WO2021212625A1 - 一种纽扣电池的防渗液焊接方法和焊接结构及其应用 - Google Patents

一种纽扣电池的防渗液焊接方法和焊接结构及其应用 Download PDF

Info

Publication number
WO2021212625A1
WO2021212625A1 PCT/CN2020/094973 CN2020094973W WO2021212625A1 WO 2021212625 A1 WO2021212625 A1 WO 2021212625A1 CN 2020094973 W CN2020094973 W CN 2020094973W WO 2021212625 A1 WO2021212625 A1 WO 2021212625A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
welding
metal sheet
shell
negative electrode
Prior art date
Application number
PCT/CN2020/094973
Other languages
English (en)
French (fr)
Inventor
常海涛
叶永锋
许华灶
张志明
Original Assignee
福建南平延平区南孚新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建南平延平区南孚新能源科技有限公司 filed Critical 福建南平延平区南孚新能源科技有限公司
Publication of WO2021212625A1 publication Critical patent/WO2021212625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of button battery manufacturing, in particular to an anti-seepage liquid welding method and welding structure of a button battery, and the application of the anti-seepage welding method of a lithium ion button battery in a battery manufacturing process.
  • Button battery also called button battery, refers to a battery whose shape and size are like a small button. Generally speaking, it has a larger diameter and thinner thickness (compared to cylindrical batteries such as AA batteries on the market). According to the appearance, the batteries are divided into cylindrical batteries, square batteries, and special-shaped batteries.
  • Button batteries include stacked and wound types.
  • the basic structure of the wound button battery is as follows: includes a first pole shell, a second pole shell, an insulating sealing ring and a battery core. A gap is left between a pole shell and a second pole shell, and an insulating sealing ring fills the gap to electrically isolate the first pole shell from the second pole shell.
  • the first pole shell, the second pole shell and the insulating seal ring An accommodating cavity is formed between the accommodating cavity; the battery cell is arranged in the accommodating cavity, the battery cell includes a first pole piece, a second pole piece and a diaphragm, the first pole piece and the second pole piece are separated by the diaphragm, the first The pole piece, the second pole piece and the diaphragm are wound to make a battery core.
  • the center of the battery core is formed with an axial cavity.
  • the first pole piece is provided with a first output conductor.
  • a pole shell is welded, a second output conductor is arranged on the second pole piece, and the second output conductor extends from the battery core and is welded to the second pole shell.
  • the first output conductor of the cell is first bent so that the first output conductor is placed close to the lower surface of the cell, and the first output conductor extends to the axial cavity Directly below; then insert the battery core vertically into the first pole housing; then insert the welding needle vertically downwards into the axial cavity and press the first output conductor on the first housing through resistance welding
  • the first output conductor is welded to the first pole shell, or the first pole shell is realized by laser welding by emitting a laser from below the first pole shell to the area of the first pole shell that overlaps the first output conductor.
  • One of the objectives of the present invention is to provide an anti-seepage liquid welding method for button batteries, which can avoid cracking of the solder joints, thereby avoiding liquid leakage and surface bulging.
  • the button battery includes two pole shells, both pole shells are cup-shaped.
  • the battery core is mainly formed by stacking or winding a positive electrode sheet, a negative electrode sheet, and a diaphragm.
  • the electrical connection is realized by welding the corresponding pole shell, and the welding method between the electrode tab and the corresponding pole shell includes the following steps:
  • S1 Prepare a metal sheet, weld the end of the electrode tab that protrudes from the battery to the metal sheet, form a first solder joint between the electrode tab and the metal sheet, and then place the metal sheet horizontally in the electrode shell ;
  • step S2 Press the metal sheet against the inner surface of the electrode shell, and press the two needle-shaped electrodes of resistance welding to different positions on the outer surface of the electrode shell outside the welding position of the metal sheet and the electrode lugs. Then the two needle-shaped electrodes in this step are energized to realize the welding and fixed connection between the electrode shell and the metal sheet.
  • the above-mentioned welding step of this step S2 is performed once or more to form at least one pair of electrodes between the electrode shell and the metal sheet.
  • the second solder joint, and the contact position of the needle electrode and the electrode shell in different sub-steps S2 may overlap.
  • the welding operation between the electrode tab and the metal sheet will not cause damage to the pole shell, and then the metal After the chip is loaded into the shell, the metal sheet and the pole shell are welded together from the outside of the pole shell by parallel welding resistance welding.
  • a ring welding current will be formed between the two needle electrodes Channel, the welding current will not penetrate the metal sheet, so that only the molten pool and solder joints are formed on the side of the metal sheet, so as to keep the appearance of the electrode ear side of the metal sheet intact.
  • the second solder joint and the first welding Dislocation of points is set, so that the welding current between the electrode case and the metal sheet will not be penetrated straightly.
  • the internal pressure of the battery is too high, the pressure on the electrode case will be dispersed in the first welding point and the second welding point.
  • the pressure at a single solder joint position is weakened, so as to avoid solder joint cracking.
  • the first solder joint and the second solder joint pull each other, which also improves the gap between the pole shell and the metal sheet.
  • connection stability prevents electrolyte leakage and the risk of bulging on the surface of the electrode shell; moreover, the number of second solder joints between the electrode shell and the metal sheet is large, and the connection between the electrode shell and the metal sheet is stronger.
  • the internal resistance of the welding position between the sheets is usually smaller than the internal resistance of the physical contact position between the electrode case and the metal sheet, so the overall contact resistance between the electrode case and the metal sheet is smaller, and the smaller the contact internal resistance, the battery will be discharged The more advantageous.
  • step S2 is performed continuously for 1 to 3 times, so as to form 1 to 3 pairs of second solder joints between the pole shell and the metal sheet, to ensure that the pole shell and the metal sheet are reliably welded together, while minimizing operating costs and Improve work efficiency.
  • the contact positions of the needle-shaped electrode and the electrode shell in different sub-steps S2 are not overlapped, so as to avoid that when the second solder joints in different sub-steps S2 overlap, the molten pool expands, resulting in the needle-shaped electrode and the electrode shell being bonded together , It is difficult to dial the needle.
  • the metal sheet and the electrode shell are turned over until the outer surface of the electrode shell faces upward, and then the two needle-shaped electrodes of the resistance welding are respectively pressed against the electrode shell. Welding on the outer surface of the shell makes the operation more convenient.
  • any welding method of laser welding or resistance welding is used between the electrode tabs and the metal sheet in step S1.
  • the sequence of the step S1 and the step S2 are exchanged, and in the step S1, at least one pair of first welding points is formed between the electrode tabs and the metal sheet by means of parallel welding resistance welding.
  • the second object of the present invention is to provide an anti-seepage welding structure for button batteries, which is made according to the above-mentioned anti-seepage welding method for button batteries.
  • the button battery includes two electrode shells and two electrode shells. Both are cup-shaped, and the upper and lower openings of the two pole shells are opposed to each other to form a cylindrical button battery shell; a battery core is packaged in the cylindrical button battery shell, and the battery core is mainly composed of a positive electrode sheet, a negative electrode sheet, and a diaphragm layer.
  • the positive and negative plates are respectively electrically connected to an electrode tab, any electrode tab is fixedly connected to the outer surface of a metal sheet through the first welding point, and the corresponding electrode tab
  • the inner surface of the pole case is fixedly connected to the metal sheet through the second solder joints.
  • the number of the second solder joints is greater than or equal to 1 pair, and the second solder joints of different pairs can overlap.
  • the two second solder joints of the same pair The first solder joint and the second solder joint are dislocated.
  • the electrode shell and the metal sheet will not be penetrated by the solder joints, which can avoid the solder joints from cracking and the occurrence of electrolyte seepage from the solder joints and corresponding solder joints.
  • all the second welding points are evenly distributed around the circumference with the center of the pole shell as the center. More preferably, the second welding points of each pair are symmetrically distributed, so that the welding efficiency is higher, and it is also more conducive to automatic welding.
  • the third object of the present invention is to provide a method for manufacturing an anti-seepage liquid button battery, which includes the following steps:
  • step S1 in the above button battery anti-seepage liquid welding method the positive electrode tab and the positive electrode metal sheet are welded together, and the positive electrode first welding point is formed between the positive electrode tab and the positive electrode metal sheet, and at the same time,
  • step S1 in the anti-seepage liquid welding method of the button battery mentioned above the negative electrode tab extending from the battery core is welded with the negative electrode metal sheet, and the first welding point of the negative electrode is formed between the negative electrode tab and the negative electrode metal sheet;
  • step S2 in the above-mentioned button battery anti-seepage liquid welding method the positive electrode case and the positive electrode metal sheet are welded together, and the second welding point of the positive electrode is formed between the positive electrode case and the positive electrode metal sheet, and then according to the above-mentioned one
  • step S2 of the method for welding the button battery with anti-seepage liquid the negative electrode shell and the negative electrode metal sheet are welded together, and a second negative electrode welding spot is formed between the negative electrode shell and the negative electrode metal sheet.
  • the manufacturing method of the impermeable liquid button battery of the present invention is simple and easy to operate, and the button battery produced between the positive electrode shell and the positive electrode metal sheet and between the negative electrode shell and the negative electrode metal sheet will not be penetrated by the solder joints in a straight line It can effectively avoid the risk of battery leakage and bulging of the battery surface due to the cracking of the solder joints during the use of the battery; the number of solder joints between the positive and negative electrode shells and the corresponding metal sheets is large, the connection is stronger, and the contact resistance is also smaller .
  • the positive and negative electrode shells are partially overlapped in the vertical direction, and in step 3), the cylindrical button battery shell is sealed by squeezing the open end wall of the outer pole shell inward.
  • the sealing step makes the adhesion between the positive and negative cases and the sealing ring closer, and improves the sealing performance of the button battery.
  • the fourth object of the present invention is to provide an impermeable liquid button battery, which is prepared according to the above-mentioned method for manufacturing an impermeable liquid button battery, and includes a positive electrode shell, a negative electrode shell, an insulating sealing ring and a battery core, a positive electrode shell and a negative electrode shell Both are cup-shaped, and the upper and lower openings of the positive and negative cases are aligned to form a cylindrical button battery case; a gap is left between the positive and negative cases, and the insulating sealing ring fills the gap to electrically isolate the positive and negative cases.
  • An accommodating cavity is formed between the positive shell, the negative shell and the insulating sealing ring; the electric core is arranged in the accommodating cavity, and the electric core is mainly formed by stacking or winding the positive electrode sheet, the negative electrode sheet, and the diaphragm.
  • the positive electrode sheet is electrically connected to a positive electrode tab, and the positive electrode tab is fixedly connected to the outer surface of a positive electrode metal sheet through a positive electrode first welding spot, and the inner surface of the positive electrode shell is connected to the positive electrode through a positive electrode second welding spot.
  • the metal sheets are fixedly connected, the number of the second solder joints of the positive electrode is greater than or equal to 1 pair, and the second solder joints of the positive electrode of different pairs can be overlapped, and the second solder joints of the two positive electrodes of the same pair are arranged in a staggered manner.
  • the negative electrode sheet is electrically connected to a negative electrode tab, the negative electrode tab and the outer surface of a negative electrode metal sheet are fixedly connected by the negative electrode first welding spot, and the inner surface of the negative electrode shell
  • the second solder joint of the negative electrode is fixedly connected to the negative metal sheet, the number of the second solder joint of the negative electrode is ⁇ 1 pair, and the second solder joints of the negative electrode of different pairs can be overlapped, and the second solder joints of the two negative electrodes of the same pair
  • the first welding spot of the negative electrode and the second welding spot of the negative electrode are arranged in a staggered manner.
  • the positive metal sheet is arranged to cover the battery core, and the outer edge of the positive metal sheet extends vertically toward the outer side of the battery core to form an annular rib.
  • the annular rib can play a role in fixing the battery core.
  • the positive and negative shells partially overlap in the vertical direction, the open end wall of the negative shell is located inside the open end wall of the positive shell, and there is a gap between the open end wall of the negative shell and the open end wall of the positive shell In the gap, the insulating sealing ring is sandwiched in the gap, and the lower end of the insulating sealing ring extends inward to form a bent portion that wraps the open end wall of the negative electrode shell in it, the positive electrode shell, the battery core, An annular cavity is formed between the three insulating sealing rings; the annular rib of the positive metal sheet is embedded in the annular cavity, and the upper end of the annular rib abuts against the bottom of the insulating sealing ring.
  • This structure makes the positive electrode
  • the contact area between the metal sheet and the positive electrode case is larger, and the current collection effect is better.
  • the upper edge of the positive electrode case will be blocked in the inward bending process.
  • the side transfers the downward pressing force, which makes the physical contact between the positive electrode metal sheet and the positive electrode case closer.
  • the cross-section of the annular rib is in the shape of " ⁇ " or shape.
  • FIG. 1 is a schematic diagram of the welding structure of the electrode tab and the metal sheet in any one of Embodiments 1 to 3, wherein the metal sheet is a sectional structural view;
  • FIG. 2 is a schematic diagram of the welding structure of the pole shell and the metal sheet in any one of Embodiments 1 to 3, wherein the pole shell and the metal sheet are sectional structural views;
  • Fig. 3 is a top view of the structure of the pole housing of embodiment 1;
  • FIG. 4 is a schematic cross-sectional structure diagram of the anti-seepage liquid button battery of Embodiment 1;
  • Fig. 5 is a top view of the structure of the pole housing of embodiment 2;
  • Fig. 6 is a top view of the structure of the pole housing of embodiment 3; the dotted circles in Fig. 2, Fig. 4, and Fig. 5 indicate the position of the second solder joint;
  • FIG. 7 is a schematic cross-sectional structure diagram of the anti-seepage liquid button battery of Embodiment 4.
  • Figure 8 is a sectional structural view of the metal sheet of the present invention.
  • FIG. 9 is a schematic cross-sectional structure diagram of the anti-seepage liquid button battery of the present invention.
  • a button battery anti-seepage liquid welding method the button battery includes two pole shells 10, the two pole shells 10 are cup-shaped, the two pole shells 10 can be opened up and down oppositely to form a cylindrical button Battery case; a battery core 30 is packaged in the cylindrical button battery case, the battery core 30 is mainly composed of a positive electrode sheet 31, a negative electrode sheet 32, a separator 33 layered or wound, and the positive and negative electrode sheets (31 32) are respectively electrically connected to an electrode tab 20, and any electrode tab 20 is then welded to the corresponding pole shell 10 to achieve electrical connection.
  • the welding method between the electrode tab 20 and the corresponding pole shell 10 includes the following steps :
  • step S2 Press the metal sheet 40 on the inner surface of the electrode shell 10, and press the two needle electrodes (100, 200) for resistance welding to the electrode shell outside the welding position of the metal sheet 40 and the electrode tab 20, respectively 10 at different positions on the outer surface; then energize the two needle-shaped electrodes (100, 200) to realize the welding and fixed connection of the electrode shell 10 and the metal sheet 40.
  • the above-mentioned welding step of this step S2 is performed once or more, At least one pair of second solder joints 60 are formed between the pole shell 10 and the metal sheet 40, and the contact positions of the needle electrodes (100, 200) and the pole shell 10 may overlap in different sub-steps S2;
  • Step S2 is performed only once, and the number of second solder joints 60 is two.
  • the button battery includes two pole shells 10, both of which are cup-shaped, and two poles The upper and lower openings of the shell 10 are opposite to each other to form a cylindrical button battery shell; a battery core 30 is packaged in the cylindrical button battery shell, and the battery core 30 is mainly composed of a positive electrode sheet 31, a negative electrode sheet 32, and a separator 33.
  • the positive and negative plates (31, 32) are respectively electrically connected to an electrode tab 20, and any one of the electrode tabs 20 is fixedly connected to the outer surface of a metal sheet 40 through a first welding point 50, and is connected to the
  • the inner surface of the electrode shell 10 corresponding to any electrode tab 20 is fixedly connected to the metal sheet 40 through the second solder joint 60, the number of the second solder joint 60 is greater than or equal to 1 pair, and the second solder joints 60 of different pairs are fixedly connected.
  • the two second solder joints 60 of the same pair are arranged in a staggered manner, and at the same time, the first solder joint 50 and the second solder joint 60 are arranged in a staggered manner.
  • the welding current will not penetrate straightly between the pole case 10 and the metal sheet 40, thereby avoiding the risk of solder joint cracking and the risk of electrolyte seepage and bulging on the surface of the pole case 10 due to solder joint rupture
  • the connection between the pole case 10 and the metal sheet 40 is stronger, and the contact internal resistance is also smaller.
  • the present invention also provides a method for manufacturing an anti-seepage liquid button battery, which includes the following steps:
  • step S1 in the button battery anti-seepage welding method of embodiment 1 the positive electrode tab 21 and the positive electrode metal sheet 41 are welded together, and the positive electrode first weld is formed between the positive electrode tab 21 and the positive electrode metal sheet 41.
  • step S1 in the aforementioned button battery anti-seepage liquid welding method the negative electrode tab 22 protruding from the cell 30 is welded to the negative metal sheet 42, and the negative electrode tab 22 is welded to the negative metal sheet.
  • a negative first solder joint 52 is formed between 42;
  • the positive electrode metal piece 41 and the negative electrode metal piece 42 are respectively attached to the two end faces of the battery cell 30, and are put into the cylindrical button battery case together with the battery core 30, and the cylindrical button battery case is sealed;
  • the positive electrode shell 11 and the positive electrode metal sheet 41 are welded together, and the positive electrode second welding point 61 is formed between the positive electrode shell 11 and the positive electrode metal sheet 41 ;
  • the negative electrode shell 12 and the negative electrode metal sheet 42 are welded together, and at least one pair of The second solder joint 62 of the negative electrode.
  • the manufacturing method of the impermeable liquid button battery of the present invention is simple and easy to operate, and the button battery produced between the positive electrode shell 11 and the positive electrode metal sheet 41 and between the negative electrode shell 12 and the negative electrode metal sheet 42 will not be welded Point penetration can effectively avoid the risk of battery leakage and battery surface swelling due to solder joint rupture during use of the battery, and the connection between the electrode shell 10 and the metal sheet 40 is stronger, and the contact internal resistance Also smaller.
  • Example 1 provides an impermeable liquid button battery, which is prepared according to the method of manufacturing an impermeable liquid button battery of Example 1, and includes a positive electrode shell 11, a negative electrode shell 12, an insulating sealing ring 70, and The battery core 30, the positive electrode shell 11 and the negative electrode shell 12 are all cup-shaped, and the upper and lower openings of the positive electrode shell 11 and the negative electrode shell 12 are opposite to each other to form a cylindrical button battery shell;
  • the ring 70 fills the gap to electrically isolate the positive electrode shell 11 from the negative electrode shell 12, and a containing cavity is formed between the positive electrode shell 11, the negative electrode shell 12 and the insulating sealing ring 70;
  • the battery core 30 is arranged in the containing cavity
  • the battery core 30 is mainly formed by stacking or winding a positive electrode sheet 31, a negative electrode sheet 32, and a separator 33 in a layered manner.
  • the positive electrode sheet 31 is electrically connected to a positive electrode tab 21, and the positive electrode tab 21 and a positive electrode metal sheet 41
  • the outer surface of the positive electrode is fixedly connected by the positive electrode first solder joint 51
  • the inner surface of the positive electrode shell 11 is fixedly connected to the positive electrode metal sheet 41 by the positive electrode second solder joint 61.
  • the number of the positive electrode second solder joint 61 is ⁇ 1 pair
  • different pairs of positive electrode second solder joints 61 can overlap, the two positive electrode second solder joints 61 of the same pair are arranged in a staggered manner, and at the same time, the positive electrode first solder joint 51 and the positive electrode second solder joint 61 are arranged in a staggered manner.
  • the negative electrode sheet 32 is electrically connected to a negative electrode tab 22, and the outer surface of the negative electrode tab 22 and a negative electrode metal sheet 42 are fixedly connected by a negative electrode first welding point 52, and the inner surface of the negative electrode shell 12 passes through the negative electrode first
  • the two solder joints 62 are fixedly connected to the negative metal sheet 42, the number of the negative second solder joints 62 is ⁇ 1 pair, and the second solder joints 62 of the negative electrodes of different pairs can be overlapped, and the second solder joints of the two negative electrodes of the same pair 62 are arranged in a staggered position, and at the same time, the negative electrode first welding point 52 and the negative electrode second welding spot 62 are arranged in an offset position.
  • the electrode shell 10 is a negative electrode shell
  • the electrode tab 20 electrically connected to the electrode shell is the negative electrode tab 22 electrically connected to the negative electrode sheet 32 ;
  • the electrode tab 20 electrically connected to the electrode case will be the positive electrode tab 21 electrically connected to the positive electrode sheet 31 .
  • the manufacturing method of the impermeable liquid button battery of embodiment 1 and the positive electrode shell 11 and the negative electrode shell 12 in the impermeable liquid button battery are the two-electrode shell 10 described in the impermeable liquid welding method and the welding structure of the button battery of the embodiment. .
  • Embodiment 2 provides an anti-seepage liquid welding method for button batteries.
  • step S2 is performed twice in succession, and two pairs of second welding points 60 are formed between the metal sheet 40 and the electrode case 10.
  • two of the contact positions of the needle electrodes (100, 200) and the electrode housing 10 in different substeps S2 overlap, and the remaining steps are the same as in the first embodiment.
  • the welding structure made according to the anti-seepage liquid welding method of the button battery of the second embodiment is different from the welding structure of the first embodiment in that the number of the second welding points 60 is two pairs.
  • two second solder joints 60 in different pairs of second solder joints 60 overlap, and the rest of the structure is the same as that of the first embodiment.
  • Embodiment 3 provides an anti-seepage liquid welding method for button batteries.
  • step S2 is performed three times in succession, and the two needle electrodes (100, 200) of step S2 and the electrode shell 10 are connected in different times.
  • the contact positions are not overlapped, and the rest of the structure is the same as in the first embodiment.
  • the welding structure made according to the anti-seepage liquid welding method of the button battery of the third embodiment is different from the first embodiment in that the number of the second solder joints 60 is 3 pairs, and the different pairs are different. None of the second solder joints 60 overlap, and the rest of the structure is the same as that of the first embodiment.
  • Embodiment 2 and Embodiment 3 can also prevent the solder joints from penetrating the electrode shell 10 and the metal sheet 40 in a straight line, and avoid the cracking of a single solder joint and the leakage of electrolyte from the solder joint position and the solder joint caused by the rupture of the solder joint. Corresponding to the risk of bulging on the surface of the pole shell.
  • embodiment 4 provides an impermeable liquid button battery, which is different from the impermeable liquid button battery of the embodiment in that the positive metal sheet 41 is arranged to cover the battery core 30, and the positive metal sheet The outer edge of 41 extends vertically toward the outer side of the cell to form an annular rib 410.
  • the anti-seepage liquid button battery of Embodiment 4 has all the advantages of the anti-seepage liquid button battery of Embodiment 1.
  • the annular rib 410 of the positive metal sheet 41 can also function as a fixed cell.
  • the electrode tabs are metal foils that can be bent at will.
  • the anti-seepage liquid welding method of the button battery of the present invention can be improved as follows: in conjunction with FIG. Until the outer surface of the electrode shell 10 faces upward, the two needle-shaped electrodes (100, 200) for resistance welding are respectively pressed on the outer surface of the electrode shell 10 for welding, which is more convenient for operation. In the specific implementation process, in step S1, the electrode tab 20 and the metal sheet 40 are welded by either laser welding or resistance welding.
  • the anti-seepage structure of the button batteries of Embodiments 1 to 3 can be improved as follows: as shown in FIGS.
  • the second solder joint 60 can be arranged at any position on the contact surface of the metal sheet 40 with the pole housing 10.
  • the metal The connection between the sheet 40 and the pole case 10 is the most reliable, and each second solder joint 60 corresponds to a bump on the outer surface of the pole case 10. If these bumps are evenly distributed, the outer surface of the pole case 10 will be more reliable. Beautiful.
  • Figs. 3, 5, and 6 it is more preferable that the second welding points 60 of each pair are symmetrically distributed, the welding efficiency is higher, and it is also more conducive to automatic welding.
  • the manufacturing method of the impermeable liquid button battery of Example 1 can be improved as follows: as shown in Figure 6, the positive and negative electrode shells (11, 12) are partially overlapped in the vertical direction. Press the open end wall of the outer pole shell to seal the cylindrical button battery shell.
  • the sealing step makes the three of the positive electrode shell 11, the negative electrode shell 12 and the sealing ring 70 more closely fit, and improves the sealing performance of the button battery.
  • the method for manufacturing the impermeable liquid button battery of Example 1 and Example 4 and the impermeable liquid button battery can be improved as follows; as shown in FIG. 7, the positive and negative electrode shells (11, 12) are partially in the vertical direction. Overlap, the open end wall of the negative electrode case 12 is located inside the open end wall of the positive electrode case 11, a gap is left between the open end wall of the negative electrode case 12 and the open end wall of the positive electrode case 11, and the insulating sealing ring 70 is sandwiched In the gap, and the lower end of the insulating sealing ring 70 extends inward to form a bent portion 700, which wraps the open end wall of the negative electrode case inside, the positive electrode case 11, the battery core 30, and the insulating sealing ring 70.
  • annular cavity is formed between them; the annular rib 410 of the positive metal sheet 41 is embedded in the annular cavity, and the upper end of the annular rib 410 abuts against the bottom of the bending portion 700 of the insulating seal ring.
  • the structure makes the contact area between the positive electrode metal sheet 41 and the positive electrode case 11 larger, and the current collecting effect is better.
  • the upper edge of the positive electrode case 11 is bent inward During the folding process, a downward pressing force is transferred to the annular rib 410, so that the physical contact between the positive metal sheet 41 and the positive case 11 is closer.
  • the outer edge of the negative metal sheet 42 may also extend vertically downward to form an annular rib.
  • the cross section of the annular rib 410 is in the shape of " ⁇ " or shape.
  • the cross-sectional shape of the annular rib 410 is not limited to " ⁇ " shape or It can also be T-shaped or other common shapes or special shapes.
  • the button battery anti-seepage liquid welding method in Example 1 is a preferred embodiment of the present invention.
  • the button battery anti-seepage liquid welding method of the present invention can also be "the step S1 and step S2 are exchanged in order, and step S1 Between the middle electrode tab (21; 22) and the metal sheet (41; 42), at least one pair of first solder joints (51; 52) is formed by parallel welding resistance welding. (The welded structure is shown in Figure 9. Shown) and others.
  • the present invention is not limited to the method of connection between the positive electrode shell 11 and the positive electrode tab 21 of the button battery and the connection manner between the negative electrode case 12 and the negative electrode tab 22 in the first to third embodiments.
  • the invented anti-seepage liquid welding method for example, when there is only one connection method between the connection method between the positive electrode shell 11 and the positive electrode tab 21 and the connection method between the negative electrode case 12 and the negative electrode tab 22, the welding method according to the above-mentioned anti-seepage liquid
  • another connection method can be to directly weld the electrode tabs to the corresponding pole shell by laser welding, or the electrode tabs are directly glued to the corresponding pole shell with conductive glue, or the electrode tabs are physically contacted. It can be connected to the corresponding pole shell in physical contact with the corresponding pole shell, etc., any existing connection manner that can realize the electrical connection between the electrode tabs and the corresponding pole shell can be used.
  • the number of repetitions of step S2 in the anti-seepage welding method of the present invention is not limited to the specific number in the embodiment, and the number of repetitions of step S2 can be adjusted according to the setting of the welding position and the requirement of welding robustness.
  • the first welding point 50 of the present invention is not limited to one welding point in the drawings, and it can also be two or more than two welding points.
  • the structure of the cell 30 of the present invention is not limited to the specific structure shown in the drawings, and it can be any cell structure.
  • the battery cell of the present invention can be formed by stacking and winding the positive electrode sheet 31, the negative electrode sheet 32 and the separator 33 located between the positive electrode sheet 31 and the negative electrode sheet 32.
  • the battery core 30 and the electrode case (11, 12 ) Is sandwiched between an insulating sheet to avoid short circuits, or the end surface of the positive electrode sheet 31 near the end of the negative electrode case 12 is lower than the end surface of the separator 33 near the end of the negative electrode case 12, and the end surface of the negative electrode sheet 32 near the end of the positive electrode case 11 is lower than the separator
  • the end surface of 33 near one end of the positive electrode case 11 avoids a short circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明提供一种纽扣电池的防渗液焊接方法和焊接结构及其应用,其中焊接方法包括以下步骤:先准备一金属片,将任一电极极耳的伸出电芯的一端焊接在该金属片上,在该电极极耳与金属片之间形成第一焊点,之后将该金属片水平放置于对应极壳内;再将金属片顶压在极壳的内表面上,将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的极壳外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳与金属片的焊接固定连接。本发明还根据上述焊接方法制得了焊接结构,并将该焊接结构应用于纽扣电池,能够避免焊点破裂,进而避免极壳出现漏液以及表面鼓包等现象。

Description

一种纽扣电池的防渗液焊接方法和焊接结构及其应用 技术领域
本发明涉及纽扣电池制造领域,尤其是一种纽扣电池的防渗液焊接方法和焊接结构,以及该锂离子纽扣电池的防渗液焊接方法在电池制作工艺中的应用。
背景技术
纽扣电池也称扣式电池,是指外形尺寸象一颗小纽扣的电池,一般来说直径较大,厚度较薄(相对于柱状电池如市场上的5号AA等电池),纽扣电池是从外形上来对电池来分,同等对应的电池分类有柱状电池、方形电池、异形电池等。
纽扣电池包括有叠层式和卷绕式的。卷绕式纽扣电池的基本结构为:包括第一极壳、第二极壳、绝缘密封圈和电芯,第一极壳与第二极壳上下开口相对对扣形成圆柱形纽扣电池外壳;第一极壳与第二极壳之间留有缝隙,绝缘密封圈填满该缝隙将第一极壳与第二极壳电性隔绝,所述第一极壳、第二极壳和绝缘密封圈之间形成容置腔;电芯设于所述容置腔内,电芯包括第一极片、第二极片和隔膜,第一极片与第二极片之间通过隔膜间隔,第一极片、第二极片和隔膜卷绕制成电芯,电芯的中心形成有轴向腔体,第一极片上设有第一输出导体,第一输出导体从电芯伸出并与第一极壳焊接,第二极片上设有第二输出导体,第二输出导体从电芯伸出并与第二极壳焊接。在制作现有的这种卷绕式纽扣电池时,先将电芯的第一输出导体弯折使第一输出导体紧贴电芯的下表面设置,且第一输出导体延伸至轴向腔体的正下方;然后将电芯垂直装入第一极壳内;接着通过将焊针垂直向下***轴向腔体内并将第一输出导体压紧在第一壳体上通过电阻焊的方式实现第一输出导体与第一极壳焊接在一起,或者通过从 第一极壳的下方对着第一极壳的与第一输出导体上下重叠的区域发射激光通过激光焊的方式实现第一极壳与第一输出导体焊接在一起;再将电芯的第二输出导体焊接在第二极壳上,第二极壳外套装有绝缘密封圈;最后将第二极壳和绝缘密封圈一起盖合在第一极壳的上端开口处,进行封口。由于第一输出导体与第一极壳焊接时,电阻焊的电流和激光焊的激光束均会直线穿透第一极壳,连接第一极壳与第一输出导体的焊点是贯穿第一极壳设置的,在电池使用过程中,第一极壳的焊点位置在电池内压过大时容易发生破裂,从而出现电解液的漏液以及表面鼓包等现象。
发明内容
本发明的目的之一在于提供一种纽扣电池的防渗液焊接方法,该制作工艺能够避免焊点破裂,进而避免出现漏液以及表面鼓包等现象。
一种纽扣电池的防渗液焊接方法,所述纽扣电池包括两个极壳,两极壳均呈杯状,两极壳能够上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯配套封装于该圆柱形纽扣电池外壳内,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳再与对应极壳焊接实现电连接,所述电极极耳与对应极壳之间的焊接方法包括以下步骤:
S1:准备一金属片,将电极极耳的伸出电芯的一端焊接在该金属片上,在电极极耳与金属片之间形成第一焊点,之后将该金属片水平放置于极壳内;
S2:将金属片顶压在极壳的内表面上,将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的极壳外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳与金属片的焊接固定连接,本步骤S2的上述焊接步骤进行1次或以上,在极壳与金属片之间形成至少1对的第 二焊点,且不同次步骤S2中针状电极与极壳的接触位置可存在重叠。
本发明通过在金属片装壳前,先将电极极耳的伸出电芯的一端焊接在金属片上,使得电极极耳与金属片之间的焊接作业不会造成极壳受损,再在金属片装壳后通过平行焊的电阻焊方式从极壳外部将金属片与极壳焊接在一起,当电阻焊的两个针状电极通电后,在两个针状电极之间会形成环形焊接电流通道,焊接电流不会贯穿金属片,使得只会在金属片的极壳侧形成熔池和焊点,从而保持金属片的电极极耳侧外观完整,加上,第二焊点与第一焊点错位设置,从而使得极壳、金属片两者之间不会被焊接电流直线穿透,当电池内部压力过大时,极壳所受到的压力会分散在第一焊点和第二焊点的各个焊点位置处,弱化单个焊点位置处的压力,从而避免焊点破裂,同时,第一焊点与第二焊点之间相互牵拉,也提高了极壳与金属片之间的连接稳定性,杜绝电解液渗漏和极壳表面鼓包的风险;并且,极壳与金属片之间的第二焊点数量多,极壳与金属片之间连接更牢固,鉴于极壳与金属片之间焊接位置的内阻通常小于极壳与金属片之间物理接触位置的内阻,因此极壳与金属片之间的整体接触内阻更小,而接触内阻越小,对电池放电越有利。
优选的,步骤S2连续进行1~3次,从而在极壳与金属片之间形成1~3对第二焊点,确保极壳与金属片可靠地焊接在一起的同时,尽量降低操作成本和提高工作效率。
优选的,不同次步骤S2的针状电极与极壳的接触位置均不重叠,避免不同次步骤S2中第二焊点发生重合时,熔池扩大,导致针状电极与极壳粘结在一起,拨针困难。
优选的,步骤S2中将金属片顶压在极壳的内表面上之后,翻转金属片和极壳至极壳的外表面朝上,再将电阻焊的两个针状电极均分别顶压在极壳外表 面上进行焊接,操作更方便。
在具体实施过程中,步骤S1中电极极耳与金属片之间采用激光焊或电阻焊中任一种焊接方式进行。
在具体实施过程中,所述步骤S1与步骤S2调换顺序,且步骤S1中电极极耳与金属片之间通过平行焊的电阻焊方式形成至少1对第一焊点。
本发明的目的之二在于提供一种纽扣电池的防渗液焊接结构,该焊接结构根据上述的纽扣电池的防渗液焊接方法制得,所述纽扣电池包括两个极壳,两个极壳均呈杯状,两个极壳上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯配套封装于该圆柱形纽扣电池外壳内,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳与一金属片的外表面通过第一焊点固定连接,与该任一电极极耳对应的极壳的内表面通过第二焊点与所述金属片固定连接,第二焊点的数量≥1对,且不同对的第二焊点之间可重叠,同一对的两第二焊点之间错位设置,同时,第一焊点与第二焊点错位设置。
本发明的纽扣电池的防渗液焊接结构中极壳、金属片两者之间不会被焊点直线穿透,可避免焊点破裂,以及出现电解液由焊点位置渗出和焊点对应的极壳表面鼓包的风险,并且,极壳与金属片之间的第二焊点数量多,极壳与金属片之间连接更牢固,接触内阻也更小,利于提高电池的放电效率。
优选的,所有第二焊点以极壳的中心为圆心绕圆周均匀分布。更优选的,每对的第二焊点对称分布,焊接效率更高,也更有利于进行自动化焊接。
本发明的目的之三在于提供一种防渗液纽扣电池的制作方法,包括以下步骤:
1)准备正极金属片和负极金属片;
2)根据上述一种纽扣电池的防渗液焊接方法中的步骤S1将正极极耳与正极金属片焊接在一起,在正极极耳与正极金属片之间形成正极第一焊点,同时,再根据上述一种纽扣电池的防渗液焊接方法中的步骤S1将从电芯伸出的负极极耳与负极金属片焊接,在负极极耳与负极金属片之间形成负极第一焊点;
3)将正极金属片和负极金属片分别贴合在电芯的两端面上,与电芯一起装入圆柱形纽扣电池外壳内,并对圆柱形纽扣电池外壳进行封口;
4)根据上述一种纽扣电池的防渗液焊接方法中的步骤S2将正极壳与正极金属片焊接在一起,在正极壳与正极金属片之间形成正极第二焊点,再根据上述一种纽扣电池的防渗液焊接方法中的步骤S2将负极壳与负极金属片焊接在一起,在负极壳与负极金属片之间形成负极第二焊点。
本发明的防渗液纽扣电池的制作方法操作简便,易行,且所制得纽扣电池的正极壳与正极金属片之间以及负极壳与负极金属片之间均不会被焊点直线穿透,可有效避免电池在使用过程中由于焊点破裂造成电池漏液和电池表面鼓包的风险;正、负极壳与对应金属片之间的焊点数量多,连接更牢固,接触内阻也更小。
优选的,正、负极壳在垂直方向上部分重叠,在步骤3)中通过向内挤压外侧极壳的开口端壁对圆柱形纽扣电池外壳进行封口。封口步骤使得正、负极壳、密封圈三者之间的贴合更紧密,提高纽扣电池的密封性能。
本发明的目的之四在于提供一种防渗液纽扣电池,其根据上述防渗液纽扣电池的制作方法制得,其包括正极壳、负极壳、绝缘密封圈和电芯,正极壳和负极壳均呈杯状,正极壳与负极壳上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳与负极壳之间留有缝隙,绝缘密封圈填满该缝隙将正极壳与负极壳电性隔绝,所述正极壳、负极壳和绝缘密封圈之间形成容置腔;电芯设于所述 容置腔内,电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,所述正极片与一正极极耳电连接,正极极耳再与一正极金属片的外表面通过正极第一焊点固定连接,所述正极壳的内表面再通过正极第二焊点与所述正极金属片固定连接,正极第二焊点的数量≥1对,且不同对的正极第二焊点之间可重叠,同一对的两正极第二焊点之间错位设置,同时,正极第一焊点与正极第二焊点错位设置;所述负极片与一负极极耳电连接,负极极耳与一负极金属片的外表面通过负极第一焊点固定连接,所述负极壳的内表面再通过负极第二焊点与所述负极金属片固定连接,负极第二焊点的数量≥1对,且不同对的负极第二焊点之间可重叠,同一对的两负极第二焊点之间错位设置,同时,负极第一焊点与负极第二焊点错位设置。
本发明的防渗液纽扣电池的制作方法和防渗液纽扣电池均可做如下改进:
所述正极金属片覆盖电芯设置,且正极金属片的外边沿向电芯外侧方向垂直延伸形成环形挡边。该环形挡边可起到固定电芯的作用。进一步的,所述正、负极壳在垂直方向上部分重叠,所述负极壳的开口端壁位于正极壳的开口端壁内侧,负极壳的开口端壁与正极壳的开口端壁之间留有缝隙,所述绝缘密封圈夹设于该缝隙内,且绝缘密封圈的下端向内延伸形成弯折部,该弯折部将负极壳的开口端壁包裹在其内,正极壳、电芯、绝缘密封圈三者之间形成环形腔体;所述正极金属片的环形挡边嵌置在所述环形腔体内,且环形挡边的上端与绝缘密封圈的底部抵接,这样的结构使得正极金属片与正极壳的接触面积更大,集流效果更佳,同时,当进行向内挤压正极壳的上边沿的电池封口作业时,正极壳上边沿向内弯折过程中会给环形挡边传递向下的压紧力,使得正极金属片与正极壳之间的物理接触更为紧密。另,优选的,所述环形挡边的截面呈“┐”形或
Figure PCTCN2020094973-appb-000001
形。
附图说明
图1为实施例1~3中任一实施例的电极极耳与金属片焊接结构示意图,其中金属片为剖视结构图;
图2为实施例1~3中任一实施例的极壳与金属片的焊接结构示意图,其中极壳和金属片为剖视结构图;
图3为实施例1的极壳的俯视结构图;
图4为实施例1的防渗液纽扣电池的剖视结构示意图;
图5为实施例2的极壳的俯视结构图;
图6为实施例3的极壳的俯视结构图;其中图2、图4、图5中虚线圈指示的是第二焊点的位点;
图7为实施例4的防渗液纽扣电池的剖视结构示意图;
图8为本发明的金属片的剖视结构图;
图9为本发明的防渗液纽扣电池的剖视结构示意图。
具体实施方式
现结合附图具体说明本发明的实施方式:
实施例1
结合图1~图3,一种纽扣电池的防渗液焊接方法,所述纽扣电池包括两个极壳10,两极壳10均呈杯状,两极壳10能够上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯30配套封装于该圆柱形纽扣电池外壳内,所述电芯30主要由正极片31、负极片32、隔膜33层状叠加或卷绕而成,正、负极片(31、32)均分别与一电极极耳20电连接,任一电极极耳20再与对应极壳10焊接实现电连接,所述电极极耳20与对应极壳10之间的焊接方法包括以下步骤:
S1:准备一金属片40,将电极极耳20的伸出电芯30的一端焊接在该金 属片40上,在电极极耳20与金属片40之间形成第一焊点50,之后将该金属片40水平放置于极壳10内;
S2:将金属片40顶压在极壳10内表面上,将电阻焊的两个针状电极(100、200)均分别顶压在金属片40与电极极耳20焊接位置之外的极壳10外表面上的不同位置处;然后对两个针状电极(100、200)进行通电,实现极壳10与金属片40的焊接固定连接,本步骤S2的上述焊接步骤进行1次或以上,在极壳10与金属片40之间形成至少1对第二焊点60,且不同次步骤S2中针状电极(100、200)与极壳10的接触位置可存在重叠;
步骤S2仅进行一次,第二焊点60的数量为2个。
结合图1~图3,根据实施例1的纽扣电池的防渗液焊接方法制得的焊接结构,所述纽扣电池包括两个极壳10,两个极壳10均呈杯状,两个极壳10上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯30配套封装于该圆柱形纽扣电池外壳内,所述电芯30主要由正极片31、负极片32、隔膜33层状叠加或卷绕而成,正、负极片(31、32)均分别与一电极极耳20电连接,任一电极极耳20与一金属片40的外表面通过第一焊点50固定连接,与该任一电极极耳20对应的极壳10的内表面通过第二焊点60与所述金属片40固定连接,第二焊点60的数量≥1对,且不同对的第二焊点60之间可重叠,同一对的两第二焊点60之间错位设置,同时,第一焊点50与第二焊点60错位设置。
本发明的实施例1中极壳10、金属片40两者之间不会被焊接电流直线穿透,从而避免焊点破裂以及因焊点破裂造成电解液渗出和极壳10表面鼓包的风险,并且,极壳10与金属片40之间的连接更牢固,接触内阻也更小。
如图4所示,本发明还提供一种防渗液纽扣电池的制作方法,包括以下步骤:
1)准备正极金属片41和负极金属片42;
2)根据实施例1的纽扣电池的防渗液焊接方法中的步骤S1将正极极耳21与正极金属片41焊接在一起,在正极极耳21与正极金属片41之间形成正极第一焊点51,同时,再根据上述一种纽扣电池的防渗液焊接方法中的步骤S1将从电芯30伸出的负极极耳22与负极金属片42焊接,在负极极耳22与负极金属片42之间形成负极第一焊点52;
3)将正极金属片41和负极金属片42分别贴合在电芯30的两端面上,与电芯30一起装入圆柱形纽扣电池外壳内,并对圆柱形纽扣电池外壳进行封口;
4)根据实施例1的纽扣电池的防渗液焊接方法中的步骤S2将正极壳11与正极金属片41焊接在一起,在正极壳11与正极金属片41之间形成正极第二焊点61;同样的,根据实施例1的纽扣电池的防渗液焊接方法中的步骤S2将负极壳12与负极金属片42焊接在一起,在负极壳12与负极金属片42之间形成至少1对的负极第二焊点62。
本发明的防渗液纽扣电池的制作方法操作简便,易行,且所制得纽扣电池的正极壳11与正极金属片41之间以及负极壳12与负极金属片42之间均不会被焊点穿透,可有效避免电池在使用过程中焊点破裂以及因焊点破裂造成电池漏液和电池表面鼓包的风险,并且,极壳10与金属片40之间的连接更牢固,接触内阻也更小。
如图4所示,实施例1提供一种防渗液纽扣电池,其根据实施例1的防渗液纽扣电池的制作方法制得,其包括正极壳11、负极壳12、绝缘密封圈70和电芯30,正极壳11和负极壳12均呈杯状,正极壳11与负极壳12上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳11与负极壳12之间留有缝隙,绝 缘密封圈70填满该缝隙将正极壳11与负极壳12电性隔绝,所述正极壳11、负极壳12和绝缘密封圈70之间形成容置腔;电芯30设于所述容置腔内,电芯30主要由正极片31、负极片32、隔膜33层状叠加或卷绕而成,所述正极片31与一正极极耳21电连接,正极极耳21再与一正极金属片41的外表面通过正极第一焊点51固定连接,所述正极壳11的内表面再通过正极第二焊点61与所述正极金属片41固定连接,正极第二焊点61的数量≥1对,且不同对的正极第二焊点61之间可重叠,同一对的两正极第二焊点61之间错位设置,同时,正极第一焊点51与正极第二焊点61之间错位设置;所述负极片32与一负极极耳22电连接,负极极耳22与一负极金属片42的外表面通过负极第一焊点52固定连接,所述负极壳12的内表面再通过负极第二焊点62与所述负极金属片42固定连接,负极第二焊点62的数量≥1对,且不同对的负极第二焊点62之间可重叠,同一对的两负极第二焊点62之间错位设置,同时,负极第一焊点52与负极第二焊点62之间错位设置。
实施例1的纽扣电池极壳的防渗液焊接方法和焊接结构中,极壳10为负极壳,与该极壳对应电连接的电极极耳20是与负极片32电连接的负极极耳22;当然,若纽扣电池的防渗液焊接方法和焊接结构中,极壳为正极壳时,与极壳对应电连接的的电极极耳20就会是与正极片31电连接的正极极耳21。
实施例1的防渗液纽扣电池的制作方法和防渗液纽扣电池中的正极壳11和负极壳12即为实施例的纽扣电池的防渗液焊接方法和焊接结构中所述的两极壳10。
实施例2
实施例2提供一种纽扣电池的防渗液焊接方法,其与实施例1不同的是:步骤S2连续进行2次,在金属片40与极壳10之间形成2对第二焊点60,且 不同次步骤S2中针状电极(100、200)与极壳10的接触位置中有两个接触位置存在重叠,其余步骤均与实施例1相同。
如图5所示,根据实施例2的纽扣电池的防渗液焊接方法制得的焊接结构,其与实施例1的焊接结构的不同之处在于:第二焊点60的数量为2对,且不同对的第二焊点60中有两个第二焊点60重叠,其余结构均与实施例1相同。
实施例3
实施例3提供一种纽扣电池的防渗液焊接方法,其与实施例1不同的是:步骤S2连续进行3次,不同次步骤S2的两针状电极(100、200)与极壳10的接触位置均不重叠,其余结构均与实施例1相同。
如图6所示,根据实施例3的纽扣电池的防渗液焊接方法制得的焊接结构,其与实施例1的不同之处在于:第二焊点60的数量为3对,且不同对的第二焊点60均不重叠,其余结构均与实施例1相同。
实施例2和实施例3的焊接方法以及焊接结构也可避免焊点直线贯穿极壳10与金属片40,避免单个焊点破裂以及由焊点破裂造成电解液由焊点位置渗出和焊点对应的极壳表面鼓包的风险。
实施例4
如图7所示,实施例4提供一种防渗液纽扣电池,其与实施例的防渗液纽扣电池的不同之处在于:所述正极金属片41覆盖电芯30设置,且正极金属片41的外边沿向电芯外侧方向垂直延伸形成环形挡边410。实施例4的防渗液纽扣电池具有实施例1的防渗液纽扣电池的所有优点,同时,所述正极金属片41的环形挡边410还可起到固定电芯的作用。
通常来说,所述电极极耳为能够随意弯折的金属箔片。
本发明的纽扣电池的防渗液焊接方法可做如下改进:结合图1、图2,步 骤S2中将金属片40顶压在极壳10的内表面上之后,翻转金属片40和极壳10至极壳10的外表面朝上,再将电阻焊的两个针状电极(100、200)均分别顶压在极壳10的外表面上进行焊接,操作更方便。在具体实施过程中,步骤S1中电极极耳20与金属片40之间采用激光焊或电阻焊中任一种焊接方式进行。
实施例1~3的纽扣电池的防渗液结构可做如下改进:如图3、5、6所示,所有第二焊点60以极壳10的中心为圆心绕圆周均匀分布。当然,第二焊点60可以设置在金属片40的与极壳10接触面的任意位置处均可,但是,所有第二焊点60以极壳10的中心为圆心绕圆周均匀分布时,金属片40与极壳10的连接最为牢靠,并且,每一个第二焊点60对应的会在极壳10的外表面呈现一凸点,这些凸点均匀分布的话,极壳10的外表面也更美观。如图3、5、6所示,更优选的,每对的第二焊点60对称分布,焊接效率更高,也更有利于进行自动化焊接。
实施例1的防渗液纽扣电池的制作方法可做如下改进:如图6所示,所述正、负极壳(11、12)在垂直方向上部分重叠,在步骤3)中通过向内挤压外侧极壳的开口端壁对圆柱形纽扣电池外壳进行封口。封口步骤使得正极壳11、负极壳12、密封圈70三者之间的贴合更紧密,提高纽扣电池的密封性能。
实施例1和实施例4的防渗液纽扣电池的制作方法和防渗液纽扣电池均可做如下改进;如图7所示,所述正、负极壳(11、12)在垂直方向上部分重叠,所述负极壳12的开口端壁位于正极壳11的开口端壁内侧,负极壳12的开口端壁与正极壳11的开口端壁之间留有缝隙,所述绝缘密封圈70夹设于该缝隙内,且绝缘密封圈70的下端向内延伸形成弯折部700,该弯折部将负极壳的开口端壁包裹在其内,正极壳11、电芯30、绝缘密封圈70三者之间形成环形 腔体;所述正极金属片41的环形挡边410嵌置在所述环形腔体内,且环形挡边410的上端与绝缘密封圈弯折部700的底部抵接,这种结构使得正极金属片41与正极壳11的接触面积更大,集流效果更好,同时,在通过向内挤压正极壳11的上边沿进行电池封口作业时,正极壳11上边沿向内弯折过程中会给环形挡边410传递向下的压紧力,使得正极金属片41与正极壳11之间的物理接触更为紧密。当然,所述负极金属片42的外边沿也可以垂直向下延伸形成环形挡边。另外,优选的,如图7、8所示,所述环形挡边410的截面呈“┐”形或
Figure PCTCN2020094973-appb-000002
形。当然,所述环形挡边410的截面形状并不限于呈“┐”形或
Figure PCTCN2020094973-appb-000003
形,其也可以呈T形等其他常见的形状或异形形状均可。
实施例1中的纽扣电池防渗液焊接方法为本发明的较佳实施方式,但是,本发明的纽扣电池防渗液焊接方法还可以是“所述步骤S1与步骤S2调换顺序,且步骤S1中电极极耳(21;22)与金属片(41;42)之间通过平行焊的电阻焊方式形成至少1对的第一焊点(51;52)”(所制得焊接结构如图9所示)及其他。
需要说明的是,本发明并不限于实施例1~3中的纽扣电池的正极壳11与正极极耳21之间的连接方式和负极壳12与负极极耳22之间的连接方式均采用本发明的防渗液焊接方法,例如,当正极壳11与正极极耳21之间的连接方式和负极壳12与负极极耳22之间的连接方式中只有一个连接方式采用根据上述防渗液焊接方法时,另一连接方式也可采用将电极极耳通过激光焊的方式直接焊接在对应极壳上,或者电极极耳通过导电胶直接胶粘在对应极壳上,或者电极极耳采用物理接触的方式与相应极壳物理接触连接等等任意一种现有的能够实现电极极耳与相应极壳之间电连接的连接方式均可。
另外,本发明的防渗液焊接方法中步骤S2的重复次数并不限于实施例中 的具体次数,其可以根据焊接位置的设定以及焊接牢固性的需求来调整步骤S2的重复次数。同时,本发明的第一焊点50也不限于附图中的1个焊点,其也可以为2个或多于2个焊点均可。本发明的电芯30结构不限于附图所示的具体结构,其可以是任意的电芯结构均可。
本发明的电芯可以由正极片31、负极片32和位于正极片31与负极片32之间的隔膜33层叠卷绕而成,此时,通常会在电芯30与极壳(11、12)之间夹设绝缘片以避免短路,或者正极片31的靠近负极壳12一端的端面低于隔膜33的靠近负极壳12一端的端面,负极片32的靠近正极壳11一端的端面低于隔膜33的靠近正极壳11一端的端面以避免短路。

Claims (15)

  1. 纽扣电池的防渗液焊接方法,所述纽扣电池包括两个极壳,两极壳均呈杯状,两极壳能够上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯配套封装于该圆柱形纽扣电池外壳内,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳再与对应极壳焊接实现电连接,其特征在于,所述电极极耳与对应极壳之间的焊接方法包括以下步骤:
    S1:准备一金属片,将电极极耳的伸出电芯的一端焊接在该金属片上,在电极极耳与金属片之间形成第一焊点,之后将该金属片水平放置于极壳内;
    S2:将金属片顶压在极壳的内表面上,将电阻焊的两个针状电极均分别顶压在金属片与电极极耳焊接位置之外的极壳外表面上的不同位置处,然后对本步骤中的两个针状电极进行通电,实现极壳与金属片的焊接固定连接,本步骤S2的上述焊接步骤进行1次或以上,在极壳与金属片之间形成至少1对的第二焊点,且不同次步骤S2中针状电极与极壳的接触位置可存在重叠。
  2. 根据权利要求1所述的纽扣电池的防渗液焊接方法,其特征在于:步骤S2连续进行1~3次。
  3. 根据权利要求1所述的纽扣电池的防渗液焊接方法,其特征在于:不同次步骤S2的针状电极与极壳的接触位置均不重叠。
  4. 根据权利要求1所述的纽扣电池的防渗液焊接方法,其特征在于:步骤S2中将金属片顶压在极壳的内表面上之后,翻转金属片和极壳至极壳的外表面朝上,再将电阻焊的两个针状电极均分别顶压在极壳外表面上进行焊接。
  5. 根据权利要求1所述的纽扣电池的防渗液焊接方法,其特征在于:步骤S1中电极极耳与金属片之间采用激光焊或电阻焊中任一种焊接方式进行。
  6. 根据权利要求1~4中任一项所述的纽扣电池的防渗液焊接方法,其特征在 于:所述步骤S1与步骤S2调换顺序,且步骤S1中电极极耳与金属片之间通过平行焊的电阻焊方式形成至少1对第一焊点。
  7. 一种纽扣电池的防渗液焊接结构,该焊接结构根据权利要求1~6中任一项所述的一种纽扣电池的防渗液焊接方法制得,所述纽扣电池包括两个极壳,两个极壳均呈杯状,两个极壳上下开口相对对扣形成圆柱形纽扣电池外壳;一电芯配套封装于该圆柱形纽扣电池外壳内,所述电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,正、负极片均分别与一电极极耳电连接,任一电极极耳与一金属片的外表面通过第一焊点固定连接,与该任一电极极耳对应的极壳的内表面通过第二焊点与所述金属片固定连接,第二焊点的数量≥1对,且不同对的第二焊点之间可重叠,同一对的两第二焊点之间错位设置,同时,第一焊点与第二焊点错位设置。
  8. 根据权利要求7所述的一种纽扣电池的防渗液焊接结构,其特征在于:所有第二焊点以极壳的中心为圆心绕圆周均匀分布。
  9. 根据权利要求8所述的一种纽扣电池的防渗液焊接结构,其特征在于:每对的第二焊点对称分布。
  10. 一种防渗液纽扣电池的制作方法,包括以下步骤:
    1)准备正极金属片和负极金属片;
    2)根据权利要求1~6中任一项所述的一种纽扣电池的防渗液焊接方法中的步骤S1将正极极耳与正极金属片焊接在一起,在正极极耳与正极金属片之间形成正极第一焊点,同时,再根据权利要求1~6中任一项所述的一种纽扣电池的防渗液焊接方法中的步骤S1将从电芯伸出的负极极耳与负极金属片焊接,在负极极耳与负极金属片之间形成负极第一焊点;
    3)将正极金属片和负极金属片分别贴合在电芯的两端面上,与电芯一起装入 圆柱形纽扣电池外壳内,并对圆柱形纽扣电池外壳进行封口;
    4)根据权利要求1~6中任一项所述的一种纽扣电池的防渗液焊接方法中的步骤S2将正极壳与正极金属片焊接在一起,在正极壳与正极金属片之间形成正极第二焊点,再根据权利要求1~6中任一项所述的一种纽扣电池的防渗液焊接方法中的步骤S2将负极壳与负极金属片焊接在一起,在负极壳与负极金属片之间形成负极第二焊点。
  11. 根据权利要求10所述的一种防渗液纽扣电池的制作方法,其特征在于:所述正、负极壳在垂直方向上部分重叠,在步骤3)中通过向内挤压外侧极壳的开口端壁对圆柱形纽扣电池外壳进行封口。
  12. 一种防渗液纽扣电池,其根据权利要求10中任一项防渗液纽扣电池的制作方法制得,其包括正极壳、负极壳、绝缘密封圈和电芯,正极壳和负极壳均呈杯状,正极壳与负极壳上下开口相对对扣形成圆柱形纽扣电池外壳;正极壳与负极壳之间留有缝隙,绝缘密封圈填满该缝隙将正极壳与负极壳电性隔绝,所述正极壳、负极壳和绝缘密封圈之间形成容置腔;电芯设于所述容置腔内,电芯主要由正极片、负极片、隔膜层状叠加或卷绕而成,所述正极片与一正极极耳电连接,正极极耳再与一正极金属片的外表面通过正极第一焊点固定连接,所述正极壳的内表面再通过正极第二焊点与所述正极金属片固定连接,正极第二焊点的数量≥1对,且不同对的正极第二焊点之间可重叠,同一对的两正极第二焊点之间错位设置,同时,正极第一焊点与正极第二焊点错位设置;所述负极片与一负极极耳电连接,负极极耳与一负极金属片的外表面通过负极第一焊点固定连接,所述负极壳的内表面再通过负极第二焊点与所述负极金属片固定连接,负极第二焊点的数量≥1对,且不同对的负极第二焊点之间可重叠,同一对的两负极第二焊点之间错位设置,同时,负极第一焊点与负极第二 焊点错位设置。
  13. 根据权利要求12所述的一种防渗液纽扣电池,其特征在于:所述正极金属片覆盖电芯设置,且正极金属片的外边沿向电芯外侧方向垂直延伸形成环形挡边。
  14. 根据权利要求13所述的一种防渗液纽扣电池,其特征在于:所述正、负极壳在垂直方向上部分重叠,所述负极壳的开口端壁位于正极壳的开口端壁内侧,负极壳的开口端壁与正极壳的开口端壁之间留有缝隙,所述绝缘密封圈夹设于该缝隙内,且绝缘密封圈的下端向内延伸形成弯折部,该弯折部将负极壳的开口端壁包裹在其内,正极壳、电芯、绝缘密封圈三者之间形成环形腔体;所述正极金属片的环形挡边嵌置在所述环形腔体内,且环形挡边的上端与绝缘密封圈的底部抵接。
  15. 根据权利要求13所述的一种防渗液纽扣电池,其特征在于:所述环形挡边的截面呈
    Figure PCTCN2020094973-appb-100001
    形或
    Figure PCTCN2020094973-appb-100002
    形。
PCT/CN2020/094973 2020-04-24 2020-06-08 一种纽扣电池的防渗液焊接方法和焊接结构及其应用 WO2021212625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010335170.0A CN111463371B (zh) 2020-04-24 2020-04-24 一种纽扣电池的防渗液焊接方法和焊接结构及其应用
CN202010335170.0 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021212625A1 true WO2021212625A1 (zh) 2021-10-28

Family

ID=71680657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094973 WO2021212625A1 (zh) 2020-04-24 2020-06-08 一种纽扣电池的防渗液焊接方法和焊接结构及其应用

Country Status (2)

Country Link
CN (1) CN111463371B (zh)
WO (1) WO2021212625A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991265A (zh) * 2021-10-29 2022-01-28 蜂巢能源科技有限公司 锂离子电池及其制备方法
CN114361490A (zh) * 2021-12-21 2022-04-15 深圳市铭镭激光设备有限公司 纽扣电池激光焊接方法及纽扣电池
CN115207437A (zh) * 2022-09-07 2022-10-18 宁波合力制动***有限公司 一种具有间隙预留功能的新能源汽车电芯堆叠装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377568B (zh) * 2022-07-13 2023-06-30 江西微电新能源有限公司 扣式电池以及扣式电池的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217562A (ja) * 2002-01-29 2003-07-31 Matsushita Electric Ind Co Ltd コイン型電池
JP2007234276A (ja) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd 非水電解液電池
CN101728574A (zh) * 2009-12-04 2010-06-09 王昉 一种单壁结构扣式锂离子蓄电池
CN102104169A (zh) * 2011-01-28 2011-06-22 福建南平南孚电池有限公司 锂-二硫化铁电池及其制作方法
CN102117895A (zh) * 2010-11-19 2011-07-06 广州市鹏辉电池有限公司 扣式锂电池的正极钢壳及扣式锂电池
CN110336065A (zh) * 2019-05-15 2019-10-15 广东微电新能源有限公司 纽扣型电池及其制造方法
CN110380106A (zh) * 2019-08-23 2019-10-25 漳州万宝能源科技有限公司 一种卷绕电极电池电极结构及其制造方法
CN110854338A (zh) * 2019-11-21 2020-02-28 漳州万宝能源科技有限公司 扣式电池的防爆结构及其工作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528305B2 (ja) * 2010-11-09 2014-06-25 日立マクセル株式会社 扁平形非水二次電池
CN103413967B (zh) * 2013-07-26 2016-03-02 深圳市优特利电源有限公司 一种锂离子二次电池及其制造方法
CN206250307U (zh) * 2016-11-29 2017-06-13 珠海市至力电池有限公司 一种可充电锂离子扣式电池
CN110931888A (zh) * 2019-12-05 2020-03-27 昆山兴能能源科技有限公司 一种扣式锂二次电池组装方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217562A (ja) * 2002-01-29 2003-07-31 Matsushita Electric Ind Co Ltd コイン型電池
JP2007234276A (ja) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd 非水電解液電池
CN101728574A (zh) * 2009-12-04 2010-06-09 王昉 一种单壁结构扣式锂离子蓄电池
CN102117895A (zh) * 2010-11-19 2011-07-06 广州市鹏辉电池有限公司 扣式锂电池的正极钢壳及扣式锂电池
CN102104169A (zh) * 2011-01-28 2011-06-22 福建南平南孚电池有限公司 锂-二硫化铁电池及其制作方法
CN110336065A (zh) * 2019-05-15 2019-10-15 广东微电新能源有限公司 纽扣型电池及其制造方法
CN110380106A (zh) * 2019-08-23 2019-10-25 漳州万宝能源科技有限公司 一种卷绕电极电池电极结构及其制造方法
CN110854338A (zh) * 2019-11-21 2020-02-28 漳州万宝能源科技有限公司 扣式电池的防爆结构及其工作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991265A (zh) * 2021-10-29 2022-01-28 蜂巢能源科技有限公司 锂离子电池及其制备方法
CN114361490A (zh) * 2021-12-21 2022-04-15 深圳市铭镭激光设备有限公司 纽扣电池激光焊接方法及纽扣电池
CN114361490B (zh) * 2021-12-21 2024-02-06 深圳市铭镭激光设备有限公司 纽扣电池激光焊接方法及纽扣电池
CN115207437A (zh) * 2022-09-07 2022-10-18 宁波合力制动***有限公司 一种具有间隙预留功能的新能源汽车电芯堆叠装置

Also Published As

Publication number Publication date
CN111463371A (zh) 2020-07-28
CN111463371B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2021212625A1 (zh) 一种纽扣电池的防渗液焊接方法和焊接结构及其应用
CN111354912B (zh) 纽扣电池极壳与电极极耳电连接方法及电连接结构和产品
CN111370635A (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
TWI499150B (zh) 模組式電流中斷裝置、電池、及其製造方法
CN111370636B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
WO2021212624A1 (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN111354910B (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
US11850673B2 (en) Button cell and method for welding electrode tabs to a pole shell of the button cell
CN111370637B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
WO2023000629A1 (zh) 一种无极耳锂离子电池及其制作方法
CN111354909B (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN211578867U (zh) 一种无焊接痕迹纽扣电池
CN211578865U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN111354911A (zh) 纽扣电池极壳与电极极耳无痕焊接方法及焊接结构和产品
CN113097661A (zh) 电池
CN211265619U (zh) 纽扣电池
CN111354916A (zh) 纽扣电池极壳与电极极耳电连接方法及电连接结构和产品
CN211957776U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211957808U (zh) 一种具有无痕焊接结构的纽扣电池
CN111370638B (zh) 一种无焊接痕迹纽扣电池的生产方法及所制得的纽扣电池
CN211578866U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211789242U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211578868U (zh) 纽扣电池极壳与电极极耳无痕焊接结构
CN211789307U (zh) 一种具有无痕焊接结构的纽扣电池
CN111341967A (zh) 一种防渗液纽扣电池的生产方法及所制得的纽扣电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932698

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20932698

Country of ref document: EP

Kind code of ref document: A1