WO2021207887A1 - 一种后减震塔、后减震塔总成及车辆 - Google Patents

一种后减震塔、后减震塔总成及车辆 Download PDF

Info

Publication number
WO2021207887A1
WO2021207887A1 PCT/CN2020/084522 CN2020084522W WO2021207887A1 WO 2021207887 A1 WO2021207887 A1 WO 2021207887A1 CN 2020084522 W CN2020084522 W CN 2020084522W WO 2021207887 A1 WO2021207887 A1 WO 2021207887A1
Authority
WO
WIPO (PCT)
Prior art keywords
rear shock
tower
absorbing tower
shock
shock absorber
Prior art date
Application number
PCT/CN2020/084522
Other languages
English (en)
French (fr)
Inventor
刘家欣
和仕超
贺捷
王文昊
Original Assignee
宁波吉利汽车研究开发有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波吉利汽车研究开发有限公司, 浙江吉利控股集团有限公司 filed Critical 宁波吉利汽车研究开发有限公司
Priority to CN202080094954.7A priority Critical patent/CN115066366A/zh
Priority to PCT/CN2020/084522 priority patent/WO2021207887A1/zh
Publication of WO2021207887A1 publication Critical patent/WO2021207887A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/11Understructures, i.e. chassis frame on which a vehicle body may be mounted with resilient means for suspension, e.g. of wheels or engine; sub-frames for mounting engine or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions

Definitions

  • the invention relates to the technical field of vehicles, in particular to a rear shock-absorbing tower, a rear shock-absorbing tower assembly and a vehicle.
  • Body lightweight technology is an important part of vehicle lightweight. More and more lightweight materials and processes are used on the body, among which aluminum alloy is the most widely used. Among various aluminum alloy process methods, vacuum high pressure die casting can provide high strength, high parts accuracy, good welding/riveting performance, and multiple parts can be integrated in a specific position, which can achieve a very good lightweight effect. And can reduce costs.
  • shock absorber mounting plates In a traditional car body, there are shock absorber mounting plates, shock absorber mounting reinforcement plates, rear shock absorber reinforcement beams, C-ring cross beam connectors, rear inner wheel covers, and rear shock absorber reinforcement beams in the body shock absorber installation area
  • shock absorber mounting reinforcement plates In a traditional car body, there are shock absorber mounting plates, shock absorber mounting reinforcement plates, rear shock absorber reinforcement beams, C-ring cross beam connectors, rear inner wheel covers, and rear shock absorber reinforcement beams in the body shock absorber installation area
  • shock absorber mounting reinforcement plates In a traditional car body, there are shock absorber mounting plates, shock absorber mounting reinforcement plates, rear shock absorber reinforcement beams, C-ring cross beam connectors, rear inner wheel covers, and rear shock absorber reinforcement beams in the body shock absorber installation area
  • Such parts are limited by the process limitations of traditional sheet metal parts. There are at least five or more parts in this area.
  • the important installation point size chain is longer, the size is difficult to control, and more fixtures are required, and the welding cost
  • the rear shock tower plays a very important role in the torsional stiffness of the vehicle.
  • the rear shock tower acts as a key force transmission path for the rear of the vehicle body, forming a ring structure with the joints of the upper vehicle body to enhance the torsional rigidity of the vehicle.
  • the traditional structural steel body requires measures such as increasing the material thickness, optimizing the structure, and adding parts, but this will increase the weight and cost of the body, which is not conducive to achieving the goal of reducing the weight of the vehicle.
  • the technical problem to be solved by the present invention is that the existing rear shock tower structure needs to design more parts to improve the torsional rigidity of the whole vehicle.
  • an embodiment of the present application discloses a rear shock absorber tower, which includes a base and a shock absorber mounting part,
  • the base includes a first connecting leg and a second connecting leg, and the first connecting leg and the second connecting leg are used for connecting with the vehicle body;
  • the shock absorber mounting portion is provided on the base, and the shock absorber mounting portion is integrally formed with the base;
  • the shock absorber mounting part is provided with a shock absorber mounting structure, and the shock absorber mounting structure is used to connect with the rear shock absorber.
  • the shock absorber mounting portion includes a supporting surface, a connecting plate is provided on the edge of the supporting surface, and the connecting plate and the supporting surface enclose a accommodating cavity with an opening on one side.
  • the supporting surface has a reinforcing portion for carrying a load and a connecting portion for connecting and supporting, and at least a part of the reinforcing portion has a thickness greater than that of the connecting portion.
  • reinforcing ribs are provided between the supporting surface and the connecting plate.
  • an end of the connecting plate away from the supporting surface is provided with a wheel cover mounting structure, and the wheel cover mounting structure is used for mounting the wheel cover inner plate.
  • the material of the rear shock absorption tower includes at least one of silicon, magnesium, aluminum, manganese, zinc, iron, nickel, and titanium.
  • the rear shock-absorbing tower is formed by a vacuum die-casting process.
  • an embodiment of the present application discloses a rear shock-absorbing tower assembly, including: a C-ring bottom beam, a rear floor beam, a first rear shock-absorbing tower, and a second rear shock-absorbing tower; wherein, the first The rear shock-absorbing tower and the second rear shock-absorbing tower are the above-mentioned rear shock-absorbing tower;
  • the first connecting leg of the first rear shock-absorbing tower is connected to one end of the C-ring bottom beam, and the first connecting leg of the second rear shock-absorbing tower is connected to the other end of the C-ring bottom beam;
  • the second connecting leg of the first rear shock-absorbing tower is connected to one end of the rear floor crossbeam, and the first connecting leg of the second rear shock-absorbing tower is connected to the other end of the rear floor crossbeam.
  • the rear shock tower assembly further includes two sets of wheel house inner plates, and the two sets of wheel house inner plates are respectively connected to the first rear shock tower and the second rear shock tower.
  • an embodiment of the present application discloses a vehicle including the above-mentioned rear shock tower assembly.
  • the rear shock tower, the rear shock tower assembly, and the vehicle described in the embodiments of the present application have the following beneficial effects:
  • the rear shock tower described in the embodiment of the application is designed to connect two connecting legs to the vehicle body respectively, and serve as the key force transmission path at the rear of the vehicle body.
  • the two force transmission paths enhance the torsional rigidity of the vehicle without additional additional reinforcement. Parts to increase the strength of the rear shock tower, reduce the weight and cost of the body, and achieve the purpose of lightweight.
  • the rear shock-absorbing tower assembly described in the embodiment of the application integrates the deepest part of the inner wheel cover stamping into the rear shock-absorbing tower, which can make full use of the high plasticity characteristics of the shock-absorbing tower structure after die-casting, and provide better rear shock absorbers.
  • the shock absorber With a large layout space, the shock absorber can be arranged closer to the inside of the vehicle, which meets the demand for shock absorber layout space required for vehicle control and improves the operating performance of the vehicle.
  • Fig. 1 is a schematic diagram of a rear shock-absorbing tower structure according to an embodiment of the application
  • Figure 2 is a schematic diagram of the topology optimization structure of a rear shock tower according to an embodiment of the application
  • FIG. 3 is a schematic diagram of the structure of a rear shock tower assembly according to an embodiment of the application.
  • the "one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present application.
  • the orientation or positional relationship indicated by the terms “upper”, “lower”, “top”, “bottom”, etc. It is convenient to describe the application and simplify the description, instead of indicating or implying that the device or element referred to must have a specific orientation, be configured and operated in a specific orientation, and therefore cannot be understood as a limitation of the application.
  • the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • first and second may explicitly or implicitly include one or more of these features.
  • first, second, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein.
  • Vacuum high pressure die casting can provide high strength, high parts accuracy, good welding/riveting performance, and can integrate multiple parts in a specific position, which can achieve a very good lightweight effect and can reduce costs. More and more high-pressure cast aluminum is used in the development of structures and models, but most of them are currently used in areas such as front shock towers and rear longitudinal beams, and there are not many cases where they are directly used on rear shock towers.
  • an embodiment of the present application discloses a rear shock tower 10, including: a base and a shock absorber mounting portion, the base includes a first connecting leg 11 and a second connecting leg 12, the first connecting leg 11 and The second connecting leg 12 is used to connect to the vehicle body; the shock absorber installation part is arranged on the base, and the shock absorber installation part is integrally formed with the base; the shock absorber installation part is provided with a shock absorber installation structure 15 for installation of the shock absorber The structure 15 is used to connect with the rear shock absorber.
  • the rear shock tower 10 described in the embodiment of the present application is designed to connect two connecting feet to the vehicle body respectively, and serve as the key force transmission path at the rear of the vehicle body.
  • the two force transmission paths enhance the torsional rigidity of the entire vehicle without additional additional
  • the reinforcement is used to increase the strength of the rear shock tower 10, reduce the weight and cost of the vehicle body, and achieve the purpose of lightweight.
  • the shape of the rear shock-absorbing tower 10 is similar to a "her"-shaped structure.
  • the two connecting feet are connected with the vehicle body to act as two force transmission paths at the rear of the vehicle body, which can improve the torsional rigidity of the vehicle body.
  • the ends of the two connecting legs that is, the ends away from the "herringbone"-shaped intersection, are parallel to each other. In some embodiments, the ends of the two connecting legs may not be parallel.
  • the upper part of the rear shock tower 10 is a shock absorber installation part, the shock absorber installation part has an inclined surface relative to the base, and the shock absorber installation part is provided with a shock absorber installation structure 15 for installing the rear shock absorber.
  • the shock absorber mounting structure 15 has a connecting surface matching the rear shock absorber, and the connecting surface is provided with a mounting hole, a mounting card slot, and the like.
  • the shock absorber mounting part includes a supporting surface 13, a connecting plate 14 is provided on the edge of the supporting surface 13, and the connecting plate 14 and the supporting surface 13 enclose a receiving cavity with an opening on one side.
  • the inclined surface of the shock absorber mounting portion relative to the base is the supporting surface 13, and the edge contour of the supporting portion is provided with a connecting plate 14 in the circumferential direction.
  • the supporting surface 13 is connected with the connecting plate 14 and the base to form a containing cavity.
  • the rear shock absorber can be installed in the accommodating cavity.
  • the supporting surface 13 has a reinforcing portion for carrying a load and a connecting portion for connecting and supporting, and at least a part of the reinforcing portion has a thickness greater than the thickness of the connecting portion.
  • FIG. 2a is a topological optimization cloud diagram of the rear shock tower 10
  • FIG. 2b is a schematic diagram of the structure of the rear shock tower 10 model obtained according to the optimization result.
  • CAE Computer Aided Engineering
  • the parts on the supporting surface 13 that need to bear the load and transfer the torque are thickened, thereby achieving a structural strengthening effect.
  • thinning treatment is carried out according to the size of the load of each part to reduce the weight of the parts, in order to achieve the purpose of lightening.
  • the rear shock tower 10 described in the embodiment of the present application has a 30% weight reduction effect compared with traditional steel sheet metal parts, and at the same time has a higher torsional rigidity.
  • Reinforcing ribs are provided between the supporting surface 13 and the connecting plate 14.
  • a number of reinforcing ribs capable of enhancing the connection strength are provided between the supporting surface 13 and the connecting plate 14, and the number of reinforcing ribs can be determined according to actual strength calculations.
  • An end of the connecting plate 14 away from the supporting surface 13 is provided with a wheel cover mounting structure, and the wheel cover mounting structure is used for mounting the wheel cover inner plate.
  • a wheel housing inner panel is installed on the side of the rear shock tower 10.
  • the edge of the connecting plate 14 on the rear shock tower 10 is provided with a wheel cover mounting structure for mounting the wheel cover inner plate, and the wheel cover inner plate matches the wheel cover mounting structure.
  • the material of the rear shock tower 10 includes at least one of silicon, magnesium, aluminum, manganese, zinc, iron, nickel, and titanium.
  • the rear shock tower 10 serves as a key force transmission path at the rear of the vehicle body, which has a very important effect on the torsional stiffness of the entire vehicle. Therefore, the rear shock tower 10 needs to be designed with relatively high-strength materials. At the same time, due to the consideration of the lightweight of the whole vehicle, the material of the rear shock tower 10 needs to be as light as possible.
  • the material of the rear shock tower 10 is pure metal, or an alloy containing metal or non-metal elements; optionally, the material of the rear shock tower 10 includes silicon, magnesium, aluminum, manganese, zinc, and iron. , At least one of nickel and titanium; preferably, the rear shock tower 10 is made of AlSi 10 MnMg.
  • the rear shock tower 10 is formed by a vacuum die-casting process.
  • the rear shock absorber 10 is made of AlSi 10 MnMg material, which is formed by a high-pressure vacuum die-casting process.
  • the shock absorber installation plate, shock absorber installation reinforcement plate, rear shock absorber reinforcement beam, C-ring cross beam connector, rear inner wheel cover and rear shock absorber in the design of the existing rear shock tower 10 Reinforcing beams and other parts are directly integrated on the rear shock tower 10, and the rear shock tower 10 formed by integrated casting can also take on the functions of the original sheet metal parts.
  • the rear shock tower 10 described in the embodiment of the present application can save at least four sets of molds and two to three sets of fixtures on a single side, which is easier to control the size, and greatly reduces the manufacturing cost.
  • the embodiment of the present application also discloses a rear shock-absorbing tower assembly, which includes: a C-ring bottom beam 21, a rear floor beam 22, a first rear shock-absorbing tower, and a second rear shock-absorbing tower; ,
  • the first rear shock-absorbing tower and the second rear shock-absorbing tower are the aforementioned rear shock-absorbing tower 10;
  • the first connecting leg 11 of the first rear shock-absorbing tower is connected to one end of the C-ring bottom beam 21, and the second rear
  • the first connecting leg 11 of the shock-absorbing tower is connected to the other end of the C-ring bottom beam 21;
  • the second connecting leg 12 of the first rear shock-absorbing tower is connected to one end of the rear floor beam 22, and the first connecting leg of the second rear shock-absorbing tower
  • the connecting leg 11 is connected to the other end of the rear floor cross beam 22.
  • the rear shock-absorbing tower assembly includes a C-ring bottom cross beam 21, a rear floor cross-beam 22, and two rear shock-absorbing towers 10.
  • the two rear shock-absorbing towers 10 are arranged opposite to each other on the C-ring bottom cross beam 21 and the rear floor.
  • the two legs of the rear shock tower 10 are respectively connected to the C-ring bottom cross beam 21 and the rear floor cross beam 22 to form two force transmission paths.
  • Figure 3 shows two of the rear shock tower assembly A power transmission path.
  • the rear shock tower 10 is connected with the C-ring bottom cross beam 21 and the rear floor cross beam 22 by bolts; optionally, the rear shock tower 10 is connected with the C-ring bottom cross beam 21 and the rear floor cross beam 22 by welding; optional Yes, the rear shock tower 10 is connected with the C-ring bottom cross beam 21 and the rear floor cross beam 22 by riveting and gluing.
  • the rear shock-absorbing tower 10 described in the embodiment of the present application is made of AlSi 10 MnMg material and formed by a high-pressure vacuum die-casting process.
  • the design scheme of this application is based on the result of the CAE topology optimization of the whole vehicle.
  • the structure is strengthened by increasing the thickness of the product structure and increasing the structural ribs; while in the non-critical areas, the weight is reduced by reducing the wall thickness and reducing the structure.
  • the structure is optimized, and compared with traditional steel sheet metal parts, it has a 30% weight reduction effect.
  • the rear shock tower assembly described in the embodiment of the present application in addition to the rear shock tower 10 being connected to the C-ring bottom cross beam 21, the rear half of the rear shock tower 10 and the rear floor bottom cross beam are arranged in the same area. And through riveting and gluing to form a connection, an additional force transmission path channel is added to form a herringbone force transmission path structure to obtain better efficiency.
  • the rear shock tower assembly also includes two sets of wheel house inner plates, and the two sets of wheel house inner plates are respectively connected to the first rear shock tower and the second rear shock tower.
  • each set of wheel house inner panels includes a first sub-wheel house inner plate 23 and a second sub-wheel house inner plate 24.
  • two sub-wheel house inner plates are riveted to the rear shock tower 10 respectively. Connection;
  • two sub-wheel housing inner plates are respectively welded and connected to the rear shock tower 10.
  • the inner wheel cover In traditional car bodies, the inner wheel cover generally uses one-piece stamped sheet metal parts, and its structure is subject to the stamping process. The inner wheel cover cannot be punched very deep in the Y direction, which limits the arrangement of the rear shock absorber. Space, the placement of the rear shock absorber is difficult to make a major breakthrough in the Y direction, which restricts the vehicle's handling properties.
  • the inner wheel cover In the rear shock tower assembly described in the embodiment of the application, the inner wheel cover is designed into three components, the deepest part of the inner wheel cover is integrated into the rear shock tower 10, and the other two parts are connected to the rear shock tower 10 by riveting/welding.
  • connection of the rear shock absorber 10 can make full use of the high plasticity of the shock absorber 10 after die-casting, and provide more space for the rear shock absorber.
  • the shock absorber can be placed closer to the vehicle to satisfy vehicle control. Space requirements for the required shock absorber layout.
  • the embodiment of the present application also discloses a vehicle including the above-mentioned rear shock tower assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

一种后减震塔(10)、后减震塔总成及车辆,包括:底座和减震器安装部,所述底座包括第一连接支脚(11)和第二连接支脚(12),所述第一连接支脚(11)和所述第二连接支脚(12)用于与车身连接;所述减震器安装部设置在所述底座上,所述减震器安装部与所述底座一体成型;所述减震器安装部上设有减震器安装结构(15),所述减震器安装结构(15)用于与后减震器连接。通过设计两个连接支脚分别与车身连接,充当车身后部的关键传力路径,两条传力路径提升整车扭转刚度,无需额外附加多个加强件来增加后减震塔(10)强度,降低车身重量和成本,达到轻量化目的。

Description

一种后减震塔、后减震塔总成及车辆 技术领域
本发明涉及车辆技术领域,特别涉及一种后减震塔、后减震塔总成及车辆。
背景技术
随着排放及油耗法规要求越来越严苛,整车轻量化的要求越来越高。车身轻量化技术是整车轻量化一个重要的组成部分,越来越多的轻量化材料和工艺在车身上运用,其中以铝合金的运用最为广泛。在各种铝合金工艺方法中,真空高压压铸能提供较高的强度,高的零件精度,好的焊接/铆接性能,在特定的位置能集成多个零件,能起到非常好的轻量化效果并且能够降低成本。
传统的车身中,车身减震器安装区域,有减震器安装板、减震器安装加强板、后减震器加强梁、C环横梁连接件、后内轮罩及后减震器加强梁等零件,受限于传统钣金零件的工艺限制,在此区域有至少五个及以上零件,重要安装点尺寸链较长,尺寸难以控制,且需要工装夹具较多,焊接成本较高。
此外,由于在车身的扭转刚度计算及测量时,加载点都为后减震器安装位置,后减震塔对整车扭转刚度有非常重要的作用。在现有的设计中,后减震塔充当车身后部的关键传力路径,与上车身的接头件形成环状结构,增强整车扭转刚度。为提升整车扭转刚度,传统结构钢制车身需要通过增加材料厚度,优化结构,增加零件等措施,但都会增加车身重量和成本,不利于整车轻量化目标达成。
发明内容
本发明要解决的技术问题是现有的后减震塔结构需要设计较多的零件来提升整车扭转刚度的问题。
为解决上述技术问题,第一方面,本申请实施例公开了一种后减震塔,包括:底座和减震器安装部,
所述底座包括第一连接支脚和第二连接支脚,所述第一连接支脚和所述第二连接支脚用于与车身连接;
所述减震器安装部设置在所述底座上,所述减震器安装部与所述底座一体成型;
所述减震器安装部上设有减震器安装结构,所述减震器安装结构用于与后减震器连接。
进一步的,所述减震器安装部包括支撑面,所述支撑面的边沿设有连接板,所述连接板与所述支撑面围成一侧开口的容置腔。
进一步的,所述支撑面具有用于承载载荷的加强部和用于连接支撑的连接部,至少部分所述加强部的厚度大于所述连接部的厚度。
进一步的,所述支撑面与所述连接板之间设有加强筋。
进一步的,所述连接板远离所述支撑面的一端设有轮罩安装结构,所述轮罩安装结构用于安装轮罩内板。
进一步的,所述后减震塔的材质包括硅、镁、铝、锰、锌、铁、镍、钛中的至少一种。
进一步的,所述后减震塔采用真空压铸工艺成型。
第二方面,本申请实施例公开了一种后减震塔总成,包括:C环底横梁、后地板横梁、第一后减震塔和第二后减震塔;其中,所述第一后减震塔和所述第二后减震塔为如上所述的后减震塔;
所述第一后减震塔的第一连接支脚与所述C环底横梁的一端连接,所述第二后减震塔的第一连接支脚与所述C环底横梁的另一端连接;
所述第一后减震塔的第二连接支脚与所述后地板横梁的一端连接,所述第二后减震塔的第一连接支脚与所述后地板横梁的另一端连接。
进一步的,所述后减震塔总成还包括两组轮罩内板,两组所述轮罩内板分别与所述第一后减震塔和所述第二后减震塔连接。
第三方面,本申请实施例公开了一种车辆,包括如上所述的后减震塔总成。
采用上述技术方案,本申请实施例所述的后减震塔、后减震塔总成及车辆具有如下有益效果:
本申请实施例所述的后减震塔,通过设计两个连接支脚分别与车身连接,充当车身后部的关键传力路径,两条传力路径提升整车扭转刚度,无需额外附加多个加强件来增加后减震塔强度,降低车身重量和成本,达到轻量化目的。
本申请实施例所述后减震塔总成,将内轮罩冲压最深部分集成到后减震塔上,可以充分利用压铸成型后减震塔结构可塑性高的特性,为后减震器提供更大的布置空间,可以将减震器位置布置更靠车内,满足车辆操控所需的减震器布置空间需求,提高车辆的操作性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例的后减震塔结构示意图;
图2为本申请一个实施例的后减震塔拓扑优化结构示意图;
图3为本申请一个实施例的后减震塔总成结构示意图;
以下对附图作补充说明:
10-后减震塔;11-第一连接支脚;12-第二连接支脚;13-支撑面;14-连接板;15-减震器安装结构;21-C环底横梁;22-后地板横梁;23-第一子轮罩内板;24-第二子轮罩内板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的 范围。
此处所称的“一个实施例”或“实施例”是指可包含于本申请至少一个实现方式中的特定特征、结构或特性。在本申请的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
真空高压压铸能提供较高的强度,高的零件精度,好的焊接/铆接性能,而且能在特定的位置能集成多个零件,能起到非常好的轻量化效果,并且能够降低成本。越来越多架构及车型开发中运用了高压铸铝,但目前大多运用在前减震塔及后纵梁等区域,直接运用在后减震塔上的情况不多。
如图1所示,本申请实施例公开了一种后减震塔10,包括:底座和减震器安装部,底座包括第一连接支脚11和第二连接支脚12,第一连接支脚11和第二连接支脚12用于与车身连接;减震器安装部设置在底座上,减震器安装部与底座一体成型;减震器安装部上设有减震器安装结构15,减震器安装结构15用于与后减震器连接。
本申请实施例所述的后减震塔10,通过设计两个连接支脚分别与车身连接,充当车身后部的关键传力路径,两条传力路径提升整车扭转刚度,无需额外附加多个加强件来增加后减震塔10强度,降低车身重量和成本,达到轻量化目的。
本申请实施例中,如图1所示,后减震塔10形状类似于“人”字型结构,后减震塔10的底部为底座,底座具有两个用于与车身连接的连接支脚,两个连接支脚与车身连接充当车身后部的两条传力路径,能够提升车身扭 转刚度。可选的,两个连接支脚的末端,即远离“人”字型交叉点的端部相互平行。在一些实施例中,两个连接支脚的末端也可以不平行。后减震塔10的上部为减震器安装部,减震器安装部具有相对于底座的倾斜面,减震器安装部上设有用于安装后减震器的减震器安装结构15。可选的,减震器安装结构15具有与后减震器匹配的连接面,连接面上设有安装孔及安装卡槽等。
减震器安装部包括支撑面13,支撑面13的边沿设有连接板14,连接板14与支撑面13围成一侧开口的容置腔。
本申请实施例中,减震器安装部上相对于底座的倾斜面为支撑面13,支撑部的边沿轮廓周向设有连接板14,支撑面13和连接板14以及底座连接围成一个容置腔,容置腔内可安装后减震器。
支撑面13具有用于承载载荷的加强部和用于连接支撑的连接部,至少部分加强部的厚度大于连接部的厚度。
本申请实施例中,图2a为后减震塔10拓扑优化云图,图2b为根据优化结果得到的后减震塔10模型结构示意图。如图2所示,通过计算机辅助工程(Computer Aided Engineering,CAE)中整车拓扑优化结果,对于支撑面13上需要承载载荷、传递力矩的部位进行加厚处理,从而起到结构加强作用。对于承载载荷较少、主要起连接支撑作用的区域,按照各部位承载载荷的大小进行减薄处理,减轻零件重量,以达到轻量化的目的。本申请实施例所述的后减震塔10,相对于传统钢制钣金零件,有30%的减重效果,同时具有更高的扭转刚度。
支撑面13与连接板14之间设有加强筋。
本申请实施例中,如图2所示,支撑面13与连接板14之间设有若干能够增强连接强度的加强筋,加强筋的数量可根据实际强度计算来确定。
连接板14远离支撑面13的一端设有轮罩安装结构,轮罩安装结构用于安装轮罩内板。
本申请实施例中,在整车装配时,后减震塔10的侧面安装有轮罩内板。后减震塔10上的连接板14边沿设有用于安装轮罩内板的轮罩安装结构,轮罩内板与轮罩安装结构匹配。
后减震塔10的材质包括硅、镁、铝、锰、锌、铁、镍、钛中的至少一 种。
本申请实施例中,后减震塔10充当车身后部的关键传力路径,对整车扭转刚度有非常重要的作用,因此后减震塔10在设计时需要采用强度相对较高的材质,同时,由于出于整车轻量化考虑,后减震塔10的材质需尽可能的轻。可选的,后减震塔10的材质为纯金属,也可以为包含金属或非金属元素的合金;可选的,后减震塔10的材质包括硅、镁、铝、锰、锌、铁、镍、钛中的至少一种;优选的,后减震塔10采用AlSi 10MnMg材质。
后减震塔10采用真空压铸工艺成型。
本申请实施例中,后减震塔10采用AlSi 10MnMg材料,通过高压真空压铸工艺成型。通过结构优化,将现有后减震塔10设计中的减震器安装板、减震器安装加强板、后减震器加强梁、C环横梁连接件、后内轮罩及后减震器加强梁等零件,直接集成至后减震塔10上,通过集成铸造成型的后减震塔10还能承接对应原钣金零部件的功能。本申请实施例所述的后减震塔10,相对于传统钣金零件,单侧能节约至少四套模具,两到三套夹具,对于尺寸更易控制,大大降低制造成本。
如图3所示,本申请实施例还公开了一种后减震塔总成,包括:C环底横梁21、后地板横梁22、第一后减震塔和第二后减震塔;其中,第一后减震塔和第二后减震塔为如上所述的后减震塔10;第一后减震塔的第一连接支脚11与C环底横梁21的一端连接,第二后减震塔的第一连接支脚11与C环底横梁21的另一端连接;第一后减震塔的第二连接支脚12与后地板横梁22的一端连接,第二后减震塔的第一连接支脚11与后地板横梁22的另一端连接。
本申请实施例中,后减震塔总成包括C环底横梁21、后地板横梁22和两个后减震塔10,两个后减震塔10相对设置在C环底横梁21和后地板横梁22的两端,后减震塔10的两个支脚分别与C环底横梁21和后地板横梁22连接,形成两条传力路径,图3中示出了后减震塔总成的两条传力路径。可选的,后减震塔10与C环底横梁21和后地板横梁22通过螺栓连接;可选的,后减震塔10与C环底横梁21和后地板横梁22通过焊接连接;可选的,后减震塔10与C环底横梁21和后地板横梁22通过铆接及胶粘连接。
本申请实施例所述后减震塔10,采用AlSi 10MnMg材料,使用高压真空压铸工艺成型。通过优化结构,优化传递路径,可以带来更多的扭转刚度的提升。本申请设计方案基于整车CAE拓扑优化结果,在关键的传力路径上通过增加产品结构厚度、增加结构筋进行结构加强;而在非关键区域,通过壁厚减薄、减少结构方式进行轻量化结构优化,相对于传统钢制钣金零件,有30%的减重效果。本申请实施例所述后减震塔总成,后减震塔10除了与C环底横梁21相连之外,还将后减震塔10的后半部分与后地板底横梁布置在同一区域,并通过铆接及胶粘形成连接,额外增加了一条传力路径通道,形成人字形传力路径结构,获得更好的效率。
后减震塔总成还包括两组轮罩内板,两组轮罩内板分别与第一后减震塔和第二后减震塔连接。
本申请实施例中,后减震塔10的侧面连接有轮罩内板,轮罩内板通过轮罩安装结构与后减震塔10连接。如图3所示,每组轮罩内板包括第一子轮罩内板23和第二子轮罩内板24,可选的,两块子轮罩内板分别与后减震塔10铆接连接;可选的,两块子轮罩内板分别与后减震塔10焊接连接。
在传统的车身中,内轮罩一般采用一体式成型的冲压钣金件,其结构受制于冲压件成型工艺,内轮罩在Y方向上无法冲压很深,从而限制了后减震器的布置空间,后减震器的布置位置难以在Y方向上有较大突破,使车辆操控属性受到限制。本申请实施例所述后减震塔总成,将内轮罩设计成三个组成部分,将内轮罩冲压最深部分集成到后减震塔10上,另外两部分通过铆接/焊接等方式与后减震塔10连接,可以充分利用压铸成型后减震塔10结构可塑性高的特性,为后减震器提供更大的布置空间,可以将减震器位置布置更靠车内,满足车辆操控所需的减震器布置空间需求。
本申请实施例还公开了一种车辆,包括如上所述的后减震塔总成。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种后减震塔,其特征在于,包括:底座和减震器安装部,
    所述底座包括第一连接支脚(11)和第二连接支脚(12),所述第一连接支脚(11)和所述第二连接支脚(12)用于与车身连接;
    所述减震器安装部设置在所述底座上,所述减震器安装部与所述底座一体成型;
    所述减震器安装部上设有减震器安装结构(15),所述减震器安装结构(15)用于与后减震器连接。
  2. 根据权利要求1所述的后减震塔,其特征在于,所述减震器安装部包括支撑面(13),所述支撑面(13)的边沿设有连接板(14),所述连接板(14)与所述支撑面(13)围成一侧开口的容置腔。
  3. 根据权利要求2所述的后减震塔,其特征在于,所述支撑面(13)具有用于承载载荷的加强部和用于连接支撑的连接部,至少部分所述加强部的厚度大于所述连接部的厚度。
  4. 根据权利要求3所述的后减震塔,其特征在于,所述支撑面(13)与所述连接板(14)之间设有加强筋。
  5. 根据权利要求4所述的后减震塔,其特征在于,所述连接板(14)远离所述支撑面(13)的一端设有轮罩安装结构,所述轮罩安装结构用于安装轮罩内板。
  6. 根据权利要求1所述的后减震塔,其特征在于,所述后减震塔(10)的材质包括硅、镁、铝、锰、锌、铁、镍、钛中的至少一种。
  7. 根据权利要求6所述的后减震塔,其特征在于,所述后减震塔(10) 采用真空压铸工艺成型。
  8. 一种后减震塔总成,其特征在于,包括:C环底横梁(21)、后地板横梁(22)、第一后减震塔和第二后减震塔;其中,所述第一后减震塔和所述第二后减震塔为权利要求1-7任一项所述的后减震塔(10);
    所述第一后减震塔的第一连接支脚(11)与所述C环底横梁(21)的一端连接,所述第二后减震塔的第一连接支脚(11)与所述C环底横梁(21)的另一端连接;
    所述第一后减震塔的第二连接支脚(12)与所述后地板横梁(22)的一端连接,所述第二后减震塔的第一连接支脚(11)与所述后地板横梁(22)的另一端连接。
  9. 根据权利要求8所述的后减震塔总成,其特征在于,所述后减震塔总成还包括两组轮罩内板,两组所述轮罩内板分别与所述第一后减震塔和所述第二后减震塔连接。
  10. 一种车辆,其特征在于,包括权利要求8-9任一项所述的后减震塔总成。
PCT/CN2020/084522 2020-04-13 2020-04-13 一种后减震塔、后减震塔总成及车辆 WO2021207887A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094954.7A CN115066366A (zh) 2020-04-13 2020-04-13 一种后减震塔、后减震塔总成及车辆
PCT/CN2020/084522 WO2021207887A1 (zh) 2020-04-13 2020-04-13 一种后减震塔、后减震塔总成及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084522 WO2021207887A1 (zh) 2020-04-13 2020-04-13 一种后减震塔、后减震塔总成及车辆

Publications (1)

Publication Number Publication Date
WO2021207887A1 true WO2021207887A1 (zh) 2021-10-21

Family

ID=78085029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084522 WO2021207887A1 (zh) 2020-04-13 2020-04-13 一种后减震塔、后减震塔总成及车辆

Country Status (2)

Country Link
CN (1) CN115066366A (zh)
WO (1) WO2021207887A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114065406A (zh) * 2022-01-17 2022-02-18 成都飞机工业(集团)有限责任公司 一种工艺孔的设计方法、装置、设备及可存储介质
CN115092290A (zh) * 2022-06-23 2022-09-23 江铃汽车股份有限公司 新能源汽车后悬车身设计方法及基于该方法的车身结构
CN115158470A (zh) * 2022-06-29 2022-10-11 重庆长安汽车股份有限公司 一种侧围总成后部加强结构及车辆
CN115626116A (zh) * 2022-09-19 2023-01-20 重庆长安汽车股份有限公司 一种置物板总成结构及车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116776693B (zh) * 2023-06-26 2024-03-19 小米汽车科技有限公司 减震塔优化设计方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180347A (ja) * 1997-12-18 1999-07-06 Nissan Motor Co Ltd 車体後部構造
CN101585375A (zh) * 2008-05-21 2009-11-25 F·波尔希名誉工学博士公司 汽车车身结构
DE102013101396A1 (de) * 2013-02-13 2014-08-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Konsole für einen Hinterwagenbereich eines Personenkraftwagens
WO2014125723A1 (ja) * 2013-02-18 2014-08-21 本田技研工業株式会社 自動車のダンパーハウジング構造
DE102016015016A1 (de) * 2015-12-21 2017-06-22 Mazda Motor Corporation Vordere Fahrzeugkarosseriestruktur und Verfahren zum Erhöhen der Festigkeit derselben
CN108275210A (zh) * 2018-02-11 2018-07-13 安徽江淮汽车集团股份有限公司 一种减震器塔结构总成

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907646B2 (ja) * 2017-03-31 2021-07-21 スズキ株式会社 車体後部構造
CN109050678B (zh) * 2018-08-07 2020-04-03 北京海纳川汽车部件股份有限公司 车辆的减震塔总成和具有其的车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180347A (ja) * 1997-12-18 1999-07-06 Nissan Motor Co Ltd 車体後部構造
CN101585375A (zh) * 2008-05-21 2009-11-25 F·波尔希名誉工学博士公司 汽车车身结构
DE102013101396A1 (de) * 2013-02-13 2014-08-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Konsole für einen Hinterwagenbereich eines Personenkraftwagens
WO2014125723A1 (ja) * 2013-02-18 2014-08-21 本田技研工業株式会社 自動車のダンパーハウジング構造
DE102016015016A1 (de) * 2015-12-21 2017-06-22 Mazda Motor Corporation Vordere Fahrzeugkarosseriestruktur und Verfahren zum Erhöhen der Festigkeit derselben
CN108275210A (zh) * 2018-02-11 2018-07-13 安徽江淮汽车集团股份有限公司 一种减震器塔结构总成

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114065406A (zh) * 2022-01-17 2022-02-18 成都飞机工业(集团)有限责任公司 一种工艺孔的设计方法、装置、设备及可存储介质
CN115092290A (zh) * 2022-06-23 2022-09-23 江铃汽车股份有限公司 新能源汽车后悬车身设计方法及基于该方法的车身结构
CN115158470A (zh) * 2022-06-29 2022-10-11 重庆长安汽车股份有限公司 一种侧围总成后部加强结构及车辆
CN115626116A (zh) * 2022-09-19 2023-01-20 重庆长安汽车股份有限公司 一种置物板总成结构及车辆
CN115626116B (zh) * 2022-09-19 2024-05-03 重庆长安汽车股份有限公司 一种置物板总成结构及车辆

Also Published As

Publication number Publication date
CN115066366A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
WO2021207887A1 (zh) 一种后减震塔、后减震塔总成及车辆
JP2016124367A (ja) 車体構造
CN210881576U (zh) 汽车后减震器安装总成
CN108945106A (zh) 一种副车架轻量化结构
CN208947414U (zh) 车身后纵梁结构
CN112606912B (zh) 一种后纵梁总成及车辆
CN105270090B (zh) 一种后驱电动车承载式后桥装置
WO2023241354A1 (zh) 一种车辆后地板及汽车
CN207416953U (zh) 副车架结构
CN203511782U (zh) 一种汽车车身侧围b柱结构
CN107097850A (zh) 一种通用型铝合金汽车副车架结构
CN217294168U (zh) 一种用于汽车底盘悬架上的摆臂组件
CN109625100A (zh) 一种车厢底板总成
CN207433632U (zh) 一种适用于燃油车和ev电动车的通用型铝副车架
CN201009700Y (zh) 一种汽车前控制臂
CN215435894U (zh) 减震器座、减震塔结构和车辆
CN209466944U (zh) 一种高刚性轻量化镁合金减振器支座及其连接结构
CN212828675U (zh) 一种集成式管梁
CN201227949Y (zh) 匹配平衡轴橡胶衬套的钢板弹簧盖板
CN204137108U (zh) 一种车架横梁
CN108556585B (zh) 螺旋弹簧前吊耳总成
CN112026929A (zh) 一种车身c环结构及汽车
CN202966433U (zh) 汽车前纵梁加强结构
CN221114099U (zh) 一种铝合金汽车前舱盖铰链加强板结构
CN213138927U (zh) 一种后减加强板、后减加强总成结构及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931057

Country of ref document: EP

Kind code of ref document: A1