butyl rubber slurry from the first mixer 1 and the butyl rubber returned from the low-temperature dissolving tank The base rubber solution is mixed and passed into the second mixer 2 to finally obtain the butyl rubber solution after the reaction is terminated.
  • Step 2 Pass the butyl rubber solution obtained in step 1 and hexane with a temperature of 60°C into the low-temperature dissolving tank 3 for mixing and dissolving.
  • the low-temperature dissolving tank has a temperature of -20°C and a pressure of 50KPag to obtain a mass percentage of 10% Butyl rubber solution.
  • Step 3 The butyl rubber solution obtained in step 2 is pressurized into the flash tank 4 through a pump.
  • the operating temperature of the flash tank 4 is 90°C; the pressure is 150KPag; the obtained gas phase product includes unreacted monomer and diluent Methyl chloride and solvent hexane; the liquid phase of the flash tank is a butyl rubber solution with a mass percentage of about 12%.
  • Step 4 Pass the butyl rubber solution obtained in step 3 and the steam containing unreacted monomers, diluent methyl chloride and solvent hexane into the dechloromethane tower 5, which uses a through-flow corrugated sieve plate. Heat is provided by passing hexane steam from the tower kettle.
  • the operating temperature of the dechloromethane tower is 135°C and the operating pressure is 400KPag.
  • Step 5 Pass the gas phase at the top of step 4 into the hexane recovery tower 6.
  • the operating temperature of the hexane recovery tower 6 is 110°C and the operating pressure is 400KPag.
  • the mass percentage of hexane is less than 0.1%, and the tower still obtains solvent hexane, and the tower still hexane can be further heated and gasified by a heat exchanger to enter the dechloromethane tower as the heat source of the dechloromethane tower for recycling.
  • Step 6 Pass the butyl rubber solution obtained in step 4 into the gum solution concentration tower 7.
  • the operating temperature of the gum solution concentration tower is 60°C; the operating pressure is 50KPag, and the hexane in the gum solution is partially removed in the concentration tower .
  • the tower kettle obtains a butyl rubber solution with a mass concentration of 17%.
  • a method for preparing a butyl rubber base rubber solution for halogenation reaction includes the following steps:
  • Step 1 Pass the butyl rubber slurry, solvent hexane, terminator and diluent methyl chloride into the first mixer 1; then the butyl rubber slurry from the first mixer 1 and the butyl rubber returned from the low-temperature dissolving tank The base rubber solution is mixed and passed into the second mixer 2 to finally obtain the butyl rubber solution after the reaction is terminated.
  • Step 2 Pass the butyl rubber solution obtained in step 1 and hexane with a temperature of 80°C into the low-temperature dissolving tank 3 for mixing and dissolving.
  • the low-temperature dissolving tank has a temperature of 20°C and a pressure of 50KPag to obtain 13% by mass Butyl rubber solution.
  • Step 3 The butyl rubber solution obtained in step 2 is pressurized into the flash tank 4 through a pump.
  • the operating temperature of the flash tank 4 is 100°C; the pressure is 200KPag; the obtained gas phase product includes unreacted monomer and diluent Methyl chloride and solvent hexane; the liquid phase of the flash tank is a butyl rubber solution with a mass percentage of about 16%.
  • Step 4 Pass the butyl rubber solution obtained in step 3 and the steam containing unreacted monomers, diluent methyl chloride and solvent hexane into the dechloromethane tower 5, which uses a through-flow corrugated sieve plate. Heat is provided by passing hexane steam from the tower kettle.
  • the operating temperature of the dechloromethane tower is 140°C and the operating pressure is 200KPag.
  • Step 5 Pass the top gas phase of step 4 into the hexane recovery tower 6.
  • the operating temperature of the hexane recovery tower 6 is 145°C and the operating pressure is 150KPag.
  • the mass percentage of hexane is less than 0.1%, and the tower still obtains solvent hexane, and the tower still hexane can be further heated and gasified by a heat exchanger to enter the dechloromethane tower as the heat source of the dechloromethane tower for recycling.
  • Step 6 Pass the butyl rubber solution obtained in step 4 into the gum solution concentration tower 7.
  • the operating temperature of the gum solution concentration tower is 85°C; the operating pressure is 30KPag, and the hexane in the gum solution is partially removed in the concentration tower .
  • the tower kettle obtains a butyl rubber solution with a mass concentration of 19%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

涉及一种用于卤化反应的丁基橡胶基础胶溶液的制备方法。该方法包括如下步骤:将丁基橡胶淤浆与溶剂、终止剂和稀释剂通入第一混合器;再进入第二混合器与丁基橡胶溶液进一步混合,得到反应终止后的丁基橡胶溶液;丁基橡胶溶液进入低温溶解罐进行完全溶解,得到的丁基橡胶溶液进入闪蒸釜,初步脱除部分稀释剂和未反应单体;初步脱除部分稀释剂和未反应单体的丁基橡胶溶液经脱氯甲烷塔彻底脱除稀释剂和未反应单体,最后通入胶液浓缩塔浓缩得到适宜浓度的丁基橡胶基础胶溶液,用于制备卤化丁基橡胶。所述方法具有设计合理,实用性强,绿色环保和能耗低等优点。

Description

一种用于卤化反应的丁基橡胶基础胶溶液的制备方法 技术领域
本发明属于丁基橡胶制造技术领域,特别是涉及一种用于卤化反应的丁基橡胶基础胶溶液的制备方法。
背景技术
卤化丁基橡胶的生产一般采用连续工艺,其工艺过程包括基础胶液的制备,液氯、液溴的贮运及准备,卤化反应及卤化胶液的中和,卤化胶液脱气、汽提和溶剂回收,卤酸气的处理,卤化丁基橡胶后处理干燥等过程。
基础胶液的制备有水凝析溶解法和溶剂置换法两种。
水凝析溶解法是指聚合反应釜溢流的聚合淤浆与热水和蒸汽混合后,氯甲烷气化,橡胶在热水中析出成胶粒,再用振动筛和挤压机除去大部分水后去溶解成己烷溶液的方法。
溶剂置换法是指聚合反应釜溢流的聚合淤浆直接与热己烷混合,氯甲烷气化的同时即完成橡胶溶解,形成橡胶溶液。
溶剂置换法相比水凝析溶解法存在工艺流程短、能耗低、生产过程中更加绿色环保,设备腐蚀减少,“三废”量显著降低,设备占地少,运行成本低等优点。而目前常规的溶剂置换法仍然存在效率不高、操作稳定性和弹性欠缺等缺点。如专利号201410003515.7中通过一步法将丁基橡胶溶液、稀释剂和未反应单体进行分离,可能存在一部分溶剂在塔顶气相中,塔顶气相组分复杂,导致溶剂损耗大。通过一步法实现丁基橡胶淤浆和溶剂的溶解和闪蒸,需要提供大量的热,不利于丁基橡胶胶粒和溶剂的溶解,温升过快会造成小分子量丁基橡胶的大量产生,影响产品品质。
技术解决方案
本发明的目的在于提供一种用于卤化反应的丁基橡胶基础胶溶液的制备方法。本发明具有设计合理,实用性强,绿色环保和能耗低等优点。
为了达到上述的目的,本发明采取以下技术方案:
一种用于卤化反应的丁基橡胶基础胶溶液的制备方法,包括如下步骤:
步骤一:将丁基橡胶淤浆与溶剂、终止剂和稀释剂通入第一混合器,然后进入第二混合器与丁基橡胶溶液进一步混合,得到反应终止后的丁基橡胶溶液;
步骤二:将步骤一得到的反应终止后的丁基橡胶溶液通入低温溶解罐与溶剂进一步混合并完全溶解;
步骤三:将步骤二得到的丁基橡胶溶液通过泵增压进入闪蒸釜,通过闪蒸脱除部分稀释剂和未反应单体,得到初步脱除部分稀释剂和未反应单体的丁基橡胶溶液;
步骤四:将步骤三得到的初步脱除部分稀释剂和未反应单体的丁基橡胶溶液通入脱氯甲烷塔,脱氯甲烷塔塔釜通入溶剂蒸汽,丁基橡胶溶液与溶剂蒸汽在塔内逆流接触传质,彻底脱除丁基橡胶溶液中的稀释剂和未反应单体;
步骤五:将步骤三、步骤四中脱除的稀释剂和未反应单体通入溶剂回收塔,将溶剂和稀释剂、未反应单体进行蒸馏分离,得到的塔顶气体中溶剂含量小于0.1wt%。塔底基本不含稀释剂和未反应单体;
步骤六:将步骤四得到的丁基橡胶溶液通入胶液浓缩塔中浓缩,丁基橡胶溶液中的溶剂在塔内气化脱除,胶液浓度提高,得到可用于卤化反应的丁基橡胶基础胶溶液。
进一步地,在上述方法中,所述步骤一的第一混合器、第二混合器为动态混合器、静态混合器、微混合器、超重力混合器中的一种或组合。
进一步地,在上述方法中,所述步骤一中的终止剂为一元醇、二元醇、多元醇的一种或多种的混合物,所述终止剂优选为甲醇、乙醇、丙醇、丁醇、叔丁醇、三甘醇、四甘醇的一种或多种的混合物。
进一步地,在上述方法中,所述步骤一的稀释剂为氯甲烷。
进一步地,在上述方法中,所述步骤一、步骤二的溶剂为己烷。
进一步地,在上述方法中,所述步骤一的丁基橡胶溶液来自低温溶解罐中的丁基橡胶溶液部分回用。
进一步地,在上述方法中,所述步骤一中的终止剂需溶解在稀释剂中,然后加入溶剂。
进一步地,在上述方法中,所述步骤一中的终止剂的浓度为0.5%~10%,优选1%~4%。
进一步地,在上述方法中,所述步骤二的溶剂温度为20℃~80℃,低温溶解罐温度为-20~20℃,压力50KPag~300KPag,得到的丁基橡胶溶液中丁基橡胶质量百分含量为1%~15%。
进一步地,在上述方法中,所述步骤三中闪蒸釜的操作温度为30℃~100℃,压力为200KPag~800KPag,闪蒸釜得到的气相含有未反应的单体、稀释剂和溶剂;闪蒸釜液相为充分溶解的丁基橡胶溶液,丁基橡胶的质量百分含量为5%~18%。
进一步地,在上述方法中,所述步骤四中脱氯甲烷塔采用穿流式波纹筛板或浮阀塔板。通过穿流式波纹筛板塔将丁基橡胶己烷溶液中与未反应单体分离,气体由波峰和侧处的孔通过,喷入液体中,液体由波谷的孔降落,避免了穿流筛板操作不稳、操作弹性小的缺陷,克服了大直径塔板的气液分布不均,板效率低的缺点,可使液体分布均匀,增加湍动。
进一步地,在上述方法中,所述步骤四中脱氯甲烷塔的操作温度为50~180℃,优选110℃~150℃;操作压力100~800KPag,优选200~500KPag。
进一步地,在上述方法中,所述步骤四脱氯甲烷塔的塔顶得到混合气体,其中溶剂的质量百分含量为30%~60%,氯甲烷的质量百分含量为40%~70%;塔釜得到丁基橡胶溶液,其中氯甲烷含量不超过50ppm,异丁烯含量不超过20ppm,异戊二烯含量不超过500ppm。
进一步地,在上述方法中,所述脱氯甲烷塔中丁基橡胶溶液粘度为50~100cp。
进一步地,在上述方法中,所述步骤五中己烷回收塔的操作温度为50~150℃,优选80~120℃;操作压力为100~800KPag,优选200~500KPag。
进一步地,在上述方法中,所述步骤五中溶剂回收塔的塔顶为未反应的气相单体和稀释剂气体,其中溶剂质量百分含量为0.1%~2%;塔釜得到高纯度溶剂,其纯度大于99%。
进一步地,在上述方法中,所述步骤六中胶液浓缩塔的操作温度为50~150℃,优选60~90℃;操作压力为10KPag~100KPag,优选30~80KPag。
进一步地,在上述方法中,所述步骤六中溶剂在胶液浓缩塔中分离脱除,塔顶为溶剂气体;塔釜得到可用于卤化反应的基础胶液,基础胶液中丁基橡胶质量浓度为10%~25%,优选15%~20%。
有益效果
本发明具有以下技术特点:
1)本发明通过混合器实现了终止剂与丁基橡胶淤浆的在低温下的快速充分混合,能够实现反应的迅速终止,提高产品质量,缩短工艺时间。
2)本发明中丁基橡胶己烷溶液回用至第二混合器,以及分离出来的己烷的回用,能够节约资源,降低成本。
3)本发明的卤化丁基橡胶基础胶溶液的制备方法工艺流程设计合理,能耗低,实用性强。
附图说明
图1 本发明工艺流程示意图。
1. 第一混合器;2. 第二混合器;3. 低温溶解罐;4. 闪蒸釜;5.脱氯甲烷塔;6. 溶剂回收塔;7. 胶液浓缩塔。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内有一般技能的人士所理解的通常意义。
图1为本发明的工艺流程示意图。实施本发明的装置包括第一混合器1、第二混合器2、低温溶解罐3、闪蒸釜4、脱氯甲烷塔5、己烷回收塔6、胶液浓缩塔7,上述装置依次连接。
实施例1
一种用于卤化反应的丁基橡胶基础胶溶液的制备方法,包括如下步骤:
步骤一:将丁基橡胶淤浆与溶剂己烷、终止剂和稀释剂氯甲烷通入第一混合器1;然后从第一混合器1出来的丁基橡胶淤浆与低温溶解罐返回的丁基橡胶溶液混合后通入第二混合器2,最终得到反应终止后的丁基橡胶溶液。
步骤二:将步骤一得到的丁基橡胶溶液与温度为20℃的己烷通入低温溶解罐3进行混合溶解,低温溶解罐温度为-10℃,压力100 KPag,得到质量百分含量为5%的丁基橡胶溶液。
步骤三:将步骤二得到的丁基橡胶溶液通过泵增压进入闪蒸釜4,闪蒸釜4的操作温度为70℃;压力为200KPag;得到的气相产物包括未反应的单体、稀释剂氯甲烷和溶剂己烷;闪蒸釜液相为质量百分含量约为6%的丁基橡胶溶液。
步骤四:将步骤三得到的丁基橡胶溶液和含有未反应单体、稀释剂氯甲烷和溶剂己烷的蒸汽通入脱氯甲烷塔5,脱氯甲烷塔5采用穿流式波纹筛板,通过从塔釜通入己烷蒸汽提供热量,脱氯甲烷塔的操作温度为120℃,操作压力300KPag,在脱氯甲烷塔内丁基橡胶溶液与己烷蒸汽逆向接触传质,塔顶气相为未反应单体、稀释剂氯甲烷和溶剂己烷;其中己烷的质量百分含量为30%,氯甲烷的质量百分含量为50%;塔釜为丁基橡胶溶液,其中丁基橡胶的质量百分含量为7%,己烷的质量百分含量为80%,氯甲烷含量不超过50ppm,异丁烯含量不超过1ppm,异戊二烯含量不超过500ppm。
步骤五:将步骤四的塔顶气相通入己烷回收塔6,己烷回收塔6的操作温度为80℃,操作压力350KPag,通过精馏,塔顶得到未反应单体和氯甲烷气体,其中己烷质量百分含量低于0.1%,塔釜得到溶剂己烷,塔釜己烷可进一步经换热器加热气化后进入脱氯甲烷塔作为脱氯甲烷塔热源,回收利用。
步骤六:将步骤四得到的丁基橡胶溶液通入胶液浓缩塔7中,胶液浓缩塔的操作温度为60℃;操作压力为30KPag,胶液中的己烷在浓缩塔中部分脱除。塔釜得到质量浓度为15%的丁基橡胶溶液。
实施例2
一种用于卤化反应的丁基橡胶基础胶溶液的制备方法,包括如下步骤:
步骤一:将丁基橡胶淤浆与溶剂己烷、终止剂和稀释剂氯甲烷通入第一混合器1;然后从第一混合器1出来的丁基橡胶淤浆与低温溶解罐返回的丁基橡胶溶液混合后通入第二混合器2,最终得到反应终止后的丁基橡胶溶液。
步骤二:将步骤一得到的丁基橡胶溶液与温度为60℃的己烷通入低温溶解罐3进行混合溶解,低温溶解罐温度为-20℃,压力50KPag,得到质量百分含量为10%的丁基橡胶溶液。
步骤三:将步骤二得到的丁基橡胶溶液通过泵增压进入闪蒸釜4,闪蒸釜4的操作温度为90℃;压力为150KPag;得到的气相产物包括未反应的单体、稀释剂氯甲烷和溶剂己烷;闪蒸釜液相为质量百分含量约为12%的丁基橡胶溶液。
步骤四:将步骤三得到的丁基橡胶溶液和含有未反应单体、稀释剂氯甲烷和溶剂己烷的蒸汽通入脱氯甲烷塔5,脱氯甲烷塔5采用穿流式波纹筛板,通过从塔釜通入己烷蒸汽提供热量,脱氯甲烷塔的操作温度为135℃,操作压力   400KPag,在脱氯甲烷塔内丁基橡胶溶液与己烷蒸汽逆向接触传质,塔顶气相为未反应单体、稀释剂氯甲烷和溶剂己烷;其中己烷的质量百分含量为45%,氯甲烷的质量百分含量为64%;塔釜为丁基橡胶溶液,其中丁基橡胶的质量百分含量为7%,己烷的质量百分含量为82%,氯甲烷含量不超过50ppm,异丁烯含量不超过1ppm,异戊二烯含量不超过500ppm。
步骤五:将步骤四的塔顶气相通入己烷回收塔6,己烷回收塔6的操作温度为110℃,操作压力400KPag,通过精馏,塔顶得到未反应单体和氯甲烷气体,其中己烷质量百分含量低于0.1%,塔釜得到溶剂己烷,塔釜己烷可进一步经换热器加热气化后进入脱氯甲烷塔作为脱氯甲烷塔热源,回收利用。
步骤六:将步骤四得到的丁基橡胶溶液通入胶液浓缩塔7中,胶液浓缩塔的操作温度为60℃;操作压力为50KPag,胶液中的己烷在浓缩塔中部分脱除。塔釜得到质量浓度为17%的丁基橡胶溶液。
实施例3
一种用于卤化反应的丁基橡胶基础胶溶液的制备方法,包括如下步骤:
步骤一:将丁基橡胶淤浆与溶剂己烷、终止剂和稀释剂氯甲烷通入第一混合器1;然后从第一混合器1出来的丁基橡胶淤浆与低温溶解罐返回的丁基橡胶溶液混合后通入第二混合器2,最终得到反应终止后的丁基橡胶溶液。
步骤二:将步骤一得到的丁基橡胶溶液与温度为80℃的己烷通入低温溶解罐3进行混合溶解,低温溶解罐温度为20℃,压力50KPag,得到质量百分含量为13%的丁基橡胶溶液。
步骤三:将步骤二得到的丁基橡胶溶液通过泵增压进入闪蒸釜4,闪蒸釜4的操作温度为100℃;压力为200KPag;得到的气相产物包括未反应的单体、稀释剂氯甲烷和溶剂己烷;闪蒸釜液相为质量百分含量约为16%的丁基橡胶溶液。
步骤四:将步骤三得到的丁基橡胶溶液和含有未反应单体、稀释剂氯甲烷和溶剂己烷的蒸汽通入脱氯甲烷塔5,脱氯甲烷塔5采用穿流式波纹筛板,通过从塔釜通入己烷蒸汽提供热量,脱氯甲烷塔的操作温度为140℃,操作压力200KPag,在脱氯甲烷塔内丁基橡胶溶液与己烷蒸汽逆向接触传质,塔顶气相为未反应单体、稀释剂氯甲烷和溶剂己烷;其中己烷的质量百分含量为45%,氯甲烷的质量百分含量为64%;塔釜为丁基橡胶溶液,其中丁基橡胶的质量百分含量为8%,己烷的质量百分含量为80%,氯甲烷含量不超过50ppm,异丁烯含量不超过1ppm,异戊二烯含量不超过500ppm。
步骤五:将步骤四的塔顶气相通入己烷回收塔6,己烷回收塔6的操作温度为145℃,操作压力150KPag,通过精馏,塔顶得到未反应单体和氯甲烷气体,其中己烷质量百分含量低于0.1%,塔釜得到溶剂己烷,塔釜己烷可进一步经换热器加热气化后进入脱氯甲烷塔作为脱氯甲烷塔热源,回收利用。
步骤六:将步骤四得到的丁基橡胶溶液通入胶液浓缩塔7中,胶液浓缩塔的操作温度为85℃;操作压力为30KPag,胶液中的己烷在浓缩塔中部分脱除。塔釜得到质量浓度为19%的丁基橡胶溶液。
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。

Claims (17)

  1. 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法,其特征在于,包括如下步骤:
    步骤一:将丁基橡胶淤浆与溶剂、终止剂和稀释剂通入第一混合器,然后进入第二混合器与丁基橡胶溶液进一步混合,得到反应终止后的丁基橡胶溶液;
    步骤二:将步骤一得到的反应终止后的丁基橡胶溶液通入低温溶解罐与溶剂进一步混合并完全溶解;
    步骤三:将步骤二得到的丁基橡胶溶液通过泵增压进入闪蒸釜,通过闪蒸脱除部分稀释剂和未反应单体,得到初步脱除部分稀释剂和未反应单体的丁基橡胶溶液;
    步骤四:将步骤三得到的初步脱除部分稀释剂和未反应单体的丁基橡胶溶液通入脱氯甲烷塔,脱氯甲烷塔塔釜通入己烷蒸汽,丁基橡胶溶液与己烷蒸汽在塔内逆流接触传质,彻底脱除丁基橡胶溶液中的稀释剂和未反应单体;
    步骤五:将步骤三、步骤四中脱除的稀释剂和未反应单体通入溶剂回收塔,将溶剂和稀释剂、未反应单体进行蒸馏分离,得到的塔顶气体中溶剂含量小于0.1wt%,塔底基本不含稀释剂和未反应单体;
    步骤六:将步骤四得到的丁基橡胶溶液通入胶液浓缩塔中浓缩,丁基橡胶溶液中的溶剂在塔内气化脱除,胶液浓度提高,得到可用于卤化反应的丁基橡胶基础胶溶液。
  2. 根据权利要求1所述的制备方法,其特征在于,所述步骤一的第一混合器、第二混合器为动态混合器、静态混合器、微混合器、超重力混合器中的一种或组合。
  3. 根据权利要求1所述的制备方法,其特征在于,所述步骤一中的终止剂为一元醇、二元醇、多元醇的一种或多种的混合物。
  4. 根据权利要求1所述的制备方法,其特征在于,所述步骤一的稀释剂为氯甲烷。
  5. 根据权利要求1所述的制备方法,其特征在于,所述步骤一、步骤二的溶剂为己烷。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤一的丁基橡胶溶液来自低温溶解罐中的丁基橡胶溶液部分回用。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤一中的终止剂需溶解在稀释剂中,然后加入溶剂。
  8. 根据权利要求1所述的制备方法,其特征在于,所述步骤一中的终止剂的质量浓度为0.5%~10%。
  9. 根据权利要求1所述的制备方法,其特征在于,所述步骤二的溶剂温度为20℃~80℃,低温溶解罐温度为-20~20℃,压力50KPag~300KPag,得到的丁基橡胶溶液中丁基橡胶质量百分含量为1%~15%。
  10. 根据权利要求1所述的制备方法,其特征在于,所述步骤三中闪蒸釜的操作温度为30℃~100℃,压力为200KPag~800KPag,闪蒸釜得到的气相含有未反应的单体、稀释剂和溶剂;闪蒸釜液相为充分溶解的丁基橡胶溶液,丁基橡胶的质量百分含量为5%~18%。
  11. 根据权利要求1所述的制备方法,其特征在于,所述步骤四中脱氯甲烷塔采用穿流式波纹筛板或浮阀塔板。
  12. 根据权利要求1所述的制备方法,其特征在于,所述步骤四中脱氯甲烷塔的操作温度为50~180℃,操作压力100~800KPag;所述步骤四脱氯甲烷塔的塔顶得到混合气体,其中溶剂的质量百分含量为30%~60%,氯甲烷的质量百分含量为40%~70%;塔釜得到丁基橡胶溶液,其中氯甲烷含量不超过50ppm,异丁烯含量不超过20ppm,异戊二烯含量不超过500ppm。
  13. 根据权利要求1所述的制备方法,其特征在于,所述脱氯甲烷塔中丁基橡胶溶液粘度为50~100cp。
  14. 根据权利要求1所述的制备方法,其特征在于,所述步骤五中溶剂回收塔的操作温度为50~150℃,操作压力为100~800KPag。
  15. 根据权利要求1所述的制备方法,其特征在于,所述步骤五中溶剂回收塔的塔顶为未反应的气相单体和稀释剂气体,其中溶剂质量百分含量为0.1%~2%;塔釜得到高纯度溶剂,其纯度大于99%。
  16. 根据权利要求1所述的制备方法,其特征在于,所述步骤六中胶液浓缩塔的操作温度为50~150℃,操作压力为10KPag~100KPag。
  17. 根据权利要求1所述的制备方法,其特征在于,所述步骤六中溶剂在胶液浓缩塔中分离脱除,塔顶为溶剂气体;塔釜得到可用于卤化反应的基础胶液,基础胶液中丁基橡胶质量浓度为10%~25%。
PCT/CN2020/124844 2020-04-26 2020-10-29 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法 WO2021218085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010338433.3 2020-04-26
CN202010338433.3A CN111548436B (zh) 2020-04-26 2020-04-26 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法

Publications (1)

Publication Number Publication Date
WO2021218085A1 true WO2021218085A1 (zh) 2021-11-04

Family

ID=72005938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124844 WO2021218085A1 (zh) 2020-04-26 2020-10-29 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法

Country Status (2)

Country Link
CN (1) CN111548436B (zh)
WO (1) WO2021218085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656580A (zh) * 2022-04-29 2022-06-24 山东京博中聚新材料有限公司 一种丁基橡胶的溴化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548436B (zh) * 2020-04-26 2021-04-16 浙江信汇新材料股份有限公司 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048785A1 (en) * 2011-09-27 2013-04-04 Dow Global Technologies Llc Melt devolatilization extrusion process
CN103467637A (zh) * 2013-09-29 2013-12-25 浙江信汇合成新材料有限公司 一种氯化丁基橡胶生产工艺
CN103483483A (zh) * 2012-06-11 2014-01-01 中国石油化工集团公司 一种丁基橡胶汽提装置及汽提方法
CN104761659A (zh) * 2014-01-03 2015-07-08 中国石油化工股份有限公司 一种制备卤化用丁基橡胶溶液的方法及装置
CN109942841A (zh) * 2019-03-27 2019-06-28 山东京博石油化工有限公司橡胶分公司 一种丁基橡胶溶液及其制备方法
CN111548436A (zh) * 2020-04-26 2020-08-18 浙江信汇新材料股份有限公司 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957048B (zh) * 2017-12-14 2021-08-03 中国石油化工股份有限公司 卤化用单烯烃-共轭二烯烃共聚物溶液的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048785A1 (en) * 2011-09-27 2013-04-04 Dow Global Technologies Llc Melt devolatilization extrusion process
CN103483483A (zh) * 2012-06-11 2014-01-01 中国石油化工集团公司 一种丁基橡胶汽提装置及汽提方法
CN103467637A (zh) * 2013-09-29 2013-12-25 浙江信汇合成新材料有限公司 一种氯化丁基橡胶生产工艺
CN104761659A (zh) * 2014-01-03 2015-07-08 中国石油化工股份有限公司 一种制备卤化用丁基橡胶溶液的方法及装置
CN109942841A (zh) * 2019-03-27 2019-06-28 山东京博石油化工有限公司橡胶分公司 一种丁基橡胶溶液及其制备方法
CN111548436A (zh) * 2020-04-26 2020-08-18 浙江信汇新材料股份有限公司 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656580A (zh) * 2022-04-29 2022-06-24 山东京博中聚新材料有限公司 一种丁基橡胶的溴化方法
CN114656580B (zh) * 2022-04-29 2024-02-13 山东京博中聚新材料有限公司 一种丁基橡胶的溴化方法

Also Published As

Publication number Publication date
CN111548436A (zh) 2020-08-18
CN111548436B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2021218085A1 (zh) 一种用于卤化反应的丁基橡胶基础胶溶液的制备方法
CN111333530B (zh) 一种用于dmac或dmf废液回收的热泵精馏工艺
CN210150893U (zh) 一种改进的废剥离液再生装置
CN101104533A (zh) 一种h-酸生产废水的处理方法
CN104761659B (zh) 一种制备卤化用丁基橡胶溶液的方法及装置
WO2022042565A1 (zh) 一种尼龙6生产工艺及其***与产品
CN111470939B (zh) 一种连续生产2-溴-3,3,3-三氟丙烯的生产装置及方法
WO2019090884A1 (zh) 抗冲聚丙烯的聚合方法
CN115196654B (zh) 一种液态六氟磷酸锂的合成装置及其应用
CN111018768A (zh) 一种n-甲基吡咯烷酮的回收方法
CN101049979A (zh) 从铜电解废液中提取硫酸镍的方法
CN106188400B (zh) 一种苯乙烯系多元共聚高分子材料的制备工艺
WO2024027131A1 (zh) 一种回用热聚液体树脂生产碳九加氢树脂的方法
CN115304821B (zh) 一种回收全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚的方法
KR102520447B1 (ko) 용매 회수 방법 및 용매 회수 장치
CN215756535U (zh) 一种从废水中回收dmac的精馏***
WO2019090882A1 (zh) 丙烯均聚或无规共聚的方法
CN211946862U (zh) 一种连续生产2-溴-3,3,3-三氟丙烯的生产装置
CN115197345B (zh) 一种合成橡胶生产中凝聚工艺的节能方法
CN114011107A (zh) 一种新型连续化生产高纯碳酸亚乙烯酯的装置及方法
CN105566171A (zh) 一种制备h-酸的装置
CN109957056A (zh) 卤化单烯烃-共轭二烯烃共聚物的制备方法
CN212713310U (zh) 一种用生物柴油制备α-氯代棕榈酸甲酯的装置
CN105776696A (zh) 一种浓缩己内酰胺生产废液的工艺
CN218951332U (zh) 一种高密度聚乙烯蜡的分离设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933605

Country of ref document: EP

Kind code of ref document: A1