WO2021203611A1 - Procédé de détermination d'un changement dans une structure de pore à l'échelle nanométrique, et son utilisation - Google Patents

Procédé de détermination d'un changement dans une structure de pore à l'échelle nanométrique, et son utilisation Download PDF

Info

Publication number
WO2021203611A1
WO2021203611A1 PCT/CN2020/111476 CN2020111476W WO2021203611A1 WO 2021203611 A1 WO2021203611 A1 WO 2021203611A1 CN 2020111476 W CN2020111476 W CN 2020111476W WO 2021203611 A1 WO2021203611 A1 WO 2021203611A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
pore structure
mesh
ssa
nano
Prior art date
Application number
PCT/CN2020/111476
Other languages
English (en)
Chinese (zh)
Inventor
张金川
魏晓亮
韩美玲
唐玄
苔丝
Original Assignee
中国地质大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质大学(北京) filed Critical 中国地质大学(北京)
Priority to GB2213108.0A priority Critical patent/GB2607836A/en
Publication of WO2021203611A1 publication Critical patent/WO2021203611A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method

Definitions

  • This scheme involves a method for judging the change of nano-scale pore structure and its application.
  • Oil and natural gas are mainly stored and seeped in the nano-scale pore and fracture system in tight reservoirs (such as shale cores obtained during drilling and mining). Therefore, effective and reasonable evaluation and judgment of the pore and fracture system of tight reservoirs are important for tight reservoirs.
  • the exploration and development of oil and gas is of great significance.
  • Porous media is composed of many pores and solid matrix, and the pores develop in the solid matrix.
  • the specific surface area of a porous medium is the total area of the porous medium per unit mass; the pore volume is the total volume of pores per unit mass of the porous medium; the pore size distribution refers to the number or volume of the various pore sizes in the porous medium. percentage.
  • the microscopic pores of porous media can be divided into three categories: micropores ( ⁇ 2nm), mesopores (2-50nm), and macropores (pores >50nm).
  • Existing experimental methods for characterizing pores in porous media include low-temperature nitrogen adsorption method and mercury intrusion method.
  • the measured specific surface area, pore volume, and pore size distribution can directly reflect some characteristics of microscopic pores in porous media.
  • a tight reservoir is a kind of porous medium.
  • different experimental conditions are usually changed, such as measuring the micro pores of tight reservoirs under different lithology, different mesh numbers, and different temperature and pressure conditions.
  • the characterization parameters are compared horizontally and vertically to indirectly reflect the influence of different experimental conditions on the microscopic pore structure of tight reservoirs.
  • This solution provides a method and application for judging changes in nano-scale pore structure.
  • the method for judging the change of nano-scale pore structure includes the following steps:
  • the vacuum degassing temperature in step a is 90-120°C.
  • the vacuum degassing time in step a is ⁇ 9h.
  • step b an adsorption isotherm curve in the range of 0.05 ⁇ P/P 0 ⁇ 0.35 is selected, and the nitrogen volume V m required for monolayer adsorption is obtained from the slope s and the intercept i.
  • the selection of the adsorption isotherm curve within the above range can further reduce the error of the judgment method.
  • step c a value in the range of 0.01 ⁇ P/P 0 ⁇ 0.995 is selected, and the pore volume of the micropores, mesopores and macropores is obtained by statistics of the ASiQ software according to the NLDFT density function theory method.
  • step d the change of the nano-scale pore structure in the sample is judged according to the change of the SSA/PV value when the particle size of the sample is crushed from 20 mesh to 200 mesh.
  • the solution also provides the application of the judgment method for judging the influence of the sample preparation damage process on the nano-scale pore structure of the tight reservoir.
  • the method for judging nano-scale pore structure changes provided by this solution is to characterize the specific surface area, pore volume and pore size distribution of the microscopic pores of tight rocks, and to qualitatively judge the nano-level of tight reservoirs by the changes of SSA/PV under different crushed particle sizes of samples.
  • the microscopic pore structure changes caused by pores in the process of structural damage ie sample crushing
  • the SSA/PV value changes significantly with the change of the crushing mesh, it can be judged that the sample preparation damage process has different degrees of influence on the nano-scale pore structure of the tight reservoir.
  • the solution also provides the application of the judgment method for judging the accuracy of the pore structure test characterization data of the nano-scale pore structure sample of the tight reservoir. Judging the error size and correcting it through the change rate of SSA/PV can improve the accuracy of traditional qualitative and quantitative research methods of nano-scale pores in tight reservoirs.
  • the SSA/PV value becomes smaller and the correlation coefficient R 2 of the SSA/PV value changes with the pulverized mesh number is above 0.6, indicating the compactness
  • the pore structure test characterization data of the reservoir nano-scale pore structure sample has certain errors that need to be corrected.
  • the correlation coefficient R 2 of the SSA/PV value of different samples with the change of the crushing mesh is also different, indicating that it is also related to the type of sample. Oil and natural gas are mainly stored and seeped in the nano-scale pores and fractures system in tight reservoirs.
  • the SSA/PV value becomes smaller and the SSA/PV value changes with the crushing mesh. If the correlation coefficient R 2 of the change is above 0.6, the error in the detection of the traditional tight reservoir nano-scale pore structure test characterization data will affect or even mislead the effective and reasonable evaluation and judgment of the pore and fracture system of the tight reservoir, which is not conducive to Effective exploration and development of oil and gas resources.
  • This solution provides the establishment of a nitrogen adsorption isotherm curve that changes with P/P 0 , selects the isotherm adsorption curve in the range of 0.05 ⁇ P/P 0 ⁇ 0.35, calculates the nitrogen volume V m required for monolayer adsorption, and then passes
  • the BET specific surface area formula calculates the specific surface SSA of the sample, and the specific surface SSA value of the sample with higher accuracy under different crushing meshes can be obtained.
  • the critical P/P 0 values of micropores, mesopores and macropores are selected for statistical analysis to obtain the pore volume of micropores, mesopores and macropores, and the pore volume of different types of pores in the sample is obtained as a function of the crushed particle size. Increased changes. Finally, the change of nano-scale pore structure was judged by the change of SSA/PV under different crushed particle sizes of the sample.
  • the judgment method of this scheme accurately detects the specific surface area SSA and total pore volume PV of samples under different crushed particle sizes, which can not only judge the influence of sample preparation damage process on the nano-scale pore structure in tight reservoir samples, but also accurately judge the traditional
  • the qualitative and quantitative research methods of nano-scale pores in tight reservoirs are of great significance to the exploration and development of tight oil and gas resources due to the influence of pore structure changes on the research results during the sample preparation process.
  • Figure 1 is a graph showing the adsorption isotherm of sample No. 1 under different crushing meshes in an embodiment of the present invention
  • Figure 2 is a graph showing the adsorption isotherm of sample No. 2 under different crushing meshes in an embodiment of the present invention
  • Figure 3 is a graph showing the adsorption isotherm of sample No. 3 under different crushing meshes in an embodiment of the present invention
  • Fig. 5 is a graph showing the adsorption isotherm of sample No. 5 under different crushing meshes in an embodiment of the present invention
  • Fig. 6 is a graph showing the adsorption isotherm of sample No. 6 under different crushing meshes in an embodiment of the present invention
  • Fig. 7 is a graph showing the change of SSA value of 6 samples under different crushing meshes in the embodiment of the present invention.
  • Fig. 8 is a graph showing the growth rate of SAA under different crushing meshes for 6 samples in the embodiment of the present invention.
  • Fig. 9 is a graph showing the change of the pore volume of the micropores under different crushing meshes for 6 samples in the embodiment of the present invention.
  • Figure 10 is a graph showing the pore volume change curve of mesopores under different crushing meshes for 6 samples in an embodiment of the present invention.
  • Figure 11 is a graph showing the pore volume change curve of macropores under different crushing meshes for 6 samples in the embodiment of the present invention.
  • Fig. 12 is a graph showing the variation of PV values of 6 samples under different crushing meshes in the embodiment of the present invention.
  • Fig. 13 is a graph showing the growth rate of PV value of 6 samples under different crushing meshes in the embodiment of the present invention.
  • Fig. 14 is a graph showing the change of SSA/PV value of 6 samples under different crushing meshes in the embodiment of the present invention.
  • the sample was degassed under vacuum for 9h at a temperature of 100°C.
  • the mass W of the sample after vacuum degassing is obtained by calculating the difference between the mass of the sample tube after degassing and the mass of the empty tube before degassing. Place the degassed sample in liquid nitrogen, measure the nitrogen adsorption capacity of the sample at multiple pre-set pressure points, and obtain the sample isotherm adsorption curve.
  • the isotherm adsorption curve of 6 samples under different crushing meshes is shown in the figure Shown in 1-6.
  • the pore volume of the micropores, mesopores and macropores in the sample is obtained through statistics by ASiQ software, and then the micropores, mesopores and macropores in the sample are obtained.
  • the total pore volume PV of the pores, the calculated pore volume of micropores, mesopores and macropores and the total pore volume PV value of 6 samples under different crushing meshes, and the calculated pore volume of micropores, mesopores and macropores The values are shown in Table 3.
  • the pore volume change curve of micropores is shown in Fig.
  • SSA has not changed much, but PV has increased greatly. That is, under the experimental conditions, the process of crushing the shale sample from 20 mesh to 80 mesh and then to 200 mesh has little change in the micropores in the rock sample. Therefore, the content of micropore-level pores does not change much.
  • the number of crushing meshes increases, the number of mesopores and macropores in the sample increases. There are two reasons for the increase in the number of macropores: a. The mesopores are destroyed and the pores are connected to become macropores; b. New microcracks are generated, which connect the previously closed pores.
  • the SSA/PV value has a certain correlation with the crushing mesh (R 2 varies in the range of 0.6-0.8) in the process of increasing the sample size from 20 mesh to 80 mesh and then to 200 mesh.
  • SSA/PV keeps decreasing with the crushing mesh. It shows that as the number of crushing meshes increases during the sample preparation process, the interconnected pores in the pore system are increased, and new pores and fractures are created, which increases the pore volume and damages the nano-scale pore structure of the shale core.
  • test results further verify the feasibility of using the change of SSA/PV with the number of meshes to determine the microscopic pore structure changes of tight reservoirs during the sample preparation process and to determine the accuracy of the pore structure test characterization data of tight reservoir nano-scale pore structure samples. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

La présente invention concerne un procédé permettant de déterminer un changement dans la structure d'un pore à l'échelle nanométrique, et son utilisation. Le procédé de détermination comprend les étapes suivantes : a) la submersion d'un échantillon de structure de pore à l'échelle nanométrique qui a été soumis à un dégazage sous vide dans de l'azote liquide pour obtenir une courbe d'adsorption isotherme, qui montre la quantité d'azote absorbée par l'échantillon lorsque la pression relative P/P0 change ; b) selon la courbe d'adsorption isotherme, le calcul de la surface spécifique (SSA) de l'échantillon en utilisant une formule de surface spécifique BET ; c, selon un procédé de théorie de la fonctionnelle de la densité NLDFT, l'obtention de la somme PV des volumes de pores provenant de pores de différentes échelles dans l'échantillon ; et d, la détermination de l'influence d'un processus de broyage sur la structure de pores à l'échelle nanométrique selon une valeur SSA/PV suivant les changements du nombre de mailles de broyage. Le procédé de détermination peut déterminer avec précision l'influence d'un processus d'endommagement de la fabrication d'un échantillon sur la structure des pores à l'échelle nanométrique d'un réservoir étanche, et peut être utilisé pour déterminer l'influence de l'erreur, provoquée par un changement de la structure des pores pendant la fabrication de l'échantillon, sur un résultat de recherche dans un procédé classique de recherche qualitative et quantitative des pores à l'échelle nanométrique d'un réservoir étanche.
PCT/CN2020/111476 2020-04-10 2020-08-26 Procédé de détermination d'un changement dans une structure de pore à l'échelle nanométrique, et son utilisation WO2021203611A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2213108.0A GB2607836A (en) 2020-04-10 2020-08-26 Method for determining change in nanoscale pore structure, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281035.2A CN111537416B (zh) 2020-04-10 2020-04-10 一种纳米级孔隙结构变化的判断方法及应用
CN202010281035.2 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021203611A1 true WO2021203611A1 (fr) 2021-10-14

Family

ID=71977089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111476 WO2021203611A1 (fr) 2020-04-10 2020-08-26 Procédé de détermination d'un changement dans une structure de pore à l'échelle nanométrique, et son utilisation

Country Status (3)

Country Link
CN (1) CN111537416B (fr)
GB (1) GB2607836A (fr)
WO (1) WO2021203611A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965538A (zh) * 2022-05-25 2022-08-30 大庆油田有限责任公司 陆相页岩有机纳米孔隙识别方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537416B (zh) * 2020-04-10 2021-10-22 中国地质大学(北京) 一种纳米级孔隙结构变化的判断方法及应用
CN113192119B (zh) * 2021-05-27 2023-01-06 宜宾学院 一种多尺度孔隙面孔率的定量统计方法
CN114608991A (zh) * 2022-05-09 2022-06-10 宁德厦钨新能源材料有限公司 一种三元材料、钴酸锂材料比表面积的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042744A1 (fr) * 2000-11-21 2002-05-30 Akzo Nobel N.V. Méthode d'analyse de matière microporeuse
CN103339488A (zh) * 2011-01-27 2013-10-02 普拉德研究及开发股份有限公司 非常规岩石样品的气体吸附分析
CN103674802A (zh) * 2013-11-05 2014-03-26 中国石油天然气股份有限公司 岩石封闭孔隙度测定方法
CN105043957A (zh) * 2015-07-06 2015-11-11 成都理工大学 通过泥页岩等温吸附曲线分类判断孔隙结构的方法
CN105445161A (zh) * 2015-11-16 2016-03-30 中国石油大学(北京) 页岩全孔径孔隙体积的表征方法
CN106442268A (zh) * 2016-10-31 2017-02-22 中国科学技术大学 一种页岩介孔孔径分布的检测方法
CN107421864A (zh) * 2016-05-23 2017-12-01 中国石油化工股份有限公司 微介孔固体材料总比表面积和微孔比表面积的测定方法
CN109839401A (zh) * 2019-01-29 2019-06-04 太原理工大学 一种采空区裂隙发育区的判定和处理方法
CN111537416A (zh) * 2020-04-10 2020-08-14 中国地质大学(北京) 一种纳米级孔隙结构变化的判断方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059011B1 (fr) * 2015-02-19 2018-05-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Corps poreux à base de carbone, son procédé de production, et matériau adsorbant d'ammoniaque
CN104634718B (zh) * 2015-03-05 2017-03-22 中国石油大学(华东) 应用核磁共振表征致密砂岩孔径分布的标定方法
CN105424580B (zh) * 2016-01-14 2018-10-02 太原理工大学 一种煤全孔径测定及其孔形半定量化方法
JP6960622B2 (ja) * 2016-09-05 2021-11-05 旭化成株式会社 多孔質炭素材料及びその製造方法、複合体及びその製造方法、並びにリチウム硫黄電池用の正極材料
CN106525691A (zh) * 2016-12-09 2017-03-22 河南理工大学 一种煤全孔径孔隙结构多数据融合的测定方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042744A1 (fr) * 2000-11-21 2002-05-30 Akzo Nobel N.V. Méthode d'analyse de matière microporeuse
CN103339488A (zh) * 2011-01-27 2013-10-02 普拉德研究及开发股份有限公司 非常规岩石样品的气体吸附分析
CN103674802A (zh) * 2013-11-05 2014-03-26 中国石油天然气股份有限公司 岩石封闭孔隙度测定方法
CN105043957A (zh) * 2015-07-06 2015-11-11 成都理工大学 通过泥页岩等温吸附曲线分类判断孔隙结构的方法
CN105445161A (zh) * 2015-11-16 2016-03-30 中国石油大学(北京) 页岩全孔径孔隙体积的表征方法
CN107421864A (zh) * 2016-05-23 2017-12-01 中国石油化工股份有限公司 微介孔固体材料总比表面积和微孔比表面积的测定方法
CN106442268A (zh) * 2016-10-31 2017-02-22 中国科学技术大学 一种页岩介孔孔径分布的检测方法
CN109839401A (zh) * 2019-01-29 2019-06-04 太原理工大学 一种采空区裂隙发育区的判定和处理方法
CN111537416A (zh) * 2020-04-10 2020-08-14 中国地质大学(北京) 一种纳米级孔隙结构变化的判断方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114965538A (zh) * 2022-05-25 2022-08-30 大庆油田有限责任公司 陆相页岩有机纳米孔隙识别方法

Also Published As

Publication number Publication date
GB2607836A (en) 2022-12-14
CN111537416A (zh) 2020-08-14
CN111537416B (zh) 2021-10-22
GB202213108D0 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2021203611A1 (fr) Procédé de détermination d'un changement dans une structure de pore à l'échelle nanométrique, et son utilisation
Han et al. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion‑nitrogen adsorption porosimetry
CN104990851B (zh) 一种新的页岩敏感性实验研究方法
Wang et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption
Wang et al. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale
Lai et al. Characteristics of microscopic pore structure and its influence on spontaneous imbibition of tight gas reservoir in the Ordos Basin, China
CN106525691A (zh) 一种煤全孔径孔隙结构多数据融合的测定方法
CN109342297B (zh) 基于压汞实验的煤中孔隙校正方法
Xiao et al. A full-scale characterization method and application for pore-throat radius distribution in tight oil reservoirs
CN103674802B (zh) 岩石封闭孔隙度测定方法
CN105445161A (zh) 页岩全孔径孔隙体积的表征方法
CN109632594B (zh) 一种基于高压压汞多尺度表征致密储层孔喉特征的方法
CN111175214A (zh) 一种非常规致密储层孔径全尺寸表征的方法
CN102980843A (zh) 一种焦炭气孔特征的检测方法
Cai et al. Pore-throat structures of the Permian Longtan Formation tight sandstones in the South Yellow Sea Basin, China: A case study from borehole CSDP-2
Wang et al. Experimental Study on Damage and Gas Migration Characteristics of Gas‐Bearing Coal with Different Pore Structures under Sorption‐Sudden Unloading of Methane
Cai et al. Quantitative characterization of water transport and wetting patterns in coal using LF-NMR and FTIR techniques
Xie et al. Nano-pore structure and fractal characteristics of shale gas reservoirs: a case study of Longmaxi Formation in southeastern Chongqing, China
CN110715879A (zh) 基于气水分布的高演化页岩储层微孔隙吸附气量评价方法
CN108240950A (zh) 一种用于钻井液封堵性能评价的方法
CN108956422A (zh) 一种致密储层的孔隙度实验测量方法
CN107991215B (zh) 大尺寸低渗岩样天然孔径与比表面积的测试方法
CN110671090A (zh) 一种基于酸蚀前后岩板表面积差值的碳酸盐岩酸压效果评价方法
Kreisberg et al. Influence of the acid concentration on the morphology of micropores and mesopores in porous glasses
CN112557277B (zh) 一种致密岩石微孔隙连通性识别分类评价方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202213108

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200826

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930296

Country of ref document: EP

Kind code of ref document: A1