WO2021217382A1 - 信道跟踪方法及装置 - Google Patents

信道跟踪方法及装置 Download PDF

Info

Publication number
WO2021217382A1
WO2021217382A1 PCT/CN2020/087341 CN2020087341W WO2021217382A1 WO 2021217382 A1 WO2021217382 A1 WO 2021217382A1 CN 2020087341 W CN2020087341 W CN 2020087341W WO 2021217382 A1 WO2021217382 A1 WO 2021217382A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time slot
communication device
slot mapped
symbol
Prior art date
Application number
PCT/CN2020/087341
Other languages
English (en)
French (fr)
Inventor
吴晔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/087341 priority Critical patent/WO2021217382A1/zh
Priority to CN202080099567.2A priority patent/CN115380605A/zh
Publication of WO2021217382A1 publication Critical patent/WO2021217382A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a channel tracking method and device.
  • the base station can obtain channel state information (channel state information, CSI) according to the channel sound reference signal (SRS) sent by the terminal device through each antenna port , And then configure a corresponding codebook for the terminal device based on the channel state information to perform downlink transmission.
  • channel state information channel state information, CSI
  • SRS channel sound reference signal
  • the channel aging caused by the time delay will cause the codebook based on the SRS configuration to match the code that actually best matches the downlink transmission. There is a mismatch between the two, which in turn affects the effect of precoding on the suppression of interference between multiple users.
  • the embodiments of the present application provide a channel tracking method and device, which can obtain channel state information more instantly.
  • the reference signal configuration information includes the first reference signal and the second reference signal.
  • the terminal device sends the second reference signal during the period of sending the first reference signal according to the reference signal configuration information; because the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal; and the first reference signal and the second reference signal
  • the two reference signals jointly estimate the channel state information in a time-domain bundling manner. Therefore, compared with the channel estimation method that only relies on the first reference signal, the second reference signal and the first reference signal in the present application have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately.
  • the codebook configured by the base station based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the period of the second reference signal and the period of the first reference signal may be the same or different.
  • the period of the second reference signal may be greater than the period of the first reference signal; in another case, the period of the second reference signal may be equal to the period of the first reference signal; in another case, the period of the second reference signal Less than the period of the first reference signal.
  • the period of the second reference signal is predefined by the protocol or configured by signaling.
  • the second reference signal is a reference signal inserted before the discrete Fourier transform expansion is performed in the uplink transmission.
  • the sequence of the second reference signal is inserted into the uplink transmission samples before the discrete Fourier transform in a comb or chunk manner. That is, the terminal device inserts the sequence of the second reference signal with combs or chunks in the samples of the uplink transmission before the discrete Fourier transform expansion. It can be seen that, in this embodiment, the second reference signal and the first reference signal are combined for channel estimation in a time-domain bundling manner, and the channel state information over the entire bandwidth can be obtained. Compared with the method of simply increasing the SRS mapping density, it reduces SRS pilot overhead, and increase the number of supported terminals for measuring uplink channel state information, effectively reducing the PAPR of uplink transmission.
  • the second reference signal is located on the symbol of the uplink transmission.
  • the time slot mapped by the second reference signal is different from the time slot mapped by the first reference signal;
  • the symbols in the time slot are different from the symbols of the first reference signal in the time slot mapped by the first reference signal.
  • the symbols of the second reference signal in the mapped time slot are not limited by the symbols mapped by the first reference signal.
  • the symbols of the second reference signal in the time slot mapped by the second reference signal are determined by radio resource control RRC signaling, or medium access control-control element MAC-CE signaling, or downlink control information. Order configured.
  • the first reference signal is a sounding reference signal SRS; the second reference signal is an additional sounding reference signal (additional SRS).
  • the second reference signal may be a periodic, aperiodic, or semi-static SRS.
  • the present application also provides a channel tracking method, which corresponds to the method in the first aspect, and is explained from the perspective of a network device.
  • the network device receives the first reference signal and the second reference signal according to the reference signal configuration information, and the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal;
  • a reference signal and the second reference signal jointly estimate channel state information in a time-domain bundling manner. It can be seen that, compared with the channel estimation method that only relies on the first reference signal, the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the second reference signal is a reference signal inserted before the discrete Fourier transform expansion is performed in the uplink transmission.
  • the sequence of the second reference signal is inserted into the uplink transmission samples before the discrete Fourier transform in a comb or chunk manner. It can be seen that, in this embodiment, the second reference signal and the first reference signal are combined for channel estimation in a time-domain bundling manner, and the channel state information over the entire bandwidth can be obtained. Compared with the method of simply increasing the SRS mapping density, it reduces SRS pilot overhead, and increase the number of supported terminals for measuring uplink channel state information, effectively reducing the PAPR of uplink transmission.
  • the second reference signal is located on the symbol of the uplink transmission.
  • the time slot mapped by the second reference signal is different from the time slot mapped by the first reference signal;
  • the symbols in the time slot are different from the symbols of the first reference signal in the time slot mapped by the first reference signal.
  • the symbols of the second reference signal in the mapped time slot are not limited by the symbols mapped by the first reference signal.
  • the symbols of the second reference signal in the time slot mapped by the second reference signal are determined by radio resource control RRC signaling, or medium access control-control element MAC-CE signaling, or downlink control information. Order configured.
  • the first reference signal is a sounding reference signal SRS; the second reference signal is an additional sounding reference signal (additional SRS).
  • the second reference signal may be a periodic, aperiodic, or semi-static SRS.
  • the present application also provides a communication device that has some or all of the functions of the terminal device in the method example of the first aspect mentioned above.
  • the function of the communication device may include part or The functions in all the embodiments may also have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • the communication unit is configured to send the second reference signal during the period of sending the first reference signal according to the reference signal configuration information.
  • the processing unit may be a processor, the communication unit may be a transceiver or a communication interface, and the storage unit may be a memory.
  • the processing unit may be a processor, the communication unit may be a transceiver or a communication interface, and the storage unit may be a memory.
  • the communication device includes:
  • the transceiver is configured to send the second reference signal during the period of sending the first reference signal according to the reference signal configuration information.
  • the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the present application also provides a communication device that has some or all of the functions of the receiving end in the method example described in the second aspect.
  • the function of the communication device may include part of the network equipment in the application.
  • the functions in all the embodiments may also have the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a communication unit configured to receive a second reference signal during the period of the first reference signal according to the reference signal configuration information, and the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal;
  • the processing unit is configured to jointly estimate channel state information in a time-domain bundling manner according to the first reference signal and the second reference signal.
  • the second reference signal and the first reference signal have a shorter period of channel estimation, so that the channel state information can be obtained more immediately, which is beneficial to the base station based on
  • the codebook configured by the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a transceiver configured to receive a second reference signal during periods of a first reference signal according to reference signal configuration information, where the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal;
  • the processor is configured to jointly estimate channel state information in a time-domain bundling manner according to the first reference signal and the second reference signal.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or fully arranged on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system on chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the specific needs of product design. The embodiment of the present application does not limit the specific implementation form of the foregoing device.
  • the present application also provides a processor configured to execute various methods in one of the foregoing first to second aspects.
  • the processes of sending the above information and receiving the above information in the above methods can be understood as the process of outputting the above information by the processor and the process of receiving the input information of the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver.
  • other processing may be required before it reaches the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to undergo other processing before being input to the processor.
  • the processor outputs and receives, inputs and other operations, instead of transmitting, sending, and receiving directly by the radio frequency circuit and antenna.
  • the foregoing processor may be a processor dedicated to executing these methods, or a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory may be a non-transitory memory, such as a read only memory (ROM), which may be integrated with the processor on the same chip, or may be separately arranged on different chips.
  • ROM read only memory
  • the embodiments of the present application provide a computer-readable storage medium, including a computer program.
  • the computer program When the computer program is run on a computer, the methods described in the first aspect are executed, or as in the second aspect. The methods described are executed.
  • the embodiments of the present application also provide a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • this application provides a chip system that includes a processor and an interface, and is used to support terminal devices to implement the functions involved in the first aspect, or to support network devices to implement the functions involved in the second aspect For example, to determine or process at least one of the data and information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data at the sending end.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a communication system includes: the above-mentioned devices.
  • the communication system includes: a terminal device and a network device.
  • the terminal device executes the method described in the first aspect or the optional implementation of the first aspect
  • the network device executes the second aspect or the optional implementation of the second aspect. Implement the method described in the mode.
  • Figure 1 is a schematic diagram of a current communication system
  • Figure 2 is a schematic diagram of current SRS transmission and PDSCH transmission
  • FIG. 3 is a schematic flowchart of a channel tracking method provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of sending a first reference signal and a second reference signal according to an embodiment of the present application
  • 4B is a schematic diagram of sending the first reference signal and the second reference signal according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of SRS transmission and PDSCH transmission provided by an embodiment of the present application.
  • FIG. 6 is another schematic diagram of sending the first reference signal and the second reference signal according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another channel tracking method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a distribution of samples of a second reference signal sequence in uplink transmission before DFT extension provided by an embodiment of the present application;
  • FIG. 9 is another schematic diagram of the distribution of a second reference signal sequence in an uplink transmission sample before DFT expansion according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the embodiments of the present application can be applied to independent networking, that is, new base stations, backhaul links, and core networks deployed in future networks, and can also be applied to various communication systems such as non-independent networking.
  • the embodiments of this application can be used in the fifth generation (5th generation, 5G) system, and can also be referred to as the new radio (NR) system, or the sixth generation (6th generation, 6G) system or other future communication systems Or it can also be used in device-to-device (D2D) systems, machine-to-machine (M2M) systems, long term evolution (LTE) systems, and so on.
  • 5G fifth generation
  • 6G sixth generation
  • D2D device-to-device
  • M2M machine-to-machine
  • LTE long term evolution
  • the network device may be a device with a wireless transceiver function or a chip that can be installed in the device.
  • the network device includes, but is not limited to: an evolved node B (eNB), a radio network controller ( radio network controller (RNC), node B (Node B, NB), network equipment controller (base station controller, BSC), network equipment transceiver station (BTS), home network equipment (for example, home evolved Node B) , Or home Node B (HNB), baseband unit (BBU), access point (AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, Transmission and reception point (TRP or transmission point, TP), etc.; it can also be equipment used in 5G, 6G, or even 7G systems, such as gNB in NR systems, or transmission points (TRP or TP), in 5G systems
  • terminal equipment may include but is not limited to: user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal , User agent or user device, etc.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control Wireless terminals in (industrial control), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system takes a network device 101, a terminal device 102, and a terminal device 103 as an example.
  • the communication in the communication system includes uplink communication, downlink communication, D2D communication, and so on.
  • TDD time division duplex
  • the reciprocity of the uplink and downlink channels is used, and the channel state information obtained by sounding reference signal measurement in the uplink transmission can be used to calculate the downlink beamforming weight.
  • the terminal equipment periodically sends reference signals based on the reference signal configuration information carried by the high-level signaling or physical layer signaling; the network equipment receives these reference signals and performs channel estimation to obtain the network equipment 101 to the terminal equipment respectively.
  • 102. Channel state information between terminal devices 103.
  • the network device configures a precoding matrix for the terminal device based on the channel state information, so as to reduce the interference between the channel of the terminal device 102 and the terminal device 103.
  • the maximum value of D R2P is 9ms, that is The time delay from the sending time of SRS to the sending time when PDSCH is ready can be up to 9ms, and the aging of the channel during this period leads to the precoding matrix configured based on the channel state information obtained by SRS measurement and the actual PDSCH sending time.
  • the best-matched precoding matrices which in turn leads to a poor suppression effect of the above-mentioned interference. Therefore, how to obtain instantaneous channel state information becomes an urgent problem to be solved.
  • the present application provides a channel tracking method.
  • the terminal device sends a second reference signal during the period of sending the first reference signal, and the first reference signal and the second reference signal are respectively associated with the antenna ports The same, and the channel state information is jointly estimated in the time-domain bundling manner. Therefore, the channel tracking method can track the channel state information of the channel more timely.
  • FIG. 3 is a schematic flowchart of a channel tracking method provided by an embodiment of the present application.
  • Figure 3 illustrates the interaction between terminal equipment and network equipment.
  • the channel tracking method includes but is not limited to the following steps:
  • the terminal device sends a second reference signal during the period of sending the first reference signal according to the reference signal configuration information
  • the network device receives the second reference signal during the period of the first reference signal according to the reference signal configuration information.
  • the network device jointly estimates channel state information in a time-domain bundling manner according to the first reference signal and the second reference signal.
  • the reference signal configuration information includes parameters such as the sequence of the reference signal, the port and resource mapping mode, the receiver estimation of the reference signal, and the period of the reference signal.
  • step 201 the second reference signal is sent or received during the period of the first reference signal, so the first reference signal and the second reference signal form periodic sending or receiving in time.
  • the symbol occupied by the first reference signal and the second reference signal in the mapped slot is the last symbol of the slot, and the bandwidth is 4 resource blocks (RB)
  • the period of the first reference signal is 20 slots
  • the second reference signal is inserted into the period of the first reference signal
  • the first reference signal and the second reference signal are located at the end of the mapped time slot
  • the transmission period of the first reference signal and the second reference signal as a whole is 10 time slots, thereby facilitating more immediate tracking of the channel state information of the channel.
  • the period of the first reference signal is 20 slots, for example, the time slots that can be mapped are slot 0 and slot 20 respectively; the second reference signal is sent during the period of the first reference signal, as shown in Fig. 4A ,
  • the period of the second reference signal is 20 slots.
  • the time slots that can be mapped are slot 10 and slot 30; the first reference signal mapped on slot 0 can be combined with the second reference signal mapped on slot 10 for channel estimation Or the first reference signal mapped on slot 0, the second reference signal mapped on slot 10, the first reference signal mapped on slot 20, and the second reference signal mapped on slot 30 are jointly used for channel estimation, and so on.
  • the terminal device may insert the second reference signal in the period of the first reference signal, that is, during the period of sending the first reference signal Send the second reference signal.
  • the period of the second reference signal can be specified by protocol or configured by signaling.
  • the period of the second reference signal may be equal to the period of the first reference signal, or equal to 2 of the period of the first reference signal. Times and so on.
  • the period of the second reference signal and the period of the first reference signal may be the same or different.
  • the period of the second reference signal may be greater than the period of the first reference signal; in another case, the period of the second reference signal may be equal to the period of the first reference signal; in another case, the period of the second reference signal Less than the period of the first reference signal.
  • the period of the second reference signal is predefined by the protocol or configured by signaling.
  • the first reference signal is a sounding reference signal SRS
  • the second reference signal may be an enhanced SRS, an additional sounding reference signal (additional SRS), or an enhanced phase tracing reference signal (PTRS).
  • the enhanced PTRS is different from the normal PTRS.
  • the enhanced PTRS is used for joint channel estimation with the SRS to obtain channel state information, while the normal PTRS is used for phase estimation.
  • the terminal device may insert an additional SRS in the period of the SRS, that is, send the additional SRS during the period of sending the SRS.
  • the period of the Additional SRS can be stipulated by agreement or configured by signaling. For example, through protocol stipulation or signaling configuration, the additional SRS period is equal to the SRS period, or equal to twice the SRS period.
  • the period of SRS is 20 slots.
  • the timeslots that can be mapped are slot 0, slot 20, slot 40, slot 60, and slot 80; the period of additional SRS is 40 slots, such as mappable slots.
  • the time slots are respectively slot 10, slot 50, and slot 90, and the second reference signal is sent during the period of the first reference signal, as shown in FIG. 4B.
  • the joint estimation of the channel state information in the time domain bundling mode means that the channel state information can perform joint channel estimation based on the reference signals respectively mapped by different symbols in the time domain.
  • FIG. 5 is a schematic diagram of a channel tracking method provided by an embodiment of the present application.
  • the first reference signal is an SRS and the second reference signal is an additional reference signal (additional SRS)
  • the period of the SRS is 5 ms as shown in FIG. 5, and the preparation delay of the PDSCH is still 4 ms.
  • the additional SRS SRS is sent between cycles, so that the period of SRS and additional SRS as a whole is 2.5ms, and the additional SRS as shown in Figure 4A and its previous SRS are respectively associated with the same antenna ports, and they are jointly estimated in time domain binding.
  • Channel state information therefore, the maximum value of D R2P that causes channel aging in FIG. 4A is 6.5 ms, which is less than 9 ms in FIG. 2, and the embodiment of the present application can obtain channel state information more immediately.
  • the time slot mapped by the second reference signal is different from the time slot mapped by the first reference signal; the second reference signal is mapped on the second reference signal The symbol in the time slot of is different from the symbol of the first reference signal in the time slot mapped by the first reference signal.
  • the time slots mapped by the first reference signal and the second reference signal are different, but the symbols in the mapped time slots are the same, and both are the last symbol in the time slot.
  • the second reference signal can be mapped to the second symbol of slot 10 and slot 30, and the first reference signal can be mapped to the last one or more symbols of slot 0 and slot 20.
  • the second reference signal is on the second symbol of slot 10 and slot 30 or the thirteenth symbol from the bottom, which can be configured by RRC signaling, MAC-CE signaling, or downlink control signaling.
  • the time slot mapped by the second reference signal is different from the time slot mapped by the first reference signal, and the symbols of the second reference signal in the mapped time slot are not affected by the first reference.
  • the symbols of the second reference signal in the time slot mapped by the second reference signal are determined by radio resource control RRC signaling, or medium access control-control element MAC-CE signaling, or downlink control information. Order configured.
  • the time slot mapped by the second reference signal is an uplink time slot or a flexible uplink and downlink time slot.
  • the symbols of the second reference signal in the timeslot to which it is mapped are symbols for uplink transmission.
  • the additional SRS is located on the symbol of the physical uplink shared channel (PUSCH) placed in the uplink time slot.
  • PUSCH physical uplink shared channel
  • this application can be applied to the discrete Fourier transform-spread-orthogonal frequency division multiplexing (Discrete Fourier Transform-Spread OFDM, DFT-S-OFDM) technology for uplink transmission, that is, in the orthogonal frequency division multiplexing
  • the Inverse Fast Fourier Transform Invert Fast Fourier Transformation, IFFT
  • IFFT Invert Fast Fourier Transformation
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 7 is a schematic flowchart of another channel tracking method provided by an embodiment of the present application.
  • the channel tracking method shown in FIG. 7 is different from the channel tracking method shown in FIG. 3 in that the terminal device in FIG. 7 also needs to perform Discrete Fourier Transform (DFT) spreading in the uplink transmission.
  • DFT Discrete Fourier Transform
  • a terminal device inserts a sequence of a second reference signal in a comb-tooth or block manner in a sample of uplink transmission before the discrete Fourier transform expansion;
  • the terminal device sends the second reference signal during the period of sending the first reference signal according to the reference signal configuration information.
  • the network device receives the second reference signal during the period in which the first reference signal is received according to the reference signal configuration information.
  • the network device jointly estimates channel state information in a time-domain bundling manner according to the first reference signal and the second reference signal.
  • the related content of steps 302 to 304 can refer to the related content described in FIG. 3, which will not be described in detail here.
  • the first reference signal is a ZC (Zad-off Chu) sequence expanded in the frequency domain
  • the second reference signal is spreading before performing Discrete Fourier Transform (DFT) spreading during uplink transmission.
  • the inserted reference signal such as pre-DFT insertion additional SRS. This helps to reduce the peak to average power ratio (PAPR) of uplink transmission. Since the first reference signal is a ZC sequence expanded in the frequency domain, it is not inserted in a sequence of symbols, such as odd-numbered sub-carriers or even-numbered sub-carriers that can be mapped in the symbol.
  • the second reference signal is inserted in DFT spreading. It is continuously inserted in the entire column of sub-carriers of one symbol.
  • the second reference signal and the first reference signal are combined for channel estimation in a time-domain bundling manner, which can obtain channel state information on the entire bandwidth, and simply increases the SRS mapping density.
  • the pilot overhead of the SRS is reduced, and the number of supported terminals for measuring the uplink channel state information is increased, and the PAPR of the uplink transmission is effectively reduced.
  • the second reference signal and the uplink transmission are multiplexed with the same symbol, that is, the second reference signal and the uplink transmission may exist simultaneously on the symbol, or the second reference signal may be located on the symbol of the uplink transmission.
  • the sequence of the second reference signal may be inserted into the uplink transmission samples before the discrete Fourier transform expansion in a comb or chunk manner.
  • the sequence of the second reference signal is inserted into the sample before the DFT extension in a comb manner, and on the same symbol, the second reference signal and the uplink transmission can exist at the same time.
  • the sequence of the second reference signal is inserted into the samples of the uplink transmission before the DFT extension in a chunk manner, and on the same symbol, the second reference signal and the uplink transmission may exist at the same time.
  • the second reference signal may be considered as an additional PTRS, and may exist on a resource block for non-uplink transmission. Unlike the PTRS, the second reference signal is used to perform channel estimation jointly with the first reference signal.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the sending end and the receiving end, respectively.
  • the sending end and the receiving end may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device 1000 shown in FIG. 10 may include a communication unit 1001 and a processing unit 1002.
  • the communication unit 1001 may include a sending unit and a receiving unit.
  • the sending unit is used to implement a sending function
  • the receiving unit is used to implement a receiving function
  • the communication unit 1001 may implement a sending function and/or a receiving function.
  • the communication unit can also be described as a transceiving unit.
  • the communication device 1000 may be a network device or a terminal device, and may also be a device in a network device or a terminal device.
  • the communication device 1000 includes a communication unit 1001 and a processing unit 1002, and can perform related operations of the terminal device in each of the foregoing embodiments;
  • the communication unit 1001 is configured to send a second reference signal during the period of sending the first reference signal according to the reference signal configuration information
  • the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the relevant content of the foregoing implementation manners can refer to the relevant content of the foregoing method embodiment. No more details here.
  • the communication device 1000 includes a communication unit 1001 and a processing unit 1002, and can perform related operations of the network equipment in the foregoing embodiments;
  • the communication unit 1001 is configured to receive a second reference signal during the period of the first reference signal according to the reference signal configuration information, and the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal;
  • the processing unit 1002 is configured to jointly estimate channel state information in a time domain bundling manner according to the first reference signal and the second reference signal.
  • the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the relevant content of the foregoing implementation manners can refer to the relevant content of the foregoing method embodiment. No more details here.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 1100 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a terminal device or a network device to implement the foregoing method, or a terminal device or a network device that implements the foregoing method.
  • Method of chip, chip system, or processor, etc. The communication device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the communication device 1100 may include one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor.
  • the processor 1101 may be used to control a communication device (for example, a terminal device or a network device, etc.), execute a software program, and process data of the software program.
  • the communication device 1100 may include one or more memories 1102, on which instructions 1104 may be stored, and the instructions may be executed on the processor 1101, so that the communication device 1100 executes the foregoing method The method described in the examples.
  • the memory 1102 may also store data.
  • the processor 1101 and the memory 1102 may be provided separately or integrated together.
  • the communication device 1100 may further include a transceiver 1105 and an antenna 1106.
  • the transceiver 1105 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing the transceiver function.
  • the transceiver 1105 may include a receiver and a transmitter.
  • the receiver may be referred to as a receiver or a receiving circuit, etc., to implement a receiving function;
  • the transmitter may be referred to as a transmitter or a transmitting circuit, etc., to implement a transmitting function.
  • the communication device 1100 performs related operations of the terminal equipment in the foregoing method embodiments, and the processor 1101 may be used to perform the operations of step 301 in FIG. 7; the transceiver 1105 may perform the steps in FIG. 7 The operation of 302 or the operation of step 201 in FIG. 3.
  • the communication device 1100 performs related operations of the network device in the foregoing method embodiment, and the processor 1101 may be configured to perform the operation of step 203 in FIG. 3 or the operation of step 304 in FIG. 7; And the transceiver 1105 can perform the operation of step 202 in FIG. 3 or the operation of step 303 in FIG. 7.
  • the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the processor 1101 may store an instruction 1103, and the instruction 1103 runs on the processor 1101, so that the communication device 1100 can execute the method described in the foregoing method embodiment.
  • the instruction 1103 may be solidified in the processor 1101.
  • the processor 1101 may be implemented by hardware.
  • the communication device 1100 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC analog IC
  • radio frequency integrated circuit RFIC radio frequency integrated circuit
  • mixed signal IC mixed signal IC
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the communication device described in the above embodiment may be a network device or a terminal device, but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 11.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the set of ICs may also include storage components for storing data and instructions;
  • ASIC such as a modem (Modem)
  • Receivers smart terminals, wireless devices, handsets, mobile units, vehicle-mounted devices, cloud devices, artificial intelligence devices, etc.;
  • the communication device can be a chip or a chip system
  • the chip 1200 shown in FIG. 12 includes a processor 1201 and an interface 1202.
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be more than one.
  • the interface 1202 is configured to send a second reference signal during the period of sending the first reference signal according to the reference signal configuration information
  • the chip further includes a memory 1203 coupled with the processor 1201, and the memory 1203 is used to store necessary program instructions and data for the terminal device.
  • the interface 1202 is configured to receive a second reference signal during the period of the first reference signal according to the reference signal configuration information, and the antenna port associated with the first reference signal is the same as the antenna port associated with the second reference signal;
  • the processor 1201 is configured to jointly estimate channel state information in a time domain bundling manner according to the first reference signal and the second reference signal.
  • the second reference signal and the first reference signal have a shorter channel estimation cycle, so that the channel state information can be obtained more immediately, which is beneficial to the network equipment.
  • the codebook configured based on the channel state information is more closely matched with the codebook that is actually best matched for downlink transmission.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer-readable storage medium is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了信道跟踪方法及装置,该方法中,终端设备根据参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;由于第一参考信号关联的天线端口与第二参考信号关联的天线端口相同;并且第一参考信号和第二参考信号以时域绑定方式联合估计信道状态信息。因此,与仅依赖第一参考信号进行信道估计得方式相比,本申请中第二参考信号和第一参考信号联合进行信道估计的周期更短,能够更即时的获取信道状态信息。

Description

信道跟踪方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种信道跟踪方法及装置。
背景技术
上行波束赋形过程中,为了消除各天线之间的影响,基站可根据终端设备通过各天线端口发送的信道探测参考信号(sound reference signal,SRS),获得信道状态信息(channel state information,CSI),进而基于该信道状态信息为终端设备配置相应的码本,以进行下行传输。
然而,由于终端设备发送SRS与网络设备发送物理下行共享信道之间存在时延,因此,该时延所带来的信道老化,会导致基于SRS配置的码本与下行传输实际最佳匹配的码本之间存在不匹配,进而影响预编码对多用户之间的干扰的抑制效果。
因此,如何及时获取信道状态信息成为一个亟待解决的问题。
发明内容
本申请实施例提供了一种信道跟踪方法及装置,能够更即时的获取信道状态信息。
第一方面,本申请提供的信道跟踪方法中,参考信号配置信息包括第一参考信号和第二参考信号。终端设备根据参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;由于第一参考信号关联的天线端口与第二参考信号关联的天线端口相同;并且第一参考信号和第二参考信号以时域绑定方式联合估计信道状态信息。因此,与仅依赖第一参考信号进行信道估计得方式相比,本申请中第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息。
进一步的,本申请实施例中,基站基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
可选的,第二参考信号的周期与第一参考信号的周期可以相同或不同。一种情况,第二参考信号的周期可大于第一参考信号的周期;另一种情况,第二参考信号的周期可以等于第一参考信号的周期;又一种情况,第二参考信号的周期小于第一参考信号的周期。可选的,第二参考信号的周期是协议预定义的或是信令配置的。
一种可选的实施方式中,第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。一种实现方式中,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。即终端设备在离散傅里叶变换扩展之前的上行传输的采样中以梳齿(comb)或组块(chunk)***第二参考信号的序列。可见,该实施方式中,第二参考信号与第一参考信号以时域绑定方式联合进行信道估计,能够获得整个带宽上的信道状态信息,与单纯增加SRS映射密度的方式相比,减少了SRS的导频开销,并提升所支持的测量上行信道状态信息的终端数量,有效降低上行传输的PAPR。
一种可选的实施方式中,所述第二参考信号位于所述上行传输的符号上。
一种可选的实施方式中,所述第二参考信号所映射的时隙与所述第一参考信号所映射 的时隙不同;所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
可见,第二参考信号在所映射的时隙中的符号不受第一参考信号所映射的符号的限制。可选的,第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
可选的,第一参考信号为探测参考信号SRS;第二参考信号为额外的探测参考信号(additional SRS)。所述第二参考信号可为周期性、非周期性、或半静态的SRS。
第二方面,本申请还提供一种信道跟踪方法,该信道跟踪方法与第一方面的方法相对应,是从网络设备的角度进行阐述的。该方法中,网络设备根据参考信号配置信息,接收第一参考信号和第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;网络设备根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
一种可选的实施方式中,第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。一种实现方式中,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。可见,该实施方式中,第二参考信号与第一参考信号以时域绑定方式联合进行信道估计,能够获得整个带宽上的信道状态信息,与单纯增加SRS映射密度的方式相比,减少了SRS的导频开销,并提升所支持的测量上行信道状态信息的终端数量,有效降低上行传输的PAPR。
一种可选的实施方式中,所述第二参考信号位于所述上行传输的符号上。
一种可选的实施方式中,所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
可见,第二参考信号在所映射的时隙中的符号不受第一参考信号所映射的符号的限制。可选的,第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
可选的,第一参考信号为探测参考信号SRS;第二参考信号为额外的探测参考信号(additional SRS)。可选的,所述第二参考信号可为周期性、非周期性、或半静态的SRS。
第三方面,本申请还提供了一种通信装置,该通信装置具有实现上述第一方面的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单 元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,通信装置包括:
通信单元,用于根据所述参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的程序,当所述程序被运行时,使得所述通信装置执行如第一方面所述的方法。
一种实施方式中,所述通信装置包括:
收发器,用于根据所述参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号。
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
第四方面,本申请还提供了一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中接收端的部分或全部功能,比如通信装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
处理单元,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于基站基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的程序,当所述程序被运行时,使得所述通信装置执行如第二方面所述的方法。
一种实施方式中,所述通信装置包括:
收发器,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号, 所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
处理器,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
第三方面、第四方面,在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为***芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
第五方面,本申请还提供一种处理器,用于执行上述第一方面至第二方面其中一方面中的各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本申请实施例提供了一种计算机可读存储介质,包括计算机程序,当所述计算机程序在计算机上运行时,如第一方面所述的各方法被执行,或如第二方面所述的各方法被执行。
第七方面,本申请实施例还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面所述的方法。
第八方面,本申请提供了一种芯片***,该芯片***包括处理器和接口,用于支持终端设备实现第一方面所涉及的功能,或用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所 述芯片***还包括存储器,所述存储器,用于保存发送端必要的程序指令和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,一种通信***,该通信***包括:上述各设备。例如,该通信***包括:终端设备和网络设备,终端设备执行上述第一方面或第一方面的可选的实施方式所描述的方法,网络设备执行上述第二方面或第二方面的可选的实施方式所描述的方法。
附图说明
图1是目前的一种通信***的示意图;
图2是目前的SRS发送与PDSCH传输的一示意图;
图3是本申请实施例提供的一种信道跟踪方法的流程示意图;
图4A是本申请实施例提供的第一参考信号和第二参考信号的一发送示意图;
图4B是本申请实施例提供的第一参考信号和第二参考信号的一发送示意图;
图5是本申请实施例提供的SRS发送与PDSCH传输的示意图;
图6是本申请实施例提供的第一参考信号和第二参考信号的另一发送示意图;
图7是本申请实施例提供的另一种信道跟踪方法的流程示意图;
图8是是本申请实施例提供的一种第二参考信号的序列在DFT扩展之前上行传输的采样中的一分布示意图;
图9是是本申请实施例提供的一种第二参考信号的序列在DFT扩展之前上行传输的采样中的另一分布示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信装置的结构示意图;
图12是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了能够更好地理解本申请实施例,首先对本申请实施例可应用的通信***进行说明。
本申请实施例可应用于独立组网,即未来网络中部署的新的基站、回程链路以及核心网等通信***中,也可应用非独立组网等各种通信***中。
例如,本申请实施例可用于第五代(5th generation,5G)***,也可以称为新空口(new radio,NR)***,或者第六代(6th generation,6G)***或未来的其他通信***;或者还可用于设备到设备(device to device,D2D)***,机器到机器(machine to machine,M2M)***、长期演进(long term evolution,LTE)***等等。
本申请实施例中,网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等;还可以为5G、6G 甚至7G***中使用的设备,如NR***中的gNB,或传输点(TRP或TP),5G***中的网络设备的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit),或微微网络设备(Picocell),或毫微微网络设备(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)。
本申请实施例中,终端设备可包括但不限于:用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。再比如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参见图1,图1是本申请实施例提供的一种通信***的示意图。如图1所示,该通信***以一个网络设备101、终端设备102和终端设备103为例。其中,该通信***中的通信包括上行通信、下行通信、D2D通信等等。在时分双工(time division duplex,TDD)的波束赋形模式下,利用上下行信道的互易性,上行传输中探测参考信号测量获得的信道状态信息,可用于计算下行波束赋形权值。
如图1所示,终端设备基于高层信令或物理层信令携带的参考信号配置信息,周期性的发送参考信号;网络设备接收这些参考信号并进行信道估计,获得网络设备101分别至终端设备102、终端设备103之间的信道状态信息。下行传输中,网络设备基于这些信道状态信息为终端设备配置预编码矩阵,以降低终端设备102与终端设备103的信道之间的干扰。
然而,如图2所示,假设终端设备发送SRS的周期为5ms,网络设备发送物理下行共享信道(physical downlink shared channel,PDSCH)的准备时延为4ms,那么D R2P的最大值为9ms,即从SRS的发送时刻到PDSCH准备完毕的发送时刻之间的时延最大可达到9ms,而在这期间信道的老化,导致基于SRS测量获得的信道状态信息而配置的预编码矩阵与PDSCH发送时刻实际最佳匹配的预编码矩阵之间存在不匹配,进而导致上述干扰的抑制效果不佳。因此,如何获取瞬时信道状态信息成为一个亟待解决的问题。
为了解决该问题,本申请提供一种信道跟踪方法,该方法中,终端设备在发送第一参考信号的周期间发送第二参考信号,该第一参考信号和第二参考信号分别关联的天线端口相同,并且以时域绑定方式联合估计信道状态信息。因此,该信道跟踪方法能够更加及时的跟踪信道的信道状态信息。
以下结合附图,对本申请实施例进一步阐述。
请参阅图3,图3是本申请实施例提供的一种信道跟踪方法的流程示意图。图3以终端设备与网络设备交互的角度进行阐述。如图3所示,该信道跟踪方法包括但不限于以下步骤:
201、终端设备根据参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;
202、网络设备根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号;
203、网络设备根据第一参考信号和第二参考信号,以时域绑定方式联合估计信道状态信息。
其中,参考信号配置信息包括参考信号的序列、端口和资源映射方式、参考信号的接收端估计以及参考信号的周期等参数。
步骤201中,第二参考信号是在第一参考信号的周期间发送或接收的,故第一参考信号与第二参考信号在时间上形成周期性的发送或接收。
例如,如图4A所示,假设第一参考信号和第二参考信号在所映射的时隙中所占的符号为该时隙的最后一个符号,带宽为4个资源块(resource block,RB),第一参考信号的周期为20个时隙(slot),第二参考信号被***到第一参考信号的周期中,并且第一参考信号、第二参考信号位于所映射的时隙中的最后一个符号上,如图4A所示,这样,第一参考信号和第二参考信号作为一个整体的发送周期为10个时隙,从而有利于更即时的跟踪信道的信道状态信息。
如图4A所示,第一参考信号的周期为20个slot,比如可映射的时隙分别是slot 0、slot 20;在第一参考信号的周期间发送第二参考信号,如图4A所示,第二参考信号的周期为20个slot,如可映射的时隙分别是slot 10、slot 30;slot 0上映射的第一参考信号可与slot 10上映射的第二参考信号联合进行信道估计;或者slot 0上映射的第一参考信号、slot 10上映射的第二参考信号、slot 20上映射的第一参考信号以及slot 30上映射的第二参考信号联合进行信道估计,等等。
可选的,第一参考信号配置信息中的用法(usage)为额外(additional)时,终端设备可在第一参考信号的周期中***第二参考信号,即在发送第一参考信号的周期间发送第二参考信号。第二参考信号的周期可以协议规定或者进行信令配置,例如,通过协议规定或信令配置,使第二参考信号的周期等于第一参考信号的周期,或等于第一参考信号的周期的2倍等。
也就是说,第二参考信号的周期与第一参考信号的周期可以相同或不同。一种情况,第二参考信号的周期可大于第一参考信号的周期;另一种情况,第二参考信号的周期可以等于第一参考信号的周期;又一种情况,第二参考信号的周期小于第一参考信号的周期。可选的,第二参考信号的周期是协议预定义的或是信令配置的。
可选的,第一参考信号为探测参考信号SRS,第二参考信号可以为增强的SRS、额外的探测参考信号(additional SRS)、或增强的相位追踪参考信号(phase tracing reference signal,PTRS)。其中,增强的PTRS不同于通常的PTRS,该增强的PTRS用于与SRS进行联合信道估计,获得信道状态信息,而通常的PTRS用于对相位进行估计。
可选的,SRS配置信息中的用法(usage)为额外(additional)时,终端设备可在SRS的周期中***additional SRS,即在发送SRS的周期间发送additional SRS。Additional SRS的 周期可以协议规定或者进行信令配置,例如,通过协议规定或信令配置,使additional SRS周期等于SRS周期,或等于SRS周期的2倍等。
如图4B所示,SRS的周期为20个slot,比如可映射的时隙分别是slot 0、slot 20、slot 40、slot 60、slot 80;additional SRS的周期为40个slot,比如可映射的时隙分别是slot 10、slot 50、slot 90,在第一参考信号的周期间发送第二参考信号,如图4B所示。
步骤203中,时域绑定方式联合估计信道状态信息是指该信道状态信息可基于时域上不同符号所分别映射的参考信号进行联合信道估计。
例如,如图5所示,图5是本申请实施例提供一种信道跟踪方法的示意图。假设第一参考信号为SRS,第二参考信号为额外参考信号(additional SRS),SRS的周期如图5所示为5ms,PDSCH的准备时延依旧为4ms,本申请实施例中,additional SRS可在SRS的周期间发送,这样,SRS与additional SRS作为整体的周期为2.5ms,并且如图4A所示的additional SRS与其之前的SRS分别关联的天线端口相同,且以时域绑定方式联合估计信道状态信息,故图4A中导致信道老化的D R2P的最大值为6.5ms,小于图2中的9ms,本申请实施例能够更即时的获得信道状态信息。
另一种可选的实施方式中,所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
即图4A中,第一参考信号与第二参考信号所映射的时隙不同,但在所映射的时隙中的符号相同,均为时隙中的最后一个符号。而图6中,如图6所示,第二参考信号可映射在slot10、slot 30的第二个符号上,第一参考信号可映射在一个slot 0、slot 20的最后一个或多个符号上。其中,第二参考信号在slot 10、slot 30的第二个符号或倒数第十三个符号上,可由RRC信令、MAC-CE信令或下行控制信令配置。
可见,该实施方式中,所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同,第二参考信号在所映射的时隙中的符号不受第一参考信号所映射的符号的限制。可选的,第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
一种可选的实施方式中,第二参考信号所映射的时隙为上行时隙或灵活上下行时隙中。其中,第二参考信号在其所映射的时隙中的符号为上行传输的符号。例如,additional SRS位于上行时隙中放置物理上行共享信道(physical uplink share channel,PUSCH)的符号上。
可选的,本申请可应用于上行传输的离散傅里叶变换-扩展-正交频分复用(Discrete Fourier Transform-Spread OFDM,DFT-S-OFDM)技术,即在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的反向快速傅里叶变换(Invert Fast Fourier Transformation,IFFT)调制之前对信号进行离散傅里叶变换(Discrete Fourier Transform,DFT)扩展。请参阅图7,图7是本申请实施例提供的另一种信道跟踪方法的流程示意图。图7所示的信道跟踪方法与图3所示的信道跟踪方法的不同之处在于,图7中终端设备还需在上行传输进行离散傅里叶变换(Discrete Fourier Transform,DFT)扩展(spreading)之前(spreading)***第二参考信号的序列。如图7所示,该信道跟踪方法可包括但不限于以下步骤:
301、终端设备在离散傅里叶变换扩展之前的上行传输的采样中,以梳齿或组块的方式 ***第二参考信号的序列;
302、终端设备根据参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;
303、网络设备根据参考信号配置信息,接收第一参考信号的周期间接收第二参考信号;
304、网络设备根据第一参考信号和第二参考信号,以时域绑定方式联合估计信道状态信息。
其中,步骤302至304的相关内容可参见上述图3所述的相关内容,此处不再详述。
可选的,第一参考信号为频域展开的ZC(Zad-off Chu)序列,第二参考信号为在上行传输进行离散傅里叶变换(Discrete Fourier Transform,DFT)扩展(spreading)之前(spreading)***的参考信号,如pre-DFT insertion additional SRS。这样有利于在降低上行传输的峰值平均功率比(peak to average power ratio,PAPR)。由于第一参考信号是频域展开的ZC序列,并不是一个符号整列连续***的,比如可映射在符号中的奇数子载波或偶数子载波等,第二参考信号是在DFT spreading***的,可在一个符号的整列子载波中连续***,因此,第二参考信号与第一参考信号以时域绑定方式联合进行信道估计,能够获得整个带宽上的信道状态信息,与单纯增加SRS映射密度的方式相比,减少了SRS的导频开销,并提升所支持的测量上行信道状态信息的终端数量,有效降低上行传输的PAPR。
可选的,第二参考信号与上行传输复用同一个符号,即该符号上第二参考信号与上行传输可同时存在,或第二参考信号可位于所述上行传输的符号上。可选的,第二参考信号的序列可以以梳齿(comb)或组块(chunk)的方式***离散傅里叶变换扩展前的上行传输的采样中。
例如,如图8所示,第二参考信号的序列以comb方式***DFT扩展前的采样中,同一个符号上,第二参考信号与上行传输可同时存在。再例如,如图9所示,第二参考信号的序列以chunk方式***DFT扩展前的上行传输的采样中,同一个符号上,第二参考信号与上行传输可同时存在。
可选的,第二参考信号可以认为是额外的PTRS,可在非上行传输的资源块上存在。与PTRS不同的是,该第二参考信号用于与第一参考信号联合进行信道估计。
上述本申请提供的实施例中,分别从发送端和接收端的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,发送端和接收端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图10,为本申请实施例提供的一种通信装置的结构示意图。图10所示的通信装置1000可包括通信单元1001和处理单元1002。通信单元1001可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元1001可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
通信装置1000可以是网络设备或终端设备,也可以是网络设备或终端设备中的装置。
一种实施方式中,通信装置1000包括通信单元1001和处理单元1002,可以执行上述 各实施例中终端设备的相关操作;
通信单元1001,用于根据所述参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
另一种实施方式中,通信装置1000包括通信单元1001和处理单元1002,可以执行上述各实施例中网络设备的相关操作;
通信单元1001,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
处理单元1002,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
其中,上述各实施方式的相关内容可参见上述方法实施例的相关内容。此处不再详述。
请参阅图11,图11是本申请实施例提供的另一种通信装置的结构示意图。所述通信装置1100可以是网络设备,也可以是终端设备,也可以是支持终端设备或网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备或网络设备实现上述方法的芯片、芯片***、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1100可以包括一个或多个处理器1101。所述处理器1101可以是通用处理器或者专用处理器等。所述处理器1101可以用于对通信装置(如,终端设备或网络设备等)进行控制,执行软件程序,处理软件程序的数据。
可选的,所述通信装置1100中可以包括一个或多个存储器1102,其上可以存有指令1104,所述指令可在所述处理器1101上被运行,使得所述通信装置1100执行上述方法实施例中描述的方法。可选的,所述存储器1102中还可以存储有数据。所述处理器1101和存储器1102可以单独设置,也可以集成在一起。
可选的,所述通信装置1100还可以包括收发器1105、天线1106。所述收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种可选的实施方式中,所述通信装置1100执行上述方法实施例中终端设备的相关操作,处理器1101可用于执行图7中的步骤301的操作;收发器1105可以执行图7中步骤302的操作或图3中步骤201的操作。
另一种可选的实施方式中,所述通信装置1100执行上述方法实施例中网络设备的相关 操作,处理器1101可用于执行图3中的步骤203的操作或者图7中步骤304的操作;以及收发器1105可以执行图3中步骤202的操作或者图7中步骤303的操作。
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
其中,通信装置其他的相关内容可参见上述方法实施例的相关内容或上述数据传输装置的相关操作。此处不再详述。
在另一种可能的设计中,该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,可选的,处理器1101可以存有指令1103,指令1103在处理器1101上运行,可使得所述通信装置1100执行上述方法实施例中描述的方法。指令1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在又一种可能的设计中,通信装置1100可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。
以上实施例描述中的通信装置可以是网络设备或终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、智能终端、无线设备、手持机、移动单元、车载设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片1200包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1202,用于根据所述参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;
可选的,芯片还包括与处理器1201耦合的存储器1203,存储器1203用于存储终端设备必要的程序指令和数据。
其他可选的实施方式可参见上述方法实施例的相关内容、上述数据传输装置的相关内容,此处不再详述。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1202,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
处理器1201,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
可见,与仅依赖第一参考信号进行信道估计得方式相比,第二参考信号和第一参考信号联合进行信道估计的周期更短,从而能够更即时的获取信道状态信息,从而有利于网络设备基于该信道状态信息配置的码本与下行传输实际最佳匹配的码本之间更加匹配。
其中,其他可选的实施方式的相关内容可参见上述方法实施例、上述数据传输装置的相关内容,此处不再详述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机可读存储介质被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时, 并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种信道跟踪方法,其特征在于,所述方法包括:
    所述终端设备根据所述参考信号配置信息,在发送第一参考信号的周期间发送第二参考信号;
    所述参考信号配置信息包括所述第一参考信号和所述第二参考信号;
    所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述第一参考信号和所述第二参考信号用于以时域绑定方式联合估计信道状态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  6. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  8. 一种信道跟踪方法,其特征在于,所述方法包括:
    网络设备根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述网络设备根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二参考信号是在上行传输进行离 散傅里叶变换扩展之前***的参考信号。
  10. 根据权利要求1或9所述的方法,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  15. 一种通信装置,其特征在于,所述终端设备包括处理器和收发器;
    所述处理器,用于根据所述参考信号配置信息,确定第一参考信号和第二参考信号;
    所述收发器,用于在发送所述第一参考信号的周期间发送所述第二参考信号;
    所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述第一参考信号和所述第二参考信号用于以时域绑定方式联合估计信道状态信息。
  16. 根据权利要求15所述的通信装置,其特征在于,所述第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。
  17. 根据权利要求15或16所述的通信装置,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  18. 根据权利要求15至17任一项所述的通信装置,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  19. 根据权利要求15至18任一项所述的通信装置,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  20. 根据权利要求15至18任一项所述的通信装置,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  21. 根据权利要求15至20任一项所述的通信装置,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  22. 一种通信装置,其特征在于,所述通信装置包括收发器和处理器,
    所述收发器,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述处理器,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  25. 根据权利要求22至24任一项所述的通信装置,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  26. 根据权利要求22至25任一项所述的通信装置,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  27. 根据权利要求22至26任一项所述的通信装置,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  28. 根据权利要求22至27任一项所述的通信装置,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  29. 一种芯片***,其特征在于,包括:处理器和接口;
    所述处理器,用于根据所述参考信号配置信息,确定第一参考信号和第二参考信号;
    所述接口,用于在发送所述第一参考信号的周期间发送所述第二参考信号;
    所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述第一参考信号和所述第二参考信号用于以时域绑定方式联合估计信道状态信息。
  30. 根据权利要求29所述的芯片***,其特征在于,所述第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。
  31. 根据权利要求29或30所述的芯片***,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  32. 根据权利要求29至31任一项所述的芯片***,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  33. 根据权利要求29至32任一项所述的芯片***,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  34. 根据权利要求29至32任一项所述的芯片***,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  35. 根据权利要求29至34任一项所述的芯片***,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  36. 一种芯片***,其特征在于,所述通信装置包括处理器和接口,
    所述接口,用于根据参考信号配置信息,在第一参考信号的周期间接收第二参考信号,所述第一参考信号关联的天线端口与所述第二参考信号关联的天线端口相同;
    所述处理器,用于根据第一参考信号和所述第二参考信号,以时域绑定方式联合估计信道状态信息。
  37. 根据权利要求36所述的芯片***,其特征在于,所述第二参考信号是在上行传输进行离散傅里叶变换扩展之前***的参考信号。
  38. 根据权利要求36或37所述的芯片***,其特征在于,所述第二参考信号的序列以梳齿(comb)或组块(chunk)方式***离散傅里叶变换之前的上行传输的采样中。
  39. 根据权利要求36至38任一项所述的芯片***,其特征在于,所述第二参考信号位于所述上行传输的符号上。
  40. 根据权利要求36至39任一项所述的芯片***,其特征在于,
    所述第二参考信号所映射的时隙与所述第一参考信号所映射的时隙不同;
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号与所述第一参考信号在所述第一参考信号所映射的时隙中的符号不同。
  41. 根据权利要求36至40任一项所述的芯片***,其特征在于,
    所述第二参考信号在所述第二参考信号所映射的时隙中的符号是由无线资源控制RRC信令、或媒体接入控制-控制元素MAC-CE信令、或下行控制信令配置的。
  42. 根据权利要求36至41任一项所述的芯片***,其特征在于,
    所述第一参考信号为探测参考信号SRS;
    所述第二参考信号为额外的探测参考信号(additional SRS)。
  43. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,如权利要求1-7任一项所述的方法被执行,或如权利要求8至14任一项所述的方法被执行。
  44. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得如权利要求1-7任一项所述的方法被执行,或如权利要求8至14任一项所述的方法被执行。
  45. 一种计算机程序,其特征在于,当所述计算机程序在计算机上运行时,使得如权利要求1-7任一项所述的方法被执行,或如权利要求8-14任一项所述的方法被执行。
PCT/CN2020/087341 2020-04-27 2020-04-27 信道跟踪方法及装置 WO2021217382A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/087341 WO2021217382A1 (zh) 2020-04-27 2020-04-27 信道跟踪方法及装置
CN202080099567.2A CN115380605A (zh) 2020-04-27 2020-04-27 信道跟踪方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087341 WO2021217382A1 (zh) 2020-04-27 2020-04-27 信道跟踪方法及装置

Publications (1)

Publication Number Publication Date
WO2021217382A1 true WO2021217382A1 (zh) 2021-11-04

Family

ID=78332277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087341 WO2021217382A1 (zh) 2020-04-27 2020-04-27 信道跟踪方法及装置

Country Status (2)

Country Link
CN (1) CN115380605A (zh)
WO (1) WO2021217382A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019113897A1 (zh) * 2017-12-14 2019-06-20 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备和网络设备
US20190380133A1 (en) * 2016-09-23 2019-12-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting srs, network device and terminal device
CN110839289A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行波束指示方法及设备
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190380133A1 (en) * 2016-09-23 2019-12-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting srs, network device and terminal device
WO2019113897A1 (zh) * 2017-12-14 2019-06-20 Oppo广东移动通信有限公司 确定传输资源的方法、终端设备和网络设备
CN110839289A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行波束指示方法及设备
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On full power UL transmission", 3GPP DRAFT; R1-1907184 ON FULL POWER UL TRANSMISSION, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 26, XP051709210 *

Also Published As

Publication number Publication date
CN115380605A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN113824481B (zh) 上行传输方法、装置、芯片***及存储介质
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
CN112399585B (zh) 一种资源复用方法及装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
CN113287263B (zh) 一种跳频方法及装置
WO2018137570A1 (zh) 一种信息传输方法及装置
JP7179783B2 (ja) 無線通信システムの情報伝送方法および機器
WO2020244728A1 (en) Dynamic discrete fourier transform or bandwidth size indication
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
US12010722B2 (en) Wideband communications based on availability assessment
CN109996339B (zh) 一种通信方法及装置
JP2024503850A (ja) 伝送タイミング決定方法及び装置
CN111436129B (zh) 数据传输方法和通信装置
US11108531B2 (en) Method and apparatus for setting symbol
US20220272728A1 (en) Reference signal transmission method and apparatus
JP7400794B2 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
WO2021217382A1 (zh) 信道跟踪方法及装置
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2021047615A1 (zh) 参考信号传输方法及通信装置
CN112422218B (zh) 同步信号传输方法及通信装置
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2024077612A1 (zh) 一种通信方法及装置
WO2023065251A1 (zh) 混合自动重传请求harq进程分配方法及装置
AU2022267563B2 (en) Information transmission method, communication apparatus, computer-readable storage medium, and chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933657

Country of ref document: EP

Kind code of ref document: A1