WO2021212277A1 - 双频双极化天线 - Google Patents

双频双极化天线 Download PDF

Info

Publication number
WO2021212277A1
WO2021212277A1 PCT/CN2020/085638 CN2020085638W WO2021212277A1 WO 2021212277 A1 WO2021212277 A1 WO 2021212277A1 CN 2020085638 W CN2020085638 W CN 2020085638W WO 2021212277 A1 WO2021212277 A1 WO 2021212277A1
Authority
WO
WIPO (PCT)
Prior art keywords
dual
frequency
radiator
substrate
polarization unit
Prior art date
Application number
PCT/CN2020/085638
Other languages
English (en)
French (fr)
Inventor
吕超
马超
房牧
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/085638 priority Critical patent/WO2021212277A1/zh
Priority to CN202080026539.8A priority patent/CN113826281A/zh
Publication of WO2021212277A1 publication Critical patent/WO2021212277A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the embodiment of the application provides a dual-frequency dual-polarization antenna, including: a horizontal polarization unit, a vertical polarization unit, a partition plate, a floor, a first coaxial feeder and a second coaxial feeder; a horizontal polarization unit It includes a first substrate arranged horizontally, and a first radiator is provided in the first substrate; a vertical polarization unit includes two second substrates arranged vertically in a cross shape, and each second substrate is provided with a second radiator; The plate is arranged between the horizontal polarization unit and the vertical polarization unit, the bottom surface of the partition plate is provided with a metal sheet, and the metal sheet is connected with each second radiator.
  • the first coaxial feeder is connected with the floor and the horizontal polarization unit; the second coaxial feeder is connected with the floor and the vertical polarization unit.
  • the first radiator is formed by connecting multiple F-shaped components; the F-shaped components include high-frequency stubs, low-frequency stubs, and connectors; the connectors are electrically connected to the high-frequency stubs and low-frequency stubs, respectively, And the high frequency stub and the low frequency stub are located on the same side of the connector.
  • the connecting piece is in a gradual form, gradually narrowing from one end to the other end; the narrower end of the connecting piece is electrically connected to one end of the low-frequency stub; the wider end of the connecting piece is located in the center of the first radiator, In addition, the wider ends of the connecting pieces in the F-shaped parts in the first radiator are electrically connected to each other.
  • the first radiator is formed by connecting four F-shaped parts.
  • the second radiator includes an inverted cone component, an L-shaped high-frequency stub, and an L-shaped low-frequency stub; the L-shaped high-frequency stub is electrically connected to one end of the inverted cone component, and the L-shaped low-frequency stub is electrically connected to the inverted cone. The other end of the tapered part is electrically connected.
  • the partition plate is provided with a through hole; the first coaxial feed line passes through the through hole and is connected to the floor and the horizontal polarization unit.
  • the partition plate is a circular substrate or a rectangular substrate.
  • the first coaxial feeder includes an inner core wire and an outer layer; the outer layer of the first coaxial feeder is electrically connected to the floor; the inner core wire of the first coaxial feeder is electrically connected to the first radiator .
  • the second coaxial feeder includes an inner core wire and an outer layer; the outer layer of the second coaxial feeder is electrically connected to the floor; the inner core wire of the second coaxial feeder is electrically connected to the second radiator .
  • the height of the dual-frequency dual-polarized antenna is 0.16 times the wavelength of the low-frequency band
  • the width of the dual-frequency dual-polarized antenna is 0.25 times the wavelength of the low-frequency band.
  • the floor is connected with the horizontal polarization unit, so that the second coaxial feeder is connected with the floor and the vertical polarization unit, thereby providing a small dual-frequency dipole antenna with a simple structure, which reduces the radiation performance
  • the antenna size meets the design requirements of miniaturized smart devices.
  • Figure 2 is a front view of a dual-frequency dual-polarized antenna according to the present application.
  • Figure 3 is an exploded view of the dual-frequency dual-polarized antenna according to the present application.
  • Fig. 4 is an enlarged view of the first substrate according to the present application.
  • Fig. 5 is an enlarged view of the second radiator according to the present application.
  • Fig. 1 shows a schematic structural diagram of a dual-frequency dipole antenna according to an embodiment of the present application.
  • Fig. 2 shows a front view of the dual-frequency dipole antenna of this embodiment.
  • Fig. 3 shows an exploded view of the dual-frequency dual-polarized antenna of this embodiment.
  • the dual-frequency dipole antenna includes a horizontal polarization unit 1, a vertical polarization unit 2, a partition plate 3, a floor 4, a first coaxial feeder 5 and a second same Axis feeder 6.
  • the horizontal polarization unit 1 includes a first substrate arranged horizontally.
  • the first radiator 11 may be provided in the first substrate.
  • the first radiator 11 can receive dual-band horizontally polarized waves.
  • Horizontally polarized waves are radio waves whose electric field direction is parallel to the ground.
  • the vertical polarization unit 2 includes two second substrates vertically arranged in a cross shape, and each second substrate is provided with a second radiator 21.
  • the second radiator 21 can also receive dual-band vertically polarized waves.
  • Vertically polarized waves are radio waves whose electric field direction is perpendicular to the ground.
  • the dual frequency band can be either WiFi dual frequency, GSM (Global System for Mobile Communications, Global System for Mobile Communications) dual frequency or CDMA (Code Division Multiple Access, Code Division Multiple Access) dual frequency to meet Requirements for the use of wireless communication equipment.
  • the dual frequency band as the WiFi dual frequency as an example, the two frequency bands can be the 2.4 GHz frequency band and the 5 GHz frequency band respectively. This embodiment does not limit the specific value of the frequency band.
  • the partition plate 3 is arranged between the horizontal polarization unit 1 and the vertical polarization unit 2.
  • the bottom surface of the partition plate 3 is provided with a metal sheet, and the metal sheet is connected with each second radiator. Isolating the horizontal polarization unit 1 and the vertical polarization unit 2 by the partition plate 3 helps to reduce the antenna size while ensuring the antenna radiation performance.
  • the partition plate can also be a substrate, and the metal sheet can be arranged on the bottom surface of the substrate.
  • the embodiment of the present application does not limit the shape of the substrate. For example, it may be set as a rectangular substrate, or may be set as a circular substrate.
  • the coaxial feeder has a wide operating frequency range, low loss, and has a certain shielding effect on electrostatic coupling.
  • the requirements for miniaturization of the antenna are relatively high.
  • antenna characteristics are limited by physical size, and miniaturization often leads to loss of radiation characteristics.
  • the first radiator for receiving dual-band horizontally polarized waves is provided in the horizontal polarization unit
  • the vertical polarization unit is provided for receiving dual
  • the second radiator of the vertically polarized wave of the frequency band, and the partition plate is set between the horizontally polarized unit and the vertically polarized unit, so as to ensure the radiation performance while reducing the antenna size, which satisfies the requirements of miniaturized smart devices. Design requirements.
  • the first substrate may have a first surface and a second surface that are arranged opposite to each other.
  • the first radiator 11 is respectively provided in the first surface and the second surface of the first substrate.
  • Fig. 4 shows an enlarged view of the first substrate. As shown in Fig. 4, the first radiator 11 in the first side and the first radiator 11 in the second side can be arranged in opposite directions, so that radio waves can be received at multiple angles, which helps to improve the omnidirectional performance of the antenna .
  • each first radiator 11 may be formed by connecting multiple F-shaped components.
  • Each F-shaped component includes a high-frequency stub 111, a low-frequency stub 112, and a connector 113.
  • the connector 113 is electrically connected to the high-frequency stub 111 and the low-frequency stub 112, respectively, and the high-frequency stub 111 and the low-frequency stub 112 are located on the same side of the above-mentioned connector.
  • the low-frequency stub 112 in the F-type component may be longer than the high-frequency stub 111.
  • each first radiator is not limited to being formed by connecting four F-shaped parts, and may also be formed by connecting other numbers of F-shaped parts.
  • the connecting piece 113 in each F-shaped component may be in a gradual form, gradually narrowing from one end to the other end. So it can play a role in adjusting impedance.
  • the narrower end of the connecting member 113 can be electrically connected to one end of the low-frequency stub 112.
  • the wider end of the connecting member 113 may be located at the center of the first radiator, and the wider ends of the connecting members in the F-shaped parts in the first radiator may be electrically connected to each other.
  • the first radiator 11 is not limited to being composed of multiple F-shaped components, and may also be composed of other components capable of receiving dual-band horizontally polarized waves.
  • each second substrate in the vertical polarization unit may have a first surface and a second surface that are arranged oppositely.
  • the second radiator 21 is respectively provided in the first surface and the second surface of the second substrate.
  • the second radiator in the first surface of the second substrate and the second radiator in the second surface of the second substrate may also be arranged in opposite directions.
  • the L-shaped high frequency band stub 212 is electrically connected to one end of the inverted cone member 211, and the L-shaped low frequency band stub 213 is electrically connected to the other end of the inverted cone member 211.
  • the first coaxial feeder 5 includes an inner core wire and an outer layer.
  • the outer layer of the first coaxial feeder 5 can be electrically connected to the floor 4; the inner core wire of the first coaxial feeder 5 can be electrically connected to the first radiator 11.
  • the second coaxial feeder 6 includes an inner core wire and an outer layer.
  • the outer layer of the second coaxial feeder 6 can be electrically connected to the floor 4.
  • the inner core wire of the second coaxial feed line 6 may be electrically connected to the second radiator 21.
  • the height of the dual-frequency dual-polarized antenna is 0.16 times the wavelength of the low frequency band
  • the width of the dual-frequency dual-polarized antenna (not to the floor) is 0.25 times the wavelength of the low frequency band.
  • the requirements for miniaturization of the antenna are relatively high.
  • antenna characteristics are limited by physical size, and miniaturization often leads to loss of radiation characteristics.
  • the first radiator for receiving dual-band horizontally polarized waves is provided in the horizontal polarization unit
  • the vertical polarization unit is provided for receiving dual
  • the second radiator of the vertically polarized wave of the frequency band, and the partition plate is set between the horizontally polarized unit and the vertically polarized unit, so as to ensure the radiation performance while reducing the antenna size, which satisfies the requirements of miniaturized smart devices. Design requirements.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了双频双极子天线。包括水平极化单元、垂直极化单元、分隔板、地板、第一同轴馈线和第二同轴馈线。所述水平极化单元包括水平布置的第一基板,所述第一基板中设置有第一辐射体;所述垂直极化单元包括两个呈十字型垂直布置的第二基板,各第二基板中设置有第二辐射体;所述分隔板布置于水平极化单元与所述垂直极化单元之间,所述分隔板的底面设置有金属片,所述金属片与各第二辐射体相连接。所述第一同轴馈线与所述地板和所述水平极化单元相连接;所述第二同轴馈线与所述地板和所述垂直极化单元相连接。该实现方式提供了一种结构简单的小型双频双极子天线,在保证了辐射性能的同时降低了天线尺寸,满足了小型化智能设备的设计需求。

Description

双频双极化天线 技术领域
本申请实施例涉及通信领域,具体涉及双频双极化天线。
背景技术
在智能设备中,天线是重要的空口能量传输器件。在大多数网络中,智能设备中所安装的天线需要具备尽可能大的信号覆盖面,以保证在相互通信的过程中能够实时的连接。对于电磁环境日趋复杂智能设备,通常需要对天线进行双频双极化设计,才能保证良好的信号接收能力。
由于智能设备的结构尺寸趋向小型化,对天线的小型化要求比较高。但是天线特性受限于物理尺寸,往往小型化会带来辐射特性的损失。因此,既要使双频双极化天线小型化,同时要保证辐射性能,对天线的设计挑战比较大。普通的双频双极化天线结构高度较高,占据空间大,因而无法满足小型化智能设备的设计需求。
发明内容
本申请实施例提出了双频双极化天线,以解决现有技术中双频双极化天线无法在保证辐射性能的同时满足小型化智能设备的设计需求的技术问题。
本申请实施例提供了一种双频双极化天线,包括:包括水平极化单元、垂直极化单元、分隔板、地板、第一同轴馈线和第二同轴馈线;水平极化单元包括水平布置的第一基板,第一基板中设置有第一辐射体;垂直极化单元包括两个呈十字型垂直布置的第二基板,各第二基板中设置有第二辐射体;分隔板布置于水平极化单元与垂直极化单元之间,分隔板的底面设置有金属片,金属片与各第二辐射体相连接。第一同轴馈线与地板和水平极化单元相连接;第二同轴馈线与地板和垂直极化单元相连接。
在一些实施例中,第一基板具有相对设置的第一面和第二面;第一基板的第一面和第二面中分别设置有第一辐射体;第一基板的第一面中 的第一辐射体与第一基板的第二面中的第一辐射体反向布置。
在一些实施例中,第一辐射体由多个F型部件连接而成;F型部件包括高频段枝节、低频段枝节和连接件;连接件分别与高频段枝节和低频段枝节电连接,且高频段枝节和低频段枝节位于连接件的同一侧。
在一些实施例中,连接件呈渐变形式,由一端至另一端逐渐变窄;连接件的较窄一端与低频段枝节的一端电连接;连接件的较宽一端位于第一辐射体的中心,且第一辐射体中各F型部件中的连接件的较宽一端相互电连接。
在一些实施例中,F型部件中的低频段枝节长于高频段枝节。
在一些实施例中,第一辐射体由四个F型部件连接而成。
在一些实施例中,第二基板具有相对设置的第一面和第二面;第二基板的第一面和第二面中分别设置有第二辐射体;第二基板的第一面中的第二辐射体与第二基板的第二面中的第二辐射体反向布置。
在一些实施例中,第二辐射体包括倒锥形部件、L型高频段枝节和L型低频段枝节;L型高频段枝节与倒锥形部件的一端电连接,L型低频段枝节与倒锥形部件的另一端电连接。
在一些实施例中,分隔板开设有通孔;第一同轴馈线穿过通孔,与地板和水平极化单元相连接。
在一些实施例中,分隔板为圆形基板或矩形基板。
在一些实施例中,第一同轴馈线包括内层芯线和外层;第一同轴馈线的外层与地板电连接;第一同轴馈线的内层芯线与第一辐射体电连接。
在一些实施例中,第二同轴馈线包括内层芯线和外层;第二同轴馈线的外层与地板电连接;第二同轴馈线的内层芯线与第二辐射体电连接。
在一些实施例中,双频双极化天线高度为低频段波长的0.16倍,双频双极化天线宽度为低频段波长的0.25倍。
本申请实施例提供的双频双极化天线,通过在水平极化单元中水平布置的第一基板中设置第一辐射体,在垂直极化单元中两个呈十字型垂直布置的第二基板中设置第二辐射体,在水平极化单元与垂直极化单元之间布置分隔板,并使设置于分隔板底面的金属片与第二辐射体相连接,使第一同轴馈线与地板和水平极化单元相连接,使第二同轴馈线与地板 和垂直极化单元相连接,从而提供了一种结构简单的小型双频双极子天线,在保证了辐射性能的同时降低了天线尺寸,满足了小型化智能设备的设计需求。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是根据本申请的双频双极化天线的结构示意图;
图2是根据本申请的双频双极化天线的正视图;
图3是根据本申请的双频双极化天线的分解视图;
图4是根据本申请的第一基板的放大图;
图5是根据本申请的第二辐射体的放大图。
具体实施例
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
图1示出了根据本申请一个实施例的双频双极子天线的结构示意图。图2示出了该实施例的双频双极子天线的正视图。图3示出了该实施例的双频双极化天线的分解视图。
如图1、图2和图3所示,该双频双极子天线包括水平极化单元1、垂直极化单元2、分隔板3、地板4、第一同轴馈线5和第二同轴馈线6。
在本实施例中,水平极化单元1包括水平布置的第一基板。第一基板中可以设置有第一辐射体11。第一辐射体11可以接收双频段的水平极化波。水平极化波为电场方向与地面平行的无线电波。
实践中,基板是制造PCB(Printed circuit board,印制电路板)的基本材料。基板可以是覆铜箔层压板。本申请实施例对第一基板的形状不 作限定,例如,可设置为矩形基板,也可以设置为圆形基板等。
在本实施例中,垂直极化单元2包括两个呈十字型垂直布置的第二基板,各第二基板中设置有第二辐射体21。第二辐射体21也可以接收双频段的垂直极化波。垂直极化波为电场方向垂直于地面的无线电波。
需要说明的是,双频段既可以为WiFi双频,也可以为GSM(Global System for Mobile Communications,全球移动通信***)双频或者CDMA(Code Division Multiple Access,码分多址)双频,从而满足无线通信设备的使用需求。以双频段为WiFi双频为例,两个频段可以分别为2.4GHz频段和5GHz频段。本实施例对频段的具体数值不作限定。
在本实施例中,分隔板3布置于水平极化单元1与垂直极化单元2之间。分隔板3的底面设置有金属片,金属片与各第二辐射体相连接。通过分隔板3隔离水平极化单元1与垂直极化单元2,有助于在保证天线辐射性能的情况下,减小天线尺寸。
实践中,分隔板也可以采用基板,金属片可布置于基板的底面。本申请实施例对该基板的形状不作限定,例如,可设置为矩形基板,也可以设置为圆形基板等。
在本实施例中,第一同轴馈线5与地板4和水平极化单元1相连接。第二同轴馈线6与地板4和垂直极化单元2相连接。其中,同轴馈线是馈线的一种。馈线即连接天线与发射机或接收机的导线,又称电缆线,起传输信号的作用。它的主要任务是有效地传输信号能量,将发射机发出的信号功率以最小的损耗传送到天线的输入端,或将天线接收到的信号以最小的损耗传送到接收机输入端,同时本身不应产生杂散干扰信号。同轴馈线的两根导线为芯线和屏蔽铜网。因铜网接地,两根导线对地不对称,因此也叫做不对称式或不平衡式传输线。同轴馈线工作频率范围宽、损耗小,对静电耦合有一定的屏蔽作用。
由于天线的承载设备的结构尺寸趋向小型化,对天线的小型化要求比较高。但是天线特性受限于物理尺寸,往往小型化会带来辐射特性的损失。而本申请实施例所提供的双频双极子天线,通过在水平极化单元中设置用于接收双频段的水平极化波的第一辐射体,在垂直极化单元中设置用于接收双频段的垂直极化波的第二辐射体,并在水平极化单元与 垂直极化单元之间设置分隔板,从而在保证了辐射性能的同时降低了天线尺寸,满足了小型化智能设备的设计需求。
在本实施例的一些可选的实现方式中,第一基板可以具有相对设置的第一面和第二面。第一基板的第一面和第二面中分别设置有第一辐射体11。图4示出了第一基板的放大图。如图4所示,第一面中的第一辐射体11与第二面中的第一辐射体11可以反向布置,从而能够多个角度接收无线电波,有助于提升天线的全向性能。
在本实施例的一些可选的实现方式中,如图4所示,每一个第一辐射体11可以由多个F型部件连接而成。每个F型部件包括高频段枝节111、低频段枝节112和连接件113。在每个F型部件中,连接件113分别与高频段枝节111和低频段枝节112电连接,且高频段枝节111和低频段枝节112位于上述连接件的同一侧。F型部件中的低频段枝节112可以长于高频段枝节111。
需要说明的是,此外,每一个第一辐射体不限于由四个F型部件连接而成,还可以由其他数量的F型部件连接而成。
在本实施例的一些可选的实现方式中,每个F型部件中的连接件113可以呈渐变形式,由一端至另一端逐渐变窄。从而可以起到调节阻抗的作用。其中,连接件113较窄一端可以与低频段枝节112的一端电连接。连接件113较宽一端可以位于第一辐射体的中心,且第一辐射体中各F型部件中的连接件的较宽一端可以相互电连接。
需要说明的是,第一辐射体11不限于采用多个F型部件构成,还可以采用其他能够接收双频段的水平极化波的部件构成。
在本实施例的一些可选的实现方式中,垂直极化单元中的每一个第二基板可以具有相对设置的第一面和第二面。第二基板的第一面和第二面中分别设置有第二辐射体21。上述第二基板的第一面中的第二辐射体与上述第二基板的第二面中的第二辐射体也可以反向布置。
在本实施例的一些可选的实现方式中,请参见图5所示的第二辐射体的放大图,每一个第二辐射体21可以包括倒锥形部件211、L型高频段枝节212和L型低频段枝节213。L型高频段枝节212与倒锥形部件211的一端电连接,L型低频段枝节213与倒锥形部件211的另一端电连 接。
在本实施例的一些可选的实现方式中,如图2所示,分隔板3中可以开设有通孔。第一同轴馈线5可以穿过上述通孔,与地板4和水平极化单元1相连接。
在本实施例的一些可选的实现方式中,第一同轴馈线5包括内层芯线和外层。第一同轴馈线5的外层可以与地板4电连接;第一同轴馈线5的内层芯线可以与第一辐射体11电连接。
在本实施例的一些可选的实现方式中,第二同轴馈线6包括内层芯线和外层。上述第二同轴馈线6的外层可以与地板4电连接。第二同轴馈线6的内层芯线可以与第二辐射体21电连接。
在本实施例的一些可选的实现方式中,上述双频双极化天线高度为低频段波长的0.16倍,上述双频双极化天线宽度(不合地板)为上述低频段波长的0.25倍。由此,可在保证了辐射性能的同时降低了天线尺寸,满足了小型化智能设备的设计需求。
由于天线的承载设备的结构尺寸趋向小型化,对天线的小型化要求比较高。但是天线特性受限于物理尺寸,往往小型化会带来辐射特性的损失。而本申请实施例所提供的双频双极子天线,通过在水平极化单元中设置用于接收双频段的水平极化波的第一辐射体,在垂直极化单元中设置用于接收双频段的垂直极化波的第二辐射体,并在水平极化单元与垂直极化单元之间设置分隔板,从而在保证了辐射性能的同时降低了天线尺寸,满足了小型化智能设备的设计需求。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的实用新型范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述实用新型构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (13)

  1. 一种双频双极化天线,其特征在于,包括水平极化单元、垂直极化单元、分隔板、地板、第一同轴馈线和第二同轴馈线;
    所述水平极化单元包括水平布置的第一基板,所述第一基板中设置有第一辐射体;
    所述垂直极化单元包括两个呈十字型垂直布置的第二基板,各第二基板中设置有第二辐射体;
    所述分隔板布置于水平极化单元与所述垂直极化单元之间,所述分隔板的底面设置有金属片,所述金属片与各第二辐射体相连接。
    所述第一同轴馈线与所述地板和所述水平极化单元相连接;
    所述第二同轴馈线与所述地板和所述垂直极化单元相连接。
  2. 根据权利要求1所述的双频双极化天线,其特征在于,所述第一基板具有相对设置的第一面和第二面;
    所述第一基板的第一面和第二面中分别设置有第一辐射体;
    所述第一基板的第一面中的第一辐射体与所述第一基板的第二面中的第一辐射体反向布置。
  3. 根据权利要求2所述的双频双极化天线,其特征在于,所述第一辐射体由多个F型部件连接而成;
    所述F型部件包括高频段枝节、低频段枝节和连接件;
    所述连接件分别与所述高频段枝节和所述低频段枝节电连接,且所述高频段枝节和所述低频段枝节位于所述连接件的同一侧。
  4. 根据权利要求3所述的双频双极化天线,其特征在于,所述连接件呈渐变形式,由一端至另一端逐渐变窄;
    所述连接件的较窄一端与低频段枝节的一端电连接;
    所述连接件的较宽一端位于所述第一辐射体的中心,且所述第一辐射体中各F型部件中的连接件的较宽一端相互电连接。
  5. 根据权利要求3所述的双频双极化天线,其特征在于,所述F型部件中的低频段枝节长于高频段枝节。
  6. 根据权利要求3所述的双频双极化天线,其特征在于,第一辐射体由四个F型部件连接而成。
  7. 根据权利要求1所述的双频双极化天线,其特征在于,所述第二基板具有相对设置的第一面和第二面;
    所述第二基板的第一面和第二面中分别设置有第二辐射体;
    所述第二基板的第一面中的第二辐射体与所述第二基板的第二面中的第二辐射体反向布置。
  8. 根据权利要求1所述的双频双极化天线,其特征在于,所述第二辐射体包括倒锥形部件、L型高频段枝节和L型低频段枝节;
    所述L型高频段枝节与所述倒锥形部件的一端电连接,所述L型低频段枝节与所述倒锥形部件的另一端电连接。
  9. 根据权利要求1所述的双频双极化天线,其特征在于,所述分隔板开设有通孔;
    所述第一同轴馈线穿过所述通孔,与所述地板和所述水平极化单元相连接。
  10. 根据权利要求1所述的双频双极化天线,其特征在于,所述分隔板为圆形基板或矩形基板。
  11. 根据权利要求1所述的双频双极化天线,其特征在于,所述第一同轴馈线包括内层芯线和外层;
    所述第一同轴馈线的外层与所述地板电连接;
    所述第一同轴馈线的内层芯线与所述第一辐射体电连接。
  12. 根据权利要求1所述的双频双极化天线,其特征在于,所述第二同轴馈线包括内层芯线和外层;
    所述第二同轴馈线的外层与所述地板电连接;
    所述第二同轴馈线的内层芯线与所述第二辐射体电连接。
  13. 根据权利要求1所述的双频双极化天线,其特征在于,所述双频双极化天线高度为低频段波长的0.16倍,所述双频双极化天线宽度为所述低频段波长的0.25倍。
PCT/CN2020/085638 2020-04-20 2020-04-20 双频双极化天线 WO2021212277A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/085638 WO2021212277A1 (zh) 2020-04-20 2020-04-20 双频双极化天线
CN202080026539.8A CN113826281A (zh) 2020-04-20 2020-04-20 双频双极化天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085638 WO2021212277A1 (zh) 2020-04-20 2020-04-20 双频双极化天线

Publications (1)

Publication Number Publication Date
WO2021212277A1 true WO2021212277A1 (zh) 2021-10-28

Family

ID=78271029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085638 WO2021212277A1 (zh) 2020-04-20 2020-04-20 双频双极化天线

Country Status (2)

Country Link
CN (1) CN113826281A (zh)
WO (1) WO2021212277A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374085A (zh) * 2021-12-09 2022-04-19 南通大学 一种面向5g毫米波双频段应用的双极化混合天线
WO2024067496A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 天线组件和通信设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606757A (zh) * 2013-11-16 2014-02-26 华中科技大学 一种双频双极化天线阵
CN104300209A (zh) * 2014-09-05 2015-01-21 江苏省东方世纪网络信息有限公司 垂直极化吸顶全向天线
CN105206946A (zh) * 2015-10-13 2015-12-30 中国铁塔股份有限公司 室内双极化全向吸顶天线
CN105870606A (zh) * 2016-05-13 2016-08-17 华南理工大学 一种工作于ism频段的低剖面全向圆极化天线
CN106450797A (zh) * 2015-08-06 2017-02-22 启碁科技股份有限公司 天线***
US20170214140A1 (en) * 2016-01-22 2017-07-27 Airgain, Inc. Multi-element antenna for multiple bands of operation and method therefor
US20170256863A1 (en) * 2016-03-01 2017-09-07 Wistron Neweb Corp. Antenna system
CN109301488A (zh) * 2018-09-06 2019-02-01 深圳大学 一种应用于室内分布***的全向双宽频双极化天线
CN110301069A (zh) * 2017-05-29 2019-10-01 华为技术有限公司 一种具有多极化方式的可配置天线阵列

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606757A (zh) * 2013-11-16 2014-02-26 华中科技大学 一种双频双极化天线阵
CN104300209A (zh) * 2014-09-05 2015-01-21 江苏省东方世纪网络信息有限公司 垂直极化吸顶全向天线
CN106450797A (zh) * 2015-08-06 2017-02-22 启碁科技股份有限公司 天线***
CN105206946A (zh) * 2015-10-13 2015-12-30 中国铁塔股份有限公司 室内双极化全向吸顶天线
US20170214140A1 (en) * 2016-01-22 2017-07-27 Airgain, Inc. Multi-element antenna for multiple bands of operation and method therefor
US20170256863A1 (en) * 2016-03-01 2017-09-07 Wistron Neweb Corp. Antenna system
CN105870606A (zh) * 2016-05-13 2016-08-17 华南理工大学 一种工作于ism频段的低剖面全向圆极化天线
CN110301069A (zh) * 2017-05-29 2019-10-01 华为技术有限公司 一种具有多极化方式的可配置天线阵列
CN109301488A (zh) * 2018-09-06 2019-02-01 深圳大学 一种应用于室内分布***的全向双宽频双极化天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374085A (zh) * 2021-12-09 2022-04-19 南通大学 一种面向5g毫米波双频段应用的双极化混合天线
CN114374085B (zh) * 2021-12-09 2023-07-21 南通大学 一种面向5g毫米波双频段应用的双极化混合天线
WO2024067496A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 天线组件和通信设备

Also Published As

Publication number Publication date
CN113826281A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN108493602A (zh) 一种双极化双工天线及其构成的双频基站天线阵列
KR100980774B1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
TWI420743B (zh) 用於電子裝置之雙頻印刷電路天線
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
CN107925430B (zh) 带内全双工互补天线
CN112234344B (zh) 天线装置及电子设备
US20220239008A1 (en) Common aperture antenna and communication device
US9837724B2 (en) Antenna system
US8130169B2 (en) Multi-input multi-output antenna system
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
US11843169B2 (en) Antenna system for small form factor
WO2021212277A1 (zh) 双频双极化天线
WO2019223318A1 (zh) 室内基站及其pifa天线
JP2005269630A (ja) ケーブルアンテナ構造
US10148014B2 (en) Highly isolated monopole antenna system
WO2022133922A1 (zh) 一种多频天线及通信设备
CN109994828B (zh) 一种宽带缝隙耦合天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络***
US20080094303A1 (en) Planer inverted-F antenna device
CN113113762B (zh) 一种双频双极化共口径基站天线、移动通信***
JP2023543278A (ja) アンテナ・デバイス、アンテナ・デバイスのアレイ
CN107994329B (zh) 一种紧凑型4g lte mimo与gps三合一天线
KR20150032992A (ko) 그라운드 패치 구조를 이용한 마이크로스트립 안테나
CN210628488U (zh) 单极子天线
TWI832638B (zh) 多頻多天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932434

Country of ref document: EP

Kind code of ref document: A1