WO2021212969A1 - 一种轴孔配合类零件自动压装控制***及其控制方法 - Google Patents

一种轴孔配合类零件自动压装控制***及其控制方法 Download PDF

Info

Publication number
WO2021212969A1
WO2021212969A1 PCT/CN2021/075710 CN2021075710W WO2021212969A1 WO 2021212969 A1 WO2021212969 A1 WO 2021212969A1 CN 2021075710 W CN2021075710 W CN 2021075710W WO 2021212969 A1 WO2021212969 A1 WO 2021212969A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
press
fitting
subsystem
loading
Prior art date
Application number
PCT/CN2021/075710
Other languages
English (en)
French (fr)
Inventor
张武翔
***
丁希仑
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2021212969A1 publication Critical patent/WO2021212969A1/zh
Priority to US17/968,880 priority Critical patent/US11964349B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/02Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for connecting objects by press fit or for detaching same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/001Article feeders for assembling machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41805Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention belongs to the field of automated assembly, and particularly relates to an automatic press-fitting control system for shaft hole matching parts and a control method thereof, which can be used for automatic press-fitting of shaft hole matching parts assembly tasks in industrial assembly production lines.
  • Assembling is an important link in the production of modern equipment manufacturing.
  • the assembly link in the overall production process has the characteristics of time-consuming and high cost.
  • technologies such as 3D modeling and CNC machining centers
  • the automation level of parts manufacturing has been greatly improved.
  • the assembly process has mainly relied on workers for purely manual or semi-automatic operations for a long time.
  • the production efficiency is low and the consistency of product quality is difficult to guarantee.
  • the assembly process has become a restrictive factor that affects the production efficiency and production automation level of the equipment manufacturing industry.
  • the present invention proposes an automatic press-fitting control system for shaft-hole matching parts and a control method thereof, which can be used for automatic control of press-fitting operations of shaft-hole matching assembly tasks.
  • the automatic press-fitting control system adopts a modular design and mainly includes a control center, a loading and unloading control subsystem, a visual inspection subsystem, and a press-fitting control subsystem.
  • the automatic press-fitting control system for shaft-hole matching parts of the present invention includes a loading and unloading control subsystem, a visual inspection subsystem, a press-fitting control subsystem and a control center.
  • the loading and unloading control subsystem is used to realize the control of the material conveyor belt, the detection of the material pallet in place, the pallet lifting control and the control of industrial robots.
  • the visual inspection subsystem is used to realize the rotation control of the turntable and obtain the size and the angle of the hole position deviation of the peripheral hole of the part.
  • the press-fitting control subsystem is used to realize the control of the stamping motor, to detect the number of rotations of the stamping motor to obtain the movement distance of the stamping head, and to detect the pressure change of the part stamping head during the part pressing process.
  • the above-mentioned subsystems communicate with the control center through their respective communication ports.
  • the control center is used to interact with the factory's MES system, control the work of various subsystems, and upload fault alarm information to the factory's MES system.
  • Step 1 The factory's MES system issues work tasks to the control center, and then the control center sends a loading signal to the upper and unloading subsystem.
  • Step 2 The loading and unloading subsystem executes the loading task, and after the loading is completed, it sends a loading completion signal to the control center.
  • Step 3 When the control center receives the signal of completion of loading, it sends a detection signal to the visual inspection subsystem.
  • Step 4 When the visual inspection subsystem receives the detection signal, it starts to perform the inspection task to achieve visual inspection; if the visual inspection fails, the visual inspection subsystem sends an alarm message to the control center, and the control center uploads the alarm information to the factory MES system. Waiting for manual intervention; if the visual inspection passes, the visual inspection subsystem sends a visual inspection pass signal to the control center, and the control center sends a pressing signal to the pressing control subsystem.
  • Step 5 When the press-fitting control subsystem receives the press-fitting signal, it starts to execute the press-fitting task to realize the automatic press-fitting of the workpiece; after the press-fitting is completed, the press-fitting control subsystem sends a press-fitting completion signal to the control center.
  • the press-fitting control subsystem sends a press-fitting alarm signal to the control center, and the control center uploads the press-fitting alarm signal to the factory MES system, waiting for manual intervention.
  • Step 6 After the control center receives the press-fitting completion signal, it sends a blanking signal to the upper blanking subsystem, and the blanking subsystem executes blanking tasks to realize automatic blanking.
  • Step 7 After the blanking task is completed, the loading and unloading subsystem sends a blanking completion signal to the control center, so that the press-fitting of a product is completed.
  • the automatic feeding control method of the loading and unloading control subsystem is as follows:
  • Step a Control the rotary motor driver to drive the rotary motor of the conveyor belt to work, drive the conveyor belt to run, and make the material pallet move with the conveyor belt.
  • the proximity switch on the feeding side detects whether the material pallet moves to the specified position.
  • Step b When the material pallet is detected, control the rotary motor driver to stop driving the rotary motor, and at the same time control the solenoid valve of the pallet lifting cylinder to turn on, at this time the pallet lifting cylinder is ejected to lift the material pallet.
  • Step c Give a motion instruction to the industrial robot, control the industrial robot to move to the top of the material pallet, and control the end of the industrial robot to close the gripper to pick up the workpiece, and the gripper magnetic sensor detects whether the picking is successful.
  • Step d After the workpiece is picked up successfully, the solenoid valve that controls the pallet jacking cylinder is disconnected, and the pallet jacking cylinder drops at this time.
  • Step e Give motion instructions to the industrial robot, control the industrial robot to move to the material level on the press, and control the end of the robot to release the gripper to place the workpiece on the press turntable, and the gripper magnetic sensor detects whether the gripper is released .
  • Step f After the gripper is released, a movement instruction is issued to the industrial robot, and the industrial robot is controlled to move from the upper material position of the press to the waiting position;
  • Step g The solenoid valve that controls the three-jaw chuck is turned on. At this time, the three-jaw chuck is closed to clamp the workpiece.
  • Step h The loading and unloading control subsystem sends a loading completion signal to the control center, and the loading process ends.
  • the visual inspection process control method of the visual inspection system is:
  • Step A Take pictures of the workpiece by controlling the industrial camera; the image processing system processes and analyzes the photographed images, extracts the position information of the shaft hole in the image through edge detection, and compares the position and shape of the extracted shaft hole with the calibrated shaft hole The hole position and shape are compared to judge whether the hole position is deviated; if the hole position is not deviated, go to step B; if the hole position deflection angle is within the adjustment range, go to step D.
  • Step B The visual inspection system sends an inspection pass signal to the control center, and the visual inspection process ends.
  • Step C The visual inspection system sends the deviation angle to the turntable motor driver, drives the turntable motor to rotate a compensation deviation angle, and repeats step A.
  • Step D The image processing system calculates the hole position deviation angle; if the hole position deviation exceeds the set deviation compensation upper limit, the visual inspection system sends a detection failure signal to the control center, and the visual inspection process ends.
  • the automatic pressing control method of the pressing control subsystem is as follows:
  • Step 1) Control the rotation of the stamping motor.
  • the pressure sensor will detect whether the pressure reaches the threshold in real time; when the pressure does not reach the threshold, and the stamping motor has not rotated enough for the set number of turns, perform step 2); if the pressure has not reached the threshold Threshold value, and check that the stamping motor has rotated enough to set the number of turns, go to step 4).
  • Step 2) Control the stamping motor to continue to rotate, and when the pressure reaches the threshold, perform step 4).
  • Step 3) Control the stamping motor to stop and reversely rotate to the zero position.
  • the press-fitting control subsystem sends a press-fitting completion signal to the control center, and the press-fitting process ends.
  • Step 4) Control the stamping motor to stop immediately, and check whether the stamping motor can rotate enough for the set number of turns; if the stamping motor rotates enough for the set number of turns, the stamping motor will reversely rotate to the zero position, and the press-fitting subsystem will send it to the control center Press-fitting complete signal, press-fitting process ends; if the stamping motor does not rotate enough for the set number of turns, the press-fitting control subsystem sends a press-fitting alarm signal to the control center, and the press-fitting process ends.
  • step 6 the automatic feeding control method of the loading and unloading control subsystem is as follows:
  • Step 1 The solenoid valve controlling the three-jaw chuck is turned on, the three-jaw chuck is opened, and the workpiece is released.
  • Step 2 Give a motion instruction to the industrial robot to move the robot to the material position on the press, and the end of the robot will close the gripper to pick up the workpiece;
  • Step 3 The gripper magnetic sensor detects whether the product is picked up successfully. After the product is picked up successfully, the solenoid valve that controls the tray lifting cylinder is turned on, and the tray lifting cylinder stretches out to lift the material tray.
  • Step 4 The robot control cabinet issues a motion instruction to the robot, the robot moves to the top of the material pallet, and the gripper at the end of the robot releases and places the material.
  • Step 5 The gripper magnetic sensor detects whether the gripper is released. After the gripper is released, the solenoid valve that controls the tray lifting cylinder is disconnected, and the tray lifting cylinder drops.
  • Step 6 Control the work of the rotating motor of the driving conveyor belt, and the proximity switch on the unloading side detects whether the tray reaches the discharge port of this station.
  • Step 7 When the material tray is detected by the proximity switch on the unloading side, the conveyor belt rotating motor stops.
  • Step 8 The loading and unloading control subsystem sends a blanking completion signal to the control center, and the blanking process ends.
  • the present invention can be widely used in the whole process control of the automatic press-fitting operation of shaft-hole matching parts, with a high level of automation, which can greatly improve assembly efficiency;
  • the automatic press-fitting control system of the present invention adopts a modular design.
  • the control system is divided into several independent control subsystems according to functions, and each system can operate independently under the control of the control center;
  • the present invention uses visual detection of shaft hole pose deviation, and adopts turntable motor rotation for angle deviation compensation, which has certain fault tolerance; and by setting the upper limit of angle deviation, the system automatically stops pressing when the shaft hole pose deviation is too large. And alarm, high security.
  • Figure 1 is a block diagram of the overall structure of the automatic press-fitting control system of the present invention.
  • Figure 2 is a structural block diagram of the loading and unloading control subsystem in the automatic press-fitting control system of the present invention.
  • Fig. 3 is a structural block diagram of the visual inspection subsystem in the automatic pressing control system of the present invention.
  • Figure 4 is a structural block diagram of the press control subsystem in the automatic press control system of the present invention.
  • Figure 5 is a flow chart of the overall control in the automatic press-fitting control method of the present invention.
  • Fig. 6 is a flow chart of the feeding control part of the automatic press-fitting control method of the present invention.
  • Fig. 7 is a flow chart of the visual inspection control part of the automatic press-fitting control system of the present invention.
  • Fig. 8 is a flow chart of the press-fitting control control part of the automatic press-fitting control system of the present invention.
  • Fig. 9 is a flow chart of the blanking control part of the automatic press-fitting control method of the present invention.
  • the automatic press-fitting control system and control method for shaft-hole matching parts of the present invention wherein the automatic press-fitting control system includes four parts: loading and unloading control subsystem 1, visual inspection subsystem 2, press-fitting control subsystem 3 and control center 4 ,As shown in Figure 1.
  • the loading and unloading control subsystem 1 mainly includes a rotary motor driver 101, a loading side proximity switch 111, a loading detection proximity switch 113, a valve island 104, a robot control cabinet 103, and a loading and unloading control subsystem communication
  • the interface 102 and the electrical interface 105 of the loading and unloading control subsystem mainly includes a rotary motor driver 101, a loading side proximity switch 111, a loading detection proximity switch 113, a valve island 104, a robot control cabinet 103, and a loading and unloading control subsystem communication
  • the interface 102 and the electrical interface 105 of the loading and unloading control subsystem The interface 102 and the electrical interface 105 of the loading and unloading control subsystem.
  • the rotating motor driver 101 can drive the rotating motor 110 to rotate according to the motion instruction issued by the control center 4, and then drive the animal material conveyor belt to run, and the material conveyor belt realizes the transportation of the material pallets.
  • the loading side proximity switch 111 is installed on the front side of the material pickup position to detect whether the material pallet is transferred to the material pickup position; the unloading detection proximity switch 113 is installed at the end of the conveyor belt to detect whether the material pallet passes by during unloading The end of the conveyor belt.
  • the valve island 104 is a control component composed of a plurality of solenoid valves, and each solenoid valve is used to control the on-off of the air circuit of the tray lifting cylinder 112, the three-jaw chuck 109, and the air gripper 107 at the end of the industrial robot, and then It realizes the control of the tray lifting cylinder 112 to lift the material tray, the opening and closing of the three-jaw chuck 109, and the opening and closing of the air gripper 107 at the end of the industrial robot.
  • the motion path of the industrial robot 106 is converted into RAPID program instructions through online teaching programming and stored in the robot control cabinet 103.
  • the robot control cabinet 103 controls the industrial robot 106 to move along the taught motion path by calling the RAPID program instructions;
  • the control cabinet 103 is equipped with an I/O control board, and its output signal controls the on and off of the solenoid valve corresponding to the gripper 107 of the industrial robot end in the valve island 104, and then controls the opening and closing of the gripper 107 at the end of the industrial robot to realize parts Pick and place.
  • the loading and unloading control subsystem communication interface 102 is used to connect to the control center 4 to realize the communication between the loading and unloading control subsystem 1 and the control center 4; the loading and unloading control subsystem electrical interface 105 is used to connect to an external power source to realize the loading and unloading control subsystem 1 power supply.
  • the visual inspection control system 2 mainly includes a camera controller 202, an image processing system 201, a turntable motor driver 203, a visual inspection control system communication interface 204, and a visual inspection control system electrical interface 205.
  • the camera controller 202 is used to realize the power supply of the industrial camera 209, the control of the photographing of the industrial camera, and the storage of the photographed image of the industrial camera.
  • the image processing system 201 is used to perform edge detection on the image captured by the industrial camera 209, extract the axis hole in the image, and compare the position and shape of the extracted axis hole with the calibrated round hole position and shape to obtain the hole The size of the position deviation and the hole position deviation angle.
  • the turntable motor driver 203 is used to drive the turntable motor 207 to realize the rotation of the turntable and drive the parts on the turntable to rotate.
  • the visual inspection control system communication interface 204 is connected to the control center to realize the communication between the visual inspection control system 2 and the control center 4; the visual inspection control system electrical interface 205 is connected to an external power source to realize the power supply of the visual inspection subsystem 2.
  • the press-fitting control subsystem 3 includes a press-fitting motor driver 302, a press-fitting motor encoder 306, a pressure sensor 304, a press-fit control subsystem communication interface 301, and a press-fit control subsystem electrical interface 303.
  • the punching motor driver 302 is used to drive the punching motor 305 to move, thereby driving the punching head to move up and down.
  • the stamping motor encoder 306 is used to detect the number of revolutions of the stamping motor 305 to obtain the movement distance of the stamping head.
  • the pressure sensor 304 is used to detect the pressure change of the part punching head during the pressing of the part.
  • the press-fit control subsystem communication interface 301 is connected to the control center 4 to realize the communication between the visual inspection control system 3 and the control center; the press-fit control subsystem electrical interface 303 is connected to an external power source to realize the press-fit control subsystem 3 powered by.
  • the control center 4 is used to interact with the factory MES system, control the work of various subsystems, and upload fault alarm information to the factory MES system.
  • the control center hardware is PLC (Programmable Logic Controller), and the control center communicates with the loading and unloading control subsystem, the visual inspection subsystem and the press control subsystem through the communication interface under the Ethernet/IP protocol.
  • the control center 4 controls the loading and unloading control subsystem 1, the visual inspection subsystem 2 and the press-fitting control subsystem 3, and realizes the automation of loading, the automation of hole position detection and Press-fitting automation, as shown in Figure 5, the overall control method of automatic press-fitting is as follows:
  • Step 1 The MES system of the factory issues a job task to the control center 4, and then the control center 4 sends a loading signal to the upper/unloading subsystem 1.
  • Step 2 The loading and unloading subsystem 1 executes the loading task, and sends a loading completion signal to the control center 4 after the loading is completed.
  • Step 3 When the control center 4 receives the loading completion signal, it sends a detection signal to the visual inspection subsystem 2.
  • Step 4 When the visual inspection subsystem 2 receives the detection signal, it starts to perform the inspection task to realize the visual inspection; if the visual inspection fails, the visual inspection subsystem 2 sends an alarm information to the control center 4, and the control center 4 uploads the alarm information to The factory MES system is waiting for manual intervention; if the visual inspection passes, the visual inspection subsystem 2 sends a visual inspection pass signal to the control center 4, and the control center 4 sends a pressing signal to the press control subsystem 3.
  • Step 5 When the press-fitting control subsystem 3 receives the press-fitting signal, it starts to execute the press-fitting task to realize the automatic press-fitting of the workpiece. After the press-fitting is completed, the press-fitting control subsystem 3 sends a press-fitting completion signal to the control center 4.
  • the press-fitting control subsystem 3 sends a press-fitting alarm signal to the control center 4, and the control center 4 uploads the press-fitting alarm signal to the factory MES system, waiting for manual intervention.
  • Step 6 After the control center 4 receives the press-fitting completion signal, it sends a blanking signal to the upper blanking subsystem 1, and the blanking subsystem 1 executes the blanking task to realize automatic blanking.
  • Step 7 After the blanking task is completed, the loading and unloading subsystem 1 sends a blanking completion signal to the control center 4, so that the press-fitting of a product is completed.
  • the automatic feeding control method of the loading and unloading control subsystem 1 is:
  • Step a Control the rotary motor driver 101 to drive the conveyor belt rotary motor 110 to work, drive the conveyor belt to run, and make the material tray move with the conveyor belt.
  • the material tray is detected by the proximity switch 111 on the feeding side to detect whether the material tray moves to a specified position.
  • Step b When the material pallet is detected by the proximity switch 111 on the loading side, the rotary motor driver 101 is controlled to stop driving the rotary motor 110, and the solenoid valve of the valve island 104 corresponding to the pallet lifting cylinder 112 is turned on. At this time, the pallet lifting cylinder 112 is turned on. Eject, lift up the material tray.
  • Step d After the workpiece is picked up successfully, the solenoid valve of the control valve island 104 corresponding to the pallet jacking cylinder 112 is disconnected, and the pallet jacking cylinder 112 is dropped at this time;
  • Step e The robot control cabinet 103 issues a movement instruction to the industrial robot 106 to control the industrial robot 106 to move to the material position of the press, and at the same time control the end gripper 107 of the robot to loosen and place the workpiece on the press turntable, and the gripper is magnetic
  • the sensor 108 detects whether the gripper 107 is released.
  • Step f After the air gripper 107 is released, the robot control cabinet 103 issues a movement instruction to the industrial robot 106 to control the industrial robot 106 to move away from the upper material position of the press to the waiting position.
  • Step g The solenoid valve of the control valve island 104 corresponding to the three-jaw chuck 109 is turned on. At this time, the three-jaw chuck 109 is closed to clamp the workpiece.
  • Step h The loading and unloading control subsystem 1 sends a loading completion signal to the control center 4, and the loading process ends.
  • the visual inspection process control method of the visual inspection system 2 is:
  • Step A Control the camera controller 202 to drag the industrial camera 209 to take a picture of the workpiece 208; the image processing system 201 processes and analyzes the photographed image, and extracts the position information of the shaft hole in the image through edge detection. The position and shape are compared with the calibrated shaft hole position and shape to determine whether the hole position has deviation; if there is no deviation in the hole position (or the deviation is too small to be ignored), go to step B; if the hole position deviation angle is within the adjustment range, Go to step D.
  • Step B The visual inspection system 2 sends an inspection pass signal to the control center 4, and the visual inspection process ends.
  • Step C The visual inspection system 3 sends the deviation angle to the turntable motor driver 203, drives the turntable motor 207 to rotate a compensation deviation angle, and repeats step A;
  • Step D The image processing system 201 calculates the hole position deviation angle; if the hole position deviation exceeds the set deviation compensation upper limit, the visual inspection system 2 sends a detection failure signal to the control center 4, and the visual inspection process ends.
  • the automatic pressing control method of the pressing control subsystem 3 is as follows:
  • Step 1) Control the stamping motor driver 302 to drive the stamping motor 305 to rotate.
  • the pressure sensor 304 detects whether the pressure reaches the threshold in real time; when the pressure does not reach the threshold, and the stamping motor encoder 304 detects that the stamping motor 305 has not rotated enough to set If the pressure does not reach the threshold and the stamping motor encoder 306 detects that the stamping motor 305 has rotated enough for the set number of revolutions, proceed to step 4).
  • Step 2) The stamping motor driver 302 drives the stamping motor 305 to continue to rotate, and when the pressure reaches the threshold, step 4) is executed.
  • Step 3) Control the stamping motor 305 to stop and reversely rotate to the zero position, the press-fitting control subsystem 3 sends a press-fitting completion signal to the control center 4, and the press-fitting process ends.
  • Step 4) Control the stamping motor 305 to stop immediately, and the stamping motor encoder 306 will detect whether the stamping motor 305 has rotated enough for the set number of turns; if the stamping motor 305 has rotated enough for the set number of turns, the stamping motor 305 will reversely rotate to zero
  • the press-fitting subsystem 3 sends a press-fitting completion signal to the control center 4, and the press-fitting process ends; if the stamping motor 305 does not rotate enough for the set number of turns, the press-fitting control subsystem 3 sends a press-fitting alarm signal to the control center 4.
  • the press-fitting process is over.
  • the automatic feeding control method of the loading and unloading control subsystem 1 is as follows:
  • Step 1 The solenoid valve of the control valve island 104 corresponding to the three-jaw chuck 109 is turned on, the three-jaw chuck 109 is opened, and the workpiece is released.
  • Step 2 The robot control cabinet 103 issues a motion instruction to the industrial robot 106 to move the robot 106 to the material position of the press, and the air gripper 107 at the end of the robot closes and picks up the workpiece.
  • Step 3 The gripper magnetic sensor 108 detects whether the product is picked up successfully. After the product is picked up successfully, the control valve island 104 controls the solenoid valve of the tray lifting cylinder 112 to turn on, and the tray lifting cylinder 112 extends to lift the material tray.
  • Step 4 The robot control cabinet 103 issues a motion instruction to the robot 106, the robot 106 moves to the top of the material tray, and the air gripper 107 at the end of the robot releases the material to be placed.
  • Step 5 The gripper magnetic sensor 108 detects whether the gripper 107 is released. After the gripper 107 is released, the solenoid valve of the control valve island 104 corresponding to the tray lifting cylinder 112 is disconnected, and the tray lifting cylinder 112 drops.
  • Step 6 Control the rotating motor driver 101 to drive the conveyor rotating motor 110 to work, and the unloading side proximity switch 113 detects whether the tray reaches the discharge port of this station.
  • Step 7 When the material tray is detected by the proximity switch 113 on the unloading side, the conveyor belt rotating motor 110 stops.
  • Step 8 The loading and unloading control subsystem 1 sends a blanking completion signal to the control center 4, and the blanking process ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automatic Assembly (AREA)

Abstract

一种轴孔配合类零件自动压装控制***及其控制方法,其中自动压装控制***包括上下料控制子***(1)、视觉检测子***(2)、压装控制子***(3)和控制中心(4),各子***通过通讯接口实现与控制中心(4)间通信,控制中心可控制每一个子***独立运行。通过控制中心可对产品上下料过程、视觉检测过程以及压装过程进行自动化控制。视觉检测子***(2)用于实现转台转动控制以及获取零件周孔孔位偏差大小和孔位偏差角度。该控制***可实现产品压装过程自动上料、自动检测、自动压装,该控制***采用模块化设计,各组成子***可在控制中心控制下独立运行;采用视觉检测并自动补偿角度偏差,容错性能好。

Description

一种轴孔配合类零件自动压装控制***及其控制方法 技术领域
本发明属于自动化装配领域,具体涉及一种轴孔配合类零件自动压装控制***及其控制方法,可用于工业装配生产线轴孔配合类零件装配任务的自动化压装。
背景技术
装配是现代装备制造业生产的重要环节,在生产总流程中装配环节具有耗时长,成本高的特点。随着三维建模、数控加工中心等技术的普及推广,零部件生产制造的自动化水平有了较大的提高,但是由于装配任务的复杂性,长期以来装配环节主要依靠工人进行纯手工或半自动作业,生产效率低下且产品质量一致性难以保证,装配环节成了影响装备制造业生产效率和生产自动化水平提高的制约因素。
发明内容
针对上述轴孔配合类装配任务,本发明提出一种轴孔配合类零件自动压装控制***及其控制方法,可用于轴孔配合类装配任务的压装作业自动控制。所述自动压装控制***采用模块化设计,主要包括控制中心,上下料控制子***、视觉检测子***、压装控制子***。
本发明轴孔配合类零件自动压装控制***,包括上下料控制子***、视觉检测子***、压装控制子***和控制中心。
所述上下料控制子***用于实现物料传送带的控制、物料托盘的到位检测、托盘升降控制以及工业机器人控制。视觉检测子***用于实现转台转动控制以及获取零件周孔孔位偏差大小和孔位偏差角度。压装控制子***用于实现冲压电机控制、检测冲压电机旋转圈数得到冲压头运动距离以及检测零件压装过程中的零件冲压头所受压力变化。上述各子***通过各自的通信端口与控制中心通信。控制中心用于与工厂MES***进行作业任务交互、控制各子***工作以及将故障报警信息上传给工厂MES***。
上述轴孔配合类零件自动压装控制方法如下:
在轴孔配合类零件压装工作过程中,自动压装整体控制方法具体如下:
步骤1:工厂MES***向控制中心下达作业任务,随后由控制中心向上下料子***发送上料信号。
步骤2:上下料子***执行上料任务,上料完成后向控制中心发送上料完成信号。
步骤3:控制中心接收到上料完成信号时,向视觉检测子***发送检测信号。
步骤4:视觉检测子***接收到检测信号时,开始执行检测任务,实现视觉检测;若视觉检测不通过,视觉检测子***向控制中心发送报警信息,控制中心将报警信息上传至工厂MES***,等待人工干预; 若视觉检测通过,视觉检测子***向控制中心发送视觉检测通过信号,控制中心给压装控制子***发送压装信号。
步骤5:压装控制子***接收到压装信号时,开始执行压装任务,实现工件自动压装;压装完成后压装控制子***向控制中心发送压装完成信号。
上述压装任务执行过程中,若出现故障,由压装控制子***向控制中心发送压装报警信号,控制中心将压装报警信号上传至工厂MES***,等待人工干预。
步骤6:控制中心收到压装完成信号后,向上下料子***发送下料信号,上下料子***执行下料任务,实现自动下料。
步骤7:下料任务完成后,上下料子***向控制中心发送下料完成信号,至此完成一个产品的压装。
上述步骤2中,上下料控制子***自动上料控制方法为:
步骤a:控制旋转电机驱动器驱动传送带旋转电机工作,带动传送带运转,使物料托盘随传送带运动,由上料侧接近开关检测物料托盘是否运动至指定位置。
步骤b:当检测到物料托盘时,控制旋转电机驱动器停止驱动旋转电机,同时控制托盘顶升气缸的电磁阀接通,此时托盘顶升气缸顶出,将物料托盘顶起。
步骤c:向工业机器人下达运动指令,控制工业机器人运动至物料托盘上方,同时控制工业机器人末端气爪闭合拾取工件,并由气爪磁性传感器检测是否拾取成功。
步骤d:工件拾取成功后,控制托盘顶升气缸的电磁阀断开,此时托盘顶升气缸落下。
步骤e:向工业机器人下达运动指令,控制工业机器人运动至压机上料位,同时控制机器人末端气爪松开将工件安放在压机转台上,并由气爪磁性传感器检测气爪是否松开。
步骤f:气爪松开后,向工业机器人下达运动指令,控制工业机器人离开压机上料位运动至等待位;
步骤g:控制三爪卡盘的电磁阀接通,此时三爪卡盘闭合,将工件卡紧。
步骤h:上下料控制子***向控制中心发送上料完成信号,上料过程结束。
上述步骤4中,视觉检测***视觉检测过程控制方法为:
步骤A:通过控制工业相机对工件进行拍照;图像处理***对拍照所得图像进行处理分析,通过边缘检测提取图像中轴孔的位置信息,将提取到的轴孔的位置和形状与标定的轴孔孔位置和形状作比较,判断孔位是否出现偏差;若孔位没有偏差,执行步骤B;若孔位偏差角度在调节范围内,执行步骤D。
步骤B:视觉检测***向控制中心发送检测通过信号,视觉检测过程结束。
步骤C:视觉检测***将偏差角度给到转台电机驱动器,驱动转台电机转动一个补偿偏差角度,重复执行步骤A。
步骤D:图像处理***计算孔位偏差角度;若孔位偏差超出设定的偏差补偿上限,视觉检测***给控制中心发检测不通过信号,视觉检测过程结束。
上述步骤5中,压装控制子***自动压装控制方法为:
步骤1):控制冲压电机转动,在此过程中由压力传感器实时检测压力是否到达阈值;压力未到达阈值时,且检测冲压电机未转够设定圈数,执行步骤2);若压力未到达阈值,且检测冲压电机转够设定圈数,执行步骤4)。
步骤2):控制冲压电机继续转动,压力到达阈值时,执行步骤4)。
步骤3):控制冲压电机停止动作并反向旋转至零位,压装控制子***向控制中心发送压装完成信号,压装过程结束。
步骤4):控制冲压电机立即停止动作,并检测冲压电机是否转够设定圈数;若冲压电机转够设定圈数,冲压电机反向旋转至零位,压装子***向控制中心发送压装完成信号,压装过程结束;若冲压电机未转够设定圈数,压装控制子***向控制中心发送压装报警信号,压装过程结束。
上述步骤6中,上下料控制子***自动下料控制方法为:
步骤①:控制三爪卡盘的电磁阀接通,三爪卡盘打开,松开工件。
步骤②:向工业机器人下达运动指令,使机器人运动至压机上料位,机器人末端气爪闭合拾取工件;
步骤③:气爪磁性传感器检测产品是否拾取成功,产品拾取成功后,控制托盘顶升气缸的电磁阀接通,托盘顶升气缸伸出将物料托盘顶起。
步骤④:机器人控制柜向机器人下达运动指令,机器人运动至物料托盘上方,机器人末端气爪松开安放物料。
步骤⑤:气爪磁性传感器检测气爪是否松开,气爪松开后,控制托盘顶升气缸的电磁阀断开,托盘顶升气缸落下。
步骤⑥:控制驱动传送带旋转电机工作,下料侧接近开关检测托盘是否到达本工位出料口。
步骤⑦:下料侧接近开关检测到物料托盘时,传送带旋转电机停止。
步骤⑧:上下料控制子***向控制中心发送下料完成信号,下料过程结束。
本发明的优点在于:
(1)本发明可广泛应用于轴孔配合类零件的自动化压装作业全过程控制,自动化水平高,能大幅提高装配效率;
(2)本发明自动压装控制***采用模块化设计,根据功能将控制***整体划分为几个独立的控制子***,各***可在控制中心的控制下独立运行;
(3)本发明采用视觉检测轴孔位姿偏差,并采用转台电机旋转进行角度偏差补偿,具有一定的容错性;且通过设置角度偏差上限,轴孔位姿偏差过大时***自动停止压装并报警,安全性高。
附图说明
图1为本发明自动压装控制***整体结构框图。
图2为本发明自动压装控制***中上下料控制子***结构框图。
图3为本发明自动压装控制***中视觉检测子***结构框图。
图4为本发明自动压装控制***中压装控制子***结构框图。
图5为本发明自动压装控制方法中整体控制流程图。
图6为本发明自动压装控制方法中上料控制部分流程图。
图7为本发明自动压装控制***中视觉检测控制部分流程图。
图8为本发明自动压装控制***中压装控制控制部分流程图。
图9为本发明自动压装控制方法中下料控制部分流程图。
图中:
1-上下料控制子***         2-视觉检测子***           3-压装控制子***
4-控制中心                 101-旋转电机驱动器         102-上下料控制子***通讯接口
103-机器人控制柜           104-阀岛                   105-电接口
106-工业机器人             107-气爪                   108-磁性传感器
109-三爪卡盘               110-旋转电机               111-上料侧接近开关
112-托盘顶升气缸           113-下料侧接近开关         201-图像处理***
202-相机控制器             203-转台电机驱动器         204-通讯接口
205-电接口                 206-转台电机编码器         207-转台电机
208-工件                   209-工业相机               301-通讯接口
302-冲压电机驱动器         303-电接口                 304-压力传感器
305-冲压电机               306-冲压电机编码器
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明轴孔配合类零件自动压装控制***及其控制方法,其中自动压装控制***包括上下料控制子***1、视觉检测子***2、压装控制子***3和控制中心4共四部分,如图1所示。
如图2所示,所述上下料控制子***1主要包括旋转电机驱动器101、上料侧接近开关111、下料检测接近开关113、阀岛104、机器人控制柜103、上下料控制子***通讯接口102以及上下料控制子***电接口105。
所述旋转电机驱动器101可根据控制中心4下达的运动指令驱动旋转电机110旋转,进而带动物料传送带运转,由物料传送带实现物料托盘的运输。
所述上料侧接近开关111安装于物料拾取位置前侧,用于检测物料托盘是否传送至物料拾取位置;下料检测接近开关113安装于传送带末端位置,用于检测下料时物料托盘是否经过传送带末端。
所述阀岛104为由多个电磁阀构成的控制元器件,其中各电磁阀分别用于控制托盘顶升气缸112、三爪卡盘109以及工业机器人末端气爪107的气路通断,进而实现控制托盘顶升气缸112将物料托盘顶升、控制三爪卡盘109的张开与闭合以及工业机器人末端气爪107的张开与闭合。
工业机器人106的运动路径通过在线示教编程转换为RAPID程序指令存储在所述机器人控制柜103中,机器人控制柜103通过调取RAPID程序指令控制工业机器人106沿示教的运动路径运动;在机器人控制柜103加装I/O控制板卡,其输出信号控制阀岛104中对应工业机器人末端气爪107的电磁阀的通断,进而控制工业机器人末端气爪107张开、闭合,实现零件的拾取、放置。
所述上下料控制子***通讯接口102用于连接控制中心4,实现上下料控制子***1与控制中心4通信;上下料控制子***电接口105用于连接外部电源,实现上下料控制子***1的供电。
如图3所示,所述视觉检测控制***2主要包括相机控制器202、图像处理***201、转台电机驱动器203、视觉检测控制***通讯接口204以及视觉检测控制***电接口205。
所述相机控制器202用于实现工业相机209的供电、工业相机拍照控制及工业相机拍摄图像保存。所述图像处理***201用于对工业相机209拍照所获取的图像进行边缘检测,提取图像中轴孔,将提取到的轴孔的位置和形状与标定的圆孔位置和形状作比较,得到孔位偏差大小和孔位偏差角度。
所述转台电机驱动器203用于驱动转台电机207,进而实现转台转动,带动转台上的零件转动。
所述视觉检测控制***通讯接口204与控制中心相连,实现视觉检测控制***2与控制中心4间的通信;视觉检测控制***电接口205与外部电源相连,实现视觉检测子***2的供电。
如图4所示,所述压装控制子***3包括冲压电机驱动器302、冲压电机编码器306、压力传感器304、压装控制子***通讯接口301以及压装控制子***电接口303。
所述冲压电机驱动器302用于驱动冲压电机305动作,进而带动冲压头上下运动。
所述冲压电机编码器306用于检测冲压电机305旋转圈数进而得到冲压头运动距离。
所述压力传感器304用于检测零件压装过程中的零件冲压头所受压力变化。
所述压装控制子***通讯接口301与控制中心4相连,实现视觉检测控制***3与控制中心间的通信;压装控制子***电接口303与外部电源相连,实现压装控制子***3的供电。
所述控制中心4用于与工厂MES***进行作业任务交互、控制各子***工作以及将故障报警信息上传给工厂MES***。控制中心硬件为PLC(可编程逻辑控制器),在Ethernet/IP协议下控制中心通过通讯接口与所述上下料控制子***、视觉检测子***和压装控制子***进行通信。
在轴孔配合类零件压装工作过程中,由控制中心4对上下料控制子***1、视觉检测子***2与压装控制子***3进行控制,分别实现上料自动化、孔位检测自动化以及压装自动化,如图5所示,自动压装整体控制方法具体如下:
步骤1:工厂MES***向控制中心4下达作业任务,随后由控制中心4向上下料子***1发送上料信 号。
步骤2:上下料子***1执行上料任务,上料完成后向控制中心4发送上料完成信号。
步骤3:控制中心4接收到上料完成信号时,向视觉检测子***2发送检测信号。
步骤4:视觉检测子***2接收到检测信号时,开始执行检测任务,实现视觉检测;若视觉检测不通过,视觉检测子***2向控制中心4发送报警信息,控制中心4将报警信息上传至工厂MES***,等待人工干预;若视觉检测通过,视觉检测子***2向控制中心4发送视觉检测通过信号,控制中心4给压装控制子***3发送压装信号。
步骤5:压装控制子***3接收到压装信号时,开始执行压装任务,实现工件自动压装。压装完成后压装控制子***3向控制中心4发送压装完成信号。
上述压装任务执行过程中,若出现故障,由压装控制子***3向控制中心4发送压装报警信号,控制中心4将压装报警信号上传至工厂MES***,等待人工干预。
步骤6:控制中心4收到压装完成信号后,向上下料子***1发送下料信号,上下料子***1执行下料任务,实现自动下料。
步骤7:下料任务完成后,上下料子***1向控制中心4发送下料完成信号,至此完成一个产品的压装。
如图6所示,上述步骤2中,上下料控制子***1自动上料控制方法为:
步骤a:控制旋转电机驱动器101驱动传送带旋转电机110工作,带动传送带运转,使物料托盘随传送带运动,由上料侧接近开关111检测物料托盘是否运动至指定位置。
步骤b:上料侧接近开关111检测到物料托盘时,控制旋转电机驱动器101停止驱动旋转电机110,同时控制阀岛104对应托盘顶升气缸112的电磁阀接通,此时托盘顶升气缸112顶出,将物料托盘顶起。
步骤:c:机器人控制柜103向工业机器人106下达运动指令,控制工业机器人106运动至物料托盘上方,同时控制工业机器人末端气爪107闭合拾取工件,并由气爪磁性传感器108检测是否拾取成功;
步骤d:工件拾取成功后,控制阀岛104对应托盘顶升气缸112的电磁阀断开,此时托盘顶升气缸112落下;
步骤e:机器人控制柜103向工业机器人106下达运动指令,控制工业机器人106运动至压机上料位,同时控制机器人末端气爪107松开将工件安放在压机转台上,并由气爪磁性传感器108检测气爪107是否松开。
步骤f:气爪107松开后,机器人控制柜103向工业机器人106下达运动指令,控制工业机器人106离开压机上料位运动至等待位。
步骤g:控制阀岛104对应三爪卡盘109的电磁阀接通,此时三爪卡盘109闭合,将工件卡紧。
步骤h:上下料控制子***1向控制中心4发送上料完成信号,上料过程结束。
如图7所示,上述步骤4中,视觉检测***2视觉检测过程控制方法为:
步骤A:控制相机控制器202拖动工业相机209对工件208进行拍照;图像处理***201对拍照所得图像进行处理分析,通过边缘检测提取图像中轴孔的位置信息,将提取到的轴孔的位置和形状与标定的轴孔孔位置和形状作比较,判断孔位是否出现偏差;若孔位没有偏差(或偏差太小可以忽略),执行步骤B;若孔位偏差角度在调节范围内,执行步骤D。
步骤B:视觉检测***2向控制中心4发送检测通过信号,视觉检测过程结束。
步骤C:视觉检测***3将偏差角度给到转台电机驱动器203,驱动转台电机207转动一个补偿偏差角度,重复执行步骤A;
步骤D:图像处理***201计算孔位偏差角度;若孔位偏差超出设定的偏差补偿上限,视觉检测***2给控制中心4发检测不通过信号,视觉检测过程结束。
如图8所示,上述步骤5中,压装控制子***3自动压装控制方法为:
步骤1):控制冲压电机驱动器302带动冲压电机305转动,在此过程中压力传感器304实时检测压力是否到达阈值;压力未到达阈值时,且冲压电机编码器304检测冲压电机305未转够设定圈数,执行步骤2);若压力未到达阈值,且冲压电机编码器306检测冲压电机305转够设定圈数,执行步骤4)。
步骤2):冲压电机驱动器302带动冲压电机305继续转动,压力到达阈值时,执行步骤4)。
步骤3):控制冲压电机305停止动作并反向旋转至零位,压装控制子***3向控制中心4发送压装完成信号,压装过程结束。
步骤4):控制冲压电机305立即停止动作,并由冲压电机编码器306检测冲压电机305是否转够设定圈数;若冲压电机305转够设定圈数,冲压电机305反向旋转至零位,压装子***3向控制中心4发送压装完成信号,压装过程结束;若冲压电机305未转够设定圈数,压装控制子***3向控制中心4发送压装报警信号,压装过程结束。
如图9所示,上述步骤6中,上下料控制子***1自动下料控制方法为:
步骤①:控制阀岛104对应三爪卡盘109的电磁阀接通,三爪卡盘109打开,松开工件。
步骤②:机器人控制柜103向工业机器人106下达运动指令,使机器人106运动至压机上料位,机器人末端气爪107闭合拾取工件。
步骤③:气爪磁性传感器108检测产品是否拾取成功,产品拾取成功后,控制阀岛104控制托盘顶升气缸112的电磁阀接通,托盘顶升气缸112伸出将物料托盘顶起。
步骤④:机器人控制柜103向机器人106下达运动指令,机器人106运动至物料托盘上方,机器人末端气爪107松开安放物料。
步骤⑤:气爪磁性传感器108检测气爪107是否松开,气爪107松开后,控制阀岛104对应托盘顶升气缸112的电磁阀断开,托盘顶升气缸112落下。
步骤⑥:控制旋转电机驱动器101驱动传送带旋转电机110工作,下料侧接近开关113检测托盘是否到达本工位出料口。
步骤⑦:下料侧接近开关113检测到物料托盘时,传送带旋转电机110停止。
步骤⑧:上下料控制子***1向控制中心4发送下料完成信号,下料过程结束。

Claims (9)

  1. 一种轴孔配合类零件自动压装控制***,其特征在于:包括上下料控制子***、视觉检测子***、压装控制子***和控制中心;
    所述上下料控制子***用于实现物料传送带的控制、物料托盘的到位检测、托盘升降控制以及工业机器人控制;
    所述视觉检测子***用于实现转台转动控制以及获取零件周孔孔位偏差大小和孔位偏差角度;
    所述压装控制子***用于实现冲压电机控制、检测冲压电机旋转圈数得到冲压头运动距离以及检测零件压装过程中的零件冲压头所受压力变化;
    上述各子***通过各自的通信端口与控制中心通信;
    所述控制中心用于与工厂MES***进行作业任务交互、控制各子***工作以及将故障报警信息上传给工厂MES***。
  2. 如权利要求1所述一种轴孔配合类零件自动压装控制***,其特征在于:所述上下料控制子***包括旋转电机驱动器、上料侧接近开关、下料检测接近开关、阀岛、机器人控制柜、上下料控制子***通讯接口以及上下料控制子***电接口;其中旋转电机驱动器根据控制中心下达的运动指令驱动旋转电机旋转,由驱动旋转电机带动物料传送带运转,由物料传送带实现物料托盘的运输;上料侧接近开关安装于物料拾取位置前侧,用于检测物料托盘是否传送至物料拾取位置;下料检测接近开关安装于传送带末端位置,用于检测下料时物料托盘是否经过传送带末端;阀岛为由多个电磁阀构成的控制元器件,其中各电磁阀分别用于控制托盘顶升气缸、三爪卡盘以及工业机器人末端气爪的气路通断,进而实现控制托盘顶升气缸将物料托盘顶升、控制三爪卡盘的张开与闭合以及工业机器人末端气爪的张开与闭合;机器人控制柜用于控制工业机器人沿示教的运动路径运动,并控制阀岛中对应工业机器人末端气爪的电磁阀的通断,进而控制工业机器人末端气爪张开、闭合;上下料控制子***通讯接口用于连接控制中心,实现上下料控制子***与控制中心通信;上下料控制子***电接口用于连接外部电源,实现上下料控制子***的供电;
  3. 如权利要求1所述一种轴孔配合类零件自动压装控制***,其特征在于:所述视觉检测控制***包括相机控制器、图像处理***、转台电机驱动器、视觉检测控制***通讯接口以及视觉检测控制***电接口;其中相机控制器用于实现工业相机的供电、工业相机拍照控制及工业相机拍摄图像保存;所述图像处理***用于提取图像中轴孔位置和形状,与标定的圆孔位置和形状作比较,得到孔位偏差大小和孔位偏差角度;转台电机驱动器用于驱动转台电机,进而实现转台转动;视觉检测控制***通讯接口与控制中心相连,实现视觉检测控制***与控制中心间的通信;视觉检测控制***电接口与外部电源相连,实现视觉检测子***的供电。
  4. 所述压装控制子***包括冲压电机驱动器、冲压电机编码器、压力传感器、压装控制子***通讯 接口以及压装控制子***电接口;其中,冲压电机驱动器用于驱动冲压电机动作,进而带动冲压头上下运动;冲压电机编码器用于检测冲压电机旋转圈数进而得到冲压头运动距离;压力传感器用于检测零件压装过程中的零件冲压头所受压力变化;压装控制子***通讯接口与控制中心相连,实现视觉检测控制***与控制中心间的通信;压装控制子***电接口与外部电源相连,实现压装控制子***的供电。
  5. 如权利要求1~4所述一种轴孔配合类零件自动压装控制方法,其特征在于:在轴孔配合类零件压装工作过程中,自动压装整体控制方法具体如下:
    步骤1:工厂MES***向控制中心下达作业任务,随后由控制中心向上下料子***发送上料信号;
    步骤2:上下料子***执行上料任务,上料完成后向控制中心发送上料完成信号。
    步骤3:控制中心接收到上料完成信号时,向视觉检测子***发送检测信号。
    步骤4:视觉检测子***接收到检测信号时,开始执行检测任务,实现视觉检测;若视觉检测不通过,视觉检测子***向控制中心发送报警信息,控制中心将报警信息上传至工厂MES***,等待人工干预;若视觉检测通过,视觉检测子***向控制中心发送视觉检测通过信号,控制中心给压装控制子***发送压装信号;
    步骤5:压装控制子***接收到压装信号时,开始执行压装任务,实现工件自动压装;压装完成后压装控制子***向控制中心发送压装完成信号;
    上述压装任务执行过程中,若出现故障,由压装控制子***向控制中心发送压装报警信号,控制中心将压装报警信号上传至工厂MES***,等待人工干预;
    步骤6:控制中心收到压装完成信号后,向上下料子***发送下料信号,上下料子***执行下料任务,实现自动下料;
    步骤7:下料任务完成后,上下料子***向控制中心发送下料完成信号,至此完成一个产品的压装。
  6. 如权利要求5所述一种轴孔配合类零件自动压装控制方法,其特征在于:步骤2中,上下料控制子***自动上料控制方法为:
    步骤a:控制旋转电机驱动器驱动传送带旋转电机工作,带动传送带运转,使物料托盘随传送带运动,由上料侧接近开关检测物料托盘是否运动至指定位置;
    步骤b:当检测到物料托盘时,控制旋转电机驱动器停止驱动旋转电机,同时控制托盘顶升气缸的电磁阀接通,此时托盘顶升气缸顶出,将物料托盘顶起;
    步骤c:向工业机器人下达运动指令,控制工业机器人运动至物料托盘上方,同时控制工业机器人末端气爪闭合拾取工件,并由气爪磁性传感器检测是否拾取成功;
    步骤d:工件拾取成功后,控制托盘顶升气缸的电磁阀断开,此时托盘顶升气缸落下;
    步骤e:向工业机器人下达运动指令,控制工业机器人运动至压机上料位,同时控制机器人末端气爪松开将工件安放在压机转台上,并由气爪磁性传感器检测气爪是否松开;
    步骤f:气爪松开后,向工业机器人下达运动指令,控制工业机器人离开压机上料位运动至等待位;
    步骤g:控制三爪卡盘的电磁阀接通,此时三爪卡盘闭合,将工件卡紧;
    步骤h:上下料控制子***向控制中心发送上料完成信号,上料过程结束。
  7. 如权利要求5所述一种轴孔配合类零件自动压装控制方法,其特征在于:步骤4中,视觉检测***视觉检测过程控制方法为:
    步骤A:通过控制工业相机对工件进行拍照;图像处理***对拍照所得图像进行处理分析,通过边缘检测提取图像中轴孔的位置信息,将提取到的轴孔的位置和形状与标定的轴孔孔位置和形状作比较,判断孔位是否出现偏差;若孔位没有偏差,执行步骤B;若孔位偏差角度在调节范围内,执行步骤D;
    步骤B:视觉检测***向控制中心发送检测通过信号,视觉检测过程结束;
    步骤C:视觉检测***将偏差角度给到转台电机驱动器,驱动转台电机转动一个补偿偏差角度,重复执行步骤A;
    步骤D:图像处理***计算孔位偏差角度;若孔位偏差超出设定的偏差补偿上限,视觉检测***给控制中心发检测不通过信号,视觉检测过程结束。
  8. 如权利要求5所述一种轴孔配合类零件自动压装控制方法,其特征在于:步骤5中,压装控制子***自动压装控制方法为:
    步骤1):控制冲压电机转动,在此过程中由压力传感器实时检测压力是否到达阈值;压力未到达阈值时,且检测冲压电机未转够设定圈数,执行步骤2);若压力未到达阈值,且检测冲压电机转够设定圈数,执行步骤4);
    步骤2):控制冲压电机继续转动,压力到达阈值时,执行步骤4);
    步骤3):控制冲压电机停止动作并反向旋转至零位,压装控制子***向控制中心发送压装完成信号,压装过程结束;
    步骤4):控制冲压电机立即停止动作,并检测冲压电机是否转够设定圈数;若冲压电机转够设定圈数,冲压电机反向旋转至零位,压装子***向控制中心发送压装完成信号,压装过程结束;若冲压电机未转够设定圈数,压装控制子***向控制中心发送压装报警信号,压装过程结束。
  9. 如权利要求5所述一种轴孔配合类零件自动压装控制方法,其特征在于:步骤6中,上下料控制子***自动下料控制方法为:
    步骤①:控制三爪卡盘的电磁阀接通,三爪卡盘打开,松开工件;
    步骤②:向工业机器人下达运动指令,使机器人运动至压机上料位,机器人末端气爪闭合拾取工件;
    步骤③:气爪磁性传感器检测产品是否拾取成功,产品拾取成功后,控制托盘顶升气缸的电磁阀接通,托盘顶升气缸伸出将物料托盘顶起;
    步骤④:机器人控制柜向机器人下达运动指令,机器人运动至物料托盘上方,机器人末端气爪松开安 放物料;
    步骤⑤:气爪磁性传感器检测气爪是否松开,气爪松开后,控制托盘顶升气缸的电磁阀断开,托盘顶升气缸落下;
    步骤⑥:控制驱动传送带旋转电机工作,下料侧接近开关检测托盘是否到达本工位出料口;
    步骤⑦:下料侧接近开关检测到物料托盘时,传送带旋转电机停止;
    步骤⑧:上下料控制子***向控制中心发送下料完成信号,下料过程结束。
PCT/CN2021/075710 2020-04-23 2021-02-07 一种轴孔配合类零件自动压装控制***及其控制方法 WO2021212969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/968,880 US11964349B2 (en) 2020-04-23 2022-10-19 Automatic press-fit control system and method for shaft-hole fitting parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010328265.XA CN111571176B (zh) 2020-04-23 2020-04-23 一种轴孔配合类零件自动压装控制***及其控制方法
CN202010328265.X 2020-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/968,880 Continuation US11964349B2 (en) 2020-04-23 2022-10-19 Automatic press-fit control system and method for shaft-hole fitting parts

Publications (1)

Publication Number Publication Date
WO2021212969A1 true WO2021212969A1 (zh) 2021-10-28

Family

ID=72122678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075710 WO2021212969A1 (zh) 2020-04-23 2021-02-07 一种轴孔配合类零件自动压装控制***及其控制方法

Country Status (3)

Country Link
US (1) US11964349B2 (zh)
CN (1) CN111571176B (zh)
WO (1) WO2021212969A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644146A (zh) * 2022-03-17 2022-06-21 肇庆高峰机械科技有限公司 一种大方片检测设备的控制***
CN114714291A (zh) * 2022-04-28 2022-07-08 珠海格力电器股份有限公司 一种空调外机冷凝器螺钉的装配***及其控制方法
CN116160217A (zh) * 2022-12-21 2023-05-26 陕西法士特齿轮有限责任公司 一种车辆控制器的透气塞的电控压装装置及其压装方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111571176B (zh) 2020-04-23 2021-10-01 北京航空航天大学 一种轴孔配合类零件自动压装控制***及其控制方法
CN113478192B (zh) * 2021-06-30 2023-02-10 广东安达智能装备股份有限公司 一种轨道供料方法、轨道供料***及计算机储存介质
JP2023028748A (ja) * 2021-08-20 2023-03-03 オムロン株式会社 搬送システム、及び保持装置
CN113910155A (zh) * 2021-11-16 2022-01-11 北京中丽制机电气有限公司 一种纺丝组件安装***及纺丝组件安装控制方法
CN114393129B (zh) * 2021-12-31 2024-01-30 珠海格力智能装备有限公司 一种慢炖煲内胆生产线上下料控制方法及生产线
CN117484177B (zh) * 2023-12-29 2024-04-09 歌尔股份有限公司 一种组装设备、及其控制方法
CN117600834B (zh) * 2024-01-22 2024-04-09 成都正西液压设备制造有限公司 一种全自动封头打鼓生产线和成型控制***及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205651028U (zh) * 2016-05-20 2016-10-19 苏州通又盛电子科技有限公司 精密智能伺服压装机
CN107861490A (zh) * 2017-12-25 2018-03-30 长沙智能制造研究总院有限公司 基于工业云平台智能制造轴承装配生产线
CN108367402A (zh) * 2015-12-18 2018-08-03 日本精工株式会社 生产线
CN209256250U (zh) * 2018-10-25 2019-08-16 苏州鲁巴斯特机械科技有限公司 一种刹车助力器密封圈装配设备
US10420265B2 (en) * 2016-05-28 2019-09-17 Nanning Fugui Precision Industrial Co., Ltd. Automated inserting device for workpiece assembly
CN111571176A (zh) * 2020-04-23 2020-08-25 北京航空航天大学 一种轴孔配合类零件自动压装控制***及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073148B (zh) * 2011-01-14 2012-07-04 北京理工大学 一种微小型结构件高精度视觉同轴光学对位装配***
CN106378607B (zh) * 2016-10-18 2018-05-08 南京航空航天大学 一种轴孔过盈装配自动压装装置和方法
CN206735320U (zh) * 2017-05-24 2017-12-12 苏州同贸电子科技有限公司 托盘顶升机构
CN110695691B (zh) * 2019-12-16 2020-04-21 佛山隆深机器人有限公司 一种全自动机器人插座装配线
CN112453895B (zh) * 2020-12-10 2022-02-15 厦门宏泰智能制造有限公司 服务器装配调度方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108367402A (zh) * 2015-12-18 2018-08-03 日本精工株式会社 生产线
CN205651028U (zh) * 2016-05-20 2016-10-19 苏州通又盛电子科技有限公司 精密智能伺服压装机
US10420265B2 (en) * 2016-05-28 2019-09-17 Nanning Fugui Precision Industrial Co., Ltd. Automated inserting device for workpiece assembly
CN107861490A (zh) * 2017-12-25 2018-03-30 长沙智能制造研究总院有限公司 基于工业云平台智能制造轴承装配生产线
CN209256250U (zh) * 2018-10-25 2019-08-16 苏州鲁巴斯特机械科技有限公司 一种刹车助力器密封圈装配设备
CN111571176A (zh) * 2020-04-23 2020-08-25 北京航空航天大学 一种轴孔配合类零件自动压装控制***及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644146A (zh) * 2022-03-17 2022-06-21 肇庆高峰机械科技有限公司 一种大方片检测设备的控制***
CN114714291A (zh) * 2022-04-28 2022-07-08 珠海格力电器股份有限公司 一种空调外机冷凝器螺钉的装配***及其控制方法
CN114714291B (zh) * 2022-04-28 2023-11-03 珠海格力电器股份有限公司 一种空调外机冷凝器螺钉的装配***及其控制方法
CN116160217A (zh) * 2022-12-21 2023-05-26 陕西法士特齿轮有限责任公司 一种车辆控制器的透气塞的电控压装装置及其压装方法

Also Published As

Publication number Publication date
US20230042786A1 (en) 2023-02-09
CN111571176A (zh) 2020-08-25
CN111571176B (zh) 2021-10-01
US11964349B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2021212969A1 (zh) 一种轴孔配合类零件自动压装控制***及其控制方法
CN106514201B (zh) 一种自动接插件装配机器人***及其控制方法
CN107234615B (zh) 工件摆放***、工件放置装置及工件摆放控制方法
CN106853639A (zh) 一种手机电池自动化装配***及其控制方法
CN108168433A (zh) 一种基于视觉的零件位姿检测调整装置及方法
CN107433576A (zh) 一种基于机器视觉***的工业机器人
CN207850291U (zh) 一种基于视觉的零件位姿检测调整装置
CN109415175B (zh) 一种智能上下料***及其工作方法
CN110621598B (zh) 至少部分平面的货物的操纵装置和运行操纵装置的方法
JP6848110B1 (ja) 協働システム
US4843708A (en) Assembly method for component parts and system
CN108406295A (zh) 挖掘机回转支承自动拧紧装置
CN108615679A (zh) 一种面向新型标准光组件的自动化工艺生产线
CN113910209A (zh) 一种多源传感阵列天线自适应智能装配***及方法
CN206643574U (zh) 一种自动接插件装配机器人***
CN108098818B (zh) 一种高透气率工件搬运端拾器***
TWM613960U (zh) 電路板檢測系統
CN115390509B (zh) 基于视觉控制的控制方法及数控机床
CN208450740U (zh) 一种铸件柔性去毛刺生产线
CN110640320A (zh) 一种基于plc的视觉化精准焊接控制***
KR20230046099A (ko) 지능형 휠캡 자동 압입 조립시스템
US20210122062A1 (en) Glass Decking System, Adaptable End Effector and Methods
CN114104658A (zh) 一种板材上料自适应控制方法
CN210361364U (zh) 一种用于板材分拣机械手的真空吸附装置
WO2024016116A1 (zh) 呼吸阀自动装配机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21791949

Country of ref document: EP

Kind code of ref document: A1