WO2021212300A1 - Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light - Google Patents

Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light Download PDF

Info

Publication number
WO2021212300A1
WO2021212300A1 PCT/CN2020/085796 CN2020085796W WO2021212300A1 WO 2021212300 A1 WO2021212300 A1 WO 2021212300A1 CN 2020085796 W CN2020085796 W CN 2020085796W WO 2021212300 A1 WO2021212300 A1 WO 2021212300A1
Authority
WO
WIPO (PCT)
Prior art keywords
cces
coreset
sib
type
common
Prior art date
Application number
PCT/CN2020/085796
Other languages
French (fr)
Inventor
Chih-Hao Liu
Jing Sun
Xiaoxia Zhang
Yisheng Xue
Changlong Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/085796 priority Critical patent/WO2021212300A1/en
Publication of WO2021212300A1 publication Critical patent/WO2021212300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to wireless communication systems, and more particularly to initial network signal communications in a wireless communication network serving user equipment (UE) devices with different BW capabilities.
  • UE user equipment
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • 5G 5 th Generation
  • LTE long term evolution
  • NR next generation new radio
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • An NR light network may refer to a wireless communication network built upon NR technologies and enhanced to provide support for user devices that require a low complexity and/or a low power consumption.
  • Some example applications for NR light may include industrial wireless sensor applications and/or Internet of things (IoTs) applications.
  • IoTs Internet of things
  • the bandwidth requirements and/or capabilities of NR light devices may vary depending on the applications. For example, some NR light devices may support a bandwidth of about 20 megahertz (MHz) , while other NR light devices may support a bandwidth that is less than 20 MHz. For example, a bandwidth of about 10 MHz may be sufficient for video surveillance type applications.
  • a method of wireless communication performed by a user equipment includes performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and receiving a system information block (SIB) based on the PDCCH monitoring.
  • PDCCH physical downlink control channel
  • CORESET common control resource set
  • SIB system information block
  • a method of wireless communication performed by a base station includes determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and transmitting a SIB based on the SIB scheduling information.
  • CORESET common control resource set
  • SIB system information block
  • a user equipment includes a processor configured to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and a transceiver configured to receive a system information block (SIB) based on the PDCCH monitoring.
  • PDCCH physical downlink control channel
  • CORESET common control resource set
  • SIB system information block
  • a base station includes a processor configured to determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; and a transceiver configured to transmit system information block (SIB) scheduling information in at least the portion of the common CORESET; and transmit a SIB based on the SIB scheduling information.
  • CORESET common control resource set
  • SIB system information block
  • a non-transitory computer-readable medium having program code recorded thereon includes code for causing a user equipment (UE) to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and code for causing the UE to receive a system information block (SIB) based on the PDCCH monitoring.
  • UE user equipment
  • PDCCH physical downlink control channel
  • CORESET common control resource set
  • SIB system information block
  • a non-transitory computer-readable medium having program code recorded thereon includes code for causing a base station (BS) to determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; code for causing the BS to transmit system information block (SIB) scheduling information in at least the portion of the common CORESET; and code for causing the BS to transmit a SIB based on the SIB scheduling information.
  • BS base station
  • CORESET common control resource set
  • SIB system information block
  • a user equipment includes means for performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and means for receiving a system information block (SIB) based on the PDCCH monitoring.
  • PDCCH physical downlink control channel
  • CORESET common control resource set
  • SIB system information block
  • a base station includes means for determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; means for transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and means for transmitting a SIB based on the SIB scheduling information.
  • CORESET common control resource set
  • SIB system information block
  • FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
  • FIG. 2 illustrates a radio frame structure according to some aspects of the present disclosure.
  • FIG. 3A illustrates a common control resource set (CORESET) configuration scheme according to some aspects of the present disclosure.
  • FIG. 3B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 3C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 4A illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 4B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 4C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 5A illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 5B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 5C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
  • FIG. 6 illustrates a physical downlink control channel (PDCCH) communication scheme according to some aspects of the present disclosure.
  • PDCCH physical downlink control channel
  • FIG. 7 illustrates a PDCCH communication scheme according to some aspects of the present disclosure.
  • FIG. 8 is a block diagram of an exemplary base station (BS) according to some aspects of the present disclosure.
  • FIG. 9 is a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
  • FIG. 10A is a signaling diagram illustrating an initial network access method according to some aspects of the present disclosure.
  • FIG. 10B illustrates a system information block (SIB) configuration according to some aspects of the present disclosure.
  • SIB system information block
  • FIG. 11 is a signaling diagram illustrating an initial network access method according to some aspects of the present disclosure.
  • FIG. 12 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
  • FIG. 13 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • a 5G NR communication system may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) . Additional features may also include having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • TTI transmission time interval
  • Additional features may also include having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced
  • subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • subcarrier spacing may occur with 30 kHz over 80/100 MHz BW.
  • the subcarrier spacing may occur with 60 kHz over a 160 MHz BW.
  • subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways.
  • an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein.
  • such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein.
  • a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer.
  • an aspect may comprise at least one element of a claim.
  • a BS may broadcast various initial network signals, such as synchronization signals, master information block (MIB) , and/or system information blocks (SIBs) , to assist a UE in synchronizing and accessing the network.
  • the network may operate over a certain channel frequency BW and the BS may transmit SSBs in a centered portion of the channel frequency BW.
  • An SSB may include synchronization signals, such as a primary synchronization signal (PSS) and a secondary synchronization signals (SSS) , and a physical broadcast channel (PBCH) signal carrying a MIB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signals
  • PBCH physical broadcast channel
  • the MIB may include configuration information associated with a common control resource set (CORESET) , where the BS may transmit scheduling information for additional network system information (e.g., system information blocks (SIBs) and/or remaining system information (RMSI) ) .
  • SIBs system information blocks
  • RMSI remaining system information
  • a UE may monitor for broadcast SSBs from a BS, decode information associated with the common CORESET from the SSBs, and monitor for SIB scheduling information in the common CORESET.
  • the common CORESET may be identified by a CORESET identifier (ID) 0 and may be referred to as a CORESET zero (CORESET #0) .
  • the SIB scheduling information monitoring may be referred to as physical downlink channel (PDCCH) -type 0 monitoring.
  • PDCCH physical downlink channel
  • an NR network may operate over a 100 MHz BW and may partition the 100 MHz BW into about five 20 MHz channels to provide support for NR light.
  • a BS may configure a common CORESET spanning the 20 MHz channel BW.
  • the BS may transmit SSBs in a centered portion of the 20 MHz. In some examples, the SSBs may span less than about 5 MHz.
  • the BS may transmit SIB scheduling information in the common CORESET.
  • the BS may transmit the SIB scheduling information at various frequency locations across the 20 MHz channel BW according to some PDCCH candidate aggregation rules.
  • the transmissions of SIB scheduling information in the common CORESET spanning the 20 MHz BW may serve UEs that are capable of operating over a 20 MHz BW, but may not serve UEs that are capable of operating at a smaller or narrower frequency BW less than 20 MHz.
  • the present application describes mechanisms for communicating initial network signals in a wireless communication network serving multiple tiers of UEs with different BW capabilities.
  • a BS may serve UEs of a first tier and UEs of a second tier over a frequency channel.
  • the first tier UEs and the second tier UEs may have different BW capabilities.
  • the first tier UE may have a BW capability of about 20 MHz
  • the second tier UE may have a narrow BW capability of about10 MHz or 5 MHz.
  • the first tier with the wider BW capability may be referred to as a medium tier
  • the second tier with the narrow BW capability may be referred to as a low tier.
  • the BS may configure a common CORESET (e.g., a CORESET #0) having a frequency band corresponding to a channel BW.
  • a common CORESET e.g., a CORESET #0
  • the BS may additionally configure a portion of the common CORESET spanning less than the entire frequency band of the common CORESET based on a bandwidth capability of the low tier.
  • the common CORESET may include a plurality of control channel elements (CCEs) in the frequency band.
  • a CCE may be a smallest time-frequency resource unit used for defining a CORESET.
  • the portion of the common CORESET may include a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  • the subset of the plurality of CCEs may be at a central frequency portion of the common CORESET’s frequency band. In some aspects, the subset of the plurality of CCEs may be at a lower frequency portion of the common CORESET’s frequency band. In some aspects, the subset of the plurality of CCEs may be at an upper frequency portion of the common CORESET’s frequency band.
  • the portion of the common CORESET used for serving the low tier may also be referred to as a virtual CORESET.
  • the BS may transmit SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16 so that the SIB scheduling information may be received by a low tier UE and a medium tier UE.
  • Each of the common CORESET and virtual CORESET may have a preconfigured PDCCH search space monitoring grid or PDCCH candidate grid according to some rules.
  • the BS may transmit the SIB scheduling information further based on the PDCCH search space or PDCCH candidate grids in the common CORESET and the virtual CORESET.
  • a low tier UE may perform PDCCH monitoring in the virtual CORESET and according to the PDCCH search space or PDCCH candidate grid in the portion virtual CORESET.
  • the BS may also transmit SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs, for example, when using an aggregation level of 16.
  • the low tier UE may compute log-likelihood ratios (LLRs) from CCEs within the virtual CORESET and decode a PDCCH candidate from the partial LLRs (without having LLRs from CCEs outside of the virtual CORESET) .
  • LLR refers to the logarithm of a ratio of probabilities that a received bit is equal to 1 or 0.
  • the BS may also apply frequency hopping to the virtual CORESET.
  • the BS may configure the virtual CORESET to hop between the lower frequency portion and the upper frequency portion of the common CORESET’s frequency band to provide frequency diversity for the low tier UEs.
  • the BS may transmit a SIB according to the SIB scheduling information.
  • the BS may configure a SIB type 1 (SIB1) to include at least one of an initial DL BWP configuration, an initial UL BWP configuration, and/or a physical downlink control channel (PDCCH) common configuration for each of the medium tier and the low tier.
  • SIB1 SIB type 1
  • the BS may perform subsequent procedures (e.g., random access and/or paging) for each tier according to corresponding BWP and/or PDCCH common configurations.
  • a low tier UE may configure or tune its radio frequency (RF) frontend to the low-tier initial DL BWP and initial UL BWP and perform subsequent procedures in the low-tier initial DL BWP and initial UL BWP and perform PDCCH monitoring according to the low-tier PDCCH common configuration.
  • RF radio frequency
  • the BS may not provide separate or dedicated configurations for each of the medium tier and low tier in SIB1. Instead, the BS may wait till a UE reports its BW capability after a successful radio resource control (RRC) connection before configuring the UE with dedicated BWP and/or PDCCH common configurations. Since the BS may not have knowledge of whether a UE is of the medium tier or the low tier during random access or paging, the BS may perform resource allocation and/or scheduling for random access and/or paging with considerations for low tier UEs. Accordingly, a low tier UE may report its capability to the BS after establishing a RRC connection with the BS.
  • RRC radio resource control
  • the low tier UE may receive BWP and/or PDCCH common configuration from the BS.
  • the low tier UE may configure its RF frontend according to the BWP configurations.
  • the low tier UE may perform subsequent operations (e.g., network attachment ad/or normal data operations) with the BS in the configured BWPs and perform PDCCH monitoring according to the configured PDCCH common configuration.
  • the use of a virtual CORESET within a common CORESET may allow a BS to serve UEs of different tiers or with different BW capabilities.
  • the inclusion of additional BWP and/or PDCCH common configurations dedicated for the low tier in a SIB1 may allow the BS to perform subsequent procedures (e.g., random access and/or paging) more efficiently.
  • the inclusion of the additional BWP and/or PDCCH common configurations in SIB1 can increase signaling overhead.
  • delaying the dedicated BWP and/or PDCCH common configuration till a low tier UE reports its BW capability (in an RRC connected mode) can avoid increasing initial network signaling overhead.
  • the BS complexity may increase as the BS may consider both medium tier and low tier UEs during initial network access.
  • the present disclosure may describe multi-tier network support for a medium tier with a 20 MHz BW capability and a low tier with a 10 MHz BW capability in a 20 MHz channel, the present disclosure may suitable for use in supporting more than two tiers of UEs with any suitable BW capabilities in a frequency channel of any suitable BW.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V dynamic, low-latency TDD/FDD communications
  • V2X V2X
  • C-V2X C-V2X communications between a UE 115i, 115j, or 115k and other UEs 115
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • a UL-centric subframe may include a longer duration for UL communication than for UL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB.
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI and/or OSI.
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105.
  • the random access procedure may be a four-step random access procedure.
  • the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response.
  • the random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator.
  • ID detected random access preamble identifier
  • TA timing advance
  • C-RNTI temporary cell-radio network temporary identifier
  • the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response.
  • the connection response may indicate a contention resolution.
  • the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively.
  • the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
  • the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged.
  • the BS 105 may schedule the UE 115 for UL and/or DL communications.
  • the BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH.
  • the scheduling grants may be transmitted in the form of DL control information (DCI) .
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • the network 100 may be an NR light network supporting UEs 115 of multiple tiers.
  • the network 100 may support UEs 115 of two tiers, a medium tier and a low tier.
  • the different tier UEs 115 may have different BW capabilities.
  • the medium tier UEs 115 may be capable of operating over an entire channel frequency BW (e.g., about 20 MHz)
  • the low tier UEs 115 may operate over a smaller BW (e.g., about 10 MHz or 5 MHz) .
  • a BS 105 may transmit SSBs in a centered portion of a channel frequency BW.
  • the SSBs may include a MIB providing information associated with a common CORESET, which may also be referred to as a CORESET #0.
  • the MIB may include a configuration for monitoring SIB scheduling information.
  • the configuration may indicate a resource configuration for the common CORESET and a PDCCH search space for the common CORESET.
  • the PDCCH search space is an instance of the common CORESET in time.
  • the BS 105 may transmit scheduling information for SIB1, RMSI (e.g., other SIBs) , random access messages (e.g., MSG2 and MSG4) , and/or paging messages in the common CORESET.
  • SIB1 scheduling information for SIB1
  • RMSI e.g., other SIBs
  • random access messages e.g., MSG2 and MSG4
  • paging messages in the common CORESET.
  • the BS 105 may configure the common CORESET to span a frequency band of the entire or full channel frequency BW.
  • the BS 105 may consider a BW capability of the lower tier UEs 115.
  • the BS 105 may configure a portion of the common CORESET less than the entire frequency band of the common CORESET for transmitting SIB scheduling information so that the low tier UEs 115 may be able to receive the SIB scheduling information.
  • the BS 105 may include at least one of an initial DL BWP configurations, an initial UL BWP configurations, or a PDCCH common configurations for each of the low and medium tiers in a SIB1.
  • a low tier UE 115 or a medium tier UE 115 may perform subsequent communications with the BS 105 according to a corresponding initial DL BWP configuration, a corresponding initial UL BWP configuration, and/or a corresponding PDCCH common configuration.
  • the BS 105 may not provide separate configurations for low tier UEs 115 and medium tier UEs 115 in a SIB1.
  • the BS 105 may transmit scheduling information for SIB, RMSI, random access messages, and/or paging messages in the common CORESET with consideration for low tier UEs 115’ BW capabilities, but may configure a low tier UE 115 based on the low tier UE 115’s BW capability after receiving a capability report from the low tier UE 115.
  • Mechanisms for providing initial network signaling support to UEs of multiple tiers are described in greater detail herein.
  • FIG. 2 illustrates a radio frame structure 200 according to some aspects of the present disclosure.
  • the radio frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the radio frame structure 200.
  • the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units.
  • the transmission frame structure 200 includes a radio frame 201.
  • the duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds.
  • the radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
  • Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time.
  • the number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel BW, the subcarrier spacing (SCS) , and/or the CP mode.
  • One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission.
  • a resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
  • a BS may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208.
  • Each slot 202 may be time-partitioned into K number of mini-slots 208.
  • Each mini-slot 208 may include one or more symbols 206.
  • the mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206.
  • a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206.
  • the BS may schedule UE at a frequency-granularity of a resource block (RB) 210 (e.g., including about 12 subcarriers 204) .
  • RB resource block
  • a CORESET is a set of physical time-frequency resources where a BS (e.g., the BSs 105) may transmit PDCCH to provide scheduling information and/or any DL control information to UEs (e.g., the UEs 115) in a network (e.g., the network 100) .
  • a CORESET may span, for example, multiples of non-contiguous or contiguous groups of six RBs (e.g., the RBs 210) in frequency and between one to three contiguous OFDM symbols (e.g., the symbols 206) in time.
  • a CORESET may be up to three OFDM symbols in duration and located anywhere within a slot (e.g., at a beginning of a slot) .
  • a CORESET may be defined in multiples of six RBs up to the system carrier frequency BW (e.g., a channel frequency BW) .
  • FIGS. 3A-3C, 4A-4C, and 5A-5C illustrate various mechanisms for configuring a common CORESET (e.g., CORESET #0) that may be shared by UEs of multiple tiers for communicating initial network signal scheduling information (e.g., SIB, RMSI, RACH, and/or paging scheduling information) .
  • initial network signal scheduling information e.g., SIB, RMSI, RACH, and/or paging scheduling information
  • FIGS. 3A-3C, 4A-4C, and 5A-5C illustrate CORESET configurations for two tiers, for example, a medium tier with UEs having a 20 MHz BW capability and a low tier with UEs having a 10 MHz BW capability.
  • the CORESET configuration mechanisms can be scaled to support more than two tiers (e.g., about 3, 4 or more) with UEs having various BW capabilities (e.g., about 20 MHz, about 10 MHz, and/or about 5 MHz) in the network.
  • tiers e.g., about 3, 4 or more
  • BW capabilities e.g., about 20 MHz, about 10 MHz, and/or about 5 MHz
  • a BS may configure a common CORESET (CORESET #0) spanning an entire channel frequency BW to serve the medium tier UEs.
  • the BS may configure a portion of a common CORESET spanning less than an entire frequency band of the common CORESET to support PDDCH monitoring by the medium tier UEs and the low medium UEs.
  • the BS configures the portion of the CORESET in a central portion of the CORESET’s frequency band.
  • the BS configures the portion of the CORESET in an upper frequency portion of the CORESET’s frequency band.
  • the BS configures the portion of the CORESET in a lower frequency portion of the CORESET’s frequency band.
  • the x-axes represent time in some arbitrary units
  • the y-axes represent frequency in some arbitrary units.
  • FIG. 3A illustrates a common CORESET configuration scheme 310 according to some aspects of the present disclosure.
  • the scheme 310 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 310.
  • FIG. 3A illustrates an example of a CORESET 301 including sixteen CCEs 312 in a 20 MHz channel.
  • the CCEs 312 may be indexed from 0 to 15 (shown as CCE1 to CCE15) .
  • the CORESET 301 is a CORESET #0.
  • Each CCE 312 include six resource element groups (REGs) , where a REG is defined as on physical RB in one symbol.
  • the CORESET 301 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and one symbol (e.g., the symbols 206) in time. In other words, each CCE 312 may span 6 RBs in frequency and one symbol in time.
  • the CORESET 301 may span 48 RBs with an SCS of 30 kHz in frequency and two symbols in time. In other words, each CCE 312 may span 3 RBs in frequency and 2 symbols in time.
  • a BS may transmit a SIB schedule in a PDCCH search space associated with the CORESET 301 using an aggregation of four CCEs 312, an aggregation of eight CCEs 312, or an aggregation of sixteen CCEs 312.
  • the PDDCH search space is an instance of the CORESET in a certain slot.
  • An aggregation of four CCEs 312 may be referred to as an aggregation level (AL) of 4.
  • An aggregation of eight CCEs 312 may be referred to as an AL of 8.
  • An aggregation of sixteen CCEs 312 may be referred to as an AL of 16.
  • a UE may monitor for SIB scheduling information by performing blind decoding to search for a PDCCH candidate in the CORESET 301 based on an aggregation level (AL) of 4, 8, or 16.
  • the PDCCH monitoring for SIB scheduling is a PDCCH type-0 monitoring.
  • a UE may decode one candidate for an AL of 16, two candidates for an AL of 8, and four PDCCH candidates for an AL of 4 in the PDCCH search space.
  • the PDCCH candidates in a CORESET 301 are mapped to the CCEs 312 as shown below:
  • N CCE represents the number of CCEs 312 in the CORESET 301
  • L represents the AL
  • i may vary from 0 to L-1, and represents the maximum number of PDCCH candidates for a certain AL.
  • the examples illustrated in FIG. 3A include a first tier UE monitoring space 314 and a second tier UE monitoring space 318.
  • the first tier UE may correspond to a medium tier UE with a BW capability of about 20 MHz.
  • the second tier UE may correspond to a low tier UE with a BW capability of about 10 MHz.
  • the first tier UE monitoring space 314 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4.
  • the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 8 to 15, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 4 to 7, CCEs 312 indexed 8 to 11, and CCEs 312 indexed 12 to 15.
  • the BS may configure a centered frequency portion 315 of the CORESET 301 as a virtual CORESET 316 for the second tier UE monitoring space 318.
  • the virtual CORESET 316 may be within a BW of the second tier UE.
  • the BS may select a subset of the CCEs 312 located at a centered band of the CORESET 301 for the virtual CORESET 316.
  • the centered may refer to a subband within the frequency band of the CORESET 301 that is offset from a highest frequency edge and a lowest frequency edge of the frequency by about the same amount.
  • the virtual CORESET 316 may be mapped to CCEs 312 indexed 4 to 11.
  • the CCEs in the virtual CORESET 316 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) .
  • the second tier UE monitoring space 318 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 316.
  • FIG. 3B illustrates a common CORESET configuration scheme 320 according to some aspects of the present disclosure.
  • the scheme 310 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 320.
  • the scheme 320 is substantially similar to the scheme 310, but illustrates a CORESET 303 (e.g., a CORESTE #0) including thirty-two CCEs 312 in a 20 MHz channel.
  • the CCEs 312 may be indexed from 0 to 31 (shown as CCE1 to CCE31) .
  • the CORESET 303 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and two symbols (e.g., the symbols 206) in time.
  • a BS may configure a first tier UE monitoring space 324 (e.g., for 20 MHz medium tier UEs) and a second tier UE monitoring space 328 (e.g., for 10 MHz low tier UEs) in the CORESET 303. Similar to the first tier UE monitoring space 314, the first tier UE monitoring space 324 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4.
  • the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 16 to 23, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 8 to 11, CCEs 312 indexed 16 to 19, and CCEs 312 indexed 24 to 27 in the CORESET 303.
  • the BS may configure a centered frequency portion 325 of the CORESET 303 as a virtual CORESET 326 for the second tier UE monitoring space 328.
  • the virtual CORESET 326 may be within a BW of the second tier UE.
  • the virtual CORESET 326 may be mapped to CCEs 312 indexed 8 to 23.
  • the CCEs in the virtual CORESET 326 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) .
  • the second tier UE monitoring space 328 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 326.
  • FIG. 3C illustrates a common CORESET configuration scheme 330 according to some aspects of the present disclosure.
  • the scheme 330 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 330.
  • the scheme 330 is substantially similar to the schemes 310 and 320, but illustrates a CORESET 305 (e.g., a CORESTE #0) including forty-eight CCEs 332 in a 20 MHz channel.
  • the CCEs 312 may be indexed from 0 to 47 (shown as CCE1 to CCE47) .
  • the CORESET 303 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and three symbols (e.g., the symbols 206) in time.
  • a BS may configure a first tier UE monitoring space 334 (e.g., for 20 MHz medium tier UEs) and a second tier UE monitoring space 338 (e.g., for 10 MHz low tier UEs) in the CORESET 305.
  • the first tier UE monitoring space 334 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4.
  • the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 24 to 31, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 12 to 15, CCEs 312 indexed 24 to 27, and CCEs 312 indexed 36 to 39 in the CORESET 305.
  • the BS may configure a centered frequency portion 335 of the CORESET 305 as a virtual CORESET 336 for the second tier UE monitoring space 338.
  • the virtual CORESET 336 may be within a BW of the second tier UE.
  • the virtual CORESET 336 may be mapped to CCEs 312 indexed 12 to 35.
  • the CCEs in the virtual CORESET 326 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) .
  • the second tier UE monitoring space 338 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 336.
  • FIG. 4A illustrates a common CORESET configuration scheme 410 according to some aspects of the present disclosure.
  • the scheme 410 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 410.
  • FIG. 4A is described using the same CORESET structure as the CORESET 301 in the scheme 310, and may use the same reference numerals as FIG. 3A for simplicity’s sake.
  • a BS may configure an upper frequency portion 415 of the CORESET 301 as a virtual CORESET 416 for a second tier UE monitoring space 418 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 416 may be within a BW of the second tier UE.
  • the BS may select a subset of the CCEs 312 located at an upper frequency edge of the CORESET 301 for the virtual CORESET 416.
  • the virtual CORESET 416 may be mapped to CCEs 312 indexed 8 to 15 (including a highest-frequency CCE 312 indexed 15 of the common CORESET 301) .
  • the CCEs in the virtual CORESET 416 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) .
  • the second tier UE monitoring space 418 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 416.
  • FIG. 4B illustrates a common CORESET configuration scheme 420 according to some aspects of the present disclosure.
  • the scheme 420 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 420.
  • FIG. 4B is described using the same CORESET structure as the CORESET 303 in the scheme 320, and may use the same reference numerals as FIG. 3B for simplicity’s sake.
  • a BS may configure an upper frequency portion 425 of the CORESET 303 as a virtual CORESET 426 for a second tier UE monitoring space 428 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 426 may be within a BW of the second tier UE.
  • the virtual CORESET 426 may be mapped to CCEs 322 indexed 16 to 31.
  • the CCEs in the virtual CORESET 426 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) .
  • the second tier UE monitoring space 428 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 426.
  • FIG. 4C illustrates a common CORESET configuration scheme 430 according to some aspects of the present disclosure.
  • the scheme 430 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 430.
  • FIG. 4C is described using the same CORESET structure as the CORESET 305 in the scheme 330, and may use the same reference numerals as FIG. 3C for simplicity’s sake.
  • a BS may configure an upper frequency portion 435 of the CORESET 305 as a virtual CORESET 436 for a second tier UE monitoring space 438 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 436 may be within a BW of the second tier UE.
  • the virtual CORESET 436 may be mapped to CCEs 332 indexed 24 to 47.
  • the CCEs in the virtual CORESET 436 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) .
  • the second tier UE monitoring space 438 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 436.
  • FIG. 5A illustrates a common CORESET configuration scheme 510 according to some aspects of the present disclosure.
  • the scheme 510 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 510.
  • FIG. 5A is described using the same CORESET structure as the CORESET 301 in the scheme 310, and may use the same reference numerals as FIG. 3A for simplicity’s sake.
  • a BS may configure lower frequency portion 515 of the CORESET 301 as a virtual CORESET 516 for a second tier UE monitoring space 518 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 516 may be within a BW of the second tier UE.
  • the BS may select a subset of the CCEs 312 located at a lower frequency edge of the CORESET 301 for the virtual CORESET 516.
  • the virtual CORESET 516 may be mapped to CCEs 312 indexed 0 to 7 (including a lowest-frequency CCE 312 indexed 0 of the common CORESET 301) .
  • the CCEs in the virtual CORESET 516 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) .
  • the second tier UE monitoring space 518 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 516.
  • FIG. 5B illustrates a common CORESET configuration scheme 520 according to some aspects of the present disclosure.
  • the scheme 520 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 520.
  • FIG. 5B is described using the same CORESET structure as the CORESET 303 in the scheme 320, and may use the same reference numerals as FIG. 3B for simplicity’s sake.
  • a BS may configure a lower frequency portion 525 of the CORESET 303 as a virtual CORESET 526 for a second tier UE monitoring space 528 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 526 may be within a BW of the second tier UE.
  • the virtual CORESET 526 may be mapped to CCEs 322 indexed 0 to 15.
  • the CCEs in the virtual CORESET 526 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) .
  • the second tier UE monitoring space 528 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 526.
  • FIG. 5C illustrates a common CORESET configuration scheme 530 according to some aspects of the present disclosure.
  • the scheme 530 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 530.
  • FIG. 4C is described using the same CORESET structure as the CORESET 305 in the scheme 330, and may use the same reference numerals as FIG. 3C for simplicity’s sake.
  • a BS may configure a lower frequency portion 435 of the CORESET 305 as a virtual CORESET 536 for a second tier UE monitoring space 538 (e.g., for a 10 MHz low tier UE) .
  • the virtual CORESET 536 may be within a BW of the second tier UE.
  • the virtual CORESET 536 may be mapped to CCEs 332 indexed 0 to 23.
  • the CCEs in the virtual CORESET 536 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) .
  • the second tier UE monitoring space 538 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 536.
  • a low tier UE may monitor for PDCCH at CCEs (e.g., the CCEs 312, 322, 332) located at a centered part of a CORESET (e.g., the CORESETs 301, 303, or 305) spanning the full channel (e.g., 20 MHz) .
  • CCEs e.g., the CCEs 312, 322, 332
  • a CORESET e.g., the CORESETs 301, 303, or 305
  • a low tier UE may monitor for PDCCH at CCEs (e.g., the CCEs 312, 322, 332) located at an ending frequency edge of a CORESET (e.g., the CORESETs 301, 303, or 305) spanning the full channel (e.g., 20 MHz) .
  • CCEs e.g., the CCEs 312, 322, 332 located at an ending frequency edge of a CORESET (e.g., the CORESETs 301, 303, or 305) spanning the full channel (e.g., 20 MHz) .
  • a low tier UE may monitor for PDCCH at CCEs (e.g., the CCEs 312, 322, 332) located at a starting frequency edge of a CORESET (e.g., the CORESETs 301, 303, or 305) spanning the full channel (e.g., 20 MHz) .
  • the PDCCH monitoring may include performing blind decoding to decode for a PDCCH candidate, which may be of an AL of 4, 8, or 16.
  • FIG. 6 illustrates a PDCCH communication scheme 600 according to some aspects of the present disclosure.
  • the scheme 600 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with UEs of different tiers as shown in the scheme 600.
  • the x-axis represents time in some arbitrary units
  • the y-axis represents frequency in some arbitrary units.
  • the scheme 600 is illustrated using the CORESET configuration scheme 510 (with a 30 kHz SCS and a 2-symbol CORESET duration) , and may use the same reference numerals as FIG. 5A for simplicity’s sake.
  • a BS may schedule type-0 PDCCH (e.g., for SIB scheduling) in CCEs 312 that are within the first tier UE monitoring space 314 and the second tier UE monitoring space 518 (as shown by reference numeral 630) .
  • the BS may utilize an AL of 4 to transmit a type-0 PDCCH (e.g., a SIB schedule) as an AL-4 candidate 302a in CCEs 312 indexed 0-4 or an AL-4 candidate 302b in CCEs 312 indexed 4-7.
  • the BS may utilize an AL of 8 to transmit the SIB schedule as an AL-8 candidate 304a in CCEs 312 indexed 0 to 7.
  • a low tier UE may perform blind decoding in the second tier UE monitoring space 518 according to the PDCCH candidate monitoring grid.
  • the PDCCH candidate monitoring grid may refer to the CCE boundaries of the PDCCH candidates 302, 304, and/or 306 within the monitoring space 518.
  • the low tier UE may attempt to decode for a PDCCH candidate 302a utilizing an AL of 4 from the CCEs 312 indexed 0 to 3.
  • the low tier UE may also attempt to decode for a PDCCH candidate 302b utilizing an AL of 4 from the CCEs 312 indexed 4 to 7.
  • the low tier UE may also attempt to decode for a PDCCH candidate 304a utilizing an AL of 8 from the CCEs 312 indexed 0 to 7. In other words, the low tier UE may perform three blind decoding to search for a PDCCH in the second tier UE monitoring space 518. If the BS utilizes a AL of 4 to transmit the SIB schedule in the CCEs 312 indexed 0 to 3, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 302a. If the BS utilizes a AL of 4 to transmit the SIB schedule in the CCEs 312 indexed 4 to 7, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 302b. If the BS utilizes a AL of 8 to transmit the SIB schedule in the CCEs 312 indexed 0 to 7, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 304a.
  • the BS may also utilize an AL of 16 to transmit the SIB schedule as an AL-16 candidate 306 in the CCEs 312 indexed 0 to 15, for example, to provide better frequency diversity for medium tier UEs.
  • the low tier UE may also attempt to decode an AL-16 candidate, where some of the CCEs 312 (from CCE8 to CCE15) for the AL-16 candidate are outside the second tier UE monitoring space 518. For instance, the low tier UE may perform demodulation and compute log-likelihood-ratio (LLRs) from the CCEs 312 indexed 0 to 7 (which are within the second tier UE monitoring space 518) .
  • the low tier UE may perform decoding from the partial LLRs obtained from CCE0 to CCE7. Due to the high AL, the low tier UE may successfully decode a PDCCH from the partial LLRs.
  • the BS may apply similar type-0 PDCCH scheduling mechanisms as in the scheme 600 when utilizing the schemes 310, 320, 330, 410, 420, 430, 520, and/or 530 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5B, and/or 5C, respectively.
  • FIGS. 3A-3C where a low tier virtual COREST is in a centered frequency portion of a medium tier CORESET is in FIG.
  • AL-8 PDCCH candidates (e.g., the candidates 304) for the medium tier may not be completely contained within the low tier virtual CORESET or aligned to a PDCCH candidate monitoring grid of the low tier.
  • AL-16 PDCCH candidates (e.g., the candidates 306) for the medium tier are not within the low tier virtual CORESET.
  • the virtual CORESET configuration in a centered frequency portion of a medium tier UE CORESET may provide a limited coverage (e.g., without AL of 8 or 16) .
  • the low tier UEs may not have to switch a frequency band between SSB detection (which is also in a centered frequency band of a channel frequency band) and SIB monitoring.
  • a BS may use any of the AL-4 PDDCH candidates and the AL-8 PDCCH candidates that are overlapping and aligned between the medium tier CORESET and the low tier CORESET for type-0 PDCCH transmissions.
  • some of the AL-4 PDCCH candidates e.g., the candidates 302 , AL-8 PDCCH candidates (e.g., the candidates 304) , and AL-16 PDCCH candidates (e.g., the candidates 306) for the medium tier are within the low tier virtual CORESET.
  • a BS may use any of the AL-4 PDDCH candidates, the AL-8 PDCCH candidates, and the AL-16 PDCCH candidates that are overlapping and aligned between the medium tier CORESET and the low tier CORESET for type-0 PDCCH transmissions.
  • a low tier UE may perform a frequency band switch from a centered frequency band to a corresponding lower frequency edge portion or an upper frequency edge portion upon detecting an SSB (e.g., in a centered frequency portion of the channel BW) .
  • an SSB e.g., in a centered frequency portion of the channel BW
  • a BS may schedule type-0 PDCCH for medium tier UEs in CCEs (e.g., the CCEs 312, 322, and/or 332) that are outside a low tier virtual CORESET.
  • CCEs e.g., the CCEs 312, 322, and/or 332
  • the BS may schedule type-0 PDCH for medium tier UEs in CCEs 312 indexed 8-15, which are non-overlapping with CCEs of the virtual CORESET 516.
  • FIG. 7 illustrates a PDCCH communication scheme 700 according to some aspects of the present disclosure.
  • the scheme 700 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate PDCCH with a low tier UE as shown in the scheme 700.
  • the x-axis represents time in some arbitrary units
  • the y-axis represents frequency in some arbitrary units.
  • a BS may serve UEs (e.g., the UEs 115) of multiple tiers, for example, a medium tier and a low tier.
  • a low tier UE may have a BW capability less than a channel BW.
  • the medium tier UEs may operate at the channel BW of about 20 MHz, while the low tier UEs may have a BW capability of about 10 MHz.
  • the BS may utilize similar mechanisms as in the scheme 410, 420, 430, 510, 520, and/or 530 discussed above with reference to FIGS.
  • the BS configures a CORESET 701 in a channel frequency band 702, for example, for medium tier UEs.
  • the CORESET 701 may be a CORESET #0 and may be similar to the CORESETs 301, 303, and/or 305.
  • the BS configures a virtual CORESET 710 in an upper frequency portion of the CORESET 701 and a virtual CORESET 712 in a lower frequency portion of the CORESET 701.
  • the CORESET 710 may be aligned to a highest frequency edge of the CORESET 701.
  • the CORESET 712 may be aligned to a lowest frequency edge of the CORESET 701.
  • the channel frequency band 702 may have a BW of about 20 MHz in which the medium tier UEs may operate and each of the lower and upper frequency portions may have a BW of about 10 MHz.
  • the virtual CORESET 710 may be similar to the virtual CORESETs 416, 426, and/or 436.
  • the virtual CORESET 712 may be similar to the virtual CORESETs 516, 526, and/or 536.
  • the BS may configure a low tier UE to frequency hop between the virtual CORESETs 710 and 712 for PDCCH monitoring.
  • the BS may configure the UE with frequency hopping channels 704 and 706 where the virtual CORESETs 710 and 712 are located, respectively. At any given time instant, one CORESET 710 or 712 may be active. In other words, the low tier UE may perform PDCCH monitoring in the virtual CORESET 710 (in the frequency hopping channel 704) during a first time period. The UE may switch to frequency hopping channel 706 and perform PDCCH monitoring in the virtual CORESET 712 during a second time period after the first time period.
  • the frequency hopping pattern may be predetermined and known to the BS and the low tier UE.
  • the BS may schedule type-0 PDCCH according to the frequency hopping pattern.
  • the BS may indicate the frequency hopping pattern in a MIB along with the common CORESET and corresponding PDCCH search space configuration.
  • the use of frequency hopping in PDCCH communications may provide low tier UEs with frequency diversity and allow for interference mitigation. For example, if the frequency hopping channel 704 is blocked, the UE may fail to receive PDCCH from the virtual CORESET 710.
  • the frequency hopping allows the BS and the low tier UE to hop to the frequency hopping channel 706 to communicate PDDCH in the virtual CORESET 712.
  • FIG. 7 illustrates two frequency hopping channels 704 and 706 for low tier UE PDCCH monitoring
  • a network e.g., the network 100
  • the CORESET 701 may be partitioned into four virtual CORESETS each in a different 5 MHz frequency portion of the CORESET 701.
  • the 5 MHz UEs may perform PDCCH monitoring by hopping across the four virtual CORESETs.
  • the frequency hopping pattern for the virtual CORESET may be based on a predetermine random pattern, for example, based on a system frame number (SFN) , a half frame index, and/or a SSB subband index.
  • SFN may refer to a counter that is incremented by 1 in every 10 ms time interval, for example, corresponding to the radio frame 201 of FIG. 2.
  • the half frame index may be toggled between 0 and 1, for example, at 5 ms intervals.
  • the half frame index may be 0 at the beginning of a radio frame 201 and may be 1 in the middle of the radio frame 201.
  • the SSB subband index may identify the frequency subband where an SSB associated with the CORESET 701 is transmitted. For instance, at a given time, a frequency hopping channel, denoted as S j , that PDCCH candidates may occupy is determined by a frequency hopping pattern defined as shown below:
  • N FH represents the number of frequency hopping channels and g represents a function dependent on the SFN and half frame index.
  • the frequency hopping pattern may be based on a cell identifier (ID) of the a cell served by the BS. Additionally or alternatively, the frequency hopping pattern may be based on a slot index.
  • FIG. 8 is a block diagram of an exemplary BS 800 according to some aspects of the present disclosure.
  • the BS 800 may be a BS 105 in the network 100 as discussed above in FIG. 1.
  • the BS 800 may include a processor 802, a memory 804, an initial signal module 808, a transceiver 810 including a modem subsystem 812 and a RF unit 814, and one or more antennas 816. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 802 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 804 may include a non-transitory computer-readable medium.
  • the memory 804 may store instructions 806.
  • the instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform operations described herein, for example, aspects of FIGS. 2-7, 10-11, and 13. Instructions 806 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 802) to control or command the wireless communication device to do so.
  • processors such as processor 802
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc.
  • “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the initial signal module 808 may be implemented via hardware, software, or combinations thereof.
  • the initial signal module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802.
  • the initial signal module 808 can be integrated within the modem subsystem 812.
  • the initial signal module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812.
  • the initial signal module 808 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7, 10-11, and 13.
  • the initial signal module 808 is configured to determine a portion of a common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type.
  • the first UE type may refer to a low tier UE with a BW capability less than a channel BW.
  • the common CORESET may include a plurality of CCEs in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  • the initial signal module 808 may be configured to select the subset of the plurality of CCEs from a central frequency portion of the frequency band. In some aspects, as part of determining the portion of the common CORESET, the initial signal module 808 may be configured to select the subset of the plurality of CCEs from a lower frequency portion of the frequency band. In some aspects, as part of determining the portion of the common CORESET, the initial signal module 808 may be configured to select the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
  • the initial signal module 808 is also configured to transmit SIB scheduling information in at least the portion of the common CORESET. In some aspects, as part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  • the initial signal module 808 is also configured to transmit a SIB based on the SIB scheduling information.
  • the initial signal module 808 may also be configured to transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period. As part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern.
  • the frequency hopping pattern is associated with at least one of a SFN, a half frame index, or a SSB subband index.
  • the initial signal module 808 may also be configured to transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities.
  • the initial signal module 808 may also be configured to transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  • the initial signal module 808 may also be configured to perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type. In some aspects, the initial signal module 808 may also be configured to determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  • the initial signal module 808 may also be configured to transmit, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  • the initial signal module 808 may also be configured to perform blind detection for an ACK/NACK associated with a MSG4 in a first frequency band corresponding to the frequency band of the common CORESET.
  • the initial signal module 808 may also be configured to perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  • the initial signal module 808 may also be configured to determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type. As part of the transmitting the SIB, the initial signal module 808 may also be configured to transmit the SIB including an indication of the one or more random access occasions.
  • the initial signal module 808 may also be configured to receive, from a RRC connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type.
  • the initial signal module 808 may also be configured to transmit, to the RRC connected UE, a BWP configuration based on the capability report.
  • the transceiver 810 may include the modem subsystem 812 and the RF unit 814.
  • the transceiver 810 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element.
  • the modem subsystem 812 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., PDCCH, PDSCH, SSBs, SIBs, MSG2, MSG4, initial BWP configurations, PDCCH common configurations
  • modulated/encoded data e.g., PDCCH, PDSCH, SSBs, SIBs, MSG2, MSG4, initial BWP configurations, PDCCH common configurations
  • the RF unit 814 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 812 and/or the RF unit 814 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 814 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 816 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to some aspects of the present disclosure.
  • the antennas 816 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 810.
  • the transceiver 810 may provide the demodulated and decoded data (e.g., UE capability reports, MSG1, MSG3, ACK/NACK, PUCCH, PUSCH) to the initial signal module 808 for processing.
  • the antennas 816 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the processor 802 is configured to coordinate with the initial signal module 808 to determine a portion of a common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type.
  • the transceiver 810 is configured to coordinate with the initial signal module 808 to transmit SIB scheduling information in at least the portion of the common CORESET and transmit a SIB based on the SIB scheduling information.
  • the BS 800 can include multiple transceivers 810 implementing different RATs (e.g., NR and LTE) .
  • the BS 800 can include a single transceiver 810 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 810 can include various components, where different combinations of components can implement different RATs.
  • FIG. 9 is a block diagram of an exemplary UE 900 according to some aspects of the present disclosure.
  • the UE 900 may be a UE 115 as discussed above with respect to FIG. 1.
  • the UE 900 may include a processor 902, a memory 904, an initial signal module 908, a transceiver 910 including a modem subsystem 912 and a radio frequency (RF) unit 914, and one or more antennas 916.
  • RF radio frequency
  • the processor 902 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 904 includes a non-transitory computer-readable medium.
  • the memory 904 may store, or have recorded thereon, instructions 906.
  • the instructions 906 may include instructions that, when executed by the processor 902, cause the processor 902 to perform the operations described herein with reference to the UEs 115 in connection with aspects of the present disclosure, for example, aspects of FIGS. 2-7 and 10-12. Instructions 906 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
  • the initial signal module 908 may be implemented via hardware, software, or combinations thereof.
  • the initial signal module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902.
  • the initial signal module 908 can be integrated within the modem subsystem 912.
  • the initial signal module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912.
  • the initial signal module 908 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7 and 10-12.
  • the initial signal module 908 is configured to performs DCCH monitoring in a portion of a common CORESET spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE.
  • the common CORESET may include a plurality of CCEs in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  • the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band.
  • the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs in a lower frequency portion of the frequency band. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs in an upper frequency portion of the frequency band. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  • the initial signal module 908 may be configured to decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  • the initial signal module 908 is also configured to receive a SIB based on the PDCCH monitoring.
  • the initial signal module 908 may be configured to perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period.
  • the initial signal module 908 may be configured to perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern.
  • the frequency hopping pattern may be associated with at least one of a SFN, a half frame index, or a SSB subband index.
  • the initial signal module 908 may also be configured to receive a SSB in a first frequency subband within a BWP, where the common CORESET is associated with the BWP.
  • the UE may also switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  • the initial signal module 908 may be configured to receive the SIB including at least one of an initial DL BWP configuration, an initial UE BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities.
  • the initial signal module 908 may be configured to receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type. For example, the first indication may indicate a BW support for 10 MHz and the second indication may indicate a BW support for 20 MHz.
  • the initial signal module 908 may also be configured to determine that the UE is associated with the first UE type based on the bandwidth capability of the UE.
  • the initial signal module 908 may also be configured to perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  • the initial signal module 908 may also be configured to receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET. In some aspects, the initial signal module 908 may also be configured to transmit, transmitting, while in a RRC connected mode, a capability report indicating the bandwidth capability of the UE. The initial signal module 908 may also be configured to receive a BWP configuration configured based on the capability report.
  • the transceiver 910 may include the modem subsystem 912 and the RF unit 914.
  • the transceiver 910 can be configured to communicate bi-directionally with other devices, such as the BSs 105.
  • the modem subsystem 912 may be configured to modulate and/or encode the data from the memory 904 and/or the initial signal module 908 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., UE capability report, MSG1, MSG3, ACK/NACK, PUCCH
  • modulated/encoded data e.g., UE capability report, MSG1, MSG3, ACK/NACK, PUCCH
  • the RF unit 914 may be further configured to perform analog beamforming in conjunction with the digital beamforming.
  • the modem subsystem 912 and the RF unit 914 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 914 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may include one or more data packets and other information) , to the antennas 916 for transmission to one or more other devices.
  • the antennas 916 may further receive data messages transmitted from other devices.
  • the antennas 916 may provide the received data messages for processing and/or demodulation at the transceiver 910.
  • the transceiver 910 may provide the demodulated and decoded data (e.g., PDCCH, PDSCH, RRC configuration, SSB, SIB, PDCCH, MSG2, MSG4, paging messages) to the initial signal module 908 for processing.
  • the antennas 916 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 914 may configure the antennas 916.
  • the processor 902 is configured to coordinate with the initial signal module 908 to perform PDCCH monitoring in a portion of a common CORESET spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE.
  • the transceiver 910 is configured to coordinate with the initial signal module 908 to receive a SIB based on the PDCCH monitoring.
  • the UE 900 can include multiple transceivers 910 implementing different RATs (e.g., NR and LTE) .
  • the UE 900 can include a single transceiver 910 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 910 can include various components, where different combinations of components can implement different RATs.
  • FIG. 10A is discussed in relation to FIG. 10B to illustrate mechanisms for initial network access.
  • FIG. 10A is a signaling diagram illustrating an initial network access method 1000 according to some aspects of the present disclosure.
  • the method 1000 may be implemented between a BS 1002, a UE 1004.
  • the BS 1002 may correspond to a BS 105 or a BS 800, and the UE may correspond to a UE 115 or a UE 900.
  • the UE 1004 may be a medium tier UE, for example, having a BW capability of 20 MHz corresponding to a channel BW.
  • the UE 1004 may be a low tier UE, for example, having a BW capability less than the channel BW.
  • the method 1000 illustrates the BS 1002 in communications with one UE 1004, it should be understood that in other examples the BS 1002 may communicate with any suitable number of UEs 1004 (e.g., about 2, 9, 4, 5, 6 or more) .
  • the method 1000 may be implemented in conjunction with the schemes 310, 320, 330, 410, 420, 430, 510, 520, 530, 600, and/or 700 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 5C, 8, and/or 7, respectively.
  • the method 1000 includes a number of enumerated actions, but embodiments of the method 1000 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
  • the BS 1002 may include an initial DL BWP configuration, an initial UL BWP configuration, and/or a PDCCH common configuration for each tier in a SIB1.
  • an initial DL BWP and/or initial UL BWP for the low tier UEs may have a smaller or narrower BW than the initial DL BWP and/or initial UL BWP for the medium tier UE.
  • a low tier UE may read SIB1 and perform subsequent operations (e.g., random access and/or paging) according to the narrower initial DL BWP and/or initial UL BWP configured for the low tier UEs.
  • the BS 1002 transmits one or more SSBs, for example, in a broadcast mode.
  • Each SSB may include a PSS, a SSS, and/or a PBCH.
  • the PBCH may carry a MIB indicating information associated with SIB scheduling.
  • the MIB may include a resource configuration for a common CORESET.
  • the common CORESET resource configuration may indicate a start symbol, a number of symbols, a starting RB, and/or a number of RBs the common CORESET may occupy.
  • the common CORESET may be a CORESET #0 and may be similar to the CORESETS 301, 303, 305, and/or 701.
  • the MIB may also indicate a PDCCH search space configuration for the common CORESET.
  • a PDCCH search space is an instance of the common CORESET in time (e.g., in a certain slot 202) .
  • the PDCCH search space associated with the common CORESET may be referred to as a type-0 PDCCH search space where SIB scheduling information may be monitored.
  • the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1010.
  • the BS 1002 transmits SIB scheduling information according to the type-0 PDCCH search space indicated by the MIB.
  • the SIB scheduling information may be transmitted in the form of PDCCH DCI.
  • the BS 1002 may transmit a SIB1 schedule in the type-0 PDCCH search space.
  • the BS 1002 may determine a portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on a BW capability of a low tier UE.
  • the portion of the CORESTE may correspond to a virtual CORESET of a low tier UE.
  • the BS 1002 may transmit the SIB scheduling information in at least the portion of common CORESET so that the SIB scheduling information may be received by a low tier UE and a medium tier UE.
  • the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1015.
  • the portion can be a centered frequency portion of the common CORESET, for example, corresponding to the virtual CORESETs 316, 326, or 336 as discussed in the schemes 310, 320, and 330, respectively.
  • the portion can be at an upper frequency edge of the common CORESET, for example, corresponding to the virtual CORESETs 416, 426, or 436 as discussed in the schemes 410, 420, and/or 430, respectively.
  • the portion can be at a lower frequency edge of the common CORESET, for example, corresponding to the virtual CORESETs 516, 526, or 536 as discussed in the schemes 510, 520, and/or 530, respectively.
  • the BS 1002 may apply frequency hopping to the PDCCH or SIB scheduling information transmission, for example, as discussed in the scheme 700. In other words, the BS 1002 may determine the portion further based on a frequency hopping pattern.
  • the BS 1002 may transmit the SIB1 schedule in CCEs (e.g., the CCEs 312, 322, and/or 322) that are overlapping between the common CORESET and the virtual CORESET.
  • the BS 1002 may determine an AL of 4, 8, or 16, for example, based on a channel condition or a signal-to-noise ratio (SNR) .
  • the BS 1002 may select a PDCCH candidate space that may be monitored by medium tier UEs and low tier UEs as discussed in the scheme 600.
  • the BS 1002 transmits a SIB according to the SIB scheduling information transmitted at action 1015.
  • the BS 1002 may transmit the SIB in a PDSCH.
  • the SIB may be a SIB1.
  • the SIB1 may include dedicated BWP configurations for each of the medium tier and low tier.
  • the SIB1 may include at least one of an initial DL BWP configuration, a UL BWP configuration, and/or a PDCCH common configuration for each of the medium tier and low tier as will be discussed more fully below in FIG. 10B.
  • the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1020.
  • the processor 802 the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1020.
  • the UE 1004 detects an SSB transmitted by the BS 1002 at action 1010.
  • the UE 1004 may be in an RRC idle mode and monitoring for SSBs.
  • the UE 1004 may receive a signal from the channel and determine whether an SSB can be successfully decoded from the received signal.
  • the UE 1004 may read the MIB to obtain the common CORESET resource configuration and associated PDCCH search configuration from the MIB.
  • the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1025.
  • the UE 1004 performs PDCCH type-0 monitoring based on the common CORESET resource configuration and associated PDCCH search configuration read from the MIB.
  • the UE 1004 may be a low tier UE.
  • the UE 1004 may perform PDCCH monitoring in a portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of the UE 1004.
  • the PDCCH monitoring may include receiving a signal from the channel and determining whether a PDCCH candidate can be successfully decoded from the received signal (in resources indicated by the common CORESET resource configuration and the PDCCH search configuration) .
  • the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1030.
  • the processor 902 the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1030.
  • the portion can be a centered frequency portion of the common CORESET, for example, corresponding to the virtual CORESETs 316, 326, or 336 as discussed in the schemes 310, 320, and 330, respectively.
  • the portion can be at an upper frequency edge of the common CORESET, for example, corresponding to the virtual CORESETs 416, 426, or 436 as discussed in the schemes 410, 420, and/or 430, respectively.
  • the portion can be at a lower frequency edge of the common CORESET, for example, corresponding to the virtual CORESETs 516, 526, or 536 as discussed in the schemes 510, 520, and/or 530, respectively.
  • the UE 1004 may perform blind decoding in the portion of the common CORESET to search for a PDCCH candidate, which may be at an AL of 4, 8, or 16, according to a PDCCH candidate monitoring grid within the portion of the common CORESET as discussed above.
  • the UE 1004 may apply frequency hopping to the PDCCH monitoring, for example, as discussed in the scheme 700. In some instances, the UE 1004 may determine whether to monitor a centered frequency portion, an upper frequency edge portion, or a lower frequency edge portion of the common CORESET and/or whether to apply frequency hopping based on a predetermined configuration.
  • the UE 1004 may receive a SIB according to the SIB schedule.
  • the SIB may be a SIB1 configured as shown in FIG. 10B.
  • the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1035.
  • FIG. 10B illustrates a SIB configuration 1050 according to some aspects of the present disclosure.
  • the configuration 1050 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may transmit a SIB using the configuration of 1050 when serving UEs of multiple tiers with different BW capabilities.
  • the BS may serve a first tier with UEs having a BW capability corresponding to a channel BW (e.g., about 20 MHz) and a second tier with UEs having a BW capability (e.g., about 10 MHz or 5 MHz) less than the channel BW.
  • the configuration 1050 includes a SIB 1051.
  • the SIB 1051 may be a SIB1.
  • the SIB 1051 includes an initial DL BWP configuration 1052, an initial UL BWP configuration 1054, and a PDCCH common configuration 1056 for the first tier UEs.
  • the SIB 1051 also includes an initial DL BWP configuration 1062, an initial UL BWP configuration 1064, and a PDCCH common configuration 1066 for the second tier UEs.
  • the SIB 1051 may also include other system information (e.g., cell selection, cell access, and/or other SIB scheduling information) related to the network.
  • the configuration 1050 illustrates the SIB 1051 include dedicated configurations for two tiers of UEs, it should be understood that in other examples the SIB 1051 may include dedicated configuration for more than two tiers (e.g., about 3, 4 or more) .
  • Each of the initial DL BWP configurations 1052 and 1062 may include information associated with a frequency location of an initial DL BWP for a corresponding tier, a subcarrier spacing (SCS) (e.g., at 15 kHz, 30 kHz, or 60 kHz) and/or a cyclic prefix (CP) mode (e.g., a normal CP or an extended CP) to be used for communicating in the initial downlink BWP.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the initial DL BWP configuration 1052 may indicate an initial DL BWP with a BW of 20 MHz for the first tier UE
  • the initial DL BWP configuration 1062 may indicate an initial DL BWP with a BW of 10 MHz for the second tier UE.
  • the initial DL BWP indicated by the initial DL BWP configuration 1052 ad the initial DL BWP indicated by the initial DL BWP configuration 1062 may be overlapping or at least partially overlapping.
  • the initial DL BWP indicated by the initial DL BWP configuration 1052 ad the initial DL BWP indicated by the initial DL BWP configuration 1062 may be non-overlapping.
  • each of the initial UL BWP configurations 1054 and 1064 may include information associated with the frequency location of the initial UL BWP for a corresponding tier, a SCS and/or a CP mode to be used for communicating in the initial UL BWP.
  • the initial UL BWP configuration 1054 may indicate an initial UL BWP with a BW of 20 MHz for the first tier UE
  • the initial UL BWP configuration 1062 may indicate an initial UL BWP with a BW of 10 MHz for the second tier UE.
  • the initial UL BWP indicated by the initial UL BWP configuration 1054 ad the initial UL BWP indicated by the initial UL BWP configuration 1064 may be overlapping or at least partially overlapping. In some other instances, the initial UL BWP indicated by the initial UL BWP configuration 1054 ad the initial UL BWP indicated by the initial UL BWP configuration 1064 may be non-overlapping.
  • Each of PDCCH common configurations 1056 and 1066 may include information associated with PDCCH monitoring.
  • the PDCCH common configurations 1056 may indicate a resource configuration for a common CORESET, which may be the same as indicated by the MIB.
  • the PDCCH common configurations 1056 may also indicate a PDCCH search space where a first tier UE may monitor for SIB1 scheduling information, a PDCCH search space where a first tier UE may monitor for other SIB scheduling information, a PDCCH search space where a first tier UE may monitor for random access message scheduling information, and/or a PDCCH search space where a first tier UE may monitor for paging message scheduling information.
  • the PDCCH common configurations 1066 may indicate a resource configuration for a common CORESET (e.g., a CORESET #0) for a second tier UE.
  • the PDCCH common configurations 1066 may indicate a common CORESET within the initial DL BWP indicated by the initial DL BWP configuration 1062.
  • the CORESET resource configuration may indicate resources corresponding to a portion of the common CORESET indicated by the MIB. The portion can be a centered frequency portion, a low frequency edge portion, or an upper frequency edge portion the common CORESET depending on the initial DL BWP indicated by the initial DL BWP configuration 1062.
  • the portion may be similar to the virtual CORESETs 316, 326, 336, 416, 426, 436, 516, 526, and/or 536.
  • the CORESET resource configuration may indicate a starting frequency and/or an ending frequency of the portion.
  • the starting frequency and/or ending frequency may be in units of RBs and may be relative to the common CORESET (e.g., an offset from a starting frequency edge or an ending frequency edge of the common CORESET) .
  • the CORESET resource configuration may include any suitable combination of a starting frequency edge, an ending frequency edge, and/or a quantity of RBs in the portion.
  • the BS 1002 may configure a common CORESET for the second tier independently from a common CORESET for the second tier.
  • the PDCCH common configurations 1066 may also indicate a PDCCH search space where a second tier UE may monitor for SIB1 scheduling information, a PDCCH search space where a second tier UE may monitor for other SIB scheduling information, a PDCCH search space where a second tier UE may monitor for random access message scheduling information, and/or a PDCCH search space where a second tier UE may monitor for paging message scheduling information.
  • the PDCCH common configuration 1066 may indicate a frequency hopping pattern for PDCCH monitoring as discussed in the scheme 700 with reference to FIG. 7.
  • the UE 1004 receives other SIBs from the BS 1002 and/or performs a random access procedure with the BS 1002 in the BWPs dedicated for low tier UE or medium tier UE depending on which tier the UE 1004 belongs. If the UE 1004 is a second tier UE (with a BW capability less than the channel bandwidth) , the UE 1004 may configure an RF unit (e.g., the RF unit 914) of the UE 1004 to operate in the initial DL BWP and initial UL BWP indicated by the initial DL BWP configuration 1062 and the initial UL BWP configuration 1064.
  • an RF unit e.g., the RF unit 914
  • the UE 1004 may perform the random access procedure in the initial UL BWP and the initial DL BWP.
  • the BS 1002 may transmit random access message (e.g., MSG2 and MSG4) in a PDCCH search space according to the PDCCH common configuration 1066.
  • the UE 1004 may monitor for a random access message (e.g., MSG2 and MSG4) from the BS 1002 in a PDCCH search space according to the PDCCH common configuration 1066.
  • the UE 1004 may perform the random access procedure with the BS 1002 in the initial DL BWP and initial UL BWP indicated by the initial DL BWP configuration 1052 and the initial UL BWP configuration 1054, respectively.
  • the BS 1002 may communicate PDCCH with the UE 1004 according to the PDCCH common configuration 1056.
  • the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1040.
  • the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1040.
  • the processor 902 the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1040.
  • FIG. 11 is a signaling diagram illustrating an initial network access method 1100 according to some aspects of the present disclosure.
  • the method 1100 may be implemented between a BS 1102 and a UE 1104.
  • the BS 1102 may correspond to a BS 105, a BS 800, or a BS 1002, and the UE may correspond to a UE 115, a UE 900, or a UE 1004.
  • the UE 1104 may be a medium tier UE, for example, having a BW capability of 20 MHz corresponding to a channel BW.
  • the UE 1104 may be a low tier UE, for example, having a BW capability less than the channel BW.
  • the method 1100 illustrates the BS 1102 in communications with one UE 1104, it should be understood that in other examples the BS 1102 may communicate with any suitable number of UEs 1104 (e.g., about 2, 9, 4, 5, 6 or more) .
  • the method 1100 may be implemented in conjunction with the schemes 310, 320, 330, 410, 420, 430, 510, 520, 530, 600, and/or 700 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 5C, 8, and/or 7, respectively.
  • the method 1100 includes a number of enumerated actions, but embodiments of the method 1100 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
  • the method 1100 includes features similar to method 1000 in many respects.
  • actions 1110, 1115, 1120, 1125, 1130, and 1135 are similar to actions 1010, 1015, 1020, 1025, 1030, and 1035, respectively. Accordingly, for sake of brevity, details of those actions will not be repeated here and may be referred to the corresponding descriptions above.
  • the BS 1102 may not include separate or dedicated initial DL BWP, initial UL BWP, and/or PDCCH common configurations for different tiers in a SIB1.
  • the BS 1102 may not provide dedicated BWP and/or PDCCH common configurations until the UE 1104 reports its capabilities.
  • the UE 1104 receives other SIB (s) from the BS 1102 and/or performs a random access procedure with the BS 1102. Since the BS 1102 has no knowledge whether a UE attempting to access the network may be a medium tier UE or a low tier UE, the BS 1102 may configure random access occasions, perform random access preamble monitoring, and/or schedule random access messages with considerations for low tier UEs.
  • SIB SIB
  • the BS 1102 may schedule a PDCCH transmission in CCEs (e.g., the CCEs 312, 322, and/or 332) or PDCCH search spaces that are monitored by medium tier UEs and low tier UEs and aligned to PDCCH monitoring grid of the medium tier UEs and low tier UEs as discussed above in the schemes 310, 320, 330, 410, 420, 430, 510, 520, and/or 530.
  • CCEs e.g., the CCEs 312, 322, and/or 332
  • PDCCH search spaces that are monitored by medium tier UEs and low tier UEs and aligned to PDCCH monitoring grid of the medium tier UEs and low tier UEs as discussed above in the schemes 310, 320, 330, 410, 420, 430, 510, 520, and/or 530.
  • the BS 1102 may transmit a PDCCH transmission in CCEs including one or more CCEs outside of a PDDCH search space or virtual CORESET of a low tier UE, for example, when using an AL of 16, where a low tier UE may decode for the PDCCH from partial LLRs computed from CCEs that are within the low tier UE’s search space or virtual CORESET.
  • the BS 1102 may configure random access occasions with FDM. For instance, the BS 1102 may configure a random access occasion in one portion of a channel frequency band and schedule a transmission in another portion of the channel frequency band. In order to support medium tier UEs and low tier UEs for random access, the BS 1102 may configure at least some random access occasions in a frequency portion that is within a low tier UE’s virtual CORESET.
  • the UE 1004 may exchange MSG1, MSG2, MSG2, and/or MSG4 with the BS 1102.
  • the UE 1104 may transmit a ACK/NACK feedback for MSG4.
  • the ACK/NACK feedback may be a PUCCH transmission located at edges of a frequency band. For example, if the UE 1104 is a medium tier UE, the UE 1104 may transmit the ACK/NACK at edges of a frequency band of the common COREST. If the UE 1104 is a low tier UE, the UE 1104 may transmit the ACK/NACK at edges of a frequency band of the virtual COREST.
  • the BS 1102 may perform blind detection at frequency edges of the common COREST and at frequency edges of the virtual CORESET to monitor for ACK/NACK for MSG4.
  • the BS 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1140.
  • the UE 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1140.
  • the processor 902 the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1140.
  • the UE 1104 transmits a UE capability report to the BS 1102, for example, while the UE 1104 is in a RRC connected state 1106.
  • the UE capability report may include a BW capability of the UE 1104.
  • the capability report may indicate whether the UE 1104 is a medium tier UE or a low tier UE.
  • the capability report may indicate whether the UE 1104 supports a BW of 10 MHz or 20 MHz.
  • the UE 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1150.
  • the BS 1102 transmits a BWP configuration to the UE 1104.
  • the BS 1102 may configure UL and/or DL BWPs for the UE 1104 based on the received UE capability report. For example, if the UE 1104 supports 10 MHz, the BS 1002 may configure a UL or DL BWP with a BW of about 10 MHz for the UE 1104. Conversely, if the UE 1104 supports 20 MHz, the BS 1002 may configure a UL or DL BWP with a BW of about 20 MHz for the UE 1104.
  • the UE 1104 may perform subsequent operations (e.g., data exchange) with the BS 1102 according to a corresponding BWP configuration.
  • the BS 1102 may utilize a shared initial BWP and PDCCH common configuration 1105 for communicating with the UE 1104 irrespective which tier the UE 1104 belongs to until the UE 1104 report its BW capability.
  • the BS 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the MAC module 809, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1160.
  • the method 1100 may have less SIB signaling overheads as there is no dedicated BWP configurations in SIB1.
  • the BS processing complexity may be higher for method 1100 as the BS 1102 may not have knowledge of which tier a UE may belong to until the UE reports its capability.
  • FIG. 12 is a flow diagram of a wireless communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps.
  • a wireless communication device such as the UEs 115, 900, 1004, or 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to execute the steps of method 1200.
  • the method 1200 may employ similar mechanisms as described above in FIGS. 2-7 and 10-11.
  • the method 1200 includes a number of enumerated steps, but aspects of the method 1200 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • a UE e.g., the UEs 115, 900, 1104, and/or 1004 performs PDCCH monitoring in a portion of a common CORESET (e.g., the common CORESETs 301, 303, 305, and/or 701) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE.
  • the PDCCH monitoring may include receiving a signal from the channel and determining whether a PDCCH candidate can be successfully decoded from the received signal in the portion of the common CORESET.
  • the common CORESET includes a plurality of CCEs (e.g., the CCEs 312, 322, and/or 332) in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  • the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion (e.g., the portions 315, 325, and 335) of the frequency band, for example, as shown in FIGS. 3A-3C.
  • the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs in a lower frequency portion (e.g., the portions 515, 525, and 535) of the frequency band, for example, as shown in FIGS. 5A-5C.
  • the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs in an upper frequency portion (e.g., the portions 415, 425, and 435) of the frequency band, for example, as shown in FIGS. 4A-4C.
  • the UE may decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of PDCCH monitoring, the UE may decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  • the UE may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas916, to perform PDCCH monitoring in the portion of the common CORESET spanning less than an entire frequency band of the CORESET based on the bandwidth capability of the UE.
  • the processor 902 the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas916, to perform PDCCH monitoring in the portion of the common CORESET spanning less than an entire frequency band of the CORESET based on the bandwidth capability of the UE.
  • the UE receives a SIB based on the PDCCH monitoring.
  • the UE may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to the SIB based on the PDCCH monitoring.
  • the UE may receive a SIB schedule indicating time-frequency resources (e.g., in a slot, symbols, and/or RBs) and/or MCS for the SIB from the PDCCH monitoring.
  • the UE may receive the SIB in the scheduled resources and decode the SIB according to the MCS.
  • the UE may further perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period.
  • the UE may perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern, for example, as shown in FIG. 7.
  • the frequency hopping pattern may be associated with at least one of a SFN, a half frame index, or a SSB subband index.
  • the UE may further receive a SSB in a first frequency subband within a BWP, where the common CORESET is associated with the BWP.
  • the UE may also switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  • the UE may receive the SIB including at least one of an initial DL BWP configuration, an initial UE BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities, for example, as shown in FIGS. 10A-10B.
  • the UE may receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  • the first indication may indicate a BW support for 10 MHz and the second indication may indicate a BW support for 20 MHz.
  • the UE may further determine that the UE is associated with the first UE type based on the bandwidth capability of the UE.
  • the UE may also perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  • the UE may further receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET.
  • the UE may further transmit, transmitting, while in a RRC connected mode, a capability report indicating the bandwidth capability of the UE.
  • the UE may also receive a BWP configuration configured based on the capability report, for example, as shown in FIG. 11.
  • FIG. 13 is a flow diagram of a wireless communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps.
  • a wireless communication device such as the BSs 105, 800, 1002, or 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to execute the steps of method 1300.
  • the method 1300 may employ similar mechanisms as described above in FIGS. 2-7 and 10-11.
  • the method 1300 includes a number of enumerated steps, but aspects of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
  • a BS determines a portion of a common CORESET spanning less than an entire frequency band of a common CORESET (e.g., the common CORESETs 301, 303, 305, and/or 701) based on a bandwidth capability of a first UE type (e.g., low tier) .
  • the common CORESET includes a plurality of CCEs (e.g., the CCEs 312, 322, and/or 332) in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  • the BS determines a size or number of CCEs for the subset based on a BW capability corresponding to the first UE type.
  • the BS may select the subset of the plurality of CCEs from a central frequency portion (e.g., the portions 315, 325, and 335) of the frequency band, for example, as shown in FIGS. 3A-3C.
  • the BS may select the subset of the plurality of CCEs from a lower frequency portion (e.g., the portions 515, 525, and 535) of the frequency band, for example, as shown in FIGS. 5A-5C.
  • the BS may select the subset of the plurality of CCEs from an upper frequency portion (e.g., the portions 415, 425, and 435) of the frequency band, for example, as shown in FIGS. 4A-4C.
  • the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to determine the portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on the bandwidth capability of the first UE type.
  • the BS transmits SIB scheduling information in at least the portion of the common CORESET.
  • the BS may transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  • the BS may transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  • the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to transmits SIB scheduling information in the at least the portion of the common CORESET.
  • the processor 802 the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to transmits SIB scheduling information in the at least the portion of the common CORESET.
  • the BS transmits a SIB based on the SIB scheduling information.
  • the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to transmit the SIB based on the SIB scheduling information.
  • the BS may indicate, in the SIB scheduling information, time-frequency resources (e.g., in a slot, symbols, and/or RBs) and/or MCS for transmitting the SIB and transmit the SIB in the scheduled resources according to the MCS.
  • the BS may further transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period.
  • the BS may transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern, for example, as shown in FIG. 7.
  • the frequency hopping pattern is associated with at least one of a SFN, a half frame index, or a SSB subband index.
  • the BS may transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type (e.g., low tier) and a second UE type (e.g., medium tier) , where the first UE type and the second UE type are associated with different bandwidth capabilities, for example, as shown in FIGS. 10A-10B.
  • the BS may also transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  • the BS may further perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type. In some aspects, the BS may also determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  • the BS may further transmit, to a UE (e.g., the UEs 115, 900, 1004, and/or 1104) , scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  • the BS may further perform blind detection for an ACK/NACK associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET.
  • the BS may also perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  • the BS may further determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type. As part of the transmitting the SIB at block 1330, the BS may transmit the SIB including an indication of the one or more random access occasions.
  • the BS may further receive, from a RRC connected UE (e.g., the UEs 115, 900, 1004, and/or 1104) , a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type.
  • the BS may also transmit, to the RRC connected UE, a BWP configuration based on the capability report.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communication systems and methods related to initial network signal communications in a wireless communication network serving user equipment (UE) devices with different BW capabilities are provided. A UE performs physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE. The UE receives a system information block (SIB) based on the PDCCH monitoring. A base station (BS) determines a portion of a common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type. The BS transmits SIB scheduling information in at least the portion of the common CORESET. The BS transmits a SIB based on the SIB scheduling information.

Description

SHARING OF INITIAL SIGNALS AMONG USER EQUIPMENT DEVICES WITH DIFFERENT BANDWIDTHS IN NEW RADIO (NR) LIGHT
Chih-Hao Liu, Jing Sun, Xiaoxia Zhang, Yisheng Xue, Changlong Xu
TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to initial network signal communications in a wireless communication network serving user equipment (UE) devices with different BW capabilities.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology, which may be referred to as 5 th Generation (5G) . For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands, for example, from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
An NR light network may refer to a wireless communication network built upon NR technologies and enhanced to provide support for user devices that require a low complexity and/or a low power consumption. Some example applications for NR light may include industrial wireless sensor applications and/or Internet of things (IoTs) applications. The bandwidth requirements  and/or capabilities of NR light devices may vary depending on the applications. For example, some NR light devices may support a bandwidth of about 20 megahertz (MHz) , while other NR light devices may support a bandwidth that is less than 20 MHz. For example, a bandwidth of about 10 MHz may be sufficient for video surveillance type applications.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
For example, in an aspect of the disclosure, a method of wireless communication performed by a user equipment (UE) , includes performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and receiving a system information block (SIB) based on the PDCCH monitoring.
In an additional aspect of the disclosure, a method of wireless communication performed by a base station (BS) , includes determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and transmitting a SIB based on the SIB scheduling information.
In an additional aspect of the disclosure, a user equipment (UE) includes a processor configured to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and a transceiver configured to receive a system information block (SIB) based on the PDCCH monitoring.
In an additional aspect of the disclosure, a base station (BS) includes a processor configured to determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; and a transceiver configured to transmit system information block (SIB) scheduling information in at  least the portion of the common CORESET; and transmit a SIB based on the SIB scheduling information.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a user equipment (UE) to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and code for causing the UE to receive a system information block (SIB) based on the PDCCH monitoring.
In an additional aspect of the disclosure, a non-transitory computer-readable medium having program code recorded thereon, the program code includes code for causing a base station (BS) to determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; code for causing the BS to transmit system information block (SIB) scheduling information in at least the portion of the common CORESET; and code for causing the BS to transmit a SIB based on the SIB scheduling information.
In an additional aspect of the disclosure, a user equipment (UE) includes means for performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and means for receiving a system information block (SIB) based on the PDCCH monitoring.
In an additional aspect of the disclosure, a base station (BS) includes means for determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; means for transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and means for transmitting a SIB based on the SIB scheduling information.
Other aspects, features, and embodiments of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain embodiments and figures below, all embodiments of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the invention discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it  should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to some aspects of the present disclosure.
FIG. 2 illustrates a radio frame structure according to some aspects of the present disclosure.
FIG. 3A illustrates a common control resource set (CORESET) configuration scheme according to some aspects of the present disclosure.
FIG. 3B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 3C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 4A illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 4B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 4C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 5A illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 5B illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 5C illustrates a common CORESET configuration scheme according to some aspects of the present disclosure.
FIG. 6 illustrates a physical downlink control channel (PDCCH) communication scheme according to some aspects of the present disclosure.
FIG. 7 illustrates a PDCCH communication scheme according to some aspects of the present disclosure.
FIG. 8 is a block diagram of an exemplary base station (BS) according to some aspects of the present disclosure.
FIG. 9 is a block diagram of an exemplary user equipment (UE) according to some aspects of the present disclosure.
FIG. 10A is a signaling diagram illustrating an initial network access method according to some aspects of the present disclosure.
FIG. 10B illustrates a system information block (SIB) configuration according to some aspects of the present disclosure.
FIG. 11 is a signaling diagram illustrating an initial network access method according to some aspects of the present disclosure.
FIG. 12 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
FIG. 13 is a flow diagram of a wireless communication method according to some aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is  described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. In order to achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with a ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+ years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
A 5G NR communication system may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) . Additional features may also include having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing, may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, subcarrier spacing may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD  greater than 3 GHz, subcarrier spacing may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed portion of the 5 GHz band, the subcarrier spacing may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, subcarrier spacing may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may comprise at least one element of a claim.
In a wireless communication network, a BS may broadcast various initial network signals, such as synchronization signals, master information block (MIB) , and/or system information blocks (SIBs) , to assist a UE in synchronizing and accessing the network. For instance, the network may operate over a certain channel frequency BW and the BS may transmit SSBs in a centered portion of the channel frequency BW. An SSB may include synchronization signals, such as a primary synchronization signal (PSS) and a secondary synchronization signals (SSS) , and a physical broadcast channel (PBCH) signal carrying a MIB. The MIB may include configuration information associated with a common control resource set (CORESET) , where the BS may transmit scheduling  information for additional network system information (e.g., system information blocks (SIBs) and/or remaining system information (RMSI) ) . Accordingly, during an initial network access, a UE may monitor for broadcast SSBs from a BS, decode information associated with the common CORESET from the SSBs, and monitor for SIB scheduling information in the common CORESET. In the context of NR or 5G, the common CORESET may be identified by a CORESET identifier (ID) 0 and may be referred to as a CORESET zero (CORESET #0) . The SIB scheduling information monitoring may be referred to as physical downlink channel (PDCCH) -type 0 monitoring.
In certain aspects, an NR network may operate over a 100 MHz BW and may partition the 100 MHz BW into about five 20 MHz channels to provide support for NR light. When an NR light network operates over a 20 MHz channel BW, a BS may configure a common CORESET spanning the 20 MHz channel BW. The BS may transmit SSBs in a centered portion of the 20 MHz. In some examples, the SSBs may span less than about 5 MHz. After transmitting the SSBs, the BS may transmit SIB scheduling information in the common CORESET. The BS may transmit the SIB scheduling information at various frequency locations across the 20 MHz channel BW according to some PDCCH candidate aggregation rules. The transmissions of SIB scheduling information in the common CORESET spanning the 20 MHz BW may serve UEs that are capable of operating over a 20 MHz BW, but may not serve UEs that are capable of operating at a smaller or narrower frequency BW less than 20 MHz.
The present application describes mechanisms for communicating initial network signals in a wireless communication network serving multiple tiers of UEs with different BW capabilities. For example, a BS may serve UEs of a first tier and UEs of a second tier over a frequency channel. The first tier UEs and the second tier UEs may have different BW capabilities. For example, the first tier UE may have a BW capability of about 20 MHz, while the second tier UE may have a narrow BW capability of about10 MHz or 5 MHz. The first tier with the wider BW capability may be referred to as a medium tier, and the second tier with the narrow BW capability may be referred to as a low tier. To serve the medium tier, the BS may configure a common CORESET (e.g., a CORESET #0) having a frequency band corresponding to a channel BW. To serve the low tier, the BS may additionally configure a portion of the common CORESET spanning less than the entire frequency band of the common CORESET based on a bandwidth capability of the low tier. The common CORESET may include a plurality of control channel elements (CCEs) in the frequency band. A CCE may be a smallest time-frequency resource unit used for defining a CORESET. The portion of the common CORESET may include a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs. In some aspects, the subset of the plurality of CCEs may be at a central  frequency portion of the common CORESET’s frequency band. In some aspects, the subset of the plurality of CCEs may be at a lower frequency portion of the common CORESET’s frequency band. In some aspects, the subset of the plurality of CCEs may be at an upper frequency portion of the common CORESET’s frequency band. The portion of the common CORESET used for serving the low tier may also be referred to as a virtual CORESET.
In some aspects, the BS may transmit SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16 so that the SIB scheduling information may be received by a low tier UE and a medium tier UE. Each of the common CORESET and virtual CORESET may have a preconfigured PDCCH search space monitoring grid or PDCCH candidate grid according to some rules. Thus, the BS may transmit the SIB scheduling information further based on the PDCCH search space or PDCCH candidate grids in the common CORESET and the virtual CORESET. Accordingly, a low tier UE may perform PDCCH monitoring in the virtual CORESET and according to the PDCCH search space or PDCCH candidate grid in the portion virtual CORESET. In some aspects, the BS may also transmit SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs, for example, when using an aggregation level of 16. When a PDCCH candidate may span CCEs outside of the virtual CORESET, the low tier UE may compute log-likelihood ratios (LLRs) from CCEs within the virtual CORESET and decode a PDCCH candidate from the partial LLRs (without having LLRs from CCEs outside of the virtual CORESET) . An LLR refers to the logarithm of a ratio of probabilities that a received bit is equal to 1 or 0.
In some aspects, the BS may also apply frequency hopping to the virtual CORESET. For example, the BS may configure the virtual CORESET to hop between the lower frequency portion and the upper frequency portion of the common CORESET’s frequency band to provide frequency diversity for the low tier UEs.
In some aspects, after transmitting the SIB scheduling information, the BS may transmit a SIB according to the SIB scheduling information. In some aspects, the BS may configure a SIB type 1 (SIB1) to include at least one of an initial DL BWP configuration, an initial UL BWP configuration, and/or a physical downlink control channel (PDCCH) common configuration for each of the medium tier and the low tier. The BS may perform subsequent procedures (e.g., random access and/or paging) for each tier according to corresponding BWP and/or PDCCH common configurations. Accordingly, upon reading a SIB1 from the BS, a low tier UE may configure or tune its radio frequency (RF) frontend to the low-tier initial DL BWP and initial UL BWP and  perform subsequent procedures in the low-tier initial DL BWP and initial UL BWP and perform PDCCH monitoring according to the low-tier PDCCH common configuration.
In some aspects, the BS may not provide separate or dedicated configurations for each of the medium tier and low tier in SIB1. Instead, the BS may wait till a UE reports its BW capability after a successful radio resource control (RRC) connection before configuring the UE with dedicated BWP and/or PDCCH common configurations. Since the BS may not have knowledge of whether a UE is of the medium tier or the low tier during random access or paging, the BS may perform resource allocation and/or scheduling for random access and/or paging with considerations for low tier UEs. Accordingly, a low tier UE may report its capability to the BS after establishing a RRC connection with the BS. Subsequently, the low tier UE may receive BWP and/or PDCCH common configuration from the BS. The low tier UE may configure its RF frontend according to the BWP configurations. The low tier UE may perform subsequent operations (e.g., network attachment ad/or normal data operations) with the BS in the configured BWPs and perform PDCCH monitoring according to the configured PDCCH common configuration.
Aspects of the present disclosure can provide several benefits. For example, the use of a virtual CORESET within a common CORESET may allow a BS to serve UEs of different tiers or with different BW capabilities. The inclusion of additional BWP and/or PDCCH common configurations dedicated for the low tier in a SIB1 may allow the BS to perform subsequent procedures (e.g., random access and/or paging) more efficiently. However, the inclusion of the additional BWP and/or PDCCH common configurations in SIB1 can increase signaling overhead. Alternatively, delaying the dedicated BWP and/or PDCCH common configuration till a low tier UE reports its BW capability (in an RRC connected mode) can avoid increasing initial network signaling overhead. However, the BS complexity may increase as the BS may consider both medium tier and low tier UEs during initial network access. While the present disclosure may describe multi-tier network support for a medium tier with a 20 MHz BW capability and a low tier with a 10 MHz BW capability in a 20 MHz channel, the present disclosure may suitable for use in supporting more than two tiers of UEs with any suitable BW capabilities in a frequency channel of any suitable BW.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities. A BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the  term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
A BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the  like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-step-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such asV2V, V2X, C-V2X  communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the subcarrier spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other instances, the subcarrier spacing and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for downlink (DL) and uplink (UL) transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes a UL subframe in a UL frequency band and a DL subframe in a DL frequency band. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate a UL channel. Control information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric  or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. A UL-centric subframe may include a longer duration for UL communication than for UL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB. The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI and/or OSI. The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. In some examples, the random access procedure may be a four-step random access procedure. For example, the UE 115 may transmit a random access preamble and the BS 105 may respond with a random access response. The random access response (RAR) may include a detected random access preamble identifier (ID) corresponding to the random access preamble, timing advance (TA) information, a UL grant, a temporary cell-radio network temporary identifier (C-RNTI) , and/or a backoff indicator. Upon receiving the random access response, the UE 115 may transmit a connection request to the BS 105 and the BS 105 may respond with a connection response. The connection response may indicate a  contention resolution. In some examples, the random access preamble, the RAR, the connection request, and the connection response can be referred to as message 1 (MSG1) , message 2 (MSG2) , message 3 (MSG3) , and message 4 (MSG4) , respectively. In some examples, the random access procedure may be a two-step random access procedure, where the UE 115 may transmit a random access preamble and a connection request in a single transmission and the BS 105 may respond by transmitting a random access response and a connection response in a single transmission.
After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit a UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to a UL scheduling grant.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications.
In some aspects, the network 100 may be an NR light network supporting UEs 115 of multiple tiers. For instance, the network 100 may support UEs 115 of two tiers, a medium tier and a low tier. The different tier UEs 115 may have different BW capabilities. The medium tier UEs 115 may be capable of operating over an entire channel frequency BW (e.g., about 20 MHz) , whereas the low tier UEs 115 may operate over a smaller BW (e.g., about 10 MHz or 5 MHz) . To assist medium tier UEs 115 and low tier UEs 115 in initial network access, a BS 105 may transmit SSBs in a centered portion of a channel frequency BW. The SSBs may include a MIB providing information associated with a common CORESET, which may also be referred to as a CORESET #0. For instance, the MIB may include a configuration for monitoring SIB scheduling information. The configuration may indicate a resource configuration for the common CORESET and a PDCCH search space for the common CORESET. The PDCCH search space is an instance of the common CORESET in time. The BS 105 may transmit scheduling information for SIB1, RMSI (e.g., other  SIBs) , random access messages (e.g., MSG2 and MSG4) , and/or paging messages in the common CORESET. To provide frequency diversity in serving the medium tier UEs, the BS 105 may configure the common CORESET to span a frequency band of the entire or full channel frequency BW. To serve the low tier UEs 115, the BS 105 may consider a BW capability of the lower tier UEs 115.
In some aspects, the BS 105 may configure a portion of the common CORESET less than the entire frequency band of the common CORESET for transmitting SIB scheduling information so that the low tier UEs 115 may be able to receive the SIB scheduling information. In some aspects, the BS 105 may include at least one of an initial DL BWP configurations, an initial UL BWP configurations, or a PDCCH common configurations for each of the low and medium tiers in a SIB1. As such, upon detecting a SIB1 from the BS 105, a low tier UE 115 or a medium tier UE 115 may perform subsequent communications with the BS 105 according to a corresponding initial DL BWP configuration, a corresponding initial UL BWP configuration, and/or a corresponding PDCCH common configuration. In some other aspects, the BS 105 may not provide separate configurations for low tier UEs 115 and medium tier UEs 115 in a SIB1. Instead, the BS 105 may transmit scheduling information for SIB, RMSI, random access messages, and/or paging messages in the common CORESET with consideration for low tier UEs 115’ BW capabilities, but may configure a low tier UE 115 based on the low tier UE 115’s BW capability after receiving a capability report from the low tier UE 115. Mechanisms for providing initial network signaling support to UEs of multiple tiers are described in greater detail herein.
FIG. 2 illustrates a radio frame structure 200 according to some aspects of the present disclosure. The radio frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the radio frame structure 200. In FIG. 2, the x-axes represent time in some arbitrary units and the y-axes represent frequency in some arbitrary units. The transmission frame structure 200 includes a radio frame 201. The duration of the radio frame 201 may vary depending on the aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds. The radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time. The number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on the aspects, for example, based on the channel BW, the subcarrier spacing (SCS) , and/or the CP mode. One subcarrier 204 in frequency and one symbol 206 in time forms  one resource element (RE) 212 for transmission. A resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
In an example, a BS (e.g., BS 105 in FIG. 1) may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208. Each slot 202 may be time-partitioned into K number of mini-slots 208. Each mini-slot 208 may include one or more symbols 206. The mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206. In some aspects, a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206. In some examples, the BS may schedule UE at a frequency-granularity of a resource block (RB) 210 (e.g., including about 12 subcarriers 204) .
A CORESET is a set of physical time-frequency resources where a BS (e.g., the BSs 105) may transmit PDCCH to provide scheduling information and/or any DL control information to UEs (e.g., the UEs 115) in a network (e.g., the network 100) . A CORESET may span, for example, multiples of non-contiguous or contiguous groups of six RBs (e.g., the RBs 210) in frequency and between one to three contiguous OFDM symbols (e.g., the symbols 206) in time. In the time domain, a CORESET may be up to three OFDM symbols in duration and located anywhere within a slot (e.g., at a beginning of a slot) . In the frequency domain, a CORESET may be defined in multiples of six RBs up to the system carrier frequency BW (e.g., a channel frequency BW) .
FIGS. 3A-3C, 4A-4C, and 5A-5C illustrate various mechanisms for configuring a common CORESET (e.g., CORESET #0) that may be shared by UEs of multiple tiers for communicating initial network signal scheduling information (e.g., SIB, RMSI, RACH, and/or paging scheduling information) . For simplicity of illustration and discussion, FIGS. 3A-3C, 4A-4C, and 5A-5C illustrate CORESET configurations for two tiers, for example, a medium tier with UEs having a 20 MHz BW capability and a low tier with UEs having a 10 MHz BW capability. However, the CORESET configuration mechanisms can be scaled to support more than two tiers (e.g., about 3, 4 or more) with UEs having various BW capabilities (e.g., about 20 MHz, about 10 MHz, and/or about 5 MHz) in the network.
In FIGS. 3A-3C, 4A-4C, and 5A-5C, a BS (e.g., the BSs 105) may configure a common CORESET (CORESET #0) spanning an entire channel frequency BW to serve the medium tier UEs. The BS may configure a portion of a common CORESET spanning less than an entire frequency band of the common CORESET to support PDDCH monitoring by the medium tier UEs and the low medium UEs. In FIGS. 3A-3C, the BS configures the portion of the CORESET in a  central portion of the CORESET’s frequency band. In FIGS. 4A-4C, the BS configures the portion of the CORESET in an upper frequency portion of the CORESET’s frequency band. In FIGS. 5A-5C, the BS configures the portion of the CORESET in a lower frequency portion of the CORESET’s frequency band. Additionally, in FIGS. 3A-3C, 4A-4C, and 5A-5C, the x-axes represent time in some arbitrary units, and the y-axes represent frequency in some arbitrary units.
FIG. 3A illustrates a common CORESET configuration scheme 310 according to some aspects of the present disclosure. The scheme 310 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 310. FIG. 3A illustrates an example of a CORESET 301 including sixteen CCEs 312 in a 20 MHz channel. The CCEs 312 may be indexed from 0 to 15 (shown as CCE1 to CCE15) . The CORESET 301 is a CORESET #0. Each CCE 312 include six resource element groups (REGs) , where a REG is defined as on physical RB in one symbol. In some aspects, the CORESET 301 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and one symbol (e.g., the symbols 206) in time. In other words, each CCE 312 may span 6 RBs in frequency and one symbol in time. In some other aspects, the CORESET 301 may span 48 RBs with an SCS of 30 kHz in frequency and two symbols in time. In other words, each CCE 312 may span 3 RBs in frequency and 2 symbols in time.
A BS (e.g., the BSs 105) may transmit a SIB schedule in a PDCCH search space associated with the CORESET 301 using an aggregation of four CCEs 312, an aggregation of eight CCEs 312, or an aggregation of sixteen CCEs 312. The PDDCH search space is an instance of the CORESET in a certain slot. An aggregation of four CCEs 312 may be referred to as an aggregation level (AL) of 4. An aggregation of eight CCEs 312 may be referred to as an AL of 8. An aggregation of sixteen CCEs 312 may be referred to as an AL of 16. The higher the AL, the more redundancy and more frequency diversity can be provided by the PDCCH transmission, and thus the more robust the PDCCH transmission may be. A UE (e.g., the UEs 115) may monitor for SIB scheduling information by performing blind decoding to search for a PDCCH candidate in the CORESET 301 based on an aggregation level (AL) of 4, 8, or 16. The PDCCH monitoring for SIB scheduling is a PDCCH type-0 monitoring. In some aspects, as part of the PDCCH blind decoding, a UE may decode one candidate for an AL of 16, two candidates for an AL of 8, and four PDCCH candidates for an AL of 4 in the PDCCH search space. In some aspects, the PDCCH candidates in a CORESET 301 are mapped to the CCEs 312 as shown below:
Figure PCTCN2020085796-appb-000001
where N CCE represents the number of CCEs 312 in the CORESET 301, L represents the AL, i may vary from 0 to L-1, and
Figure PCTCN2020085796-appb-000002
represents the maximum number of PDCCH candidates for a certain AL.
The examples illustrated in FIG. 3A include a first tier UE monitoring space 314 and a second tier UE monitoring space 318. The first tier UE may correspond to a medium tier UE with a BW capability of about 20 MHz. The second tier UE may correspond to a low tier UE with a BW capability of about 10 MHz. The first tier UE monitoring space 314 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4. According to equation (1) , the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 8 to 15, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 4 to 7, CCEs 312 indexed 8 to 11, and CCEs 312 indexed 12 to 15.
In the scheme 310, the BS may configure a centered frequency portion 315 of the CORESET 301 as a virtual CORESET 316 for the second tier UE monitoring space 318. The virtual CORESET 316 may be within a BW of the second tier UE. For instance, the BS may select a subset of the CCEs 312 located at a centered band of the CORESET 301 for the virtual CORESET 316. The centered may refer to a subband within the frequency band of the CORESET 301 that is offset from a highest frequency edge and a lowest frequency edge of the frequency by about the same amount. For example, the virtual CORESET 316 may be mapped to CCEs 312 indexed 4 to 11. The CCEs in the virtual CORESET 316 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) . According to equation (1) , the second tier UE monitoring space 318 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 316.
FIG. 3B illustrates a common CORESET configuration scheme 320 according to some aspects of the present disclosure. The scheme 310 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 320. The scheme 320 is substantially similar to the scheme 310, but illustrates a CORESET 303 (e.g., a CORESTE #0) including thirty-two CCEs 312 in a 20 MHz channel. The CCEs 312 may be indexed from 0 to 31 (shown as CCE1 to CCE31) . In some aspects, the CORESET 303 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and two symbols (e.g., the symbols 206) in time.
In the illustrated example of FIG. 3B, a BS (e.g., the BSs 105) may configure a first tier UE monitoring space 324 (e.g., for 20 MHz medium tier UEs) and a second tier UE monitoring space  328 (e.g., for 10 MHz low tier UEs) in the CORESET 303. Similar to the first tier UE monitoring space 314, the first tier UE monitoring space 324 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4. According to equation (1) , the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 16 to 23, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 8 to 11, CCEs 312 indexed 16 to 19, and CCEs 312 indexed 24 to 27 in the CORESET 303.
Similar to the scheme 310, the BS may configure a centered frequency portion 325 of the CORESET 303 as a virtual CORESET 326 for the second tier UE monitoring space 328. The virtual CORESET 326 may be within a BW of the second tier UE. The virtual CORESET 326 may be mapped to CCEs 312 indexed 8 to 23. The CCEs in the virtual CORESET 326 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) . According to equation (1) , the second tier UE monitoring space 328 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 326.
FIG. 3C illustrates a common CORESET configuration scheme 330 according to some aspects of the present disclosure. The scheme 330 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 330. The scheme 330 is substantially similar to the  schemes  310 and 320, but illustrates a CORESET 305 (e.g., a CORESTE #0) including forty-eight CCEs 332 in a 20 MHz channel. The CCEs 312 may be indexed from 0 to 47 (shown as CCE1 to CCE47) . In some aspects, the CORESET 303 may span 96 RBs (e.g., RBs 210) with an SCS of 15 kHz in frequency and three symbols (e.g., the symbols 206) in time.
In the illustrated example of FIG. 3C, a BS (e.g., the BSs 105) may configure a first tier UE monitoring space 334 (e.g., for 20 MHz medium tier UEs) and a second tier UE monitoring space 338 (e.g., for 10 MHz low tier UEs) in the CORESET 305. Similar to the first tier  UE monitoring spaces  314 and 324, the first tier UE monitoring space 334 may include one candidate 302 for an AL of 16, two candidates 304 for an AL of 8, and four candidates 306 for an AL of 4. According to equation (1) , the candidate 302 of AL 16 is mapped to CCEs 312 indexed 0 to 15, the two candidates 304 are mapped to CCEs 312 indexed 0 to 7 and CCEs 312 indexed 24 to 31, and the four candidates 306 are mapped to CCEs 312 indexed 0 to 3, CCEs 312 indexed 12 to 15, CCEs 312 indexed 24 to 27, and CCEs 312 indexed 36 to 39 in the CORESET 305.
Similar to the  schemes  310 and 320, the BS may configure a centered frequency portion 335 of the CORESET 305 as a virtual CORESET 336 for the second tier UE monitoring space 338. The virtual CORESET 336 may be within a BW of the second tier UE. The virtual CORESET 336 may be mapped to CCEs 312 indexed 12 to 35. For the perspective of the second tier UE, the CCEs in the virtual CORESET 326 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) . According to equation (1) , the second tier UE monitoring space 338 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 336.
FIG. 4A illustrates a common CORESET configuration scheme 410 according to some aspects of the present disclosure. The scheme 410 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 410. FIG. 4A is described using the same CORESET structure as the CORESET 301 in the scheme 310, and may use the same reference numerals as FIG. 3A for simplicity’s sake.
In the scheme 410, a BS (e.g., the BSs 105) may configure an upper frequency portion 415 of the CORESET 301 as a virtual CORESET 416 for a second tier UE monitoring space 418 (e.g., for a 10 MHz low tier UE) . The virtual CORESET 416 may be within a BW of the second tier UE. For instance, the BS may select a subset of the CCEs 312 located at an upper frequency edge of the CORESET 301 for the virtual CORESET 416. For example, the virtual CORESET 416 may be mapped to CCEs 312 indexed 8 to 15 (including a highest-frequency CCE 312 indexed 15 of the common CORESET 301) . The CCEs in the virtual CORESET 416 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) . According to equation (1) , the second tier UE monitoring space 418 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 416.
FIG. 4B illustrates a common CORESET configuration scheme 420 according to some aspects of the present disclosure. The scheme 420 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 420. FIG. 4B is described using the same CORESET structure as the CORESET 303 in the scheme 320, and may use the same reference numerals as FIG. 3B for simplicity’s sake.
Similar to the scheme 410, a BS (e.g., the BSs 105) may configure an upper frequency portion 425 of the CORESET 303 as a virtual CORESET 426 for a second tier UE monitoring space 428 (e.g., for a 10 MHz low tier UE) . The virtual CORESET 426 may be within a BW of the second tier UE. The virtual CORESET 426 may be mapped to CCEs 322 indexed 16 to 31. The CCEs in the virtual CORESET 426 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) . According to equation (1) , the second tier UE monitoring space 428 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 426.
FIG. 4C illustrates a common CORESET configuration scheme 430 according to some aspects of the present disclosure. The scheme 430 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 430. FIG. 4C is described using the same CORESET structure as the CORESET 305 in the scheme 330, and may use the same reference numerals as FIG. 3C for simplicity’s sake.
Similar to the  schemes  410 and 420, a BS (e.g., the BSs 105) may configure an upper frequency portion 435 of the CORESET 305 as a virtual CORESET 436 for a second tier UE monitoring space 438 (e.g., for a 10 MHz low tier UE) . The virtual CORESET 436 may be within a BW of the second tier UE. The virtual CORESET 436 may be mapped to CCEs 332 indexed 24 to 47. The CCEs in the virtual CORESET 436 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) . According to equation (1) , the second tier UE monitoring space 438 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 436.
FIG. 5A illustrates a common CORESET configuration scheme 510 according to some aspects of the present disclosure. The scheme 510 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 510. FIG. 5A is described using the same CORESET structure as the CORESET 301 in the scheme 310, and may use the same reference numerals as FIG. 3A for simplicity’s sake.
In the scheme 510, a BS (e.g., the BSs 105) may configure lower frequency portion 515 of the CORESET 301 as a virtual CORESET 516 for a second tier UE monitoring space 518 (e.g., for  a 10 MHz low tier UE) . The virtual CORESET 516 may be within a BW of the second tier UE. For instance, the BS may select a subset of the CCEs 312 located at a lower frequency edge of the CORESET 301 for the virtual CORESET 516. For example, the virtual CORESET 516 may be mapped to CCEs 312 indexed 0 to 7 (including a lowest-frequency CCE 312 indexed 0 of the common CORESET 301) . The CCEs in the virtual CORESET 516 may be also be indexed from 0 to 7 (shown as CCE0’ to CCE7’ ) . According to equation (1) , the second tier UE monitoring space 518 may include two candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ and CCE4’ to CCE7’ in the virtual COREST 516.
FIG. 5B illustrates a common CORESET configuration scheme 520 according to some aspects of the present disclosure. The scheme 520 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 520. FIG. 5B is described using the same CORESET structure as the CORESET 303 in the scheme 320, and may use the same reference numerals as FIG. 3B for simplicity’s sake.
Similar to the scheme 510, a BS (e.g., the BSs 105) may configure a lower frequency portion 525 of the CORESET 303 as a virtual CORESET 526 for a second tier UE monitoring space 528 (e.g., for a 10 MHz low tier UE) . The virtual CORESET 526 may be within a BW of the second tier UE. The virtual CORESET 526 may be mapped to CCEs 322 indexed 0 to 15. The CCEs in the virtual CORESET 526 may be also be indexed from 0 to 15 (shown as CCE0’ to CCE15’ ) . According to equation (1) , the second tier UE monitoring space 528 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE8’ to CCE11’ , and CCE12’ to CCE15’ in the virtual CORESET 526.
FIG. 5C illustrates a common CORESET configuration scheme 530 according to some aspects of the present disclosure. The scheme 530 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers using time-frequency resources configured as shown in the scheme 530. FIG. 4C is described using the same CORESET structure as the CORESET 305 in the scheme 330, and may use the same reference numerals as FIG. 3C for simplicity’s sake.
Similar to the  schemes  510 and 520, a BS (e.g., the BSs 105) may configure a lower frequency portion 435 of the CORESET 305 as a virtual CORESET 536 for a second tier UE monitoring space 538 (e.g., for a 10 MHz low tier UE) . The virtual CORESET 536 may be within a  BW of the second tier UE. The virtual CORESET 536 may be mapped to CCEs 332 indexed 0 to 23. The CCEs in the virtual CORESET 536 may be also be indexed from 0 to 23 (shown as CCE0’ to CCE23’ ) . According to equation (1) , the second tier UE monitoring space 538 may include two candidates 304 for an AL of 8 mapped to CCE0’ to CCE7’ and CCE8’ to CCE15’ and four candidates 306 for an AL of 4 mapped to CCE0’ to CCE3’ , CCE4’ to CCE7’ , CCE12’ to CCE15’ , and CCE16’ to CCE23’ in the virtual CORESET 536.
In some aspects, when a BS (e.g., the BSs 105) utilizes the  schemes  310, 320, and/or 330 discussed above with reference to FIGS. 3A, 3B, and/or 3C, respectively, a low tier UE (e.g., the UEs 115) may monitor for PDCCH at CCEs (e.g., the  CCEs  312, 322, 332) located at a centered part of a CORESET (e.g., the  CORESETs  301, 303, or 305) spanning the full channel (e.g., 20 MHz) . When a BS utilizes the  schemes  410, 420, and/or 430 discussed above with reference to FIGS. 4A, 4B, and/or 4C, respectively, a low tier UE (e.g., the UEs 115) may monitor for PDCCH at CCEs (e.g., the  CCEs  312, 322, 332) located at an ending frequency edge of a CORESET (e.g., the  CORESETs  301, 303, or 305) spanning the full channel (e.g., 20 MHz) . When a BS utilizes the  schemes  510, 520, and/or 530 discussed above with reference to FIGS. 5A, 5B, and/or 5C, respectively, a low tier UE (e.g., the UEs 115) may monitor for PDCCH at CCEs (e.g., the  CCEs  312, 322, 332) located at a starting frequency edge of a CORESET (e.g., the  CORESETs  301, 303, or 305) spanning the full channel (e.g., 20 MHz) . The PDCCH monitoring may include performing blind decoding to decode for a PDCCH candidate, which may be of an AL of 4, 8, or 16.
FIG. 6 illustrates a PDCCH communication scheme 600 according to some aspects of the present disclosure. The scheme 600 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with UEs of different tiers as shown in the scheme 600. In FIG. 6, the x-axis represents time in some arbitrary units, and the y-axis represents frequency in some arbitrary units. The scheme 600 is illustrated using the CORESET configuration scheme 510 (with a 30 kHz SCS and a 2-symbol CORESET duration) , and may use the same reference numerals as FIG. 5A for simplicity’s sake.
To support medium tier UEs monitoring in the first tier UE monitoring space 314 and low tier UEs monitoring in the second tier UE monitoring space 518, a BS (e.g., the BSs 105) may schedule type-0 PDCCH (e.g., for SIB scheduling) in CCEs 312 that are within the first tier UE monitoring space 314 and the second tier UE monitoring space 518 (as shown by reference numeral 630) . As such, the BS may utilize an AL of 4 to transmit a type-0 PDCCH (e.g., a SIB schedule) as an AL-4 candidate 302a in CCEs 312 indexed 0-4 or an AL-4 candidate 302b in CCEs 312 indexed  4-7. Alternatively, the BS may utilize an AL of 8 to transmit the SIB schedule as an AL-8 candidate 304a in CCEs 312 indexed 0 to 7.
A low tier UE (e.g., the UEs 115) may perform blind decoding in the second tier UE monitoring space 518 according to the PDCCH candidate monitoring grid. The PDCCH candidate monitoring grid may refer to the CCE boundaries of the  PDCCH candidates  302, 304, and/or 306 within the monitoring space 518. For instance, the low tier UE may attempt to decode for a PDCCH candidate 302a utilizing an AL of 4 from the CCEs 312 indexed 0 to 3. The low tier UE may also attempt to decode for a PDCCH candidate 302b utilizing an AL of 4 from the CCEs 312 indexed 4 to 7. The low tier UE may also attempt to decode for a PDCCH candidate 304a utilizing an AL of 8 from the CCEs 312 indexed 0 to 7. In other words, the low tier UE may perform three blind decoding to search for a PDCCH in the second tier UE monitoring space 518. If the BS utilizes a AL of 4 to transmit the SIB schedule in the CCEs 312 indexed 0 to 3, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 302a. If the BS utilizes a AL of 4 to transmit the SIB schedule in the CCEs 312 indexed 4 to 7, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 302b. If the BS utilizes a AL of 8 to transmit the SIB schedule in the CCEs 312 indexed 0 to 7, the UE may successfully decode the SIB schedule from the decoding of the PDCCH candidate 304a.
In some aspects, the BS may also utilize an AL of 16 to transmit the SIB schedule as an AL-16 candidate 306 in the CCEs 312 indexed 0 to 15, for example, to provide better frequency diversity for medium tier UEs. The low tier UE may also attempt to decode an AL-16 candidate, where some of the CCEs 312 (from CCE8 to CCE15) for the AL-16 candidate are outside the second tier UE monitoring space 518. For instance, the low tier UE may perform demodulation and compute log-likelihood-ratio (LLRs) from the CCEs 312 indexed 0 to 7 (which are within the second tier UE monitoring space 518) . The low tier UE may perform decoding from the partial LLRs obtained from CCE0 to CCE7. Due to the high AL, the low tier UE may successfully decode a PDCCH from the partial LLRs.
In some aspects, the BS may apply similar type-0 PDCCH scheduling mechanisms as in the scheme 600 when utilizing the  schemes  310, 320, 330, 410, 420, 430, 520, and/or 530 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5B, and/or 5C, respectively. As can be observed from FIGS. 3A-3C (where a low tier virtual COREST is in a centered frequency portion of a medium tier CORESET) , except for the 96 RBs with 1 symbol CORESET configuration shown in FIG. 3B, AL-8 PDCCH candidates (e.g., the candidates 304) for the medium tier may not be completely contained within the low tier virtual CORESET or aligned to a PDCCH candidate monitoring grid of the low tier. Additionally, AL-16 PDCCH candidates (e.g., the candidates 306)  for the medium tier are not within the low tier virtual CORESET. As such, the virtual CORESET configuration in a centered frequency portion of a medium tier UE CORESET may provide a limited coverage (e.g., without AL of 8 or 16) . However, the low tier UEs may not have to switch a frequency band between SSB detection (which is also in a centered frequency band of a channel frequency band) and SIB monitoring.
As can be observed from FIGS. 4A, 4B, and 4C (where a low tier virtual COREST is in an upper frequency portion of a medium tier CORESET) , some of the AL-4 PDCCH candidates (e.g., the candidates 302) and AL-8 PDCCH candidates (e.g., the candidates 304) for the medium tier are within the low tier virtual CORESET. As such, a BS may use any of the AL-4 PDDCH candidates and the AL-8 PDCCH candidates that are overlapping and aligned between the medium tier CORESET and the low tier CORESET for type-0 PDCCH transmissions.
As can be observed from FIGS. 5B and 5C, some of the AL-4 PDCCH candidates (e.g., the candidates 302) , AL-8 PDCCH candidates (e.g., the candidates 304) , and AL-16 PDCCH candidates (e.g., the candidates 306) for the medium tier are within the low tier virtual CORESET. As such, a BS may use any of the AL-4 PDDCH candidates, the AL-8 PDCCH candidates, and the AL-16 PDCCH candidates that are overlapping and aligned between the medium tier CORESET and the low tier CORESET for type-0 PDCCH transmissions.
In some aspects, when utilizing the virtual CORESET configurations in an upper frequency edge portion of a CORESET (shown in FIGS. 4A-4C) or a lower frequency edge portion of a CORESET (shown in FIGS. 5A-5C) , a low tier UE may perform a frequency band switch from a centered frequency band to a corresponding lower frequency edge portion or an upper frequency edge portion upon detecting an SSB (e.g., in a centered frequency portion of the channel BW) .
In some other aspects, a BS (e.g., the BSs 105) may schedule type-0 PDCCH for medium tier UEs in CCEs (e.g., the  CCEs  312, 322, and/or 332) that are outside a low tier virtual CORESET. Referring to the example shown in FIG. 6, when the CCEs 312 indexed 0-7 are blocked, for example, due to interference, the BS may schedule type-0 PDCH for medium tier UEs in CCEs 312 indexed 8-15, which are non-overlapping with CCEs of the virtual CORESET 516.
FIG. 7 illustrates a PDCCH communication scheme 700 according to some aspects of the present disclosure. The scheme 700 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate PDCCH with a low tier UE as shown in the scheme 700. In FIG. 7, the x-axis represents time in some arbitrary units, and the y-axis represents frequency in some arbitrary units.
In the scheme 700, a BS (e.g., the BSs 105) may serve UEs (e.g., the UEs 115) of multiple tiers, for example, a medium tier and a low tier. A low tier UE may have a BW capability less than  a channel BW. For example, the medium tier UEs may operate at the channel BW of about 20 MHz, while the low tier UEs may have a BW capability of about 10 MHz. The BS may utilize similar mechanisms as in the  scheme  410, 420, 430, 510, 520, and/or 530 discussed above with reference to FIGS. 4A, 4B, 4C, 5A, 5B, and/or 5C to configure virtual CORESETs for low tier UEs. As shown, the BS configures a CORESET 701 in a channel frequency band 702, for example, for medium tier UEs. The CORESET 701 may be a CORESET #0 and may be similar to the  CORESETs  301, 303, and/or 305. Additionally, the BS configures a virtual CORESET 710 in an upper frequency portion of the CORESET 701 and a virtual CORESET 712 in a lower frequency portion of the CORESET 701. The CORESET 710 may be aligned to a highest frequency edge of the CORESET 701. The CORESET 712 may be aligned to a lowest frequency edge of the CORESET 701. For instance, the channel frequency band 702 may have a BW of about 20 MHz in which the medium tier UEs may operate and each of the lower and upper frequency portions may have a BW of about 10 MHz. The virtual CORESET 710 may be similar to the  virtual CORESETs  416, 426, and/or 436. The virtual CORESET 712 may be similar to the  virtual CORESETs  516, 526, and/or 536. The BS may configure a low tier UE to frequency hop between the virtual CORESETs 710 and 712 for PDCCH monitoring.
The BS may configure the UE with  frequency hopping channels  704 and 706 where the virtual CORESETs 710 and 712 are located, respectively. At any given time instant, one  CORESET  710 or 712 may be active. In other words, the low tier UE may perform PDCCH monitoring in the virtual CORESET 710 (in the frequency hopping channel 704) during a first time period. The UE may switch to frequency hopping channel 706 and perform PDCCH monitoring in the virtual CORESET 712 during a second time period after the first time period.
In some aspects, the frequency hopping pattern may be predetermined and known to the BS and the low tier UE. The BS may schedule type-0 PDCCH according to the frequency hopping pattern. In some instances, the BS may indicate the frequency hopping pattern in a MIB along with the common CORESET and corresponding PDCCH search space configuration. The use of frequency hopping in PDCCH communications may provide low tier UEs with frequency diversity and allow for interference mitigation. For example, if the frequency hopping channel 704 is blocked, the UE may fail to receive PDCCH from the virtual CORESET 710. The frequency hopping allows the BS and the low tier UE to hop to the frequency hopping channel 706 to communicate PDDCH in the virtual CORESET 712.
While FIG. 7 illustrates two  frequency hopping channels  704 and 706 for low tier UE PDCCH monitoring, in some other examples, there may be more than two frequency hopping channels for low tier UE PDCCH monitoring. For instance, in some examples, a network (e.g., the  network 100) may serve UEs with 5 MHz BW capabilities. Thus, the CORESET 701 may be partitioned into four virtual CORESETS each in a different 5 MHz frequency portion of the CORESET 701. The 5 MHz UEs may perform PDCCH monitoring by hopping across the four virtual CORESETs. In some aspects, the frequency hopping pattern for the virtual CORESET may be based on a predetermine random pattern, for example, based on a system frame number (SFN) , a half frame index, and/or a SSB subband index. The SFN may refer to a counter that is incremented by 1 in every 10 ms time interval, for example, corresponding to the radio frame 201 of FIG. 2. The half frame index may be toggled between 0 and 1, for example, at 5 ms intervals. For instance, the half frame index may be 0 at the beginning of a radio frame 201 and may be 1 in the middle of the radio frame 201. The SSB subband index may identify the frequency subband where an SSB associated with the CORESET 701 is transmitted. For instance, at a given time, a frequency hopping channel, denoted as S j, that PDCCH candidates may occupy is determined by a frequency hopping pattern defined as shown below:
j= (g (2×SFN+half frame index) +SSB_subband_idx) mod N FH,     (2)
where N FH represents the number of frequency hopping channels and g represents a function dependent on the SFN and half frame index. Additionally or alternatively, the frequency hopping pattern may be based on a cell identifier (ID) of the a cell served by the BS. Additionally or alternatively, the frequency hopping pattern may be based on a slot index.
FIG. 8 is a block diagram of an exemplary BS 800 according to some aspects of the present disclosure. The BS 800 may be a BS 105 in the network 100 as discussed above in FIG. 1. A shown, the BS 800 may include a processor 802, a memory 804, an initial signal module 808, a transceiver 810 including a modem subsystem 812 and a RF unit 814, and one or more antennas 816. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 802 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 802 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 804 may include a cache memory (e.g., a cache memory of the processor 802) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory. In some aspects, the memory 804 may  include a non-transitory computer-readable medium. The memory 804 may store instructions 806. The instructions 806 may include instructions that, when executed by the processor 802, cause the processor 802 to perform operations described herein, for example, aspects of FIGS. 2-7, 10-11, and 13. Instructions 806 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 802) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
The initial signal module 808 may be implemented via hardware, software, or combinations thereof. For example, the initial signal module 808 may be implemented as a processor, circuit, and/or instructions 806 stored in the memory 804 and executed by the processor 802. In some examples, the initial signal module 808 can be integrated within the modem subsystem 812. For example, the initial signal module 808 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 812.
The initial signal module 808 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7, 10-11, and 13. The initial signal module 808 is configured to determine a portion of a common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type. The first UE type may refer to a low tier UE with a BW capability less than a channel BW. The common CORESET may include a plurality of CCEs in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs. In some aspects, as part of determining the portion of the common CORESET, the initial signal module 808 may be configured to select the subset of the plurality of CCEs from a central frequency portion of the frequency band. In some aspects, as part of determining the portion of the common CORESET, the initial signal module 808 may be configured to select the subset of the plurality of CCEs from a lower frequency portion of the frequency band. In some aspects, as part of determining the portion of the common CORESET, the initial signal module 808 may be configured to select the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
The initial signal module 808 is also configured to transmit SIB scheduling information in at least the portion of the common CORESET. In some aspects, as part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB  scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
The initial signal module 808 is also configured to transmit a SIB based on the SIB scheduling information.
In some aspects, the initial signal module 808 may also be configured to transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period. As part of transmitting the SIB scheduling information, the initial signal module 808 may be configured to transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern. In some aspects, the frequency hopping pattern is associated with at least one of a SFN, a half frame index, or a SSB subband index.
In some aspects, as part of transmitting the SIB, the initial signal module 808 may also be configured to transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities. The initial signal module 808 may also be configured to transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type. In some aspects, the initial signal module 808 may also be configured to perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type. In some aspects, the initial signal module 808 may also be configured to determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
In some aspects, the initial signal module 808 may also be configured to transmit, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type. In some aspects, the initial signal module 808 may also be configured to perform blind detection for an ACK/NACK associated with a MSG4 in a first frequency band corresponding to the frequency band of the common CORESET. The initial signal  module 808 may also be configured to perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
In some aspects, the initial signal module 808 may also be configured to determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type. As part of the transmitting the SIB, the initial signal module 808 may also be configured to transmit the SIB including an indication of the one or more random access occasions.
In some aspects, the initial signal module 808 may also be configured to receive, from a RRC connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type. The initial signal module 808 may also be configured to transmit, to the RRC connected UE, a BWP configuration based on the capability report.
As shown, the transceiver 810 may include the modem subsystem 812 and the RF unit 814. The transceiver 810 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or another core network element. The modem subsystem 812 may be configured to modulate and/or encode data according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 814 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., PDCCH, PDSCH, SSBs, SIBs, MSG2, MSG4, initial BWP configurations, PDCCH common configurations) from the modem subsystem 812 (on outbound transmissions) or of transmissions originating from another source such as a UE 115. The RF unit 814 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 810, the modem subsystem 812 and/or the RF unit 814 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 814 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 816 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 according to some aspects of the present disclosure. The antennas 816 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 810. The transceiver 810 may provide the demodulated and decoded data (e.g., UE capability reports, MSG1, MSG3, ACK/NACK, PUCCH,  PUSCH) to the initial signal module 808 for processing. The antennas 816 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In some aspects, the processor 802 is configured to coordinate with the initial signal module 808 to determine a portion of a common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type. The transceiver 810 is configured to coordinate with the initial signal module 808 to transmit SIB scheduling information in at least the portion of the common CORESET and transmit a SIB based on the SIB scheduling information.
In an aspect, the BS 800 can include multiple transceivers 810 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 800 can include a single transceiver 810 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 810 can include various components, where different combinations of components can implement different RATs.
FIG. 9 is a block diagram of an exemplary UE 900 according to some aspects of the present disclosure. The UE 900 may be a UE 115 as discussed above with respect to FIG. 1. As shown, the UE 900 may include a processor 902, a memory 904, an initial signal module 908, a transceiver 910 including a modem subsystem 912 and a radio frequency (RF) unit 914, and one or more antennas 916. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 902 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 902 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 904 may include a cache memory (e.g., a cache memory of the processor 902) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 904 includes a non-transitory computer-readable medium. The memory 904 may store, or have recorded thereon, instructions 906. The instructions 906 may include instructions that, when executed by the processor 902, cause the processor 902 to perform the operations described herein with reference to the UEs 115 in  connection with aspects of the present disclosure, for example, aspects of FIGS. 2-7 and 10-12. Instructions 906 may also be referred to as program code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 8.
The initial signal module 908 may be implemented via hardware, software, or combinations thereof. For example the initial signal module 908 may be implemented as a processor, circuit, and/or instructions 906 stored in the memory 904 and executed by the processor 902. In some examples, the initial signal module 908 can be integrated within the modem subsystem 912. For example, the initial signal module 908 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 912.
The initial signal module 908 may be used for various aspects of the present disclosure, for example, aspects of FIGS. 2-7 and 10-12. The initial signal module 908 is configured to performs DCCH monitoring in a portion of a common CORESET spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE. The common CORESET may include a plurality of CCEs in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs in a lower frequency portion of the frequency band. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to perform the PDCCH monitoring in the subset of the plurality of CCEs in an upper frequency portion of the frequency band. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of PDCCH monitoring, the initial signal module 908 may be configured to decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
The initial signal module 908 is also configured to receive a SIB based on the PDCCH monitoring. In some aspects, the initial signal module 908 may be configured to perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period. As part of the PDCCH monitoring, the initial signal module 908 may be configured to perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based  on a frequency hopping pattern. The frequency hopping pattern may be associated with at least one of a SFN, a half frame index, or a SSB subband index.
In some aspects, the initial signal module 908 may also be configured to receive a SSB in a first frequency subband within a BWP, where the common CORESET is associated with the BWP. The UE may also switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
In some aspects, as part of receiving the SIB, the initial signal module 908 may be configured to receive the SIB including at least one of an initial DL BWP configuration, an initial UE BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities. In some aspects, as part of receiving the SIB, the initial signal module 908 may be configured to receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type. For example, the first indication may indicate a BW support for 10 MHz and the second indication may indicate a BW support for 20 MHz. In some aspects, the initial signal module 908 may also be configured to determine that the UE is associated with the first UE type based on the bandwidth capability of the UE. The initial signal module 908 may also be configured to perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
In some aspects, the initial signal module 908 may also be configured to receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET. In some aspects, the initial signal module 908 may also be configured to transmit, transmitting, while in a RRC connected mode, a capability report indicating the bandwidth capability of the UE. The initial signal module 908 may also be configured to receive a BWP configuration configured based on the capability report.
As shown, the transceiver 910 may include the modem subsystem 912 and the RF unit 914. The transceiver 910 can be configured to communicate bi-directionally with other devices, such as the BSs 105. The modem subsystem 912 may be configured to modulate and/or encode the data from the memory 904 and/or the initial signal module 908 according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 914 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., UE capability report, MSG1, MSG3, ACK/NACK, PUCCH)  from the modem subsystem 912 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105. The RF unit 914 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 910, the modem subsystem 912 and the RF unit 914 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 914 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may include one or more data packets and other information) , to the antennas 916 for transmission to one or more other devices. The antennas 916 may further receive data messages transmitted from other devices. The antennas 916 may provide the received data messages for processing and/or demodulation at the transceiver 910. The transceiver 910 may provide the demodulated and decoded data (e.g., PDCCH, PDSCH, RRC configuration, SSB, SIB, PDCCH, MSG2, MSG4, paging messages) to the initial signal module 908 for processing. The antennas 916 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 914 may configure the antennas 916.
In some aspects, the processor 902 is configured to coordinate with the initial signal module 908 to perform PDCCH monitoring in a portion of a common CORESET spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE. The transceiver 910 is configured to coordinate with the initial signal module 908 to receive a SIB based on the PDCCH monitoring.
In an aspect, the UE 900 can include multiple transceivers 910 implementing different RATs (e.g., NR and LTE) . In an aspect, the UE 900 can include a single transceiver 910 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 910 can include various components, where different combinations of components can implement different RATs.
FIG. 10A is discussed in relation to FIG. 10B to illustrate mechanisms for initial network access. FIG. 10A is a signaling diagram illustrating an initial network access method 1000 according to some aspects of the present disclosure. The method 1000 may be implemented between a BS 1002, a UE 1004. The BS 1002 may correspond to a BS 105 or a BS 800, and the UE may correspond to a UE 115 or a UE 900. In some instances, the UE 1004 may be a medium tier UE, for example, having a BW capability of 20 MHz corresponding to a channel BW. In some other instances, the UE 1004 may be a low tier UE, for example, having a BW capability less than the channel BW. Although the method 1000 illustrates the BS 1002 in communications with one UE 1004, it should be understood that in other examples the BS 1002 may communicate with any suitable number of UEs 1004 (e.g., about 2, 9, 4, 5, 6 or more) . The method 1000 may be  implemented in conjunction with the  schemes  310, 320, 330, 410, 420, 430, 510, 520, 530, 600, and/or 700 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 5C, 8, and/or 7, respectively. As illustrated, the method 1000 includes a number of enumerated actions, but embodiments of the method 1000 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
At a high level, to support multiple tiers, the BS 1002 may include an initial DL BWP configuration, an initial UL BWP configuration, and/or a PDCCH common configuration for each tier in a SIB1. For example, an initial DL BWP and/or initial UL BWP for the low tier UEs may have a smaller or narrower BW than the initial DL BWP and/or initial UL BWP for the medium tier UE. As such, a low tier UE may read SIB1 and perform subsequent operations (e.g., random access and/or paging) according to the narrower initial DL BWP and/or initial UL BWP configured for the low tier UEs.
At action 1010, the BS 1002 transmits one or more SSBs, for example, in a broadcast mode. Each SSB may include a PSS, a SSS, and/or a PBCH. The PBCH may carry a MIB indicating information associated with SIB scheduling. For instance, the MIB may include a resource configuration for a common CORESET. The common CORESET resource configuration may indicate a start symbol, a number of symbols, a starting RB, and/or a number of RBs the common CORESET may occupy. The common CORESET may be a CORESET #0 and may be similar to the  CORESETS  301, 303, 305, and/or 701. The MIB may also indicate a PDCCH search space configuration for the common CORESET. A PDCCH search space is an instance of the common CORESET in time (e.g., in a certain slot 202) . The PDCCH search space associated with the common CORESET may be referred to as a type-0 PDCCH search space where SIB scheduling information may be monitored. In some instances, the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1010.
At action 1015, the BS 1002 transmits SIB scheduling information according to the type-0 PDCCH search space indicated by the MIB. The SIB scheduling information may be transmitted in the form of PDCCH DCI. For instance, the BS 1002 may transmit a SIB1 schedule in the type-0 PDCCH search space. In some aspects, to serve both medium tier UEs and low tier UEs, the BS 1002 may determine a portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on a BW capability of a low tier UE. The portion of the CORESTE may correspond to a virtual CORESET of a low tier UE. The BS 1002 may transmit the  SIB scheduling information in at least the portion of common CORESET so that the SIB scheduling information may be received by a low tier UE and a medium tier UE. In some instances, the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1015.
In some instances, the portion can be a centered frequency portion of the common CORESET, for example, corresponding to the  virtual CORESETs  316, 326, or 336 as discussed in the  schemes  310, 320, and 330, respectively. In some instances, the portion can be at an upper frequency edge of the common CORESET, for example, corresponding to the  virtual CORESETs  416, 426, or 436 as discussed in the  schemes  410, 420, and/or 430, respectively. In some instances, the portion can be at a lower frequency edge of the common CORESET, for example, corresponding to the  virtual CORESETs  516, 526, or 536 as discussed in the  schemes  510, 520, and/or 530, respectively. In some instances, the BS 1002 may apply frequency hopping to the PDCCH or SIB scheduling information transmission, for example, as discussed in the scheme 700. In other words, the BS 1002 may determine the portion further based on a frequency hopping pattern.
In some aspects, the BS 1002 may transmit the SIB1 schedule in CCEs (e.g., the  CCEs  312, 322, and/or 322) that are overlapping between the common CORESET and the virtual CORESET. The BS 1002 may determine an AL of 4, 8, or 16, for example, based on a channel condition or a signal-to-noise ratio (SNR) . The BS 1002 may select a PDCCH candidate space that may be monitored by medium tier UEs and low tier UEs as discussed in the scheme 600.
At action 1020, the BS 1002 transmits a SIB according to the SIB scheduling information transmitted at action 1015. For instance, the BS 1002 may transmit the SIB in a PDSCH. In some instances, the SIB may be a SIB1. The SIB1 may include dedicated BWP configurations for each of the medium tier and low tier. For instance, the SIB1 may include at least one of an initial DL BWP configuration, a UL BWP configuration, and/or a PDCCH common configuration for each of the medium tier and low tier as will be discussed more fully below in FIG. 10B. In some instances, the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1020.
At action 1025, the UE 1004 detects an SSB transmitted by the BS 1002 at action 1010. For instance, the UE 1004 may be in an RRC idle mode and monitoring for SSBs. For example, the UE 1004 may receive a signal from the channel and determine whether an SSB can be successfully decoded from the received signal. Upon detecting the SSB, the UE 1004 may read the MIB to  obtain the common CORESET resource configuration and associated PDCCH search configuration from the MIB. In some instances, the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1025.
At action 1030, the UE 1004 performs PDCCH type-0 monitoring based on the common CORESET resource configuration and associated PDCCH search configuration read from the MIB. In some aspects, the UE 1004 may be a low tier UE. Thus, the UE 1004 may perform PDCCH monitoring in a portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of the UE 1004. The PDCCH monitoring may include receiving a signal from the channel and determining whether a PDCCH candidate can be successfully decoded from the received signal (in resources indicated by the common CORESET resource configuration and the PDCCH search configuration) . In some instances, the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1030.
In some instances, the portion can be a centered frequency portion of the common CORESET, for example, corresponding to the  virtual CORESETs  316, 326, or 336 as discussed in the  schemes  310, 320, and 330, respectively. In some instances, the portion can be at an upper frequency edge of the common CORESET, for example, corresponding to the  virtual CORESETs  416, 426, or 436 as discussed in the  schemes  410, 420, and/or 430, respectively. In some instances, the portion can be at a lower frequency edge of the common CORESET, for example, corresponding to the  virtual CORESETs  516, 526, or 536 as discussed in the  schemes  510, 520, and/or 530, respectively. In some instances, the UE 1004 may perform blind decoding in the portion of the common CORESET to search for a PDCCH candidate, which may be at an AL of 4, 8, or 16, according to a PDCCH candidate monitoring grid within the portion of the common CORESET as discussed above.
In some instances, the UE 1004 may apply frequency hopping to the PDCCH monitoring, for example, as discussed in the scheme 700. In some instances, the UE 1004 may determine whether to monitor a centered frequency portion, an upper frequency edge portion, or a lower frequency edge portion of the common CORESET and/or whether to apply frequency hopping based on a predetermined configuration.
At action 1035, upon detecting a SIB schedule from the PDCCH monitoring at action 1025, the UE 1004 may receive a SIB according to the SIB schedule. In some aspects, the SIB may be a SIB1 configured as shown in FIG. 10B. In some instances, the UE 1004 may utilize one or more  components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1035.
FIG. 10B illustrates a SIB configuration 1050 according to some aspects of the present disclosure. The configuration 1050 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may transmit a SIB using the configuration of 1050 when serving UEs of multiple tiers with different BW capabilities. For instance, the BS may serve a first tier with UEs having a BW capability corresponding to a channel BW (e.g., about 20 MHz) and a second tier with UEs having a BW capability (e.g., about 10 MHz or 5 MHz) less than the channel BW. The configuration 1050 includes a SIB 1051. The SIB 1051 may be a SIB1. The SIB 1051 includes an initial DL BWP configuration 1052, an initial UL BWP configuration 1054, and a PDCCH common configuration 1056 for the first tier UEs. The SIB 1051 also includes an initial DL BWP configuration 1062, an initial UL BWP configuration 1064, and a PDCCH common configuration 1066 for the second tier UEs. The SIB 1051 may also include other system information (e.g., cell selection, cell access, and/or other SIB scheduling information) related to the network. Although the configuration 1050 illustrates the SIB 1051 include dedicated configurations for two tiers of UEs, it should be understood that in other examples the SIB 1051 may include dedicated configuration for more than two tiers (e.g., about 3, 4 or more) .
Each of the initial  DL BWP configurations  1052 and 1062 may include information associated with a frequency location of an initial DL BWP for a corresponding tier, a subcarrier spacing (SCS) (e.g., at 15 kHz, 30 kHz, or 60 kHz) and/or a cyclic prefix (CP) mode (e.g., a normal CP or an extended CP) to be used for communicating in the initial downlink BWP. For example, the initial DL BWP configuration 1052 may indicate an initial DL BWP with a BW of 20 MHz for the first tier UE, and the initial DL BWP configuration 1062 may indicate an initial DL BWP with a BW of 10 MHz for the second tier UE. In some instances, the initial DL BWP indicated by the initial DL BWP configuration 1052 ad the initial DL BWP indicated by the initial DL BWP configuration 1062 may be overlapping or at least partially overlapping. In some other instances, the initial DL BWP indicated by the initial DL BWP configuration 1052 ad the initial DL BWP indicated by the initial DL BWP configuration 1062 may be non-overlapping.
Similarly, each of the initial  UL BWP configurations  1054 and 1064 may include information associated with the frequency location of the initial UL BWP for a corresponding tier, a SCS and/or a CP mode to be used for communicating in the initial UL BWP. For example, the initial UL BWP configuration 1054 may indicate an initial UL BWP with a BW of 20 MHz for the  first tier UE, and the initial UL BWP configuration 1062 may indicate an initial UL BWP with a BW of 10 MHz for the second tier UE. In some instances, the initial UL BWP indicated by the initial UL BWP configuration 1054 ad the initial UL BWP indicated by the initial UL BWP configuration 1064 may be overlapping or at least partially overlapping. In some other instances, the initial UL BWP indicated by the initial UL BWP configuration 1054 ad the initial UL BWP indicated by the initial UL BWP configuration 1064 may be non-overlapping.
Each of PDCCH  common configurations  1056 and 1066 may include information associated with PDCCH monitoring. For instance, the PDCCH common configurations 1056 may indicate a resource configuration for a common CORESET, which may be the same as indicated by the MIB. The PDCCH common configurations 1056 may also indicate a PDCCH search space where a first tier UE may monitor for SIB1 scheduling information, a PDCCH search space where a first tier UE may monitor for other SIB scheduling information, a PDCCH search space where a first tier UE may monitor for random access message scheduling information, and/or a PDCCH search space where a first tier UE may monitor for paging message scheduling information.
The PDCCH common configurations 1066 may indicate a resource configuration for a common CORESET (e.g., a CORESET #0) for a second tier UE. The PDCCH common configurations 1066 may indicate a common CORESET within the initial DL BWP indicated by the initial DL BWP configuration 1062. For instance, the CORESET resource configuration may indicate resources corresponding to a portion of the common CORESET indicated by the MIB. The portion can be a centered frequency portion, a low frequency edge portion, or an upper frequency edge portion the common CORESET depending on the initial DL BWP indicated by the initial DL BWP configuration 1062. The portion may be similar to the  virtual CORESETs  316, 326, 336, 416, 426, 436, 516, 526, and/or 536. The CORESET resource configuration may indicate a starting frequency and/or an ending frequency of the portion. The starting frequency and/or ending frequency may be in units of RBs and may be relative to the common CORESET (e.g., an offset from a starting frequency edge or an ending frequency edge of the common CORESET) . The CORESET resource configuration may include any suitable combination of a starting frequency edge, an ending frequency edge, and/or a quantity of RBs in the portion. In some aspects, the BS 1002 may configure a common CORESET for the second tier independently from a common CORESET for the second tier.
The PDCCH common configurations 1066 may also indicate a PDCCH search space where a second tier UE may monitor for SIB1 scheduling information, a PDCCH search space where a second tier UE may monitor for other SIB scheduling information, a PDCCH search space where a second tier UE may monitor for random access message scheduling information, and/or a PDCCH  search space where a second tier UE may monitor for paging message scheduling information. In some instances, the PDCCH common configuration 1066 may indicate a frequency hopping pattern for PDCCH monitoring as discussed in the scheme 700 with reference to FIG. 7.
Returning to FIG. 10A, at action 1040, after receiving the SIB1, the UE 1004 receives other SIBs from the BS 1002 and/or performs a random access procedure with the BS 1002 in the BWPs dedicated for low tier UE or medium tier UE depending on which tier the UE 1004 belongs. If the UE 1004 is a second tier UE (with a BW capability less than the channel bandwidth) , the UE 1004 may configure an RF unit (e.g., the RF unit 914) of the UE 1004 to operate in the initial DL BWP and initial UL BWP indicated by the initial DL BWP configuration 1062 and the initial UL BWP configuration 1064. After tuning the RF frontend to the initial UL BWP and the initial DL BWP, the UE 1004 may perform the random access procedure in the initial UL BWP and the initial DL BWP. The BS 1002 may transmit random access message (e.g., MSG2 and MSG4) in a PDCCH search space according to the PDCCH common configuration 1066. The UE 1004 may monitor for a random access message (e.g., MSG2 and MSG4) from the BS 1002 in a PDCCH search space according to the PDCCH common configuration 1066.
Conversely, if the UE 1004 is a first tier UE (e.g., a medium tier) , the UE 1004 may perform the random access procedure with the BS 1002 in the initial DL BWP and initial UL BWP indicated by the initial DL BWP configuration 1052 and the initial UL BWP configuration 1054, respectively. The BS 1002 may communicate PDCCH with the UE 1004 according to the PDCCH common configuration 1056. In some instances, the BS 1002 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1040. In some instances, the UE 1004 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1040.
FIG. 11 is a signaling diagram illustrating an initial network access method 1100 according to some aspects of the present disclosure. The method 1100 may be implemented between a BS 1102 and a UE 1104. The BS 1102 may correspond to a BS 105, a BS 800, or a BS 1002, and the UE may correspond to a UE 115, a UE 900, or a UE 1004. In some instances, the UE 1104 may be a medium tier UE, for example, having a BW capability of 20 MHz corresponding to a channel BW. In some other instances, the UE 1104 may be a low tier UE, for example, having a BW capability less than the channel BW. Although the method 1100 illustrates the BS 1102 in communications with one UE 1104, it should be understood that in other examples the BS 1102 may communicate with any suitable number of UEs 1104 (e.g., about 2, 9, 4, 5, 6 or more) . The  method 1100 may be implemented in conjunction with the  schemes  310, 320, 330, 410, 420, 430, 510, 520, 530, 600, and/or 700 discussed above with reference to FIGS. 3A, 3B, 3C, 4A, 4B, 4C, 5A, 5B, 5C, 8, and/or 7, respectively. As illustrated, the method 1100 includes a number of enumerated actions, but embodiments of the method 1100 may include additional actions before, after, and in between the enumerated actions. In some embodiments, one or more of the enumerated actions may be omitted or performed in a different order.
Generally speaking, the method 1100 includes features similar to method 1000 in many respects. For example,  actions  1110, 1115, 1120, 1125, 1130, and 1135 are similar to  actions  1010, 1015, 1020, 1025, 1030, and 1035, respectively. Accordingly, for sake of brevity, details of those actions will not be repeated here and may be referred to the corresponding descriptions above.
In the method 1100, while the BS 1102 support multiple tiers of UEs similar to the method 1000, the BS 1102 may not include separate or dedicated initial DL BWP, initial UL BWP, and/or PDCCH common configurations for different tiers in a SIB1. The BS 1102 may not provide dedicated BWP and/or PDCCH common configurations until the UE 1104 reports its capabilities.
At action 1140, the UE 1104 receives other SIB (s) from the BS 1102 and/or performs a random access procedure with the BS 1102. Since the BS 1102 has no knowledge whether a UE attempting to access the network may be a medium tier UE or a low tier UE, the BS 1102 may configure random access occasions, perform random access preamble monitoring, and/or schedule random access messages with considerations for low tier UEs. For instance, the BS 1102 may schedule a PDCCH transmission in CCEs (e.g., the  CCEs  312, 322, and/or 332) or PDCCH search spaces that are monitored by medium tier UEs and low tier UEs and aligned to PDCCH monitoring grid of the medium tier UEs and low tier UEs as discussed above in the  schemes  310, 320, 330, 410, 420, 430, 510, 520, and/or 530. In some instances, the BS 1102 may transmit a PDCCH transmission in CCEs including one or more CCEs outside of a PDDCH search space or virtual CORESET of a low tier UE, for example, when using an AL of 16, where a low tier UE may decode for the PDCCH from partial LLRs computed from CCEs that are within the low tier UE’s search space or virtual CORESET.
In some aspects, the BS 1102 may configure random access occasions with FDM. For instance, the BS 1102 may configure a random access occasion in one portion of a channel frequency band and schedule a transmission in another portion of the channel frequency band. In order to support medium tier UEs and low tier UEs for random access, the BS 1102 may configure at least some random access occasions in a frequency portion that is within a low tier UE’s virtual CORESET.
To perform random access the UE 1004 may exchange MSG1, MSG2, MSG2, and/or MSG4 with the BS 1102. In some instances, the UE 1104 may transmit a ACK/NACK feedback for MSG4. The ACK/NACK feedback may be a PUCCH transmission located at edges of a frequency band. For example, if the UE 1104 is a medium tier UE, the UE 1104 may transmit the ACK/NACK at edges of a frequency band of the common COREST. If the UE 1104 is a low tier UE, the UE 1104 may transmit the ACK/NACK at edges of a frequency band of the virtual COREST. Since the BS 1102 may not have knowledge of whether a UE accessing the network is a medium tier UE or a low tier UE, the BS 1102 may perform blind detection at frequency edges of the common COREST and at frequency edges of the virtual CORESET to monitor for ACK/NACK for MSG4. In some instances, the BS 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1140. In some instances, the UE 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1140.
At action 1150, the UE 1104 transmits a UE capability report to the BS 1102, for example, while the UE 1104 is in a RRC connected state 1106. The UE capability report may include a BW capability of the UE 1104. In some instances, the capability report may indicate whether the UE 1104 is a medium tier UE or a low tier UE. In some instances, the capability report may indicate whether the UE 1104 supports a BW of 10 MHz or 20 MHz. In some instances, the UE 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to perform aspects of action 1150.
At action 1160, upon receiving the UE capability report, the BS 1102 transmits a BWP configuration to the UE 1104. The BS 1102 may configure UL and/or DL BWPs for the UE 1104 based on the received UE capability report. For example, if the UE 1104 supports 10 MHz, the BS 1002 may configure a UL or DL BWP with a BW of about 10 MHz for the UE 1104. Conversely, if the UE 1104 supports 20 MHz, the BS 1002 may configure a UL or DL BWP with a BW of about 20 MHz for the UE 1104. The UE 1104 may perform subsequent operations (e.g., data exchange) with the BS 1102 according to a corresponding BWP configuration. In other words, the BS 1102 may utilize a shared initial BWP and PDCCH common configuration 1105 for communicating with the UE 1104 irrespective which tier the UE 1104 belongs to until the UE 1104 report its BW capability. In some instances, the BS 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the MAC module 809, the  transceiver 810, the modem 812, and the one or more antennas 816, to perform aspects of action 1160.
As can be observed from the  methods  1000 and 1100, the method 1100 may have less SIB signaling overheads as there is no dedicated BWP configurations in SIB1. However, the BS processing complexity may be higher for method 1100 as the BS 1102 may not have knowledge of which tier a UE may belong to until the UE reports its capability.
FIG. 12 is a flow diagram of a wireless communication method 1200 according to some aspects of the present disclosure. Aspects of the method 1200 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the  UEs  115, 900, 1004, or 1104 may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to execute the steps of method 1200. The method 1200 may employ similar mechanisms as described above in FIGS. 2-7 and 10-11. As illustrated, the method 1200 includes a number of enumerated steps, but aspects of the method 1200 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1210, a UE (e.g., the UEs 115, 900, 1104, and/or 1004) performs PDCCH monitoring in a portion of a common CORESET (e.g., the  common CORESETs  301, 303, 305, and/or 701) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE. The PDCCH monitoring may include receiving a signal from the channel and determining whether a PDCCH candidate can be successfully decoded from the received signal in the portion of the common CORESET. In some aspects, the common CORESET includes a plurality of CCEs (e.g., the  CCEs  312, 322, and/or 332) in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs. In some aspects, as part of PDCCH monitoring, the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion (e.g., the  portions  315, 325, and 335) of the frequency band, for example, as shown in FIGS. 3A-3C. In some aspects, as part of PDCCH monitoring, the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs in a lower frequency portion (e.g., the  portions  515, 525, and 535) of the frequency band, for example, as shown in FIGS. 5A-5C. In some aspects, as part of PDCCH monitoring, the UE may perform the PDCCH monitoring in the subset of the plurality of CCEs in an upper frequency portion (e.g., the  portions  415, 425, and 435) of the frequency band,  for example, as shown in FIGS. 4A-4C. In some aspects, as part of PDCCH monitoring, the UE may decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of PDCCH monitoring, the UE may decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs. In some instances, the UE may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas916, to perform PDCCH monitoring in the portion of the common CORESET spanning less than an entire frequency band of the CORESET based on the bandwidth capability of the UE.
At block 1220, the UE receives a SIB based on the PDCCH monitoring. In some instances, the UE may utilize one or more components, such as the processor 902, the memory 904, the initial signal module 908, the transceiver 910, the modem 912, and the one or more antennas 916, to the SIB based on the PDCCH monitoring. For example, the UE may receive a SIB schedule indicating time-frequency resources (e.g., in a slot, symbols, and/or RBs) and/or MCS for the SIB from the PDCCH monitoring. Thus, the UE may receive the SIB in the scheduled resources and decode the SIB according to the MCS.
In some aspects, the UE may further perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period. As part of the PDCCH monitoring at block 1210, the UE may perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern, for example, as shown in FIG. 7. The frequency hopping pattern may be associated with at least one of a SFN, a half frame index, or a SSB subband index.
In some aspects, the UE may further receive a SSB in a first frequency subband within a BWP, where the common CORESET is associated with the BWP. The UE may also switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
In some aspects, as part of receiving the SIB at block 1220, the UE may receive the SIB including at least one of an initial DL BWP configuration, an initial UE BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, where the first UE type and the second UE type are associated with different bandwidth capabilities, for example, as shown in FIGS. 10A-10B. In some aspects, as part of receiving the SIB at block 1220, the UE may receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type. For example, the first indication may indicate a BW support for 10 MHz and the second indication may indicate a BW support for 20 MHz. In some  aspects, the UE may further determine that the UE is associated with the first UE type based on the bandwidth capability of the UE. The UE may also perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
In some aspects, the UE may further receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET. In some aspects, the UE may further transmit, transmitting, while in a RRC connected mode, a capability report indicating the bandwidth capability of the UE. The UE may also receive a BWP configuration configured based on the capability report, for example, as shown in FIG. 11.
FIG. 13 is a flow diagram of a wireless communication method 1300 according to some aspects of the present disclosure. Aspects of the method 1300 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing the steps. For example, a wireless communication device, such as the  BSs  105, 800, 1002, or 1102 may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to execute the steps of method 1300. The method 1300 may employ similar mechanisms as described above in FIGS. 2-7 and 10-11. As illustrated, the method 1300 includes a number of enumerated steps, but aspects of the method 1300 may include additional steps before, after, and in between the enumerated steps. In some aspects, one or more of the enumerated steps may be omitted or performed in a different order.
At block 1310, a BS (e.g., the  BSs  105, 800, 1002, and/or 1102) determines a portion of a common CORESET spanning less than an entire frequency band of a common CORESET (e.g., the  common CORESETs  301, 303, 305, and/or 701) based on a bandwidth capability of a first UE type (e.g., low tier) . In some aspects, the common CORESET includes a plurality of CCEs (e.g., the  CCEs  312, 322, and/or 332) in the frequency band, and the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs. For instance, the BS determines a size or number of CCEs for the subset based on a BW capability corresponding to the first UE type. In some aspects, as part of determining the portion of the common CORESET, the BS may select the subset of the plurality of CCEs from a central frequency portion (e.g., the  portions  315, 325, and 335) of the frequency band, for example, as shown in FIGS. 3A-3C. In some aspects, as part of determining the portion of the common CORESET, the BS may select the subset  of the plurality of CCEs from a lower frequency portion (e.g., the  portions  515, 525, and 535) of the frequency band, for example, as shown in FIGS. 5A-5C. In some aspects, as part of determining the portion of the common CORESET, the BS may select the subset of the plurality of CCEs from an upper frequency portion (e.g., the  portions  415, 425, and 435) of the frequency band, for example, as shown in FIGS. 4A-4C. In some instances, the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to determine the portion of the common CORESET spanning less than an entire frequency band of the common CORESET based on the bandwidth capability of the first UE type.
At block 1320, the BS transmits SIB scheduling information in at least the portion of the common CORESET. In some aspects, as part of transmitting the SIB scheduling information, the BS may transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16. In some aspects, as part of transmitting the SIB scheduling information, the BS may transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16. In some instances, the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to transmits SIB scheduling information in the at least the portion of the common CORESET.
At block 1330, the BS transmits a SIB based on the SIB scheduling information. In some instances, the BS may utilize one or more components, such as the processor 802, the memory 804, the initial signal module 808, the transceiver 810, the modem 812, and the one or more antennas 816, to transmit the SIB based on the SIB scheduling information. For example, the BS may indicate, in the SIB scheduling information, time-frequency resources (e.g., in a slot, symbols, and/or RBs) and/or MCS for transmitting the SIB and transmit the SIB in the scheduled resources according to the MCS.
In some aspects, the BS may further transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period. As part of transmitting the SIB scheduling information, the BS may transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern, for example, as shown in FIG. 7. In some aspects, the frequency hopping pattern is associated with at least one of a SFN, a half frame index, or a SSB subband index.
In some aspects, as part of transmitting the SIB at block 1330, the BS may transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type (e.g., low tier) and a second UE type (e.g., medium tier) , where the first UE type and the second UE type are associated with different bandwidth capabilities, for example, as shown in FIGS. 10A-10B. The BS may also transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type. In some aspects, the BS may further perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type. In some aspects, the BS may also determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
In some aspects, the BS may further transmit, to a UE (e.g., the UEs 115, 900, 1004, and/or 1104) , scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type. In some aspects, the BS may further perform blind detection for an ACK/NACK associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET. The BS may also perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
In some aspects, the BS may further determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type. As part of the transmitting the SIB at block 1330, the BS may transmit the SIB including an indication of the one or more random access occasions.
In some aspects, the BS may further receive, from a RRC connected UE (e.g., the UEs 115, 900, 1004, and/or 1104) , a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type. The BS may also transmit, to the RRC connected UE, a BWP configuration based on the capability report.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular embodiments illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (128)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and
    receiving a system information block (SIB) based on the PDCCH monitoring.
  2. The method of claim 1, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  3. The method of claim 2, wherein the performing the PDCCH monitoring comprises:
    performing the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band.
  4. The method of claim 2, wherein the performing the PDCCH monitoring comprises:
    performing the PDCCH monitoring in the subset of the plurality of CCEs located in a lower frequency portion of the frequency band.
  5. The method of claim 2, wherein the performing the PDCCH monitoring comprises:
    performing the PDCCH monitoring in the subset of the plurality of CCEs located in an upper frequency portion of the frequency band.
  6. The method of claim 2, wherein the performing the PDCCH monitoring comprises:
    decoding a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  7. The method of claim 2, wherein the performing the PDCCH monitoring comprises:
    decoding a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  8. The method of claim 1, further comprising:
    performing another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period,
    wherein the performing the PDCCH monitoring comprises:
    performing the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern.
  9. The method of claim 8, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  10. The method of claim 1, further comprising:
    receiving a SSB in a first frequency subband within a bandwidth part (BWP) , wherein the common CORESET is associated with the BWP; and
    switching from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  11. The method of claim 1, wherein the receiving the SIB comprises:
    receiving the SIB including at least one of an initial downlink bandwidth part (BWP) configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  12. The method of claim 11, wherein the receiving the SIB further comprises:
    receiving the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  13. The method of claim 11, further comprising:
    determining that the UE is associated with the first UE type based on the bandwidth capability of the UE; and
    performing at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  14. The method of claim 1, further comprising:
    receiving at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET.
  15. The method of claim 1, further comprising:
    transmitting, while in a radio resource control (RRC) connected mode, a capability report indicating the bandwidth capability of the UE; and
    receiving a BWP configuration based on the capability report.
  16. A method of wireless communication performed by a base station (BS) , comprising:
    determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type;
    transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and
    transmitting a SIB based on the SIB scheduling information.
  17. The method of claim 16, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  18. The method of claim 17, wherein the determining the portion of the common CORESET comprises:
    selecting the subset of the plurality of CCEs from a central frequency portion of the frequency band.
  19. The method of claim 17, wherein the determining the portion of the common CORESET comprises:
    selecting the subset of the plurality of CCEs from a lower frequency portion of the frequency band.
  20. The method of claim 17, wherein the determining the portion of the common CORESET comprises:
    selecting the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
  21. The method of claim 17, wherein the transmitting the SIB scheduling information comprises:
    transmitting the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  22. The method of claim 17, wherein the transmitting the SIB scheduling information comprises:
    transmitting the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  23. The method of claim 16, further comprises:
    transmitting another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period,
    wherein the transmitting the SIB scheduling information comprises:
    transmitting the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern.
  24. The method of claim 23, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  25. The method of claim 16, wherein the transmitting the SIB comprises:
    transmitting the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  26. The method of claim 25, wherein the transmitting the SIB further comprises:
    transmitting the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  27. The method of claim 25, further comprising:
    performing, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  28. The method of claim 25, further comprising:
    determining the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  29. The method of claim 16, further comprising:
    transmitting, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  30. The method of claim 29, further comprising:
    performing blind detection for an acknowledgement/negative-acknowledgement (ACK/NACK) associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET; and
    performing blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  31. The method of claim 16, further comprising:
    determining one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type,
    wherein the transmitting the SIB includes:
    transmitting the SIB including an indication of the one or more random access occasions.
  32. The method of claim 16, further comprising:
    receiving, from a radio resource control (RRC) connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type; and transmitting, to the RRC connected UE, a bandwidth part (BWP) configuration based on the capability report.
  33. A user equipment (UE) comprising:
    a processor configured to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and
    a transceiver configured to receive a system information block (SIB) based on the PDCCH monitoring.
  34. The UE of claim 33, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  35. The UE of claim 34, wherein the processor configured to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band.
  36. The UE of claim 34, wherein the processor configured to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a lower frequency portion of the frequency band.
  37. The UE of claim 34, wherein the processor configured to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in an upper frequency portion of the frequency band.
  38. The UE of claim 34, wherein the processor configured to perform the PDCCH monitoring is configured to:
    decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  39. The UE of claim 34, wherein the processor configured to perform the PDCCH monitoring is configured to:
    decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  40. The UE of claim 33, wherein:
    the processor is further configured to:
    perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period, and
    the processor configured to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern.
  41. The UE of claim 40, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  42. The UE of claim 33, wherein:
    the transceiver is further configured to:
    receive a SSB in a first frequency subband within a bandwidth part (BWP) , wherein the common CORESET is associated with the BWP, and
    the processor is further configured to:
    switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  43. The UE of claim 33, wherein the transceiver configured to receive the SIB is configured to:
    receive the SIB including at least one of an initial downlink bandwidth part (BWP) configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  44. The UE of claim 43, wherein the transceiver configured to receive the SIB is further configured to:
    receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  45. The UE of claim 43, wherein the processor is further configured to:
    determine that the UE is associated with the first UE type based on the bandwidth capability of the UE; and
    perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  46. The UE of claim 33, wherein the transceiver is further configured to:
    receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET.
  47. The UE of claim 33, wherein the transceiver is further configured to:
    transmit, while in a radio resource control (RRC) connected mode, a capability report indicating the bandwidth capability of the UE; and
    receiving a BWP configuration based on the capability report.
  48. A base station (BS) comprising:
    a processor configured to:
    determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type; and
    a transceiver configured to:
    transmit system information block (SIB) scheduling information in at least the portion of the common CORESET; and
    transmit a SIB based on the SIB scheduling information.
  49. The BS of claim 48, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  50. The BS of claim 49, wherein the processor configured to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a central frequency portion of the frequency band.
  51. The BS of claim 49, wherein the processor configured to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a lower frequency portion of the frequency band.
  52. The BS of claim 49, wherein the processor configured to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
  53. The BS of claim 49, wherein the transceiver configured to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  54. The BS of claim 49, wherein the transceiver configured to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  55. The BS of claim 48, wherein:
    the transceiver is further configured to:
    transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period, and
    the transceiver configured to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern.
  56. The BS of claim 55, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  57. The BS of claim 48, wherein the transceiver configured to transmit the SIB is configured to:
    transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  58. The BS of claim 57, wherein the transceiver configured to transmit the SIB is further configured to:
    transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  59. The BS of claim 57, wherein the processor is further configured to:
    perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  60. The BS of claim 57, wherein the processor is further configured to:
    determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  61. The BS of claim 48, wherein the transceiver is further configured to:
    transmit, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  62. The BS of claim 61, wherein the processor is further configured to:
    perform blind detection for an acknowledgement/negative-acknowledgement (ACK/NACK) associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET; and
    perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  63. The BS of claim 48, wherein:
    the processor is further configured to:
    determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type, and
    the transceiver configured to transmit the SIB is configured to:
    transmit the SIB including an indication of the one or more random access occasions.
  64. The BS of claim 48, wherein the transceiver is further configured to:
    receive, from a radio resource control (RRC) connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type; and
    transmit, to the RRC connected UE, a bandwidth part (BWP) configuration based on the capability report.
  65. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to perform physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and
    code for causing the UE to receive a system information block (SIB) based on the PDCCH monitoring.
  66. The non-transitory computer-readable medium of claim 65, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  67. The non-transitory computer-readable medium of claim 66, wherein the code for causing the UE to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band.
  68. The non-transitory computer-readable medium of claim 66, wherein the code for causing the UE to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a lower frequency portion of the frequency band.
  69. The non-transitory computer-readable medium of claim 66, wherein the code for causing the UE to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in an upper frequency portion of the frequency band.
  70. The non-transitory computer-readable medium of claim 66, wherein the code for causing the UE to perform the PDCCH monitoring is configured to:
    decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  71. The non-transitory computer-readable medium of claim 66, wherein code for causing the
    UE to perform the PDCCH monitoring is configured to:
    decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  72. The non-transitory computer-readable medium of claim 65, further comprising:
    code for causing the UE to perform another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period, a
    wherein the code for causing the UE to perform the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern.
  73. The non-transitory computer-readable medium of claim 72, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  74. The non-transitory computer-readable medium of claim 65, further comprising:
    code for causing the UE to receive a SSB in a first frequency subband within a bandwidth part (BWP) , wherein the common CORESET is associated with the BWP, and
    code for causing the UE to switch from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  75. The non-transitory computer-readable medium of claim 65, wherein the code for causing the UE to receive the SIB is configured to:
    receive the SIB including at least one of an initial downlink bandwidth part (BWP) configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  76. The non-transitory computer-readable medium of claim 75, wherein the code for causing the UE to receive the SIB is further configured to:
    receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  77. The non-transitory computer-readable medium of claim 75, further comprising:
    code for causing the UE to determine that the UE is associated with the first UE type based on the bandwidth capability of the UE; and
    code for causing the UE to perform at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  78. The non-transitory computer-readable medium of claim 65, further comprising:
    code for causing the UE to receive at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET.
  79. The non-transitory computer-readable medium of claim 65, further comprising:
    code for causing the UE to transmit, while in a radio resource control (RRC) connected mode, a capability report indicating the bandwidth capability of the UE; and
    code for causing the UE to receiving a BWP configuration based on the capability report.
  80. A non-transitory computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a base station (BS) to determine a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type;
    code for causing the BS to transmit system information block (SIB) scheduling information in at least the portion of the common CORESET; and
    code for causing the BS to transmit a SIB based on the SIB scheduling information.
  81. The non-transitory computer-readable medium of claim 80, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  82. The non-transitory computer-readable medium of claim 81, wherein the code for causing the BS to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a central frequency portion of the frequency band.
  83. The non-transitory computer-readable medium of claim 81, wherein the code for causing the BS to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a lower frequency portion of the frequency band.
  84. The non-transitory computer-readable medium of claim 81, wherein the code for causing the BS to determine the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
  85. The non-transitory computer-readable medium of claim 81, wherein the code for causing the BS to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  86. The non-transitory computer-readable medium of claim 81, wherein the code for causing the BS to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  87. The non-transitory computer-readable medium of claim 80, further comprising:
    code for causing the BS to transmit another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period, and
    wherein the code for causing the BS to transmit the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern.
  88. The non-transitory computer-readable medium of claim 87, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  89. The non-transitory computer-readable medium of claim 80, wherein the code for causing the BS to transmit the SIB is configured to:
    transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  90. The non-transitory computer-readable medium of claim 89, wherein the code for causing the BS to transmit the SIB is further configured to:
    transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  91. The non-transitory computer-readable medium of claim 89, further comprising:
    code for causing the BS to perform, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  92. The non-transitory computer-readable medium of claim 89, further comprising:
    code for causing the BS to determine the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  93. The non-transitory computer-readable medium of claim 80, further comprising:
    code for causing the BS to transmit, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  94. The non-transitory computer-readable medium of claim 93, further comprising:
    code for causing the BS to perform blind detection for an acknowledgement/negative-acknowledgement (ACK/NACK) associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET; and
    code for causing the BS to perform blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  95. The non-transitory computer-readable medium of claim 80, further comprising:
    code for causing the BS to determine one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type, and
    wherein the code for causing the BS to transmit the SIB is configured to:
    transmit the SIB including an indication of the one or more random access occasions.
  96. The non-transitory computer-readable medium of claim 80, further comprising:
    code for causing the BS to receive, from a radio resource control (RRC) connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type; and
    code for causing the BS to transmit, to the RRC connected UE, a bandwidth part (BWP) configuration based on the capability report.
  97. A user equipment (UE) comprising:
    means for performing physical downlink control channel (PDCCH) monitoring in a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the CORESET based on a bandwidth capability of the UE; and
    means for receiving a system information block (SIB) based on the PDCCH monitoring.
  98. The UE of claim 97, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  99. The UE of claim 98, wherein the means for performing the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a central frequency portion of the frequency band.
  100. The UE of claim 98, wherein the means for performing the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in a lower frequency portion of the frequency band.
  101. The UE of claim 98, wherein the means for performing the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the subset of the plurality of CCEs located in an upper frequency portion of the frequency band.
  102. The UE of claim 98, wherein the means for performing the PDCCH monitoring is configured to:
    decode a PDCCH candidate from one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  103. The UE of claim 98, wherein means for performing the PDCCH monitoring is configured to:
    decode a PDCCH candidate from the subset of the plurality of CCEs based on an aggregation level of 16, the subset of the plurality of CCEs having less than 16 CCEs.
  104. The UE of claim 97, further comprising:
    means for performing another PDCCH monitoring in another portion of the common CORESET spanning less than the entire frequency band of the common CORESET during a first time period,
    wherein the means for performing the PDCCH monitoring is configured to:
    perform the PDCCH monitoring in the portion of the common CORESET during a second time period after the first time period based on a frequency hopping pattern.
  105. The UE of claim 104, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  106. The UE of claim 97, further comprising:
    means for receiving a SSB in a first frequency subband within a bandwidth part (BWP) , wherein the common CORESET is associated with the BWP, and
    means for switching from the first frequency subband to a second frequency subband based on the portion of the CORESET.
  107. The UE of claim 97, wherein the means for receiving the SIB is configured to:
    receive the SIB including at least one of an initial downlink bandwidth part (BWP) configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of a first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  108. The UE of claim 107, wherein the means for receiving the SIB is further configured to:
    receive the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  109. The UE of claim 107, further comprising:
    means for determining that the UE is associated with the first UE type based on the bandwidth capability of the UE; and
    means for performing at least one of a random access procedure or a paging procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  110. The UE of claim 97, further comprising:
    means for receiving at least one of a random access response message, a connection response message, or a paging message based on the PDCCH monitoring in the portion of the common CORESET.
  111. The UE of claim 97, further comprising:
    means for transmitting, while in a radio resource control (RRC) connected mode, a capability report indicating the bandwidth capability of the UE; and
    means for receiving a BWP configuration based on the capability report.
  112. A base station (BS) comprising:
    means for determining a portion of a common control resource set (CORESET) spanning less than an entire frequency band of the common CORESET based on a bandwidth capability of a first UE type;
    means for transmitting system information block (SIB) scheduling information in at least the portion of the common CORESET; and
    means for transmitting a SIB based on the SIB scheduling information.
  113. The BS of claim 112, wherein the common CORESET includes a plurality of control channel elements (CCEs) in the frequency band, and wherein the portion of the common CORESET includes a subset of the plurality of CCEs less than all CCEs of the plurality of CCEs.
  114. The BS of claim 113, wherein the means for determining the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a central frequency portion of the frequency band.
  115. The BS of claim 113, wherein the means for determining the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from a lower frequency portion of the frequency band.
  116. The BS of claim 113, wherein the means for determining the portion of the common CORESET is configured to:
    select the subset of the plurality of CCEs from an upper frequency portion of the frequency band.
  117. The BS of claim 113, wherein the means for transmitting the SIB scheduling information is configured to:
    transmit the SIB scheduling information in one or more CCEs of the subset of the plurality of CCEs based on an aggregation level of 4, 8, or 16.
  118. The BS of claim 113, wherein the means for transmitting the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the subset of the plurality of CCEs and at least one CCE of the plurality of CCEs outside the subset of the plurality of CCEs based on an aggregation level of 16.
  119. The BS of claim 112, further comprising:
    means for transmitting another SIB scheduling information in another portion of the common CORESET spanning less than an entire frequency band of the common CORESET during a first time period, and
    wherein the means for transmitting the SIB scheduling information is configured to:
    transmit the SIB scheduling information in the portion of the common CORESET during a second time period different from the first time period based on a frequency hopping pattern.
  120. The BS of claim 119, wherein the frequency hopping pattern is associated with at least one of a system frame number (SFN) , a half frame index, or a subband index.
  121. The BS of claim 112, wherein the means for transmitting the SIB is configured to:
    transmit the SIB including at least one of an initial downlink BWP configuration, an initial uplink BWP configuration, or a PDCCH common configuration for each of the first UE type and a second UE type, wherein the first UE type and the second UE type are associated with different bandwidth capabilities.
  122. The BS of claim 121, wherein the means for transmitting the SIB is further configured to:
    transmit the SIB including a first indication associated with the first UE type and a second indication associated with the second UE type.
  123. The BS of claim 121, further comprising:
    means for performing, with a UE of the first UE type, a random access procedure based on the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for the first UE type.
  124. The BS of claim 121, further comprising:
    means for determining the at least one of the initial downlink BWP configuration, the initial uplink BWP configuration, or the PDCCH common configuration for each of the first UE type and the second UE type.
  125. The BS of claim 112, further comprising:
    means for transmitting, to a UE, scheduling information for at least one of a random access response message, a connection response message, or a paging message in the portion of the common CORESET based on the bandwidth capability for the first UE type.
  126. The BS of claim 125, further comprising:
    means for performing blind detection for an acknowledgement/negative-acknowledgement (ACK/NACK) associated with a random access message 4 (MSG4) in a first frequency band corresponding to the frequency band of the common CORESET; and
    means for performing blind detection for the ACK/NACK in a second frequency band corresponding to the portion of the common CORESET.
  127. The BS of claim 112, further comprising:
    means for determining one or more random access occasions in a frequency band corresponding to the portion of the common CORESET based on the bandwidth capability of the first UE type, and
    wherein the means for transmitting the SIB is configured to:
    transmit the SIB including an indication of the one or more random access occasions.
  128. The BS of claim 112, further comprising:
    means for receiving, from a radio resource control (RRC) connected UE, a capability report indicating a bandwidth capability of the UE corresponding to the bandwidth capability of the first UE type; and
    means for transmitting, to the RRC connected UE, a bandwidth part (BWP) configuration based on the capability report.
PCT/CN2020/085796 2020-04-21 2020-04-21 Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light WO2021212300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085796 WO2021212300A1 (en) 2020-04-21 2020-04-21 Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085796 WO2021212300A1 (en) 2020-04-21 2020-04-21 Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light

Publications (1)

Publication Number Publication Date
WO2021212300A1 true WO2021212300A1 (en) 2021-10-28

Family

ID=78271006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085796 WO2021212300A1 (en) 2020-04-21 2020-04-21 Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light

Country Status (1)

Country Link
WO (1) WO2021212300A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051458A1 (en) * 2021-09-29 2023-04-06 华为技术有限公司 Communication method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018165202A1 (en) * 2017-03-07 2018-09-13 Intel IP Corporation Monitoring control channels in control resource sets for new radio
CN110192376A (en) * 2017-02-06 2019-08-30 高通股份有限公司 Design is combined for improved communication equipment, system and network-based control resource set
US20200053811A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Bandwidth configuration techniques in wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192376A (en) * 2017-02-06 2019-08-30 高通股份有限公司 Design is combined for improved communication equipment, system and network-based control resource set
WO2018165202A1 (en) * 2017-03-07 2018-09-13 Intel IP Corporation Monitoring control channels in control resource sets for new radio
US20200053811A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Bandwidth configuration techniques in wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "R4-2003685:Discussion on PDSCH performance requirements for multi-DCI based multi-TRP transmission.", 3GPP TSG-RAN WG4 MEETING #94BIS-E., 10 April 2020 (2020-04-10), XP051872248 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051458A1 (en) * 2021-09-29 2023-04-06 华为技术有限公司 Communication method and apparatus

Similar Documents

Publication Publication Date Title
US20220279574A1 (en) Bandwidth Part (BWP) Configuration For Subband Access In New Radio-Unlicensed (NR-U)
US11700090B2 (en) Frequency diversity with carrier hopping in unlicensed spectrum
US11272526B2 (en) Efficient operation with unlicensed downlink (DL) and licensed uplink (UL) by transmission of selective DL messages using licensed UL
US20200314898A1 (en) Dynamic physical downlink control channel (pdcch) monitoring mode switching, configuration, and control
US10880889B2 (en) Narrowband user equipment (UE) support with multi-channel listen-before-talk (LBT)
CN112470541B (en) Transmission opportunity (TXOP) structure for new radio unlicensed (NR-U) and new radio synchronized shared (NR-SS)
US20230032957A1 (en) Power optimizations for transmission opportunity (txop) monitoring
US11611975B2 (en) Uplink (UL) transmission with flexible starting positions for new radio-unlicensed (NR-U)
US11991722B2 (en) Application of an uplink (UL) cancellation indication in a wireless communications network
US11895699B2 (en) Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
US11696315B2 (en) Uplink cancellation indication configuration for wireless communications network
US11677524B2 (en) QCL determination for A-CSI-RS in full duplex systems
US11895634B2 (en) Control resource set (CORESET) configuration for narrowband new radio (NR)
EP4173217A1 (en) Techniques for pdcch monitoring aggregation
US11910385B2 (en) Control channel monitoring configurations for cross-carrier scheduling
WO2021138796A1 (en) Downlink control information size and buffering limits for combination dci
WO2021212300A1 (en) Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light
WO2021169935A1 (en) Beam failure detection (bfd) in dormancy bandwidth part (bwp)
WO2021248311A1 (en) Availability of resource block (rb) sets and listen-before-talk (lbt) status associated with the rb sets
WO2021146983A1 (en) Misaligned fixed frame periods (ffps) of multiple wireless communication devices
WO2021146986A1 (en) Downlink control information (dci) transmission in multiple listen-before-talk (lbt) bandwidths
WO2021109060A1 (en) Control resource set (coreset) design for subbands in a multi-carrier system
US20230007632A1 (en) Configuring a search space set for downlink control information
WO2022011685A1 (en) Nr-u for 6ghz band-rmsi pdcch repetition for lpi mode
US20230209560A1 (en) Resource block set allocation for dynamic uplink communications in new radio-unlicensed (nr-u)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932201

Country of ref document: EP

Kind code of ref document: A1