WO2021212878A1 - 一种基于群智感知和多融合技术的室内定位算法 - Google Patents

一种基于群智感知和多融合技术的室内定位算法 Download PDF

Info

Publication number
WO2021212878A1
WO2021212878A1 PCT/CN2020/136377 CN2020136377W WO2021212878A1 WO 2021212878 A1 WO2021212878 A1 WO 2021212878A1 CN 2020136377 W CN2020136377 W CN 2020136377W WO 2021212878 A1 WO2021212878 A1 WO 2021212878A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedestrian
acceleration
wireless access
data
direction angle
Prior art date
Application number
PCT/CN2020/136377
Other languages
English (en)
French (fr)
Inventor
邢建川
孙隽姝
常琬星
王翔
王博
张陆平
鲁权
张禹睿
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to ZA2021/06561A priority Critical patent/ZA202106561B/en
Publication of WO2021212878A1 publication Critical patent/WO2021212878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings

Definitions

  • the invention relates to the technical field of positioning, in particular to an indoor positioning algorithm based on group intelligence perception and multi-fusion technology.
  • the common positioning signal basis of indoor positioning technology includes light tracking, Radio Frequency Identification System (RFID), Wi-Fi, Bluetooth, ultrasonic, infrared, etc.
  • RFID Radio Frequency Identification System
  • Wi-Fi Wireless Fidelity
  • Bluetooth Wireless Fidelity
  • ultrasonic infrared
  • Wi-Fi Wireless Fidelity
  • Wi-Fi-based location fingerprint indoor positioning technology has multiple advantages and is currently one of the most valuable indoor positioning technologies in the market, its algorithm itself still has many problems. Wi-Fi-based location fingerprint indoor positioning technology is divided into two phases: offline phase and online phase.
  • the traditional offline phase refers to the process of building a location fingerprint database, which collects data at equal intervals in the location location in advance. This process consumes a lot of manpower and material resources and does not have practical commercial application value. Therefore, in view of the current time-consuming and labor-intensive establishment of the fingerprint database in the offline phase, and the inevitable pre-obtainment of indoor maps, the present invention proposes an indoor positioning algorithm based on group intelligence and multi-fusion technology to solve the shortcomings in the prior art. Place.
  • the purpose of the present invention is to provide an indoor positioning algorithm based on group intelligence and multi-fusion technology.
  • the indoor positioning algorithm has high accuracy in actual verification and good practicability.
  • the algorithm of the present invention is set The potential landmarks in the environment are corrected, the cumulative error in the estimation of pedestrian dead-reckoning is corrected, the accuracy of the location fingerprint map is improved, and the problem of absolute dependence on site surveys in the current offline positioning stage is solved, and the Wi-Fi-based location
  • the fingerprint indoor positioning technology really has commercial application value.
  • An indoor positioning algorithm based on group intelligence and multi-fusion technology including the following steps:
  • Step 1 Estimate the pedestrian position
  • Step 2 Perform error correction on the estimated pedestrian dead positions
  • the distance threshold is ⁇
  • LOC ⁇ Loc 1 ,Loc 2 ,...,Loc i ⁇
  • the distance threshold is ⁇
  • LOC ⁇ Loc 1 ,Loc 2 ,...,Loc i ⁇
  • Step 3 Build a location fingerprint map
  • a further improvement is that before estimating the pedestrian position in the first step, the threshold detection and periodic judgment of the acceleration amplitude are used to construct the step detection algorithm, the step detection algorithm is used to perform the step detection, and then the step length is used based on the step detection result.
  • the calculation formula (4) calculates the step length.
  • a further improvement is that the step detection algorithm is constructed using the threshold detection and periodic judgment of acceleration amplitude, and the specific process of step detection using the step detection algorithm is: assuming that the pedestrian acceleration modulus is greater than the local average acceleration of gravity ⁇ g, the time when the step occurs When the pedestrian’s acceleration modulus value is less than or equal to the local gravitational acceleration time ⁇ g is the completion of the step, the step detection algorithm is triggered when the step occurs.
  • the calculation method of the average gravitational acceleration ⁇ g is: The average value of gravitational acceleration, as shown in formula (5):
  • the autocorrelation threshold ⁇ corr is given , the step whose autocorrelation value is greater than ⁇ corr during the step is recorded as a candidate step, and the time difference ⁇ t between when the step is completed and when the step occurs is not in the interval [0.5, 2] is recorded as a disturbance, and at the same time
  • the extreme value threshold of the acceleration amplitude in a single step is ⁇ m , if the extreme value exceeds ⁇ m in a single step period, it is recorded as a disturbance, and all final non-disturbed candidate steps are the step detection results.
  • a further improvement is that: before estimating the pedestrian dead position in the first step, it is also necessary to use the weighted average method to obtain the direction angle data of the mobile phone according to the gyroscope direction angle ⁇ gyr and the acceleration-magnetic field direction angle ⁇ a-mag data, as shown in the formula ( 6) Shown.
  • y is the direction of the pedestrian, and then analyze a′ y in the frequency domain.
  • is the angle ⁇ angle between the device and the person
  • the maximum point in the frequency domain of a′ y is the step frequency
  • the direction angle of the pedestrian is calculated As shown in formula (8).
  • a further improvement lies in the fact that in the first step, the method for obtaining the step length of the pedestrian movement, the direction angle of the pedestrian movement, and the coordinates of the next position of the pedestrian is: using the magnetometer, gyroscope and acceleration sensor embedded in the mobile phone to obtain the magnetic data and angle respectively. Motion data and acceleration data, and then obtain the direction angle of the mobile phone according to the magnetic data, angular motion data and acceleration data, and obtain the angle between the mobile phone and the human body and the movement step length according to the acceleration data, and finally obtain the pedestrians according to the direction angle of the mobile phone and the angle between the mobile phone and the human body The direction angle of the movement is calculated according to the direction angle and the movement step length of the pedestrian to calculate the next position coordinate of the pedestrian.
  • a further improvement lies in: in the formulas (2) and (3) of the fourth step, AP i is the signal of the i-th wireless access point, and RSSI kj is the signal of the wireless access point of the j-th signal collection at the k-th location.
  • Intensity N is the number of sites where the AP i signal is detected in the location fingerprint library, n is the number of repeated measurements on the same site, and v is the minimum value to prevent the score from being divided by zero.
  • the algorithm of the present invention has high accuracy in actual verification and has good practicability.
  • the algorithm of the present invention corrects the cumulative error in the estimation of pedestrian dead-reckoning by setting potential environmental landmarks, and improves The accuracy of the location fingerprint map.
  • the indoor positioning algorithm based on group intelligence and multi-fusion technology of the present invention solves the problem of absolute dependence on site surveys in the current offline positioning stage, and enables fingerprint indoor positioning based on Wi-Fi location Technology really has commercial application value.
  • Fig. 1 is a schematic diagram of the flow chart of the pedestrian dead reckoning algorithm of the present invention.
  • Figure 2 is a schematic diagram of the characteristics of the room switching data of the present invention.
  • Figure 3 is a schematic diagram of the pedestrian dead reckoning verification of the present invention.
  • Fig. 4 is a schematic diagram of the result of building a corridor map in an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of drawing a map of a designated area in an embodiment of the present invention.
  • this embodiment proposes an indoor positioning algorithm based on group intelligence and multi-fusion technology, including the following steps:
  • Step 1 Estimate the pedestrian position
  • the step detection algorithm uses the threshold detection and periodic judgment of the acceleration amplitude to construct the step detection algorithm, and use the step detection algorithm to perform the step detection.
  • the specific process is: Assume that the pedestrian acceleration modulus is greater than the local average acceleration of gravity ⁇ g . When the acceleration modulus value is less than or equal to the local gravitational acceleration time ⁇ g is the step completion, the step detection algorithm is triggered when the step occurs.
  • the calculation method of the average gravitational acceleration ⁇ g is: the average gravity acceleration during the last step, As shown in formula (5):
  • the autocorrelation threshold ⁇ corr is given , the step whose autocorrelation value is greater than ⁇ corr during the step is recorded as a candidate step, and the time difference ⁇ t between when the step is completed and when the step occurs is not in the interval [0.5, 2] is recorded as a disturbance, and at the same time
  • the extreme value threshold of acceleration amplitude in a single step is ⁇ m , and the extreme value exceeds ⁇ m in a single step period, it is recorded as a disturbance.
  • the final non-disturbed candidate steps are the step detection results, and then based on the step detection results, the step is used again.
  • the length calculation formula (4) calculates the step length.
  • the weighted average method is used to obtain the direction angle data of the mobile phone, as shown in formula (6):
  • y is the direction of the pedestrian, and then analyze a′ y in the frequency domain.
  • is the angle ⁇ angle between the device and the person
  • the maximum point in the frequency domain of a′ y is the step frequency
  • the direction angle of the pedestrian is calculated As shown in formula (8).
  • the method of obtaining the step length of the pedestrian movement, the direction angle of the pedestrian movement and the coordinate of the pedestrian’s next position is as follows: use the magnetometer, gyroscope and acceleration sensor embedded in the mobile phone to obtain the magnetic force data, angular motion data and acceleration data respectively, and then according to the magnetic force Data, angular motion data and acceleration data to obtain the direction angle of the mobile phone, and obtain the angle between the mobile phone and the human body and the movement step length according to the acceleration data, and finally obtain the direction angle of the pedestrian movement according to the mobile phone direction angle and the angle between the mobile phone and the human body.
  • the direction angle and the moving step length are used to calculate the coordinates of the pedestrian's next position;
  • Step 2 Perform error correction on the estimated pedestrian dead positions
  • the distance threshold is ⁇
  • LOC ⁇ Loc 1 ,Loc 2 ,...,Loc i ⁇
  • the distance threshold is ⁇
  • LOC ⁇ Loc 1 ,Loc 2 ,...,Loc i ⁇
  • Step 3 Build a location fingerprint map
  • AP i is the signal of the i-th wireless access point
  • RSSI kj is the signal strength of the wireless access point of the j-th signal collection at the k-th location
  • N is the number of locations where the AP i signal is detected in the location fingerprint library
  • n is the number of repeated measurements at the same site
  • v is the minimum value to prevent the score from being divided by zero
  • Figure 3 shows a group of pedestrian dead reckoning results.
  • the verification site is located in an open area on the first floor of Zone A, Pinxue Building, University of Electronic Science and Technology of China. The area is located outdoors and accepts GPS and Wi-Fi. Good signal;
  • the blue curve is GPS positioning data
  • the black curve is unverified pedestrian dead reckoning data
  • the red curve is pedestrian dead reckoning data corrected by multi-sensor fusion.
  • the positions are basically coincident, and the accuracy is extremely high.
  • the Wi-Fi signal on the floor is good.
  • the tester carries an Android device and walks freely in the area to test and establish a route to build a map, as shown in Figure 5. It can be seen from Fig. 5 that the map construction results of various regions are good, indicating that the algorithm of the present invention is feasible.
  • the algorithm of the present invention is highly accurate in actual verification and has good practicability.
  • the algorithm of the present invention corrects the cumulative error in the pedestrian dead reckoning by setting potential environmental landmarks, and improves the accuracy of the location fingerprint map.
  • the indoor positioning algorithm based on group intelligence and multi-fusion technology of the present invention well solves the problem of absolute dependence on site surveys in the current offline positioning stage, and makes Wi-Fi location fingerprint indoor positioning technology truly have commercial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种基于群智感知和多融合技术的室内定位算法,包括以下步骤:推算行人航位,利用步伐检测算法进行步伐检测,然后基于步伐检测结果,计算出步长、利用加权平均法获取手机的方向角数据、计算出行人方向角;对推算出的行人航位进行误差纠正;构建位置指纹地图以及在线定位;本发明的室内定位算法在实际验证中准确性高,具备较好的实用性,本发明算法通过设定了环境潜在地标,对行人航位推算中的累积误差进行纠正,提高了位置指纹地图的准确性,很好地解决了当前离线定位阶段对于现场勘查的绝对依赖问题,使基于Wi-Fi位置的指纹室内定位技术真正具有了商业应用价值。

Description

一种基于群智感知和多融合技术的室内定位算法 技术领域
本发明涉及定位技术领域,尤其涉及一种基于群智感知和多融合技术的室内定位算法。
背景技术
借助全球定位***(Global Positioning System,GPS)、北斗卫星等技术支持,室外定位技术发展迅猛,基于位置的服务(Location Based Service,LBS)在室外环境已经孕育出成熟的商业运作模式。然而,伴随城市大规模建设的迅猛发展,城市建筑覆盖面积日益增长,人们的室内活动时间占日常总活动时间的比例在不断攀升。复杂的建筑设计、建筑内GPS信号差等问题又迫使人们提出了“基于室内位置的服务”(Indoor Location Based Service,ILBS)的概念。ILBS对于更高精度、更低成本的室内定位技术的要求,推动着室内定位算法的研究快速发展,对室内定位***的需求与日俱增;
目前,室内定位技术的常见定位信号依据有光追踪、射频识别***(Radio Frequency Identification System,RFID)、Wi-Fi、蓝牙、超声波、红外线等。其中,基于Wi-Fi信号的定位技术能够更好地避免环境干扰,对硬件设备要求低;不需要提前在现场安装设备,仅基于市面常见的手机和已布置成熟的Wi-Fi环境就可以进行,成本较低。综合成本和定位精度,Wi-Fi相较其他定位信号具有显著的优势。尽管基于Wi-Fi的位置指纹室内定位技术具有多重优势,是当前最具市场应用价值的室内定位技术之一,但其算法本身仍具有诸多问题。基于 Wi-Fi的位置指纹室内定位技术分为两个阶段:离线阶段和在线阶段。传统的离线阶段指位置指纹库的建库过程,是通过预先在定位场所进行等间隔采集数据,这一过程耗费大量人力、物力,也不具备实际商业应用价值。因此,针对目前离线阶段指纹库建立耗时耗力、不可避免预先获得室内地图的情况,本发明提出一种基于群智感知和多融合技术的室内定位算法,以解决现有技术中的不足之处。
发明内容
针对上述问题,本发明的目的在于提供一种基于群智感知和多融合技术的室内定位算法,该室内定位算法在实际验证中准确性高,具备较好的实用性,本发明算法通过设定了环境潜在地标,对行人航位推算中的累积误差进行纠正,提高了位置指纹地图的准确性,很好地解决了当前离线定位阶段对于现场勘查的绝对依赖问题,使基于Wi-Fi的位置指纹室内定位技术真正具有了商业应用价值。
为实现本发明的目的,本发明通过以下技术方案实现:
一种基于群智感知和多融合技术的室内定位算法,包括以下步骤:
步骤一:推算行人航位
获取行人当前位置坐标(x 0,y 0),设定行人移动步长为L,行人移动的方向角为θ,假定行人的下一位置坐标为(x,y),根据公式(1)计算出行人航位;
Figure PCTCN2020136377-appb-000001
步骤二:对推算出的行人航位进行误差纠正
2.1:设定一个宽度为n的滑动窗,设窗内起始点无线访问接入点的信号强度为R 1,结束点无线访问接入点的信号强度为R n,滑动窗信号强度变化程度为ΔR=|R n-R 1|,然后使用支持向量机对点进行标记,再对被标记为房间切换位点的位置将进行误差纠正;
2.2:假设地标群为Loc,距离阈值为δ,LOC={Loc 1,Loc 2,…,Loc i},当存在被标点l,且
Figure PCTCN2020136377-appb-000002
则计算被标记点无线访问接入点信号数据与各Loc的平均无线访问接入点信号数据的相似度,然后计算被标记点距离Loc中心点的距离d,选择d小于δ且相似度最高的地标群,修改当前点坐标为该地标群的中心点位置,更新地标群;
步骤三:构建位置指纹地图
对运动轨迹中轨迹拐角小于120°的拐点处进行分割,获得行人的轨迹片段,再将轨迹片段的平均无线访问接入点信号强度,聚类处理得到了多个片段族,再对多个片段族内无线访问接入点信号强度相似性较高的轨迹片段进行合并,判断片段族间的连通性,除连通区域外,得到一组环绕各片段族的地图墙体,得到位置指纹地图;
步骤四:在线定位
4.1:对位置指纹地图进行预处理,计算每一位点处无线访问接入点信号数据的时间稳定性和各个无线访问接入点信号的相似性,然后筛选时间稳定性stability,时间稳定性stability计算如公式(2)和(3)所示;
Figure PCTCN2020136377-appb-000003
Figure PCTCN2020136377-appb-000004
4.2:在线定位,在用户发送定位请求时,进行获取用户当前位置的无线访问接入点信号强度数据{AP 1,AP 2,…,AP N}和行人当前位置坐标(x 0,y 0),构成当前位置的状态变量E,E={AP 1,AP 2,…,AP N,x 0,y 0},计算当前位置状态变量与位置指纹地图中各点状态变量的欧氏距离,选择距离最小的k个位点,最后计算k个位点坐标平均值作为定位结果。
进一步改进在于:所述步骤一中推算行人航位前,先利用加速度幅值的阈值检测和周期性判断构建步伐检测算法,利用步伐检测算法进行步伐检测,然后基于步伐检测结果,再利用步长计算公式(4)计算出步长。
Figure PCTCN2020136377-appb-000005
进一步改进在于:所述利用加速度幅值的阈值检测和周期性判断构建步伐检测算法,利用步伐检测算法进行步伐检测的具体过程为:假定行人加速度模值大于当地平均重力加速度δ g时刻为步伐发生时,假定行人的加速度模值小于或等于当地重力加速度时刻δ g为步伐完成时,当步伐发生时刻出现时触发步伐检测算法,平均重力加速度δ g 的计算方式为:上一步伐持续时间内的重力加速度平均值,如公式(5)所示:
Figure PCTCN2020136377-appb-000006
然后给定自相关阈值δ corr,步伐发生时中自相关值大于δ corr者记为候选步伐,将步伐完成时和步伐发生时的时间差Δt不在[0.5,2]区间内的记为扰动,同时给定单步内加速度幅值的极值阈值为δ m,单步时段内极值超过δ m则记为扰动,最终的所有非扰动候选步伐为步伐检测结果。
进一步改进在于:所述步骤一中推算行人航位前,还需要根据陀螺仪方向角φ gyr和加速度-磁场方向角φ a-mag数据,利用加权平均法获取手机的方向角数据,如公式(6)所示。
φ=Aφ gyr+Bφ a-mag      (6)
进一步改进在于:所述步骤一中推算行人航位前,还需要假设设备的加速度为a=[a x,a y,a z],令设备在水平面xoy内逆时针旋转ω,则得到公式(7);
Figure PCTCN2020136377-appb-000007
假设y为行人的前进方向,然后对a′ y进行频域分析,假定ω为设备与人之间的夹角θ angle,则a′ y频域最大值点为步频处,行人方向角计算如公式(8)所示。
θ=θ angle+φ      (8)
进一步改进在于:所述步骤一中行人移动步长、行人移动的方向角和行人的下一位置坐标获取方法为:利用手机内嵌设的磁力计、陀螺仪和加速度传感器分别获取磁力数据、角运动数据和加速度数据,然后根据磁力数据、角运动数据和加速度数据获取手机方向角,并根据加速度数据获取手机与人体夹角以及移动步长,最后根据手机方向角和手机与人体夹角获取行人移动的方向角,根据行人移动的方向角和移动步长推算出行人的下一位置坐标。
进一步改进在于:所述步骤四公式(2)和(3)中AP i为第i个无线访问接入点信号,RSSI kj为第k个位点第j次信号采集的无线访问接入点信号强度;N为位置指纹库中检测到AP i信号的位点数,n为同一个位点上重复测量的次数,v是极小值,防止分数被零除。
本发明的有益效果为:本发明算法在实际验证中准确性高,具备较好的实用性,本发明算法通过设定了环境潜在地标,对行人航位推算中的累积误差进行纠正,提高了位置指纹地图的准确性,本发明的基于群智感知和多融合技术的室内定位算法,很好地解决了当前离线定位阶段对于现场勘查的绝对依赖问题,使基于Wi-Fi位置的指纹室内定位技术真正具有了商业应用价值。
附图说明
图1本发明行人航位推算算法流程图示意图。
图2为本发明房间切换数据特征示意图。
图3为本发明行人航位推算验证示意图。
图4为本发明实施例中走廊地图构建结果示意图。
图5为本发明实施例中指定区域地图绘制示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据图1、2、3、4、5所示,本实施例提出一种基于群智感知和多融合技术的室内定位算法,包括以下步骤:
步骤一:推算行人航位
先利用加速度幅值的阈值检测和周期性判断构建步伐检测算法,利用步伐检测算法进行步伐检测,具体过程为:假定行人加速度模值大于当地平均重力加速度δ g时刻为步伐发生时,假定行人的加速度模值小于或等于当地重力加速度时刻δ g为步伐完成时,当步伐发生时刻出现时触发步伐检测算法,平均重力加速度δ g的计算方式为:上一步伐持续时间内的重力加速度平均值,如公式(5)所示:
Figure PCTCN2020136377-appb-000008
然后给定自相关阈值δ corr,步伐发生时中自相关值大于δ corr者记为候选步伐,将步伐完成时和步伐发生时的时间差Δt不在[0.5,2]区间内的记为扰动,同时给定单步内加速度幅值的极值阈值为δ m,单步时 段内极值超过δ m则记为扰动,最终的所有非扰动候选步伐为步伐检测结果,然后基于步伐检测结果,再利用步长计算公式(4)计算出步长。
Figure PCTCN2020136377-appb-000009
根据陀螺仪方向角φ gyr和加速度-磁场方向角φ a-mag数据,利用加权平均法获取手机的方向角数据,如公式(6)所示:
φ=Aφ gyr+Bφ a-mag       (6)
假设设备的加速度为a=[a x,a y,a z],令设备在水平面xoy内逆时针旋转ω,则得到公式(7);
Figure PCTCN2020136377-appb-000010
假设y为行人的前进方向,然后对a′ y进行频域分析,假定ω为设备与人之间的夹角θ angle,则a′ y频域最大值点为步频处,行人方向角计算如公式(8)所示。
θ=θ angle+φ       (8)
行人移动步长、行人移动的方向角和行人的下一位置坐标获取方法为:利用手机内嵌设的磁力计、陀螺仪和加速度传感器分别获取磁力数据、角运动数据和加速度数据,然后根据磁力数据、角运动数据和加速度数据获取手机方向角,并根据加速度数据获取手机与人体夹角以及移动步长,最后根据手机方向角和手机与人体夹角获取行人移 动的方向角,根据行人移动的方向角和移动步长推算出行人的下一位置坐标;
获取行人当前位置坐标(x 0,y 0),设定行人移动步长为L,行人移动的方向角为θ,假定行人的下一位置坐标为(x,y),根据公式(1)计算出行人航位;
Figure PCTCN2020136377-appb-000011
步骤二:对推算出的行人航位进行误差纠正
2.1:设定一个宽度为n的滑动窗,设窗内起始点无线访问接入点的信号强度为R 1,结束点无线访问接入点的信号强度为R n,滑动窗信号强度变化程度为ΔR=|R n-R 1|,然后使用支持向量机对点进行标记,再对被标记为房间切换位点的位置将进行误差纠正;
2.2:假设地标群为Loc,距离阈值为δ,LOC={Loc 1,Loc 2,…,Loc i},当存在被标点l,且
Figure PCTCN2020136377-appb-000012
则计算被标记点无线访问接入点信号数据与各Loc的平均无线访问接入点信号数据的相似度,然后计算被标记点距离Loc中心点的距离d,选择d小于δ且相似度最高的地标群,修改当前点坐标为该地标群的中心点位置,更新地标群;
步骤三:构建位置指纹地图
对运动轨迹中轨迹拐角小于120°的拐点处进行分割,获得行人的轨迹片段,再将轨迹片段的平均无线访问接入点信号强度,聚类处理得到了多个片段族,再对多个片段族内无线访问接入点信号强度相似 性较高的轨迹片段进行合并,判断片段族间的连通性,除连通区域外,得到一组环绕各片段族的地图墙体,得到位置指纹地图;
步骤四:在线定位
4.1:对位置指纹地图进行预处理,计算每一位点处无线访问接入点信号数据的时间稳定性和各个无线访问接入点信号的相似性,然后筛选时间稳定性stability,时间稳定性stability计算如公式(2)和(3)所示;
Figure PCTCN2020136377-appb-000013
Figure PCTCN2020136377-appb-000014
AP i为第i个无线访问接入点信号,RSSI kj为第k个位点第j次信号采集的无线访问接入点信号强度;N为位置指纹库中检测到AP i信号的位点数,n为同一个位点上重复测量的次数,v是极小值,防止分数被零除;
4.2:在线定位,在用户发送定位请求时,进行获取用户当前位置的无线访问接入点信号强度数据{AP 1,AP 2,…,AP N}和行人当前位置坐标(x 0,y 0),构成当前位置的状态变量E,E={AP 1,AP 2,…,AP N,x 0,y 0},计算当前位置状态变量与位置指纹地图中各点状态变量的欧氏距离,选择距离最小的k个位点,最后计算k个位点坐标平均值作为定位结果。
对本发明算法进行验证:
1.进行行人航位推算,图3为一组行人航位推算结果示意图所示,该验证场所位于电子科技大学品学楼A区一层开阔区域,该区域位于室外,接受GPS和Wi-Fi信号良好;
图3中,蓝色曲线为GPS定位数据,黑色曲线为未加验证的行人航位推算数据,红色曲线为多传感器融合修正的行人航位推算数据,从可以得出,本发明算法与真实航位基本重合,准确率极高。
2.进行位置指纹地图构建,本实施例以电子科技大学品学楼A区三楼走廊为测试点1,楼层Wi-Fi信号良好,测试者手持一台安卓设备步行环绕楼层一圈,构建出如图4所示走廊地图,从图4可以看出,本发明算法识别出该路径为光滑的走廊,整体连通,因此内外墙体绘制采用测试者的步行路径,绘制结果与实际吻合。
再以电子科技大学寝室楼为测试点2,楼层Wi-Fi信号良好,测试者携带一台安卓设备,在区域内自由步行,测试制定路线行走构建地图,如图5所示。从图5可以看出,各种区域的地图构建结果良好,说明本发明算法具备可行性。
3.在线位置匹配验证,以为电子科技大学品学楼A区一楼开放区域为测试地点,Wi-Fi信号良好。将GPS定位数据作为实际值,定位数据作为观测值,比例转换后得到匹配平均误差为1.5m,定位精度良好;误差在1m以内记为准确定位,正确定位概率为82%,定位准确性高。
本发明算法在实际验证中准确性高,具备较好的实用性,本发明算法通过设定了环境潜在地标,对行人航位推算中的累积误差进行纠正,提高了位置指纹地图的准确性,本发明的基于群智感知和多融合技术的室内定位算法,很好地解决了当前离线定位阶段对于现场勘查的绝对依赖问题,使Wi-Fi位置指纹室内定位技术真正具有了商业应用价值。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明的精神和范围的前提下,本发明还会有各种变化和改进,并且这些变化和改进都会落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

  1. 一种基于群智感知和多融合技术的室内定位算法,其特征在于,包括以下步骤:
    步骤一:推算行人航位
    获取行人当前位置坐标(x 0,y 0),设定行人移动步长为L,行人移动的方向角为θ,假定行人的下一位置坐标为(x,y),根据公式(1)计算出行人航位;
    Figure PCTCN2020136377-appb-100001
    步骤二:对推算出的行人航位进行误差纠正
    2.1:设定一个宽度为n的滑动窗,设窗内起始点无线访问接入点的信号强度为R 1,结束点无线访问接入点的信号强度为R n,滑动窗信号强度变化程度为ΔR=|R n-R 1|,然后使用支持向量机对点进行标记,再对被标记为房间切换位点的位置进行误差纠正;
    2.2:假设地标群为Loc,距离阈值为δ,LOC={Loc 1,Loc 2,…,Loc i},当存在被标点l,且
    Figure PCTCN2020136377-appb-100002
    则计算被标记点无线访问接入点信号数据与各Loc的平均无线访问接入点信号数据的相似度,然后计算被标记点距离Loc中心点的距离d,选择d小于δ且相似度最高的地标群,修改当前点坐标为该地标群的中心点位置,更新地标群;
    步骤三:构建位置指纹地图
    对运动轨迹中轨迹拐角小于120°的拐点处进行分割,获得行人的轨迹片段,再将轨迹片段的平均无线访问接入点信号强度,聚类处理得到了多个片段族,再对多个片段族内无线访问接入点信号强度相似 性较高的轨迹片段进行合并,判断片段族间的连通性,除连通区域外,得到一组环绕各片段族的地图墙体,得到位置指纹地图;
    步骤四:在线定位
    4.1:对位置指纹地图进行预处理,计算每一位点处无线访问接入点信号数据的时间稳定性和各个无线访问接入点信号的相似性,然后筛选时间稳定性stability,时间稳定性stability计算如公式(2)和(3)所示;
    Figure PCTCN2020136377-appb-100003
    Figure PCTCN2020136377-appb-100004
    4.2:在线定位,在用户发送定位请求时,进行获取用户当前位置的无线访问接入点信号强度数据{AP 1,AP 2,…,AP N}和行人当前位置坐标(x0,y0),构成当前位置的状态变量E,E={AP 1,AP 2,…,AP N,x 0,y 0},计算当前位置状态变量与位置指纹地图中各点状态变量的欧氏距离,选择距离最小的k个位点,最后计算k个位点坐标平均值作为定位结果。
  2. 根据权利要求1所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述步骤一中推算行人航位前,先利用加速度幅值的阈值检测和周期性判断构建步伐检测算法,利用步伐检测算法进行步伐检测,然后基于步伐检测结果,再利用步长计算公式(4)计算出步长。
    Figure PCTCN2020136377-appb-100005
  3. 根据权利要求2所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述利用加速度幅值的阈值检测和周期性判断构建步伐检测算法,利用步伐检测算法进行步伐检测的具体过程为:假定行人加速度模值大于当地平均重力加速度δ g时刻为步伐发生时,假定行人的加速度模值小于或等于当地重力加速度时刻δ g为步伐完成时,当步伐发生时刻出现时触发步伐检测算法,平均重力加速度δ g的计算方式为:上一步伐持续时间内的重力加速度平均值,如公式(5)所示:
    Figure PCTCN2020136377-appb-100006
    然后给定自相关阈值δ corr,步伐发生时中自相关值大于δ corr者记为候选步伐,将步伐完成时和步伐发生时的时间差Δt不在[0.5,2]区间内的记为扰动,同时给定单步内加速度幅值的极值阈值为δ m,单步时段内极值超过δ m则记为扰动,最终的所有非扰动候选步伐为步伐检测结果。
  4. 根据权利要求1所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述步骤一中推算行人航位前,还需要根据陀螺仪方向角φ gyr和加速度-磁场方向角φ a-mag数据,利用加权平均法获取手机的方向角数据,如公式(6)所示。
    φ=Aφ gyr+Bφ a-mag  (6)
  5. 根据权利要求1所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述步骤一中推算行人航位前,还需要假设设备的加速度为a=[a x,a y,a z],令设备在水平面xoy内逆时针旋转ω,则得到公式(7);
    Figure PCTCN2020136377-appb-100007
    假设y为行人的前进方向,然后对
    Figure PCTCN2020136377-appb-100008
    进行频域分析,假定ω为设备与人之间的夹角θ angle,则
    Figure PCTCN2020136377-appb-100009
    频域最大值点为步频处,行人方向角计算如公式(8)所示。
    θ=θ angle+φ  (8)
  6. 根据权利要求1所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述步骤一中行人移动步长、行人移动的方向角和行人的下一位置坐标获取方法为:利用手机内嵌设的磁力计、陀螺仪和加速度传感器分别获取磁力数据、角运动数据和加速度数据,然后根据磁力数据、角运动数据和加速度数据获取手机方向角,并根据加速度数据获取手机与人体夹角以及移动步长,最后根据手机方向角和手机与人体夹角获取行人移动的方向角,根据行人移动的方向角和移动步长推算出行人的下一位置坐标。
  7. 根据权利要求1所述的一种基于群智感知和多融合技术的室内定位算法,其特征在于:所述步骤四公式(2)和(3)中AP i为第i个无线访问接入点信号,RSSI kj为第k个位点第j次信号采集的无线访 问接入点信号强度;N为位置指纹库中检测到AP i信号的位点数,n为同一个位点上重复测量的次数,v是极小值,防止分数被零除。
PCT/CN2020/136377 2020-04-20 2020-12-15 一种基于群智感知和多融合技术的室内定位算法 WO2021212878A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/06561A ZA202106561B (en) 2020-04-20 2021-09-07 Indoor positioning algorithm based on swarm intelligence perception and multi-fusion technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010309876.X 2020-04-20
CN202010309876.XA CN111491367B (zh) 2020-04-20 2020-04-20 一种基于群智感知和多融合技术的室内定位方法

Publications (1)

Publication Number Publication Date
WO2021212878A1 true WO2021212878A1 (zh) 2021-10-28

Family

ID=71812920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136377 WO2021212878A1 (zh) 2020-04-20 2020-12-15 一种基于群智感知和多融合技术的室内定位算法

Country Status (3)

Country Link
CN (1) CN111491367B (zh)
WO (1) WO2021212878A1 (zh)
ZA (1) ZA202106561B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005269A (zh) * 2021-10-29 2022-02-01 陕西省君凯电子科技有限公司 一种自行车智能管理方法及***
CN114018267A (zh) * 2021-11-04 2022-02-08 国网新源控股有限公司 基于可穿戴式室内巡检定位装置的融合定位方法
CN114608560A (zh) * 2022-03-22 2022-06-10 中国矿业大学 一种基于智能终端传感器的无源组合室内定位***及方法
CN114739412A (zh) * 2022-04-11 2022-07-12 河海大学 一种基于智能手机的行人步态实时检测方法及设备
CN114894196A (zh) * 2022-05-20 2022-08-12 上海航天测控通信研究所 一种航迹推算辅助的离开角测向定位方法
CN115166721A (zh) * 2022-09-05 2022-10-11 湖南众天云科技有限公司 路侧感知设备中雷达与gnss信息标定融合方法及装置
CN115292743A (zh) * 2022-07-06 2022-11-04 南京邮电大学 一种基于智群感知技术的大数据应用***
CN115580926A (zh) * 2022-11-17 2023-01-06 杭州明启数智科技有限公司 一种基于wifi指纹和改进knn算法的住宅楼宇室内定位方法
CN118055489A (zh) * 2024-01-31 2024-05-17 江南大学 Rss+pdr双源多尺度融合的室内定位方法及***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491367B (zh) * 2020-04-20 2021-03-30 电子科技大学 一种基于群智感知和多融合技术的室内定位方法
CN113203416B (zh) * 2021-03-19 2022-07-12 电子科技大学 一种针对摆臂行人的行人航位推算方法
CN113899368B (zh) * 2021-09-15 2023-06-23 武汉大学 一种基于室内指纹点拓扑关系的行人航向校正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180181879A1 (en) * 2016-12-28 2018-06-28 Sap Se Outdoor localization using hotspot labels
US20190110272A1 (en) * 2017-10-06 2019-04-11 Commissariat à l'énergie atomique et aux énergies alternatives Method of locating an access point to a communication network
CN110830939A (zh) * 2019-08-29 2020-02-21 天津大学 基于改进的cpn-wlan指纹定位数据库的定位方法
CN110856112A (zh) * 2019-11-14 2020-02-28 深圳先进技术研究院 一种群智感知的多源信息融合室内定位方法及***
CN111491367A (zh) * 2020-04-20 2020-08-04 电子科技大学 一种基于群智感知和多融合技术的室内定位算法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501538B (zh) * 2013-10-12 2016-03-30 清华大学 基于多径能量指纹的室内定位方法
CN104390643B (zh) * 2014-11-24 2017-05-31 上海赛特斯信息科技股份有限公司 基于多信息融合实现室内定位的方法
JP2016109426A (ja) * 2014-12-01 2016-06-20 株式会社東芝 サーバコンピュータ、測位システム、測位方法およびプログラム
CN106197418B (zh) * 2016-06-22 2019-10-11 西安交通大学 一种基于滑动窗口的指纹法与传感器融合的室内定位方法
CN107666638B (zh) * 2016-07-29 2019-02-05 腾讯科技(深圳)有限公司 一种估计录音延迟的方法及终端设备
CN106845392B (zh) * 2017-01-18 2020-06-30 华中科技大学 一种基于众包轨迹的室内转角地标的匹配及识别方法
CN107067038B (zh) * 2017-04-20 2020-06-30 哈尔滨工业大学 一种基于pdr轨迹绘制的室内楼宇轮廓修整方法
CN107339992B (zh) * 2017-08-24 2020-01-24 武汉大学 一种基于行为的室内定位和地标语义标识的方法
CN107688665B (zh) * 2017-09-27 2021-07-02 深圳大学 一种室内地图自动构建方法、装置及存储介质
US10546043B1 (en) * 2018-07-16 2020-01-28 Here Global B.V. Triangulation for K-anonymity in location trajectory data
CN109459030B (zh) * 2018-11-27 2021-01-29 北京方位捷讯科技有限公司 一种基于地标的行人定位修正方法及***
CN110557716B (zh) * 2019-09-03 2020-11-20 华南师范大学 一种基于对数正态模型的室内定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180181879A1 (en) * 2016-12-28 2018-06-28 Sap Se Outdoor localization using hotspot labels
US20190110272A1 (en) * 2017-10-06 2019-04-11 Commissariat à l'énergie atomique et aux énergies alternatives Method of locating an access point to a communication network
CN110830939A (zh) * 2019-08-29 2020-02-21 天津大学 基于改进的cpn-wlan指纹定位数据库的定位方法
CN110856112A (zh) * 2019-11-14 2020-02-28 深圳先进技术研究院 一种群智感知的多源信息融合室内定位方法及***
CN111491367A (zh) * 2020-04-20 2020-08-04 电子科技大学 一种基于群智感知和多融合技术的室内定位算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LASHKARI BAHAREH; REZAZADEH JAVAD; FARAHBAKHSH REZA; SANDRASEGARAN KUMBESAN: "Crowdsourcing and Sensing for Indoor Localization in IoT: A Review", IEEE SENSORS JOURNAL, vol. 19, no. 7, 1 April 2019 (2019-04-01), pages 2408 - 2434, XP011713521, ISSN: 1530-437X, DOI: 10.1109/JSEN.2018.2880180 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005269A (zh) * 2021-10-29 2022-02-01 陕西省君凯电子科技有限公司 一种自行车智能管理方法及***
CN114018267A (zh) * 2021-11-04 2022-02-08 国网新源控股有限公司 基于可穿戴式室内巡检定位装置的融合定位方法
CN114608560A (zh) * 2022-03-22 2022-06-10 中国矿业大学 一种基于智能终端传感器的无源组合室内定位***及方法
CN114608560B (zh) * 2022-03-22 2024-04-26 中国矿业大学 一种基于智能终端传感器的无源组合室内定位***及方法
CN114739412A (zh) * 2022-04-11 2022-07-12 河海大学 一种基于智能手机的行人步态实时检测方法及设备
CN114739412B (zh) * 2022-04-11 2024-05-03 河海大学 一种基于智能手机的行人步态实时检测方法及设备
CN114894196A (zh) * 2022-05-20 2022-08-12 上海航天测控通信研究所 一种航迹推算辅助的离开角测向定位方法
CN114894196B (zh) * 2022-05-20 2023-09-19 上海航天测控通信研究所 一种航迹推算辅助的离开角测向定位方法
CN115292743A (zh) * 2022-07-06 2022-11-04 南京邮电大学 一种基于智群感知技术的大数据应用***
CN115166721A (zh) * 2022-09-05 2022-10-11 湖南众天云科技有限公司 路侧感知设备中雷达与gnss信息标定融合方法及装置
CN115580926A (zh) * 2022-11-17 2023-01-06 杭州明启数智科技有限公司 一种基于wifi指纹和改进knn算法的住宅楼宇室内定位方法
CN118055489A (zh) * 2024-01-31 2024-05-17 江南大学 Rss+pdr双源多尺度融合的室内定位方法及***

Also Published As

Publication number Publication date
ZA202106561B (en) 2022-02-23
CN111491367B (zh) 2021-03-30
CN111491367A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2021212878A1 (zh) 一种基于群智感知和多融合技术的室内定位算法
Zhou et al. ALIMC: Activity landmark-based indoor mapping via crowdsourcing
US9696165B2 (en) Last-mile navigation using smartphones
CN108632761B (zh) 一种基于粒子滤波算法的室内定位方法
CN109413578B (zh) 一种基于wifi与pdr融合的室内定位方法
CN103905992B (zh) 一种基于指纹数据的无线传感器网络的室内定位方法
Liang et al. An automatic site survey approach for indoor localization using a smartphone
CN107396321B (zh) 基于手机传感器和iBeacon的无监督式室内定位方法
CN106525031B (zh) 一种组合的室内定位方法
CN109298389A (zh) 基于多粒子群优化的室内行人组合位姿估计方法
CN108534779A (zh) 一种基于轨迹纠正和指纹改进的室内定位地图构建方法
CN105898713A (zh) 一种基于加权余弦相似度的WiFi指纹室内定位方法
CN105813194A (zh) 基于指纹数据库二次校正的室内定位方法
CN109470238A (zh) 一种定位方法、装置和移动终端
CN109883428A (zh) 一种融合惯导、地磁和WiFi信息的高精度定位方法
CN104394588A (zh) 基于Wi-Fi指纹和多维尺度分析的室内定位方法
CN107966151A (zh) 一种基于多传感器融合技术的室内行人航位推算方法
Kwak et al. Magnetic field based indoor localization system: A crowdsourcing approach
Zhou et al. Anonymous crowdsourcing-based WLAN indoor localization
Gu et al. WiFi based trajectory alignment, calibration and crowdsourced site survey using smart phones and foot-mounted IMUs
Mansour et al. Everywhere: A framework for ubiquitous indoor localization
Kuusniemi et al. Multi-sensor multi-network seamless positioning with visual aiding
Zhang et al. Dual-band wi-fi based indoor localization via stacked denosing autoencoder
CN109739830A (zh) 一种基于众包数据的位置指纹数据库快速构建方法
Guan et al. Towards a crowdsourced radio map for indoor positioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932379

Country of ref document: EP

Kind code of ref document: A1