WO2021204023A1 - 一种电力线网络中信道估计的方法、装置和*** - Google Patents

一种电力线网络中信道估计的方法、装置和*** Download PDF

Info

Publication number
WO2021204023A1
WO2021204023A1 PCT/CN2021/084058 CN2021084058W WO2021204023A1 WO 2021204023 A1 WO2021204023 A1 WO 2021204023A1 CN 2021084058 W CN2021084058 W CN 2021084058W WO 2021204023 A1 WO2021204023 A1 WO 2021204023A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
devices
message
reply message
request messages
Prior art date
Application number
PCT/CN2021/084058
Other languages
English (en)
French (fr)
Inventor
曾焱
黄亚东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021204023A1 publication Critical patent/WO2021204023A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation

Definitions

  • the present invention relates to the field of network communication, and in particular to a method, device and system for channel estimation applied to power line networks.
  • the Power Line Communication (PLC) technology uses the widespread copper power line as the transmission medium, and records the information on the alternating current through the low-frequency baseband signal to provide an effective return pipeline for the last stage of the family's interconnection.
  • the power line terminal equipment commonly known as the power cat, provides the last segment of information access for the terminal equipment of the family or other small places (for example, hotels, office places, etc.) through Ethernet or Wi-Fi.
  • a power line terminal device When a power line terminal device joins the network, it needs to request channel training, channel training, and update of communication parameters before it can interact with other devices in the network.
  • the embodiments of the present invention provide a method, device, and system for channel estimation in a power line network to solve the technical problem of the large number of messages and long time required during the simultaneous re-estimation process of multiple power line terminal devices in the prior art. .
  • an embodiment of the present application provides a method for channel estimation in a power line network.
  • the method includes: a first device receives a channel estimation request message sent by a plurality of second devices; then, the first device broadcasts or multicasts a channel estimation reply message to the plurality of second devices, and the channel The estimation reply message is used to instruct the plurality of second devices to perform channel estimation.
  • this method can reduce the number of messages required for channel estimation and the time required for channel estimation.
  • the first device broadcasts or multicasts a probe message to the multiple second devices, and the probe message is used for channel estimation. Doing so can reduce the number of sent probe messages and further reduce the number of messages required.
  • the probe message may be a special probe message, or a Media Access Plan (Media Access Plan, MAP) frame, or a combination of the two.
  • the first device broadcasts or multicasts a channel estimation reply message to the multiple second devices, and the channel estimation reply message is used to instruct the multiple second devices to perform Channel estimation specifically includes: the first device broadcasts or multicasts the channel estimation reply message to the multiple second devices and third devices, and the channel estimation reply message is used to instruct the multiple second devices and third devices.
  • the device and the third device perform channel estimation.
  • the method further includes: before receiving the multiple channel estimation request messages, the first device sends an indication message, where the indication message is used to instruct the first device to support Parallel channel estimation.
  • that the first device receives the multiple channel estimation request messages specifically includes: within a preset time length, the first device receives the multiple channel estimation requests information.
  • the channel estimation reply message includes one or more of the following parameters: identifiers of the multiple second devices, message type indication information, start time and end time of detection or start time and duration of detection, The type of detection frame, the number of detection frames, the number of symbols of the detection frame, the guard interval used between the symbols of the detection frame, and the maximum power spectral density used.
  • the message type indication message indicates that the channel estimation reply message is a broadcast message or a multicast message. It should be understood that the message type indication information is not a required parameter.
  • the message type information can also be conveyed by means such as channel estimation of the length of the reply message.
  • the value of the one or more pieces of information is determined according to the maximum or minimum value of the corresponding information carried in the multiple channel estimation request messages.
  • an embodiment of the present invention provides a power line network communication device.
  • the device includes a processor and a memory, the memory is used to store a computer program, and the processor is used to execute the channel estimation method according to the first aspect or any specific implementation manner thereof.
  • an embodiment of the present application provides a system.
  • the system includes the first device and the second device as described in the first aspect or any specific implementation manner thereof.
  • the second device is further configured to perform channel estimation according to the probe message sent by the first device, and send the updated channel parameters to the first device, so that the two devices complete the configuration update of the channel parameters for data transmission.
  • an embodiment of the present application also provides a communication method in a power line network.
  • the method includes: multiple second devices sending channel estimation request messages to the first device; after receiving the multiple channel estimation request messages, the first device broadcasts or multicasts to the multiple second devices A channel estimation reply message, the channel estimation reply message is used to instruct the plurality of second devices to perform channel estimation, the channel estimation reply message includes a first identifier, and the first identifier is used to indicate the plurality of second devices Two equipment.
  • the first identifier includes the device identifiers of the multiple second devices. It should be understood that the device identification is optional, and a set of devices that need to perform parallel channel estimation may also be indicated through, for example, a channel estimation group identification.
  • an embodiment of the present invention provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the foregoing first aspect or the method involved in any implementation manner of the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for channel estimation provided by this application
  • FIG. 3 is a schematic flowchart of a first channel estimation method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a second channel estimation method provided by an embodiment of this application.
  • Fig. 5 is a schematic diagram of an example of communication window division
  • FIG. 6 is a schematic flowchart of a third channel estimation method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of the hardware structure of a device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a device hardware structure provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the structure of a communication device according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of another communication device structure provided by an embodiment of this application.
  • the device forms and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention.
  • a person of ordinary skill in the art knows that with the evolution of device forms and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 provides a schematic diagram of a specific application scenario.
  • a home network power lines are used to form a Power Line Communication (PLC) network.
  • the network consists of 5 devices connected by power lines, namely devices 1-5. These 5 devices are distributed in four rooms and provide network access services for families.
  • the device 1 is connected to the home network access point.
  • the home network access point may be 5G access.
  • the home network access point may also be other types of access methods, such as fiber to the home or twisted pair access. In this regard, this application is not limited.
  • the device in FIG. 1 may be called a power line network device, a power line network terminal, a power line terminal device, or a power cat.
  • the device is also called a node.
  • a channel is used between the two devices to complete message and data exchange.
  • PLC Power Line Carrier
  • Power line communication can also be called broadband (Broadband over Power Lines, BPL) loaded on power lines, power line digital subscriber line (PDSL), or power line network interconnection (PLN).
  • BPL Broadband over Power Lines
  • PDSL power line digital subscriber line
  • PPN power line network interconnection
  • a power line terminal device When a power line terminal device newly joins the network, it needs to go through the three steps of requesting channel training, channel training and communication parameter update before it can interact with other devices in the network.
  • the power line terminal device needs to send multiple messages. For example, in requesting channel training, the power line terminal device needs to exchange 4 messages with another device; in the process of channel training, the two devices need to exchange N probe messages to complete channel estimation; finally, it needs to pass 2 messages to Complete the update of communication parameters. In other words, after (4+N+2) messages need to be exchanged, the newly online device can start data transmission.
  • this application simply refers to a combination of one or more of the above three steps as channel estimation (Channel Estimation, CE).
  • the power line network terminal is prone to multiple devices being affected at the same time, and the above multiple processes need to be performed at the same time to restore normal data transmission capabilities. For example, interference from household appliances or external noise, or even a sudden power failure, will cause all devices in the network to perform the three steps mentioned above.
  • multiple devices need to execute the message interaction in the foregoing three steps in sequence. Doing so will cause the entire network to go online too long and reduce the user experience. Or, multiple devices can perform message interaction in parallel to complete the above three steps and complete all necessary steps for data transmission. Doing so will cause too much information to be exchanged in the network within a period of time, which may reduce the communication quality and increase the energy consumption of the device.
  • this application provides a new channel estimation method in a power line network to reduce the number of online message interactions and the time required for network devices. Compared with the above-mentioned alternative methods conceivable by those skilled in the art, the method provided in this application can improve the communication quality or reduce the energy consumption of the device by reducing the number of message interactions in the channel estimation process.
  • Fig. 2 is a schematic flow chart of a method for channel estimation provided by this application. As shown in Figure 2, the method includes steps S201 and S203.
  • the first device receives channel estimation request messages sent by multiple second devices;
  • the channel estimation request message is used to request parameter estimation of the data transmission channel between the first device and the second device that sends the channel estimation message.
  • the first device may be device 1.
  • the plurality of second devices may be a plurality of device 2-device 5. Specifically, multiple second devices are affected and need to perform channel estimation again to perform data transmission again. To this end, each second device sends a channel estimation request message to the first device to request the first device to perform the process of parameter estimation of the data communication channel (ie, channel) between itself and the first device.
  • the first device may wait for a preset time. During this time, the first device receives channel estimation request messages sent by multiple second devices, and then starts processing. Or, in other implementation manners, the first device may also set the minimum number of channel estimation request messages. After reaching this minimum number, the first device starts processing multiple request messages. In this regard, this application is not limited.
  • S203 The first device broadcasts or multicasts a channel estimation reply message to the multiple second devices, where the channel estimation reply message is used to instruct the multiple second devices to perform channel estimation.
  • the first device instructs multiple second devices to perform channel estimation by sending a channel estimation reply message.
  • the first device triggers parallel channel estimation through a message.
  • parallel channel estimation means that the start and end times of channel estimation performed by two devices are completely the same or overlap.
  • the channel estimation method disclosed in this application can reduce the channel estimation time and reduce the number of corresponding messages in the network.
  • first and second in this application are used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments described herein can be implemented in a sequence not described in this application.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the specific operation method in the method embodiment can also be applied to the device embodiment. Conversely, the component function description in the device embodiment is also applicable to the related description in the method embodiment.
  • the description of a certain technical feature in one embodiment can also be used to explain the corresponding technical features mentioned in other embodiments.
  • the specific description of the broadcast or multicast sending action in one embodiment may be applicable to the description of the corresponding steps in other embodiments.
  • the specific implementation of the parameters carried in a certain message in one embodiment may be applicable to the same message mentioned in other embodiments.
  • Different drawings of this application may use the same reference numerals or step numbers to identify the same or similar objects (for example, method steps). It should be understood that, in this case, unless otherwise specified, the specific description of a step in one embodiment is also applicable to steps with the same number in another embodiment.
  • FIG. 3 is a schematic flowchart of the first channel estimation method provided by an embodiment of this application. As shown in Figure 3, the method includes the following steps. It should be noted that in the following steps, S301, S305, S307A, S307N, and S311 may be multicast or broadcast messages. For details, please refer to the following description, which will not be repeated here.
  • S301 Device 1 sends an instruction message
  • the indication message is used to indicate that the device 1 has the capability of parallel channel estimation.
  • device 1 can notify other devices in the network, so that multiple devices that need to perform channel estimation send request messages to device 1 for parallel channel estimation. It should be noted that this step is optional.
  • pre-configuration can be used to let devices in the network know the device information capable of parallel channel estimation.
  • the two devices send CE request messages to request the message receiving device to determine the relevant parameters of channel training to start the subsequent channel training process.
  • the information (also called parameters) that the CE request message may include and its meaning are shown in Table 1. It should be noted that in actual applications, the device can carry one or more of the information in Table 1 according to actual needs. This application is not limited.
  • S305 Device 1 sends a CE reply message
  • the receiving devices of the CE reply message are device 2 and device 3 in step S303.
  • the information that the CE reply message may include and its meaning are shown in Table 2.
  • the device 1 may refer to the values of the corresponding information carried in the multiple channel estimation request messages it receives.
  • the device 1 may select the maximum value of certain information in the multiple received channel estimation request messages.
  • the guard interval between symbols of a probe frame selects the maximum value of the guard interval between symbols of a plurality of received probe frames.
  • the device 1 may select the minimum value of certain information in the multiple received channel estimation request messages. For example, the device 1 may obtain the CE start time value from each channel estimation request message, and select the smallest value as the CE start time.
  • the CE reply message when it is a broadcast message, it can further indicate the set of devices that need to perform channel estimation in parallel by carrying the device identifier, so as to meet the needs of scenarios where not all devices in the network need to perform channel estimation. .
  • the message type information is not necessary.
  • the CE reply message can also indicate that the CE reply message is a broadcast or multicast message in other ways. For example, the length of the message can be used to determine whether a certain message is a CE reply message.
  • the device identification is not necessary, and the group ID or other methods can also be used to convey the device set information that needs to be subjected to parallel channel estimation.
  • the device needs to exchange messages separately (that is, to exchange a request message and a reply message) to determine the specific value of the detection frame information.
  • the parameters related to the detection frame can be sent to the peer device, which further reduces the number of messages and saves the time for channel estimation.
  • S307A Device 1 sends a detection message
  • S307N Device 1 sends a detection message
  • device 1 sends multiple probe messages for related devices (device 2 and device 3 in this embodiment) to perform channel estimation.
  • the detection message may be a unicast message. That is, the receiving device of the probe message is a single device. Or, the probe message may be a multicast or broadcast message. In this embodiment, the probe message is a broadcast or multicast message.
  • the message type indication can be completed by carrying information such as the message type shown in Table 2. Alternatively, other indication methods mentioned in step S305 may also be used. I won't repeat them here.
  • the number of sounding messages is proportional to the number of terminals in the network that need to perform channel estimation.
  • the embodiments of the present application can further reduce the number of messages and the time required for compressed channel estimation.
  • the device 2 and the device 3 send the determined channel parameters to the device 1, so that the two ends perform consistent channel parameter configuration.
  • S311 Device 1 sends a CE response message.
  • the device 1 after receiving the CE update parameters, the device 1 sends a response message (which may also be referred to as an acknowledgement message). Similar to the aforementioned probe message, the response message can be unicast or broadcast. For a specific implementation manner, refer to the specific description in step S307A, which will not be repeated here.
  • the embodiments of the present application reduce the number of messages to be sent by the network during the CE process, and compress the channel estimation method. The time required.
  • Fig. 4 is a schematic flowchart of a second channel estimation method provided by an embodiment of the application. As shown in Figure 4, the method includes the following steps.
  • S401 Device 1 sends a CE reply message
  • step S305 is similar to step S305 in FIG. 3, and the relevant description will not be repeated.
  • the CE reply message of the device 1 is also broadcast or multicast sent to the device 5.
  • the device 5 may be a device that is affected by the same external noise and needs to be retrained.
  • device 1 is the device that actively initiates the CE request. Specifically, the device 1 can directly complete the CE request through the CE reply message. Alternatively, device 1 may send a CE indication message (used to notify device 5 that subsequent device 1 will perform channel estimation) before sending the CE reply message. If the CE confirmation message of device 5 is needed to start the CE process, device 1 will wait until the confirmation of device 5 is received, and then broadcast or multicast the CE reply messages that need to be broadcast or multicast sent to device 2, device 3, and device 5, triggering three Equipment to complete the channel estimation.
  • a CE indication message used to notify device 5 that subsequent device 1 will perform channel estimation
  • S403A Device 1 sends a detection message
  • S403N Device 1 sends a detection message
  • This step is similar to steps S307A,..., S307N in FIG. 3, and will not be repeated here.
  • the difference between the two is that, in this embodiment, the receiving device of the probe message also includes the device 5.
  • S404 Device 2, Device 3, and Device 5 perform channel estimation
  • step S308 in FIG. 3 This step is similar to step S308 in FIG. 3, and will not be repeated here.
  • the difference between the two is that, in this embodiment, the device that performs channel estimation also includes device 5.
  • the difference between the two is that, in this embodiment, the device that executes S405 also includes device 5; the receiving device of the CE response message also includes device 5.
  • the embodiment of the present application reduces the number of messages to be sent by the network during the CE process, and compresses the channel estimation method. The time required.
  • devices that have not sent a request but need to perform CE are also included in the parallel channel estimation process, which further improves the efficiency of channel estimation.
  • FIG. 5 provides a schematic diagram of an example of communication window division.
  • the alternating current cycle of the power line of 50 Hz ie, 20 ms
  • two alternating current cycles are provided.
  • the communication cycle of a PLC network is two alternating current cycles, that is, 40 ms.
  • Figure 5 shows an example of possible noise during a PLC communication cycle. These noises may appear randomly or periodically.
  • a PLC network is divided into multiple communication windows for communication between devices.
  • a PLC network will divide the communication window according to its own characteristics or predetermined rules. For example, it can be divided into 4 windows as shown in Fig. 5 according to the characteristics of noise. Or, it can be simply divided into 5 communication windows according to a predetermined rule, for example.
  • the device In the actual data communication process, the device will use a certain time period or certain time periods in these windows.
  • DM Domain Master
  • TXOP Transmission Opportunity
  • a MAP frame indicates the information of TXOP allocation in the next communication cycle.
  • the MAP frame includes the device number that can use a certain TXOP. It should be noted that the MAP frame itself also needs to occupy one or more specific TXOPs.
  • alternating current cycle may also have other values. This application does not limit this and the division of communication periods and communication windows.
  • the MAP frame can also be used as a detection frame.
  • the device 1 in FIG. 1 is a DM as an example for further description.
  • FIG. 6 is a schematic flowchart of a third channel estimation method provided by an embodiment of the application. As shown in Figure 6, the method includes the following steps. It should be noted that, except for steps S601A, ..., S601N in the following steps, the other steps are the same as the corresponding steps in FIG.
  • the device 1 determines the time information for channel estimation.
  • S601A Device 1 sends a MAP frame
  • S601N Device 1 sends a MAP frame
  • the device 1 adjusts the TXOP of the MAP frame in the next cycle by sending the MAP frame to ensure that the TXOP used for sending the MAP frame in the next cycle falls within the time range for CE.
  • the time period for CE is in communication window 2
  • the TXOP specified for the MAP frame sent in communication window 2 in the MAP frame sent in communication window 1 should fall within the time period for CE.
  • the MAP frame can occupy multiple TXOPs to complete channel estimation in multiple windows.
  • the device 1 may need to modify the TXOP used by the MAP frame multiple times, so that the TXOP used for sending the MAP frame can fall within a corresponding time period.
  • the device 1 can also complete the channel training by using a dedicated probe message (for example, the probe message mentioned in the embodiment shown in FIG. 3) and the MAP frame in a mixed manner.
  • the device 1 may use a data frame with broadcast characteristics, or a mixture of data frames and dedicated probe messages to complete the channel training. In this regard, this application is not limited.
  • S311 Device 1 sends a CE response message.
  • the receiving device of the MAP frame may also include a device that does not actively initiate a channel estimation request, such as device 5 in the embodiment shown in FIG. 4, to further improve the efficiency of channel estimation.
  • a device that does not actively initiate a channel estimation request such as device 5 in the embodiment shown in FIG. 4, to further improve the efficiency of channel estimation.
  • channel estimation is completed by sending a MAP frame on a specific TXOP.
  • This channel estimation method can reduce the number of messages that need to be exchanged for channel estimation.
  • FIGS. 2-4 are applicable to any device in the network.
  • the embodiment shown in FIG. 6 requires that the device 1 is a DM, or that the device 1 has the ability to send MAP frames.
  • FIGS. 2-4 and 6 may be applicable to scenarios where different devices perform channel training for the same communication window, and also apply to scenarios where different devices perform channel training for different windows.
  • the device 1 can broadcast or multicast the reply message, and can also broadcast or multicast the detection message.
  • the device can still send reply messages through broadcast or multicast to reduce the number of messages that CE needs to interact.
  • FIG. 7 is a schematic diagram of the hardware structure of a device provided by an embodiment of the application.
  • the apparatus 700 includes a processor 701, a memory 702, and a transceiver 703. These three components are connected by a bus, or may also be connected by other coupling methods (for example, circuits).
  • the apparatus 700 may be applied to the device 1 in FIG. 3, FIG. 4, or FIG. 6, and may also be applied to the device 2, the device 3, or the device 5 in these drawings.
  • the memory 702 is used to store a program that implements the above method embodiment, and the processor 701 calls the program to execute the operation of the above method embodiment.
  • the transceiver 703 is used to implement the sending and receiving of messages in the foregoing method embodiments.
  • the transceiver 703 may include a separate transmitter and receiver.
  • apparatus 700 may also be used to execute the method steps involved in the embodiment variants described in FIG. 3-4 or FIG. 6, which will not be repeated here.
  • the processor 701 in the embodiment of the present application may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can implement or execute The methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software units in the processor.
  • the memory 702 may be a non-volatile memory, such as a hard disk drive (HDD), etc., and may also be a volatile memory (volatile memory), such as a random-access memory (RAM).
  • the memory 702 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • FIG. 8 is a schematic diagram of a device hardware structure provided by an embodiment of the application.
  • the communication device 800 includes a source processing device 801, a channel encoder 802, a modulator 803, a filter 804, a coupling circuit 805, a filter 806, a demodulator 807, and a channel decoder 808.
  • the information source processing device 801 is used to complete processing that needs to send and receive data.
  • the information source processing device 801 may include the device 700 in FIG. 7 to complete the processing of messages related to channel estimation.
  • the channel encoder 802, the modulator 803, the filter 804, and the coupling circuit 805 provide the necessary processing for data to be sent to the PLC network, namely: channel encoding, modulation, filtering, and coupling to the power line for transmission.
  • the coupling circuit 805, filter 806, demodulator 807, and channel decoder 808 provide the necessary processing required for data reception, namely: receiving the signal on the power line into the device 800, and then completing the filtering, demodulation and channel
  • the decoding process is finally sent to the source processing device 801 for information processing.
  • FIG. 9 is a schematic diagram of the structure of a communication device provided by an embodiment of the application.
  • the communication device 900 includes a message processing unit 901 and a transceiving unit 902, which are used to execute the method steps of FIG. 2 or the method steps executed by the device 1 in FIG. 3-4 or FIG. 6.
  • the transceiving unit 902 is configured to send and receive messages in the aforementioned multiple drawings (for example, steps S301, S305, etc. in FIG. 3).
  • the message processing unit is used to complete the processing of the message (for example, to complete the parsing of the CE request message in FIG. 3).
  • the corresponding message sending and receiving and processing are described in detail in the method drawings, and will not be repeated here.
  • FIG. 10 is a schematic diagram of another communication device structure provided by an embodiment of this application.
  • the communication device 1000 includes a message processing unit 1001, a transceiver unit 1002, and a channel estimation unit 1003, which are used to execute the method steps performed by the device 2 or the device 3 or the device 5 in FIG. 3-4 or FIG.
  • the transceiving unit 1002 is used to send and receive the messages in the aforementioned three figures.
  • the message processing unit 1001 is used to complete message processing.
  • the channel estimation unit is used to perform channel estimation (for example, step S308 in FIG. 3). The corresponding message sending and receiving and processing are described in detail in the method drawings, and will not be repeated here.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the storage medium stores a software program, and when the software program is read and executed by one or more processors, the method provided by any one or more of the foregoing embodiments can be implemented.
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • an embodiment of the present application also provides a chip.
  • the chip includes a processor, which is used to implement the functions involved in any one or more of the foregoing embodiments, such as acquiring or processing various messages involved in the foregoing methods.
  • the chip further includes a memory, and the memory is used for necessary program instructions and data to be executed by the processor.
  • the chip can be composed of a chip, or it can include a chip and other discrete devices.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请揭示了一种电力线网络中的信道估计的方法、设备和***。一种具体的信道估计的方法包括:一个设备收到多个另一设备分别发送的信道估计请求消息;然后,该设备向这多个另一设备广播或组播发送一个信道估计答复消息,以指示这多个另一设备进行信道估计。可选地,该设备还可以广播或组播发送探测消息,用于多个另一设备进行信道估计。通过发送单个信道估计答复消息来完成多个信道的信道估计,该信道估计方法可以减少信道估计所需要交互的消息数量,缩短信道估计所需的时间。

Description

一种电力线网络中信道估计的方法、装置和***
本申请要求于2020年4月7日提交中国国家知识产权局、申请号为202010268596.9、发明名称为“一种电力线网络中信道估计的方法、装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络通信领域,尤其涉及应用于电力线网络的信道估计的方法、装置和***。
背景技术
电力线通讯(Power Line Communication,PLC)技术利用广泛存在的铜制电力线作为传输介质,通过低频的基带信号记载到交流电上进行信息传输,为家庭最后一段互联提供有效的回传管道。电力线终端设备,俗称电力猫,通过以太网或Wi-Fi为家庭或其他小型场所(例如,酒店,办公场所等)的终端设备提供最后一段的信息接入。
一个电力线终端设备加入网络时,需要经过请求信道训练、信道训练和通信参数的更新后,才能够与网络中的其他设备进行数据交互。
发明内容
本发明实施例提供一种电力线网络中信道估计的方法、装置和***,以解决现有技术面临多个电力线终端设备同时进行重新估计过程中带来的消息数量多、所需时间长的技术问题。
第一方面,本申请实施例提供了一种电力线网络中的信道估计的方法。该方法包括:第一设备收到多个第二设备发送的信道估计请求消息;然后,所述第一设备向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备执行信道估计。
通过发送一个消息触发并行信道估计,该方法可以减少信道估计需要的消息数量,降低信道估计所需的时间。
在一种具体的实现方式中,所述第一设备向所述多个第二设备广播或组播发送探测消息,所述探测消息用于信道估计。这么做,可以降低发送探测消息的数量,进一步降低所需消息数量。具体地,探测消息可以为专门的探测消息,或者是媒质接入计划(Media Access Plan,MAP)帧,或者是两者的结合。
在一种具体的实现方式中,所述第一设备向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备执行信道估计,具体包括:所述第一设备向所述多个第二设备和第三设备广播或者组播发送所述信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备和所述第三设备执行信道估计。通过将未主动请求信道估计但需要进行信道估计的设备纳入并行信道估计过程,提高了信道估计的效率和准确性。
在一种具体的实现方式中,所述方法还包括:在收到所述多个信道估计请求消息之前,所述第一设备发送指示消息,所述指示消息用于指示所述第一设备支持并行信道估计。
在一种具体的实现方式中,所述第一设备收到所述多个信道估计请求消息,具体包括:在预设的时间长度内,所述第一设备收到所述多个信道估计请求消息。
可选地,所述信道估计答复消息包括如下参数的一个或者多个:所述多个第二设备的标识、消息类型指示信息、探测的开始时间和结束时间或者探测的开始时间和持续时长、探测帧的类型、探测帧的个数、探测帧的符号个数、探测帧的符号间使用的保护间隔以及使用的最大功率谱密度。其中,所述消息类型指示消息指示所述信道估计答复消息为广播消息或组播消息。应理解,消息类型指示信息不是一个必须的参数。还可以通过信道估计答复消息的长度等方式来传递消息类型信息。
在一种具体的实现方式中,所述一个或者多个信息的取值根据所述多个信道估计请求消息中携带的对应信息取值的最大值或最小值来决定。
第二方面,本发明实施例提供了一种电力线网络通信装置。所述装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行如第一方面或者其任一具体实现方式所述的信道估计的方法。
第三方面,本申请实施例提供了一种***。所述***包括如第一方面或其任一具体实现方式所述的第一设备和第二设备。其中,第二设备还用于根据第一设备发送的探测消息进行信道估计,并将更新的信道参数发送给第一设备,以使得两个设备完成信道参数的配置更新,以进行数据传输。
第四方面,本申请实施例还提供一种电力线网络中的通信方法。所述方法包括:多个第二设备发送信道估计请求消息给第一设备;所述第一设备收到所述多个信道估计请求消息后,向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备进行信道估计,所述信道估计答复消息包括第一标识,所述第一标识用于指示所述多个第二设备。
在一种具体的实现方式中,所述第一标识包括所述多个第二设备的设备标识。应理解,设备标识是可选的,还可以通过例如信道估计组标识来指示需要进行并行信道估计的设备集合。
关于信道估计答复消息包含的参数、发送的范围和消息类型等一些可选实现方案,参见第一方面的具体实现方式描述,在此不再赘述。
第五方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面或者第一方面的任一实现方式中涉及的方法。
附图说明
图1为本申请实施例的应用场景的示意图;
图2为本申请提供的一种信道估计的方法流程示意图;
图3为本申请实施例提供的第一种信道估计的方法流程示意图;
图4为本申请实施例提供的第二种信道估计的方法流程示意图;
图5为通信窗口划分示例的示意图;
图6为本申请实施例提供的第三种信道估计的方法流程示意图;
图7为本申请实施例提供的一种装置硬件结构示意图;
图8为本申请实施例提供的一种设备硬件结构示意图;
图9为本申请实施例提供的一种通信装置结构的示意图;
图10为本申请实施例提供的另一种通信装置结构的示意图。
具体实施方式
本申请实施例描述的设备形态以及业务场景是为了更加清楚地说明本发明实施例的技术方案,并不构成对本发明实施例提供的技术方案的限制。本领域普通技术人员可知,随着设备形态的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
本申请提出的技术方案适用于利用电力线网络来提供网络接入服务的场景。例如,家庭网络、酒店网络或者办公网络等。图1提供了一个具体的应用场景示意图。如图1所示,在一个家庭网络里,利用电力线组成了一个电力线通信(Power Line Communication,PLC)网络。该网络由通过电力线连接的5个设备组成,即设备1-5。这5个设备分布在四个房间,为家庭提供网络接入服务。其中,设备1和家庭网络接入点连接。家庭网络接入点可以是5G接入。或者,家庭网络接入点也可以是其他类型的接入方式,例如:光纤入户或者双绞线接入等。对此,本申请不做限定。
需要说明的是,图1中的设备可能被称为电力线网络设备、电力线网络终端或电力线终端设备或者电力猫。在本申请中,设备也称为节点。两个设备之间通过一个信道来完成消息以及数据交互。
PLC的全称也可以写为Power Line Carrier,即电力线载波通信。电力线通信亦可以称为加载于电力线的宽带(Broadband over Power Lines,BPL)、电力线数字用户线(power line digital subscriber line,PDSL)或电力线网络互连(power line networking,PLN)等。对比,本申请不做限定。
一个电力线终端设备新加入网络时,需经过请求信道训练、信道训练和通信参数更新这个三个步骤后,才能够与网络中的其他设备进行数据交互。在上述过程中,电力线终端设备需要发送多个消息。例如,在请求信道训练中,电力线终端设备需要和另一设备交互4个消息;在信道训练的过程中,两个设备需要交互N个探测消息来完成信道估计;最后,需要通过2个消息来完成通信参数的更新。也就是说,需要交互(4+N+2)个消息后,新上线的设备才可以开始进行数据传输。为了简化说明,本申请将上述三个步骤的一个或者多个的组合简称为信道估计(Channel Estimation,CE)。
在相关技术研究中发现,电力线网络终端易发生多个设备同时受到影响,需要同时进行上述多个过程,以恢复正常的数据传输能力。例如,家用电器的干扰或者是外部噪声的干扰,甚至是突然断电,会让网络中所有设备都需要进行上述提到的三个步骤。为保证通信质量,通常地,多个设备需要按顺序来执行前述三个步骤中的消息交互。这么做会导致整个网络上线实际过长,降低了用户体验。或者,可以让多个设备并行地进行消息交互,以完成上述三个步骤,完成数据传输的所有必要步骤。这么做会使得在一段时间内,网络中交互的信息过多,可能降低通信质量,且提高了设备的能耗。
为此,本申请提供了一种电力线网络中的新的信道估计的方法,以降低网络设备上线消息交互数量以及需要用的时间。相对于上述本领域技术人员可以想到的替代方法,本申请提供的方法通过减少信道估计过程中的消息交互数量,可提高通信质量或降低设备能耗。
图2为本申请提供的一种信道估计的方法流程示意图。如图2所示,该方法包括步骤S201和S203。
S201:第一设备收到多个第二设备发送的信道估计请求消息;
所述信道估计请求消息用于请求对所述第一设备和发送所述信道估计消息的第二设备之间的数据传输通道进行参数估计。以图1为例,第一设备可以是设备1。多个第二设备可以是设备2-设备5中的多个。具体地,多个第二设备因受到影响,需要重新进行信道估计,以重新进行数据传输。为此,每一个第二设备都给第一设备发送一个信道估计请求消息,以请求第一设备进行自己和第一设备之间的数据通信通道(即信道)的参数估计的流程。
在一种具体的实现方式中,第一设备可以等待预设的时间。在此时间内,第一设备收到多个第二设备发送的信道估计请求消息,再开始进行处理。或者,在其他的实现方式中,第一设备也可以设定信道估计请求消息的最小数量。在达到了这个最小数量后,第一设备才开始进行多个请求消息的处理。对此,本申请不做限定。
S203:所述第一设备向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备执行信道估计。
具体地,第一设备通过发送一个信道估计答复消息来指示多个第二设备进行信道估计。也就是说,第一设备通过一个消息触发了并行的信道估计。应理解,并行的信道估计指的是两个设备执行信道估计的开始和结束时间完全相同或有重叠。
通过发送单个消息来触发多个设备的信道估计,本申请揭示的信道估计方法可以降低信道估计的时间,减少网络中相应消息的数量。
需要说明的是,本申请的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以本申请未描述的顺序实施。“和/或”用于描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。方法实施例中的具体操作方法也可以应用于装置实施例中。反之,装置实施例中的组件功能描述也适用于方法实施例中的相关描述。
此外,除非特殊说明,一个实施例中针对某一技术特征的描述也可以应用于解释其他实施例提及对应的技术特征。例如,在一个实施例中广播或者组播发送动作的具体描述,可以适用于其他实施例中对应的步骤描述。又如,在一个实施例中关于某一消息携带的参数的具体实现方式,可以适用于其他实施例中的提及的同一消息。本申请不同的附图可能用相同的附图标记或者步骤编号来标识相同或相似的对象(例如,方法步骤)。应理解,这种情况下,除非特殊说明,一个实施例中关于某一步骤的具体说明也适用于另一实施例中具有相同编号的步骤。
下面将基于上面描述的本申请的一些共性方面,对本申请技术方案进一步说明。
以图1所示的网络为例,图3为本申请实施例提供的第一种信道估计的方法流程示意图。如图3所示,该方法包括如下步骤。需要说明的是,下述步骤中,S301、S305、S307A、S307N和S311可能是组播或者广播消息,具体详见下述说明,在此不予赘述。
S301:设备1发送指示消息;
该指示消息用于指示设备1具备并行信道估计的能力。通过发送这个指示消息,设备1可以通知网络中的其他设备,以使得需要进行信道估计的多个设备发送请求消息给设备1来进行并行信道估计。需要说明的是,这个步骤是可选的。在另一种实现方式中,可以通过预先配置,让网络中的设备知晓具备并行信道估计能力的设备信息。
S303:设备2和设备3(图3中标识为设备2-3)发送信道估计(CE)请求消息;
两个设备通过发送CE请求消息,请求消息接收设备确定信道训练的相关参数,以开始后面的信道训练过程。
CE请求消息可能包括的信息(也称为参数)和其含义见表1所示。需要说明的是,在实际应用中,设备可以根据实际需要来携带表1中的一个或者多个信息。对此本申请不做限定。
表1 CE请求消息包含的信息示例
Figure PCTCN2021084058-appb-000001
S305:设备1发送CE答复消息;
CE答复消息的接收设备为步骤S303中的设备2和设备3。具体地,CE答复消息可能包括的信息和其含义如表2所示。
表2 CE答复消息包含的信息示例
Figure PCTCN2021084058-appb-000002
应理解,在设备1选择CE时间相关信息和探测帧相关信息的具体取值,可以参考其收到的多个信道估计请求消息中携带的对应的信息的取值。在一种具体的实现中,设备1可以选择收到的多个信道估计请求消息中某一信息取值的最大值。例如,探测帧的符号间的保护间隔选择多个收到的探测帧的符号间的保护间隔的最大值。在另一种具体的实现方式中,设备1可以选择收到的多个信道估计请求消息中某一信息取值的最小值。例如,设备1可以从每一个信道估计请求消息获取CE开始时间数值中,选择其中的最小值作为CE开始时间。
需要说明的是,当CE答复消息为广播消息时,还可以进一步通过携带设备标识的方式来指示需要并行地进行信道估计的设备集合,以满足不是网络中所有设备都需要进行信道估计的场景需求。此外,消息类型信息不是必须的。CE答复消息还可以通过其他方式来指示该CE答复消息为广播或者组播消息。例如,可以通过消息的长度来判断某一消息是否为CE答复消息。
应理解,设备标识不是必须的,也可以通过组ID或者其他方式来传递需要进行并行信道估计的设备集合信息。
还需要说明的是,现有技术中设备需要单独交互消息(即交互一个请求消息和一个答复消息)来确定探测帧信息的具体取值。在本实施例中,在答复CE请求消息的同时可以向对端设备发送探测帧相关的参数,进一步减少了消息的数量,节约了信道估计的时间。
S307A:设备1发送探测消息;
S307N:设备1发送探测消息;
具体地,在预先确定的时间段内,设备1发送多个探测消息,以供相关的设备(在本实施例中为设备2和设备3)执行信道估计。需要说明的是,该探测消息可能是单播消息。也就是说,该探测消息的接收设备是单个设备。或者,该探测消息可能是组播或者广播消息。在本实施例中,探测消息是广播或者组播消息。具体地可以通过携带如表2所示的消息类型这种信息来完成消息类型指示。或者,用步骤S305中提及的其他指示方式亦可。在此不再赘述。
通常地,探测消息的数量和网络中需要进行信道估计的终端的数量成正比。通过多个设备共用探测消息的方式,本申请实施例可以进一步降低消息的数量和压缩信道估计所需的时间。
S308:设备2和设备3执行信道估计;
S309:设备2和设备3发送CE更新消息;
完成信道估计后,设备2和设备3将确定的信道参数发送给设备1,以使得双端进行一致的信道参数配置。
S311:设备1发送CE响应消息。
对应地,设备1收到CE更新参数后,发送响应消息(亦可以称为确认消息)。类似前述的探测消息,响应消息可以是单播发送或者广播发送。具体的实现方式参见步骤S307A中的具体描述,在此不再赘述。
通过广播或者组播发送CE答复消息,并可选地,广播或者组播探测消息和/或CE响应消息,本申请实施例降低了CE过程中网络要发送的消息数量,并压缩了信道估计所需的时间。
图4为本申请实施例提供的第二种信道估计的方法流程示意图。如图4所示,该方法包括 如下步骤。
S303:设备2和设备3(图4中标识为设备2-3)发送信道估计(CE)请求消息;
具体参见图3中的相关描述,在此不再赘述。
S401:设备1发送CE答复消息;
该步骤类似图3中的步骤S305,相关描述不再赘述。不同的是,在本实施例中,设备1的CE答复消息还广播或组播发送给设备5。
应理解,设备5可能是受到同一外部噪声影响而需要重新训练的设备。但是,设备1是主动发起CE请求的设备。具体地,设备1可以直接通过CE答复消息来完成CE请求。或者,设备1可以在发送CE答复消息前,先发送一个CE指示消息(用于通知设备5后续设备1会执行信道估计)。如果需要得到设备5的CE确认消息才能启动CE流程,设备1等到收到设备5的确认后,再将需要广播或组播发送给设备2、设备3和设备5的CE答复消息,触发三个设备来完成信道估计。
S403A:设备1发送探测消息;
S403N:设备1发送探测消息;
该步骤类似图3中的步骤S307A,…,S307N,在此不再赘述。两者的区别在于,在本实施例中,探测消息的接收设备还包括设备5。
S404:设备2、设备3和设备5执行信道估计;
该步骤类似图3中的步骤S308,在此不再赘述。两者的区别在于,在本实施例中,执行信道估计的设备还包括设备5。
S405:设备2、设备3和设备5发送CE更新消息
S407:设备1发送CE响应消息
上述两个步骤类似图3中的步骤S309和S311,在此不再赘述。两者的区别在于,在本实施例中,执行S405的设备还包括设备5;CE响应消息的接收设备还包括设备5。
通过广播或者组播发送CE答复消息、广播或者组播探测消息和/或CE响应消息的一个或多个,本申请实施例降低了CE过程中网络要发送的消息数量,并压缩了信道估计所需的时间。此外,本实施例中将未发送请求但是需要进行CE的设备也纳入并行信道估计的流程中,进一步提高了信道估计的效率。
在实际的应用中,PLC网络用于连接两个通信设备的电力线承载是交流电,有一定的电器噪声。因此,PLC网络设备通信是周期性划分的。图5提供了通信窗口划分示例的示意图。在图5的示例中,以电力线的交流电周期为50Hz(即20ms)为例,提供了两个交流电周期。通常地,一个PLC网络的通信周期为两个交流电周期,即40ms。图5给出了一个PLC通信周期内可能的噪声示例。这些噪声可能是随机的或者周期性出现。为此,一个PLC网络会划分为多个通信窗口,用于进行设备间通信。在实际部署中,一个PLC网络会根据其自身的特点或者预先的规则,进行通信窗口划分。例如,可以根据噪声的特点划分为如图5所示的4个窗口。或者,可以简单的按照预先的规则,例如,划分为5个通信窗口。在实际的数据通信过程中,设备会使用到这些窗口中的某一个时间段或者某几个时间段。为了完成高效地时间资源分配,一个PLC网络中通常会有一个域主节点(Domain Master,DM)。为简化说明,PLC网络设备使用的时间资源后续简称为传输机会(Transmission Opportunity,TXOP)。在信道 估计完成后,为了指示TXOP具体的分配信息,DM设备会周期性地发送媒质接入计划(Media Access Plan,MAP)帧。具体地,一个MAP帧中指示了下一个通信周期中,TXOP分配的信息。例如,MAP帧包括能够使用某一个TXOP的设备编号。需要说明的是,MAP帧本身也需要占用特定的一个或者多个TXOP。
应理解,交流电周期还可能为其他取值。本申请对此以及通信周期和通信窗口的划分不做限定。
为了降低CE过程中网络要发送的消息数量,还可以利用MAP帧作为探测帧的方式。具体地,以图1中的设备1为DM为例来进行进一步说明。
图6为本申请实施例提供的第三种信道估计的方法流程示意图。如图6所示,该方法包括如下步骤。需要说明的是,下述步骤中除了步骤S601A,…,S601N,其他步骤同图3中对应的步骤,可参见相关说明,在此不再赘述。
S303:设备2和设备3发送信道估计(CE)请求消息;
S305:设备1(DM)发送CE答复消息;
通过这两个步骤,设备1确定了需要进行信道估计的时间信息。
S601A:设备1发送MAP帧;
S601N:设备1发送MAP帧;
具体地,根据获得进行CE的时间信息,设备1通过发送MAP帧来调整下一周期中MAP帧的TXOP,以保证下一周期中MAP帧发送使用的TXOP落入进行CE的时间范围。以图5为例,如果进行CE的时间段落入通信窗口2,那么在通信窗口1中发送MAP帧中为在通信窗口2发送的MAP帧指定的TXOP应落入进行CE的时间段范围中。
可选地,根据实际应用需要,MAP帧可以占用多个TXOP来完成多个窗口内的信道估计。
应理解,为满足多个不同的并行信道估计,设备1可能需要多次修改MAP帧使用的TXOP,以使得MAP帧发送使用的TXOP能够落入对应的时间段内。
需要说明的是,设备1还可以通过利用专用的探测消息(例如,图3所示的实施例中提及的探测消息)和MAP帧混合的方式来完成信道训练。或者,设备1可以利用具备广播特性的数据帧,或者数据帧和专用的探测消息混合的方式来完成信道训练。对此,本申请不做限定。
S308:设备2和设备3执行信道估计;
S309:设备2和设备3发送CE更新消息;
S311:设备1发送CE响应消息。
可选地,MAP帧的接收设备还可以包括如图4所示的实施例中的设备5这种未主动发起信道估计请求的设备,以进一步提升信道估计的效率。
在本实施例中,通过在特定的TXOP上发送MAP帧来完成信道估计,该信道估计方法可以降低信道估计所需要交互的消息数量。
需要说明的是,图2-4所示的实施例适用于网络中的任意设备。而图6所示的实施例要求设备1为DM,或者说设备1具备发送MAP帧的能力。此外,图2-4和图6既可以适用于不同设备针对同一通信窗口进行信道训练的场景,亦适用于不同设备针对不同窗口的信道训练的场景。在前一场景中,设备1可以广播或组播发送答复消息,还可以广播或组播方法探测消息。在后一场景中,因为待训练的通信窗口不在同一时间段内,设备仍可以通过广播或组播 发送答复消息来降低CE所需交互的消息数量。
图7为本申请实施例提供的一种装置硬件结构示意图。如图7所示,装置700包括处理器701、存储器702和收发器703。这三个组件通过总线连接,或者也可以通过其他耦合方式来连接(例如电路)。装置700既可以应用于图3、图4或图6中的设备1,也可以应用于这些附图中的设备2、设备3或设备5。
存储器702用于存储实现以上方法实施例的程序,处理器701调用该程序,执行以上方法实施例的操作。收发器703用于实现前述方法实施例中的消息的发送和接收。可选地,收发器703可以是包括分立的发送器和接收器。
需要说明的是,装置700也可以用于执行图3-4或图6所述的实施例变形所涉及的方法步骤,在此不再赘述。
本申请实施例中处理器701可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。存储器702可以是非易失性存储器,比如硬盘(hard disk drive,HDD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器702是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
图8为本申请实施例提供的一种设备硬件结构示意图。如图8所示,通信装置800包括信源处理装置801、信道编码器802、调制器803、滤波器804、耦合电路805、滤波器806、解调器807和信道解码器808。具体地,信源处理装置801用于完成需要发送和接收数据的处理。例如,信源处理装置801可以包括图7中的装置700,以完成信道估计相关的消息的处理。信道编码器802、调制器803、滤波器804和耦合电路805提供了数据需要发送到PLC网络中必要的处理,即:信道编码、调制、滤波和耦合到电力线上进行传输。类似地,耦合电路805、滤波器806、解调器807和信道解码器808提供了数据接收需要的必要处理,即:将电力线上的信号接收到设备800内,然后完成滤波、解调制和信道解码处理,最终送入信源处理装置801进行信息的处理。
图9为本申请实施例提供的一种通信装置结构的示意图。如图9所示,通信装置900包括消息处理单元901和收发单元902,用于执行图2的方法步骤或者用于执行图3-4或图6中设备1执行的方法步骤。具体地,收发单元902用于发送和接收前述多个附图中的消息(例如图3中的步骤S301,S305等)。消息处理单元用于完成消息的处理(例如完成图3中针对CE请求消息的解析)。对应的消息收发和处理在方法附图中有详细描述,在此不再赘述。
图10为本申请实施例提供的另一种通信装置结构的示意图。如图10所示,通信装置1000包括消息处理单元1001、收发单元1002和信道估计单元1003,用于执行图3-4或图6中设备2或设备3或设备5执行的方法步骤。具体地,收发单元1002用于发送和接收前述三个附图中的消息。消息处理单元1001用于完成消息的处理。信道估计单元用于执行信道估计(例如图3中的步骤S308)。对应的消息收发和处理在方法附图中有详细描述,在此不再赘述。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质。该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片。该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的各种消息。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种电力线网络中的信道估计的方法,其特征在于,所述方法包括:
    第一设备收到多个信道估计请求消息,所述多个信道估计请求消息是由多个第二设备分别发送的,所述多个信道估计请求消息分别用于请求对所述第一设备和所述多个第二设备之间的数据传输通道进行参数估计;
    所述第一设备向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备执行信道估计。
  2. 如权利要求1所述的信道估计的方法,其特征在于,所述方法还包括:
    所述第一设备向所述多个第二设备广播或组播发送探测消息,所述探测消息用于所述多个第二设备进行信道估计。
  3. 如权利要求2所述的信道估计的方法,其特征在于,所述探测消息包括媒质接入计划(Media Access Plan,MAP)帧。
  4. 如权利要求1-3任一所述的信道估计的方法,其特征在于,所述第一设备向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备执行信道估计,具体包括:
    所述第一设备向所述多个第二设备和第三设备广播或者组播发送所述信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备和所述第三设备执行信道估计。
  5. 如权利要求1-4任一所述的信道估计的方法,其特征在于,所述方法还包括:
    在收到所述多个信道估计请求消息之前,所述第一设备发送指示消息,所述指示消息用于指示所述第一设备支持并行信道估计。
  6. 如权利要求1-5任一所述的信道估计的方法,其特征在于,所述第一设备收到所述多个信道估计请求消息,具体包括:
    在预设的时间长度内,所述第一设备收到所述多个信道估计请求消息。
  7. 如权利要求1-6所述的信道估计的方法,其特征在于,所述信道估计答复消包括所述多个第二设备的标识。
  8. 如权利要求1-7任一所述的信道估计的方法,其特征在于,所述信道估计答复消息包括如下信息的一个或者多个:
    探测的开始时间和结束时间或者探测的开始时间和持续时长、探测帧的类型、探测帧的个数、探测帧的符号个数、探测帧的符号间使用的保护间隔以及使用的最大功率谱密度。
  9. 如权利要求8所述的信道估计的方法,其特征在于,所述一个或者多个信息的取值根据所述多个信道估计请求消息中携带的对应信息取值的最大值或最小值来决定。
  10. 如权利要求1-9任一所述的信道估计的方法,其特征在于,所述信道估计答复消息包括消息类型指示信息,所述消息类型指示消息指示所述信道估计答复消息为广播消息或组播消息。
  11. 一种电力线网络通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行如权利要求1-10任一所述的信道估计的方法。
  12. 一种电力线网络中的通信方法,其特征在于,所述方法包括:
    多个第二设备发送信道估计请求消息给第一设备;
    所述第一设备收到所述多个信道估计请求消息后,向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备进行信道估计,所述信道估计答复消息包括第一标识,所述第一标识用于指示所述多个第二设备。
  13. 如权利要求12所述的通信方法,其特征在于,所述第一标识包括所述多个第二设备的设备标识。
  14. 如权利要求12或13所述的通信方法,其特征在于,所述信道估计答复消息还包括指示信息,所述指示信息用于指示所述信道估计答复消息为广播消息或者组播消息。
  15. 如权利要求12或14所述的通信方法,其特征在于,所述向所述多个第二设备广播或组播发送一个信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备进行信道估计,具体包括:
    向所述多个第二设备和第三设备广播或组播发送所述信道估计答复消息,所述信道估计答复消息用于指示所述多个第二设备和所述第三设备进行信道估计;所述第一标识还用于指示所述第三设备。
  16. 如权利要求12-15任一所述的通信方法,其特征在于,所述信道估计答复消息还包括如下信息的一个或者多个:
    探测的开始时间和结束时间或探测的开始时间和持续时长、探测帧的类型、探测帧的个数、探测帧的符号个数、探测帧的符号之间使用的保护间隔和使用的最大功率谱密度。
  17. 如权利要求12-14、16任一所述的通信方法,其特征在于,所述方法还包括:
    所述第一设备向所述多个第二设备广播或组播发送探测消息,所述探测消息用于所述多个第二设备进行信道估计。
PCT/CN2021/084058 2020-04-07 2021-03-30 一种电力线网络中信道估计的方法、装置和*** WO2021204023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010268596.9 2020-04-07
CN202010268596.9A CN113497640B (zh) 2020-04-07 2020-04-07 一种电力线网络中信道估计的方法、装置和***

Publications (1)

Publication Number Publication Date
WO2021204023A1 true WO2021204023A1 (zh) 2021-10-14

Family

ID=77994747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084058 WO2021204023A1 (zh) 2020-04-07 2021-03-30 一种电力线网络中信道估计的方法、装置和***

Country Status (2)

Country Link
CN (1) CN113497640B (zh)
WO (1) WO2021204023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134186A (zh) * 2022-06-29 2022-09-30 深圳市元征科技股份有限公司 数据处理方法以及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081815A (zh) * 2011-12-15 2014-10-01 诺基亚公司 用于无线网络的请求-响应过程
CN104823488A (zh) * 2013-05-06 2015-08-05 Lg电子株式会社 在无线lan中用于主动扫描的方法和设备
CN106936559A (zh) * 2015-12-29 2017-07-07 华为技术有限公司 一种精细时间测量ftm方法和通信设备
US20180213516A1 (en) * 2014-08-21 2018-07-26 Lg Electronics Inc. Method and apparatus for performing active scanning

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289944B1 (ko) * 2008-12-12 2013-07-26 엘지전자 주식회사 초고처리율 무선랜 시스템에서 채널 추정 방법 및 이를 위한 장치
US9066287B2 (en) * 2012-01-24 2015-06-23 Qualcomm Incorporated Systems and methods of relay selection and setup
US9008152B2 (en) * 2013-08-27 2015-04-14 Nokia Technologies Oy Method, apparatus, and computer program product for wireless signaling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081815A (zh) * 2011-12-15 2014-10-01 诺基亚公司 用于无线网络的请求-响应过程
CN104823488A (zh) * 2013-05-06 2015-08-05 Lg电子株式会社 在无线lan中用于主动扫描的方法和设备
US20180213516A1 (en) * 2014-08-21 2018-07-26 Lg Electronics Inc. Method and apparatus for performing active scanning
CN106936559A (zh) * 2015-12-29 2017-07-07 华为技术有限公司 一种精细时间测量ftm方法和通信设备

Also Published As

Publication number Publication date
CN113497640A (zh) 2021-10-12
CN113497640B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
JP6392338B2 (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
JP6219505B2 (ja) クリアチャネル査定のための方法および装置
JP5859716B1 (ja) 通信ネットワークでの適応チャネル再利用機構
CN101273580B (zh) 用于在电力线网络中协调一个或者多个设备传输的方法及设备
JP5819542B2 (ja) マルチアクセス通知システムにおける動的チャネル再利用
WO2018210243A1 (zh) 一种通信方法和装置
HUE029346T2 (en) System and procedure for improved communication over a wireless network
WO2020088551A1 (zh) 发送和接收数据的方法以及通信装置
WO2020164590A1 (zh) 传输资源检测方法、传输资源确定方法和通信设备
JP6438132B2 (ja) データ送信方法、リソース測定方法、装置、及びデバイス
WO2014154171A1 (zh) 一种确定上行信道状态信息的方法和装置
WO2021204023A1 (zh) 一种电力线网络中信道估计的方法、装置和***
US9973595B2 (en) Neighbor aware network data link profiles
US9130658B2 (en) Selection diversity in a powerline communication system
US9413601B2 (en) Channel reuse among communication networks sharing a communication channel
CN109729567A (zh) 一种消息处理方法和接入点设备以及消息处理设备
WO2022116837A1 (zh) 参考信号的状态确定方法、装置、终端设备及存储介质
CN108684049B (zh) 分布式WiFi网络的参数配置方法、装置、设备及存储介质
WO2023236145A1 (zh) 一种通信方法和装置
CN111050357A (zh) 一种终端与基站的通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784873

Country of ref document: EP

Kind code of ref document: A1