WO2021217613A1 - 输能方法和装置 - Google Patents

输能方法和装置 Download PDF

Info

Publication number
WO2021217613A1
WO2021217613A1 PCT/CN2020/088404 CN2020088404W WO2021217613A1 WO 2021217613 A1 WO2021217613 A1 WO 2021217613A1 CN 2020088404 W CN2020088404 W CN 2020088404W WO 2021217613 A1 WO2021217613 A1 WO 2021217613A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy transmission
amplitude
energy
phase
synchronization
Prior art date
Application number
PCT/CN2020/088404
Other languages
English (en)
French (fr)
Inventor
姜伟鹏
黄韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080092632.9A priority Critical patent/CN114930678A/zh
Priority to PCT/CN2020/088404 priority patent/WO2021217613A1/zh
Publication of WO2021217613A1 publication Critical patent/WO2021217613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • This application relates to the field of wireless charging, and more specifically, to an energy transmission method and device.
  • Wireless power transfer (WPT) technology can realize that the energy of electronic devices is ready to use, which will greatly improve the convenience of users.
  • General wireless energy transmission technologies include magnetic induction charging, magnetic resonance charging and microwave wireless charging technologies.
  • Currently commercially available wireless charging products, such as wireless charging pads for mobile phones, are based on magnetic induction or magnetic resonance technology.
  • the transmission efficiency of magnetic induction or magnetic resonance technology is high, but the charging distance is very short, usually contact charging or millimeter distance, and the relative pose and posture of the transmitting and receiving coil are relatively high, which greatly limits the convenience and convenience of charging.
  • the scope of application cannot support large-scale, multi-terminal, and mobile charging.
  • Microwave power transfer (MPT) technology has obvious advantages in coverage, multiple terminals, and mobility support. However, due to the omnidirectional microwave radiation, energy is difficult to focus, and the effective charging power is low.
  • the key point of energy focusing is the equivalent antenna array aperture of the energy transmission equipment.
  • a larger antenna array is usually required, but it is difficult to install and deploy a large antenna array.
  • multiple small distributed energy transmission equipment are used (small array energy transmission circuits can be integrated into wireless routers, speakers, TVs and other equipment), and joint energy transmission is performed, a larger equivalent array aperture can be achieved, and the realization is better.
  • the focus effect is simple, and deployment is simple. However, because different devices have different crystal oscillator clocks, the inherent frequency deviation and drift deviation of the clock will cause the devices to be out of synchronization. Therefore, the key to distributed energy transmission lies in the synchronization between multiple energy transmission equipment and energy receiving equipment.
  • the present application provides an energy transmission method and device, which can realize synchronization between multiple energy transmission equipment according to the energy receiving equipment, thereby improving energy transmission efficiency.
  • an energy transmission method which includes: an energy receiving device sends an energy transmission request signal to multiple energy transmission devices; the energy receiving device receives response signals from the multiple energy transmission devices to the energy transmission request signal; The device obtains the amplitude and phase information of multiple energy transmission devices according to the response signal; the energy receiving device sends a synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, and the synchronization signal makes the multiple energy transmission devices Synchronize amplitude and phase between devices.
  • the energy transmission method of the embodiments of the present application can realize the amplitude and phase synchronization between multiple energy transmission devices according to the energy receiving device, so that the energy of the multiple energy transmission devices can achieve comparison when reaching the energy receiving device.
  • High-efficiency energy focusing improves energy transmission efficiency.
  • the interaction between the energy receiving device and the multiple energy transmission devices and the amplitude and phase synchronization between the multiple energy transmission devices and the energy receiving device can be performed during the energy transmission process.
  • each energy transmission device Before completing the amplitude and phase synchronization, each energy transmission device can output energy independently, and after completing the amplitude and phase synchronization, multiple energy transmission devices can achieve efficient combined energy transmission. In the actual energy transmission process, the clock frequency of different devices drifts, and the amplitude and phase synchronization needs to be performed periodically.
  • the energy transmission method of the embodiment of the present application prevents energy transmission from being caused by multiple energy transmission devices and energy receiving devices.
  • the amplitude and phase synchronization process is interrupted. After the energy receiving device finds that the amplitude and phase are out of synchronization, the amplitude and phase synchronization process will be started during the energy transmission process.
  • the method before the energy receiving device sends the synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, the method further includes: the energy receiving device According to the amplitude and phase information of each energy transmission device, it is detected whether the synchronization between the energy transmission antennas in the energy transmission device is completed.
  • the method further includes: The amplitude and phase information is sent to multiple energy transmission equipment, and the synchronization signal makes the amplitude and phase synchronization between multiple energy transmission equipment.
  • the amplitude and phase synchronization of multiple energy transmission devices in the embodiment of the present application should be performed on the premise that the multiple energy transmission antennas in each energy transmission device have completed the amplitude and phase synchronization.
  • the energy emitted by the energy transmission antenna can obtain a higher efficiency energy focus at the energy receiving antenna.
  • the multiple energy transmission devices are synchronized in amplitude and phase, so that the energy focusing of the multiple energy transmission devices at the energy receiving antenna can achieve a higher efficiency.
  • the method It also includes: the energy receiving device sends an energy transmission request signal to multiple energy transmission devices again.
  • the energy receiving device continues to send energy transmission request signals to the multiple energy transmission devices until each energy transmission device according to the output It can request the signal to achieve the amplitude and phase synchronization of multiple energy transmission antennas in the device.
  • the energy receiving device sends a synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, including: the energy receiving device according to the multiple energy transmission devices When the amplitude and phase information of the device detects that the synchronization between multiple energy transmission devices is not completed, the energy receiving device sends a synchronization signal to the multiple energy transmission devices.
  • the energy receiving equipment detects the amplitude and phase information of multiple energy transmission equipment to determine whether the amplitude and phase synchronization has been achieved between multiple energy transmission equipment. If the amplitude and phase synchronization has not been achieved between multiple energy transmission equipment, the energy receiving The device sends synchronization signals to multiple energy transmission devices to instruct the multiple energy transmission devices to perform amplitude and phase adjustment.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission device and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information includes the instruction information for the energy receiving equipment to adjust the amplitude and phase of each energy transmission equipment.
  • the energy receiving device can send the same synchronization signal to each energy transmission device.
  • the synchronization signal contains the equivalent amplitude and phase information of each energy transmission device and the corresponding identity information.
  • the energy transmission device can find the corresponding equivalent amplitude according to the identity information. Phase information, adjust the amplitude and phase of the multiple energy transmission antennas in the device according to the equivalent amplitude and phase information, so as to realize the amplitude and phase synchronization between multiple energy transmission devices.
  • an energy transmission method which is characterized in that it includes: the energy transmission device receives an energy transmission request signal sent by the energy receiving device; The antenna performs the first amplitude and phase adjustment to synchronize the amplitude and phase of the energy transmission antennas in the energy transmission device; the energy transmission device sends a response signal for the energy transmission request signal to the energy receiving device, and the response signal is used to indicate the output to the energy receiving device.
  • the amplitude and phase adjusted by the energy device receives the synchronization signal sent by the energy receiving device according to the response signal; the energy transmission device performs the second amplitude and phase adjustment according to the synchronization signal to combine with other energy transmission devices that transmit energy to the energy receiving device Synchronize amplitude and phase between devices.
  • the energy transmission method provided in the first aspect of the embodiments of the present application is an energy transmission method executed on the energy receiving device side
  • the energy transmission method provided in the second aspect is an energy transmission method executed on the corresponding energy transmission device side.
  • each energy transmission device performs the amplitude and phase synchronization of the multiple energy transmission antennas in the device according to the instructions of the energy receiving device, or performs the amplitude and phase between the devices. Synchronization, to realize that the energy of multiple energy transmission equipment can achieve higher efficiency energy focusing when reaching the energy receiving equipment, and improve the energy transmission efficiency.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission device and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information includes the instruction information used by the energy transmission equipment for amplitude and phase regulation.
  • an energy transmission device is provided.
  • the device is set in an energy receiving device and includes: a transceiving unit for sending energy transmission request signals to multiple energy transmission devices; and a transceiving unit for receiving multiple energy transmission devices.
  • the control unit before sending a synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, is also used to:
  • the amplitude and phase information of the equipment is used to detect whether the synchronization between the energy transmission antennas in the energy transmission equipment is completed.
  • control unit if the control unit detects that the synchronization between the energy transmission antennas in each energy transmission device is completed, the control unit will, according to the amplitude and phase information of the multiple energy transmission devices, Control the transceiver unit to send synchronization signals to multiple energy transmission devices, and the synchronization signals make the amplitude and phase synchronization between the multiple energy transmission devices.
  • the control unit detects that the synchronization between the energy transmission antennas in any one or more of the multiple energy transmission devices is not completed, the transceiver unit again Send energy transmission request signals to multiple energy transmission devices.
  • the synchronization signal is sent to the multiple energy transmission devices, and the control unit and the transceiver unit are specifically used to: When the amplitude and phase information of each energy transmission device detects that the synchronization between multiple energy transmission devices is not completed, the transceiver unit sends a synchronization signal to the multiple energy transmission devices.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission device and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information includes the instruction information for the control unit to adjust the amplitude and phase of each energy transmission device.
  • an energy transmission device is provided.
  • the device is set in an energy transmission device and includes: a transceiver unit for receiving an energy transmission request signal sent by the energy receiving device; a control unit for receiving an energy transmission request signal according to the energy transmission request signal.
  • the first amplitude and phase adjustment is performed on the energy transmission antenna in the energy transmission device, so that the amplitude and phase of the energy transmission antenna in the energy transmission device are synchronized; the transceiver unit is also used to send a response to the energy transmission request signal to the energy receiving device Signal, the response signal is used to instruct the energy receiving device to adjust the amplitude and phase of the energy transmission device; the transceiver unit is also used to receive the synchronization signal sent by the energy receiving device according to the response signal; the control unit is also used to perform the first step according to the synchronization signal The two amplitudes and phases are adjusted to synchronize with the amplitude and phase of other energy transmission equipment that jointly transmit energy to the energy receiving equipment.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission device and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information includes the instruction information used by the energy transmission equipment for amplitude and phase regulation.
  • a wireless charging system in a fifth aspect, includes one or more energy transmission devices and one or more energy receiving devices.
  • the energy transmission device may be an energy receiving device in any possible implementation manner of the first aspect.
  • the energy receiving device may be the energy transmitting device in any possible implementation manner of the second aspect.
  • a computer-readable storage medium stores program code for device execution, and the program code includes any one of the possible implementation manners of the first aspect or the second aspect described above. Methods.
  • a computer program product which when the computer product runs on a computer, causes the computer to execute the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • a chip in an eighth aspect, includes a processor and an interface.
  • the processor reads the instructions stored on the memory through the interface, and executes the method in any one of the possible implementation manners of the first aspect or the second aspect described above.
  • the chip includes a memory. Instructions are stored in the memory, and the processor can be used to execute the instructions stored in the memory. When the instruction is executed, the processor is used to execute the method in any one of the possible implementation manners of the first aspect or the second aspect.
  • Fig. 1 is a system for an energy transmission method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an antenna in an energy transmission device performing phase adjustment according to an instruction of the energy receiving device according to an embodiment of the present application;
  • FIG. 3 is a schematic flowchart of an energy transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another energy transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an energy transmission method according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an energy transmission device according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of another energy transmission device according to an embodiment of the present application.
  • FIG. 1 shows a charging system 100 composed of an energy transmission device 110 and an energy receiving device 120. It should be understood that the figure shown in FIG. 1 is only an example, and should not constitute any limitation to the application.
  • the charging system 100 may also include other numbers of energy transmission devices and/or other numbers of energy receiving devices, and each energy transmission device and/or energy receiving device may also include other numbers of antennas. This application does not limit this.
  • the energy transmission equipment 110 may include a DC power supply, an inverter, a phase shifter, a power amplifier, an energy transmission antenna, and the like.
  • the DC power supply can be used to output DC signals.
  • the inverter can be used to convert the DC signal output by the DC power supply into an AC signal.
  • the AC signal can be adjusted in amplitude and phase to form an energy output signal.
  • the phase of the signal can be adjusted by a phase shifter, and the power can be adjusted by a power amplifier (referred to as an amplifier), or amplitude adjustment.
  • the above-mentioned amplitude and phase adjustment may be referred to simply as amplitude and phase adjustment, for example.
  • the signal after amplitude and phase adjustment can be transmitted through the transmitting antenna.
  • the transmitting antenna may include a plurality of antenna elements. Each signal after amplitude and phase adjustment can be transmitted through an antenna unit. In other words, signals adjusted based on different amplitudes and phases can be transmitted through different antenna units.
  • the signals transmitted through the multiple antenna units may be electromagnetic wave signals, and the phases of the signals transmitted through the multiple antenna units may be different from each other.
  • the electromagnetic wave signals emitted by each antenna unit can be energy-focused at one or more positions, thereby charging the energy-receiving device. Since the signal emitted by the energy transmission device 110 can form an energy focus, the energy receiving device can be charged.
  • the energy receiving device 120 may include an energy receiving antenna, a rectifier, a voltage stabilizer, and a load.
  • the energy transmission antenna can be used to receive the energy transmission signal from the energy transmission device 110. It can be understood that the signal received by the energy transmission antenna is an AC signal.
  • the rectifier can be used to convert the received AC signal into a DC signal. Thereafter, the regulator can be used to adjust and output a stable voltage to supply power to the load.
  • Fig. 2 shows a process in which two antenna units of the energy transmission device detect and transmit the energy transmission signal based on the signal transmitted by the energy receiving device.
  • a) in Fig. 2 shows the process of the energy receiving device sending a signal.
  • the signal may be, for example, a charging request signal to request the energy transmission device to transmit the energy transmission signal based on the detection of the charging request signal.
  • Figure 2 b) shows the amplitude and phase detection of the two antenna units of the energy transmission device based on the same charging request signal.
  • C) in FIG. 2 shows a process in which the energy transmission device adjusts the phase of the energy transmission signal transmitted through each antenna unit based on the detected different phases.
  • Figure 2 d) shows the process of energy focusing by the energy receiving device receiving the energy transmission signals from the two antenna units of the energy transmitting device.
  • the horizontal axis in the figure represents time
  • the vertical axis represents the amplitude of electromagnetic waves.
  • the phase of the energy-receiving device at the sending time t 0 is Due to the difference in the transmission path, the phases detected by the energy transmission equipment on the signal #1 through the antenna unit 1 and the antenna unit 2 at the same time may be different.
  • the phase detected by the energy transmission device based on the received signal #1 through the antenna unit 1 at time t 1 is The phase detected by the energy transmission equipment based on the received signal #1 at time t 1 through the antenna unit 2 is
  • the energy transmission device can perform different phase adjustments on the energy transmission signals to be transmitted via two different antenna units.
  • the phase of the energy output signal transmitted via the antenna unit 1 can be adjusted to
  • the phase of the energy output signal transmitted through the antenna unit 2 can be adjusted to
  • the phase adjustment of the energy transmission signal by the energy transmission equipment is similar to the principle of reversibility of the light path, so that the energy transmission signal transmitted by each antenna unit is similar to the reverse transmission of the charging request signal received by each antenna unit. therefore, In this way, it can be realized that the energy transmission signals respectively transmitted by the antenna unit 1 and the antenna unit 2 can focus the energy at the energy receiving device.
  • the two energy output signals form two signals of the same phase at the energy receiving device. Therefore, interference can be formed and energy focus can be obtained.
  • the charging request signal transmitted by the energy receiving device is A 0 cos(2 ⁇ f 0 t).
  • the energy transmission equipment is based on the received charging request signal, and the signal detected by the antenna unit 1 at time t 1 is The signal detected by antenna unit 2 at time t 1 is The energy transmission signal sent by the energy transmission device through the antenna unit 1 is The energy output signal sent through the antenna unit 2 is The two energy input signals interfere at the energy receiving device to form energy focus.
  • time t 1 in FIG. 2 can be any time before the signal #1 is received until the energy output signal is sent
  • time t 2 can be any time after t 1
  • time t 3 can be t At any time after 2
  • this application does not limit the specific values of t 1 , t 2 , and t 3.
  • phase values detected by the antenna unit 1 at different times may be different, and therefore the adjusted phase values may also be different; the antenna unit 2 is based on the signal #1
  • the phase value detected at different times may also be different, so the adjusted phase value may also be different.
  • FIG. 2 is only an example, and shows a process in which two antenna units respectively receive signals from the same energy receiving device and perform phase adjustment. But this should not constitute any limitation to this application. This application does not limit the number of antenna units of the energy transmission equipment.
  • the energy transmission device may also adjust the amplitude of each signal, for example, according to a pre-configured power ratio, so as to maximize the charging efficiency. This application does not limit this.
  • a master device is selected among different energy transmission devices, so that other energy transmission devices are phase synchronized with the master device.
  • the phase deviation caused by the transmission delay of different energy transmission equipment to the main equipment is included. These phase deviations are caused by the distance between the energy transmission equipment; and in the energy transmission process, the phase of the different energy transmission equipment The deviation is caused by the distance between the energy transmission device and the energy receiving device, and the phase deviation in the two cases is not the same. Therefore, in the prior art, synchronization is achieved through direct interaction of multiple energy transmission devices, which cannot meet the synchronization requirements in the energy transmission process, and the synchronization accuracy is limited.
  • the embodiments of the present application provide an energy transmission method and device, which can realize synchronization between multiple energy transmission devices and energy receiving devices, thereby improving energy transmission efficiency.
  • FIG. 3 is a schematic flowchart of an energy transmission method provided by an embodiment of the present application, including steps 301 to 304, which are respectively described in detail below.
  • the energy receiving device sends an energy transmission request signal to multiple energy transmission devices.
  • the energy receiving device receives response signals from multiple energy transmission devices to the energy transmission request signal.
  • the energy receiving device After the energy receiving device sends the energy transmission request signal, it detects the received response signals of multiple energy transmission devices. Optionally, if it is detected that there is only one energy transmission device sending a response signal, or no energy transmission device sends a response signal, it means that there is only one energy transmission device or no energy transmission device in the current environment, and the synchronization process ends, and the energy receiving device Continue to accept energy transmission from energy transmission equipment or not accept energy transmission (there is no energy transmission equipment in the environment).
  • the energy receiving device obtains amplitude and phase information of multiple energy transmission devices according to the response signal.
  • the response signal of the energy transmission device includes the amplitude and phase information of the energy transmission device and the first signaling
  • the first signaling includes the identity information of the energy transmission device.
  • the energy receiving device obtains the amplitude and phase information of the energy transmission device according to the response signal, and demodulates the first signaling to obtain the identity information of the energy transmission device.
  • the first signaling may include an indication of the corresponding relationship between the energy transmission device and an orthogonal code, and each orthogonal code is allocated to the corresponding energy transmission device for use, so as to indicate the identity of the energy transmission device.
  • the energy receiving device sends a synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, and the synchronization signal makes the amplitude and phase synchronization between the multiple energy transmission devices.
  • the amplitude and phase information of the energy transmission device is the amplitude and phase information of multiple energy transmission antennas in the energy transmission device.
  • the amplitude and phase information of the multiple energy transmission antennas in the equipment can be in Indicates that the amplitude extracted by the jth antenna of the i-th energy transmission device is A ij , and the phase is
  • the method of the embodiment of the present application further includes: Whether the multiple energy transmission antennas have completed synchronization, the specific detection process can refer to the above description of FIG. If the energy receiving device detects that the synchronization between the energy transmission antennas in the energy transmission device is completed, the energy receiving device sends a synchronization signal to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices.
  • the amplitude and phase of the energy equipment are synchronized; if the energy transmission equipment detects that the synchronization between the energy transmission antennas in any one or more of the multiple energy transmission equipment is not completed, the energy receiving equipment will send the energy transmission equipment to the multiple energy transmission equipment again. Send energy output request signal. Until the multiple energy transmission antennas in each energy transmission device are synchronized.
  • the energy transmission device When it is detected that the multiple energy transmission antennas in each energy transmission device have completed synchronization, the energy transmission device continues to detect whether the amplitude and phase synchronization is completed between the multiple energy transmission devices. For the specific detection process, please refer to Figure 2 above. For the sake of brevity, the description of the embodiments of the present application will not be repeated here. If it is detected that the amplitude and phase synchronization between the multiple energy transmission devices is not completed, the energy transmission device sends a synchronization signal to the multiple energy transmission devices, and the synchronization signal is used to synchronize the amplitude and phase among the multiple energy transmission devices.
  • the synchronization signal may include the equivalent amplitude and phase information of each energy transmission device in the multiple energy transmission devices and the identity information corresponding to each energy transmission device.
  • the instruction of the amplitude and phase adjustment that the device should make, that is, the energy transmission device can adjust the amplitude and phase of multiple energy transmission antennas in the device according to the equivalent amplitude and phase information corresponding to the identity information of the device in the synchronization signal.
  • the energy receiving device can continue to detect whether the multiple energy transmission devices have completed the amplitude and phase synchronization. For example, if the phase difference between the multiple energy transmission devices is less than the first threshold and/or the amplitude difference between the multiple energy transmission devices is less than the second threshold, the amplitude and phase synchronization between the multiple energy transmission devices is completed.
  • the first threshold and the second threshold may be artificially specified values. If it is detected that the amplitude and phase synchronization is not completed between multiple energy transmission devices, the energy receiving device sends a synchronization signal to the multiple energy transmission devices again.
  • the interaction between the energy receiving device and the multiple energy transmission devices and the amplitude and phase synchronization between the multiple energy transmission devices and the energy receiving device can be performed during the energy transmission process.
  • each energy transmission device Before completing the amplitude and phase synchronization, each energy transmission device can output energy independently, and after completing the amplitude and phase synchronization, multiple energy transmission devices can achieve efficient combined energy transmission. In the actual energy transmission process, the clock frequency of different devices drifts, and the amplitude and phase synchronization needs to be performed periodically.
  • the energy transmission method of the embodiment of the present application prevents energy transmission from being caused by multiple energy transmission devices and energy receiving devices.
  • the amplitude and phase synchronization process is interrupted. After the energy receiving device finds that the amplitude and phase are out of synchronization, the amplitude and phase synchronization process will be started during the energy transmission process.
  • FIG. 4 is a schematic flowchart of another energy transmission method provided by an embodiment of the present application, including steps 401 to 405, which are respectively described in detail below.
  • the energy transmission device receives an energy transmission request signal sent by the energy receiving device.
  • the energy transmission device may periodically broadcast the energy transmission service signal, and stop broadcasting after receiving the energy transmission request signal.
  • the energy transmission device According to the energy transmission request signal, the energy transmission device performs the first amplitude and phase adjustment on the energy transmission antenna in the energy transmission device, so that the amplitude and phase of the energy transmission antenna in the energy transmission device are synchronized.
  • the process of the energy transmission device performing the first amplitude and phase adjustment of the energy transmission antenna in the energy transmission device according to the energy transmission request signal can refer to the above description of FIG. .
  • the energy transmission device sends a response signal for the energy transmission request signal to the energy receiving device, where the response signal is used to instruct the energy receiving device to adjust the amplitude and phase of the energy transmission device.
  • the response signal includes the amplitude and phase information of the multiple energy transmission antennas after the energy transmission device performs the first amplitude and phase adjustment on the energy transmission antenna in the device.
  • the energy transmission device receives the synchronization signal sent by the energy receiving device according to the response signal.
  • the synchronization signal may include the equivalent amplitude and phase information of each energy transmission device in the multiple energy transmission devices and the identity information corresponding to each energy transmission device.
  • the instruction of amplitude and phase adjustment should be made, that is, the energy transmission equipment can adjust the amplitude and phase information of multiple energy transmission antennas in the equipment according to the equivalent amplitude and phase information corresponding to the identity information of the equipment in the synchronization signal.
  • the output The energy device can also receive the energy transmission request signal sent by the energy receiving device to multiple energy transmission devices again, and the energy transmission device will adjust the first amplitude and phase of the energy transmission antenna in the energy transmission device according to the energy transmission request signal again until every Multiple energy transmission antennas in one energy transmission device are synchronized.
  • the energy transmission device performs a second amplitude and phase adjustment according to the synchronization signal to synchronize the amplitude and phase with other energy transmission devices that jointly transmit energy to the energy receiving device.
  • the energy transmission device can receive the synchronization signal of the energy receiving device multiple times, and adjust the second amplitude and phase according to the synchronization signal, so that multiple energy transmission devices can maintain amplitude and phase synchronization during the energy transmission process, and improve the energy transmission. efficient.
  • FIG. 5 shows a schematic block diagram of an energy transmission method according to an embodiment of the present application. It should be understood that only one energy receiving device and one energy transmission device are shown in FIG. 5. For multiple energy transmission devices, the operation is akin. The process of joint energy transmission by multiple energy transmission devices to one energy receiving device will be described in detail below in conjunction with FIG. 5.
  • the energy transmission equipment periodically broadcasts the service signal. At this time, if an energy receiving device has an energy transmission demand, an energy transmission request signal is sent, and multiple energy transmission devices within the energy transmission range receive the energy transmission request signal. Correspondingly, if the energy transmission device does not receive the energy transmission request signal, it continues to broadcast the service signal periodically.
  • each of the multiple energy transmission equipment After each of the multiple energy transmission equipment receives the energy transmission request signal, it synchronizes the multiple antennas in the respective equipment. Specifically, for the energy transmission equipment T1, after receiving the energy transmission request signal, T1 extracts the amplitude and phase information of the multiple energy transmission antennas in the equipment as in Indicates that the amplitude extracted by the jth antenna of the i-th energy transmission device is A ij , and the phase is For the convenience of description, it is assumed here that the number of energy transmission antennas in each energy transmission device is m. It should be understood that when the number of energy transmission antennas in each energy transmission device is different, the operation is similar.
  • the energy transmission equipment T2 after receiving the energy transmission request signal, extract the amplitude and phase information of the multiple energy transmission antennas in the equipment as If there are other energy transmission equipment, the operation is the same as T1 and T2.
  • the amplitude and phase information of the multiple energy transmission antennas in the equipment extracted by the energy transmission equipment T1 and T2 after receiving the energy transmission request signal is the amplitude and phase information adjusted according to the energy transmission request signal.
  • the adjustment process reference may be made to the description of FIG. 2 above. For the sake of brevity, the description of the embodiment of the present application will not be repeated here.
  • the energy transmission device After the energy transmission device synchronizes the multiple antennas in the device, it sends the preliminary energy and the extracted amplitude and phase information of the multiple energy transmission antennas to the energy receiving device.
  • the energy receiving device receives the preliminary energy sent by each of the multiple energy transmission devices and the extracted amplitude and phase information of the multiple energy transmission antennas, and detects whether the multiple energy transmission antennas in each energy transmission device have completed synchronization. If the antenna in the energy transmission device has not completed synchronization, the energy receiving device continues to send the energy transmission request signal. If synchronization is completed between the energy transmission antennas in each energy transmission device, the energy receiving device detects whether multiple energy transmission devices are synchronized. Since the signal delays of different energy transmission devices are different, which are reflected in different phases on the energy receiving device side, the different energy transmission devices are not synchronized at this time.
  • the energy receiving equipment can detect the equivalent amplitude and phase information of each energy transmission equipment
  • Each energy transmission device corresponds to an equivalent amplitude and phase information, for example, the equivalent amplitude and phase information corresponding to the energy transmission device T1 is
  • the equivalent amplitude and phase information is an indication of the adjustment that the energy receiving equipment needs to make to the energy transmission equipment.
  • the energy receiving device sends multiple energy transmission device synchronization signals. Specifically, the energy receiving device sends the amplitude and phase information corresponding to each energy transmission device
  • the information sequence is constructed with the ID of the energy transmission device, and at the same time, the information of the energy receiving device itself can be added, such as the energy receiving device ID, the remaining power of the energy receiving device, etc., all of which can be included in the synchronization signal.
  • the energy receiving device modulates the above information and sends it to each energy transmission device, where the modulation can use the orthogonal code of the energy transmission device.
  • Each energy transmission device receives the same synchronization signal, demodulates the information, and finds the equivalent amplitude and phase information corresponding to its own device ID Adjust its own amplitude and phase. Specifically, the energy transmission equipment introduces an additional phase shift to the overall phase of all antennas in the equipment based on the equivalent amplitude and phase information received Introduce the overall energy output amplitude of all antennas in the device into an additional ratio For example, the amplitude and phase of the first antenna in the adjusted energy transmission equipment T1 for:
  • A" 11 is the adjusted amplitude of the first antenna in the energy transmission equipment T1
  • a 11 is the amplitude before the adjustment of the first antenna in the energy transmission equipment T1.
  • the energy receiving device After the energy receiving device receives the energy sent by multiple energy transmission devices, it again detects whether the multiple energy transmission devices are synchronized. Specifically, the energy receiving device can re-extract the amplitude and phase information of multiple energy transmission devices. If the phase difference between the two is less than the first threshold, and/or the phase difference between the different energy transmission devices is less than the second threshold, it is determined that the synchronization of multiple energy transmission devices is completed. The first threshold and the second threshold may be artificially specified Otherwise, the energy-receiving device continues to send synchronization signals of multiple energy-transmitting devices.
  • the above amplitude and phase synchronization can be carried out during the energy transmission process.
  • the energy receiving device After the energy transmission is over, the energy receiving device sends an energy output end signal to the energy transmitting device to end the energy transmission.
  • FIG. 6 shows a schematic structural diagram of an energy transmission device according to an embodiment of the present application, where the device is provided in an energy receiving device, specifically, it may correspond to the chip in the energy receiving device in FIG. 1.
  • the device 600 includes a transceiver unit 601 and a control unit 602.
  • the transceiver unit 601 is configured to send energy transmission request signals to multiple energy transmission devices.
  • the transceiver unit 601 is also used to receive response signals from multiple energy transmission devices to the energy transmission request signal.
  • the control unit 602 is configured to obtain amplitude and phase information of multiple energy transmission devices according to the response signal.
  • the control unit 602 and the transceiver unit 601 are also configured to send synchronization signals to multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices, and the synchronization signals enable the amplitude and phase synchronization between the multiple energy transmission devices.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission equipment and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information of each energy transmission device includes the control unit's Instruction information for the amplitude and phase adjustment of the device.
  • control unit 602 before sending synchronization signals to multiple energy transmission devices based on the amplitude and phase information of the multiple energy transmission devices, the control unit 602 is further configured to: detect the amplitude and phase information of each energy transmission device Whether the synchronization is completed between the energy transmission antennas
  • control unit 602 controls the transceiver unit 601 to transmit information to the multiple energy transmission devices according to the amplitude and phase information of the multiple energy transmission devices.
  • the synchronization signal makes the amplitude and phase synchronization between multiple energy transmission equipment.
  • the transceiver unit 601 sends an energy transmission request to the multiple energy transmission devices again Signal.
  • control unit 602 and the transceiver unit 601 are specifically configured to: the control unit 602 detects that the synchronization between the multiple energy transmission devices is not completed according to the amplitude and phase information of the multiple energy transmission devices, then the transceiver unit 601 transmits the energy to the multiple energy transmission devices. The device sends a synchronization signal.
  • transceiver unit 601 and the control unit 602 in the energy transmission device 600 shown in FIG. 6 can implement the steps of the method in FIG. 3 above, and the specific functions of the transceiver unit 601 and the control unit 602 in the energy transmission device 600 can be With reference to the above description of FIG. 3, for the sake of brevity, the embodiments of the present application will not be repeated here.
  • FIG. 6 only shows a simplified design of the energy transmission device.
  • the energy transmission device may also include other necessary components, including but not limited to any number of transceiver units, control units, etc., and all terminals that can implement this application are within the protection scope of this application.
  • FIG. 7 shows a schematic structural diagram of another energy transmission device according to an embodiment of the present application, where the device is provided in the energy transmission device, and specifically, may correspond to the chip in the energy transmission device in FIG. 1.
  • the device 700 includes a transceiver unit 701 and a control unit 702.
  • the transceiver unit 701 is configured to receive an energy transmission request signal sent by an energy receiving device.
  • the control unit 702 is configured to adjust the first amplitude and phase of the energy transmission antenna in the energy transmission device according to the energy transmission request signal, so that the amplitude and phase of the energy transmission antenna in the energy transmission device are synchronized.
  • the transceiving unit 701 is also used to send a response signal for the energy transmission request signal to the energy receiving device, and the response signal is used to instruct the energy receiving device to adjust the amplitude and phase of the energy transmitting device.
  • the transceiver unit 701 is also used to receive a synchronization signal sent by the energy receiving device according to the response signal.
  • the control unit 702 is further configured to perform a second amplitude and phase adjustment according to the synchronization signal, so as to synchronize the amplitude and phase with other energy transmission devices that jointly transmit energy to the energy receiving device.
  • the synchronization signal includes the equivalent amplitude and phase information of each energy transmission device in the energy transmission equipment and the identity information corresponding to each energy transmission device.
  • the equivalent amplitude and phase information of each energy transmission device includes the control unit's Instruction information for the amplitude and phase adjustment of the device.
  • transceiver unit 701 and the control unit 702 in the energy transmission device 700 shown in FIG. 7 can implement the steps of the method in FIG. 4, and the specific functions of the transceiver unit 701 and the control unit 702 in the energy transmission device 700 can be With reference to the foregoing description of FIG. 4, for the sake of brevity, the embodiments of the present application will not be repeated here.
  • FIG. 7 only shows a simplified design of the energy transmission device.
  • the energy transmission device may also include other necessary components, including but not limited to any number of transceiver units, control units, etc., and all terminals that can implement this application are within the protection scope of this application.
  • the embodiment of the present application also provides a wireless charging system.
  • the wireless charging system includes one or more of the aforementioned energy transmission equipment and the energy transmission device arranged in the energy transmission equipment, and one or more of the aforementioned energy receiving equipment and the energy transmission device arranged in the energy receiving equipment.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, when the computer instructions run on the energy transmission device or the energy receiving device, the energy transmission device
  • the device executes the steps performed by the energy transmission device in the above method embodiment, or causes the energy transmission device in the energy receiving device to perform the steps performed by the energy receiving device in the above method embodiment, thereby realizing the wireless energy transmission in the above embodiment Methods.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product runs on a computer, the computer is caused to execute the above-mentioned related steps, so as to realize the wireless operation performed by the energy transmission device or the energy receiving device in the above-mentioned embodiment.
  • the method of energy transmission is performed by the energy transmission device or the energy receiving device in the above-mentioned embodiment.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种输能方法和装置,可以根据受能设备实现多个输能设备之间的同步,从而提高输能效率。该方法包括:受能设备向多个输能设备发送输能请求信号;受能设备接收多个输能设备针对输能请求信号的响应信号;受能设备根据所述响应信号,获取多个输能设备的幅相信息;受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,该同步信号使得多个输能设备之间幅相同步。

Description

输能方法和装置 技术领域
本申请涉及无线充电领域,并且更具体地,涉及一种输能方法和装置。
背景技术
无线能量传输(wireless power transfer,WPT)技术可以实现电子设备能量即取即用,将极大提升用户的便利性。一般的无线能量传输技术包括磁感应充电、磁共振充电和微波无线充电技术等。目前已商用的无线充电产品,如手机无线充电板等,都是基于磁感应或磁共振技术。磁感应或磁共振技术的传输效率较高,但是充电距离很短,通常为接触式充电或毫米级的距离,并且对收发线圈的相对位姿、姿态要求较高,极大地限制了充电便利性和应用范围,无法支持大范围、多终端、移动式的充电。而微波无线输能(microwave power transfer,MPT)技术在覆盖范围、多终端、移动性支持上都有明显优势,但是由于微波辐射具有全向性,能量难以聚焦,有效充电功率较低。
能量聚焦的关键点是输能设备的等效天线阵列口径。为了实现较好的能力聚焦,通常需要较大的天线阵列,然而大的天线阵列安装部署困难。如果使用多个小型的分布式输能设备(小型阵列输能电路可以集成到无线路由器、音箱和电视等设备中),进行联合输能,就可以具备较大的等效阵列口径,实现较好的聚焦效果,同时部署简单。然而由于不同设备具有不同的晶振时钟,时钟的固有频率偏差和漂移偏差都会导致设备间的不同步。因此,分布式输能的关键在于多个输能设备和受能设备间的同步。
发明内容
本申请提供一种输能方法和装置,可以根据受能设备实现多个输能设备之间的同步,从而提高输能效率。
第一方面,提供了一种输能的方法,包括:受能设备向多个输能设备发送输能请求信号;受能设备接收多个输能设备针对输能请求信号的响应信号;受能设备根据所述响应信号,获取多个输能设备的幅相信息;受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,该同步信号使得多个输能设备之间幅相同步。
相比于现有技术,本申请实施例的输能方法可以根据受能设备实现多个输能设备之间的幅相同步,使得多个输能设备的能量在到达受能设备处可以实现较高效率的能量聚焦,提高输能效率。
本申请实施例中受能设备与多个输能设备之间的交互以及多个输能设备与受能设备之间的幅相同步可以在输能过程中进行。在完成幅相同步之前,各个输能设备可以独立输能,在完成幅相同步之后,多个输能设备可以实现高效的联合输能。在实际的输能过程中,不同的设备其时钟频率存在漂移,幅相同步需要周期性地进行,本申请实施例的输能方法使得能量传输不会因为多个输能设备和受能设备之间的幅相同步过程而中断,在受能设备 发现幅相不同步后,会在输能过程中启动幅相同步过程。
结合第一方面,在第一方面的某些实现方式中,在受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号之前,该方法还包括:受能设备根据每个输能设备的幅相信息,检测输能设备内的输能天线之间是否完成同步。
结合第一方面,在第一方面的某些实现方式中,如果受能设备检测到输能设备内的输能天线之间完成同步,则该方法还包括:受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,同步信号使得多个输能设备之间幅相同步。
本申请实施例对多个输能设备的幅相同步应该在每个输能设备内的多个输能天线已经完成幅相同步的前提下进行。当每个输能设备内的多个输能天线已经完成幅相同步后,该输能天线发出的能量则可以在受能天线处获得较高效率的能量聚焦。然后再将多个输能设备进行幅相同步,则可以使多个输能设备在受能天线处的能量聚焦达到较高效率。
结合第一方面,在第一方面的某些实现方式中,如果受能设备检测到多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则该方法还包括:受能设备再次向多个输能设备发送输能请求信号。
如果多个输能设备中有至少一个输能设备内的输能天线之间还没有完成同步,则受能设备继续向多个输能设备发送输能请求信号,直到每个输能设备根据输能请求信号达到设备内的多个输能天线幅相同步。
结合第一方面,在第一方面的某些实现方式中,受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,包括:受能设备根据多个输能设备的幅相信息检测到多个输能设备之间没有完成同步的情况下,则受能设备向多个输能设备发送同步信号。
受能设备对多个输能设备的幅相信息进行检测,判断多个输能设备之间是否已经达到了幅相同步,如果多个输能设备之间还没有达到幅相同步,则受能设备向多个输能设备发送同步信号以指示多个输能设备进行幅相调控。
结合第一方面,在第一方面的某些实现方式中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括受能设备对每个输能设备幅相调控的指示信息。
受能设备可以向每个输能设备发送相同的同步信号,同步信号中包含每个输能设备的等效幅相信息和对应的身份信息,输能设备根据身份信息可以找到对应的等效幅相信息,根据等效幅相信息对本设备内的多个输能天线的幅相进行调控,以实现多个输能设备之间的幅相同步。
第二方面,提供了一种输能的方法,其特征在于,包括:输能设备接收受能设备发送的输能请求信号;输能设备根据输能请求信号,对输能设备内的输能天线进行第一幅相调控,使得输能设备内的输能天线之间幅相同步;输能设备向受能设备发送针对输能请求信号的响应信号,响应信号用于向受能设备指示输能设备进行调控后的幅相;输能设备接收受能设备根据响应信号发送的同步信号;输能设备根据同步信号进行第二幅相调控,以与向受能设备联合输能的其他输能设备之间幅相同步。
本申请实施例第一方面提供的输能方法为受能设备侧执行的输能方法,第二方面提供的输能方法为对应的输能设备侧执行的输能方法。类似的,在多个输能设备对受能设备输能的过程中,每个输能设备根据受能设备的指示进行设备内的多个输能天线幅相同步,或 者进行设备间的幅相同步,以实现多个输能设备的能量在到达受能设备处可以实现较高效率的能量聚焦,提高输能效率。
结合第二方面,在第二方面的某些实现方式中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括输能设备用于幅相调控的指示信息。
第三方面,提供了一种输能的装置,该装置设置于受能设备中,包括:收发单元,用于向多个输能设备发送输能请求信号;收发单元,还用于接收多个输能设备针对输能请求信号的响应信号;控制单元,用于根据响应信号,获取多个输能设备的幅相信息;控制单元和收发单元,还用于根据多个输能设备的幅相信息,向多个输能设备发送同步信号,同步信号使得多个输能设备之间幅相同步。
结合第三方面,在第三方面的某些实现方式中,在根据多个输能设备的幅相信息,向多个输能设备发送同步信号之前,控制单元还用于:根据每个输能设备的幅相信息,检测输能设备内的输能天线之间是否完成同步。
结合第三方面,在第三方面的某些实现方式中,如果控制单元检测到每个输能设备内的输能天线之间完成同步,则控制单元根据多个输能设备的幅相信息,控制收发单元向多个输能设备发送同步信号,同步信号使得多个输能设备之间幅相同步。
结合第三方面,在第三方面的某些实现方式中,如果控制单元检测到多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则收发单元再次向多个输能设备发送输能请求信号。
结合第三方面,在第三方面的某些实现方式中,根据多个输能设备的幅相信息,向多个输能设备发送同步信号,控制单元和收发单元具体用于:控制单元根据多个输能设备的幅相信息检测到多个输能设备之间没有完成同步的情况下,则收发单元向多个输能设备发送同步信号。
结合第三方面,在第三方面的某些实现方式中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括控制单元对每个输能设备幅相调控的指示信息。
第四方面,提供了一种输能的装置,该装置设置于输能设备中,包括:收发单元,用于接收受能设备发送的输能请求信号;控制单元,用于根据输能请求信号,对输能设备内的输能天线进行第一幅相调控,使得输能设备内的输能天线之间幅相同步;收发单元,还用于向受能设备发送针对输能请求信号的响应信号,响应信号用于向受能设备指示输能设备进行调控后的幅相;收发单元,还用于接收受能设备根据响应信号发送的同步信号;控制单元,还用于根据同步信号进行第二幅相调控,以与向受能设备联合输能的其他输能设备之间幅相同步。
结合第四方面,在第四方面的某些实现方式中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括输能设备用于幅相调控的指示信息。
第五方面,提供了一种无线充电***,该无线充电***包括一个或多个输能设备和一个或多个受能设备。该输能设备可以是第一方面任一种可能实现方式中的受能设备。该受能设备可以是第二方面任一种可能实现方式中的输能设备。
第六方面,提供了一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面任一种可能实现方式中的方法。
第七方面,提供了一种计算机程序产品,当该计算机产品在计算机上运行时,使得计算机执行上述第一方面或第二方面任一种可能实现方式中的方法。
第八方面,提供了一种芯片,该芯片包括处理器和接口。其中,处理器通过接口读取存储器上存储的指令,执行上述第一方面或第二方面任一种可能实现方式中的方法。
可选地,作为一种实现方式,该芯片包括存储器。该存储器中存储有指令,处理器可用于执行该存储器上存储的指令。当该指令被执行时,处理器用于执行第一方面或第二方面任一种可能实现方式中的方法。
附图说明
图1是本申请实施例的一种用于输能方法的***;
图2是本申请实施例的一种输能设备内的天线根据受能设备的指示进行相位调控的示意图;
图3是本申请实施例的一种输能方法的示意性流程图;
图4是本申请实施例的另一种输能方法的示意性流程图;
图5是本申请实施例的一种输能方法的示意性框图;
图6是本申请实施例的一种输能装置的示意性结构图;
图7是本申请实施例的另一种输能装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于理解本申请实施例提供的方法,首先对适用于本申请实施例提供的用于无线充电的方法的***做简单说明。图1示出了由一个输能设备110和一个受能设备120构成的充电***100。应理解,图1所示仅为示例,不应对本申请构成任何限定。在本申请实施例中,该充电***100中还可以包括其他数量的输能设备和/或其他数量的受能设备,每个输能设备和/或受能设备还可以包括其他数量的天线,本申请对此不作限定。
其中,输能设备110可以包括直流电源、逆变器、移相器、功率放大器和输能天线等。直流电源可用于输出直流信号。逆变器可用于将直流电源输出的直流信号转换为交流信号。交流信号可以分别经过幅度和相位的调整,形成输能信号。示例性地,可以通过移相器对信号进行相位调整,并可通过功率放大器(简称放大器)的功率调整,或者称幅度调整。上述幅度和相位的调整例如可以简称为幅相调整。经过幅相调整后的信号可通过发射天线发射出去。这里,该发射天线可以包括多个天线单元。经过幅相调整后的每一路信号可通过一个天线单元发射出去。或者说,基于不同的幅相调整后的信号可以经由不同的天线单元发射出去。
可以理解的是,通过多个天线单元发射的信号可以是电磁波信号,且,通过该多个天线单元发射的信号的相位可能是互不相同的。如此一来,基于干涉原理,由各天线单元发射出去的电磁波信号在某一个或多个位置可以获得能量聚焦,由此可以对受能设备充电。 由于输能设备110发射的信号可形成能量聚焦,对受能设备充电。
与之对应,受能设备120可以包括受能天线、整流器、稳压器和负载。其中,输能天线可用于接收来自输能设备110的输能信号。可以理解,该输能天线接收到的信号为交流信号。整流器可用于将接收到的交流信号转换为直流信号。此后,稳压器可用于调整并输出稳定的电压,以对负载供电。
由于输能信号在某一处是否能够获得较高效率的能量聚焦(或者说,能量交叠)的主要影响因素为相位,因此下文结合附图对相位的调整来说明。
图2示出了输能设备的两个天线单元基于受能设备发射的信号进行检测并发射输能信号的过程。如图2所示,图2中的a)示出了受能设备发送信号的过程。该信号例如可以成为充电请求信号,以请求输能设备基于对该充电请求信号的检测发送输能信号。图2中的b)示出了输能设备的两个天线单元在基于同一充电请求信号的幅相检测。图2中的c)示出了输能设备基于检测到的不同相位调整通过各天线单元发送的输能信号的相位的过程。图2中的d)示出了受能设备接收到来自输能设备两个天线单元的输能信号获得能量聚焦的过程。
具体来说,图中的横轴表示时间,纵轴表示电磁波的幅度。在图2中的a)中,受能设备发射信号(例如记作信号#1)时,受能设备在发送时刻t 0处的相位为
Figure PCTCN2020088404-appb-000001
由于传输路径的不同,输能设备通过天线单元1和天线单元2对信号#1在同一时刻检测到的相位可能不同。如图2中的b)所示,输能设备通过天线单元1在时刻t 1基于接收到的信号#1检测到的相位为
Figure PCTCN2020088404-appb-000002
输能设备通过天线单元2在时刻t 1基于接收到的信号#1检测到的相位为
Figure PCTCN2020088404-appb-000003
因此,该输能设备可以对即将经由两个不同天线单元发射的输能信号进行不同的相位调整。如图2中的c)所示对经由天线单元1发射的输能信号可调整相位至
Figure PCTCN2020088404-appb-000004
对经由天线单元2发射的输能信号可调整相位至
Figure PCTCN2020088404-appb-000005
输能设备对输能信号的相位调整类似于光路可逆的原理,使各天线单元发射出去的输能信号类似于各自接收到的充电请求信号的逆向发射。因此,
Figure PCTCN2020088404-appb-000006
由此可以实现经天线单元1和天线单元2分别发射的输能信号能够在该受能设备处的能量聚焦。如图2中的d)所示,该两路输能信号在受能设备处形成了相同相位的两路信号。因此可以形成干涉,获得能量聚焦。
示例性地,假设受能设备发射的充电请求信号为A 0cos(2πf 0t)。输能设备基于接收到的充电请求信号,在时刻t 1天线单元1检测到的信号为
Figure PCTCN2020088404-appb-000007
在时刻t 1天线单元2检测到的信号为
Figure PCTCN2020088404-appb-000008
输能设备通过天线单元1发送的输能信号为
Figure PCTCN2020088404-appb-000009
通过天线单元2发送的输能信号为
Figure PCTCN2020088404-appb-000010
该两路输能信号在受能设备处发生干涉,形成能量聚焦。
应理解,上文示例仅为便于理解而描述了输能设备各天线单元发送的输能信号与接收到的受能设备的信号的关系,不应对本申请构成任何限定。
还应理解,图2中的时刻t 1可以是在接收到该信号#1直至发送输能信号前的任意一个时刻,时刻t 2可以是t 1之后的任意一个时刻,时刻t 3可以是t 2之后的任意一个时刻,本申请对于t 1、t 2、t 3的具体取值不作限定。
还应理解,天线单元1基于信号#1在不同的时刻(即,对应于t 1的不同取值)检测到的相位值可能不同,因此所调整的相位值也可能不同;天线单元2基于信号#1在不同 的时刻检测到的相位值也可能不同,因此所调整的相位值也可能不同。应理解,图2仅为示例,示出了两个天线单元分别接收来自同一受能设备的信号以及进行相位调整的过程。但这不应对本申请构成任何限定。本申请对于输能设备的天线单元的数量不作限定。此外,图2中虽未示出,但应理解,输能设备还可以对该各路信号进行幅度调整,例如根据预先配置的功率比例来调整,以获得充电效率的最大化。本申请对此不作限定。
现有技术中通过在不同的输能设备中选择一个主设备,让其他输能设备与该主设备进行相位同步。在这个同步过程中包括不同输能设备到主设备的传输时延带来的相位偏差,这些相位偏差是由输能设备间的距离导致的;而在能量传输过程中,不同输能设备的相位偏差是由输能设备到受能设备的距离导致的,这两种情况下的相位偏差并不相同。因此现有技术中通过多输能设备直接交互实现同步,无法满足能量传输过程中的同步需求,同步精度受限。
因此本申请实施例提供一种输能方法和装置,能够实现多个输能设备和受能设备之间的同步,从而可以提高输能效率。
图3是本申请实施例提供的一种输能方法的示意性流程图,包括步骤301至304,以下分别对这些步骤进行详细介绍。
S301,受能设备向多个输能设备发送输能请求信号。
S302,受能设备接收多个输能设备针对输能请求信号的响应信号。
受能设备发送输能请求信号之后,检测收到的多个输能设备响应信号。可选地,如果检测到发出响应信号的输能设备只有一个,或者没有输能设备发出响应信号,则表示当前环境中只有一个输能设备或者没有输能设备,则同步流程结束,受能设备继续接受输能设备的输能或者不接受输能(环境中没有输能设备)。
S303,受能设备根据响应信号,获取多个输能设备的幅相信息。
具体地,输能设备的响应信号中包括该输能设备的幅相信息和第一信令,第一信令包括该输能设备的身份信息。受能设备根据响应信号,获取输能设备的幅相信息,并解调第一信令,获取该输能设备的身份信息。其中,第一信令可以包括输能设备与一个正交码的对应关系的指示,每个正交码被分配给对应的输能设备使用,从而可以表示该输能设备的身份。
S304,受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,该同步信号使得多个输能设备之间幅相同步。
具体地,输能设备的幅相信息为该输能设备内多个输能天线的幅相信息。例如,对于输能设备T1,其设备内的多个输能天线的幅相信息可以是
Figure PCTCN2020088404-appb-000011
其中
Figure PCTCN2020088404-appb-000012
表示第i个输能设备的第j根天线提取出的幅度为A ij,相位为
Figure PCTCN2020088404-appb-000013
可选地,在受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号之前,本申请实施例的方法还包括,受能设备检测每个输能设备内的多个输能天线是否完成了同步,具体检测过程可以参考上述对于图2的描述,为了简洁,本申请实施例在此不再赘述。如果受能设备检测到输能设备内的输能天线之间完成同步,则受能设备根据多个输能设备的幅相信息,向多个输能设备发送同步信号,同步信号使得多个输能设备之间幅相同步;如果输能设备检测到多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则受能设备再次向多个输能设备发送输能请求信号。直到每个输能设备内的 多个输能天线之间都完成了同步。
当检测到每个输能设备内的多个输能天线之间都完成了同步,输能设备继续检测多个输能设备之间是否完成了幅相同步,具体检测过程可以参考上述对于图2的描述,为了简洁,本申请实施例在此不再赘述。如果检测到多个输能设备之间没有完成幅相同步,输能设备向多个输能设备发送同步信号,该同步信号用于使得多个输能设备之间幅相同步。具体地,同步信号可以包括多个输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,该等效幅相信息为受能设备对每个输能设备应该做出的幅相调控的指示,即输能设备可以根据同步信号中本设备的身份信息对应的等效幅相信息,对本设备内多个输能天线的幅相做出调控。
在输能设备根据同步信号对本设备内多个输能天线的幅相做出调控后,受能设备可以继续检测多个输能设备之间是否完成幅相同步。例如,如果多个输能设备之间的相位相差小于第一阈值和/或多个输能设备之间的幅度相差小于第二阈值,则多个输能设备之间完成幅相同步,其中第一阈值和第二阈值可以是人为规定的值。如果检测到多个输能设备之间没有完成幅相同步,则受能设备再次向多个输能设备发送同步信号。
本申请实施例中受能设备与多个输能设备之间的交互以及多个输能设备与受能设备之间的幅相同步可以在输能过程中进行。在完成幅相同步之前,各个输能设备可以独立输能,在完成幅相同步之后,多个输能设备可以实现高效的联合输能。在实际的输能过程中,不同的设备其时钟频率存在漂移,幅相同步需要周期性地进行,本申请实施例的输能方法使得能量传输不会因为多个输能设备和受能设备之间的幅相同步过程而中断,在受能设备发现幅相不同步后,会在输能过程中启动幅相同步过程。
图4是本申请实施例提供的另一种输能方法的示意性流程图,包括步骤401至405,以下分别对这些步骤进行详细介绍。
S401,输能设备接收受能设备发送的输能请求信号。
可选地,输能设备可以周期性广播输能服务信号,在接收到输能请求信号后,则停止广播。
S402,输能设备根据输能请求信号,对输能设备内的输能天线进行第一幅相调控,使得输能设备内的输能天线之间幅相同步。
具体地,输能设备根据输能请求信号,对输能设备内的输能天线进行第一幅相调控的过程可以参考上述对于图2的描述,为了简洁,本申请实施例在此不再赘述。
S403,输能设备向受能设备发送针对输能请求信号的响应信号,响应信号用于向受能设备指示输能设备进行调控后的幅相。
其中,响应信号包括输能设备对设备内的输能天线进行第一幅相调控后的多个输能天线的幅相信息。
S404,输能设备接收受能设备根据响应信号发送的同步信号。
其中,同步信号可以包括多个输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,该等效幅相信息为受能设备对每个输能设备应该作出的幅相调控的指示,即输能设备可以根据同步信号中本设备的身份信息对应的等效幅相信息,对本设备内多个输能天线的幅相信息作出调控。
可选地,输能设备在接收受能设备根据响应信号发送的同步信号之前,如果多个输能 设备中的任一个或多个输能设备中的多个输能天线没有完成同步,则输能设备还可以接收受能设备再次向多个输能设备发送的输能请求信号,输能设备再次根据输能请求信号,对输能设备内的输能天线进行第一幅相调控,直到每个输能设备内的多个输能天线之间均完成同步。
S405,输能设备根据同步信号进行第二幅相调控,以与向受能设备联合输能的其他输能设备之间幅相同步。
在输能过程中,输能设备可以多次接收受能设备的同步信号,并根据同步信号进行第二幅相调控,使得输能过程中多个输能设备可以保持幅相同步,提高输能效率。
图5示出了本申请实施例的一种输能方法的示意性框图,应理解,图5中只示出了一个受能设备和一个输能设备,对于多个输能设备,其操作是类似的。以下结合图5对多个输能设备对一个受能设备进行联合输能的过程进行详细介绍。
输能设备周期性广播服务信号,此时若有受能设备有输能需求,则发送输能请求信号,在输能范围内的多个输能设备接收该输能请求信号。相应的,若输能设备没有接收到输能请求信号,则继续周期性广播服务信号。
多个输能设备中的每个输能设备接收到输能请求信号后,将各自设备内的多个天线同步。具体地,对于输能设备T1,T1在接收到输能请求信号后,提取设备内的多个输能天线的幅相信息为
Figure PCTCN2020088404-appb-000014
其中
Figure PCTCN2020088404-appb-000015
表示第i个输能设备的第j根天线提取出的幅度为A ij,相位为
Figure PCTCN2020088404-appb-000016
为了说明的便利,这里假设每个输能设备中的输能天线的数目均为m,应理解,当每个输能设备中的输能天线数目不同时,操作是类似的。相应的,对于输能设备T2,在接收到输能请求信号后,提取设备内的多个输能天线的幅相信息为
Figure PCTCN2020088404-appb-000017
若还有其他输能设备,操作同T1、T2。应理解,输能设备T1、T2在接收到输能请求信号后提取的设备内的多个输能天线的幅相信息为根据接收到输能请求信号后进行调整后的幅相信息,具体的调整过程可以参照以上对于图2的描述,为了简洁,本申请实施例在此不再赘述。
输能设备对设备内的多个天线进行同步后,发送初步能量和提取的多个输能天线的幅相信息给受能设备。
受能设备接收多个输能设备中每个输能设备发送的初步能量和提取的多个输能天线的幅相信息,检测每个输能设备中多个输能天线是否已经完成同步。如果有输能设备中的天线没有完成同步,则受能设备继续发送输能请求信号。如果每个输能设备中的输能天线之间均完成了同步,则受能设备检测多个输能设备是否同步。由于不同输能设备的信号时延不同,在受能设备侧体现为不同的相位,因此不同的输能设备此时是不同步的。受能设备可以检测到每个输能设备的等效幅相信息
Figure PCTCN2020088404-appb-000018
其中每个输能设备对应一个等效幅相信息,例如输能设备T1对应的等效幅相信息为
Figure PCTCN2020088404-appb-000019
等效幅相信息即为受能设备对输能设备需要作出的调整的指示。
受能设备发送多个输能设备同步信号,具体地,受能设备将每个输能设备对应的幅相信息
Figure PCTCN2020088404-appb-000020
和该输能设备的ID构建信息序列,同时还可以添加受能设备自身的信息,例如受能设备ID、受能设备剩余电量等,这些信息都可以包含在同步信号中。受能设备将以上信息调制后发送给各个输能设备,其中调制可以采用输能设备正交码。
每个输能设备接收到相同的同步信号,将信息解调后,找到与自身设备ID对应的等 效幅相信息
Figure PCTCN2020088404-appb-000021
对自身的幅相进行调整。具体地,输能设备根据接收到的等效幅相信息,对设备内所有天线的相位整体引入额外相移
Figure PCTCN2020088404-appb-000022
将设备内所有天线的输能幅度整体引入额外的比例
Figure PCTCN2020088404-appb-000023
例如,调整后的输能设备T1中的第一根天线的幅相
Figure PCTCN2020088404-appb-000024
为:
Figure PCTCN2020088404-appb-000025
其中,A” 11为输能设备T1中的第一根天线调整后的幅度,A 11为输能设备T1中的第一根天线调整前的幅度,
Figure PCTCN2020088404-appb-000026
为输能设备T1中的第一根天线调整后的相位,
Figure PCTCN2020088404-appb-000027
为输能设备T1中的第一根天线调整前的相位。由此,每个输能设备根据调整后的幅相信息,进行能量发送。
受能设备接收到多个输能设备发送的能量后,再次检测多个输能设备是否同步完成,具体地,受能设备可以重新提取多个输能设备的幅相信息,如果不同输能设备之间的相位相差小于第一阈值,和/或不同输能设备之间的相位相差小于第二阈值,则判定多个输能设备同步完成,其中,第一阈值和第二阈值可以是人为规定的值;否则,受能设备继续发送多个输能设备同步信号。
以上幅相同步可以在输能过程中进行。输能结束后,受能设备发送输能结束信号给输能设备,结束输能。
图6示出了本申请实施例的一种输能装置的示意性结构图,其中该装置设置于受能设备中,具体地,可以对应于图1中受能设备中的芯片。如图6所示,该装置600包括收发单元601和控制单元602。
收发单元601,用于向多个输能设备发送输能请求信号。
该收发单元601,还用于接收多个输能设备针对输能请求信号的响应信号。
控制单元602,用于根据响应信号,获取多个输能设备的幅相信息。
控制单元602和收发单元601,还用于根据多个输能设备的幅相信息,向多个输能设备发送同步信号,该同步信号使得多个输能设备之间幅相同步。
其中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括控制单元对每个输能设备幅相调控的指示信息。
可选地,在根据多个输能设备的幅相信息,向多个输能设备发送同步信号之前,控制单元602还用于:根据每个输能设备的幅相信息,检测输能设备内的输能天线之间是否完成同步
可选地,如果控制单元602检测到每个输能设备内的输能天线之间完成同步,则控制单元602根据多个输能设备的幅相信息,控制收发单元601向多个输能设备发送同步信号,同步信号使得多个输能设备之间幅相同步。
可选地,如果控制单元602检测到多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则收发单元601再次向多个输能设备发送输能请求信号。
可选地,控制单元602和收发单元601具体用于:控制单元602根据多个输能设备的幅相信息检测到多个输能设备之间没有完成同步,则收发单元601向多个输能设备发送同步信号。
应理解,图6所示的输能装置600中的收发单元601和控制单元602可以实现上述图3中的方法的各个步骤,输能装置600中的收发单元601和控制单元602的具体作用可以参考上述对于图3的描述,为了简洁,本申请实施例在此不再赘述。
还应理解,图6仅仅示出了输能装置的简化设计。在实际应用中,该输能装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发单元、控制单元等,而所有可以实现本申请的终端都在本申请的保护范围之内。
图7示出了本申请实施例的另一种输能装置的示意性结构图,其中该装置设置于输能设备中,具体地,可以对应于图1中输能设备中的芯片。如图7所示,该装置700包括收发单元701和控制单元702。
收发单元701,用于接收受能设备发送的输能请求信号。
控制单元702,用于根据输能请求信号,对输能设备内的输能天线进行第一幅相调控,使得输能设备内的输能天线之间幅相同步。
该收发单元701,还用于向受能设备发送针对输能请求信号的响应信号,该响应信号用于向受能设备指示输能设备进行调控后的幅相。
该收发单元701,还用于接收受能设备根据响应信号发送的同步信号。
控制单元702,还用于根据同步信号进行第二幅相调控,以与向受能设备联合输能的其他输能设备之间幅相同步。
其中,同步信号包括输能设备中每个输能设备的等效幅相信息和每个输能设备对应的身份信息,每个输能设备的等效幅相信息包括控制单元对每个输能设备幅相调控的指示信息。
应理解,图7所示的输能装置700中的收发单元701和控制单元702可以实现上述图4中的方法的各个步骤,输能装置700中的收发单元701和控制单元702的具体作用可以参考上述对于图4的描述,为了简洁,本申请实施例在此不再赘述。
还应理解,图7仅仅示出了输能装置的简化设计。在实际应用中,该输能装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发单元、控制单元等,而所有可以实现本申请的终端都在本申请的保护范围之内。
本申请实施例还提供了一种无线充电***。该无线充电***包括一个或多个前述输能设备以及设置在输能设备中的输能装置和一个或多个前述受能设备以及设置在受能设备中的输能装置。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在输能设备或受能设备上运行时,使得输能设备中的输能装置执行上述方法实施例中输能设备执行的步骤,或者,使得受能设备中的输能装置执行上述方法实施例中受能设备执行的步骤,从而实现上述实施例中的用于无线输能的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的输能设备或受能设备执行的用于无线输能的方法。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种输能的方法,其特征在于,包括:
    受能设备向多个输能设备发送输能请求信号;
    所述受能设备接收所述多个输能设备针对所述输能请求信号的响应信号;
    所述受能设备根据所述响应信号,获取所述多个输能设备的幅相信息;
    所述受能设备根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号,所述同步信号使得所述多个输能设备之间幅相同步。
  2. 根据权利要求1所述的方法,其特征在于,在所述受能设备根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号之前,所述方法还包括:
    所述受能设备根据每个所述输能设备的所述幅相信息,检测所述输能设备内的输能天线之间是否完成同步。
  3. 根据权利要求2所述的方法,其特征在于,如果所述受能设备检测到每个所述输能设备内的输能天线之间完成同步,则所述方法还包括:
    所述受能设备根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号,所述同步信号使得所述多个输能设备之间幅相同步。
  4. 根据权利要求2所述的方法,其特征在于,如果所述受能设备检测到所述多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则所述方法还包括:
    所述受能设备再次向所述多个输能设备发送所述输能请求信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述受能设备根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号,包括:
    所述受能设备根据所述多个输能设备的幅相信息检测到所述多个输能设备之间没有完成同步的情况下,则所述受能设备向所述多个输能设备发送所述同步信号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述同步信号包括所述输能设备中每个输能设备的等效幅相信息和所述每个输能设备对应的身份信息,所述每个输能设备的等效幅相信息包括所述受能设备对所述每个输能设备幅相调控的指示信息。
  7. 一种输能的方法,其特征在于,包括:
    输能设备接收受能设备发送的输能请求信号;
    所述输能设备根据所述输能请求信号,对所述输能设备内的输能天线进行第一幅相调控,使得所述输能设备内的输能天线之间幅相同步;
    所述输能设备向所述受能设备发送针对所述输能请求信号的响应信号,所述响应信号用于向所述受能设备指示所述输能设备进行所述调控后的幅相;
    所述输能设备接收所述受能设备根据所述响应信号发送的同步信号;
    所述输能设备根据所述同步信号进行第二幅相调控,以与向所述受能设备联合输能的其他输能设备之间幅相同步。
  8. 根据权利要求7所述的方法,其特征在于,所述同步信号包括所述输能设备中每个输能设备的等效幅相信息和所述每个输能设备对应的身份信息,所述每个输能设备的等效幅相信息包括所述输能设备用于幅相调控的指示信息。
  9. 一种输能的装置,其特征在于,所述装置设置于受能设备中,包括:
    收发单元,用于向多个输能设备发送输能请求信号;
    所述收发单元,还用于接收所述多个输能设备针对所述输能请求信号的响应信号;
    控制单元,用于根据所述响应信号,获取所述多个输能设备的幅相信息;
    所述控制单元和所述收发单元,还用于根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号,所述同步信号使得所述多个输能设备之间幅相同步。
  10. 根据权利要求9所述的装置,其特征在于,在根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号之前,所述控制单元还用于:
    根据每个所述输能设备的所述幅相信息,检测所述输能设备内的输能天线之间是否完成同步。
  11. 根据权利要求10所述的装置,其特征在于,如果所述控制单元检测到每个所述输能设备内的输能天线之间完成同步,则所述控制单元还用于:
    根据所述多个输能设备的幅相信息,控制所述收发单元向所述多个输能设备发送同步信号,所述同步信号使得所述多个输能设备之间幅相同步。
  12. 根据权利要求10所述的装置,其特征在于,如果所述控制单元检测到所述多个输能设备中任何一个或多个输能设备内的输能天线之间没有完成同步,则所述收发单元还用于:
    再次向多个输能设备发送所述输能请求信号。
  13. 根据权利要求9至12中任一项所述的装置,其特征在于,所述根据所述多个输能设备的幅相信息,向所述多个输能设备发送同步信号,所述控制单元和所述收发单元具体用于:
    所述控制单元根据所述多个输能设备的幅相信息检测到所述多个输能设备之间没有完成同步的情况下,则所述收发单元向所述多个输能设备发送所述同步信号。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,所述同步信号包括所述输能设备中每个输能设备的等效幅相信息和所述每个输能设备对应的身份信息,所述每个输能设备的等效幅相信息包括所述控制单元对所述每个输能设备幅相调控的指示信息。
  15. 一种输能的装置,其特征在于,所述装置设置于输能设备中,包括:
    收发单元,用于接收受能设备发送的输能请求信号;
    控制单元,用于根据所述输能请求信号,对所述输能设备内的输能天线进行第一幅相调控,使得所述输能设备内的输能天线之间幅相同步;
    所述收发单元,还用于向所述受能设备发送针对所述输能请求信号的响应信号,所述响应信号用于向所述受能设备指示所述输能设备进行所述调控后的幅相;
    所述收发单元,还用于接收所述受能设备根据所述响应信号发送的同步信号;
    所述控制单元,还用于根据所述同步信号进行第二幅相调控,以与向所述受能设备联合输能的其他输能设备之间幅相同步。
  16. 根据权利要求15所述的装置,其特征在于,所述同步信号包括所述输能设备中每个输能设备的等效幅相信息和所述每个输能设备对应的身份信息,所述每个输能设备的等效幅相信息包括所述输能设备用于幅相调控的指示信息。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储用于设备执行 的程序代码,所述程序代码包括用于执行如权利要求1至6中任一项所述的方法,或7至8中任一项所述的方法。
  18. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至6中任一项所述的方法,或7至8中任一项所述的方法。
PCT/CN2020/088404 2020-04-30 2020-04-30 输能方法和装置 WO2021217613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080092632.9A CN114930678A (zh) 2020-04-30 2020-04-30 输能方法和装置
PCT/CN2020/088404 WO2021217613A1 (zh) 2020-04-30 2020-04-30 输能方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088404 WO2021217613A1 (zh) 2020-04-30 2020-04-30 输能方法和装置

Publications (1)

Publication Number Publication Date
WO2021217613A1 true WO2021217613A1 (zh) 2021-11-04

Family

ID=78331642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088404 WO2021217613A1 (zh) 2020-04-30 2020-04-30 输能方法和装置

Country Status (2)

Country Link
CN (1) CN114930678A (zh)
WO (1) WO2021217613A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391184A (zh) * 2014-08-28 2016-03-09 现代自动车株式会社 无线电力传输***控制方法、无线电力接收装置及传输方法
CN106130105A (zh) * 2016-07-11 2016-11-16 深圳天珑无线科技有限公司 无线充电装置、***及方法
WO2018106762A1 (en) * 2016-12-11 2018-06-14 Apple Inc. Multi-transmitter wireless power systems
CN109149684A (zh) * 2018-07-31 2019-01-04 华为技术有限公司 一种无线充电设备
CN109977973A (zh) * 2017-12-28 2019-07-05 深圳先进技术研究院 充电***接收端状态估计方法、装置、设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391184A (zh) * 2014-08-28 2016-03-09 现代自动车株式会社 无线电力传输***控制方法、无线电力接收装置及传输方法
CN106130105A (zh) * 2016-07-11 2016-11-16 深圳天珑无线科技有限公司 无线充电装置、***及方法
WO2018106762A1 (en) * 2016-12-11 2018-06-14 Apple Inc. Multi-transmitter wireless power systems
CN109977973A (zh) * 2017-12-28 2019-07-05 深圳先进技术研究院 充电***接收端状态估计方法、装置、设备和存储介质
CN109149684A (zh) * 2018-07-31 2019-01-04 华为技术有限公司 一种无线充电设备

Also Published As

Publication number Publication date
CN114930678A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP6535761B2 (ja) 無線電力伝送機能のための機器の既存の構成要素の利用方法
US10566845B2 (en) Techniques for clock synchronization and control in wireless power delivery environments
EP4002899A1 (en) Multi-link device privacy and operation enhancements
CN107852770B (zh) 用于网络发现和同步的方法和***
US20200107209A1 (en) Method for Positioning Reference Design
US20120056485A1 (en) Wireless Power Transfer System, Power Transfer Apparatus, and Power Reception Apparatus
US20120079310A1 (en) Communication system, communication interface, and synchronization method
EP3949219A1 (en) Multi-trp pucch design considerations
KR20150019503A (ko) 전자 장치의 무선 충전을 위한 장치 및 방법
US20210076419A1 (en) Method and system for multi-link aggregation in wireless local area network
WO2018202017A1 (zh) 一种信息传输方法和装置
WO2017121070A1 (zh) 激活类***信息的传输方法、装置和设备
US11419175B2 (en) Reconstructing a personal area network or system after a failure in the network or system
WO2021217613A1 (zh) 输能方法和装置
US20100262846A1 (en) Information processing device, information processing method, and information processing system
US9432958B2 (en) Method and its apparatus for transmitting a continuous signal
US10230276B2 (en) Low jitter event synchronization across communication links
WO2018177155A1 (zh) 摄像机状态获取方法、摄像机及摄像机***
US20170085132A1 (en) Wireless power transmitting apparatus, wireless power receiving apparatus, and circuit for correcting differential signal
US10531413B2 (en) Reference signal generation redundancy in distributed antenna systems (DAS), and related devices and methods
US11705761B2 (en) Wireless charging transmit end, method, and system
US20220329104A1 (en) Wireless charging method, transmit end device, and wireless charging device
US20240073711A1 (en) Method and apparatus for determining scheduling request resource, and communication device
US20190222071A1 (en) Wireless power transmission system
KR20200078742A (ko) 무선 충전 장치, 무선 충전 시스템 및 그 동작방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933364

Country of ref document: EP

Kind code of ref document: A1