WO2021109060A1 - Control resource set (coreset) design for subbands in a multi-carrier system - Google Patents

Control resource set (coreset) design for subbands in a multi-carrier system Download PDF

Info

Publication number
WO2021109060A1
WO2021109060A1 PCT/CN2019/123238 CN2019123238W WO2021109060A1 WO 2021109060 A1 WO2021109060 A1 WO 2021109060A1 CN 2019123238 W CN2019123238 W CN 2019123238W WO 2021109060 A1 WO2021109060 A1 WO 2021109060A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
subbands
pdcch
common
signal
Prior art date
Application number
PCT/CN2019/123238
Other languages
French (fr)
Inventor
Changlong Xu
Jing Sun
Xiaoxia Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/123238 priority Critical patent/WO2021109060A1/en
Publication of WO2021109060A1 publication Critical patent/WO2021109060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to wireless communication systems, and more particularly to a control resource set (CORESET) design for subbands in a multi-carrier system.
  • CORESET control resource set
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • BSs base stations
  • UE user equipment
  • NR next generation new radio
  • LTE long term evolution
  • NR next generation new radio
  • LTE long term evolution
  • NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE.
  • NR is designed to operate over a wide array of spectrum bands from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands.
  • GHz gigahertz
  • mmWave millimeter wave
  • NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
  • a transmitting node may listen to the channel to determine whether there are active transmissions in the channel. When the channel is idle, the transmitting node may transmit a preamble to reserve a channel occupancy time (COT) in the shared channel and may communicate with a receiving node during the COT.
  • COT channel occupancy time
  • a method of wireless communication includes transmitting, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; transmitting, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • BS base station
  • UE user equipment
  • CORESET common control resource set
  • a method of wireless communication includes receiving, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; monitoring, by the UE, for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and communicating, by the UE, a communication signal based on detecting the first PDCCH signal.
  • UE user equipment
  • BS base station
  • CORESET common control resource set
  • a method of wireless communication includes transmitting, by a base station (BS) to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • BS base station
  • UE user equipment
  • PDCCH physical downlink control channel
  • a method of wireless communication includes monitoring, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; detecting, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  • PDCCH physical downlink control channel
  • an apparatus includes a transceiver configured to: transmit, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; transmit, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • BS base station
  • UE user equipment
  • CORESET common control resource set
  • an apparatus includes a transceiver configured to: receive, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; and communicate, by the UE, a communication signal based on detecting a first physical downlink control channel (PDCCH) signal; and a processor configured to: monitor, by the UE, for the first PDCCH signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; and monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration.
  • UE user equipment
  • BS base station
  • CORESET common control resource set
  • an apparatus includes a transceiver configured to: transmit, by a BS to a UE, a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • PDCCH physical downlink control channel
  • an apparatus includes a processor configured to: monitor, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; detect, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  • UE user equipment
  • PDCCH physical downlink control channel
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; code for causing the BS to transmit to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • BS base station
  • UE user equipment
  • CORESET common control resource set
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; code for causing the UE to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and code for causing the UE to communicate a communication signal based on detecting the first PDCCH signal.
  • UE user equipment
  • CORESET common control resource set
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • BS base station
  • UE user equipment
  • PDCCH physical downlink control channel
  • a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; code for causing the UE to detect the first PDCCH signal in the first subband using a set of common PDCCH parameters; and code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  • UE user equipment
  • PDCCH physical downlink control channel
  • an apparatus includes means for transmitting to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; means for transmitting to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • UE user equipment
  • CORESET common control resource set
  • an apparatus includes means for receiving from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and means for communicating a communication signal based on detecting the first PDCCH signal.
  • BS base station
  • CORESET common control resource set
  • an apparatus includes means for transmitting to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • UE user equipment
  • PDCCH physical downlink control channel
  • an apparatus includes means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; means for detecting the first PDCCH signal in the first subband using a set of common PDCCH parameters; and means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  • PDCCH physical downlink control channel
  • FIG. 1 illustrates a wireless communication network according to one or more aspects of the present disclosure.
  • FIG. 2 is a timing diagram illustrating a transmission frame structure according to one or more aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating a common control resource set (CORESET) configuration for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
  • CORESET common control resource set
  • FIG. 4 is a diagram illustrating a set of common physical downlink control channel (PDCCH) parameters for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
  • PDCCH physical downlink control channel
  • FIG. 5 is a block diagram of a base station (BS) according to some aspects of the present disclosure.
  • FIG. 6 is a block diagram of a user equipment (UE) according to some aspects of the present disclosure.
  • FIG. 7 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
  • FIG. 8 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
  • FIG. 9 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
  • FIG. 10 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
  • wireless communications systems also referred to as wireless communications networks.
  • the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single-carrier FDMA
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communications
  • 5G 5 th Generation
  • NR new radio
  • An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like.
  • E-UTRA evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • GSM Global System for Mobile communications
  • LTE long term evolution
  • UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP)
  • cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP 3rd Generation Partnership Project
  • 3GPP long term evolution LTE
  • LTE long term evolution
  • the 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices.
  • the present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
  • 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface.
  • LTE and LTE-A are further enhancements considered in addition to development of the new radio technology for 5G NR networks.
  • the 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an Ultra-high density (e.g., ⁇ 1M nodes/km 2 ) , ultra-low complexity (e.g., ⁇ 10s of bits/sec) , ultra-low energy (e.g., ⁇ 10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ⁇ 99.9999%reliability) , ultra-low latency (e.g., ⁇ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ⁇ 10 Tbps/km 2 ) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
  • IoTs Internet of things
  • the 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility.
  • TTI transmission time interval
  • MIMO massive multiple input, multiple output
  • mmWave millimeter wave
  • Scalability of the numerology in 5G NR with scaling of subcarrier spacing (SCS) , may efficiently address operating diverse services across diverse spectrum and diverse deployments.
  • SCS may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) .
  • BW bandwidth
  • SCS may occur with 30 kHz over 80/100 MHz BW.
  • the SCS may occur with 60 kHz over a 160 MHz BW.
  • the SCS may occur with 120 kHz over a 500 MHz BW.
  • the scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency.
  • QoS quality of service
  • 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe.
  • the self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
  • One or more CORESETs may be included in a carrier.
  • a CORESET of each carrier may have a different size or structure in the frequency domain and/or a different number of OFDM symbols in the time domain.
  • a CORESET of each carrier may be configured independently, and accordingly, no relationship between the CORESET designs of the different carriers may exist.
  • the UE may perform independent blind detection of PDCCH for each carrier. If the UE performs blind detection of PDCCH for each carrier, the decoding complexity may increase. For example, the larger the number of carriers, the higher the decoding complexity.
  • the bandwidth of each carrier may be divided into one or more subbands if the bandwidth of the respective carrier is larger than a threshold (e.g., 20 MHz) . If the bandwidth of a carrier is larger than the threshold, the network may divide the bandwidth into a first subband and a second subband.
  • a transmitting node may listen to a subband to determine whether there are active transmissions in the subband. When the subband is idle, the transmitting node may transmit a preamble to reserve a channel occupancy time (COT) in the shared subband and may communicate with a receiving node during the COT.
  • the threshold e.g. 20 MHz
  • the decoding complexity may increase. For example, the transmitting node may perform two LBT procedures, one in the first subband and one in the second subband. It may be desirable to design a CORESET for each subband and UE-specific PDCCH to reduce the decoding complexity of blind detection.
  • a common CORESET configuration may apply to a plurality of subbands.
  • the BS may transmit a first PDCCH signal in a first subband of a plurality of subbands based on the common CORESET configuration and may transmit a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • the common CORESET configuration may include a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, and/or an interleaving pattern.
  • the UE may monitor for PDCCH signals in the plurality of subbands based on the same CORESET configuration, thereby reducing decoding complexity.
  • the parameters of UE-specific PDCCH for a plurality of subbands are the same.
  • the UE-specific parameters may also be referred to as a set of common PDCCH parameters.
  • the set of common PDCCH parameters for the plurality of subbands may include a starting index of a control channel element (CCE) , an aggregation level, and/or a payload size.
  • CCE control channel element
  • the UE may perform blind detection to detect a PDCCH signal. Once the UE detects a PDCCH signal in a subband of the plurality of subbands, the UE may determine the set of common PDCCH parameters for the other subbands in the plurality of subbands. Accordingly, the UE may monitor for the PDCCH signals in these other subbands based on the set of common PDCCH parameters instead of through blind detection. By reducing the number of instances that the UE performs blind detection, the decoding complexity may be reduced.
  • FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure.
  • the network 100 may be a 5G network.
  • the network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other network entities.
  • a BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like.
  • eNB evolved node B
  • gNB next generation eNB
  • Each BS 105 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
  • a BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG.
  • the BSs 105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO.
  • the BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity.
  • the BS 105f may be a small cell BS which may be a home node or portable access point.
  • a BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
  • the network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) .
  • a UE may be a device that does not include a UICC.
  • UICC Universal Integrated Circuit Card
  • the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices.
  • the UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100.
  • a UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like.
  • MTC machine type communication
  • eMTC enhanced MTC
  • NB-IoT narrowband IoT
  • the UEs 115e-115h are examples of various machines configured for communication that access the network 100.
  • the UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100.
  • a UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like.
  • a lightning bolt e.g., communication links indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
  • the BSs 105a-105c may serve the UEs 115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity.
  • the macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f.
  • the macro BS 105d may also transmits multicast services which are subscribed to and received by the UEs 115c and 115d.
  • Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
  • the BSs 105 may also communicate with a core network.
  • the core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • IP Internet Protocol
  • At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115.
  • the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
  • the network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the macro BSs 105d and 105e, as well as links from the small cell BS 105f.
  • UE 115f e.g., a thermometer
  • UE 115g e.g., smart meter
  • UE 115h e.g., wearable device
  • the network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as vehicle-to-vehicle (V2V) communications among the UEs 115i-115k, vehicle-to-everything (V2X) communications between a UE 115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a UE 115i, 115j, or 115k and a BS 105.
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • V2I vehicle-to-infrastructure
  • the network 100 utilizes OFDM-based waveforms for communications.
  • An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data.
  • the SCS between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW.
  • the system BW may also be partitioned into subbands.
  • the SCS and/or the duration of TTIs may be scalable.
  • the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for DL and UL transmissions in the network 100.
  • DL refers to the transmission direction from a BS 105 to a UE 115
  • UL refers to the transmission direction from a UE 115 to a BS 105.
  • the communication can be in the form of radio frames.
  • a radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands.
  • each subframe includes an UL subframe in an UL frequency band and a DL subframe in a DL frequency band.
  • a subframe may also be referred to as a slot.
  • UL and DL transmissions occur at different time periods using the same frequency band.
  • a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
  • each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data.
  • Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115.
  • a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency.
  • a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel.
  • CRSs cell specific reference signals
  • CSI-RSs channel state information –reference signals
  • a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate an UL channel.
  • Control information may include resource assignments and protocol controls.
  • Data may include protocol data and/or operational data.
  • the BSs 105 and the UEs 115 may communicate using self-contained subframes.
  • a self-contained subframe may include a portion for DL communication and a portion for UL communication.
  • a self-contained subframe can be DL-centric or UL-centric.
  • a DL-centric subframe may include a longer duration for DL communication than for UL communication.
  • An UL-centric subframe may include a longer duration for UL communication than for DL communication.
  • the network 100 may be an NR network deployed over a licensed spectrum.
  • the BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization.
  • the BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access.
  • MIB master information block
  • RMSI remaining system information
  • OSI system information
  • the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
  • PBCH physical broadcast channel
  • PDSCH physical downlink shared channel
  • a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105.
  • the PSS may enable synchronization of period timing and may indicate a physical layer identity value.
  • the UE 115 may then receive a SSS.
  • the SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell.
  • the PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
  • the UE 115 may receive a MIB, which may be transmitted in the physical broadcast channel (PBCH) .
  • the MIB may include system information for initial network access and scheduling information for RMSI and/or OSI.
  • the UE 115 may receive RMSI, OSI, and/or one or more system information blocks (SIBs) .
  • the RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
  • RRC radio resource control
  • the UE 115 can perform a random access procedure to establish a connection with the BS 105. After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications. The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) .
  • DCI DL control information
  • the BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant.
  • the UE 115 may transmit an UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to an UL scheduling grant.
  • the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
  • the network 100 may operate over a shared channel, which may include shared frequency bands or unlicensed frequency bands.
  • the network 100 may be an NR-unlicensed (NR-U) network operating over an unlicensed frequency band.
  • NR-U NR-unlicensed
  • the BSs 105 and the UEs 115 may be operated by multiple network operating entities.
  • the network 100 may operate over a system BW or a component carrier (CC) BW.
  • the network 100 may partition the system BW into multiple BWPs (e.g., portions) .
  • a BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) .
  • the assigned BWP may be referred to as the active BWP.
  • the UE 115 may monitor the active BWP for signaling information from the BS 105.
  • the BS 105 may schedule the UE 115 for UL or DL communications in the active BWP.
  • a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications.
  • the BWP pair may include one BWP for UL communications and one BWP for DL communications.
  • a BWP may also be referred to as a subband.
  • FIG. 2 is a timing diagram illustrating a transmission frame structure 200 according to one or more aspects of the present disclosure.
  • the transmission frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the transmission frame structure 200.
  • the x-axes represent time in some arbitrary units
  • the y-axes represent frequency in some arbitrary units.
  • the transmission frame structure 200 includes a radio frame 201.
  • the duration of the radio frame 201 may vary depending on some aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds.
  • the radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
  • Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time.
  • the number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on, for example, the channel bandwidth, the subcarrier spacing (SCS) , and/or the cyclic-prefix (CP) mode.
  • One subcarrier 204 in frequency and one symbol 206 in time forms one resource element (RE) 212 for transmission.
  • a group of four consecutive REs forms a resource element group (REG) , where REs for reference signals are not included in the REG.
  • a resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time.
  • a resource block group (RBG) may include one or more RBs.
  • a subband may include multiple RBGs.
  • a BS may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208.
  • Each slot 202 may be time-partitioned into P number of mini-slots 208.
  • Each mini-slot 208 may include one or more symbols 206.
  • the mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206.
  • a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206.
  • the BS may schedule UE at a frequency-granularity of a RB 210 (e.g., including about 12 subcarriers 204) .
  • a CORESET is a set of time-frequency resources where PDCCH can be transmitted.
  • the BS may configure a UE with a CORESET for a UE to monitor for PDCCH transmissions from the BS.
  • a PDCCH transmission may occupy part or all of the CORESET frequency location at a defined time instance.
  • the basic unit for a CORESET is a REG.
  • a REG may include, for example, twelve REs by one OFDM symbol.
  • a CORESET may span, for example, multiples of non-contiguous or contiguous groups of six RBs in frequency and between one and three contiguous OFDM symbols in time.
  • a CORESET may be up to three OFDM symbols in duration and located anywhere within a slot (e.g., at a beginning of the slot) .
  • a CORESET may be defined in multiples of six RBs up to the system carrier frequency bandwidth or the subband bandwidth (when the system bandwidth is partitioned into subbands) .
  • the size and location of a CORESET may be semi-statically configured by the network 100 and may be set to be smaller than the subband bandwidth.
  • a CORESET may occur at any position within a slot and anywhere in the frequency range of the subband.
  • a UE is not expected to handle CORESETs outside its active subband.
  • a CORESET may or may not span the entire bandwidth.
  • it may be desirable to apply a common CORESET configuration for each subband of a plurality of subbands in the multi-carrier system to reduce decoding complexity.
  • FIG. 3 is a diagram 300 illustrating a common CORESET configuration for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
  • the common CORESET configuration may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the common CORESET configuration.
  • the x-axes represent time in some arbitrary units
  • the y-axes represent frequency in some arbitrary units.
  • the multi-carrier system includes a carrier A and a carrier B.
  • the carrier A and the carrier B may be radio frequency carriers that are used for carrier aggregation.
  • the BS 105 may communicate a DL communication signal (e.g., PDCCH signal) in a subband 310 or a subband 312 using the carrier A.
  • the carrier A may have a bandwidth that is larger than a threshold (e.g., 20 MHz) , and the network may accordingly divide the bandwidth of carrier A into the subband 310 and the subband 312 in response to a determination that the carrier A has a bandwidth that is larger than the threshold.
  • a threshold e.g. 20 MHz
  • a bandwidth of the subband 310 may be equal to the threshold, and a bandwidth of the subband 312 may be equal to or less than a difference between the bandwidth of carrier A and the threshold.
  • the subbands 312 and 310 can be spaced apart by a guard band.
  • the subbands 312 and 310 are associated with LBT, where LBT may be performed in each subband 312 and 310. Accordingly, the subbands 312 and 310 may also be referred to as LBT subbands.
  • the BS 105 may perform LBT in the subband 310 before transmission of a PDCCH signal 350 in the subband.
  • the BS 105 may transmit the PDCCH signal 350 over a CORESET 314 that spans a smaller bandwidth than the bandwidth of the subband 310. Additionally or alternatively, the BS 105 may perform LBT in the subband 312, and based on the LBT resulting in a LBT pass, the BS 105 may transmit a PDCCH signal 352 over a CORESET 316 that spans the entire bandwidth of the subband 312.
  • the BS 105 may communicate a DL communication signal in a subband 320 using the carrier B.
  • the carrier B may have a bandwidth that is equal to the threshold (e.g., 20 MHz) .
  • the BS 105 may perform LBT in the subband 320, and based on the LBT resulting in a LBT pass, the BS 105 may transmit a PDCCH signal 354 over a CORESET 322 that spans a smaller bandwidth than the bandwidth of the subband 320.
  • Each subband 310, 312, and 320 has a CORESET having a particular configuration.
  • a CORESET configuration may include a variety of parameters such as, for example, a number of OFDM symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, and/or an interleaving pattern.
  • PRBs physical resource blocks
  • a PDCCH transmission (e.g., PDCCH downlink control information (DCI) ) is mapped to a specific CORESET and occupies one, two, four, eight, or sixteen CCEs.
  • DCI downlink control information
  • a REG bundle is a set of REGs across which a communications device can assume the precoding is constant.
  • One REG bundle is composed of multiple REGs, and the bundle size may be specified by an RRC parameter.
  • the UE 115 may apply a precoder to symbols that are mapped to a plurality of subbands.
  • the CCE-to-REG mapping can be either interleaved or non-interleaved. Interleaving may provide for frequency diversity by using an interleaved mapping, and non-interleaving may provide for facilitation of interference coordination and frequency-selective transmission of control channels.
  • Consecutive bundles of six REGs may form a CCE, and a CCE may be mapped to REGs with interleaved or non-interleaved REG indices within a CORESET.
  • the CCE may be mapped to REGs with interleaved or non-interleaved REG indices within a CORESET.
  • six REGs for a given CCE may be grouped to form a REG bundle and all REGs for a given CCE may be consecutive.
  • CCEs of one PDCCH may also be consecutive. If the CCE is mapped to REGs with interleaved REG indices within the CORESET, two or six REGs for a given CCE may be grouped to form a REG bundle and REG bundles are interleaved in the CORESET. For a CCE-to-REG mapping for a two-or three-symbol CORESET, the REG bundle size may be equal to a product of the REGs in the frequency domain and the symbols in the time domain.
  • the communications device may assume that that the precoding is constant across a whole CCE.
  • the REG bundle size may be configurable between either six REGs (applicable to all CORESET durations) or two or three (depending on the CORESET duration) .
  • the bundle size can be two or six, and for a duration of three OFDM symbols, the bundle size can be three or six.
  • the REG bundles constituting a CCE are obtained using a block interleaver to spread out the different REG bundles in frequency, thereby obtaining frequency diversity.
  • the number of rows in the block interleaver may be configurable to handle different deployment scenarios.
  • Each of the CORESETs 314, 316, and 322 may have the same or a common CORESET configuration.
  • a CORESET configuration may be the same for a plurality of subbands if the CORESET parameters are the same for the plurality of subbands.
  • the CORESET configuration may be the same for the subbands 310, 312, and 320 if the number of OFDM symbols in the time domain, the number of PRBs in the frequency domain, and the interleaving pattern for the subbands 310, 312, and 320 are the same.
  • the CORESET may be mirrored from one subband to another.
  • the CORESET parameters other than the starting point in the frequency domain may be the same for each subband. If the subband is less than a threshold (e.g., 20 MHz) , the CORESET may be part of the CORESET in a bandwidth equal to the threshold.
  • the carrier A has a bandwidth of about 40 MHz and may be partitioned into two bandwidth portions of 20 MHz, the subband 310 may span the full 20 MHz of the first portion and the subband 312 may span less than 20 MHz of the second portion.
  • Each of the CORESET 314 and 316 may be located in the same frequency location with respect to a corresponding 20 MHz portion.
  • the lowest frequency of the CORESET 314 may be offset from a lowest frequency of the first 20 MHz portion by the same amount as the lowest frequency of the CORESET 316 is offset from a lowest frequency of the second 20 MHz portion.
  • the CORESET 316 may occupy a smaller bandwidth than the CORESET 314.
  • the CORESET within the subband 312 would be the same as the CORESET 314 within the subband 310.
  • the CORESET 314 and the CORESET 316 of carrier A starts at time T0, and the CORESET 322 of carrier B starts at time T1. Accordingly, a different starting point of the CORESET may be used for carrier A and carrier B.
  • the CORESETs 314 and 316 of carrier A and the CORESET 322 of carrier B are the same (e.g., starting at time T0) .
  • the BS 105 may transmit the common CORESET configuration to the UE 115.
  • the UE 115 may receive the common CORESET configuration for the subbands 310, 312, and 320 from the BS 105.
  • the UE 115 may monitor for PDCCH signals in each of the subbands 310, 312, and 320 based on the common CORESET configuration.
  • the UE 115 may monitor for the PDCCH signal 350 in the subband 310 based on the common CORESET configuration, may monitor for the PDCCH signal 352 in the subband 312 based on the common CORESET configuration, and/or may monitor for the PDCCH signal 354 in the subband 320 based on the common CORESET configuration.
  • the BS 105 transmits to the UE 115, the PDCCH signal 350 in the subband 310 based on the common CORESET configuration and the PDCCH signal 354 in the subband 320 based on the common CORESET configuration.
  • the BS 105 may transmit the PDCCH signal 350 over the CORESET 314 of the carrier A and may transmit the PDCCH signal 354 over the CORESET 322 of the carrier B.
  • the UE 115 detect the PDCCH signal 350 in the subband 310 and may communicate a communication signal based on detecting the PDCCH signal.
  • the PDCCH signal 350 indicates an UL scheduling grant for the UE 115 to transmit an UL communication signal (e.g., UL control information or UL data) in a given subband (e.g., the subband 310 or another subband different from the subband 310) .
  • the UE 115 may communicate the communication signal based on detecting the PDCCH signal by transmitting the UL communication signal in the given subband based on the UL scheduling grant.
  • the BS 105 may receive the UL communication signal in the given subband based on the UL scheduling grant.
  • the PDCCH signal 350 indicates a DL scheduling grant for the UE 115 to receive a DL communication signal in a given subband (e.g., the subband 310 or another subband different from the subband 310) .
  • the BS 105 may transmit the DL communication signal in the given subband based on the DL scheduling grant.
  • the UE 115 may communicate the communication signal by receiving the DL communication signal in the given subband based on the DL scheduling grant.
  • the BS 105 may transmit the PDCCH signal 352 in the subband 312 based on the common CORESET configuration.
  • the UE 115 may detect the PDCCH signal 352 in the subband 312 based on the common CORESET configuration and communicate a communication signal based on the detected PDCCH signal 352.
  • the PDCCH signal 352 may indicate an UL scheduling grant, and the UE 115 may transmit an UL communication signal to the BS 105 based on the PDCCH signal 352.
  • the PDCCH signal 352 may indicate a DL scheduling grant, and the UE 115 may receive a DL communication signal from the BS 105 based on the PDCCH signal 352.
  • the BS 105 and the UE 115 may use a common CORESET configuration for a plurality of subbands to reduce the decoding complexity for PDCCH.
  • PDCCH may be mapped to a specific CORESET. With different CORESET configurations, it may be possible for some UEs to obtain the same PDCCH parameters among different subbands.
  • the complexity for decoding the PDCCH may be reduced by allocating a set of common PDCCH parameters for the plurality of subbands.
  • the set of common PDCCH parameters may also be referred to as a set of parameters for UE-specific PDCCH.
  • FIG. 4 is a diagram 400 illustrating a set of common PDCCH parameters for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
  • the set of common PDCCH parameters may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications.
  • the BS may communicate with the UE using time-frequency resources configured as shown in the set of common PDCCH parameters.
  • the x-axes represent time in some arbitrary units
  • the y-axes represent frequency in some arbitrary units.
  • the multi-carrier system includes a carrier A and a carrier B.
  • the BS 105 may communicate a DL communication signal in a subband 410 or a subband 412 using the carrier A.
  • the carrier A may have a bandwidth that is larger than a threshold (e.g., about 20 MHz) , and the network may accordingly divide the bandwidth of carrier A into the subband 410 and the subband 412.
  • a bandwidth of the subband 410 may be equal to the threshold, and a bandwidth of the subband 412 may be equal to or less than a difference between the bandwidth of carrier A and the threshold.
  • the subbands 312 and 310 can be spaced apart by a guard band.
  • a set of common PDCCH parameters may be the same for a plurality of subbands.
  • the set of common PDCCH parameters for the plurality of subbands may include a starting index of a control channel element (CCE) , an aggregation level, and a payload size.
  • CCE is composed of multiple REGs, and the number of REGs within a CCE varies.
  • a CCE is the unit upon which a search space for blind decoding is defined.
  • a CCE may be composed of six REGs, each of which may be equal to one resource block in on OFDM symbol.
  • a BS 105 transmits PDCCH using one, two, four, eight, or sixteen contiguous CCEs with a number known as the aggregation level.
  • a specification that is agreed upon by the BS 105 and the UE 115 may provide a mapping between the aggregation level and the number of CCEs.
  • the set of common PDCCH parameters is the same for the plurality of subbands if the starting index of the CCE is the same for each subband of the plurality of subbands, the aggregation level is the same for each subband of the plurality of subbands, and the payload size is the same for each subband of the plurality of subbands.
  • the BS 105 and the UE 115 may be preconfigured with information indicating that the UE-specific PDCCH parameters are the same for or common to each subband of the plurality of subbands. In some aspects, the BS 105 configures the same UE-specific PDCCH parameters or the set of common PDCCH parameters for the plurality of subbands.
  • the BS 105 may transmit the PDCCH at the same location in the corresponding CORESET. Accordingly, the PDCCH transmission may have the same starting index of the CCE, the same aggregation level, and the same payload size of other PDCCHs in the plurality of subbands.
  • the BS 105 may transmit PDCCH signals to a plurality of UEs (e.g., a UE A and a UE B) using a plurality of subbands.
  • the BS 105 may schedule the UE A for a DL or an UL transmission in the subbands 410 and 412 of carrier A and in the subband 420 of carrier B because the UE A has a large amount of data to transmit or receive.
  • the UE B does not have as much data as the UE A for reception or transmission. Accordingly, the BS 105 may schedule the UE B for a DL or an UL transmission in the two subbands 410 and 420.
  • the BS 105 may transmit to the UE A, PDCCH signals 430, 432, and 434 based on a first set of common PDCCH parameters for a first plurality of subbands (e.g., subbands 410, 412, and 420) .
  • the first set of common PDCCH parameters may be specific to the UE A and applied to the first plurality of subbands.
  • the BS 105 may transmit to the UE B, PDCCH signals 440 and 442 based on a second set of common PDCCH parameters for a second plurality of subbands (e.g., subbands 410 and 420) .
  • the second set of common PDCCH parameters may be specific to the UE B and applied to the second plurality of subbands.
  • the BS 105 may perform LBT in the subband 410. Based on the LBT resulting in a LBT pass, the BS 105 may transmit the PDCCH signal 430 in the subband 410 to the UE A and may transmit the PDCCH signal 440 in the subband 410 to the UE B. The BS 105 transmits the PDCCH signal 430 based on the first set of common PDCCH parameters specific to the UE A and transmits the PDCCH signal 440 based on the second set of common PDCCH parameters specific to the UE B. Additionally or alternatively, the BS 105 may perform LBT in the subband 412.
  • the BS 105 may transmit the PDCCH signal 432 in the subband 412 to the UE A.
  • the BS 105 transmits the PDCCH signal 432 based on the first set of common PDCCH parameters specific to the UE A.
  • the BS 105 may perform LBT in the subband 420.
  • the BS 105 may transmit the PDCCH signal 434 in the subband 420 to the UE A and may transmit the PDCCH signal 442 in the subband 420 to the UE B.
  • the BS 105 transmits the PDCCH signal 434 based on the first set of common PDCCH parameters specific to the UE A and transmits the PDCCH signal 442 based on the second set of common PDCCH parameters specific to the UE B.
  • the UE A may monitor for PDCCH signals in the first plurality of subbands (e.g., subbands 410, 412, and 420) based on the first set of common PDCCH parameters.
  • the UE A may perform blind detection in the subbands 410, 412, and 420, and the UE A may detect a PDCCH signal in any one of the subbands 410, 412, and 420. For example, if the UE A detects the PDCCH signal 430 in the subband 410 based on a blind detection, the UE A may decode the PDCCH signal 430 and determine the first set of common PDCCH parameters for the first plurality of subbands.
  • the UE A may determine the starting index of the CCE, the aggregation level, and the payload size of the PDCCH signal 430 in the subband 410 and determine that these parameters are the same for the other PDCCH signals transmitted in the first plurality of subbands by the BS 105.
  • the UE A may accordingly apply the first set of common PDCCH parameters for the subbands 410, 412, and 420 to detect the PDCCH signals in these subbands.
  • the UE A may monitor for the PDCCH signal 432 in the subband 412 and/or monitor for the PDCCH signal 434 in the subband 420 using the first set of common PDCCH parameters.
  • the UE A may determine the first set of common PDCCH parameters for the other subbands. Accordingly, it may be unnecessary for the UE A to perform blind detection in the subband 412 or the subband 420 after decoding the PDCCH signal 430 in the subband 410 because the UE A may use the first set of PDCCH parameters to monitor for the these PDCCH signals. In this way, the UE 115 may decrease the decoding complexity by reducing the blind detection of PDCCH signals in the plurality of subbands.
  • the UE A was described as detecting the PDCCH signal 430 in the subband 410 before detecting the other PDCCH signals in the subbands 412 and 420, it should be understood that the UE A may detect any of the PDCCH signals in the subband 410, subband 412, or subband 420 and decode the detected PDCCH signal to determine the first set of common PDCCH parameters for the first plurality of subbands.
  • the UE B may monitor for PDCCH signals in the second plurality of subbands (e.g., subbands 410 and 420) based on the second set of common PDCCH parameters.
  • the UE B may perform blind detection in the subbands 410 and 420, and the UE B may detect a PDCCH signal in any one of the subbands 410 and 420. For example, if the UE B detects the PDCCH signal 442 in the subband 420 based on a blind detection, the UE B may decode the PDCCH signal 442 and determine the second set of common PDCCH parameters for the subband 410.
  • the UE B may determine the starting index of the CCE, the aggregation level, and the payload size of the PDCCH signal 442 in the subband 420 and determine that these parameters are the same for the other PDCCH signals transmitted in the second plurality of subbands by the BS 105.
  • the UE B may accordingly apply the second set of common PDCCH parameters for the subbands 410 and 420 to detect the PDCCH signals in these subbands.
  • the UE B may monitor for the PDCCH signal 440 in the subband 410 using the second set of common PDCCH parameters. It may be unnecessary for the UE B to perform blind detection in the subband 410 after decoding the PDCCH signal 442 in the subband 420 because the UE B knows the values of the second set of common PDCCH parameters.
  • FIG. 5 is a block diagram of a BS 500 according to one or more aspects of the present disclosure.
  • the BS 500 may be a BS 105 as discussed above in FIG. 1.
  • the BS 500 may include a processor 502, a memory 504, a CORESET module 508, a PDCCH module 509, a transceiver 510 including a modem subsystem 512 and a radio frequency (RF) unit 514, and one or more antennas 516.
  • RF radio frequency
  • the processor 502 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 502 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 504 may include a cache memory (e.g., a cache memory of the processor 502) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 504 includes a non-transitory computer-readable medium.
  • the memory 504 may store, or have recorded thereon, instructions 506.
  • the instructions 506 may include instructions that, when executed by the processor 502, cause the processor 502 to perform the operations described herein with reference to the BS 105 or BS 500 in connection with aspects of the present disclosure, for example, aspects of FIGs. 1-4, 7, and 8. Instructions 506 may also be referred to as program code.
  • the program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 502) to control or command the wireless communication device to do so.
  • the terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) .
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
  • the BS 500 includes the CORESET module 508, but not the PDCCH module 509. In some aspects, the BS 500 includes the PDCCH module 509, but not the CORESET module 508. In some aspects, the BS 500 includes both the CORESET module 508 and the PDCCH module 509.
  • the CORESET module 508 and/or PDCCH module 509 may be implemented via hardware, software, or combinations thereof.
  • the CORESET module 508 and/or PDCCH module 509 may be implemented as a processor, circuit, and/or instructions 506 stored in the memory 504 and executed by the processor 502. In some instances, CORESET module 508 and/or PDCCH module 509 can be integrated within the modem subsystem 512.
  • the CORESET module 508 and/or PDCCH module 509 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 512.
  • the CORESET module 508 and/or PDCCH module 509 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1-4, 7, and 8.
  • the CORESET module 508 may be configured to transmit to a UE, a common CORESET configuration for a plurality of subbands.
  • the CORESET module 508 may be configured to transmit to the UE, a first PDCCH signal in a first subband of the plurality of subbands based on the common CORESET configuration.
  • the CORESET module 508 may be configured to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • the PDCCH module 509 may be configured to transmit to a UE, a first PDCCH signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands.
  • the PDCCH module 509 may be configured to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • the transceiver 510 may include the modem subsystem 512 and the RF unit 514.
  • the transceiver 510 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or 600, a BS, and/or another core network element.
  • the modem subsystem 512 may be configured to modulate and/or encode data according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • MCS modulation and coding scheme
  • LDPC low-density parity check
  • the RF unit 514 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • modulated/encoded data e.g., grants, resource allocations
  • the RF unit 514 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 510, the modem subsystem 512 and/or the RF unit 514 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
  • the RF unit 514 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 516 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 600 according to some aspects of the present disclosure.
  • the antennas 516 may further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 510.
  • the transceiver 510 may provide the demodulated and decoded data (e.g., subbands, common CORESET configuration, PDCCH signals, or a set of common PDCCH parameters) to the CORESET module 508 or the PDCCH module 509 for processing.
  • the antennas 516 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the transceiver 510 is configured to transmit a common CORESET configuration for a plurality of subbands, transmit a first PDCCH signal in a first subband of the plurality of subbands based on the common CORESET configuration, and/or transmit a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • the transceiver 510 is configured to transmit a first PDCCH signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands and to transmit a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • the BS 500 can include multiple transceivers 510 implementing different RATs (e.g., NR and LTE) .
  • the BS 500 can include a single transceiver 510 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 510 can include various components, where different combinations of components can implement different RATs.
  • FIG. 6 is a block diagram of a UE 600 according to one or more aspects of the present disclosure.
  • the UE 600 may be a UE 115 discussed above in FIG. 1.
  • the UE 600 may include a processor 602, a memory 604, a CORESET module 608, a PDCCH module 609, a transceiver 610 including a modem subsystem 612 and a RF unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
  • the processor 602 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein.
  • the processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, aplurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile memory, or a combination of different types of memory.
  • the memory 604 may include a non-transitory computer-readable medium.
  • the memory 604 may store instructions 606.
  • the instructions 606 may include instructions that, when executed by the processor 602, cause the processor 602 to perform operations described herein, for example, aspects of FIGs. 1-4, 9, and 10. Instructions 606 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 5.
  • the UE 600 includes the CORESET module 608, but not the PDCCH module 609. In some aspects, the UE 600 includes the PDCCH module 609, but not the CORESET module 608. In some aspects, the UE 600 includes both the CORESET module 608 and the PDCCH module 609.
  • the CORESET module 608 and/or PDCCH module 609 may be implemented via hardware, software, or combinations thereof.
  • the CORESET module 608 and/or PDCCH module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602. In some instances, the CORESET module 608 and/or PDCCH module 609 can be integrated within the modem subsystem 612.
  • the CORESET module 608 and/or PDCCH module 609 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 612.
  • the CORESET module 608 and/or PDCCH module 609 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1-4, 9, and 10.
  • the CORESET module 608 may be configured to receive from a BS, a common CORESET configuration for a plurality of subbands.
  • the CORESET module 608 may be configured to monitor for a first PDCCH signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration.
  • the CORESET module 608 may be configured to monitor for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration.
  • the CORESET module 608 may be configured to communicate a communication signal based on detecting the first PDCCH signal.
  • the common CORESET configuration and/or the set of common PDCCH parameters may be in accordance with aspects of FIGs. 1-4, 9, and 10.
  • the transceiver 610 may include the modem subsystem 612 and the RF unit 614.
  • the transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UEs 115 or BSs 105, BS 500.
  • the modem subsystem 612 may be configured to modulate and/or encode the data from the memory 604, the CORESET module 608, and/or the PDCCH module 609 according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc.
  • the RF unit 614 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc.
  • the RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and the RF unit 614 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
  • the RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices.
  • the antennas 616 may further receive data messages transmitted from other devices.
  • the antennas 616 may provide the received data messages for processing and/or demodulation at the transceiver 610.
  • the transceiver 610 may provide the demodulated and decoded data (e.g., subbands, common CORESET configuration, PDCCH signals, or a set of common PDCCH parameters) to the CORESET module 608 or the PDCCH module 609 for processing.
  • the antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
  • the RF unit 614 may configure the antennas 616.
  • the transceiver 610 is configured to receive a common CORESET configuration for a plurality of subbands and communicate a communication signal based on detecting the first PDCCH signal. In some aspects, by coordinating with the PDCCH module 609, the transceiver 610 is configured to receive a set of common PDCCH parameters from a BS.
  • the UE 600 can include multiple transceivers 610 implementing different radio access technologies (RATs) (e.g., NR and LTE) .
  • RATs radio access technologies
  • the UE 600 can include a single transceiver 610 implementing multiple RATs (e.g., NR and LTE) .
  • the transceiver 610 can include various components, where different combinations of components can implement different RATs.
  • FIG. 7 is a flow diagram of a communication method 700 according to one or more aspects of the present disclosure.
  • Blocks of the method 700 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks.
  • a wireless communication device such as the BS 105 and/or BS 500 may utilize one or more components, such as the processor 502, the memory 504, the CORESET module 508, the PDCCH module 509, the transceiver 510, the modem 512, and the one or more antennas 516, to execute the blocks of method 700.
  • the method 700 includes a number of enumerated blocks, but aspects of the method 700 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 700 includes transmitting, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands.
  • the BS may transmit the common CORESET configuration via an RRC message indicating the common CORESET configuration for the plurality of subbands.
  • the method 700 includes transmitting, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration.
  • the common CORESET configuration may include at least one of a number of OFDM symbols in a time domain, a number of PRBs in a frequency domain, or an interleaving pattern.
  • the common CORESET configuration may include the same number of OFDM symbols in the time domain, the same number of PRBs in the frequency domain, and/or the same interleaving pattern for each subband of the plurality of subbands.
  • the method 700 includes transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  • the first subband and the second subband may be are associated with different or the same radio frequency carriers.
  • a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  • a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  • the first PDCCH signal indicates an UL scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband.
  • the BS may receive from the UE, the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  • the first PDCCH signal indicates a DL scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband.
  • the BS may transmit to the UE, the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  • FIG. 8 is a flow diagram of a communication method 800 according to one or more aspects of the present disclosure.
  • Blocks of the method 800 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks.
  • a wireless communication device such as the BS 105 and/or BS 500 may utilize one or more components, such as the processor 502, the memory 504, the CORESET module 508, the PDCCH module 509, the transceiver 510, the modem 512, and the one or more antennas 516, to execute the blocks of method 800.
  • the method 800 includes a number of enumerated blocks, but aspects of the method 800 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 800 includes transmitting, by a base station (BS) to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands.
  • the set of common PDCCH parameters for the plurality of subbands may include at least one of a starting index of a CCE, an aggregation level, or a payload size of the PDCCH signal.
  • the starting index of the CCE, the aggregation level, and/or the payload size may be the same for each subband of the plurality of subbands.
  • the method 800 includes transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  • the BS may schedule the UE for an UL or a DL transmission in the first and the second subbands.
  • FIG. 9 is a flow diagram of a communication method 900 according to one or more aspects of the present disclosure.
  • Blocks of the method 900 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks.
  • a wireless communication device such as the UE 115 or UE 600 may utilize one or more components, such as the processor 602, the memory 604, the CORESET module 608, the PDCCH module 609, the transceiver 610, the modem 612, and the one or more antennas 616, to execute the blocks of method 900.
  • the method 900 includes a number of enumerated blocks, but aspects of the method 900 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 900 includes receiving, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands.
  • the UE may receive the common CORESET configuration via an RRC message indicating the common CORESET configuration for the plurality of subbands.
  • the common CORESET configuration may include at least one of a number of OFDM symbols in a time domain, a number of PRBs in a frequency domain, or an interleaving pattern.
  • the method 900 includes monitoring, by the UE, for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration.
  • the method 900 includes monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration.
  • the first subband and the second subband may be associated with different or the same radio frequency carriers.
  • a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  • a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  • the method 900 includes communicating, by the UE, a communication signal based on detecting the first PDCCH signal.
  • the first PDCCH signal indicates an UL scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband.
  • the UE may communicate the communication signal by transmitting the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  • the first PDCCH signal indicates a DL scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband.
  • the UE may communicate the communication signal by receiving the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  • FIG. 10 is a flow diagram of a communication method 1000 according to one or more aspects of the present disclosure.
  • Blocks of the method 1000 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks.
  • a wireless communication device such as the UE 115 or UE 600 may utilize one or more components, such as the processor 602, the memory 604, the CORESET module 608, the PDCCH module 609, the transceiver 610, the modem 612, and the one or more antennas 616, to execute the blocks of method 1000.
  • the method 1000 includes a number of enumerated blocks, but aspects of the method 1000 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
  • the method 1000 includes monitoring, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands.
  • the UE may monitor for the first PDCCH by performing blind detection in the first subband.
  • PDCCH physical downlink control channel
  • the method 1000 includes detecting, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters.
  • the set of common PDCCH parameters for the plurality of subbands may include at least one of a starting index of a CCE, an aggregation level, or a payload size.
  • the starting index of the CCE may be the same for each subband of the plurality of subbands
  • the aggregation level may be the same for each subband of the plurality of subbands
  • the payload size may be the same for each subband of the plurality of subbands.
  • the method 1000 includes monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. Due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • “or” as used in a list of items indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Wireless communications systems and methods related to communications in a network are provided. A base station (BS) may transmit to a user equipment (UE), a common control resource set (CORESET) configuration for a plurality of subbands. The BS may transmit to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration. Additionally, the BS may transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.

Description

CONTROL RESOURCE SET (CORESET) DESIGN FOR SUBBANDS IN A MULTI-CARRIER SYSTEM TECHNICAL FIELD
This application relates to wireless communication systems, and more particularly to a control resource set (CORESET) design for subbands in a multi-carrier system.
INTRODUCTION
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless multiple-access communications system may include a number of base stations (BSs) , each simultaneously supporting communications for multiple communication devices, which may be otherwise known as user equipment (UE) .
To meet the growing demands for expanded mobile broadband connectivity, wireless communication technologies are advancing from the long term evolution (LTE) technology to a next generation new radio (NR) technology. For example, NR is designed to provide a lower latency, a higher bandwidth or a higher throughput, and a higher reliability than LTE. NR is designed to operate over a wide array of spectrum bands from low-frequency bands below about 1 gigahertz (GHz) and mid-frequency bands from about 1 GHz to about 6 GHz, to high-frequency bands such as millimeter wave (mmWave) bands. NR is also designed to operate across different spectrum types, from licensed spectrum to unlicensed and shared spectrum. Spectrum sharing enables operators to opportunistically aggregate spectrums to dynamically support high-bandwidth services. Spectrum sharing can extend the benefit of NR technologies to operating entities that may not have access to a licensed spectrum.
One approach to avoiding collisions when communicating in a shared spectrum or an unlicensed spectrum is to use a listen-before-talk (LBT) procedure to ensure that the shared channel is clear before transmitting a signal in the shared channel. A transmitting node may listen to the channel to determine whether there are active transmissions in the channel. When the channel is idle, the transmitting node may transmit a preamble to reserve a channel occupancy time (COT) in the shared channel and may communicate with a receiving node during the COT.
BRIEF SUMMARY OF SOME EXAMPLES
The following summarizes some aspects of the present disclosure to provide a basic understanding of the discussed technology. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in summary form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method of wireless communication includes transmitting, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; transmitting, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
In an aspect of the disclosure, a method of wireless communication includes receiving, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; monitoring, by the UE, for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and communicating, by the UE, a communication signal based on detecting the first PDCCH signal.
In an aspect of the disclosure, a method of wireless communication includes transmitting, by a base station (BS) to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
In an aspect of the disclosure, a method of wireless communication includes monitoring, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; detecting, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
In an aspect of the disclosure, an apparatus includes a transceiver configured to: transmit, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; transmit, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
In an aspect of the disclosure, an apparatus includes a transceiver configured to: receive, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; and communicate, by the UE, a communication signal based on detecting a first physical downlink control channel (PDCCH) signal; and a processor configured to: monitor, by the UE, for the first PDCCH signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; and monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration.
In an aspect of the disclosure, an apparatus includes a transceiver configured to: transmit, by a BS to a UE, a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
In an aspect of the disclosure, an apparatus includes a processor configured to: monitor, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; detect, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
In an aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; code for causing the BS to transmit to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
In an aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to receive from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands;  code for causing the UE to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and code for causing the UE to communicate a communication signal based on detecting the first PDCCH signal.
In an aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a base station (BS) to transmit to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
In an aspect of the disclosure, a computer-readable medium having program code recorded thereon, the program code including code for causing a user equipment (UE) to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; code for causing the UE to detect the first PDCCH signal in the first subband using a set of common PDCCH parameters; and code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
In an aspect of the disclosure, an apparatus includes means for transmitting to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands; means for transmitting to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
In an aspect of the disclosure, an apparatus includes means for receiving from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and means for communicating a communication signal based on detecting the first PDCCH signal.
In an aspect of the disclosure, an apparatus includes means for transmitting to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a  plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
In an aspect of the disclosure, an apparatus includes means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands; means for detecting the first PDCCH signal in the first subband using a set of common PDCCH parameters; and means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific aspects of the present disclosure in conjunction with the accompanying figures. While features of the present disclosure may be discussed relative to certain aspects and figures below, all aspects of the present disclosure can include one or more of the advantageous features discussed herein. In other words, while one or more aspects may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various aspects of the disclosure discussed herein. In similar fashion, while some aspects may be discussed below as device, system, or method embodiments it should be understood that such aspects can be implemented in various devices, systems, and methods. Additionally, aspects of the present disclosure may be combined in different combinations, unless specifically stated.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates a wireless communication network according to one or more aspects of the present disclosure.
FIG. 2 is a timing diagram illustrating a transmission frame structure according to one or more aspects of the present disclosure.
FIG. 3 is a diagram illustrating a common control resource set (CORESET) configuration for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
FIG. 4 is a diagram illustrating a set of common physical downlink control channel (PDCCH) parameters for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure.
FIG. 5 is a block diagram of a base station (BS) according to some aspects of the present disclosure.
FIG. 6 is a block diagram of a user equipment (UE) according to some aspects of the present disclosure.
FIG. 7 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
FIG. 8 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
FIG. 9 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
FIG. 10 is a flow diagram of a communication method according to one or more aspects of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form to avoid obscuring such concepts.
This disclosure relates generally to wireless communications systems, also referred to as wireless communications networks. In various embodiments, the techniques and apparatus may be used for wireless communication networks such as code division multiple access (CDMA) networks, time division multiple access (TDMA) networks, frequency division multiple access (FDMA) networks, orthogonal FDMA (OFDMA) networks, single-carrier FDMA (SC-FDMA) networks, LTE networks, Global System for Mobile Communications (GSM) networks, 5 th Generation (5G) or new radio (NR) networks, as well as other communications networks. As described herein, the terms “networks” and “systems” may be used interchangeably.
An OFDMA network may implement a radio technology such as evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11, IEEE 802.16, IEEE 802.20, flash-OFDM and the like. UTRA, E-UTRA, and GSM are part of universal mobile telecommunication system (UMTS) . In particular, long term evolution (LTE) is a release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents provided from an organization named “3rd Generation Partnership Project” (3GPP) , and cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . These  various radio technologies and standards are known or are being developed. For example, the 3rd Generation Partnership Project (3GPP) is a collaboration between groups of telecommunications associations that aims to define a globally applicable third generation (3G) mobile phone specification. 3GPP long term evolution (LTE) is a 3GPP project which was aimed at improving the UMTS mobile phone standard. The 3GPP may define specifications for the next generation of mobile networks, mobile systems, and mobile devices. The present disclosure is concerned with the evolution of wireless technologies from LTE, 4G, 5G, NR, and beyond with shared access to wireless spectrum between networks using a collection of new and different radio access technologies or radio air interfaces.
In particular, 5G networks contemplate diverse deployments, diverse spectrum, and diverse services and devices that may be implemented using an OFDM-based unified, air interface. To achieve these goals, further enhancements to LTE and LTE-Aare considered in addition to development of the new radio technology for 5G NR networks. The 5G NR will be capable of scaling to provide coverage (1) to a massive Internet of things (IoTs) with an Ultra-high density (e.g., ~1M nodes/km 2) , ultra-low complexity (e.g., ~10s of bits/sec) , ultra-low energy (e.g., ~10+years of battery life) , and deep coverage with the capability to reach challenging locations; (2) including mission-critical control with strong security to safeguard sensitive personal, financial, or classified information, ultra-high reliability (e.g., ~99.9999%reliability) , ultra-low latency (e.g., ~ 1 ms) , and users with wide ranges of mobility or lack thereof; and (3) with enhanced mobile broadband including extreme high capacity (e.g., ~ 10 Tbps/km 2) , extreme data rates (e.g., multi-Gbps rate, 100+ Mbps user experienced rates) , and deep awareness with advanced discovery and optimizations.
The 5G NR may be implemented to use optimized OFDM-based waveforms with scalable numerology and transmission time interval (TTI) ; having a common, flexible framework to efficiently multiplex services and features with a dynamic, low-latency time division duplex (TDD) /frequency division duplex (FDD) design; and with advanced wireless technologies, such as massive multiple input, multiple output (MIMO) , robust millimeter wave (mmWave) transmissions, advanced channel coding, and device-centric mobility. Scalability of the numerology in 5G NR, with scaling of subcarrier spacing (SCS) , may efficiently address operating diverse services across diverse spectrum and diverse deployments. For example, in various outdoor and macro coverage deployments of less than 3GHz FDD/TDD implementations, SCS may occur with 15 kHz, for example over 5, 10, 20 MHz, and the like bandwidth (BW) . For other various outdoor and small cell coverage deployments of TDD greater than 3 GHz, SCS may occur with 30 kHz over 80/100 MHz BW. For other various indoor wideband implementations, using a TDD over the unlicensed  portion of the 5 GHz band, the SCS may occur with 60 kHz over a 160 MHz BW. Finally, for various deployments transmitting with mmWave components at a TDD of 28 GHz, the SCS may occur with 120 kHz over a 500 MHz BW.
The scalable numerology of the 5G NR facilitates scalable TTI for diverse latency and quality of service (QoS) requirements. For example, shorter TTI may be used for low latency and high reliability, while longer TTI may be used for higher spectral efficiency. The efficient multiplexing of long and short TTIs to allow transmissions to start on symbol boundaries. 5G NR also contemplates a self-contained integrated subframe design with UL/downlink scheduling information, data, and acknowledgement in the same subframe. The self-contained integrated subframe supports communications in unlicensed or contention-based shared spectrum, adaptive UL/downlink that may be flexibly configured on a per-cell basis to dynamically switch between UL and downlink to meet the current traffic needs.
Various other aspects and features of the disclosure are further described below. It should be apparent that the teachings herein may be embodied in a wide variety of forms and that any specific structure, function, or both being disclosed herein is merely representative and not limiting. Based on the teachings herein one of an ordinary level of skill in the art should appreciate that an aspect disclosed herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects or examples set forth herein. In addition, such an apparatus may be implemented or such a method may be practiced using other structure, functionality, or structure and functionality in addition to or other than one or more of the aspects set forth herein. For example, a method may be implemented as part of a system, device, apparatus, and/or as instructions stored on a computer readable medium for execution on a processor or computer. Furthermore, an aspect may include at least one element of a claim.
One or more CORESETs may be included in a carrier. In a multi-carrier system, a CORESET of each carrier may have a different size or structure in the frequency domain and/or a different number of OFDM symbols in the time domain. A CORESET of each carrier may be configured independently, and accordingly, no relationship between the CORESET designs of the different carriers may exist. Accordingly, to detect a physical downlink control channel (PDCCH) signal, the UE may perform independent blind detection of PDCCH for each carrier. If the UE performs blind detection of PDCCH for each carrier, the decoding complexity may increase. For example, the larger the number of carriers, the higher the decoding complexity.
Additionally, the bandwidth of each carrier may be divided into one or more subbands if the bandwidth of the respective carrier is larger than a threshold (e.g., 20 MHz) . If the bandwidth of a carrier is larger than the threshold, the network may divide the bandwidth into a first subband and a second subband. A transmitting node may listen to a subband to determine whether there are active transmissions in the subband. When the subband is idle, the transmitting node may transmit a preamble to reserve a channel occupancy time (COT) in the shared subband and may communicate with a receiving node during the COT. If a carrier has a bandwidth that is greater than the threshold (e.g., 20 MHz) , the decoding complexity may increase. For example, the transmitting node may perform two LBT procedures, one in the first subband and one in the second subband. It may be desirable to design a CORESET for each subband and UE-specific PDCCH to reduce the decoding complexity of blind detection.
The present application describes mechanisms for reducing decoding complexity of blind detection. In some aspects, a common CORESET configuration may apply to a plurality of subbands. For example, the BS may transmit a first PDCCH signal in a first subband of a plurality of subbands based on the common CORESET configuration and may transmit a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration. The common CORESET configuration may include a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, and/or an interleaving pattern. The UE may monitor for PDCCH signals in the plurality of subbands based on the same CORESET configuration, thereby reducing decoding complexity.
In some aspects, the parameters of UE-specific PDCCH for a plurality of subbands are the same. The UE-specific parameters may also be referred to as a set of common PDCCH parameters. The set of common PDCCH parameters for the plurality of subbands may include a starting index of a control channel element (CCE) , an aggregation level, and/or a payload size. The UE may perform blind detection to detect a PDCCH signal. Once the UE detects a PDCCH signal in a subband of the plurality of subbands, the UE may determine the set of common PDCCH parameters for the other subbands in the plurality of subbands. Accordingly, the UE may monitor for the PDCCH signals in these other subbands based on the set of common PDCCH parameters instead of through blind detection. By reducing the number of instances that the UE performs blind detection, the decoding complexity may be reduced.
FIG. 1 illustrates a wireless communication network 100 according to some aspects of the present disclosure. The network 100 may be a 5G network. The network 100 includes a number of base stations (BSs) 105 (individually labeled as 105a, 105b, 105c, 105d, 105e, and 105f) and other  network entities. A BS 105 may be a station that communicates with UEs 115 and may also be referred to as an evolved node B (eNB) , a next generation eNB (gNB) , an access point, and the like. Each BS 105 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to this particular geographic coverage area of a BS 105 and/or a BS subsystem serving the coverage area, depending on the context in which the term is used.
A BS 105 may provide communication coverage for a macro cell or a small cell, such as a pico cell or a femto cell, and/or other types of cell. A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a pico cell, would generally cover a relatively smaller geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell, such as a femto cell, would also generally cover a relatively small geographic area (e.g., a home) and, in addition to unrestricted access, may also provide restricted access by UEs having an association with the femto cell (e.., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . A BS for a macro cell may be referred to as a macro BS. A BS for a small cell may be referred to as a small cell BS, a pico BS, a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  105d and 105e may be regular macro BSs, while the BSs 105a-105c may be macro BSs enabled with one of three dimension (3D) , full dimension (FD) , or massive MIMO. The BSs 105a-105c may take advantage of their higher dimension MIMO capabilities to exploit 3D beamforming in both elevation and azimuth beamforming to increase coverage and capacity. The BS 105f may be a small cell BS which may be a home node or portable access point. A BS 105 may support one or multiple (e.g., two, three, four, and the like) cells.
The network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
The UEs 115 are dispersed throughout the wireless network 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a wireless local loop (WLL) station, or the like. In one aspect, a UE 115 may be a device that includes a Universal Integrated Circuit Card (UICC) . In another aspect, a UE may be a device that does not include a UICC. In some aspects, the UEs 115 that do not include UICCs may also be referred to as IoT devices or internet of everything (IoE) devices. The  UEs 115a-115d are examples of mobile smart phone-type devices accessing network 100. A UE 115 may also be a machine specifically configured for connected communication, including machine type communication (MTC) , enhanced MTC (eMTC) , narrowband IoT (NB-IoT) and the like. The UEs 115e-115h are examples of various machines configured for communication that access the network 100. The UEs 115i-115k are examples of vehicles equipped with wireless communication devices configured for communication that access the network 100. A UE 115 may be able to communicate with any type of the BSs, whether macro BS, small cell, or the like. In FIG. 1, a lightning bolt (e.g., communication links) indicates wireless transmissions between a UE 115 and a serving BS 105, which is a BS designated to serve the UE 115 on the downlink (DL) and/or uplink (UL) , desired transmission between BSs 105, backhaul transmissions between BSs, or sidelink transmissions between UEs 115.
In operation, the BSs 105a-105c may serve the  UEs  115a and 115b using 3D beamforming and coordinated spatial techniques, such as coordinated multipoint (CoMP) or multi-connectivity. The macro BS 105d may perform backhaul communications with the BSs 105a-105c, as well as small cell, the BS 105f. The macro BS 105d may also transmits multicast services which are subscribed to and received by the  UEs  115c and 115d. Such multicast services may include mobile television or stream video, or may include other services for providing community information, such as weather emergencies or alerts, such as Amber alerts or gray alerts.
The BSs 105 may also communicate with a core network. The core network may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. At least some of the BSs 105 (e.g., which may be an example of a gNB or an access node controller (ANC) ) may interface with the core network through backhaul links (e.g., NG-C, NG-U, etc. ) and may perform radio configuration and scheduling for communication with the UEs 115. In various examples, the BSs 105 may communicate, either directly or indirectly (e.g., through core network) , with each other over backhaul links (e.g., X1, X2, etc. ) , which may be wired or wireless communication links.
The network 100 may also support mission critical communications with ultra-reliable and redundant links for mission critical devices, such as the UE 115e, which may be a drone. Redundant communication links with the UE 115e may include links from the  macro BSs  105d and 105e, as well as links from the small cell BS 105f. Other machine type devices, such as the UE 115f (e.g., a thermometer) , the UE 115g (e.g., smart meter) , and UE 115h (e.g., wearable device) may communicate through the network 100 either directly with BSs, such as the small cell BS 105f, and the macro BS 105e, or in multi-step-size configurations by communicating with another user device which relays its information to the network, such as the UE 115f communicating  temperature measurement information to the smart meter, the UE 115g, which is then reported to the network through the small cell BS 105f. The network 100 may also provide additional network efficiency through dynamic, low-latency TDD/FDD communications, such as vehicle-to-vehicle (V2V) communications among the UEs 115i-115k, vehicle-to-everything (V2X) communications between a  UE  115i, 115j, or 115k and other UEs 115, and/or vehicle-to-infrastructure (V2I) communications between a  UE  115i, 115j, or 115k and a BS 105.
In some implementations, the network 100 utilizes OFDM-based waveforms for communications. An OFDM-based system may partition the system BW into multiple (K) orthogonal subcarriers, which are also commonly referred to as subcarriers, tones, bins, or the like. Each subcarrier may be modulated with data. In some instances, the SCS between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system BW. The system BW may also be partitioned into subbands. In other instances, the SCS and/or the duration of TTIs may be scalable.
In some aspects, the BSs 105 can assign or schedule transmission resources (e.g., in the form of time-frequency resource blocks (RB) ) for DL and UL transmissions in the network 100. DL refers to the transmission direction from a BS 105 to a UE 115, whereas UL refers to the transmission direction from a UE 115 to a BS 105. The communication can be in the form of radio frames. A radio frame may be divided into a plurality of subframes or slots, for example, about 10. Each slot may be further divided into mini-slots. In a FDD mode, simultaneous UL and DL transmissions may occur in different frequency bands. For example, each subframe includes an UL subframe in an UL frequency band and a DL subframe in a DL frequency band. A subframe may also be referred to as a slot. In a TDD mode, UL and DL transmissions occur at different time periods using the same frequency band. For example, a subset of the subframes (e.g., DL subframes) in a radio frame may be used for DL transmissions and another subset of the subframes (e.g., UL subframes) in the radio frame may be used for UL transmissions.
The DL subframes and the UL subframes can be further divided into several regions. For example, each DL or UL subframe may have pre-defined regions for transmissions of reference signals, control information, and data. Reference signals are predetermined signals that facilitate the communications between the BSs 105 and the UEs 115. For example, a reference signal can have a particular pilot pattern or structure, where pilot tones may span across an operational BW or frequency band, each positioned at a pre-defined time and a pre-defined frequency. For example, a BS 105 may transmit cell specific reference signals (CRSs) and/or channel state information –reference signals (CSI-RSs) to enable a UE 115 to estimate a DL channel. Similarly, a UE 115 may transmit sounding reference signals (SRSs) to enable a BS 105 to estimate an UL channel. Control  information may include resource assignments and protocol controls. Data may include protocol data and/or operational data. In some aspects, the BSs 105 and the UEs 115 may communicate using self-contained subframes. A self-contained subframe may include a portion for DL communication and a portion for UL communication. A self-contained subframe can be DL-centric or UL-centric. A DL-centric subframe may include a longer duration for DL communication than for UL communication. An UL-centric subframe may include a longer duration for UL communication than for DL communication.
In some aspects, the network 100 may be an NR network deployed over a licensed spectrum. The BSs 105 can transmit synchronization signals (e.g., including a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) ) in the network 100 to facilitate synchronization. The BSs 105 can broadcast system information associated with the network 100 (e.g., including a master information block (MIB) , remaining system information (RMSI) , and other system information (OSI) ) to facilitate initial network access. In some instances, the BSs 105 may broadcast the PSS, the SSS, and/or the MIB in the form of synchronization signal block (SSBs) over a physical broadcast channel (PBCH) and may broadcast the RMSI and/or the OSI over a physical downlink shared channel (PDSCH) .
In some aspects, a UE 115 attempting to access the network 100 may perform an initial cell search by detecting a PSS from a BS 105. The PSS may enable synchronization of period timing and may indicate a physical layer identity value. The UE 115 may then receive a SSS. The SSS may enable radio frame synchronization, and may provide a cell identity value, which may be combined with the physical layer identity value to identify the cell. The PSS and the SSS may be located in a central portion of a carrier or any suitable frequencies within the carrier.
After receiving the PSS and SSS, the UE 115 may receive a MIB, which may be transmitted in the physical broadcast channel (PBCH) . The MIB may include system information for initial network access and scheduling information for RMSI and/or OSI. After decoding the MIB, the UE 115 may receive RMSI, OSI, and/or one or more system information blocks (SIBs) . The RMSI and/or OSI may include radio resource control (RRC) information related to random access channel (RACH) procedures, paging, control resource set (CORESET) for physical downlink control channel (PDCCH) monitoring, physical UL control channel (PUCCH) , physical UL shared channel (PUSCH) , power control, and SRS.
After obtaining the MIB, the RMSI and/or the OSI, the UE 115 can perform a random access procedure to establish a connection with the BS 105. After establishing a connection, the UE 115 and the BS 105 can enter a normal operation stage, where operational data may be exchanged. For example, the BS 105 may schedule the UE 115 for UL and/or DL communications.  The BS 105 may transmit UL and/or DL scheduling grants to the UE 115 via a PDCCH. The scheduling grants may be transmitted in the form of DL control information (DCI) . The BS 105 may transmit a DL communication signal (e.g., carrying data) to the UE 115 via a PDSCH according to a DL scheduling grant. The UE 115 may transmit an UL communication signal to the BS 105 via a PUSCH and/or PUCCH according to an UL scheduling grant. In some aspects, the BS 105 may communicate with a UE 115 using HARQ techniques to improve communication reliability, for example, to provide a URLLC service.
In some aspects, the network 100 may operate over a shared channel, which may include shared frequency bands or unlicensed frequency bands. For example, the network 100 may be an NR-unlicensed (NR-U) network operating over an unlicensed frequency band. In such an aspect, the BSs 105 and the UEs 115 may be operated by multiple network operating entities.
In some aspects, the network 100 may operate over a system BW or a component carrier (CC) BW. The network 100 may partition the system BW into multiple BWPs (e.g., portions) . A BS 105 may dynamically assign a UE 115 to operate over a certain BWP (e.g., a certain portion of the system BW) . The assigned BWP may be referred to as the active BWP. The UE 115 may monitor the active BWP for signaling information from the BS 105. The BS 105 may schedule the UE 115 for UL or DL communications in the active BWP. In some aspects, a BS 105 may assign a pair of BWPs within the CC to a UE 115 for UL and DL communications. For example, the BWP pair may include one BWP for UL communications and one BWP for DL communications. A BWP may also be referred to as a subband.
FIG. 2 is a timing diagram illustrating a transmission frame structure 200 according to one or more aspects of the present disclosure. The transmission frame structure 200 may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the transmission frame structure 200. In FIG. 2, the x-axes represent time in some arbitrary units, and the y-axes represent frequency in some arbitrary units. The transmission frame structure 200 includes a radio frame 201. The duration of the radio frame 201 may vary depending on some aspects. In an example, the radio frame 201 may have a duration of about ten milliseconds. The radio frame 201 includes M number of slots 202, where M may be any suitable positive integer. In an example, M may be about 10.
Each slot 202 includes a number of subcarriers 204 in frequency and a number of symbols 206 in time. The number of subcarriers 204 and/or the number of symbols 206 in a slot 202 may vary depending on, for example, the channel bandwidth, the subcarrier spacing (SCS) , and/or the cyclic-prefix (CP) mode. One subcarrier 204 in frequency and one symbol 206 in time forms one  resource element (RE) 212 for transmission. A group of four consecutive REs forms a resource element group (REG) , where REs for reference signals are not included in the REG. A resource block (RB) 210 is formed from a number of consecutive subcarriers 204 in frequency and a number of consecutive symbols 206 in time. A resource block group (RBG) may include one or more RBs. A subband may include multiple RBGs.
In an example, a BS (e.g., BS 105 in FIG. 1) may schedule a UE (e.g., UE 115 in FIG. 1) for UL and/or DL communications at a time-granularity of slots 202 or mini-slots 208. Each slot 202 may be time-partitioned into P number of mini-slots 208. Each mini-slot 208 may include one or more symbols 206. The mini-slots 208 in a slot 202 may have variable lengths. For example, when a slot 202 includes N number of symbols 206, a mini-slot 208 may have a length between one symbol 206 and (N-1) symbols 206. In some aspects, a mini-slot 208 may have a length of about two symbols 206, about four symbols 206, or about seven symbols 206. In some examples, the BS may schedule UE at a frequency-granularity of a RB 210 (e.g., including about 12 subcarriers 204) .
PDCCH may be mapped continuously or non-contiguously in frequency with localized or distributed mapping of REGs to a CCE (in the physical domain) . A CORESET is a set of time-frequency resources where PDCCH can be transmitted. The BS may configure a UE with a CORESET for a UE to monitor for PDCCH transmissions from the BS. A PDCCH transmission may occupy part or all of the CORESET frequency location at a defined time instance. The basic unit for a CORESET is a REG. A REG may include, for example, twelve REs by one OFDM symbol. A CORESET may span, for example, multiples of non-contiguous or contiguous groups of six RBs in frequency and between one and three contiguous OFDM symbols in time. In the time domain, a CORESET may be up to three OFDM symbols in duration and located anywhere within a slot (e.g., at a beginning of the slot) . In the frequency domain, a CORESET may be defined in multiples of six RBs up to the system carrier frequency bandwidth or the subband bandwidth (when the system bandwidth is partitioned into subbands) .
The size and location of a CORESET may be semi-statically configured by the network 100 and may be set to be smaller than the subband bandwidth. A CORESET may occur at any position within a slot and anywhere in the frequency range of the subband. A UE is not expected to handle CORESETs outside its active subband. A CORESET may or may not span the entire bandwidth. In a multi-carrier system, rather than applying a different CORESET configuration to a plurality of subbands, it may be desirable to apply a common CORESET configuration for each subband of a plurality of subbands in the multi-carrier system to reduce decoding complexity.
FIG. 3 is a diagram 300 illustrating a common CORESET configuration for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure. The  common CORESET configuration may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the common CORESET configuration. In FIG. 3, the x-axes represent time in some arbitrary units, and the y-axes represent frequency in some arbitrary units.
In FIG. 3, the multi-carrier system includes a carrier A and a carrier B. The carrier A and the carrier B may be radio frequency carriers that are used for carrier aggregation. The BS 105 may communicate a DL communication signal (e.g., PDCCH signal) in a subband 310 or a subband 312 using the carrier A. The carrier A may have a bandwidth that is larger than a threshold (e.g., 20 MHz) , and the network may accordingly divide the bandwidth of carrier A into the subband 310 and the subband 312 in response to a determination that the carrier A has a bandwidth that is larger than the threshold. A bandwidth of the subband 310 may be equal to the threshold, and a bandwidth of the subband 312 may be equal to or less than a difference between the bandwidth of carrier A and the threshold. In some instances, the  subbands  312 and 310 can be spaced apart by a guard band. In some aspects, the  subbands  312 and 310 are associated with LBT, where LBT may be performed in each  subband  312 and 310. Accordingly, the  subbands  312 and 310 may also be referred to as LBT subbands. The BS 105 may perform LBT in the subband 310 before transmission of a PDCCH signal 350 in the subband. Based on the LBT resulting in a LBT pass, the BS 105 may transmit the PDCCH signal 350 over a CORESET 314 that spans a smaller bandwidth than the bandwidth of the subband 310. Additionally or alternatively, the BS 105 may perform LBT in the subband 312, and based on the LBT resulting in a LBT pass, the BS 105 may transmit a PDCCH signal 352 over a CORESET 316 that spans the entire bandwidth of the subband 312.
The BS 105 may communicate a DL communication signal in a subband 320 using the carrier B. The carrier B may have a bandwidth that is equal to the threshold (e.g., 20 MHz) . The BS 105 may perform LBT in the subband 320, and based on the LBT resulting in a LBT pass, the BS 105 may transmit a PDCCH signal 354 over a CORESET 322 that spans a smaller bandwidth than the bandwidth of the subband 320.
Each  subband  310, 312, and 320 has a CORESET having a particular configuration. A CORESET configuration may include a variety of parameters such as, for example, a number of OFDM symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, and/or an interleaving pattern.
A PDCCH transmission (e.g., PDCCH downlink control information (DCI) ) is mapped to a specific CORESET and occupies one, two, four, eight, or sixteen CCEs. For each CORESET, there  is an associated CCE-to-REG mapping, which may be referred to as a REG bundle. A REG bundle is a set of REGs across which a communications device can assume the precoding is constant. One REG bundle is composed of multiple REGs, and the bundle size may be specified by an RRC parameter. The UE 115 may apply a precoder to symbols that are mapped to a plurality of subbands. The CCE-to-REG mapping can be either interleaved or non-interleaved. Interleaving may provide for frequency diversity by using an interleaved mapping, and non-interleaving may provide for facilitation of interference coordination and frequency-selective transmission of control channels.
Consecutive bundles of six REGs may form a CCE, and a CCE may be mapped to REGs with interleaved or non-interleaved REG indices within a CORESET. For a CCE-to-REG mapping for a one-symbol CORESET, the CCE may be mapped to REGs with interleaved or non-interleaved REG indices within a CORESET. In some aspects, if the CCE is mapped to REGs with non-interleaved REG indices within the CORESET, six REGs for a given CCE may be grouped to form a REG bundle and all REGs for a given CCE may be consecutive. Additionally, CCEs of one PDCCH may also be consecutive. If the CCE is mapped to REGs with interleaved REG indices within the CORESET, two or six REGs for a given CCE may be grouped to form a REG bundle and REG bundles are interleaved in the CORESET. For a CCE-to-REG mapping for a two-or three-symbol CORESET, the REG bundle size may be equal to a product of the REGs in the frequency domain and the symbols in the time domain.
For a non-interleaved pattern, the communications device may assume that that the precoding is constant across a whole CCE. In some aspects, for an interleaved pattern, the REG bundle size may be configurable between either six REGs (applicable to all CORESET durations) or two or three (depending on the CORESET duration) . For a duration of one or two OFDM symbols, the bundle size can be two or six, and for a duration of three OFDM symbols, the bundle size can be three or six. In the interleaved case, the REG bundles constituting a CCE are obtained using a block interleaver to spread out the different REG bundles in frequency, thereby obtaining frequency diversity. The number of rows in the block interleaver may be configurable to handle different deployment scenarios.
Each of the  CORESETs  314, 316, and 322 may have the same or a common CORESET configuration. A CORESET configuration may be the same for a plurality of subbands if the CORESET parameters are the same for the plurality of subbands. For example, the CORESET configuration may be the same for the  subbands  310, 312, and 320 if the number of OFDM symbols in the time domain, the number of PRBs in the frequency domain, and the interleaving pattern for the  subbands  310, 312, and 320 are the same. In the frequency domain, the CORESET may be  mirrored from one subband to another. For example, the CORESET parameters other than the starting point in the frequency domain may be the same for each subband. If the subband is less than a threshold (e.g., 20 MHz) , the CORESET may be part of the CORESET in a bandwidth equal to the threshold.
For instance, the carrier A has a bandwidth of about 40 MHz and may be partitioned into two bandwidth portions of 20 MHz, the subband 310 may span the full 20 MHz of the first portion and the subband 312 may span less than 20 MHz of the second portion. Each of the  CORESET  314 and 316 may be located in the same frequency location with respect to a corresponding 20 MHz portion. For instance, the lowest frequency of the CORESET 314 may be offset from a lowest frequency of the first 20 MHz portion by the same amount as the lowest frequency of the CORESET 316 is offset from a lowest frequency of the second 20 MHz portion. When the subband 312 spans a smaller bandwidth than the subband 310, the CORESET 316 may occupy a smaller bandwidth than the CORESET 314. As shown, if a dashed box 330 shown above the CORESET 316 were added to the subband 312, the CORESET within the subband 312 would be the same as the CORESET 314 within the subband 310.
In the example illustrated in FIG. 3, in the time domain, the CORESET 314 and the CORESET 316 of carrier A starts at time T0, and the CORESET 322 of carrier B starts at time T1. Accordingly, a different starting point of the CORESET may be used for carrier A and carrier B. In another example, in the time domain, the  CORESETs  314 and 316 of carrier A and the CORESET 322 of carrier B are the same (e.g., starting at time T0) .
The BS 105 may transmit the common CORESET configuration to the UE 115. The UE 115 may receive the common CORESET configuration for the  subbands  310, 312, and 320 from the BS 105. The UE 115 may monitor for PDCCH signals in each of the  subbands  310, 312, and 320 based on the common CORESET configuration. For example, the UE 115 may monitor for the PDCCH signal 350 in the subband 310 based on the common CORESET configuration, may monitor for the PDCCH signal 352 in the subband 312 based on the common CORESET configuration, and/or may monitor for the PDCCH signal 354 in the subband 320 based on the common CORESET configuration.
In some aspects, the BS 105 transmits to the UE 115, the PDCCH signal 350 in the subband 310 based on the common CORESET configuration and the PDCCH signal 354 in the subband 320 based on the common CORESET configuration. The BS 105 may transmit the PDCCH signal 350 over the CORESET 314 of the carrier A and may transmit the PDCCH signal 354 over the CORESET 322 of the carrier B.
The UE 115 detect the PDCCH signal 350 in the subband 310 and may communicate a communication signal based on detecting the PDCCH signal. In an example, the PDCCH signal 350 indicates an UL scheduling grant for the UE 115 to transmit an UL communication signal (e.g., UL control information or UL data) in a given subband (e.g., the subband 310 or another subband different from the subband 310) . In this example, the UE 115 may communicate the communication signal based on detecting the PDCCH signal by transmitting the UL communication signal in the given subband based on the UL scheduling grant. The BS 105 may receive the UL communication signal in the given subband based on the UL scheduling grant. In another example, the PDCCH signal 350 indicates a DL scheduling grant for the UE 115 to receive a DL communication signal in a given subband (e.g., the subband 310 or another subband different from the subband 310) . In this example, the BS 105 may transmit the DL communication signal in the given subband based on the DL scheduling grant. The UE 115 may communicate the communication signal by receiving the DL communication signal in the given subband based on the DL scheduling grant.
Additionally or alternatively, the BS 105 may transmit the PDCCH signal 352 in the subband 312 based on the common CORESET configuration. The UE 115 may detect the PDCCH signal 352 in the subband 312 based on the common CORESET configuration and communicate a communication signal based on the detected PDCCH signal 352. For example, the PDCCH signal 352 may indicate an UL scheduling grant, and the UE 115 may transmit an UL communication signal to the BS 105 based on the PDCCH signal 352. In another example, the PDCCH signal 352 may indicate a DL scheduling grant, and the UE 115 may receive a DL communication signal from the BS 105 based on the PDCCH signal 352.
As discussed, the BS 105 and the UE 115 may use a common CORESET configuration for a plurality of subbands to reduce the decoding complexity for PDCCH. PDCCH may be mapped to a specific CORESET. With different CORESET configurations, it may be possible for some UEs to obtain the same PDCCH parameters among different subbands. In some aspects, the complexity for decoding the PDCCH may be reduced by allocating a set of common PDCCH parameters for the plurality of subbands. The set of common PDCCH parameters may also be referred to as a set of parameters for UE-specific PDCCH.
FIG. 4 is a diagram 400 illustrating a set of common PDCCH parameters for a plurality of subbands in a multi-carrier system according to one or more aspects of the present disclosure. The set of common PDCCH parameters may be employed by BSs such as the BSs 105 and UEs such as the UEs 115 in a network such as the network 100 for communications. In particular, the BS may communicate with the UE using time-frequency resources configured as shown in the set of  common PDCCH parameters. In FIG. 4, the x-axes represent time in some arbitrary units, and the y-axes represent frequency in some arbitrary units.
In FIG. 4, the multi-carrier system includes a carrier A and a carrier B. The BS 105 may communicate a DL communication signal in a subband 410 or a subband 412 using the carrier A. The carrier A may have a bandwidth that is larger than a threshold (e.g., about 20 MHz) , and the network may accordingly divide the bandwidth of carrier A into the subband 410 and the subband 412. A bandwidth of the subband 410 may be equal to the threshold, and a bandwidth of the subband 412 may be equal to or less than a difference between the bandwidth of carrier A and the threshold. In some instances, the  subbands  312 and 310 can be spaced apart by a guard band.
A set of common PDCCH parameters may be the same for a plurality of subbands. The set of common PDCCH parameters for the plurality of subbands may include a starting index of a control channel element (CCE) , an aggregation level, and a payload size. A CCE is composed of multiple REGs, and the number of REGs within a CCE varies. A CCE is the unit upon which a search space for blind decoding is defined. A CCE may be composed of six REGs, each of which may be equal to one resource block in on OFDM symbol. For example, a BS 105 transmits PDCCH using one, two, four, eight, or sixteen contiguous CCEs with a number known as the aggregation level. A specification that is agreed upon by the BS 105 and the UE 115 may provide a mapping between the aggregation level and the number of CCEs.
The set of common PDCCH parameters is the same for the plurality of subbands if the starting index of the CCE is the same for each subband of the plurality of subbands, the aggregation level is the same for each subband of the plurality of subbands, and the payload size is the same for each subband of the plurality of subbands. The BS 105 and the UE 115 may be preconfigured with information indicating that the UE-specific PDCCH parameters are the same for or common to each subband of the plurality of subbands. In some aspects, the BS 105 configures the same UE-specific PDCCH parameters or the set of common PDCCH parameters for the plurality of subbands. If the BS 105 schedules the UE 115 for the reception of a DL communication signal and/or for the transmission of an UL communication signal, the BS 105 may transmit the PDCCH at the same location in the corresponding CORESET. Accordingly, the PDCCH transmission may have the same starting index of the CCE, the same aggregation level, and the same payload size of other PDCCHs in the plurality of subbands.
The BS 105 may transmit PDCCH signals to a plurality of UEs (e.g., a UE A and a UE B) using a plurality of subbands. The BS 105 may schedule the UE A for a DL or an UL transmission in the  subbands  410 and 412 of carrier A and in the subband 420 of carrier B because the UE A has a large amount of data to transmit or receive. The UE B does not have as much data as the UE A  for reception or transmission. Accordingly, the BS 105 may schedule the UE B for a DL or an UL transmission in the two  subbands  410 and 420.
The BS 105 may transmit to the UE A, PDCCH signals 430, 432, and 434 based on a first set of common PDCCH parameters for a first plurality of subbands (e.g.,  subbands  410, 412, and 420) . The first set of common PDCCH parameters may be specific to the UE A and applied to the first plurality of subbands. Additionally or alternatively, the BS 105 may transmit to the UE B, PDCCH signals 440 and 442 based on a second set of common PDCCH parameters for a second plurality of subbands (e.g., subbands 410 and 420) . The second set of common PDCCH parameters may be specific to the UE B and applied to the second plurality of subbands.
The BS 105 may perform LBT in the subband 410. Based on the LBT resulting in a LBT pass, the BS 105 may transmit the PDCCH signal 430 in the subband 410 to the UE A and may transmit the PDCCH signal 440 in the subband 410 to the UE B. The BS 105 transmits the PDCCH signal 430 based on the first set of common PDCCH parameters specific to the UE A and transmits the PDCCH signal 440 based on the second set of common PDCCH parameters specific to the UE B. Additionally or alternatively, the BS 105 may perform LBT in the subband 412. Based on the LBT resulting in a LBT pass, the BS 105 may transmit the PDCCH signal 432 in the subband 412 to the UE A. The BS 105 transmits the PDCCH signal 432 based on the first set of common PDCCH parameters specific to the UE A. Additionally or alternatively, the BS 105 may perform LBT in the subband 420. Based on the LBT resulting in a LBT pass, the BS 105 may transmit the PDCCH signal 434 in the subband 420 to the UE A and may transmit the PDCCH signal 442 in the subband 420 to the UE B. The BS 105 transmits the PDCCH signal 434 based on the first set of common PDCCH parameters specific to the UE A and transmits the PDCCH signal 442 based on the second set of common PDCCH parameters specific to the UE B.
The UE A may monitor for PDCCH signals in the first plurality of subbands (e.g.,  subbands  410, 412, and 420) based on the first set of common PDCCH parameters. The UE A may perform blind detection in the  subbands  410, 412, and 420, and the UE A may detect a PDCCH signal in any one of the  subbands  410, 412, and 420. For example, if the UE A detects the PDCCH signal 430 in the subband 410 based on a blind detection, the UE A may decode the PDCCH signal 430 and determine the first set of common PDCCH parameters for the first plurality of subbands. For example, based on the decoded PDCCH signal 430, the UE A may determine the starting index of the CCE, the aggregation level, and the payload size of the PDCCH signal 430 in the subband 410 and determine that these parameters are the same for the other PDCCH signals transmitted in the first plurality of subbands by the BS 105. The UE A may accordingly apply the first set of common PDCCH parameters for the  subbands  410, 412, and 420 to detect the PDCCH signals in these  subbands. For example, the UE A may monitor for the PDCCH signal 432 in the subband 412 and/or monitor for the PDCCH signal 434 in the subband 420 using the first set of common PDCCH parameters.
Once the UE A detects a PDCCH signal through blind detection, it is no longer necessary for the UE 115 to perform blind detection for the PDCCH signals in the other subbands because the UE 115 may determine the first set of common PDCCH parameters for the other subbands. Accordingly, it may be unnecessary for the UE A to perform blind detection in the subband 412 or the subband 420 after decoding the PDCCH signal 430 in the subband 410 because the UE A may use the first set of PDCCH parameters to monitor for the these PDCCH signals. In this way, the UE 115 may decrease the decoding complexity by reducing the blind detection of PDCCH signals in the plurality of subbands. Although the UE A was described as detecting the PDCCH signal 430 in the subband 410 before detecting the other PDCCH signals in the  subbands  412 and 420, it should be understood that the UE A may detect any of the PDCCH signals in the subband 410, subband 412, or subband 420 and decode the detected PDCCH signal to determine the first set of common PDCCH parameters for the first plurality of subbands.
The UE B may monitor for PDCCH signals in the second plurality of subbands (e.g., subbands 410 and 420) based on the second set of common PDCCH parameters. The UE B may perform blind detection in the  subbands  410 and 420, and the UE B may detect a PDCCH signal in any one of the  subbands  410 and 420. For example, if the UE B detects the PDCCH signal 442 in the subband 420 based on a blind detection, the UE B may decode the PDCCH signal 442 and determine the second set of common PDCCH parameters for the subband 410. For example, based on the decoded PDCCH signal 442, the UE B may determine the starting index of the CCE, the aggregation level, and the payload size of the PDCCH signal 442 in the subband 420 and determine that these parameters are the same for the other PDCCH signals transmitted in the second plurality of subbands by the BS 105. The UE B may accordingly apply the second set of common PDCCH parameters for the  subbands  410 and 420 to detect the PDCCH signals in these subbands. For example, the UE B may monitor for the PDCCH signal 440 in the subband 410 using the second set of common PDCCH parameters. It may be unnecessary for the UE B to perform blind detection in the subband 410 after decoding the PDCCH signal 442 in the subband 420 because the UE B knows the values of the second set of common PDCCH parameters.
FIG. 5 is a block diagram of a BS 500 according to one or more aspects of the present disclosure. The BS 500 may be a BS 105 as discussed above in FIG. 1. As shown, the BS 500 may include a processor 502, a memory 504, a CORESET module 508, a PDCCH module 509, a transceiver 510 including a modem subsystem 512 and a radio frequency (RF) unit 514, and one or  more antennas 516. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 502 may include a central processing unit (CPU) , a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a controller, a field programmable gate array (FPGA) device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 502 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 504 may include a cache memory (e.g., a cache memory of the processor 502) , random access memory (RAM) , magnetoresistive RAM (MRAM) , read-only memory (ROM) , programmable read-only memory (PROM) , erasable programmable read only memory (EPROM) , electrically erasable programmable read only memory (EEPROM) , flash memory, solid state memory device, hard disk drives, other forms of volatile and non-volatile memory, or a combination of different types of memory. In an aspect, the memory 504 includes a non-transitory computer-readable medium. The memory 504 may store, or have recorded thereon, instructions 506. The instructions 506 may include instructions that, when executed by the processor 502, cause the processor 502 to perform the operations described herein with reference to the BS 105 or BS 500 in connection with aspects of the present disclosure, for example, aspects of FIGs. 1-4, 7, and 8. Instructions 506 may also be referred to as program code. The program code may be for causing a wireless communication device to perform these operations, for example by causing one or more processors (such as processor 502) to control or command the wireless communication device to do so. The terms “instructions” and “code” should be interpreted broadly to include any type of computer-readable statement (s) . For example, the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc. “Instructions” and “code” may include a single computer-readable statement or many computer-readable statements.
In some aspects, the BS 500 includes the CORESET module 508, but not the PDCCH module 509. In some aspects, the BS 500 includes the PDCCH module 509, but not the CORESET module 508. In some aspects, the BS 500 includes both the CORESET module 508 and the PDCCH module 509. The CORESET module 508 and/or PDCCH module 509 may be implemented via hardware, software, or combinations thereof. The CORESET module 508 and/or PDCCH module 509 may be implemented as a processor, circuit, and/or instructions 506 stored in the memory 504 and executed by the processor 502. In some instances, CORESET module 508 and/or PDCCH module 509 can be integrated within the modem subsystem 512. The CORESET  module 508 and/or PDCCH module 509 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 512. The CORESET module 508 and/or PDCCH module 509 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1-4, 7, and 8.
In some aspects, the CORESET module 508 may be configured to transmit to a UE, a common CORESET configuration for a plurality of subbands. The CORESET module 508 may be configured to transmit to the UE, a first PDCCH signal in a first subband of the plurality of subbands based on the common CORESET configuration. The CORESET module 508 may be configured to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
In some aspects, the PDCCH module 509 may be configured to transmit to a UE, a first PDCCH signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands. The PDCCH module 509 may be configured to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
As shown, the transceiver 510 may include the modem subsystem 512 and the RF unit 514. The transceiver 510 can be configured to communicate bi-directionally with other devices, such as the UEs 115 and/or 600, a BS, and/or another core network element. The modem subsystem 512 may be configured to modulate and/or encode data according to a modulation and coding scheme (MCS) , e.g., a low-density parity check (LDPC) coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 514 may be configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data (e.g., grants, resource allocations) from the modem subsystem 512 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or 600. The RF unit 514 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 510, the modem subsystem 512 and/or the RF unit 514 may be separate devices that are coupled together at the BS 105 to enable the BS 105 to communicate with other devices.
The RF unit 514 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 516 for transmission to one or more other devices. This may include, for example, transmission of information to complete attachment to a network and communication with a camped UE 115 or 600 according to some aspects of the present disclosure. The antennas 516 may  further receive data messages transmitted from other devices and provide the received data messages for processing and/or demodulation at the transceiver 510. The transceiver 510 may provide the demodulated and decoded data (e.g., subbands, common CORESET configuration, PDCCH signals, or a set of common PDCCH parameters) to the CORESET module 508 or the PDCCH module 509 for processing. The antennas 516 may include multiple antennas of similar or different designs in order to sustain multiple transmission links.
In some aspects, by coordinating with the CORESET module 508, the transceiver 510 is configured to transmit a common CORESET configuration for a plurality of subbands, transmit a first PDCCH signal in a first subband of the plurality of subbands based on the common CORESET configuration, and/or transmit a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration. In some aspects, by coordinating with the PDCCH module 509, the transceiver 510 is configured to transmit a first PDCCH signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands and to transmit a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
In some aspects, the BS 500 can include multiple transceivers 510 implementing different RATs (e.g., NR and LTE) . In an aspect, the BS 500 can include a single transceiver 510 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 510 can include various components, where different combinations of components can implement different RATs.
FIG. 6 is a block diagram of a UE 600 according to one or more aspects of the present disclosure. The UE 600 may be a UE 115 discussed above in FIG. 1. As shown, the UE 600 may include a processor 602, a memory 604, a CORESET module 608, a PDCCH module 609, a transceiver 610 including a modem subsystem 612 and a RF unit 614, and one or more antennas 616. These elements may be in direct or indirect communication with each other, for example via one or more buses.
The processor 602 may have various features as a specific-type processor. For example, these may include a CPU, a DSP, an ASIC, a controller, a FPGA device, another hardware device, a firmware device, or any combination thereof configured to perform the operations described herein. The processor 602 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, aplurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The memory 604 may include a cache memory (e.g., a cache memory of the processor 602) , RAM, MRAM, ROM, PROM, EPROM, EEPROM, flash memory, a solid state memory device, one or more hard disk drives, memristor-based arrays, other forms of volatile and non-volatile  memory, or a combination of different types of memory. In some aspects, the memory 604 may include a non-transitory computer-readable medium. The memory 604 may store instructions 606. The instructions 606 may include instructions that, when executed by the processor 602, cause the processor 602 to perform operations described herein, for example, aspects of FIGs. 1-4, 9, and 10. Instructions 606 may also be referred to as code, which may be interpreted broadly to include any type of computer-readable statement (s) as discussed above with respect to FIG. 5.
In some aspects, the UE 600 includes the CORESET module 608, but not the PDCCH module 609. In some aspects, the UE 600 includes the PDCCH module 609, but not the CORESET module 608. In some aspects, the UE 600 includes both the CORESET module 608 and the PDCCH module 609. The CORESET module 608 and/or PDCCH module 609 may be implemented via hardware, software, or combinations thereof. The CORESET module 608 and/or PDCCH module 609 may be implemented as a processor, circuit, and/or instructions 606 stored in the memory 604 and executed by the processor 602. In some instances, the CORESET module 608 and/or PDCCH module 609 can be integrated within the modem subsystem 612. The CORESET module 608 and/or PDCCH module 609 can be implemented by a combination of software components (e.g., executed by a DSP or a general processor) and hardware components (e.g., logic gates and circuitry) within the modem subsystem 612. The CORESET module 608 and/or PDCCH module 609 may be used for various aspects of the present disclosure, for example, aspects of FIGs. 1-4, 9, and 10.
In some aspects, the CORESET module 608 may be configured to receive from a BS, a common CORESET configuration for a plurality of subbands. The CORESET module 608 may be configured to monitor for a first PDCCH signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration. The CORESET module 608 may be configured to monitor for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration. The CORESET module 608 may be configured to communicate a communication signal based on detecting the first PDCCH signal. The common CORESET configuration and/or the set of common PDCCH parameters may be in accordance with aspects of FIGs. 1-4, 9, and 10.
As shown, the transceiver 610 may include the modem subsystem 612 and the RF unit 614. The transceiver 610 can be configured to communicate bi-directionally with other devices, such as the UEs 115 or BSs 105, BS 500. The modem subsystem 612 may be configured to modulate and/or encode the data from the memory 604, the CORESET module 608, and/or the PDCCH module 609 according to a MCS, e.g., a LDPC coding scheme, a turbo coding scheme, a convolutional coding scheme, a digital beamforming scheme, etc. The RF unit 614 may be  configured to process (e.g., perform analog to digital conversion or digital to analog conversion, etc. ) modulated/encoded data from the modem subsystem 612 (on outbound transmissions) or of transmissions originating from another source such as a UE 115 or a BS 105, 500. The RF unit 614 may be further configured to perform analog beamforming in conjunction with the digital beamforming. Although shown as integrated together in transceiver 610, the modem subsystem 612 and the RF unit 614 may be separate devices that are coupled together at the UE 115 to enable the UE 115 to communicate with other devices.
The RF unit 614 may provide the modulated and/or processed data, e.g. data packets (or, more generally, data messages that may contain one or more data packets and other information) , to the antennas 616 for transmission to one or more other devices. The antennas 616 may further receive data messages transmitted from other devices. The antennas 616 may provide the received data messages for processing and/or demodulation at the transceiver 610. The transceiver 610 may provide the demodulated and decoded data (e.g., subbands, common CORESET configuration, PDCCH signals, or a set of common PDCCH parameters) to the CORESET module 608 or the PDCCH module 609 for processing. The antennas 616 may include multiple antennas of similar or different designs in order to sustain multiple transmission links. The RF unit 614 may configure the antennas 616.
In some aspects, by coordinating with the CORESET module 608, the transceiver 610 is configured to receive a common CORESET configuration for a plurality of subbands and communicate a communication signal based on detecting the first PDCCH signal. In some aspects, by coordinating with the PDCCH module 609, the transceiver 610 is configured to receive a set of common PDCCH parameters from a BS.
In some aspects, the UE 600 can include multiple transceivers 610 implementing different radio access technologies (RATs) (e.g., NR and LTE) . In an aspect, the UE 600 can include a single transceiver 610 implementing multiple RATs (e.g., NR and LTE) . In an aspect, the transceiver 610 can include various components, where different combinations of components can implement different RATs.
FIG. 7 is a flow diagram of a communication method 700 according to one or more aspects of the present disclosure. Blocks of the method 700 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks. For example, a wireless communication device, such as the BS 105 and/or BS 500 may utilize one or more components, such as the processor 502, the memory 504, the CORESET module 508, the PDCCH module 509, the transceiver 510, the modem 512, and the one or more antennas 516, to execute the blocks of  method 700. As illustrated, the method 700 includes a number of enumerated blocks, but aspects of the method 700 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 710, the method 700 includes transmitting, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands. The BS may transmit the common CORESET configuration via an RRC message indicating the common CORESET configuration for the plurality of subbands.
At block 720, the method 700 includes transmitting, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration. The common CORESET configuration may include at least one of a number of OFDM symbols in a time domain, a number of PRBs in a frequency domain, or an interleaving pattern. The common CORESET configuration may include the same number of OFDM symbols in the time domain, the same number of PRBs in the frequency domain, and/or the same interleaving pattern for each subband of the plurality of subbands.
At block 730, the method 700 includes transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration. The first subband and the second subband may be are associated with different or the same radio frequency carriers. In an example, a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband. In another example, a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
In some aspects, the first PDCCH signal indicates an UL scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband. The BS may receive from the UE, the UL communication signal in the first subband or the second subband based on the UL scheduling grant. In some aspects, the first PDCCH signal indicates a DL scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband. The BS may transmit to the UE, the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
FIG. 8 is a flow diagram of a communication method 800 according to one or more aspects of the present disclosure. Blocks of the method 800 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks. For example, a wireless communication device, such as the BS 105 and/or BS 500 may utilize one or more components,  such as the processor 502, the memory 504, the CORESET module 508, the PDCCH module 509, the transceiver 510, the modem 512, and the one or more antennas 516, to execute the blocks of method 800. As illustrated, the method 800 includes a number of enumerated blocks, but aspects of the method 800 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 810, the method 800 includes transmitting, by a base station (BS) to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands. The set of common PDCCH parameters for the plurality of subbands may include at least one of a starting index of a CCE, an aggregation level, or a payload size of the PDCCH signal. The starting index of the CCE, the aggregation level, and/or the payload size may be the same for each subband of the plurality of subbands.
At block 820, the method 800 includes transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands. The BS may schedule the UE for an UL or a DL transmission in the first and the second subbands.
FIG. 9 is a flow diagram of a communication method 900 according to one or more aspects of the present disclosure. Blocks of the method 900 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks. For example, a wireless communication device, such as the UE 115 or UE 600 may utilize one or more components, such as the processor 602, the memory 604, the CORESET module 608, the PDCCH module 609, the transceiver 610, the modem 612, and the one or more antennas 616, to execute the blocks of method 900. As illustrated, the method 900 includes a number of enumerated blocks, but aspects of the method 900 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 910, the method 900 includes receiving, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands. The UE may receive the common CORESET configuration via an RRC message indicating the common CORESET configuration for the plurality of subbands. The common CORESET configuration may include at least one of a number of OFDM symbols in a time domain, a number of PRBs in a frequency domain, or an interleaving pattern.
At block 920, the method 900 includes monitoring, by the UE, for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration. At block 930, the method 900 includes monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration. The first subband and the second subband may be associated with different or the same radio frequency carriers. In an example, a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband. In another example, a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
At block 940, the method 900 includes communicating, by the UE, a communication signal based on detecting the first PDCCH signal. In some aspects, the first PDCCH signal indicates an UL scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband. The UE may communicate the communication signal by transmitting the UL communication signal in the first subband or the second subband based on the UL scheduling grant. In some aspects, the first PDCCH signal indicates a DL scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband. The UE may communicate the communication signal by receiving the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
FIG. 10 is a flow diagram of a communication method 1000 according to one or more aspects of the present disclosure. Blocks of the method 1000 can be executed by a computing device (e.g., a processor, processing circuit, and/or other suitable component) of a wireless communication device or other suitable means for performing or executing the blocks. For example, a wireless communication device, such as the UE 115 or UE 600 may utilize one or more components, such as the processor 602, the memory 604, the CORESET module 608, the PDCCH module 609, the transceiver 610, the modem 612, and the one or more antennas 616, to execute the blocks of method 1000. As illustrated, the method 1000 includes a number of enumerated blocks, but aspects of the method 1000 may include additional blocks before, after, and in between the enumerated blocks. In some aspects, one or more of the enumerated blocks may be omitted or performed in a different order.
At block 1010, the method 1000 includes monitoring, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands. The UE may monitor for the first PDCCH by performing blind detection in the first subband.
At block 1020, the method 1000 includes detecting, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters. The set of common PDCCH  parameters for the plurality of subbands may include at least one of a starting index of a CCE, an aggregation level, or a payload size. The starting index of the CCE may be the same for each subband of the plurality of subbands, the aggregation level may be the same for each subband of the plurality of subbands, and/or the payload size may be the same for each subband of the plurality of subbands.
At block 1030, the method 1000 includes monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
Information and signals may be represented using any of a variety of different technologies and techniques. In some aspects, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. Due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of [at least one of A, B, or C] means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
As those of some skill in this art will by now appreciate and depending on the particular application at hand, many modifications, substitutions and variations can be made in and to the materials, apparatus, configurations and methods of use of the devices of the present disclosure without departing from the spirit and scope thereof. In light of this, the scope of the present disclosure should not be limited to that of the particular aspects illustrated and described herein, as they are merely by way of some examples thereof, but rather, should be fully commensurate with that of the claims appended hereafter and their functional equivalents.

Claims (53)

  1. A method of wireless communication, comprising:
    transmitting, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands;
    transmitting, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and
    transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  2. The method of claim 1, wherein the first PDCCH signal indicates an uplink (UL) scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband, the method further comprising:
    receiving, by the BS from the UE, the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  3. The method of claim 1, wherein the first PDCCH signal indicates a downlink (DL) scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband, the method further comprising:
    transmitting, by the BS to the UE, the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  4. The method of claim 1, wherein the common CORESET configuration includes at least one of a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, or an interleaving pattern.
  5. The method of claim 4, wherein the common CORESET configuration includes the same number of OFDM symbols in the time domain, the same number of PRBs in the frequency domain, and the same interleaving pattern for each subband of the plurality of subbands.
  6. The method of claim 1, wherein a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  7. The method of claim 6, wherein the first subband and the second subband are associated with different radio frequency carriers.
  8. The method of claim 1, wherein a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  9. The method of claim 8, wherein the first subband and the second subband are associated with different radio frequency carriers.
  10. The method of claim 1, wherein transmitting the common CORESET configuration includes transmitting, by the BS, a radio resource control (RRC) message indicating the common CORESET configuration for the plurality of subbands.
  11. A method of wireless communication, comprising:
    receiving, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands;
    monitoring, by the UE, for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration;
    monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and
    communicating, by the UE, a communication signal based on detecting the first PDCCH signal.
  12. The method of claim 11, wherein the first PDCCH signal indicates an uplink (UL) scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband, and wherein communicating the communication signal includes transmitting the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  13. The method of claim 11, wherein the first PDCCH signal indicates a downlink (DL) scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband, and wherein communicating the communication signal includes receiving the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  14. The method of claim 11, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  15. The method of claim 11, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  16. The method of claim 11, wherein the common CORESET configuration includes at least one of a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, or an interleaving pattern.
  17. The method of claim 11, wherein receiving the common CORESET configuration includes receiving, by the UE, a radio resource control (RRC) message indicating the common CORESET configuration for the plurality of subbands.
  18. A method of wireless communication, comprising:
    transmitting, by a base station (BS) to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and
    transmitting, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  19. The method of claim 18, wherein the set of common PDCCH parameters for the plurality of subbands includes at least one of a starting index of a control channel element (CCE) , an aggregation level, or a payload size.
  20. The method of claim 19, wherein the starting index of the CCE, the aggregation level, and the payload size is the same for each subband of the plurality of subbands.
  21. The method of claim 18, further comprising:
    scheduling, by the BS, the UE for a downlink (DL) transmission in the first and second subbands.
  22. A method of wireless communication, comprising:
    monitoring, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands;
    detecting, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and
    monitoring, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  23. The method of claim 22, wherein the set of common PDCCH parameters for the plurality of subbands includes at least one of a starting index of a control channel element (CCE) , an aggregation level, or a payload size.
  24. The method of claim 23, wherein the starting index of the CCE is the same for each subband of the plurality of subbands.
  25. The method of claim 23, wherein the aggregation level is the same for each subband of the plurality of subbands.
  26. The method of claim 23, wherein the payload size is the same for each subband of the plurality of subbands.
  27. The method of claim 22, wherein monitoring for the first PDCCH includes performing blind detection in the first subband.
  28. An apparatus, comprising:
    a transceiver configured to:
    transmit, by a base station (BS) to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands;
    transmit, by the BS to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and
    transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  29. The apparatus of claim 28, wherein the first PDCCH signal indicates an uplink (UL) scheduling grant for the UE to transmit an UL communication signal in the first subband or the second subband, and
    wherein the transceiver is configured to receive, by the BS from the UE, the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  30. The apparatus of claim 28, wherein the first PDCCH signal indicates a downlink (DL) scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband, and
    wherein the transceiver is configured to transmit, by the BS to the UE, the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  31. The apparatus of claim 28, wherein the common CORESET configuration includes at least one of a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, or an interleaving pattern.
  32. The apparatus of claim 31, wherein the common CORESET configuration includes the same number of OFDM symbols in the time domain, the same number of PRBs in the frequency domain, and the same interleaving pattern for each subband of the plurality of subbands.
  33. The apparatus of claim 28, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  34. The apparatus of claim 28, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  35. An apparatus, comprising:
    a transceiver configured to:
    receive, by a user equipment (UE) from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands; and
    communicate, by the UE, a communication signal based on detecting a first physical downlink control channel (PDCCH) signal; and
    a processor configured to:
    monitor, by the UE, for the first PDCCH signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration; and
    monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration.
  36. The apparatus of claim 35, wherein the first PDCCH signal indicates an uplink (UL) scheduling grant for the UE to transmit an UL communication signal in the first subband  or the second subband, and wherein the transceiver is configured to transmit the UL communication signal in the first subband or the second subband based on the UL scheduling grant.
  37. The apparatus of claim 35, wherein the first PDCCH signal indicates a downlink (DL) scheduling grant for the UE to receive a DL communication signal in the first subband or the second subband, and wherein the transceiver is configured to receive the DL communication signal in the first subband or the second subband based on the DL scheduling grant.
  38. The apparatus of claim 35, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is different from a starting time of a CORESET in the second subband.
  39. The apparatus of claim 35, wherein the first subband and the second subband are associated with different radio frequency carriers, and wherein a starting time of a CORESET in the first subband is the same as a starting time of a CORESET in the second subband.
  40. The apparatus of claim 35, wherein the common CORESET configuration includes at least one of a number of orthogonal frequency division multiple access (OFDM) symbols in a time domain, a number of physical resource blocks (PRBs) in a frequency domain, or an interleaving pattern.
  41. An apparatus, comprising:
    a transceiver configured to:
    transmit, by a BS to a UE, a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and
    transmit, by the BS to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  42. The apparatus of claim 41, wherein the set of common PDCCH parameters for the plurality of subbands includes at least one of a starting index of a control channel element (CCE) , an aggregation level, or a payload size, and wherein the starting index of  the CCE, the aggregation level, or the payload size is the same for each subband of the plurality of subbands.
  43. An apparatus, comprising:
    a processor configured to:
    monitor, by a user equipment (UE) , for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands;
    detect, by the UE, the first PDCCH signal in the first subband using a set of common PDCCH parameters; and
    monitor, by the UE, for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  44. The apparatus of claim 43, wherein the set of common PDCCH parameters for the plurality of subbands includes at least one of a starting index of a control channel element (CCE) , an aggregation level, or a payload size, and wherein the starting index of the CCE is the same for each subband of the plurality of subbands, the aggregation level is the same for each subband of the plurality of subbands, or the payload size is the same for each subband of the plurality of subbands.
  45. The apparatus of claim 43, wherein the processor is configured to perform blind detection in the first subband.
  46. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a base station (BS) to transmit to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands;
    code for causing the BS to transmit to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and
    code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  47. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to receive from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands;
    code for causing the UE to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration;
    code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and
    code for causing the UE to communicate a communication signal based on detecting the first PDCCH signal.
  48. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a base station (BS) to transmit to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and
    code for causing the BS to transmit to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  49. A computer-readable medium having program code recorded thereon, the program code comprising:
    code for causing a user equipment (UE) to monitor for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands;
    code for causing the UE to detect the first PDCCH signal in the first subband using a set of common PDCCH parameters; and
    code for causing the UE to monitor for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
  50. An apparatus, comprising:
    means for transmitting to a user equipment (UE) , a common control resource set (CORESET) configuration for a plurality of subbands;
    means for transmitting to the UE, a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands based on the common CORESET configuration; and
    means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the common CORESET configuration.
  51. An apparatus, comprising:
    means for receiving from a base station (BS) , a common control resource set (CORESET) configuration for a plurality of subbands;
    means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of the plurality of subbands from the BS based on the common CORESET configuration;
    means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands from the BS based on the common CORESET configuration; and
    means for communicating a communication signal based on detecting the first PDCCH signal.
  52. An apparatus, comprising:
    means for transmitting to a user equipment (UE) , a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands based on a set of common PDCCH parameters for the plurality of subbands; and
    means for transmitting to the UE, a second PDCCH signal in a second subband of the plurality of subbands based on the set of common PDCCH parameters for the plurality of subbands.
  53. An apparatus, comprising:
    means for monitoring for a first physical downlink control channel (PDCCH) signal in a first subband of a plurality of subbands;
    means for detecting the first PDCCH signal in the first subband using a set of common PDCCH parameters; and
    means for monitoring for a second PDCCH signal in a second subband of the plurality of subbands using the set of common PDCCH parameters.
PCT/CN2019/123238 2019-12-05 2019-12-05 Control resource set (coreset) design for subbands in a multi-carrier system WO2021109060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123238 WO2021109060A1 (en) 2019-12-05 2019-12-05 Control resource set (coreset) design for subbands in a multi-carrier system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123238 WO2021109060A1 (en) 2019-12-05 2019-12-05 Control resource set (coreset) design for subbands in a multi-carrier system

Publications (1)

Publication Number Publication Date
WO2021109060A1 true WO2021109060A1 (en) 2021-06-10

Family

ID=76221404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123238 WO2021109060A1 (en) 2019-12-05 2019-12-05 Control resource set (coreset) design for subbands in a multi-carrier system

Country Status (1)

Country Link
WO (1) WO2021109060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011480A1 (en) * 2022-07-14 2024-01-18 Qualcomm Incorporated Control resource set determination for enhanced reduced-capability user equipments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392112A (en) * 2017-08-09 2019-02-26 电信科学技术研究院 A kind of transmission method and equipment of down control channel
CN109644452A (en) * 2017-06-23 2019-04-16 联发科技股份有限公司 It is used for the method and apparatus of random access channel program in a wireless communication system
CN109691207A (en) * 2017-09-15 2019-04-26 Oppo广东移动通信有限公司 Method, terminal device and the network equipment of resource distribution
CN109699054A (en) * 2017-10-24 2019-04-30 华为技术有限公司 A kind of method, terminal device and network equipment detecting Downlink Control Information
US20190132109A1 (en) * 2017-10-26 2019-05-02 Hua Zhou Activation and Deactivation of Bandwidth Part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644452A (en) * 2017-06-23 2019-04-16 联发科技股份有限公司 It is used for the method and apparatus of random access channel program in a wireless communication system
CN109392112A (en) * 2017-08-09 2019-02-26 电信科学技术研究院 A kind of transmission method and equipment of down control channel
CN109691207A (en) * 2017-09-15 2019-04-26 Oppo广东移动通信有限公司 Method, terminal device and the network equipment of resource distribution
CN109699054A (en) * 2017-10-24 2019-04-30 华为技术有限公司 A kind of method, terminal device and network equipment detecting Downlink Control Information
US20190132109A1 (en) * 2017-10-26 2019-05-02 Hua Zhou Activation and Deactivation of Bandwidth Part

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO ET AL.: "Wideband operation for NR-U", 3GPP TSG RAN WG1 #97 R1-1906284, 17 May 2019 (2019-05-17), XP051708321 *
XIAOMI: "Discussion on the wideband operation for NR-U", 3GPP TSG RAN WG1 #97 R1-1906638, 17 May 2019 (2019-05-17), XP051708674 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011480A1 (en) * 2022-07-14 2024-01-18 Qualcomm Incorporated Control resource set determination for enhanced reduced-capability user equipments

Similar Documents

Publication Publication Date Title
US11678367B2 (en) Bandwidth part (BWP) configuration for subband access in new radio-unlicensed (NR-U)
US11271701B2 (en) Physical downlink control channel (PDCCH) monitoring with overlapping resources
US11770851B2 (en) Synchronized spectrum sharing across multiple adjacent carriers
US10897764B2 (en) Radio-unlicensed (NR-U) interlace-based resource allocations
EP3858025B1 (en) Narrowband user equipment (ue) support with multi-channel listen-before-talk (lbt)
US11582781B2 (en) SPS support for multi-TRP
US20210266831A1 (en) Update of physical downlink control channel (pdcch) parameters
US11595983B2 (en) Application of an uplink (UL) cancellation indication in a wireless communications network
US11895699B2 (en) Listen-before-talk (LBT) type and gap signaling for back-to-back grants and multi-transmission time interval (multi-TTI) grants
US11696315B2 (en) Uplink cancellation indication configuration for wireless communications network
US20210143954A1 (en) Qcl determination for a-csi-rs in full duplex systems
EP4173217A1 (en) Techniques for pdcch monitoring aggregation
WO2022072248A1 (en) Control channel decoding configurations for cross-carrier scheduling
WO2021138796A1 (en) Downlink control information size and buffering limits for combination dci
US20220240271A1 (en) Control of scheduling duty cycle
WO2021109060A1 (en) Control resource set (coreset) design for subbands in a multi-carrier system
WO2021212300A1 (en) Sharing of initial signals among user equipment devices with different bandwidths in new radio (nr) light
WO2021146986A1 (en) Downlink control information (dci) transmission in multiple listen-before-talk (lbt) bandwidths
US20230189159A1 (en) Power control parameter configurations for physical uplink shared channels in the presence of spatial division multiplexing
US20230007632A1 (en) Configuring a search space set for downlink control information
WO2023075989A1 (en) Multiplexing sidelink synchronization signal blocks and channel state information reference signals
EP4059299A1 (en) Transmission of uplink control information (uci) based on priority rules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954751

Country of ref document: EP

Kind code of ref document: A1