WO2021212648A1 - 一种协作机器人一体化关节的轴系结构 - Google Patents

一种协作机器人一体化关节的轴系结构 Download PDF

Info

Publication number
WO2021212648A1
WO2021212648A1 PCT/CN2020/097654 CN2020097654W WO2021212648A1 WO 2021212648 A1 WO2021212648 A1 WO 2021212648A1 CN 2020097654 W CN2020097654 W CN 2020097654W WO 2021212648 A1 WO2021212648 A1 WO 2021212648A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
motor
rear end
flexspline
bearing
Prior art date
Application number
PCT/CN2020/097654
Other languages
English (en)
French (fr)
Inventor
艾鹰
潘卫红
阎素珍
董俊
Original Assignee
广州市精谷智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市精谷智能科技有限公司 filed Critical 广州市精谷智能科技有限公司
Priority to JP2021538457A priority Critical patent/JP7207787B2/ja
Priority to EP20911304.2A priority patent/EP4140669A1/en
Priority to US17/419,853 priority patent/US11801609B2/en
Publication of WO2021212648A1 publication Critical patent/WO2021212648A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0241One-dimensional joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/108Bearings specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • F16H2049/003Features of the flexsplines therefor

Definitions

  • the invention relates to the technical field of collaborative robots, and in particular to a shaft system structure of an integrated joint of a collaborative robot that can assist in realizing high-precision position feedback.
  • the current mainstream high-precision collaborative robot joint structure mainly adopts the structure formed by the controller, the driver, the direct drive motor, the brake, and the harmonic reducer in sequence, and then the angle code is installed at the back end of the direct drive motor and the output end of the harmonic reducer
  • the controller performs position feedback and control.
  • the angle encoder mainly uses its rotating part to follow the measured axis to rotate coaxially, and then measure and determine the angular position of the rotation relative to its fixed part.
  • angle encoders often directly use the shaft system structure in the joints to perform angle measurement. Therefore, angle encoders It is very sensitive to the radial error of the joint shaft structure.
  • the direct drive motor when the direct drive motor starts to run for a period of time, it will generate heat, which tends to extend the series structure in the joint and cause greater deformation perpendicular to the axis of the shaft, which is not conducive to obtaining high-precision position signal feedback.
  • the extension of the joint parts after the temperature rises may cause the relative position of the rotating part and the fixed part of the angle encoder to move, which may cause the signal obtained by the angle encoder to change and affect the measurement result. All of these will make it difficult for the integrated joints of collaborative robots to achieve the goal of high-precision control.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a shafting structure of the integrated joint of a collaborative robot, which can assist in realizing high-precision position feedback and control, and can also adapt to working environments of different temperatures, ensuring that even in When the motor heats up, the input shaft of the harmonic reducer and the output end of the rigid wheel will not affect the stability of the structure and the coaxial accuracy of each other because the length of the input long shaft becomes longer.
  • the technical scheme of the present invention is: a shafting structure of a collaborative robot integrated joint, including an input long shaft, a harmonic reducer, a motor rear bearing set, a flexible wheel end bearing set, a motor rear inner ring pressure ring, and a motor Back end outer ring pressure ring, flexspline end inner ring pressure ring, motor rear outer ring seat and motor rear angle encoder mounting seat;
  • the two ends of the input long shaft are the rear end of the motor and the end of the flexspline respectively, and the harmonic reducer is installed on the end of the flexspline;
  • the rear end of the motor is provided with coaxially arranged motor rear bearing set, motor rear inner ring pressing ring, motor rear outer ring pressing ring, motor rear outer ring seat and motor rear angle encoder mounting seat.
  • the end inner ring pressure ring is arranged on the outer side of the end surface of the motor rear end bearing group, and the motor rear outer ring pressure ring is arranged on the outer circumference of the motor rear inner ring pressure ring, and is pressed against the outer circumference of the motor rear end bearing group, outside the motor rear end.
  • the ring seat is pressed against the outer circumference of the bearing group at the rear end of the motor, and the angle encoder mounting seat at the rear end of the motor is arranged at the outer end of the outer ring pressing ring at the rear end of the motor;
  • the flexspline end is provided with coaxially arranged flexspline end bearing set, flexspline end inner ring pressure ring and harmonic reducer.
  • the flexspline end inner ring pressure ring is set on the end face side of the flexspline end bearing set.
  • the reducer is arranged on the outer circumference of the flexspline end bearing group and the other side of the end surface.
  • one side of the harmonic reducer is also provided with a harmonic reducer fixing seat, and one end of the harmonic reducer fixing seat extends into the cavity of the flexspline of the harmonic reducer and is pressed against the bearing set of the flexspline end Between the harmonic reducer and the harmonic reducer, the other end of the harmonic reducer fixing seat is fixedly connected with the outer ring seat at the rear end of the motor.
  • the input long shaft is a hollow shaft, and the outer wall of the input long shaft has a cylindrical structure with a gradual change in diameter; wherein, the outer wall of the input long shaft at the point where it is connected to the harmonic reducer has a two-stage cylindrical structure, which is more flexible
  • the outer wall of the input long shaft where the pressure ring of the wheel end inner ring and the bearing set of the flexspline end is connected is a three-stage cylindrical structure, and the outer wall of the input long shaft where the pressure ring of the motor rear end of the inner ring and the motor rear bearing set are connected It also has a three-level cylindrical structure.
  • one end of the input long shaft passes through the wave generator and flexible wheel of the harmonic reducer through a precision shaft hole with high coaxial precision to form the input end of the harmonic reducer.
  • the end of the input long axis close to the input end of the harmonic reducer has a secondary cylindrical structure (that is, the above-mentioned "the outer wall of the input long axis where it is connected to the harmonic reducer has a secondary cylindrical structure"), and the secondary cylindrical structure forms
  • the input shaft flexspline installation step is used to install the combination of the harmonic reducer wave generator and the flexspline; the other end of the input long shaft near the back end of the motor and the middle part near the harmonic reducer wave generator have three stages each
  • the cylindrical structure is the three-stage cylindrical structure at the rear end of the motor and the three-stage cylindrical structure at the flexspline end, which are used to install the corresponding bearing set (that is, the above-mentioned "the place where the pressure ring of the inner ring of the flexspline end and the flexspline end bearing set are connected
  • the outer wall of the long input shaft is a three-stage cylindrical structure" and "the outer wall of the input long shaft where the pressure
  • the three-stage cylindrical structure at the rear end of the motor, the rear end bearing set of the motor, the inner ring pressing ring at the rear end of the motor, the outer ring pressing ring at the rear end of the motor, and the outer ring seat at the rear end of the motor form a high coaxial precision motor rear end bearing structure
  • the pressure ring of the inner ring of the motor rear end and the three-stage cylindrical structure of the rear end of the motor are connected by threads or fasteners, so that the inner ring pressure ring of the motor rear end is first compressed and fixed to the outer bearing inner ring of the motor rear bearing set and the motor rear bearing set
  • the inner bearing inner ring is then connected to the motor rear outer ring pressing ring and the motor rear outer ring seat through threads or fasteners, so that the motor rear outer ring pressing ring squeezes the outer bearing outer ring of the motor rear bearing group and the motor rear
  • this method of eliminating the clearance forms the input long shaft when the temperature changes in various working environments (especially It is the dead point when the shaft length changes when the heating temperature rises after the motor starts running for a period of time) to ensure that when the rotating part of the angle encoder at the rear of the motor is connected to the input long shaft, the stability of the angle encoder's overall structure will not be affected by the shaft length change The influence of this to prevent the decrease of angle measurement accuracy.
  • the three-stage cylindrical structure of the flexspline end, the bearing set of the flexspline end of the input shaft, the fixed seat of the harmonic reducer, and the pressure ring of the inner ring of the flexspline end of the input shaft form a high coaxial precision input shaft flexspline end bearing structure, and the flexspline end
  • the inner ring pressure ring and the flexspline end three-stage cylindrical structure are connected by threads or fasteners, so that the flexspline end inner ring pressure ring squeezes the inner bearing inner ring of the flexspline end bearing set and the outer bearing inner ring of the flexspline end bearing set.
  • the method eliminates the bearing clearance, and at the same time, this method of eliminating the clearance leaves more gaps between the two sides of the outer ring of the bearing of the flexspline end bearing group and the fixed seat of the harmonic reducer, which forms the input long shaft in various
  • the working environment is temperature changes (especially the active point where the shaft becomes longer when the heating temperature rises after the motor starts and runs for a period of time)
  • the input long shaft can be freely changed along the shaft direction with the temperature change, and the length does not occur along the shaft. Radial deformation, this structure can ensure that the input long shaft under various working environment temperature conditions, especially when the motor starts and runs for a period of time, the change of the input long shaft length will not affect the rigidity connected to the harmonic reducer.
  • the overall structure of the angle encoder at the output end of the wheel is stable to prevent the decrease of the angle measurement accuracy.
  • the fixed seat of the harmonic reducer and the outer ring seat of the rear end of the motor are connected with high coaxial precision through fasteners, and the fixed seat of the harmonic reducer is connected with the shell of the harmonic reducer through fasteners and adjusted to the rigid wheel of the harmonic reducer.
  • the output end and the fixed seat of the harmonic reducer are high-precision coaxial, so that during installation, the flexspline of the harmonic reducer can not produce deformation perpendicular to the axis of the shaft when there is no load, and the harmonic reducer
  • the output end of the rigid wheel is located at a position with high coaxial accuracy with the joint shaft system; at the same time, the double-bearing shaft system structure can increase the overall rigidity of the integrated joint and ensure the input end of the harmonic reducer under various working environment temperatures.
  • the structure of the output end of the wheel and the rigid wheel is stable, and at the same time, high coaxial accuracy between the two positions is obtained, and the influence of its own structure weight and load weight can be evenly distributed to the joint shaft system structure to avoid local deformation caused by its own weight and load It affects the accuracy of joint position feedback and control.
  • the input long axis is a hollow shaft, and the center hole is used to pass through the air pipe, oil pipe, cable, optical fiber, etc. required by the collaborative robot;
  • the input long axis near the input end of the harmonic reducer has a step formed by a two-stage cylindrical structure, and the outside
  • the diameter of the first-stage cylindrical structure is small, slightly smaller than the inner hole diameter of the wave generator of the harmonic reducer, so as to form a precise shaft hole fit;
  • the other end of the input long shaft is close to the back end of the motor and the middle is close to the wave generator of the harmonic reducer
  • each cylindrical structure is gradually reduced toward the outer side of the rear end of the motor, so that the long shaft is installed to the wave of the harmonic reducer.
  • the input shaft flexible wheel end bearing set, direct drive motor, brake and motor rear end bearing set are installed step by step.
  • the shape of the groove depends on the installation method of the direct drive motor and brake. Depends.
  • the three-stage cylindrical structure at the motor rear end of the input long shaft, the motor rear bearing set, the motor rear inner ring pressure ring, the motor rear outer ring pressure, and the motor rear outer ring seat ring constitute the motor rear end to eliminate the bearing clearance structure
  • this way of eliminating the clearance forms the dead center of the input long shaft when the temperature changes in various working environments, especially when the heating temperature rises after the motor starts and runs for a period of time, so as to ensure the rear end of the motor.
  • the rotating part of the angle encoder is connected to the input long shaft, the position will not be affected by the change of the shaft length, so as to prevent the angle measurement accuracy from being reduced.
  • the first-stage cylindrical structure outside the three-stage cylindrical structure at the rear end of the motor is connected to the inner ring pressure ring at the rear end of the motor through threads or fasteners during installation, so that the inner ring pressure ring at the rear end of the motor bears against the outer bearing of the rear end bearing group of the motor.
  • the end surface of the first-stage cylindrical structure of the three-stage cylindrical structure at the rear of the motor has threaded holes, which can be connected with the angle encoder mounting seat at the rear of the motor with high coaxial precision through fasteners to provide high-precision feedback of the motor position signal and Controlling the rotation angle of the motor provides a prerequisite;
  • the diameter of the second-stage cylindrical structure of the three-stage cylindrical structure at the rear of the motor is slightly smaller than the inner diameter of the inner ring of the bearing group at the rear of the motor to achieve precise hole-shaft matching;
  • the three-stage cylindrical structure at the rear of the motor The diameter of the third-stage cylindrical structure is smaller than the inner diameter of the outer ring of the bearing of the motor rear bearing set, and larger than the outer diameter of the inner ring of the bearing of the motor rear bearing set, so that the side surface of the bearing is against the inner bearing of the motor rear bearing set during installation lock up.
  • the three-stage cylindrical structure of the flexspline end, the bearing set of the flexspline end of the input shaft, the fixed seat of the harmonic reducer, and the pressure ring of the inner ring of the flexspline end of the input shaft constitute a structure that eliminates the bearing clearance at the flexspline end of the input shaft with high coaxial precision. At the same time, this way of eliminating the clearance leaves more gaps between the outer ring of the bearing of the flexspline end bearing group and the fixed seat of the harmonic reducer, which forms the input long shaft under various working environment temperature conditions, especially It is the active point at which the shaft becomes longer when the heating temperature rises after the motor starts and runs for a period of time.
  • the input long shaft can freely change with the temperature along the shaft direction at this end without any deformation along the radial direction of the shaft.
  • This structure can ensure that the input long shaft under various working environment temperature conditions, especially when the motor starts and runs for a period of time, the change in the length of the input long shaft will not affect the angle encoder connected to the output of the harmonic reducer
  • the overall structure is stable to prevent the decrease of angle measurement accuracy.
  • the first-stage cylindrical structure inside the three-stage cylindrical structure of the shaft flexspline end is connected to the flexspline end inner ring pressure ring through threads or fasteners during installation, so that the input shaft flexspline end inner ring pressure ring bears against the flexspline end bearing
  • the diameter of the second-stage cylindrical structure of the flexspline end of the three-stage cylindrical structure is slightly smaller than the diameter of the inner ring of the bearing inner ring of the flexspline end bearing group to achieve precise hole-shaft matching;
  • the third of the three-stage cylindrical structure of the flexspline end The diameter of the cylindrical structure is smaller than the inner diameter of the outer ring of the flexspline end bearing set, and larger than that of the inner ring of the flexspline end bearing set, so that the side surface of the flexspline end bearing set is against the inner ring of the outer bearing of the flexspline end bearing set during
  • the pressure ring of the inner ring at the rear end of the motor and the pressure ring of the inner ring at the flexspline end are both annular cylindrical structures.
  • the pressure ring of the inner ring at the rear end of the motor is a circular cylindrical structure.
  • the inner thread is used or the fastener passes through the counterbore on the end surface of the inner ring pressure ring at the rear of the motor to connect with the three-stage cylindrical structure at the rear of the motor.
  • the pressure ring of the rear inner ring bears against the inner bearing inner ring of the outer bearing of the motor rear bearing group.
  • the pressure ring of the inner ring of the flexspline end of the shaft is also a circular cylindrical structure, which is connected with the three-stage cylindrical structure of the flexspline end through the inner thread or the fastener passing through the counterbore on the end surface of the inner ring pressure ring of the flexspline end during installation. Make the pressure ring of the inner ring of the flexspline end against the inner bearing inner ring of the flexspline end bearing assembly.
  • the outer ring pressure ring at the rear end of the motor has a three-stage ring structure.
  • the three-stage ring structure is the first ring ring with the outer ring pressure ring gradually decreasing in diameter.
  • the diameter of the inner cavity of the second-stage annular structure is larger than the outer diameter of the outer ring of the motor rear bearing group; the inner diameter of the third-stage annular structure of the outer ring pressure ring is smaller than the outer diameter of the outer bearing ring of the motor rear bearing group.
  • the third-stage structure of the outer ring pressure ring and the inner ring pressure ring of the motor rear end are also provided with a sealing ring.
  • the inner thread of the first-stage annular structure with the largest diameter can be used, or the fastener can pass through the counterbore on the end surface of the first-stage annular structure of the outer ring pressure ring to connect with the outer ring seat at the rear end of the motor;
  • the inner cavity diameter of the second-stage annular structure is larger than the outer diameter of the outer ring of the motor rear bearing set;
  • the inner diameter of the third-stage annular structure is smaller than the inner diameter of the outer bearing outer ring of the rear-end bearing set of the motor, and larger than the outer diameter of the bearing inner ring.
  • the third-level annular structure has or does not have an annular groove on the side of the inner circular surface of the pressure ring of the inner ring at the rear end of the motor.
  • a sealing ring can be installed in this annular groove during installation to prevent external contaminants from entering the rear bearing of the motor. In the structure, it affects the running stability and coaxial accuracy of the bearing structure.
  • the outer ring seat at the rear end of the motor is a two-stage ring structure, along the center of the input long axis toward the outer circumference, the second ring structure is the first-stage ring structure of the outer ring seat at the rear end of the motor and the outer ring at the rear end of the motor.
  • the second-level ring structure of the seat the outer periphery of the first-level ring structure of the motor rear-end outer ring seat is connected with the motor rear-end outer ring pressure ring through threads or fasteners, and the motor rear-end outer ring seat is the inner cavity of the first-level ring structure
  • the inner diameter of the annular step is larger than the outer diameter of the bearing inner ring of the motor rear bearing group but smaller than the outer diameter of the bearing outer ring; the second-stage annular structure and harmonics of the outer ring seat of the motor rear end
  • the reducer holder is connected.
  • the outer side threads or fasteners of the first-stage annular structure with a smaller diameter can be connected with the pressure ring of the motor rear end outer ring, and the inner hole diameter of the first-stage annular structure is slightly larger than the motor rear-end bearing set
  • the outer diameter of the outer ring of the bearing is used to achieve precise hole-shaft matching.
  • the inner cavity of the first-stage annular structure has a small annular step.
  • the inner diameter of the annular step of the outer ring seat at the rear end of the motor is larger than the outer diameter of the inner ring of the bearing inner ring of the rear end bearing set of the motor. , Smaller than the outer diameter of the outer ring of the bearing.
  • the ring step of the outer ring seat of the motor rear end bears against the inner bearing outer ring of the motor rear bearing group, and the ring step of the outer ring seat of the motor rear end faces the three-stage cylindrical structure of the rear end of the input shaft.
  • the sealing ring can be installed in this annular groove during installation, so that the third-stage cylindrical structure of the three-stage cylindrical structure at the rear end of the input shaft motor and the outer ring seat of the motor rear end A seal is formed between the direct drive motor and the brake during operation to prevent the dust generated during the operation of the direct drive motor and the brake from entering the structure of the rear bearing group of the motor, so as not to affect the normal operation and coaxial accuracy of the rear bearing group structure of the motor.
  • Fasteners can be used to pass through the counterbore on the end face of the second-stage ring structure with a larger diameter to connect with the harmonic reducer holder with high coaxial precision.
  • the inner cavity of the second-stage ring structure is larger than the direct drive motor and the brake is harmonious.
  • the diameter of the outer edge of the wave reducer, the side wall of the second-stage ring structure has outlets for the direct drive motor and brake, so that the direct drive motor and brake are connected to the drive for control.
  • the end of the harmonic reducer fixing seat close to the rear end of the motor has a ring structure and is fixedly connected to the outer ring seat of the rear end of the motor; the ring structure can be connected with the outer ring seat of the rear end of the motor with high coaxial precision through fasteners.
  • the diameter of the inner cavity of the ring structure is larger than that of the outer edge of the direct drive motor and brake.
  • the side wall of the ring structure has outlets for direct drive motors and brakes, so that the direct drive motors and brakes can be connected to the drive for control.
  • the end of the fixed seat of the harmonic reducer close to the harmonic reducer is a two-stage ring structure, along the center of the input long axis to the outer circumference, the two-stage ring structure is the first-stage ring structure of the fixed seat and the second-stage ring structure of the fixed seat in turn ,
  • the first-stage annular structure of the fixed seat is embedded and installed between the flexspline end bearing group and the harmonic reducer, and the second-stage annular structure of the fixed seat is fixedly connected with the harmonic reducer.
  • fasteners can pass through the counterbore on the end face of the second-stage ring structure with a larger diameter to be connected with the harmonic reducer shell with high coaxial precision, so that the harmonic reducer flexspline is Without load, no deformation perpendicular to the axis of the shaft is generated, so as to adjust the output end of the rigid wheel of the harmonic reducer to a position with high coaxial precision with the joint shaft.
  • the first-stage ring structure is used to install the flexspline end bearing set.
  • the outer diameter of the first-stage ring structure is smaller than the diameter of the flexspline inner hole of the harmonic reducer, so that the flexspline end bearing structure can be installed in the harmonic reduction flexspline during installation.
  • the inner cavity diameter of the first-stage annular structure is slightly larger than the outer diameter of the outer ring of the flexspline end bearing group to achieve precise hole-shaft fit.
  • the first-stage annular structure has an annular step close to the inner bearing of the flexspline end bearing group.
  • the inner side of the annular step can be installed with a sealing ring to prevent the dust generated during the operation of the direct drive motor and the brake from entering the bearing structure, which affects the stability of the bearing structure and the coaxial accuracy.
  • the rear end bearing set of the motor and the flexspline end bearing set have the same structure. They respectively include two coaxially arranged bearings and two washers.
  • the two bearings are installed side by side on the input long shaft, and the two washers are respectively inner
  • the washer and the outer washer the inner washer is arranged between the inner rings of the two bearings
  • the outer washer is arranged between the outer rings of the two bearings.
  • the rear end bearing set of the motor and the flexspline end bearing set can be composed of a pair of identical bearings and inner and outer washers with a certain height difference between the two bearing inner rings and the two bearing outer rings, or a pair of prefabricated
  • the bearing composition has eliminated the clearance.
  • the height difference eliminates the bearing clearance; or press and fix the outer bearing outer ring of the motor rear bearing set and the inner bearing outer ring of the motor rear bearing set through the inner ring pressure ring at the rear end of the motor, and then squeeze it through the inner ring pressure ring at the rear end of the motor
  • the method of pressing the outer bearing inner ring of the motor rear bearing group and the inner bearing inner ring of the motor rear bearing group uses the height difference of the inner washer thickness of the motor rear bearing group greater than the thickness of the outer washer of the motor rear bearing group to eliminate the bearing clearance.
  • the inner bearing inner ring of the flexspline end bearing set and the outer bearing inner ring of the flexspline end bearing set are squeezed through the flexspline end inner ring pressing seat, and the outer gasket of the flexspline end bearing set is used.
  • the height difference of the thickness greater than the thickness of the gasket in the flexspline end bearing assembly eliminates bearing clearance.
  • the harmonic reducer includes a wave generator, a flexspline, a rigid wheel, and a housing that are sequentially arranged from the inside to the outside, and the inner wall of the wave generator is connected to the input long axis,
  • the flexible wheel is located between the wave generator and the rigid wheel, and the shell is fixedly connected with the fixed seat of the harmonic reducer.
  • the present invention has the following beneficial effects:
  • the shaft system structure of the integrated joint of the collaborative robot can assist in realizing high-precision position feedback and control, so that the input end of the harmonic reducer and the output end of the rigid wheel rely on this shaft system structure to obtain high coaxial accuracy under load conditions.
  • the angle encoder at the rear end of the auxiliary motor and the angle encoder at the rigid wheel output end of the harmonic reducer obtain high-precision position information feedback to achieve high-precision position feedback and control of the integrated joints of the collaborative robot.
  • it can adapt to various working environment temperatures, especially to ensure that when the motor starts and runs for a period of time, the input end of the harmonic reducer and the output end of the rigid wheel will not affect the structural stability and mutual interaction due to the lengthening of the input shaft. Coaxial accuracy between.
  • the hollow input long axis can easily pass through the air pipe, oil pipe, cable, optical fiber, etc. required by the collaborative robot.
  • the input long shaft has a three-stage cylindrical structure that is gradually reduced toward the outer side of the motor rear end at the positions near the rear end of the motor and near the end of the flexspline.
  • the inner ring pressure ring and the motor back end outer ring pressure ring form a high coaxial precision motor back end to eliminate the bearing clearance structure, and are combined with the flexspline end bearing set, the harmonic reducer fixing seat, and the flexspline end inner ring pressure ring
  • the structure of the flexible wheel end with high coaxial precision is formed to eliminate the bearing clearance, and a joint shafting structure with high coaxial precision is established.
  • the input end of the harmonic reducer composed of the wave generator of the input long shaft and the harmonic reducer and the flexspline is coaxial with the harmonic reducer fixing seat, and the harmonic reducer is installed with fasteners for the harmonic reducer shell
  • the harmonic reducer fixing seat adjust the output end of the rigid wheel of the harmonic reducer to a position with high coaxial precision with the harmonic reducer fixing seat, so that the flexible wheel can be installed without a load without verticality. Due to the deformation of the shaft center, the input end of the harmonic reducer and the output end of the rigid wheel are high-precision coaxial, and the overall rigidity of the joint shaft system is improved.
  • the input and output of the harmonic reducer can always maintain high coaxial accuracy, which provides a prerequisite for high-precision position feedback and control of the joints.
  • the flexspline end bearing structure is installed in the inner cavity of the flexspline of the harmonic reducer, which helps shorten the length of the input long shaft without affecting the function of the flexspline, and facilitates the control of machining accuracy and cost.
  • this shafting structure forms the dead and live points of the input long shaft under various working environment temperature conditions, especially when the heating temperature rises after the motor starts and runs for a period of time, which can ensure the long input shaft.
  • the shaft is under various working environment temperature conditions, especially when the heating temperature rises after the motor starts and runs for a period of time, the length of the shaft will not affect the relative position of the rotating part and the fixed part of the angle encoder at the rear end of the motor connected to the input long shaft. And the relative position relationship between the rotating part and the fixed part of the output angle encoder connected to the rigid wheel output end of the harmonic reducer, so as not to affect the position measurement result.
  • Figure 1 is a schematic structural diagram of the shaft system structure of the integrated joint of the collaborative robot.
  • Figure 2 is an axial cross-sectional view of the shaft system structure of the integrated joint of the collaborative robot.
  • Figure 3 is a partial enlarged view of the rear end bearing structure of the motor.
  • Figure 4 is a partial enlarged view of the structure of the harmonic reducer and the flexspline end bearing.
  • Fig. 5 is an outer end view of the bearing structure at the rear end of the motor.
  • Figure 6 is a schematic diagram of the input long shaft and the structure of the harmonic reducer.
  • 1 is the input long shaft
  • 1-1 is the installation step of the flexspline
  • 1-2 is the three-stage cylindrical structure at the rear end of the motor
  • 1-3 is the three-stage flexspline end Cylindrical structure
  • 2 is the rear end bearing set of the motor
  • 2-1 is the outer bearing of the rear end bearing set of the motor
  • 2-2 is the inner bearing of the rear end bearing set of the motor
  • 2-3 is the outer gasket of the rear end bearing set of the motor
  • 2-4 Is the inner washer of the motor rear bearing group
  • 3 is the inner ring pressure ring at the rear of the motor
  • 4 is the outer ring pressure ring at the rear of the motor
  • 5 is the outer ring seat at the rear of the motor
  • 5-1 is the annular step of the outer ring seat at the rear of the motor
  • 5-2 is the outlet of the outer ring seat at the rear end of the motor
  • 6 is the fixed seat of the harmonic reducer
  • 6-1 is the outlet of the fixed seat of the fixed seat
  • Ring 9 is the mounting seat of the angle encoder at the back end of the motor, 10 is the harmonic reducer, 10-1 is the wave generator, 10-2 is the shell, 10-3 is the flexible wheel, 10-4 is the rigid wheel, 11 is the Fastener, 12 is a sealing ring.
  • the shaft system structure of the integrated joint of the collaborative robot in this embodiment is shown in Figs. , Motor rear end outer ring pressing ring 4, motor rear end outer ring seat 5, harmonic reducer fixing seat 6, flexible wheel end bearing set 7, flexible wheel end inner ring pressing ring 8, motor rear end angle encoder mounting seat 9. Harmonic reducer 10, fastener 11 and sealing ring 12.
  • One end of the input long shaft 1 passes through the wave generator 10-1 and the flexible wheel 10-3 of the harmonic reducer 10 through a precision shaft hole with high coaxial precision to form the input end of the harmonic reducer.
  • the hollow input long shaft 1 has a secondary cylindrical structure at one end close to the input end of the harmonic reducer.
  • the input shaft flexible wheel installation step 1-1 formed by this structure is used to install the harmonic reducer wave generator 10-1 and the flexible wheel 10-3 assembly, the other end of the input long shaft near the rear end of the motor and the middle position near the wave generator of the harmonic reducer each have a three-stage cylindrical structure (that is, the three-stage cylindrical structure at the rear of the motor 1-2 and flexible The wheel end three-stage cylindrical structure 1-3), respectively used to install the corresponding bearing set.
  • the three-stage cylindrical structure 1-2 at the rear of the motor, the bearing set at the rear of the motor 2, the inner ring pressure ring at the rear end of the motor, the outer ring pressing ring 4 at the rear end of the motor, and the outer ring seat 5 at the rear end of the motor form a high coaxial precision motor Rear-end bearing structure.
  • the pressure ring 3 of the rear end of the motor and the three-stage cylindrical structure 1-2 at the rear of the motor are connected by threads, so that the pressure ring 3 of the rear end of the motor is first compressed and fixed to the inner ring of the outer bearing 2-1 of the rear bearing group of the motor and The inner ring of the inner bearing 2-2 of the motor rear end bearing group, and then through the threaded connection of the motor rear outer ring pressure ring 3 and the motor rear outer ring seat 5, the motor rear outer ring pressure ring 4 squeezes the motor rear end bearing
  • the arrangement of the outer ring of the outer bearing 2-1 and the inner bearing 2-2 of the motor rear bearing group eliminates the bearing clearance.
  • this method of eliminating the clearance forms the dead center of the input long shaft 1 when the temperature changes in various working environments, especially when the heating temperature rises after the motor starts and runs for a period of time.
  • the rotating part of the angle encoder at the end is connected to the input long shaft 1, the stability of the overall structure of the angle encoder will not be affected by the change of the shaft length, which prevents the angle measurement accuracy from being reduced.
  • the flexspline end three-stage cylindrical structure 1-3, the flexspline end bearing set 7, the harmonic reducer fixing seat 6, and the flexspline end inner ring pressure ring 8 form a high coaxial precision flexspline end bearing structure, and are connected by threads
  • the flexspline end inner ring pressure ring 8 and the flexspline end three-stage cylindrical structure 1-3 make the flexspline end inner ring pressure ring 8 squeeze the inner ring of the flexspline end bearing set 7-1 inner ring and the outer side of the flexspline end bearing set
  • the way of bearing 7-2 inner ring eliminates bearing clearance.
  • this way of eliminating the clearance leaves more gaps between the outer ring of the flexspline end bearing set 7 and the fixed seat 6 of the harmonic reducer.
  • This forms the input long shaft 1 in various working environments. When it changes, especially when the motor starts and runs for a period of time, the shaft becomes longer when the heating temperature rises.
  • the input long shaft 1 can freely change along the shaft direction with the change of temperature in the length without generating any radial direction along the shaft. deformation.
  • This structure can ensure that the input long shaft 1 under various working environment temperature conditions, especially when the motor starts running for a period of time, the change in the length of the input long shaft 1 will not affect the rigid wheel connected to the harmonic reducer 10- 4
  • the overall structure of the angle encoder at the output end is stable to prevent the angle measurement accuracy from being reduced.
  • the fixed seat 6 of the harmonic reducer and the outer ring seat 5 at the rear end of the motor are connected by a fastener 11 with high coaxial precision.
  • the harmonic reducer fixing seat 6 and the harmonic reducer housing 10-2 are connected by fasteners 11 and adjusted to the high-precision coaxial center of the harmonic reducer rigid wheel 10-4 output end and the harmonic reducer fixing seat 6, In this way, during installation, the harmonic reducer flexspline 10-3 can not produce deformation perpendicular to the shaft center under no load, and the output end of the harmonic reducer flexspline 10-4 is located in line with the joint shaft. It is a position with high coaxial accuracy.
  • such a double-bearing shafting structure can increase the overall rigidity of the integrated joint, ensure that the structure of the input and output ends of the harmonic reducer is stable under various working environment temperatures, and at the same time obtain the height between the two positions.
  • Coaxial accuracy can evenly disperse the influence of its own structural weight and load weight into the joint shaft structure, avoiding local deformation caused by its own weight and load and affecting the accuracy of joint position feedback and control.
  • the input long axis 1 is a hollow axis, and its central hole is used to pass through the air pipe, oil pipe, cable, optical fiber, etc. required by the collaborative robot.
  • the end of the input long axis close to the input end of the harmonic reducer has a flexspline installation step 1-1 formed by a two-stage cylindrical structure.
  • the outer first-stage cylindrical structure has a smaller diameter and is slightly smaller than the harmonic reducer wave generator 10 -1 Inner hole diameter in order to form a precision shaft hole fit.
  • the other end of the input long shaft near the back of the motor and the middle near the wave generator of the harmonic reducer each have a three-stage cylindrical structure with gradual diameters.
  • the diameters of the cylindrical structures of the two three-stage cylindrical structures are all facing the rear of the motor.
  • Direct drive Motor, brake and motor rear bearing group 2 There is a groove for installing the direct drive motor and brake between the three-stage cylindrical structure 1-3 at the flexspline end and the three-stage cylindrical structure 1-2 at the rear of the motor, so that the direct drive motor and brake can be installed by keys or splines.
  • the shape of the groove depends on the installation method of the direct drive motor and brake.
  • sealing ring 12 between the outer ring seat 5 at the rear end of the motor and the three-stage cylindrical structure 1-2 at the rear end of the motor, which can prevent the dust generated during the operation of the direct drive motor and the brake from entering the rear bearing group structure of the motor, so as to avoid Affect the normal operation and coaxial accuracy of the rear bearing group structure of the motor.
  • the first-stage cylindrical structure outside the three-stage cylindrical structure at the rear end of the motor is connected with the inner ring pressure ring 3 at the rear end of the motor through threads during installation, so that the inner ring pressure ring 3 at the rear end of the motor bears against the outer bearing 2 of the rear end bearing group of the motor. 1 inner circle.
  • the end surface of the first-stage cylindrical structure of the three-stage cylindrical structure 1-2 at the rear of the motor has threaded holes, which can be connected to the angle encoder mounting seat 9 at the rear of the motor with high coaxial precision through fasteners, which is a high-precision feedback of the motor position.
  • the signal and control motor rotation angle provide prerequisites.
  • the diameter of the second-stage cylindrical structure of the rear-end three-stage cylindrical structure 1-2 of the motor is slightly smaller than the inner diameter of the inner ring of the bearing inner ring of the rear-end bearing group 2 of the motor to achieve precise hole-shaft fit.
  • the diameter of the third-stage cylindrical structure of the rear-end three-stage cylindrical structure 1-2 of the motor is smaller than the inner edge diameter of the bearing outer ring of the rear-end bearing set 2 of the motor, and larger than the outer edge diameter of the inner ring of the bearing inner ring of the rear-end bearing set 2 of the motor. Use its side to bear against the inner ring of the inner bearing 2-2 of the motor rear bearing group.
  • the flexspline end three-stage cylindrical structure 1-3, the input shaft flexspline end bearing set 7, the harmonic reducer fixing seat 6, the flexspline end inner ring pressure ring 8 constitute a high coaxial precision input shaft flexspline end to eliminate the bearing travel The structure of the gap.
  • this way of eliminating the clearance leaves more gaps between the two sides of the outer ring of the flexspline end bearing set 7 and the fixed seat 6 of the harmonic reducer, which forms the input long shaft 1 in various working environment temperature conditions.
  • the shaft becomes longer when the heating temperature rises.
  • the input long shaft 1 can freely change with the temperature along the shaft direction at this end without any deformation along the radial direction of the shaft.
  • This structure can ensure that the input long shaft 1 under various working environment temperature conditions, especially when the motor starts to run for a period of time, the change in the length of the input long shaft 1 will not affect the angle connected to the output end of the harmonic reducer.
  • the overall structure of the encoder is stable to prevent the decrease of angle measurement accuracy.
  • the first-level cylindrical structure inside the flexspline end three-stage cylindrical structure 1-3 is connected to the flexspline end inner ring pressure ring 8 through threads during installation, so that the flexspline end inner ring pressure ring 8 bears against the inner side of the flexspline end bearing set Bearing 7-1 inner ring.
  • the diameter of the second-stage cylindrical structure of the flexspline end three-stage cylindrical structure 1-3 is slightly smaller than the inner diameter of the inner ring of the flexspline end bearing set 7 to achieve precise hole-shaft fit.
  • the diameter of the third-stage cylindrical structure of the flexspline end three-stage cylindrical structure 1-3 is smaller than the inner diameter of the outer ring of the flexspline end bearing set 7 bearing outer ring, and larger than the outer edge diameter of the inner ring of the flexspline end bearing set 7 bearing, so that during installation Use its side to bear against the inner ring of the outer bearing 7-2 of the flexspline end bearing group.
  • Both the motor rear end bearing set 2 and the flexspline end bearing set 7 can be composed of a pair of identical bearings and inner and outer washers with a certain height difference between the two bearing inner rings and the two bearing outer rings.
  • inner and outer washers with height difference to install the rear end bearing set 2 of the motor, first fix the outer bearing 2-1 inner ring of the rear end bearing set of the motor and the inner bearing 2 of the inner end bearing set of the motor through the inner ring pressure ring 3 of the rear end of the motor.
  • the inner ring press the outer ring of the motor rear end bearing group outer bearing 2-1 outer ring and the inner bearing 2-2 outer ring of the motor rear end bearing group through the outer ring pressure ring at the rear end of the motor, using the outer ring of the rear end bearing group of the motor
  • the height difference of the thickness of the washer 2-3 is greater than the thickness of the washer 2-4 in the bearing group of the motor rear end to eliminate the bearing clearance.
  • the pressure ring 3 of the inner ring at the rear end of the motor is a circular cylindrical structure, which is connected with the three-stage cylindrical structure 1-2 at the rear end of the motor through the inner thread during installation, so that the inner ring pressure ring 3 at the rear end of the motor bears against the outer bearing of the rear end bearing group of the motor. 2-1 inner circle.
  • the pressure ring 4 of the outer ring at the rear end of the motor is a three-stage ring structure, which can be connected to the outer ring seat 5 at the rear end of the motor through the inner thread of the first ring structure with the largest diameter.
  • the inner cavity diameter of the second-stage annular structure is larger than the outer diameter of the outer ring of the bearing group 2 at the rear end of the motor.
  • the inner cavity diameter of the third-stage annular structure is smaller than the inner diameter of the outer ring of the bearing group 2 at the rear end of the motor, and larger than the outer diameter of the inner ring of the bearing.
  • the third-level annular structure has an annular groove on one side of the inner circular surface of the inner ring pressure ring 3 at the rear end of the motor.
  • the sealing ring 12 can be installed in this groove during installation to prevent external contaminants from entering the bearing structure. Stable operation and coaxial accuracy of the bearing structure.
  • the outer ring seat 5 at the rear end of the motor is a two-stage annular structure, which can be connected to the pressing ring 4 of the outer ring at the rear end of the motor through a threaded member on the outer side of the first-stage annular structure with a smaller diameter.
  • the inner hole diameter of the first-stage annular structure is slightly larger than the outer diameter of the outer ring of the bearing group 2 at the rear end of the motor to achieve precise hole-shaft fit.
  • the inner cavity of the first-stage annular structure has a small annular step.
  • the inner diameter of the annular step 5-1 of the outer ring seat at the motor rear end is larger than the outer diameter of the inner ring of the bearing inner ring of the motor rear bearing group 2 and smaller than the inner diameter of the outer ring of the bearing.
  • the annular step 5-1 of the outer ring seat at the rear end of the motor bears against the outer ring of the inner bearing 2-2 of the rear end bearing group of the motor.
  • the annular step 5-1 of the outer ring seat at the rear end of the motor faces the input shaft.
  • a seal is formed between the third-stage cylindrical structure 1-2 of the rear-end three-stage cylindrical structure of the shaft motor and the outer ring seat 5 at the rear of the motor to prevent the dust generated during the operation of the direct drive motor and the brake from entering the rear-end bearing group structure of the motor. So as not to affect the normal operation and coaxial accuracy of the rear bearing group structure of the motor.
  • Fasteners can be used to pass through the counterbore on the end surface of the second-stage ring structure with a larger diameter to connect with the harmonic reducer fixing seat with high coaxial precision.
  • the inner cavity diameter of the second-level ring structure is larger than the outer diameter of the direct drive motor and the brake.
  • the side wall of the second-level ring structure has outlets 5-2 for the direct drive motor and brake (as shown in Figure 5), so that the direct drive motor and brake are connected to the drive for control.
  • the end of the harmonic reducer fixing seat 6 close to the rear end of the motor has a ring structure, and can be connected with the outer ring seat 5 of the rear end of the motor with high coaxial precision through a fastener 11.
  • the diameter of the inner cavity of the ring structure is larger than that of the outer edge of the direct drive motor and brake.
  • the side wall of the ring structure has outlets 6-1 for direct drive motors and brakes (as shown in Figure 2), so that the direct drive motors and brakes can be connected to the drive for control.
  • the end of the harmonic reducer fixing seat 6 close to the harmonic reducer 10 is a secondary ring structure, which can be passed through the counterbore on the end surface of the second-level ring structure with a larger diameter through the fastener 11 and the harmonic reducer
  • the housing 10-2 is connected with high coaxial precision, so that the flexspline 10-3 of the harmonic reducer does not produce deformation perpendicular to the shaft axis under the condition of no load, so as to adjust the rigid wheel 10- of the harmonic reducer. 4 Output terminal to a position with high coaxial accuracy with the joint axis.
  • the first-stage ring structure is used to install the input shaft flexspline end bearing set 7.
  • the outer diameter of the first stage ring structure is smaller than the inner hole diameter of the harmonic reducer flexspline 10-3, so that the input shaft flexspline end bearing structure can be installed during installation In the inner cavity of the harmonic deceleration flexspline 10-3, the space is effectively used to shorten the length of the input long shaft 1.
  • the inner cavity diameter of the first-stage annular structure is slightly larger than the outer diameter of the outer ring of the flexspline bearing group 7 to achieve precise hole-shaft fit.
  • the first-stage annular structure has an annular step close to the inner bearing 7-1 of the flexspline end bearing group.
  • the inner side of the annular step is equipped with a sealing ring to prevent the dust generated during the operation of the direct drive motor and the brake from entering the bearing structure, which affects the stability of the bearing structure and the coaxial accuracy.
  • the pressure ring 8 of the inner ring of the flexspline end is a circular cylindrical structure, which is connected with the three-stage cylindrical structure 1-3 of the flexspline end through the inner thread during installation, so that the pressure ring 8 of the inner ring of the flexspline end bears against the outer bearing of the flexspline end bearing group 7-2 inner circle.
  • the hollow input long axis can be used to conveniently pass through the air pipe, oil pipe, cable, optical fiber, etc. required by the collaborative robot.
  • the input long shaft has a three-stage cylindrical structure that is gradually reduced toward the outer side of the motor rear end at the positions near the rear end of the motor and near the end of the flexspline.
  • the inner ring pressure ring and the motor back end outer ring pressure ring form a high coaxial precision motor back end to eliminate the bearing clearance structure, and are combined with the flexspline end bearing set, the harmonic reducer fixing seat, and the flexspline end inner ring pressure ring
  • the structure of the flexible wheel end with high coaxial precision is formed to eliminate the bearing clearance, and a joint shafting structure with high coaxial precision is established.
  • the input end of the harmonic reducer composed of the wave generator of the input long shaft and the harmonic reducer and the flexspline is coaxial with the harmonic reducer fixing seat, and the harmonic reducer is installed to the harmonic reducer housing with fasteners.
  • the harmonic reducer holder adjusts the output end of the rigid wheel of the harmonic reducer to a position with high coaxial precision with the harmonic reducer holder, so that the flexible wheel can be installed without a load.
  • the deformation of the shaft center of the shaft system ensures high-precision coaxiality between the input end and the output end of the harmonic reducer, and at the same time improves the overall rigidity of the joint shaft system.
  • the input and output of the harmonic reducer can always maintain high coaxial accuracy, which provides a prerequisite for high-precision position feedback and control of the joints.
  • the input shaft flexspline end bearing structure is installed in the inner cavity of the flexspline of the harmonic reducer, which helps shorten the length of the input shaft without affecting the function of the flexspline, and facilitates the control of machining accuracy and cost.
  • this shafting structure forms the dead and live points of the input long shaft under various working environment temperature conditions, especially when the heating temperature rises after the motor starts and runs for a period of time, which can ensure the long input shaft.
  • the shaft is under various working environment temperature conditions, especially when the heating temperature rises after the motor starts and runs for a period of time, the length of the shaft will not affect the relative position of the rotating part and the fixed part of the angle encoder at the rear end of the motor connected to the input long shaft. And the relative position relationship between the rotating part and the fixed part of the output angle encoder connected to the rigid wheel output end of the harmonic reducer, so as not to affect the position measurement result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Manipulator (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种协作机器人一体化关节的轴系结构,输入长轴(1)的两端分别为电机后端和柔轮端,谐波减速器(10)安装于柔轮端上;电机后端上设有同轴设置的电机后端轴承组(2)、电机后端内圈压环(3)、电机后端外圈压环(4)、电机后端外圈座(5)和电机后端角度编码器安装座(9);柔轮端上设有同轴设置的柔轮端轴承组(7)、柔轮端内圈压环(8)和谐波减速器。该轴系结构可辅助实现高精度位置反馈和控制,使得输入端和输出端都依赖此轴系结构在负载和各种工作环境温度条件下都获得高同轴精度,辅助角度编码器获得高精度的位置信息反馈,实现协作机器人一体化关节高精度位置反馈和控制。

Description

一种协作机器人一体化关节的轴系结构 技术领域
本发明涉及协作机器人技术领域,特别涉及一种可辅助实现高精度位置反馈的协作机器人一体化关节的轴系结构。
背景技术
工业机器人目前已大量替代人做重复性、大负载的工作。但由于其设计中没有考虑与人协作的安全措施,只能在工作时将其隔离开来,以防止人员受到伤害。近年来,一类可与人进行安全协作、共同完成特定任务的协作机器人逐渐兴起,特别是在精密装配、模具和产品检测、医疗手术等这类对精度控制要求较高的领域有着广阔的应用前景。然而进行人机协作时,对高精度控制的要求是工作空间内全方位的,而不再是以往工业机器人要求的点对点重复定位精度。这就要求只有组成协作机器人的每一个关节都需要具备高精度位置反馈和控制的能力,才能在经过标定后使协作机器人达到工作空间内全方位高精度控制的要求。
目前主流的高精度协作机器人关节结构主要是采用控制器、驱动器、直驱电机、制动器、谐波减速器依次串联形成的结构,然后在直驱电机后端和谐波减速器输出端安装角度编码器进行位置反馈和控制。角度编码器主要利用其旋转部分跟随被测轴同轴旋转,然后测量确定相对其固定部分旋转的角度位置。但在协作机器人一体化关节中,由于其角度测量原理和安装空间的限制,以及出于控制成本的考虑,角度编码器往往是直接借助关节内的轴系结构来进行角度测量,因此角度编码器对关节轴系结构的径向误差十分敏感。只有在将角度编码器旋转部分高径向精度安装在关节轴系结构上的前提条件下,才有可能实现角度编码器的高精度位置反馈,特别是在谐波减速器输出端与输入端之间要保证高同轴精度。这是由于直驱电机后端和谐波减速器输出端角度编码器的旋转部分是分别跟随谐波减速器输入端与输出端同轴旋转,而这两个角度编码器的固定部分又都是固定在一体化关节中不动的部分上,因此安装后谐波减速器输出端与输入端之间的高同轴精度是实现协作机 器人一体化关节高精度位置反馈和控制的关键前提条件。
然而主流的协作机器人一体化关节结构中,只是将谐波减速器输入轴和直驱电机以及制动器依次串连起来,而谐波减速器输入端与刚轮输出端之间缺乏相应的机构来保证两者之间的同轴精度,仅有内部柔轮连接而缺乏刚性。这也会导致关节轴系结构存在整体刚性不足的问题。当刚轮输出端受自重和负载的影响,可能发生垂直于轴系轴心的位移,难以保证谐波减速器输出端与输入端之间的同轴精度。并且当直驱电机启动运行一段时间后会发热,往往会使关节中的串联结构延长而发生更大垂直于轴系轴心的形变,不利于获得高精度的位置信号反馈。同时关节部件在温度升高后延长可能导致角度编码器旋转部分和固定部分发生位置相对移动,这可能导致角度编码器获得的信号发生变化而影响测量结果。这些都将使得协作机器人一体化关节难以实现高精度控制的目标。
现在需要一种协作机器人一体化关节辅助实现高精度位置反馈的轴系结构,使得谐波减速器的输入轴和刚轮输出端都依赖此轴系结构在负载和长时间运行发热的条件下获得高同轴精度。
发明内容
本发明的目的在于克服现有技术的不足,提供一种协作机器人一体化关节的轴系结构,该结构可辅助实现高精度位置反馈和控制,同时还可以适应不同温度的工作环境,保证即使在电机发热的情况下,谐波减速器输入轴和刚轮输出端也不会因为输入长轴长度变长而影响其结构稳定和相互之间的同轴精度。
本发明的技术方案为:一种协作机器人一体化关节的轴系结构,包括输入长轴、谐波减速器、电机后端轴承组、柔轮端轴承组、电机后端内圈压环、电机后端外圈压环、柔轮端内圈压环、电机后端外圈座和电机后端角度编码器安装座;
输入长轴的两端分别为电机后端和柔轮端,谐波减速器安装于柔轮端上;
电机后端上设有同轴设置的电机后端轴承组、电机后端内圈压环、电机 后端外圈压环、电机后端外圈座和电机后端角度编码器安装座,电机后端内圈压环设于电机后端轴承组的端面外侧,电机后端外圈压环设于电机后端内圈压环的外周,压紧于电机后端轴承组的外周,电机后端外圈座压紧于电机后端轴承组的外周,电机后端角度编码器安装座设于电机后端外圈压环的外端;
柔轮端上设有同轴设置的柔轮端轴承组、柔轮端内圈压环和谐波减速器,柔轮端内圈压环设于柔轮端轴承组的端面一侧,谐波减速器设于柔轮端轴承组的外周及端面另一侧。
进一步地,所述谐波减速器的一侧还设有谐波减速器固定座,谐波减速器固定座的一端伸入谐波减速器柔轮内空腔并压紧于柔轮端轴承组和谐波减速器之间,谐波减速器固定座的另一端与电机后端外圈座固定连接。
进一步地,所述输入长轴为中空轴,输入长轴的外壁呈多个直径渐变的圆柱结构;其中,与谐波减速器相接之处的输入长轴外壁呈二级圆柱结构,与柔轮端内圈压环和柔轮端轴承组相接之处的输入长轴外壁呈三级圆柱结构,与电机后端内圈压环和电机后端轴承组相接之处的输入长轴外壁也呈三级圆柱结构。
上述结构的输入长轴安装时,具体为:输入长轴的一端通过精密轴孔配合高同轴精度穿过谐波减速器的波发生器和柔轮后,组成谐波减速器输入端。
输入长轴靠近谐波减速器输入端的一端具有一个二级圆柱结构(即上述“与谐波减速器相接之处的输入长轴外壁呈二级圆柱结构”),该二级圆柱结构形成的输入轴柔轮安装台阶用于安装谐波减速器波发生器和柔轮的组合件;输入长轴另一端靠近电机后端的位置和中部靠近谐波减速器波发生器的位置各有一个三级圆柱结构,分别为电机后端三级圆柱结构和柔轮端三级圆柱结构,用于安装对应的轴承组(即上述“与柔轮端内圈压环和柔轮端轴承组相接之处的输入长轴外壁呈三级圆柱结构”和“与电机后端内圈压环和电机后端轴承组相接之处的输入长轴外壁也呈三级圆柱结构”)。位于电机后端的三级圆柱结构与电机后端轴承组、电机后端内圈压环、电机后端外圈压环、 电机后端外圈座组成高同轴精度的电机后端轴承结构,且电机后端内圈压环和电机后端三级圆柱结构通过螺纹或紧固件连接,使电机后端内圈压环先压紧固定电机后端轴承组外侧轴承内圈和电机后端轴承组内侧轴承内圈,然后通过螺纹或紧固件连接电机后端外圈压环和电机后端外圈座,使电机后端外圈压环挤压电机后端轴承组外侧轴承外圈和电机后端轴承组内侧轴承外圈的方式;或电机后端外圈压环和电机后端外圈座通过螺纹或紧固件连接,使电机后端外圈压环先压紧固定电机后端轴承组外侧轴承外圈和电机后端轴承组内侧轴承外圈,然后通过螺纹或紧固件连接电机后端外圈压环和电机后端外圈座,使电机后端内圈压环挤压电机后端轴承组外侧轴承内圈和电机后端轴承组内侧轴承内圈的方式消除了轴承游隙,同时这种消除游隙的方式形成了输入长轴在各种工作环境中发生温度变化时(特别是电机启动运行一段时间后发热温度升高情况下轴长度变化时的死点)保证电机后端的角度编码器旋转部分连接到输入长轴时,角度编码器整体结构的稳定不会受到轴长度变化的影响,防止造成角度测量精度降低。柔轮端三级圆柱结构与输入轴柔轮端轴承组、谐波减速器固定座、输入轴柔轮端内圈压环组成高同轴精度的输入轴柔轮端轴承结构,且柔轮端内圈压环和柔轮端三级圆柱结构通过螺纹或紧固件连接,使柔轮端内圈压环挤压柔轮端轴承组内侧轴承内圈和柔轮端轴承组外侧轴承内圈的方式消除了轴承游隙,同时这种消除游隙的方式在柔轮端轴承组轴承外圈两侧与谐波减速器固定座之间都留有较多空隙,这样形成了输入长轴在各种工作环境为温度变化时(特别是电机启动运行一段时间后发热温度升高情况下轴变长的活点)输入长轴可以在此端沿轴方向随温度的变化长度自由变化而不产生沿轴径向的形变,这种结构可以保证输入长轴在各种工作环境温度条件下,尤其是在电机启动运行一段时间后发热时,输入长轴长度的变化不会影响连接到谐波减速器刚轮输出端的角度编码器整体结构稳定,防止造成角度测量精度降低。
谐波减速器固定座与电机后端外圈座通过紧固件高同轴精度连接,谐波减速器固定座与谐波减速器的外壳通过紧固件连接,调整至谐波减速器刚轮 输出端与谐波减速器固定座高精度同轴心,这样使得在安装时,谐波减速器柔轮在没有负载的情况下可以不产生垂直于轴系轴心的形变,并使谐波减速器刚轮输出端位于与关节轴系高同轴精度的位置;同时这样的双轴承组轴系结构,既可以增加一体化关节的整体刚性,保证在各种工作环境温度下谐波减速器输入端和刚轮输出端的结构稳定,并同时获得两者位置之间高同轴精度,又可以将自身结构重量和负载重量的影响均匀分散到关节轴系结构中,避免因自重和负载引发局部的形变而影响关节位置反馈和控制的精度。
输入长轴为中空轴,中心孔用于穿过协作机器人所需的气管、油管、电缆、光纤等;输入长轴靠近谐波减速器输入端的一端具有一个二级圆柱结构形成的台阶,靠外的第一级圆柱结构直径较小,略小于谐波减速器波发生器内孔直径,以便形成精密轴孔配合;输入长轴另一端靠近电机后端的位置和中部靠近谐波减速器波发生器的位置各有一个直径渐变的三级圆柱结构,这两个三级圆柱结构中各级圆柱结构直径均朝电机后端外侧方向逐级缩小,以便输入长轴在安装到谐波减速器的波发生器中组成谐波减速器的输入端之后,逐级安装输入轴柔轮端轴承组、直驱电机、制动器和电机后端轴承组等部件。在柔轮端和电机后端三级圆柱结构之间留有安装直驱电机和制动器的凹槽,以便通过键或花键安装直驱电机和制动器,凹槽形状依据直驱电机和制动器安装方式而定。在直驱电机和柔轮端轴承组之间有密封圈,可防止直驱电机和制动器运行过程中产生的粉尘进入输入轴柔轮端轴承组和谐波减速器,以免影响柔轮端轴承组和谐波减速器的正常运行和同轴精度。输入长轴的电机后端三级圆柱结构与电机后端轴承组、电机后端内圈压环、电机后端外圈压、电机后端外圈座环组成电机后端消除轴承游隙的结构,同时这种消除游隙的方式形成了输入长轴在各种工作环境为温度变化时,特别是电机启动运行一段时间后发热温度升高情况下轴长度变化时的死点,保证电机后端的角度编码器旋转部分连接到输入长轴时位置不会受到轴长度变化的影响,防止造成角度测量精度降低。此外,在电机后端外圈座和输入长轴电机后端三级圆柱结构之间有密封圈,可防止直驱电机和制动器运行过程中产生的粉 尘进入电机后端轴承组结构,以免影响电机后端轴承组结构正常运行和同轴精度。
电机后端三级圆柱结构外侧的第一级圆柱结构在安装时通过螺纹或紧固件与电机后端内圈压环连接,使电机后端内圈压环顶住电机后端轴承组外侧轴承内圈,电机后端三级圆柱结构的第一级圆柱结构端面有螺纹孔,可通过紧固件与电机后端角度编码器安装座高同轴精度连接,以此为高精度反馈电机位置信号和控制电机转动角度提供前提条件;电机后端三级圆柱结构的第二级圆柱结构直径略小于电机后端轴承组轴承内圈内缘直径以实现精密孔轴配合;电机后端三级圆柱结构的第三级圆柱结构直径小于电机后端轴承组轴承外圈内缘直径,且大于电机后端轴承组轴承内圈外缘直径,这样在安装时以其侧面顶住电机后端轴承组内侧轴承内圈。
柔轮端三级圆柱结构、输入轴柔轮端轴承组、谐波减速器固定座、输入轴柔轮端内圈压环组成高同轴精度的输入轴柔轮端消除轴承游隙的结构。同时这种消除游隙的方式在柔轮端轴承组轴承外圈两侧与谐波减速器固定座之间留有较多空隙,这样形成了输入长轴在各种工作环境温度条件下,尤其是电机启动运行一段时间后发热温度升高情况下轴变长的活点,输入长轴可以在此端沿轴方向随温度变化长度自由变化而不产生沿轴径向的形变。这种结构可以保证输入长轴在各种工作环境温度条件下,尤其是在电机启动运行一段时间后发热发热时,输入长轴长度的变化不会影响连接到谐波减速器输出端的角度编码器整体结构稳定,防止造成角度测量精度降低。
轴柔轮端三级圆柱结构内侧的第一级圆柱结构在安装时通过螺纹或紧固件与柔轮端内圈压环连接,使输入轴柔轮端内圈压环顶住柔轮端轴承组内侧轴承内圈;柔轮端三级圆柱结构的第二级圆柱结构直径略小于柔轮端轴承组轴承内圈内缘直径以实现精密孔轴配合;柔轮端三级圆柱结构的第三级圆柱结构直径小于柔轮端轴承组轴承外圈内缘直径,且大于柔轮端轴承组轴承内圈外缘直径,这样在安装时以其侧面顶住柔轮端承组外侧轴承内圈。
进一步地,所述电机后端内圈压环和柔轮端内圈压环均为环形圆柱结构。 电机后端内圈压环为环形圆柱结构,在安装时通过内侧螺纹,或紧固件穿过电机后端内圈压环端面上的沉头孔与电机后端三级圆柱结构连接,使电机后端内圈压环顶住电机后端轴承组外侧轴承内圈。轴柔轮端内圈压环也为环形圆柱结构,在安装时通过内侧螺纹,或紧固件穿过柔轮端内圈压环端面上的沉头孔与柔轮端三级圆柱结构连接,使柔轮端内圈压环顶住柔轮端轴承组内侧轴承内圈。
进一步地,所述电机后端外圈压环为三级环形结构,沿输入长轴的中部向电机后端方向,三级环形结构依次为直径逐级减小的外圈压环第一级环形结构、外圈压环第二级环形结构和外圈压环第三级环形结构;外圈压环第一级环形结构通过螺纹或紧固件与电机后端外圈座连接;外圈压环第二级环形结构的内腔直径大于电机后端轴承组的轴承外圈外缘直径;外圈压环第三级环形结构的内腔直径小于电机后端轴承组的轴承外圈外缘直径,且大于电机后端轴承组的轴承内圈外缘直径;外圈压环第三级结构与电机后端内圈压环的相接处还设有密封圈。该三级环形结构中,可通过直径最大的第一级环形结构内侧螺纹,或紧固件穿过外圈压环第一级环形结构端面上的沉头孔与电机后端外圈座连接;第二级环形结构内腔直径大于电机后端轴承组轴承外圈外缘直径;第三级环形结构内腔直径小于电机后端轴承组轴承外圈内缘直径,大于轴承内圈外缘直径。安装时,第三级环形结构侧面顶住电机后端轴承组外侧轴承外圈。第三级环形结构靠近电机后端内圈压环的内圆面一侧有或无一条环形凹槽,安装时可在此环形凹槽内安装密封圈,以防外界污染物进入电机后端轴承结构中,影响轴承结构的运行稳定和同轴精度。
进一步地,所述电机后端外圈座为二级环形结构,沿输入长轴的中心向外周方向,二级环形结构依次为电机后端外圈座第一级环形结构和电机后端外圈座第二级环形结构;电机后端外圈座第一级环形结构的外周通过螺纹或紧固件与电机后端外圈压环连接,电机后端外圈座第一级环形结构的内腔中还设有一个环形台阶,环形台阶的內缘直径大于电机后端轴承组的轴承内圈外缘直径但小于轴承外圈外缘直径;电机后端外圈座第二级环形结构与谐波 减速器固定座连接。该二级环形结构中,可通过直径较小的第一级环形结构外侧侧螺纹或紧固件与电机后端外圈压环连接,第一级环形结构内孔直径略大于电机后端轴承组轴承外圈外缘直径以实现精密孔轴配合,第一级环形结构内腔有一个小的环形台阶,电机后端外圈座环形台阶内缘直径大于电机后端轴承组轴承内圈外缘直径,小于轴承外圈外缘直径,安装时电机后端外圈座环形台阶顶住电机后端轴承组内侧轴承外圈,电机后端外圈座环形台阶朝向输入轴电机后端三级圆柱结构的内圆面上有或无一条环形凹槽,安装时可在此环形凹槽内安装密封圈,以此在输入轴电机后端三级圆柱结构的第三级圆柱结构和电机后端外圈座之间形成密封,防止直驱电机和制动器运行过程中产生的粉尘进入电机后端轴承组结构,以免影响电机后端轴承组结构正常运行和同轴精度。可通过紧固件穿过直径较大的第二级环形结构端面上的沉头孔与谐波减速器固定座高同轴精度相连,第二级环形结构内腔直径大于直驱电机、制动器和谐波减速器外缘直径,第二级环形结构侧壁有直驱电机和制动器的出线口,以便直驱电机和制动器连接到驱动器上进行控制。
进一步地,所述谐波减速器固定座靠近电机后端的一端为环形结构,与电机后端外圈座固定连接;该环形结构可通过紧固件与电机后端外圈座高同轴精度连接。环形结构内腔直径大于直驱电机、制动器外缘直径。环形结构侧壁有直驱电机和制动器的出线口,以便直驱电机和制动器连接到驱动器上进行控制。
谐波减速器固定座靠近谐波减速器的一端为二级环形结构,沿输入长轴的中心向外周方向,二级环形结构依次为固定座第一级环形结构和固定座第二级环形结构,固定座第一级环形结构嵌入安装于柔轮端轴承组和谐波减速器之间,固定座第二级环形结构与谐波减速器固定连接。该二级环形结构中,可通过紧固件穿过直径较大的第二级环形结构端面上的沉头孔与谐波减速器外壳高同轴精度相连,这样使得谐波减速器柔轮在没有负载的情况下不产生垂直于轴系轴心的形变,以便调整谐波减速器刚轮输出端至与关节轴系高同轴精度的位置。第一级环形结构用于安装柔轮端轴承组,第一级环形结构外 径小于谐波减速器的柔轮内孔直径,以便安装时将柔轮端轴承结构安装在谐波减速柔轮内腔,有效利用空间来缩短输入长轴的长度。第一级环形结构内腔直径略大于柔轮端轴承组轴承外圈外缘直径以实现精密孔轴配合。第一级环形结构靠近柔轮端轴承组内侧轴承的位置有一个环形台阶。环形台阶内侧可安装密封圈,以防直驱电机和制动器运行过程中产生的粉尘进入轴承结构中,影响轴承结构的运行稳定和同轴精度。
进一步地,所述电机后端轴承组和柔轮端轴承组结构相同,分别包括同轴设置的两个轴承和两个垫圈,两个轴承并列安装于输入长轴上,两个垫圈分别为内垫圈和外垫圈,内垫圈设于两个轴承的内圈之间,外垫圈设于两个轴承的外圈之间。电机后端轴承组和柔轮端轴承组都可由一对相同的轴承及分别位于两个轴承内圈的和两个轴承外圈之间有着一定高度差的内外垫圈组成,或由一对经过预制已经消除游隙的轴承组成。当使用具有高低差的内外垫圈安装电机后端轴承组时,通过电机后端内圈压环先压紧固定电机后端轴承组外侧轴承内圈和电机后端轴承组内侧轴承内圈,然后通过电机后端外圈压环挤压电机后端轴承组外侧轴承外圈和电机后端轴承组内侧轴承外圈的方式,利用电机后端轴承组外垫圈厚度大于电机后端轴承组内垫圈厚度的高度差消除轴承游隙;或通过电机后端内圈压环先压紧固定电机后端轴承组外侧轴承外圈和电机后端轴承组内侧轴承外圈,然后通过电机后端内圈压环挤压电机后端轴承组外侧轴承内圈和电机后端轴承组内侧轴承内圈的方式,利用电机后端轴承组内垫圈厚度大于电机后端轴承组外垫圈厚度的高度差消除了轴承游隙。而安装柔轮端轴承组时,则通过柔轮端内圈压座挤压柔轮端轴承组内侧轴承内圈和柔轮端轴承组外侧轴承内圈的方式,利用柔轮端轴承组外垫圈厚度大于柔轮端轴承组内垫圈厚度的高度差消除轴承游隙。而使用经过预制已经消除游隙的轴承时,则只需要正常安装即可,不需要形成高度差。
进一步地,沿输入长轴的中心向外周方向,所述谐波减速器包括由内向外依次设置的波发生器、柔轮、刚轮和外壳,波发生器的内壁与输入长轴相接,柔轮位于波发生器和刚轮之间,外壳与谐波减速器固定座固定连接。
本发明相对于现有技术,具有以下有益效果:
本协作机器人一体化关节的轴系结构可辅助实现高精度位置反馈和控制,使得谐波减速器的输入端和刚轮输出端都依赖此轴系结构在负载条件下获得高同轴精度,以此辅助电机后端的角度编码器和谐波减速器刚轮输出端的角度编码器获得高精度的位置信息反馈,以实现协作机器人一体化关节高精度位置反馈和控制。同时又可以适应各种工作环境温度,尤其是保证当电机启动运行一段时间后发热时,谐波减速器输入端和刚轮输出端不会因为输入轴长度变长而影响其结构稳定和相互之间的同轴精度。
另外,本协作机器人一体化关节的轴系结构中,中空的输入长轴可以方便穿过协作机器人所需的气管、油管、电缆、光纤等。输入长轴在靠近电机后端和靠近柔轮端的位置各有一个朝电机后端外侧方向逐级缩小的三级圆柱结构,分别与电机后端轴承组、电机后端外圈座、电机后端内圈压环、电机后端外圈压环组成高同轴精度的电机后端消除轴承游隙的结构,以及与柔轮端轴承组、谐波减速器固定座、柔轮端内圈压环组成高同轴精度的柔轮端消除轴承游隙的结构,建立起一个高同轴精度的关节轴系结构。输入长轴和谐波减速器的波发生器与柔轮组成的谐波减速器输入端,与谐波减速器固定座同轴,通过谐波减速器外壳用紧固件将谐波减速器安装到谐波减速器固定座时,调整谐波减速器刚轮输出端至与谐波减速器固定座高同轴精度的位置,这样可使柔轮在没有负载的情况下安装时,可以不产生垂直于轴系轴心的形变,并保证谐波减速器输入端与刚轮输出端之间高精度同轴,同时提高了关节轴系整体的刚性。由于将负载和输出端自重的影响均匀分配,可确保在负载情况下,谐波减速器输入端与输出端之间可以始终保持高同轴精度,为关节高精度位置反馈和控制提供前提条件。同时柔轮端轴承结构安装在谐波减速器柔轮内腔,在不影响柔轮功能的前提下有利于缩短输入长轴的长度,方便控制加工精度和成本。另外,这一轴系结构分别形成了输入长轴在各种工作环境温度条件下,尤其是电机启动运行一段时间后发热温度升高情况下轴变长的死点和活点,可以保证输入长轴在各种工作环境温度条件下,尤其是 电机启动运行一段时间后发热温度升高情况下轴变长不会影响与输入长轴连接的电机后端角度编码器旋转部分与固定部分的相对位置关系,以及与谐波减速器刚轮输出端连接的输出端角度编码器旋转部分与固定部分的相对位置关系,以免影响位置测量结果。
附图说明
图1为本协作机器人一体化关节的轴系结构的结构示意图。
图2为本协作机器人一体化关节的轴系结构的轴向剖面视图。
图3为电机后端轴承结构的局部放大图。
图4为谐波减速器和柔轮端轴承结构的局部放大图。
图5为电机后端轴承结构的外端面视图。
图6为输入长轴和谐波减速器的结构示意图。
上述各图中,各附图标记所示部件如下:1为输入长轴,1-1为柔轮安装台阶,1-2为电机后端三级圆柱结构,1-3为柔轮端三级圆柱结构,2为电机后端轴承组,2-1为电机后端轴承组外侧轴承,2-2为电机后端轴承组内侧轴承,2-3为电机后端轴承组外垫圈,2-4为电机后端轴承组内垫圈,3为电机后端内圈压环,4为电机后端外圈压环,5为电机后端外圈座,5-1为电机后端外圈座环形台阶,5-2为电机后端外圈座出线口,6为谐波减速器固定座,6-1为谐波减速器固定座出线口,7为柔轮端轴承组,7-1为柔轮端轴承组内侧轴承,7-2为柔轮端轴承组外侧轴承,7-3为柔轮端轴承组外垫圈,7-4为柔轮端轴承组内垫圈,8为柔轮端内圈压环,9为电机后端角度编码器安装座,10为谐波减速器,10-1为波发生器,10-2为外壳,10-3为柔轮,10-4为刚轮,11为紧固件,12为密封圈。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例
本实施例一种协作机器人一体化关节的轴系结构,如图1至图5所示, 该轴系结构主要由输入长轴1、电机后端轴承组2、电机后端内圈压环3、电机后端外圈压环4、电机后端外圈座5、谐波减速器固定座6、柔轮端轴承组7、柔轮端内圈压环8、电机后端角度编码器安装座9、谐波减速器10、紧固件11和密封圈12组成。
输入长轴1的一端通过精密轴孔配合高同轴精度穿过谐波减速器10的波发生器10-1和柔轮10-3组成谐波减速器的输入端。
中空的输入长轴1靠近谐波减速器输入端的一端具有一个二级圆柱结构,该结构形成的输入轴柔轮安装台阶1-1用于安装谐波减速器波发生器10-1和柔轮10-3的组合件,输入长轴另一端靠近电机后端的位置和中部靠近谐波减速器波发生器的位置各有一个三级圆柱结构(即电机后端三级圆柱结构1-2和柔轮端三级圆柱结构1-3),分别用于安装对应的轴承组。电机后端三级圆柱结构1-2、电机后端轴承组2、电机后端内圈压环3、电机后端外圈压环4、电机后端外圈座5组成高同轴精度的电机后端轴承结构。且通过螺纹连接电机后端内圈压环3和电机后端三级圆柱结构1-2,使电机后端内圈压环3先压紧固定电机后端轴承组外侧轴承2-1内圈和电机后端轴承组内侧轴承2-2内圈,然后通过通过螺纹连接电机后端外圈压环3和电机后端外圈座5,使电机后端外圈压环4挤压电机后端轴承组外侧轴承2-1外圈和电机后端轴承组内侧轴承2-2外圈的方式消除了轴承游隙。同时这种消除游隙的方式形成了输入长轴1在各种工作环境中发生温度变化时,特别是电机启动运行一段时间后发热温度升高情况下轴长度变化时的死点,保证电机后端的角度编码器旋转部分连接到输入长轴1时,角度编码器整体结构的稳定不会受到轴长度变化的影响,防止造成角度测量精度降低。
柔轮端三级圆柱结构1-3、柔轮端轴承组7、谐波减速器固定座6、柔轮端内圈压环8组成高同轴精度的柔轮端轴承结构,且通过螺纹连接柔轮端内圈压环8和柔轮端三级圆柱结构1-3,使柔轮端内圈压环8挤压柔轮端轴承组内侧轴承7-1内圈和柔轮端轴承组外侧轴承7-2内圈的方式消除了轴承游隙。同时这种消除游隙的方式在柔轮端轴承组7轴承外圈两侧与谐波减速器 固定座6之间都留有较多空隙,这样形成了输入长轴1在各种工作环境为温度变化时,特别是电机启动运行一段时间后发热温度升高情况下轴变长的活点,输入长轴1可以在此端沿轴方向随温度的变化长度自由变化而不产生沿轴径向的形变。这种结构可以保证输入长轴1在各种工作环境温度条件下,尤其是在电机启动运行一段时间后发热时,输入长轴1长度的变化不会影响连接到谐波减速器刚轮10-4输出端的角度编码器整体结构稳定,防止造成角度测量精度降低。
谐波减速器固定座6与电机后端外圈座5通过紧固件11高同轴精度连接。谐波减速器固定座6与谐波减速器外壳10-2通过紧固件11连接,调整至谐波减速器刚轮10-4输出端与谐波减速器固定座6高精度同轴心,这样使得在安装时,谐波减速器柔轮10-3在没有负载的情况下可以不产生垂直于轴系轴心的形变,并使谐波减速器刚轮10-4输出端位于与关节轴系高同轴精度的位置。同时这样的双轴承组轴系结构,既可以增加一体化关节的整体刚性,保证在各种工作环境温度下谐波减速器的输入端和输出端的结构稳定,并同时获得两者位置之间高同轴精度,又可以将自身结构重量和负载重量的影响均匀分散到关节轴系结构中,避免因自重和负载引发局部的形变而影响关节位置反馈和控制的精度。
输入长轴1为中空轴,其中心孔用于穿过协作机器人所需的气管、油管、电缆、光纤等。输入长轴靠近谐波减速器输入端的一端具有一个二级圆柱结构形成的柔轮安装台阶1-1,靠外的第一级圆柱结构直径较小,略小于谐波减速器波的发生器10-1内孔直径,以便形成精密轴孔配合。输入长轴另一端靠近电机后端的位置和中部靠近谐波减速器波发生器的位置各有一个直径渐变的三级圆柱结构,这两个三级圆柱结构中各级圆柱结构直径均朝电机后端外侧逐级缩小,以便输入长轴1在安装到谐波减速器的波发生器10-1中组成谐波减速器的输入端之后,逐级安装输入轴柔轮端轴承组7、直驱电机、制动器和电机后端轴承组2。在柔轮端三级圆柱结构1-3和电机后端三级圆柱结构1-2之间留有安装直驱电机和制动器的凹槽,以便通过键或花键安装直 驱电机和制动器。凹槽形状依据直驱电机和制动器安装方式而定。在直驱电机和输入轴柔轮端轴承组之间有密封圈7,可防止直驱电机和制动器运行过程中产生的粉尘进入柔轮端轴承组7和谐波减速器10,以免影响柔轮端轴承组7和谐波减速器10正常运行和同轴精度。输入长轴电机后端三级圆柱结构1-2、电机后端轴承组2、电机后端内圈压环3、电机后端外圈压环4、电机后端外圈座5组成电机后端消除轴承游隙的结构。同时这种消除游隙的方式形成了输入长轴1在各种工作环境为温度变化时,特别是电机启动运行一段时间后发热温度升高情况下轴长度变化时的死点,保证电机后端的角度编码器旋转部分连接到输入长轴1时位置不会受到轴长度变化的影响,防止造成角度测量精度降低。此外,在电机后端外圈座5和电机后端三级圆柱结构1-2之间有密封圈12,可防止直驱电机和制动器运行过程中产生的粉尘进入电机后端轴承组结构,以免影响电机后端轴承组结构正常运行和同轴精度。
电机后端三级圆柱结构外侧的第一级圆柱结构在安装时通过螺纹与电机后端内圈压环3连接,使电机后端内圈压环3顶住电机后端轴承组外侧轴承2-1内圈。电机后端三级圆柱结构1-2的第一级圆柱结构端面有螺纹孔,可通过紧固件与电机后端角度编码器安装座9高同轴精度连接,以此为高精度反馈电机位置信号和控制电机转动角度提供前提条件。电机后端三级圆柱结构1-2的第二级圆柱结构直径略小于电机后端轴承组2轴承内圈内缘直径以实现精密孔轴配合。电机后端三级圆柱结构1-2的第三级圆柱结构直径小于电机后端轴承组2轴承外圈内缘直径,且大于电机后端轴承组2轴承内圈外缘直径,这样在安装时以其侧面顶住电机后端轴承组内侧轴承2-2内圈。
柔轮端三级圆柱结构1-3、输入轴柔轮端轴承组7、谐波减速器固定座6、柔轮端内圈压环8组成高同轴精度的输入轴柔轮端消除轴承游隙的结构。同时这种消除游隙的方式在柔轮端轴承组7轴承外圈两侧与谐波减速器固定座6之间留有较多空隙,这样形成了输入长轴1在各种工作环境温度条件下,尤其是电机启动运行一段时间后发热温度升高情况下轴变长的活点,输入长轴1可以在此端沿轴方向随温度变化长度自由变化而不产生沿轴径向的形 变。这种结构可以保证输入长轴1在各种工作环境温度条件下,尤其是在电机启动运行一段时间后发热发热时,输入长轴1长度的变化不会影响连接到谐波减速器输出端的角度编码器整体结构稳定,防止造成角度测量精度降低。
柔轮端三级圆柱结构1-3内侧的第一级圆柱结构在安装时通过螺纹与柔轮端内圈压环8连接,使柔轮端内圈压环8顶住柔轮端轴承组内侧轴承7-1内圈。柔轮端三级圆柱结构1-3的第二级圆柱结构直径略小于柔轮端轴承组7轴承内圈内缘直径以实现精密孔轴配合。柔轮端三级圆柱结构1-3的第三级圆柱结构直径小于柔轮端轴承组7轴承外圈内缘直径,且大于柔轮端轴承组7轴承内圈外缘直径,这样在安装时以其侧面顶住柔轮端承组外侧轴承7-2内圈。
电机后端轴承组2和柔轮端轴承组7都可由一对相同的轴承及分别位于两个轴承内圈的和两个轴承外圈之间的有着一定高度差的内外垫圈组成。当使用具有高低差的内外垫圈安装电机后端轴承组2时,通过电机后端内圈压环3先固定电机后端轴承组外侧轴承2-1内圈和电机后端轴承组内侧轴承2-2内圈,然后通过电机后端外圈压环挤压电机后端轴承组外侧轴承2-1外圈和电机后端轴承组内侧轴承2-2外圈的方式,利用电机后端轴承组外垫圈2-3厚度大于电机后端轴承组内垫圈2-4厚度的高度差消除轴承游隙。而安装柔轮端轴承组7时,则通过柔轮端内圈压座8挤压柔轮端轴承组内侧轴承7-1内圈和柔轮端轴承组外侧轴承7-2内圈的方式,利用柔轮端轴承组外垫圈7-3厚度大于柔轮端轴承组内垫圈7-4厚度的高度差消除轴承游隙。
电机后端内圈压环3为环形圆柱结构,在安装时通过内侧螺纹与电机后端三级圆柱结构1-2连接,使电机后端内圈压环3顶住电机后端轴承组外侧轴承2-1内圈。
电机后端外圈压环4为三级环形结构,可通过直径最大的第一级环形结构内侧螺纹与电机后端外圈座5连接。第二级环形结构内腔直径大于电机后端轴承组2轴承外圈外缘直径。第三级环形结构内腔直径小于电机后端轴承组2轴承外圈内缘直径,大于轴承内圈外缘直径。安装时,第三级环形结构 侧面顶住电机后端轴承组外侧轴承2-1外圈。第三级环形结构靠近电机后端内圈压环3的内圆面一侧有一条环形凹槽,安装时可在此凹槽内安装密封圈12,以防外界污染物进入轴承结构中,影响轴承结构的运行稳定和同轴精度。
电机后端外圈座5为二级环形结构,可通过直径较小的第一级环形结构外侧侧螺纹件与电机后端外圈压环4连接。第一级环形结构内孔直径略大于电机后端轴承组2轴承外圈外缘直径以实现精密孔轴配合。第一级环形结构内腔有一个小的环形台阶,电机后端外圈座环形台阶5-1内缘直径大于电机后端轴承组2轴承内圈外缘直径,小于轴承外圈内缘直径。安装时电机后端外圈座环形台阶5-1顶住电机后端轴承组内侧轴承2-2外圈。电机后端外圈座环形台阶5-1朝向输入轴电机后端三级圆柱结构1-2的内圆面上有一条凹槽,安装时可在此凹槽内安装密封圈,以此在输入轴电机后端三级圆柱结构1-2的第三级圆柱结构和电机后端外圈座5之间形成密封,防止直驱电机和制动器运行过程中产生的粉尘进入电机后端轴承组结构,以免影响电机后端轴承组结构正常运行和同轴精度。可通过紧固件穿过直径较大的第二级环形结构端面上的沉头孔与谐波减速器固定座高同轴精度相连。第二级环形结构内腔直径大于直驱电机和制动器外缘直径。第二级环形结构侧壁有直驱电机和制动器的出线口5-2(如图5所示),以便直驱电机和制动器连接到驱动器上进行控制。
谐波减速器固定座6靠近电机后端的一端为环形结构,可通过紧固件11与电机后端外圈座5高同轴精度连接。环形结构内腔直径大于直驱电机、制动器外缘直径。环形结构侧壁有直驱电机和制动器的出线口6-1(如图2所示),以便直驱电机和制动器连接到驱动器上进行控制。
谐波减速器固定座6靠近谐波减速器10的一端为二级环形结构,可通过紧固件11穿过直径较大的第二级环形结构端面上的沉头孔与谐波减速器的外壳10-2高同轴精度相连,这样使得谐波减速器的柔轮10-3在没有负载的情况下不产生垂直于轴系轴心的形变,以便调整谐波减速器的刚轮10-4输出端至与关节轴系高同轴精度的位置。第一级环形结构用于安装输入轴柔轮端 轴承组7,第一级环形结构外径小于谐波减速器柔轮10-3内孔直径,以便安装时将输入轴柔轮端轴承结构安装在谐波减速柔轮10-3内腔,有效利用空间来缩短输入长轴1的长度。第一级环形结构内腔直径略大于柔轮端轴承组7轴承外圈外缘直径以实现精密孔轴配合。第一级环形结构靠近柔轮端轴承组内侧轴承7-1的位置有一个环形台阶。环形台阶内侧安装密封圈,以防直驱电机和制动器运行过程中产生的粉尘进入轴承结构中,影响轴承结构的运行稳定和同轴精度。
柔轮端内圈压环8为环形圆柱结构,在安装时通过内侧螺纹与柔轮端三级圆柱结构1-3连接,使柔轮端内圈压环8顶住柔轮端轴承组外侧轴承7-2内圈。
本实施例中,利用中空的输入长轴可以方便穿过协作机器人所需的气管、油管、电缆、光纤等。输入长轴在靠近电机后端和靠近柔轮端的位置各有一个朝电机后端外侧方向逐级缩小的三级圆柱结构,分别与电机后端轴承组、电机后端外圈座、电机后端内圈压环、电机后端外圈压环组成高同轴精度的电机后端消除轴承游隙的结构,以及与柔轮端轴承组、谐波减速器固定座、柔轮端内圈压环组成高同轴精度的柔轮端消除轴承游隙的结构,建立起一个高同轴精度的关节轴系结构。输入长轴和谐波减速器的波发生器与柔轮组成的谐波减速器输入端与谐波减速器固定座同轴,通过谐波减速器外壳用紧固件将谐波减速器安装到谐波减速器固定座时,调整谐波减速器刚轮输出端至与谐波减速器固定座高同轴精度的位置,这样可使柔轮在没有负载的情况下安装时,可以不产生垂直于轴系轴心的形变,并保证谐波减速器输入端与输出端之间高精度同轴,同时提高了关节轴系整体的刚性。由于将负载和输出端自重的影响均匀分配,可确保在负载情况下,谐波减速器输入端与输出端之间可以始终保持高同轴精度,为关节高精度位置反馈和控制提供前提条件。同时输入轴柔轮端轴承结构安装在谐波减速器柔轮内腔,在不影响柔轮功能的前提下有利于缩短输入轴长度,方便控制加工精度和成本。另外,这一轴系结构分别形成了输入长轴在各种工作环境温度条件下,尤其是电机启动运 行一段时间后发热温度升高情况下轴变长的死点和活点,可以保证输入长轴在各种工作环境温度条件下,尤其是电机启动运行一段时间后发热温度升高情况下轴变长不会影响与输入长轴连接的电机后端角度编码器旋转部分与固定部分的相对位置关系,以及与谐波减速器刚轮输出端连接的输出端角度编码器旋转部分与固定部分的相对位置关系,以免影响位置测量结果。
如上所述,便可较好地实现本发明,上述实施例仅为本发明的较佳实施例,并非用来限定本发明的实施范围;即凡依本发明内容所作的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。

Claims (9)

  1. 一种协作机器人一体化关节的轴系结构,其特征在于,包括输入长轴、谐波减速器、电机后端轴承组、柔轮端轴承组、电机后端内圈压环、电机后端外圈压环、柔轮端内圈压环、电机后端外圈座和电机后端角度编码器安装座;
    输入长轴的两端分别为电机后端和柔轮端,谐波减速器安装于柔轮端上;
    电机后端上设有同轴设置的电机后端轴承组、电机后端内圈压环、电机后端外圈压环、电机后端外圈座和电机后端角度编码器安装座,电机后端内圈压环设于电机后端轴承组的端面外侧,电机后端外圈压环设于电机后端内圈压环的外周,压紧于电机后端轴承组的外周,电机后端外圈座压紧于电机后端轴承组的外周,电机后端角度编码器安装座设于电机后端外圈压环的外端;
    柔轮端上设有同轴设置的柔轮端轴承组、柔轮端内圈压环和谐波减速器,柔轮端内圈压环设于柔轮端轴承组的端面一侧,谐波减速器设于柔轮端轴承组的外周及端面另一侧。
  2. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述谐波减速器的一侧还设有谐波减速器固定座,谐波减速器固定座的一端伸入谐波减速器柔轮内腔,并压紧于柔轮端轴承组和谐波减速器之间,谐波减速器固定座的另一端与电机后端外圈座固定连接。
  3. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述输入长轴为中空轴,输入长轴的外壁呈多个直径渐变的圆柱结构;其中,与谐波减速器相接之处的输入长轴外壁呈二级圆柱结构,与柔轮端内圈压环和柔轮端轴承组相接之处的输入长轴外壁呈三级圆柱结构,与电机后端内圈压环和电机后端轴承组相接之处的输入长轴外壁也呈三级圆柱结构。
  4. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述电机后端内圈压环和柔轮端内圈压环均为环形圆柱结构。
  5. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述电机后端外圈压环为三级环形结构,沿输入长轴的中部向电机后端方向,三级环形结构依次为直径逐级减小的外圈压环第一级环形结构、外圈压环第二级环形结构和外圈压环第三级环形结构;外圈压环第一级环形结构通过 螺纹或紧固件与电机后端外圈座连接;外圈压环第二级环形结构的内腔直径大于电机后端轴承组的轴承外圈外缘直径;外圈压环第三级环形结构的内腔直径小于电机后端轴承组的轴承外圈外缘直径,且大于输入端抽承租的轴承内圈外缘直径;外圈压环第三级结构与电机后端内圈压环的相接处还设有密封圈。
  6. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述电机后端外圈座为二级环形结构,沿输入长轴的中心向外周方向,二级环形结构依次为电机后端外圈座第一级环形结构和电机后端外圈座第二级环形结构;电机后端外圈座第一级环形结构的外周通过螺纹或紧固件与电机后端外圈压环连接,电机后端外圈座第一级环形结构的内腔中还设有一个环形台阶,环形台阶的內缘直径大于电机后端轴承组的轴承内圈外缘直径但小于轴承外圈外缘直径;电机后端外圈座第二级环形结构与谐波减速器固定座连接。
  7. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述谐波减速器固定座靠近电机后端的一端为环形结构,与电机后端外圈座固定连接;
    谐波减速器固定座靠近谐波减速器的一端为二级环形结构,沿输入长轴的中心向外周方向,二级环形结构依次为固定座第一级环形结构和固定座第二级环形结构,固定座第一级环形结构嵌入安装于柔轮端轴承组和谐波减速器之间,固定座第二级环形结构与谐波减速器固定连接。
  8. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,所述电机后端轴承组和柔轮端轴承组结构相同,分别包括同轴设置的两个轴承和两个垫圈,两个轴承并列安装于输入长轴上,两个垫圈分别为内垫圈和外垫圈,内垫圈设于两个轴承的内圈之间,外垫圈设于两个轴承的外圈之间。
  9. 根据权利要求1所述一种协作机器人一体化关节的轴系结构,其特征在于,沿输入长轴的中心向外周方向,所述谐波减速器包括由内向外依次设置的波发生器、柔轮、刚轮和外壳,波发生器的内壁与输入长轴相接,柔轮位于波发生器和刚轮之间,外壳与谐波减速器固定座固定连接。
PCT/CN2020/097654 2020-04-23 2020-06-23 一种协作机器人一体化关节的轴系结构 WO2021212648A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021538457A JP7207787B2 (ja) 2020-04-23 2020-06-23 協働ロボットの一体化された関節の軸系構造
EP20911304.2A EP4140669A1 (en) 2020-04-23 2020-06-23 Shaft system structure for integrated joint of collaborative robot
US17/419,853 US11801609B2 (en) 2020-04-23 2020-06-23 Shafting structure of an integrated joint for a collaborative robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010326552.7A CN111390964B (zh) 2020-04-23 2020-04-23 一种协作机器人一体化关节的轴系结构
CN202010326552.7 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021212648A1 true WO2021212648A1 (zh) 2021-10-28

Family

ID=71417671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097654 WO2021212648A1 (zh) 2020-04-23 2020-06-23 一种协作机器人一体化关节的轴系结构

Country Status (5)

Country Link
US (1) US11801609B2 (zh)
EP (1) EP4140669A1 (zh)
JP (1) JP7207787B2 (zh)
CN (1) CN111390964B (zh)
WO (1) WO2021212648A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112208668A (zh) * 2020-08-25 2021-01-12 深圳市优必选科技股份有限公司 关节连杆驱动机构及机器人
CN117937835B (zh) * 2024-03-18 2024-06-04 深圳市速程精密科技有限公司 一种直线旋转电机及其装配工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222454A1 (de) * 2013-11-05 2015-05-07 Kuka Roboter Gmbh Elektrischer Antrieb und Industrieroboter mit wenigstens einem solchen elektrischen Antrieb
CN107263527A (zh) * 2017-06-30 2017-10-20 东南大学 一种用于关节机器人的关节装置
CN107718039A (zh) * 2017-09-29 2018-02-23 珂伯特机器人(天津)有限公司 一种用于机器人的关节
CN108818612A (zh) * 2018-09-04 2018-11-16 长春大学 机电一体化被动柔顺控制机器人关节
CN208557581U (zh) * 2018-06-07 2019-03-01 睿尔曼智能科技(北京)有限公司 一种超小型一体化伺服关节
CN109551513A (zh) * 2019-01-28 2019-04-02 河北工业大学 一种多功能高度集成模块化机器人关节
CN209850926U (zh) * 2019-03-04 2019-12-27 深圳市智擎新创科技有限公司 绝对位置型多足机器人伺服舵机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291185A (ja) * 1997-04-18 1998-11-04 Yaskawa Electric Corp ハーモニック減速機およびハーモニック減速機付き産業用ロボット
US7409891B2 (en) * 2004-07-02 2008-08-12 Honda Motor Co., Ltd. Drive unit with reducer
KR101549879B1 (ko) * 2014-03-26 2015-09-14 주식회사 로보스타 중공 구동 모듈
US10704665B2 (en) * 2016-06-03 2020-07-07 Re2, Inc. Fluid rotary joint and method of using the same
CN108422442B (zh) * 2018-06-07 2019-06-25 睿尔曼智能科技(北京)有限公司 一种超小型一体化伺服关节
CN109366480A (zh) * 2018-12-19 2019-02-22 浙江双环传动机械股份有限公司 一种高集成度机电控一体化机器人关节模组
CN110253619B (zh) * 2019-07-11 2020-10-16 北京理工大学 机器人关节支撑结构以及机器人
KR102635551B1 (ko) * 2019-08-02 2024-02-08 가부시키가이샤 하모닉 드라이브 시스템즈 로터리 액츄에이터
CN212553915U (zh) * 2020-04-23 2021-02-19 广州市精谷智能科技有限公司 一种协作机器人一体化关节的轴系结构
JP2022049228A (ja) * 2020-09-16 2022-03-29 ナブテスコ株式会社 減速機
US11499592B2 (en) * 2020-12-10 2022-11-15 Disney Enterprises, Inc. Strain wave gearbox with over-torque protection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222454A1 (de) * 2013-11-05 2015-05-07 Kuka Roboter Gmbh Elektrischer Antrieb und Industrieroboter mit wenigstens einem solchen elektrischen Antrieb
CN107263527A (zh) * 2017-06-30 2017-10-20 东南大学 一种用于关节机器人的关节装置
CN107718039A (zh) * 2017-09-29 2018-02-23 珂伯特机器人(天津)有限公司 一种用于机器人的关节
CN208557581U (zh) * 2018-06-07 2019-03-01 睿尔曼智能科技(北京)有限公司 一种超小型一体化伺服关节
CN108818612A (zh) * 2018-09-04 2018-11-16 长春大学 机电一体化被动柔顺控制机器人关节
CN109551513A (zh) * 2019-01-28 2019-04-02 河北工业大学 一种多功能高度集成模块化机器人关节
CN209850926U (zh) * 2019-03-04 2019-12-27 深圳市智擎新创科技有限公司 绝对位置型多足机器人伺服舵机

Also Published As

Publication number Publication date
US20220314466A1 (en) 2022-10-06
JP2022532969A (ja) 2022-07-21
US11801609B2 (en) 2023-10-31
CN111390964A (zh) 2020-07-10
EP4140669A1 (en) 2023-03-01
CN111390964B (zh) 2024-06-21
JP7207787B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021212648A1 (zh) 一种协作机器人一体化关节的轴系结构
KR101908689B1 (ko) 서보모터 및 그 제어 방법
CN102085616B (zh) 卧式五轴加工中心机床用具有大摆角范围的高刚性摆头
CN108626379B (zh) 一种工业机器人的腕部齿轮传动侧隙的调整结构及其使用方法
WO2019140736A1 (zh) 一种紧凑型机器人一体化关节模组及紧凑型机器人
WO2020056963A1 (zh) 减速器和机器人
GB2027135A (en) A mounting for an input or output shaft in a gear casing
CN106352024A (zh) 一种单偏心短传动链减速器
WO2021017002A1 (zh) 机器人关节及机器人
CN101476615B (zh) 硬齿面蜗轮蜗杆减速机
CN211259531U (zh) 一种新型结构谐波减速器
CN112833162A (zh) 一种行星谐波复合减速器
CN212553915U (zh) 一种协作机器人一体化关节的轴系结构
CN214331371U (zh) 一种径向自动消除间隙的行星轮系及行星减速机
CN105598732A (zh) 一种电动直线进给单元及其装配方法
CN103846712B (zh) 组合式旋转驱动单元
CN110601490B (zh) 一种角位移自反馈步进电机机组
WO2022127240A1 (zh) 一种精密行星齿轮减速机
CN210034297U (zh) 一种单级大减速比齿轮减速器
CN208171202U (zh) 一种角度传感器
CN213744575U (zh) 谐波减速器转接装置
CN112936335B (zh) 机器人关节结构及其组装方法
CN217596791U (zh) 一种用于磨床的精确型机械轴
CN210510164U (zh) 一种平行同向双输出齿轮箱
CN216618996U (zh) 一种自适应管径的管道机器人

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538457

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020911304

Country of ref document: EP

Effective date: 20221123