WO2021203440A1 - 信息发送方法、信息接收方法、相关装置和设备 - Google Patents

信息发送方法、信息接收方法、相关装置和设备 Download PDF

Info

Publication number
WO2021203440A1
WO2021203440A1 PCT/CN2020/084309 CN2020084309W WO2021203440A1 WO 2021203440 A1 WO2021203440 A1 WO 2021203440A1 CN 2020084309 W CN2020084309 W CN 2020084309W WO 2021203440 A1 WO2021203440 A1 WO 2021203440A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
psfch
time period
terminal device
received
Prior art date
Application number
PCT/CN2020/084309
Other languages
English (en)
French (fr)
Inventor
杨帆
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227037786A priority Critical patent/KR20220160101A/ko
Priority to PCT/CN2020/084309 priority patent/WO2021203440A1/zh
Priority to EP20929943.7A priority patent/EP4135363A4/en
Priority to CN202011630931.1A priority patent/CN112866948B/zh
Priority to CN202080003200.6A priority patent/CN113785602A/zh
Priority to JP2022561653A priority patent/JP7516549B2/ja
Priority to TW110112987A priority patent/TWI764666B/zh
Publication of WO2021203440A1 publication Critical patent/WO2021203440A1/zh
Priority to US17/960,620 priority patent/US20230037805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • This application relates to the field of communication, in particular to an information sending method, an information receiving method, an information sending device, an information receiving device, a terminal device, a network device, a communication device, and a computer Readable storage medium.
  • 5G 5 Generation Mobile Communication Technology
  • network equipment such as base stations
  • PDSCH Physical Downlink Shared Channel
  • HARQ Corresponding hybrid automatic repeat request
  • PUSCH Physical Uplink Shared Channel
  • a terminal device When a terminal device processes HARQ information or prepares uplink data, it often takes a certain amount of time. Therefore, in order to be able to schedule and receive HARQ information and uplink data in an accurate and orderly manner, it is often necessary to set or determine a timing so that the network device knows when to perform feedback and report. If this timing is set too small, the terminal device will not be able to process it in the future and will not be able to report; if this timing is set too large, it will affect the communication efficiency.
  • the embodiment of the application discloses an information sending method, an information receiving method, an information sending device, an information receiving device, a terminal device, a network device, a communication device, and a computer readable
  • the storage medium can reasonably ensure that there is enough time for the terminal device to process HARQ information or prepare uplink data.
  • an information sending method including:
  • the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH is sent no earlier than the first time, where the first time is the time after the first time period has passed from the end time of receiving the PSFCH.
  • the embodiments of this application are directed to the vehicle-to-everything (V2X) technical field.
  • the terminal device does not send PUCCH or PUSCH before the first time period has passed since the end time of receiving the PSFCH, because the terminal device can determine the first time period. A period of time, thereby ensuring that the terminal device can have enough time to process the PUCCH or PUSCH.
  • the PUCCH or PUSCH can be used to carry side-line HARQ information, and the HARQ information can be generated according to the received PSFCH, that is, it can ensure that the terminal device has enough time to process the HARQ information.
  • the first time is a time after a first time period has elapsed from the end time of receiving the PSFCH, and includes:
  • the first time is the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the first moment above is the next symbol after the first time period has elapsed at the end of the PSFCH, which allows the terminal device to have enough time to process the PUCCH or PUSCH, and can send PUCCH or PUSCH in a timely manner.
  • PUSCH improve communication efficiency, and then increase the throughput of the communication system.
  • the determining the first time period includes:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received in a time slot.
  • the first time period is determined according to the number of PSFCH received in a time slot; or the first time period is determined according to the number of resource blocks RB received in a time slot for PSFCH transmission, indicating that the first time period is
  • the time period is related to the number of PSFCH received in a time slot, or is related to the number of RBs used for PSFCH transmission.
  • the number of PSFCH received in a time slot is related to the number of RBs used for PSFCH transmission, which can characterize the processing capability of the terminal device itself. Therefore, the first time period can be determined according to the processing capability of the terminal device itself. It is well ensured that the terminal equipment has enough time to process PUCCH or PUSCH.
  • determining the first time period includes:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period is determined by the subcarrier interval, which indicates that the first time period is related to the subcarrier interval. For example, the larger the subcarrier interval, the longer the first time period. Thereby, it can well ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the first time period is determined by the above formula, and the first time period can be determined according to the processing capability of the terminal device itself, so as to ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • the PSFCH is located on any one of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • the PSFCH received by the terminal device in the embodiment of the present application may be located on one or more resource pools, or on one or more carriers, or on one or more frequency bands, or on one or more frequency band combinations.
  • the first time period is determined according to the number of PSFCHs received in a time slot, which can well ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • an information receiving method including:
  • the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH is received no earlier than the first time, the first time being the time after the end time when the terminal device receives the physical side feedback channel PSFCH after the first time period.
  • the embodiments of this application are directed to the technical field of vehicle-to-everything (V2X).
  • V2X vehicle-to-everything
  • the network device determines the first time period, configure the first time period for the terminal device, and then it can be received no earlier than the first time.
  • PUCCH or PUSCH sent by the terminal device This ensures that the terminal device can have enough time to process the PUCCH or PUSCH.
  • the PUCCH or PUSCH can be used to carry side-line HARQ information, and the HARQ information can be generated according to the received PSFCH, that is, it can ensure that the terminal device has enough time to process the HARQ information.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • the first moment above is the next symbol after the first time period has elapsed after the terminal device receives the PSFCH end time, which allows the terminal device to have enough time to process the PUCCH or PUSCH and can send it in time PUCCH or PUSCH improves communication efficiency, thereby increasing the throughput of the communication system.
  • the determining the first time period includes:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • the first time period is determined according to the number of PSFCHs received by the terminal equipment in a time slot; or the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal equipment in a time slot.
  • the time period indicates that the first time period is related to the number of PSFCH received in a time slot, or is related to the number of RBs used for PSFCH transmission.
  • the number of PSFCH received in a time slot is related to the number of RBs used for PSFCH transmission, which can characterize the processing capability of the terminal device itself. Therefore, the first time period can be determined according to the processing capability of the terminal device itself. It is well ensured that the terminal equipment has enough time to process PUCCH or PUSCH.
  • determining the first time period includes:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period is determined by the subcarrier interval, which indicates that the first time period is related to the subcarrier interval. For example, the larger the subcarrier interval, the longer the first time period. Thereby, it can well ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the first time period is determined by the above formula, and the first time period can be determined according to the processing capability of the terminal device itself, so as to ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • an information sending device including:
  • the transceiver unit is used to receive the physical side feedback channel PSFCH;
  • the transceiving unit is further configured to send the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first moment, the first moment being after the end moment of receiving the PSFCH has passed the first time period time.
  • the first time is a time after a first time period has elapsed from the end time of receiving the PSFCH, and includes:
  • the first time is the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received in a time slot.
  • the processing unit is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the PSFCH is located on any one of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • an information receiving device including:
  • the transceiver unit is configured to receive the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first time, where the first time is the end time when the terminal device receives the physical side feedback channel PSFCH after the first time period The moment after.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • the processing unit is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received by the terminal device in a time slot or used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • an embodiment of the present application provides a terminal device, including:
  • the transceiver unit is used to receive the physical side feedback channel PSFCH;
  • the transceiving unit is further configured to send the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first moment, the first moment being after the end moment of receiving the PSFCH has passed the first time period time.
  • the first time is a time after a first time period has elapsed from the end time of receiving the PSFCH, and includes:
  • the first time is the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received in a time slot.
  • the processing unit is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the PSFCH is located on any one of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • an embodiment of the present application provides a network device, including:
  • the transceiver unit is configured to receive the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first time, where the first time is the end time when the terminal device receives the physical side feedback channel PSFCH after the first time period The moment after.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • the processing unit is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received by the terminal device in a time slot or used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • an embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • the memory stores a computer program.
  • the processor executes the computer program stored in the memory to enable the The device executes the information sending method provided in any one of the foregoing implementation manners of the first aspect.
  • an embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • the memory stores a computer program.
  • the processor executes the computer program stored in the memory to enable the The device executes the information receiving method provided by any one of the foregoing second aspect implementation manners.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the information sending method provided in any one of the foregoing first aspect implementation manners.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the information receiving method provided in any one of the foregoing second aspect implementation manners.
  • the beneficial effects of the third, fourth, fifth, sixth, seventh, eighth, ninth and tenth aspects provided above can refer to the information provided in the first aspect.
  • the beneficial effects of the sending method or the information receiving method provided in the second aspect will not be repeated here.
  • an embodiment of the present application provides an information sending method, which is applied to a first terminal device, and the method includes:
  • the embodiments of this application are directed to the vehicle-to-everything (V2X) technical field.
  • V2X vehicle-to-everything
  • the first terminal device acquires resources by way of sensing window sensing, it determines the length of the selection window according to its own capability information, that is, In other words, the length of the selection window determined by the different capability information of different terminal devices is different.
  • the length of the selection window can be distinguished according to the different capabilities of the UE, which can ensure that the terminal device itself can have enough time to determine the PSCCH and/or PSSCH resources. In this way, the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • the capability information of the first terminal device includes at least one of the following:
  • the number of terminal devices that can communicate in a group is the number of terminal devices that can communicate in a group.
  • the capability information of the first terminal device is determined according to the number of physical side feedback channel PSFCHs received at the same time; or the number of PSFCHs received within a time unit is used to determine the capability information of the first terminal device; Or the number of PSFCHs received in different communication types determines the capability information of the first terminal device; or the number of resource blocks RB used for PSFCH transmission received in a time unit determines the capability information of the first terminal device; or one The number of terminal devices that can communicate in the group determines the capability information of the first terminal device, which realizes that the length of the selection window is determined according to the processing capability of the terminal device itself, which can ensure that the terminal device itself can have enough time to determine the PSCCH and And/or PSSCH resources, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • the number of PSFCHs received in a time unit includes one of the following:
  • the number of PSFCHs in a frequency band detected in a time unit is the number of PSFCHs in a frequency band detected in a time unit
  • the number of PSFCHs in a carrier detected in a time unit is the number of PSFCHs in a carrier detected in a time unit.
  • the PSFCH received by the first terminal device in the embodiment of the present application may be located on a resource pool, or on a carrier, or on a frequency band, or on a frequency band combination. Therefore, the length of the selection window is determined according to the number of PSFCH received in a time unit, which can ensure that the terminal device itself can have enough time to determine the resources of the PSCCH and/or PSSCH, so that the PSCCH can be smoothly sent to the second terminal device. And/or PSSCH.
  • the number of resource blocks RB used for PSFCH transmission received in a time unit includes one of the following:
  • the number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit The number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit.
  • the resource block RB used for PSFCH transmission received by the first terminal device in the embodiment of the present application may be located on a resource pool, or on a carrier, or on a frequency band, or on a frequency band combination. Therefore, the length of the selection window is determined according to the number of resource blocks RB used for PSFCH transmission received in a time unit, which can ensure that the terminal device itself can have enough time to determine the resources of the PSCCH and/or PSSCH, so as to smoothly transfer to the first time.
  • the second terminal device sends the PSCCH and/or PSSCH.
  • the number of subchannels used for PSCCH and PSSCH transmission sent in one time unit includes one of the following:
  • the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit is the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit.
  • the subchannels used for PSCCH and PSSCH transmission transmitted by the first terminal device in one time unit in the embodiment of the present application may be located on a resource pool, or on a carrier, or on a frequency band, or on a frequency band combination. Therefore, the length of the selection window is determined according to the number of sub-channels used for PSCCH and PSSCH transmission transmitted in a time unit, which can ensure that the terminal device itself can have enough time to determine the resources of the PSCCH and/or PSSCH, so that the The second terminal device sends the PSCCH and/or PSSCH.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the length of the selection window is determined to be Y1 time units according to the number X1 of PSFCHs received by the first terminal device in a time unit, and the length of the selection window is determined to be Y1 time units according to the number X2 of PSFCHs received by the first terminal device in a time unit Y2 time units, when X1>X2, Y1>Y2, where X1, X2, Y1, Y2 are natural numbers.
  • the PSCCH and/or PSSCH can be successfully sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the number of resource blocks RB X2 determines that the length of the selection window is Y2 time units.
  • the more resource blocks RB used for PSFCH transmission received by the first terminal device in a time unit the larger the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time To determine the resources of the PSCCH and/or PSSCH, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the length of the selection window is determined to be Y1 time units according to the number of sub-channels X1 used for PSCCH and PSSCH transmission sent by the first terminal device in one time unit, and the length of the selection window is Y1 time units sent by the first terminal device in one time unit for PSCCH and The number of subchannels X2 transmitted by the PSSCH determines the length of the selection window to be Y2 time units.
  • the more the number of subchannels used for PSCCH and PSSCH transmission sent by the first terminal device in a time unit the larger the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time To determine the resources of the PSCCH and/or PSSCH, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the greater the number of terminal devices that can communicate with the first terminal device in a group the greater the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time to determine the PSCCH and the PSCCH. And/or PSSCH resources, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • an information sending device including:
  • a processing unit configured to determine the length of the selection window according to the capability information of the first terminal device
  • the transceiver unit is configured to send the physical side control channel PSCCH and/or the physical side shared channel PSSCH to the second terminal device.
  • the capability information of the first terminal device includes at least one of the following:
  • the number of terminal devices that can communicate in a group is the number of terminal devices that can communicate in a group.
  • the number of PSFCHs received in a time unit includes one of the following:
  • the number of PSFCHs in a frequency band detected in a time unit is the number of PSFCHs in a frequency band detected in a time unit
  • the number of PSFCHs in a carrier detected in a time unit is the number of PSFCHs in a carrier detected in a time unit.
  • the number of resource blocks RB used for PSFCH transmission received in a time unit includes one of the following:
  • the number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit The number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit.
  • the number of subchannels used for PSCCH and PSSCH transmission sent in one time unit includes one of the following:
  • the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit is the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit.
  • the processing unit is specifically configured to:
  • the length of the selection window is determined to be Y1 time units according to the number X1 of PSFCHs received by the first terminal device in a time unit, and the length of the selection window is determined to be Y1 time units according to the number X2 of PSFCHs received by the first terminal device in a time unit Y2 time units, when X1>X2, Y1>Y2, where X1, X2, Y1, Y2 are natural numbers.
  • the processing unit is specifically configured to:
  • the number of resource blocks RB X2 determines that the length of the selection window is Y2 time units.
  • the processing unit is specifically configured to:
  • the length of the selection window is determined to be Y1 time units according to the number of sub-channels X1 used for PSCCH and PSSCH transmission sent by the first terminal device in one time unit, and the length of the selection window is Y1 time units sent by the first terminal device in one time unit for PSCCH and The number of subchannels X2 transmitted by the PSSCH determines the length of the selection window to be Y2 time units.
  • the processing unit is specifically configured to:
  • an embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • the memory stores a computer program.
  • the processor executes the computer program stored in the memory to enable all
  • the device executes the information sending method provided in any one of the above-mentioned eleventh aspect.
  • an embodiment of the present application provides a communication device, a processor, and an interface circuit
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the information sending method provided in any one of the above-mentioned eleventh aspect.
  • FIG. 1 is a schematic diagram of a V2X scenario provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of a scenario under the PC5 interface communication mechanism provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario under the Uu interface communication mechanism provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an information sending method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the principle of an information sending method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an information receiving method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of the information sending method provided by the present application.
  • FIG. 8 is a schematic diagram of the principle of another embodiment of the information sending method provided by the present application.
  • FIG. 9 is a schematic structural diagram of an information sending device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 15 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 16 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 17 is a schematic structural diagram of another embodiment of an information sending device provided by the present application.
  • FIG. 18 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • FIG. 19 is a schematic structural diagram of another embodiment of a communication device provided by the present application.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the terminal equipment involved in the embodiments of this application can also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., which are a way of providing voice to users /Data connectivity devices, for example, handheld devices with wireless connectivity, vehicle-mounted devices, etc.
  • Some terminal devices are: mobile phones (mobilephone), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented) Reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and wireless terminals in smart grids Terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, vehicles containing cockpit domain controllers, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Data connectivity devices for example, handheld devices with wireless connectivity, vehicle-mounted devices, etc.
  • Some terminal devices are: mobile phones (mobilephone), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable
  • the network device involved in the embodiment of the present application is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal device to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, homeevolvedNodeB, or home NodeB, HNB), baseband unit (BBU) , Or wireless fidelity (WiFi) access point (AP), etc.
  • the network device may be a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the wireless communication scenarios to which the information sending method and the information receiving method provided in the embodiments of the present application are applied may include 5G systems, Wi-Fi, car networking V2X systems, and other communication scenarios involving sidelink technology.
  • V2X communication between terminal devices (for example, vehicles) can be performed on the SL, and network devices (for example, base stations) can control the communication of the terminal devices on the side link through the downlink.
  • FIG. 1 is a schematic diagram of a V2X scenario provided by an embodiment of the application.
  • V2X is a technology that enables vehicles to communicate with the outside world.
  • X can represent vehicles, pedestrians, road facilities, or networks, etc. That is, V2X can include vehicle-to-vehicle (V2V) communication, Vehicle-to-infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication, or vehicle-to-network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I Vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • terminal devices that communicate with each other can be located on two vehicles, and can be handheld devices or vehicle-mounted devices of users on the vehicle.
  • terminal devices that communicate with each other can be located on vehicles and road facilities.
  • one terminal device can be a handheld device or vehicle-mounted device of a user in a vehicle
  • the other terminal device can be a roadside unit (RSU)
  • RSU can be understood as a facility entity that supports V2X applications, and can interact with other terminal devices that support V2X communications.
  • V2P communication terminal devices that communicate with each other can be located on vehicles and pedestrians.
  • terminal devices that communicate with each other can be located on the vehicle and the server. In short, this application does not limit the form of terminal devices, and the forms of terminal devices that communicate with each other may be the same or different.
  • V2X communication can be achieved through two communication mechanisms (also called communication modes).
  • One is the communication mechanism based on the PC5 interface
  • the other is the communication mechanism based on the Uu interface.
  • the PC5 interface refers to the interface for direct communication between the terminal device and the terminal device, as shown in Figure 2, where the terminal devices communicate directly through the PC5 interface at this time.
  • This communication standard can also be referred to as the V2Xsidelink (SL) communication standard.
  • the terminal device can be within the coverage of the cell or communicate with other terminals outside the coverage of the cell.
  • the network device configures V2X resources for the terminal device (or, the network device performs V2X resource authorization for the terminal device); the terminal device uses the resources (or authorization) configured by the network device to perform V2X SL communication through the PC5 interface.
  • the Uu interface refers to the communication interface between the terminal device and the network device.
  • the terminal devices communicate through the network at this time, that is, the network device forwards information from one terminal device to other terminals. For example, the V2X data of the terminal device (transmitting end) is sent to the RAN device through the Uu port, and the V2X data is further sent to the target terminal device (receiving end) through the RAN device.
  • the terminal equipment is within the coverage of the cell and communicates with the network equipment using the resources configured by the network equipment for the terminal equipment.
  • the RSU can be located on the network device, or can be independent of the network device, and communicate with the terminal device through the network device.
  • the server can be located on the RAN side, on the CN side, or on the external network, and communicate with the terminal device through the RAN and the CN.
  • the information sending method and the information receiving method provided by the embodiments of the present application are mainly for the technical scenario related to the SL communication standard in FIG. 2 above.
  • the terminal device can work in mode one or mode two.
  • the resources of the side link are all allocated by the network equipment (such as the base station).
  • terminal devices such as UE
  • side-line data such as the physical side-line shared channel (Pysical Sidelink Share Channel, PSSCH)
  • PSSCH Physical Sidelink Share Channel
  • the receiving end UE will feed back NACK information, for example, through the Physical Sidelink Feedback Channel (PSFCH) to feed back the NACK information.
  • the sending end UE will retransmit the side row data after receiving the NACK fed back by the receiving end UE.
  • PSFCH Physical Sidelink Feedback Channel
  • the PSSCH retransmission resource of the UE working in the mode is also scheduled by the network equipment.
  • the sending end UE feeds back the HARQ information of the side link to the network equipment, for example, through PUCCH or PUSCH to feed back the HARQ information.
  • the network equipment After receiving the HARQ information, the network equipment knows whether the sending end UE needs to know the retransmission resources.
  • the terminal device can acquire resources by sensing the sensing window. Two different windows are defined in the protocol, the sensing window (sensing window) and the selection window (selection window). The terminal device will measure in the sensing window.
  • the reference signal receiving power (RSRP) value on the corresponding resource and the corresponding sidelink control information (Sidelink Control Information, SCI) are parsed, and the resource used to transmit the PSCCH/PSSCH is determined in the selection window.
  • RSRP reference signal receiving power
  • SCI Sidelink Control Information
  • Step S400 the first terminal device receives the physical side feedback channel PSFCH;
  • the communication between the first terminal device and the second terminal device is performed on the SL.
  • the PSFCH sent by the second terminal device can be received.
  • the PSFCH can be used to transmit sideline HARQ feedback information.
  • the second terminal device fails to receive the sideline data sent by the first terminal device, or the CRC check fails, the second terminal device can transmit NACK on the sent PSFCH.
  • the second terminal device can transmit ACK information on the sent PSFCH.
  • the first terminal device may receive HARQ feedback information from one or more second terminal devices on one PSFCH, and may receive HARQ feedback information from one or more second terminal devices on multiple PSFCHs.
  • a second terminal device may transmit ACK information or NACK information on one PSFCH, or may only transmit NACK information on one PSFCH.
  • ACK information or NACK information is transmitted on one PSFCH, the cyclic shift values used for ACK and NACK are different.
  • Step S402 The first terminal device determines the first time period
  • the first time period is used to control or set at least how long the first terminal device has to process the received SL HARQ feedback information and generate the HARQ codebook after receiving the above-mentioned PSFCH.
  • Step S404 The first terminal device sends the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH to the network device no earlier than the first moment.
  • the first time is a time after the end time of receiving the PSFCH by the first terminal device has passed the first time period.
  • the first time in the embodiment of the present application may be the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the above-mentioned symbol may refer to the Orthogonal Frequency Division Multiplexing (OFDM) symbol
  • each time slot of the New Radio (NR) system or the Long Term Evolution (LTE) system may include a cyclic prefix. (CP) including a certain number of OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR New Radio
  • LTE Long Term Evolution
  • CP including a certain number of OFDM symbols.
  • Step S406 The network device receives the PUCCH or PUSCH sent by the first terminal device.
  • the network device receives the PUCCH or PUSCH, and if HARQ information is transmitted on the PUCCH or PUSCH, it knows that the first terminal device needs retransmission resources, so as to configure the retransmission resources for the first terminal device.
  • the first terminal device can receive the downlink control information (Downlink Control Information, DCI) issued by the network device, and the DCI is carried on the downlink physical control channel (Physical Downlink Control Channel, PDCCH).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the DCI is used to schedule PSCCH and PSSCH transmissions. Including side row resource allocation information, HARQ process information, PUCCH resource indication information, timing indication information from PSFCH to PUCCH, etc.
  • the first terminal device sends the PSSCH/PSCCH to the second terminal device according to the DCI. And after receiving the PSFCH sent by the second terminal device, the first terminal device sends the PUCCH or PUSCH to the network device after a period of time k has elapsed.
  • the PUCCH or PUSCH resource is indicated by the DCI;
  • the time period k is indicated by the DCI, indicating that the time period K should not be less than the first time period.
  • the first time period is a time period determined by the first terminal device after receiving the PSFCH.
  • the start symbol of the PUCCH or PUSCH cannot be earlier than the first moment, and the first moment is the first symbol after the first time period has elapsed from the end moment when the first terminal device receives the PSFCH.
  • the aforementioned time period k is one or more time slots.
  • determining the first time period in step S400 when determining the first time period in step S400, it may specifically include: determining the first time period according to the number of PSFCHs received in a time slot; or according to the usage received in a time slot.
  • the number of resource block RBs transmitted on the PSFCH determines the first time period.
  • the correspondence between the number of PSFCHs received by the terminal equipment in a time slot and the first time period may be preset by means such as protocol provisions, or the number of PSFCHs received by the terminal equipment in a time slot. Correspondence between the number of resource blocks RB transmitted on the PSFCH and the first time period.
  • the corresponding relationship may be calculated and determined according to a certain algorithm.
  • the output parameter of the algorithm is the number of received PSFCHs or the number of resource blocks RB used for PSFCH transmission, and the output is the size of the first time period.
  • the corresponding relationship can be divided into the range or interval of the number of PSFCH received in the form of a table, or the range or interval of the number of resource blocks RB used for PSFCH transmission, and different ranges or intervals correspond to different sizes of PSFCHs.
  • the first time period Take the number of received PSFCHs as an example, as shown in Table 1 below:
  • the greater the number of PSFCHs received in one time slot the greater the value corresponding to the first time period. It should be understood that when the first terminal device needs to send side-line HARQ information obtained from the PSFCH received on multiple time slots on the same PUCCH or PUSCH, the first time period is based on the last time slot of the multiple PSFCH time slots. The number of PSFCH received at the same time is determined.
  • the more resource blocks RB used for PSFCH transmission are received in a time slot the longer the first time period is. It should be understood that when the first terminal device needs to send side-line HARQ information obtained from the PSFCH received on multiple time slots on the same PUCCH or PUSCH, the first time period is based on the last time slot of the multiple PSFCH time slots. The number of resource blocks RBs simultaneously received for PSFCH transmission is determined.
  • the first time period is related to the number of PSFCHs received in a time slot, or is related to the number of RBs used for PSFCH transmission.
  • the number of PSFCH received in a time slot is related to the number of RBs used for PSFCH transmission, which can characterize the processing capability of the terminal device itself. Therefore, the first time period can be determined according to the processing capability of the terminal device itself. It is well ensured that the terminal equipment has enough time to process PUCCH or PUSCH.
  • the first time period when the first time period is determined in step S400, the first time period may also be specifically determined according to the subcarrier interval.
  • the correspondence relationship between the subcarrier interval and the first time period may be preset by means such as protocol provisions.
  • the corresponding relationship can be calculated and determined according to a certain algorithm, the output parameter of the algorithm is the subcarrier interval, and the output is the size of the first time period.
  • the correspondence relationship may be divided into different subcarrier intervals in the form of a table to directly correspond to first time periods of different sizes. For example, as shown in Table 3 below:
  • the larger the subcarrier interval the larger the value corresponding to the first time period.
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the first time unit T c may specifically refer to a basic time unit of NR
  • the second time unit T s may specifically refer to a basic time unit of LTE.
  • N 1 and X can be specifically two tables, as shown in Table 4 below:
  • the greater the number of PSFCHs simultaneously received in one time slot the greater the value corresponding to the first time period.
  • the PSFCH in the embodiment of the present application may be located on any of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • the PSFCH received by the terminal device in the embodiment of the present application may be located on one or more resource pools, or on one or more carriers, or on one or more frequency bands, or on one or more frequency band combinations.
  • the first time period is determined according to the number of PSFCHs received in a time slot, which can well ensure that the terminal device has enough time to process the PUCCH or PUSCH.
  • Step S600 the network device determines the first time period
  • step S602 may also be performed: the network device indicates to the first terminal device a time period k and the resources of the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH;
  • the network device may send downlink control information to the first terminal device, where the downlink control information includes indication information of the time period k and an indication of PUCCH or PUSCH resources.
  • the indicated time period k is greater than or equal to the above-mentioned first time period, and is used to indicate that the first terminal device sends the PUCCH or PUSCH no earlier than the first moment.
  • the aforementioned time period k is one or more time slots.
  • Step S604 The network device receives the PUCCH or PUSCH sent by the first terminal device on the PUCCH or PUSCH resource indicated above.
  • the network device actually receives the PUCCH or PUSCH sent by the first terminal device earlier than the first moment.
  • the foregoing first time is a time after the end time of receiving the physical side feedback channel PSFCH by the terminal device has passed the foregoing first time period.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • the determining the first time period includes:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • determining the first time period includes: determining the first time period according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received by the terminal device in a time slot or used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • Step S700 Determine the length of the selection window according to the capability information of the first terminal device
  • the first terminal device determines the length of the selection window according to its own capability information.
  • the corresponding relationship between the capability information of the terminal device and the length of the selection window may be preset through a protocol, etc.
  • the correspondence relationship may be divided into different levels or intervals of the capability information corresponding to different first time periods in the form of a table.
  • Step S702 Send the physical side control channel PSCCH and/or the physical side shared channel PSSCH to the second terminal device.
  • the first terminal device can measure the RSRP value on the corresponding resource and analyze the corresponding SCI in the sensing window, and then go through After the time period n, the selection window is started to determine the resources for transmitting the PSCCH/PSSCH at the time n+Ti, and the resource determination is completed at the time n+Tj. That is, the length of the selection window is Tj-Ti, and the length is determined by the first terminal device according to its own capability information.
  • the capability information of the first terminal device includes at least one of the following:
  • the number of terminal devices that can communicate in a group is the number of terminal devices that can communicate in a group.
  • the greater the number of physical side feedback channel PSFCHs received at the same time the greater the number of PSFCHs received in a time unit, the greater the number of PSFCHs received in different communication types, and the greater the number of PSFCHs received in a time unit.
  • the larger the number of resource blocks RBs received for PSFCH transmission in the received the larger the number of sub-channels used for PSCCH and PSSCH transmission sent in a time unit, and the number of terminal devices that can communicate in a group The larger, the larger the selection window.
  • the number of PSFCHs received in a time unit includes one of the following:
  • the number of PSFCHs in a frequency band detected in a time unit is the number of PSFCHs in a frequency band detected in a time unit
  • the number of PSFCHs in a carrier detected in a time unit is the number of PSFCHs in a carrier detected in a time unit.
  • the number of resource blocks RB used for PSFCH transmission received in a time unit includes one of the following:
  • the number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit The number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit.
  • the number of subchannels used for PSCCH and PSSCH transmission sent in one time unit includes one of the following:
  • the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit is the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the length of the selection window is determined to be Y1 time units according to the number X1 of PSFCHs received by the first terminal device in a time unit, and the length of the selection window is determined to be Y1 time units according to the number X2 of PSFCHs received by the first terminal device in a time unit Y2 time units, when X1>X2, Y1>Y2, where X1, X2, Y1, Y2 are natural numbers.
  • the PSCCH and/or PSSCH can be successfully sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the number of resource blocks RB X2 determines that the length of the selection window is Y2 time units.
  • the more resource blocks RB used for PSFCH transmission received by the first terminal device in a time unit the larger the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time To determine the resources of the PSCCH and/or PSSCH, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the length of the selection window is determined to be Y1 time units according to the number of sub-channels X1 used for PSCCH and PSSCH transmission sent by the first terminal device in one time unit, and the length of the selection window is Y1 time units sent by the first terminal device in one time unit for PSCCH and The number of subchannels X2 transmitted by the PSSCH determines the length of the selection window to be Y2 time units.
  • the more the number of subchannels used for PSCCH and PSSCH transmission sent by the first terminal device in a time unit the larger the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time To determine the resources of the PSCCH and/or PSSCH, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the greater the number of terminal devices that can communicate with the first terminal device in a group the greater the length of the determined selection window, thereby ensuring that the terminal device itself can have enough time to determine the PSCCH and the PSCCH. And/or PSSCH resources, so that the PSCCH and/or PSSCH can be smoothly sent to the second terminal device.
  • FIG. 9 is a schematic structural diagram of an information sending device according to an embodiment of the present application.
  • the information sending device 90 may include a transceiver unit 900 and a processing unit 902, where:
  • the transceiver unit 900 is configured to receive the physical side feedback channel PSFCH;
  • the processing unit 902 is configured to determine the first time period
  • the transceiving unit 900 is further configured to send the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first time, the first time being the time after the first time period has elapsed from the end time of receiving the PSFCH.
  • the first time is a time after a first time period has elapsed from the end time of receiving the PSFCH, and includes:
  • the first time is the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received in a time slot.
  • processing unit 902 is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the PSFCH is located on any one of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • the information sending device 90 may be a device in the terminal device of the embodiment of the application, or may be the terminal device itself of the embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an information receiving device provided by an embodiment of the present application.
  • the information receiving device 100 may include a processing unit 1000 and a transceiver unit 1002, wherein:
  • the processing unit 1000 is configured to determine the first time period
  • the transceiver unit 1002 is configured to receive the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first time, where the first time is the end time when the terminal device receives the physical side feedback channel PSFCH after the first time period The moment after.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • processing unit 1000 is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • processing unit 1000 is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received by the terminal device in a time slot or used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the information receiving apparatus 100 may be a certain apparatus in the network equipment of the embodiment of the application, or may be the network equipment itself of the embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 110 may include a transceiver unit 1100 and a processing unit 1102, where:
  • the transceiver unit 1100 is configured to receive the physical side feedback channel PSFCH;
  • the processing unit 1102 is configured to determine the first time period
  • the transceiver unit 1100 is further configured to send a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH no earlier than a first moment, the first moment being a moment after the first time period has elapsed from the end moment of receiving the PSFCH.
  • the first time is a time after a first time period has elapsed from the end time of receiving the PSFCH, and includes:
  • the first time is the next symbol after the first time period has elapsed from the end time of receiving the PSFCH.
  • the processing unit is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received in a time slot.
  • processing unit 1102 is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received in a time slot or the number of resource blocks RB used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • the PSFCH is located on any one of the following frequency domain resources:
  • One or more resource pools are One or more resource pools; or
  • One or more carriers are One or more carriers; or
  • One or more frequency bands are One or more frequency bands; or
  • a combination of one or more frequency bands is provided.
  • each unit in the terminal device 110 can also refer to the embodiments of FIG. 4 to FIG. 5 of the foregoing information sending method, which will not be described in detail here.
  • the terminal device 110 may be the terminal device in the foregoing method embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 120 may include a processing unit 1200 and a transceiver unit 1202, where:
  • the processing unit 1200 is configured to determine the first time period
  • the transceiver unit 1202 is configured to receive the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH no earlier than the first time, where the first time is the end time when the terminal device receives the physical side feedback channel PSFCH after the first time period The moment after.
  • the first moment is a moment after a first time period has elapsed from the end moment when the terminal device receives the PSFCH, and includes:
  • the first moment is the next symbol after the first time period has elapsed from the end moment when the terminal device receives the PSFCH.
  • processing unit 1200 is further configured to:
  • the first time period is determined according to the number of resource blocks RB used for PSFCH transmission received by the terminal device in a time slot.
  • processing unit 1200 is further configured to:
  • the first time period is determined according to the subcarrier interval.
  • the subcarrier spacing is one of the following:
  • the first time period satisfies the following relationship:
  • T 1 (N 1 +X)(2048+144) ⁇ 2 - ⁇ ⁇ T C
  • T 1 is the first time period
  • N 1 is the number of symbols determined according to the first subcarrier interval
  • X is the number of PSFCHs received by the terminal device in a time slot or used for PSFCH transmission
  • T c is the first time unit
  • T s is the second time unit
  • is the ratio of T s to T c
  • is the subcarrier interval.
  • each unit in the network device 120 can also refer to the embodiment of FIG. 6 of the foregoing information receiving method, which will not be described in detail here.
  • the network device 120 may be the network device in the foregoing method embodiment of this application.
  • FIG. 13 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 13 may include a processor 130 and a memory 132.
  • the processor 130 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the programs in the above scheme.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the memory 132 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes or computer programs in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 132 may exist independently and is connected to the processor 130 through a bus.
  • the memory 132 may also be integrated with the processor 130.
  • the above-mentioned memory 132 is used to store a computer program for executing the above solution, and the processor 130 controls the execution.
  • the above-mentioned processor 130 is configured to execute the computer program stored in the above-mentioned memory 132.
  • the code stored in the memory 132 can be used to execute the steps in the information sending method provided in FIGS. 4 to 5 above. For details, reference may be made to the implementation manner of the foregoing method embodiment, and details are not described herein again.
  • the communication device 14 may include a processor 140 and an interface circuit 142.
  • the processor 140 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 140 or instructions in the form of software.
  • the aforementioned processor 140 may be a general-purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods and steps disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the interface circuit 142 can complete the sending or receiving of data, instructions or information.
  • the processor 140 can use the data, instructions or other information received by the interface circuit 142 to perform processing, and can send processing completion information through the interface circuit 142. in:
  • the interface circuit 142 is specifically configured to receive code instructions and transmit them to the processor;
  • the processor 140 is specifically configured to run the code instructions to execute the steps in the information sending method provided in FIGS. 4 to 5 above. For details, reference may be made to the implementation manner of the foregoing method embodiment, and details are not described herein again.
  • FIG. 15 shows a schematic structural diagram of another embodiment of the communication device provided in the present application.
  • the communication device 15 may include a processor 150 and a memory 152.
  • the processor 150 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the above scheme programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the memory 152 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes or computer programs in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 152 may exist independently and is connected to the processor 150 through a bus.
  • the memory 152 may also be integrated with the processor 150.
  • the above-mentioned memory 152 is used to store a computer program for executing the above solution, and the processor 150 controls the execution.
  • the above-mentioned processor 150 is configured to execute the computer program stored in the above-mentioned memory 152.
  • the code stored in the memory 152 can be used to execute the steps in the information receiving method provided in FIG. 6 above.
  • the communication device 16 may include a processor 160 and an interface circuit 162.
  • the processor 160 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 160 or instructions in the form of software.
  • the aforementioned processor 160 may be a general-purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods and steps disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the interface circuit 162 can complete the sending or receiving of data, instructions or information.
  • the processor 160 can use the data, instructions or other information received by the interface circuit 162 to perform processing, and can send processing completion information through the interface circuit 162. in:
  • the interface circuit 162 is specifically configured to receive code instructions and transmit them to the processor;
  • the processor 160 is specifically configured to run the code instructions to execute the steps in the information receiving method provided in FIG. 6 above. For details, reference may be made to the implementation manner of the foregoing method embodiment, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of another embodiment of an information sending apparatus provided by the present application.
  • the information sending apparatus 170 may include a processing unit 1700 and a transceiving unit 1702, where:
  • the processing unit 1700 is configured to determine the length of the selection window according to the capability information of the first terminal device
  • the transceiving unit 1702 is configured to send the physical side control channel PSCCH and/or the physical side shared channel PSSCH to the second terminal device.
  • the foregoing capability information of the first terminal device includes at least one of the following:
  • the number of terminal devices that can communicate in a group is the number of terminal devices that can communicate in a group.
  • the number of PSFCHs received in a time unit includes one of the following:
  • the number of PSFCHs in a frequency band detected in a time unit is the number of PSFCHs in a frequency band detected in a time unit
  • the number of PSFCHs in a carrier detected in a time unit is the number of PSFCHs in a carrier detected in a time unit.
  • the number of resource blocks RB used for PSFCH transmission received in a time unit includes one of the following:
  • the number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit The number of resource blocks RBs in a carrier used for PSFCH transmission received in a time unit.
  • the number of subchannels used for PSCCH and PSSCH transmission sent in a time unit includes one of the following:
  • the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit is the number of sub-channels in one carrier used for PSCCH and PSSCH transmission sent in one time unit.
  • processing unit 1700 is specifically configured to:
  • the length of the selection window is determined to be Y1 time units according to the number X1 of PSFCHs received by the first terminal device in a time unit, and the length of the selection window is determined to be Y1 time units according to the number X2 of PSFCHs received by the first terminal device in a time unit Y2 time units, when X1>X2, Y1>Y2, where X1, X2, Y1, Y2 are natural numbers.
  • determining the length of the selection window according to the capability information of the first terminal device includes:
  • the number of resource blocks RB X2 determines that the length of the selection window is Y2 time units.
  • processing unit 1700 is specifically configured to:
  • the length of the selection window is determined to be Y1 time units according to the number of sub-channels X1 used for PSCCH and PSSCH transmission sent by the first terminal device in one time unit, and the length of the selection window is Y1 time units sent by the first terminal device in one time unit for PSCCH and The number of subchannels X2 transmitted by the PSSCH determines the length of the selection window to be Y2 time units.
  • processing unit 1700 is specifically configured to:
  • each unit in the information sending device 170 can also refer to the embodiment of FIG. 7 to FIG. 8 of the foregoing information receiving method, which will not be described in detail here.
  • the information sending device 170 may be a device of the terminal device in the above-mentioned method embodiment of FIG. 7 to FIG. 8 of this application, or it may be the terminal device itself of the embodiment of this application.
  • FIG. 18 shows a schematic structural diagram of another embodiment of the communication device provided in the present application.
  • the communication device 18 may include a processor 180 and a memory 182.
  • the processor 180 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the above program programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the memory 182 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes or computer programs in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 182 may exist independently and is connected to the processor 180 through a bus.
  • the memory 182 may also be integrated with the processor 180.
  • the above-mentioned memory 182 is used to store a computer program for executing the above solution, and the processor 180 controls the execution.
  • the above-mentioned processor 180 is configured to execute the computer program stored in the above-mentioned memory 182.
  • the code stored in the memory 182 can be used to execute the steps in the information sending method provided in FIGS. 7-8 above.
  • the code stored in the memory 182 can be used to execute the steps in the information sending method provided in FIGS. 7-8 above.
  • the communication device 19 may include a processor 190 and an interface circuit 192.
  • the processor 190 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 190 or instructions in the form of software.
  • the aforementioned processor 190 may be a general-purpose processor, a digital communicator (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. .
  • DSP digital communicator
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods and steps disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the interface circuit 192 can complete the sending or receiving of data, instructions or information.
  • the processor 190 can use the data, instructions or other information received by the interface circuit 192 to perform processing, and can send processing completion information through the interface circuit 192. in:
  • the interface circuit 192 is specifically configured to receive code instructions and transmit them to the processor;
  • the processor 190 is specifically configured to run the code instructions to execute the steps in the information sending method provided in FIGS. 7-8 above. For details, reference may be made to the implementation manner of the foregoing method embodiment, and details are not described herein again.
  • each network element such as an electronic device, a processor, etc.
  • each network element includes a hardware structure and/or software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the functional modules of electronic equipment, camera equipment, etc. according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the foregoing method embodiments may be completed by a computer program instructing relevant hardware.
  • the program may be stored in the foregoing computer storage medium. When the program is executed, it may include the processes of the foregoing method embodiments.
  • the computer-readable storage medium includes: read-only memory (ROM) or random access memory (RAM), magnetic disks or optical disks and other media that can store program codes.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the modules in the device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息发送方法、信息接收方法及相关装置和设备,该信息发送方法包括:接收物理侧行反馈信道PSFCH;确定第一时间段;在不早于第一时刻发送PUCCH或者PUSCH,第一时刻是接收PSFCH的结束时刻经过第一时间段之后的时刻。本申请实施例终端设备在接收PSFCH的结束时刻起未经过第一时间段之前,不发送PUCCH或者PUSCH,由于终端设备可以确定出第一时间段,从而保证了该终端设备可以有足够的时间处理PUCCH或者PUSCH。该PUCCH或者PUSCH可以用于承载侧行的HARQ信息,该HARQ信息可以根据接收的该PSFCH生成,即能够保证了该终端设备有足够的时间处理HARQ信息。

Description

信息发送方法、信息接收方法、相关装置和设备 技术领域
本申请涉及通信领域,尤其涉及一种信息发送方法、一种信息接收方法、一种信息发送装置、一种信息接收装置、一种终端设备、一种网络设备、一种通信装置以及一种计算机可读存储介质。
背景技术
在第五代通信技术(the 5 Generation Mobile Communication Technology,5G)***中,针对网络设备(例如基站)下发的下行数据,例如物理下行共享信道(Physical Downlink Shared Channel,PDSCH),终端设备需要反馈相应混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)的信息。针对网络设备调度的上行数据,例如物理上行共享信道(Physical Uplink Shared Channel,PUSCH),发送端的终端设备UE也需要及时准备和发送。
终端设备在处理HARQ信息或者准备上行数据的时候,往往需要一定的时间。因此,为了能够准确有序的对HARQ信息、上行数据进行调度和接收,往往需要设置或确定一个时间(timing)以让网络设备知道什么时候进行反馈和上报。若这个timing设置过小,终端设备将来不及处理而无法上报;若这个timing设置过大,会影响通信效率。
发明内容
本申请实施例公开了一种信息发送方法、一种信息接收方法、一种信息发送装置、一种信息接收装置、一种终端设备、一种网络设备、一种通信装置以及一种计算机可读存储介质,能够合理地保证有足够的时间让终端设备处理HARQ信息或者准备上行数据。
第一方面,本申请实施例提供一种信息发送方法,包括:
接收物理侧行反馈信道PSFCH;
确定第一时间段;
在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
本申请实施例针对车辆外联(vehicle-to-everything,V2X)技术领域,终端设备在接收PSFCH的结束时刻起未经过第一时间段之前,不发送PUCCH或者PUSCH,由于终端设备可以确定出第一时间段,从而保证了该终端设备可以有足够的时间处理PUCCH或者PUSCH。该PUCCH或者PUSCH可以用于承载侧行的HARQ信息,该HARQ信息可以根据接收的该PSFCH生成,也就是说,能够保证了该终端设备有足够的时间处理HARQ信息。
在一种可能的实现方式中,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
本申请实施例中上第一时刻为接收上述PSFCH结束时刻经过第一时间段之后的下一 个符号,实现了让该终端设备有足够的时间处理PUCCH或者PUSCH的前提下,能及时地发送PUCCH或者PUSCH,提高通信效率,进而提高通信***的吞吐率。
在一种可能的实现方式中,所述确定第一时间段,包括:
根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
本申请实施例通过根据一个时隙中接收到的PSFCH个数确定第一时间段;或者根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段,表明第一时间段与一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB个数有关。而一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB个数,可以表征终端设备自身的处理能力,因此,根据终端设备自身的处理能力来确定第一时间段,能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,确定第一时间段,包括:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
本申请实施例通过子载波间隔来确定第一时间段,表明第一时间段与子载波间隔有关,例如子载波间隔越大,第一时间段越长。从而能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
本申请实施例通过上述公式确定第一时间段,可以很好地根据终端设备自身的处理能力来确定第一时间段,从而能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,所述PSFCH位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
本申请实施例终端设备接收的PSFCH可以位于一个或多个资源池上,或位于一个或者多个载波上,或位于一个或者多个频带上,或位于一个或者多个频带组合上。根据一个时隙中接收到的PSFCH个数来确定第一时间段,能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
第二方面,本申请实施例提供一种信息接收方法,包括:
确定第一时间段;
在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
本申请实施例针对车辆外联(vehicle-to-everything,V2X)技术领域,网络设备确定出第一时间段后,为终端设备配置该第一时间段,即可在不早于第一时刻接收终端设备发送的PUCCH或者PUSCH。从而保证了该终端设备可以有足够的时间处理PUCCH或者PUSCH。该PUCCH或者PUSCH可以用于承载侧行的HARQ信息,该HARQ信息可以根据接收的该PSFCH生成,也就是说,能够保证了该终端设备有足够的时间处理HARQ信息。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
本申请实施例中上第一时刻为终端设备接收上述PSFCH结束时刻经过第一时间段之后的下一个符号,实现了让该终端设备有足够的时间处理PUCCH或者PUSCH的前提下,能及时地发送PUCCH或者PUSCH,提高通信效率,进而提高通信***的吞吐率。
在一种可能的实现方式中,所述确定第一时间段,包括:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
本申请实施例通过根据终端设备在一个时隙中接收到的PSFCH个数确定第一时间段;或者根据终端设备在一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段,表明第一时间段与一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB个数有关。而一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB个数,可以表征终端设备自身的处理能力,因此,根据终端设备自身的处理能力来确定第一时间段,能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,确定第一时间段,包括:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
本申请实施例通过子载波间隔来确定第一时间段,表明第一时间段与子载波间隔有关,例如子载波间隔越大,第一时间段越长。从而能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
本申请实施例通过上述公式确定第一时间段,可以很好地根据终端设备自身的处理能力来确定第一时间段,从而能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
第三方面,本申请实施例提供一种信息发送装置,包括:
收发单元,用于接收物理侧行反馈信道PSFCH;
处理单元,用于确定第一时间段;
所述收发单元,还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,所述处理单元,还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
在一种可能的实现方式中,所述PSFCH位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
第四方面,本申请实施例提供一种信息接收装置,包括:
处理单元,用于确定第一时间段;
收发单元,用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,所述处理单元,还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一 个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
第五方面,本申请实施例提供一种终端设备,包括:
收发单元,用于接收物理侧行反馈信道PSFCH;
处理单元,用于确定第一时间段;
所述收发单元,还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,所述处理单元,还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
在一种可能的实现方式中,所述PSFCH位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
第六方面,本申请实施例提供一种网络设备,包括:
处理单元,用于确定第一时间段;
收发单元,用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,所述处理单元,还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
第七方面,本申请实施例提供一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述第一方面中任意一种实现方式提供的信息发送方法。
第八方面,本申请实施例提供一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装 置执行如上述第二方面中任意一种实现方式提供的信息接收方法。
第九方面,本申请实施例提供一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器用于运行所述代码指令以执行如上述第一方面中任意一种实现方式提供的信息发送方法。
第十方面,本申请实施例提供一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器用于运行所述代码指令以执行如上述第二方面中任意一种实现方式提供的信息接收方法。
可以理解地,上述提供的第三方面、第四方面、第五方面、第六方面、第七方面、第八方面、第九方面以及第十方面的有益效果可参考第一方面所提供的信息发送方法或第二方面所提供的信息接收方法中的有益效果,此处不再赘述。
第十一方面,本申请实施例提供一种信息发送方法,应用于第一终端设备,所述方法包括:
根据第一终端设备的能力信息确定选择窗的长度;
向第二终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH。
本申请实施例针对车辆外联(vehicle-to-everything,V2X)技术领域,第一终端设备在通过感知窗sensing的方式去获取资源时,根据自身的能力信息来确定选择窗的长度,也就是说,不同终端设备的不同能力信息确定出的选择窗的长度不同,选择窗的长度能够依据UE的不同能力作区分,能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,所述第一终端设备的能力信息包括以下至少一种:
在同一时刻接收到的物理侧行反馈信道PSFCH个数;
在一个时间单元内接收到的PSFCH个数;
在不同通信类型接收到的PSFCH个数;
在一个时间单元内接收到的用于PSFCH传输的资源块RB个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数;
一个组内能够进行通信的终端设备的个数。
本申请实施例通过根据在同一时刻接收到的物理侧行反馈信道PSFCH个数确定第一终端设备的能力信息;或者在一个时间单元内接收到的PSFCH个数确定第一终端设备的能力信息;或者在不同通信类型接收到的PSFCH个数确定第一终端设备的能力信息;或者在一个时间单元内接收到的用于PSFCH传输的资源块RB个数确定第一终端设备的能力信息;或者一个组内能够进行通信的终端设备的个数确定第一终端设备的能力信息,实现了根据终端设备自身的处理能力来确定选择窗的长度,能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,所述在一个时间单元内接收到的PSFCH个数包括以下一种:
在一个时间单元内检测到的一个资源池内的PSFCH个数;
在一个时间单元内检测到的一个频带组合内的PSFCH个数;
在一个时间单元内检测到的一个频带内的PSFCH个数;
在一个时间单元内检测到的一个载波内的PSFCH个数。
本申请实施例第一终端设备接收的PSFCH可以位于一个资源池上,或位于一个载波上,或位于一个频带上,或位于一个频带组合上。从而根据一个时间单元中接收到的PSFCH个数来确定选择窗的长度,能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,所述在一个时间单元内接收到的用于PSFCH传输的资源块RB个数包括以下一种:
在一个时间单元内接收到的用于PSFCH传输的一个资源池内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带组合内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个载波内的资源块RB个数。
本申请实施例第一终端设备接收的用于PSFCH传输的资源块RB可以位于一个资源池上,或位于一个载波上,或位于一个频带上,或位于一个频带组合上。从而根据一个时间单元内接收到的用于PSFCH传输的资源块RB个数确定选择窗的长度,能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,所述在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数包括以下一种:
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个资源池内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带组合内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个载波内的子信道个数。
本申请实施例第一终端设备在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道可以位于一个资源池上,或位于一个载波上,或位于一个频带上,或位于一个频带组合上。从而根据在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数确定选择窗的长度,能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元接收到的PSFCH个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到的PSFCH个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元接收到的PSFCH个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到用于PSFCH传输的资源块RB个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个组内能够进行通信的终端设备的个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个组内能够进行通信的终端设备的个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个组内能够进行通信的终端设备的个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
第十二方面,本申请实施例提供一种信息发送装置,包括:
处理单元,用于根据第一终端设备的能力信息确定选择窗的长度;
收发单元,用于向第二终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH。
在一种可能的实现方式中,所述第一终端设备的能力信息包括以下至少一种:
在同一时刻接收到的物理侧行反馈信道PSFCH个数;
在一个时间单元内接收到的PSFCH个数;
在不同通信类型接收到的PSFCH个数;
在一个时间单元内接收到的用于PSFCH传输的资源块RB个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数;
一个组内能够进行通信的终端设备的个数。
在一种可能的实现方式中,所述在一个时间单元内接收到的PSFCH个数包括以下一种:
在一个时间单元内检测到的一个资源池内的PSFCH个数;
在一个时间单元内检测到的一个频带组合内的PSFCH个数;
在一个时间单元内检测到的一个频带内的PSFCH个数;
在一个时间单元内检测到的一个载波内的PSFCH个数。
在一种可能的实现方式中,所述在一个时间单元内接收到的用于PSFCH传输的资源块RB个数包括以下一种:
在一个时间单元内接收到的用于PSFCH传输的一个资源池内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带组合内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个载波内的资源块RB个数。
在一种可能的实现方式中,所述在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数包括以下一种:
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个资源池内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带组合内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个载波内的子信道个数。
在一种可能的实现方式中,所述处理单元具体用于:
根据第一终端设备在一个时间单元接收到的PSFCH个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到的PSFCH个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,所述处理单元具体用于:
根据第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到用于PSFCH传输的资源块RB个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,所述处理单元具体用于:
根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,所述处理单元具体用于:
根据第一终端设备在一个组内能够进行通信的终端设备的个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个组内能够进行通信的终端设备的个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
第十三方面,本申请实施例提供一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上述第十一方面中任意一种实现方式提供的信息发送方法。
第十四方面,本申请实施例提供一种通信装置,处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器用于运行所述代码指令以执行如上述第十一方面中任意一种实现方式提供的信息发送方法。
附图说明
图1是本申请实施例提供的一种V2X场景的示意图;
图2是本申请实施例提供的PC5接口通信机制下的场景示意图;
图3是本申请实施例提供的Uu接口通信机制下的场景示意图;
图4是本申请实施例提供的信息发送方法的流程示意图;
图5是本申请实施例提供的信息发送方法的原理示意图;
图6是本申请实施例提供的信息接收方法的流程示意图;
图7是本申请提供的信息发送方法的另一实施例的流程示意图;
图8是本申请提供的信息发送方法的另一实施例的原理示意图;
图9是本申请实施例提供的信息发送装置的结构示意图;
图10是本申请实施例提供的信息接收装置的结构示意图;
图11是本申请实施例提供的终端设备的结构示意图;
图12是本申请实施例提供的网络设备的结构示意图;
图13是本申请实施例提供的通信装置的结构示意图;
图14是本申请提供的通信装置的另一实施例的结构示意图;
图15是本申请提供的通信装置的另一实施例的结构示意图;
图16是本申请提供的通信装置的另一实施例的结构示意图;
图17是本申请提供的信息发送装置的另一实施例的结构示意图;
图18是本申请提供的通信装置的另一实施例的结构示意图;
图19是本申请提供的通信装置的另一实施例的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本申请实施例中涉及的终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。一些终端设备的举例为:手机(mobilephone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、含有驾驶舱域控制器的车辆等。
本申请实施例中涉及的网络设备是无线网络中的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolvedNodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。在一种网络结构中,网络设备可以为集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例提供的信息发送方法和信息接收方法所应用的无线通信场景,可以包括5G***,Wi-Fi,车联网V2X***等涉及侧链路(sidelink)技术的通信场景。以V2X为例,终端设备(例如车辆)之间的通信可以在SL上进行,而且网络设备(例如基站)可以通过下行链路控制终端设备在侧链路的通信。
请参考图1,其为本申请实施例提供的一种V2X场景的示意图。如图1所示,V2X是一种实现车与外界通信的技术,X可以表示车辆、行人、道路设施、或网络等,即V2X可以包括车-车(vehicle-to-vehicle,V2V)通信、车-道路设施(vehicle-to-infrastructure,V2I)通信、车-行人(vehicle-to-pedestrian,V2P)通信、或车-网络(vehicle-to-network,V2N)通信等。
在V2V通信中,相互通信的终端设备可以位于两个车辆上,可以为车上用户的手持设备或车载设备等。在V2I通信中,相互通信的终端设备可以位于车辆和道路设施上,例如一个终端设备可以为车上用户的手持设备或车载设备,另一个终端设备可以为路侧单元(road side unit,RSU),其中RSU可以理解为一种支持V2X应用的设施实体,且可以与其 它支持V2X通信的终端设备进行信息交互。在V2P通信中,相互通信的终端设备可以位于车辆上和行人身上。在V2N通信中,相互通信的终端设备可以位于车辆和服务器上。总之,本申请对终端设备的形式不做限制,且相互通信的终端设备的形式可以相同,也可以不同。
目前,可以通过两种通信机制(又可以称为通信模式)实现V2X通信。一种是基于PC5接口的通信机制,另一种是基于Uu接口的通信机制。请参考图2和图3,其分别给出了一种PC5接口和Uu接口通信机制下的场景示意图。PC5接口是指终端设备与终端设备之间直接通信的接口,如图2所示,此时终端设备之间通过PC5接口直接进行通信。该通信制式又可以称为V2Xsidelink(SL)通信制式。此时,终端设备可以在小区覆盖范围内,也可以在小区覆盖范围外与其它终端进行通信。网络设备为终端设备配置V2X资源(或者说,网络设备为终端设备进行V2X资源授权);终端设备利用网络设备配置的资源(或称为授权)通过PC5接口进行V2X SL通信。Uu接口是指终端设备与网络设备之间的通信接口,如图3所示,此时终端设备之间通过网络进行通信,也就是说,网络设备将来自一个终端设备的信息转发给其它终端。例如,终端设备(发送端)的V2X数据通过Uu口发送给RAN设备,进一步通过RAN设备将该V2X数据发送给目标终端设备(接收端)。此时,终端设备在小区覆盖范围内,利用网络设备为终端设备配置的资源与网络设备通信。在V2I场景中,RSU可以位于网络设备上,也可以独立于网络设备,通过网络设备与终端设备通信。在V2N场景中,服务器可以位于RAN侧,也可以位于CN侧,或者位于外网,通过RAN和CN与终端设备通信。
本申请实施例提供的信息发送方法和信息接收方法主要是针对上述图2涉及SL通信制式技术场景。其中,终端设备可以工作在模式一或模式二下。
在模式一下,侧链路的资源都是由网络设备(例如基站)来进行分配。与此同时,终端设备(例如UE)之间在通过侧链路通信也会采用类似的HARQ反馈机制用于确认侧行数据(例如物理侧行共享信道,(PysicalSidelink Share Channel,PSSCH))的发送是否成功,如果接收端UE没有接收到数据或者数据的CRC校验并没有通过,接收端UE会反馈NACK信息,例如通过物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)来反馈NACK信息。发送端UE在接收到接收端UE反馈的NACK之后会对侧行数据进行重传。此时工作在模式一下发送端UE的PSSCH重传资源也是要由网络设备来进行调度的。那么发送端UE将侧链路的HARQ信息反馈给网络设备,例如通过PUCCH或PUSCH来反馈HARQ信息,网络设备接收到HARQ信息后就知道发送端UE是否需要知道重传资源。
在模式二下,终端设备可以通过感知sensing窗的方式去获取资源,协议中会定义两个不同的窗口,感知窗(sensing窗)和选择窗(selection窗),终端设备会在sensing窗去测量相应资源上的参考信号接收功率(Reference Signal Receiving Power,RSRP)值和解析相应的侧行控制信息(Sidelink Control Information,SCI),并且在selection窗确定用于发送PSCCH/PSSCH的资源。
下面结合图4示出的本申请实施例提供的信息发送方法的流程示意图,先针对工作在模式一下的终端设备,来说明本申请实施例如何进行信息发送,可以包括如下步骤:
步骤S400:第一终端设备接收物理侧行反馈信道PSFCH;
具体地,第一终端设备与第二终端设备之间的通信在SL上进行。第一终端设备与第二终端设备的通信过程中,可以接收到第二终端设备发送而来的PSFCH。该PSFCH可用于传输侧行HARQ反馈信息,例如第二终端设备对第一终端设备发送的侧行数据没有接收成功,或者CRC校验失败的时候,第二终端设备可在发送的PSFCH上传输NACK信息;当第二终端设备对第一终端设备发送的侧行数据接收成功,或者CRC校验成功的时候,第二终端设备可在发送的PSFCH上传输ACK信息。
第一终端设备可以在一个PSFCH上接收来自一个或者多个第二终端设备的HARQ反馈信息,可以在多个PSFCH上接收来自一个或者多个第二终端设备的HARQ反馈信息。一个第二终端设备可以在一个PSFCH上传输ACK信息或者NACK信息,也可以只在一个PSFCH上传输NACK信息。相应地,在一个PSFCH上传输ACK信息或者NACK信息时,ACK和NACK采用的循环移位值不同。
步骤S402:第一终端设备确定第一时间段;
具体地,该第一时间段是用于控制或设置第一终端设备在接收到上述PSFCH后,至少有多长时间来处理接收到的SL HARQ反馈信息,并生成HARQ码本。
步骤S404:第一终端设备在不早于第一时刻向网络设备发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH。
具体地,上述第一时刻是第一终端设备接收上述PSFCH的结束时刻经过上述第一时间段之后的时刻。
在一种可能的实现方式中,本申请实施例的第一时刻可以是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。例如上述符号可以指正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,新无线(New Radio,NR)***或者长期演进(Long Term Evolution,LTE)***的每个时隙可以由包括循环前缀(CP)在内的一定数量的OFDM符号组成。
步骤S406:网络设备接收到第一终端设备发送的PUCCH或PUSCH。
具体地,网络设备接收到上述PUCCH或PUSCH,若上述PUCCH或PUSCH传输有HARQ信息,即获知该第一终端设备需要重传资源,从而为该第一终端设备配置重传资源。
结合图5示出的本申请实施例提供的信息发送方法的原理示意图,从发送端终端设备(即第一终端设备)一侧来进行描述:
第一终端设备可以接收网络设备下发的下行控制信息(Downlink Control Information,DCI),该DCI承载在下行物理控制信道(Physical Downlink Control Channel,PDCCH),该DCI用于调度PSCCH和PSSCH传输,可以包括侧行资源分配信息、HARQ进程信息,PUCCH资源指示信息,PSFCH到PUCCH之间的时序指示信息等。
第一终端设备根据该DCI向第二终端设备发送PSSCH/PSCCH。并且第一终端设备在接收到第二终端设备发送的PSFCH后,经过一个时间段k后向网络设备发送PUCCH或者PUSCH。其中,PUCCH或者PUSCH资源是由该DCI指示的;该时间段k由该DCI指示,指示该时间段K应不小于第一时间段。该第一时间段为第一终端设备在接收到PSFCH后确定出的时间段。
上述PUCCH或者PUSCH的起始符号不能早于第一时刻,第一时刻是第一终端设备接收上述PSFCH的结束时刻经过第一时间段之后的第一个符号。
上述时间段k是一个或者多个时隙。
在一种可能的实现方式中,步骤S400在确定第一时间段时,可以具体包括:根据一个时隙中接收到的PSFCH个数确定第一时间段;或者根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
具体地,本申请实施例可以通过协议规定等方式,预先设定终端设备在一个时隙中接收到的PSFCH个数与第一时间段的对应关系,或者终端设备一个时隙中接收到的用于PSFCH传输的资源块RB个数与第一时间段的对应关系。
例如,该对应关系可以根据某一算法来计算确定出,该算法的输出参数为接收到的PSFCH个数或用于PSFCH传输的资源块RB个数,输出即为第一时间段的大小。
又如,该对应关系可以通过表格的形式通过划分接收到的PSFCH个数的范围或区间,或者划分用于PSFCH传输的资源块RB个数的范围或区间,不同范围或不同区间对应不同大小的第一时间段。以接收PSFCH个数举例来说,可以如下表1所示:
在一个时隙中同时接收到的PSFCH个数 第一时间段
[n1,n2) t1
[n2,n3) t2
[nk-1,nk) tk
表1
其中,可选地,在一个时隙中接收到的PSFCH个数越多,该第一时间段对应的数值越大。应理解,当第一终端设备需要在同一个PUCCH或者PUSCH上发送多个时隙上接收到的PSFCH得到的侧行HARQ信息,第一时间段根据多个PSFCH所在时隙中的最后一个时隙中同时接收到的PSFCH个数确定。
以接收用于PSFCH传输的资源块RB个数举例来说,也可以如下表2所示:
Figure PCTCN2020084309-appb-000001
表2
其中,可选地,在一个时隙中接收到的用于PSFCH传输的资源块RB个数越多,该第一时间段也越长。应理解,当第一终端设备需要在同一个PUCCH或者PUSCH上发送多个时隙上接收到的PSFCH得到的侧行HARQ信息,第一时间段根据多个PSFCH所在时隙中的最后一个时隙中同时接收到用于PSFCH传输的资源块RB个数确定。
由此表明第一时间段与一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB个数有关。而一个时隙中接收到的PSFCH个数有关,或与用于PSFCH传输的RB 个数,可以表征终端设备自身的处理能力,因此,根据终端设备自身的处理能力来确定第一时间段,能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
在一种可能的实现方式中,步骤S400在确定第一时间段时,还可以具体根据子载波间隔确定第一时间段。
具体地,本申请实施例可以通过协议规定等方式,预先设定子载波间隔与第一时间段的对应关系。
例如,该对应关系可以根据某一算法来计算确定出,该算法的输出参数为子载波间隔,输出即为第一时间段的大小。
又如,该对应关系可以通过表格的形式划分不同的子载波间隔直接对应不同大小的第一时间段。例如,如下表3所示:
子载波间隔 第一时间段
f1 t1
f1 t2
fk tk
表3
其中,可以设置子载波间隔越大,第一时间段对应的数值越大。
本申请实施例中的子载波间隔可以为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
第一时间单元T c具体可以指NR的基本时间单元,第二时间单元T s具体可以指LTE的基本时间单元。
N 1和X可以具体为两个table,举例如下表4:
子载波间隔 N 1/符号
f1 t1
f1 t2
fk tk
表4
其中,可以设置子载波间隔越大,N 1对应的符号数越多,
又如表5、表6:
子载波间隔 N 1/符号
15kHz 14
30kHz 18
60kHz 28
120kHz 32
表5
在一个时隙中同时接收到的PSFCH个数 X/符号
[n1,n2) t1
[n2,n3) t2
[nk-1,nk) tk
表6
其中,可选地,在一个时隙中同时接收到的PSFCH个数越多,该第一时间段对应的数值越大。
又如表7:
在一个时隙中同时接收到的PSFCH个数 X/符号
1~32 0
33~64 1
表7
在一种可能的实现方式中,本申请实施例的PSFCH可以位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
本申请实施例终端设备接收的PSFCH可以位于一个或多个资源池上,或位于一个或者多个载波上,或位于一个或者多个频带上,或位于一个或者多个频带组合上。根据一个时隙中接收到的PSFCH个数来确定第一时间段,能够很好地保证终端设备有足够的时间处理PUCCH或者PUSCH。
下面结合图6示出的本申请实施例提供的信息接收方法的流程示意图,从网络设备侧来描述如何完成信息接收,可以包括如下步骤:
步骤S600:网络设备确定第一时间段;
可选地,还可以执行步骤S602:网络设备向第一终端设备指示一个时间段k,以及物理上行控制信道PUCCH或物理上行共享信道PUSCH的资源;
具体地,网络设备可以向发送第一终端设备下行控制信息,该下行控制信息包含时间段k的指示信息,以及PUCCH或PUSCH的资源的指示。该指示的一个时间段k大于等于上述第一时间段,用于表明第一终端设备在不早于第一时刻发送PUCCH或PUSCH。
上述时间段k是一个或者多个时隙。
步骤S604:网络设备在上述指示的PUCCH或PUSCH的资源上接收第一终端设备发送的PUCCH或者PUSCH。
即,网络设备实际在早于第一时刻接收到该第一终端设备发送的PUCCH或者PUSCH。
具体地,上述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过上述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述确定第一时间段,包括:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,确定第一时间段,包括:根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
网络设备确定该第一时间段的方式可以具体参考上述图4图5实施例所述的确定方式, 这里不再赘述。
下面结合图7示出的本申请提供的信息发送方法的另一实施例的流程示意图,针对工作在模式二下的终端设备,来说明本申请实施例如何进行信息发送,可以包括如下步骤:
步骤S700:根据第一终端设备的能力信息确定选择窗的长度;
具体地,第一终端设备根据自身的能力信息确定出选择窗的长度。本申请实施例可以通过协议规定等方式,预先设定终端设备的能力信息与选择窗的长度的对应关系。该对应关系可以通过表格的形式通过划分能力信息的不同等级或区间对应不同大小的第一时间段。
步骤S702:向第二终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH。
具体地可以结合图8示出的本申请提供的信息发送方法的另一实施例的原理示意图,第一终端设备可以在感知sensing窗去测量相应资源上的RSRP值和解析相应的SCI,然后经过时间段n后,在n+Ti时刻开始通过选择selection窗来确定用于发送PSCCH/PSSCH的资源,并在n+Tj时刻完成资源的确定。即selection窗的长度为Tj-Ti,该长度是由第一终端设备根据自身的能力信息确定出来的。
在一种可能的实现方式中,所述第一终端设备的能力信息包括以下至少一种:
在同一时刻接收到的物理侧行反馈信道PSFCH个数;
在一个时间单元内接收到的PSFCH个数;
在不同通信类型接收到的PSFCH个数;
在一个时间单元内接收到的用于PSFCH传输的资源块RB个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数;
一个组内能够进行通信的终端设备的个数。
终端设备的能力信息与选择窗的长度的对应关系,可以如下表8所示:
Figure PCTCN2020084309-appb-000002
Figure PCTCN2020084309-appb-000003
表8
其中,在同一时刻接收到的物理侧行反馈信道PSFCH个数越大、在一个时间单元内接收到的PSFCH个数越大、在不同通信类型接收到的PSFCH个数越大、在一个时间单元内接收到的用于PSFCH传输的资源块RB个数越大、在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数越大、一个组内能够进行通信的终端设备的个数越大,选择窗越大。
在一种可能的实现方式中,所述在一个时间单元内接收到的PSFCH个数包括以下一种:
在一个时间单元内检测到的一个资源池内的PSFCH个数;
在一个时间单元内检测到的一个频带组合内的PSFCH个数;
在一个时间单元内检测到的一个频带内的PSFCH个数;
在一个时间单元内检测到的一个载波内的PSFCH个数。
在一种可能的实现方式中,所述在一个时间单元内接收到的用于PSFCH传输的资源块RB个数包括以下一种:
在一个时间单元内接收到的用于PSFCH传输的一个资源池内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带组合内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个载波内的资源块RB个数。
在一种可能的实现方式中,所述在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数包括以下一种:
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个资源池内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带组合内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个载波内的子信道个数。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元接收到的PSFCH个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到的PSFCH个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元接收到的PSFCH个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到用于PSFCH传输的资源块RB个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个组内能够进行通信的终端设备的个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个组内能够进行通信的终端设备的个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
本申请实施例通过第一终端设备在一个组内能够进行通信的终端设备的个数越多,其确定的选择窗的长度越大,从而能够保证终端设备自身可以有足够的时间来确定PSCCH和/或PSSCH的资源,从而能够顺利向第二终端设备发送该PSCCH和/或PSSCH。
上述详细阐述了本申请实施例的方法,下面对应的提供了本申请实施例的信息发送装置、信息接收装置、终端设备、网络设备、以及通信装置。
请参见图9,图9是本申请实施例提供的一种信息发送装置的结构示意图,信息发送装置90可以包括收发单元900和处理单元902,其中:
收发单元900用于接收物理侧行反馈信道PSFCH;
处理单元902用于确定第一时间段;
收发单元900还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后 的时刻。
在一种可能的实现方式中,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,处理单元902还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
在一种可能的实现方式中,所述PSFCH位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
可以理解的是,信息发送装置90中各个单元的描述还可以对应参考前述信息发送方法的图4-图5实施例,这里不再一一详述。信息发送装置90可以为本申请实施例的终端设备中的某个装置,也可以即为本申请实施例的终端设备本身。
如图10所示,图10是本申请实施例提供的信息接收装置的结构示意图,信息接收装置100可以包括处理单元1000和收发单元1002,其中:
处理单元1000用于确定第一时间段;
收发单元1002用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,处理单元1000还用于:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,处理单元1000还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
可以理解的是,信息接收装置100中各个单元的描述还可以对应参考前述信息接收方法的图6实施例,这里不再一一详述。信息接收装置100可以为本申请实施例的网络设备中的某个装置,也可以为本申请实施例的网络设备本身。
请参见图11,图11是本申请实施例提供的一种终端设备的结构示意图,终端设备110可以包括收发单元1100和处理单元1102,其中:
收发单元1100用于接收物理侧行反馈信道PSFCH;
处理单元1102用于确定第一时间段;
收发单元1100还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,所述处理单元,还用于:
根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,处理单元1102还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
在一种可能的实现方式中,所述PSFCH位于以下任意一种频域资源上:
一个或多个资源池;或
一个或者多个载波;或
一个或者多个频带;或
一个或者多个频带组合。
可以理解的是,终端设备110中各个单元的描述还可以对应参考前述信息发送方法的图4-图5实施例,这里不再一一详述。终端设备110即可以为本申请上述方法实施例中的终端设备。
如图12所示,图12是本申请实施例提供的网络设备的结构示意图,网络设备120可以包括处理单元1200和收发单元1202,其中:
处理单元1200用于确定第一时间段;
收发单元1202用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
在一种可能的实现方式中,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
在一种可能的实现方式中,处理单元1200还用于:
根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
在一种可能的实现方式中,处理单元1200还用于:
根据子载波间隔确定第一时间段。
在一种可能的实现方式中,所述子载波间隔为以下一种:
PSFCH的子载波间隔;
PUCCH的子载波间隔;
PUSCH的子载波间隔;
PSFCH和PUCCH的子载波间隔之中的最小值;
PSFCH和PUSCH的子载波间隔之中的最小值。
在一种可能的实现方式中,所述第一时间段满足如下关系:
T 1=(N 1+X)(2048+144)·κ2 ·T C
其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
可以理解的是,网络设备120中各个单元的描述还可以对应参考前述信息接收方法的图6实施例,这里不再一一详述。网络设备120即可以为本申请上述方法实施例中的网络设备。
如图13示出的本申请实施例提供的通信装置的结构示意图,通信装置13可以包括处理器130和存储器132。
处理器130可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
存储器132可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码或计算机程序并能够由计算机存取的任何其他介质,但不限于此。存储器132可以是独立存在,通过总线与处理器130相连接。存储器132也可以和处理器130集成在一起。
其中,上述存储器132用于存储执行以上方案的计算机程序,并由处理器130来控制执行。上述处理器130用于执行上述存储器132中存储的计算机程序。
存储器132存储的代码可用于执行以上图4-图5提供的信息发送方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
如图14示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置14可以包括处理器140和接口电路142。
处理器140可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器140中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器140可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路142可以完成数据、指令或者信息的发送或者接收,处理器140可以利用接口电路142接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路142发送出去。其中:
接口电路142具体用于接收代码指令并传输至所述处理器;
处理器140具体用于运行所述代码指令以执行以上图4-图5提供的信息发送方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
如图15示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置15可以包括处理器150和存储器152。
处理器150可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
存储器152可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码或计算机程序并能够由计算机存取的任何其他介质,但不限于此。存储器152可以是独立存在,通过总线与处理器150相连接。存储器152也可以和处理器150集成在一起。
其中,上述存储器152用于存储执行以上方案的计算机程序,并由处理器150来控制执行。上述处理器150用于执行上述存储器152中存储的计算机程序。
存储器152存储的代码可用于执行以上图6提供的信息接收方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
如图16示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置16可以 包括处理器160和接口电路162。
处理器160可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器160中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器160可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路162可以完成数据、指令或者信息的发送或者接收,处理器160可以利用接口电路162接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路162发送出去。其中:
接口电路162具体用于接收代码指令并传输至所述处理器;
处理器160具体用于运行所述代码指令以执行以上图6提供的信息接收方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
请参见图17,图17是本申请提供的信息发送装置的另一实施例的结构示意图,信息发送装置170可以包括处理单元1700和收发单元1702,其中:
处理单元1700用于根据第一终端设备的能力信息确定选择窗的长度;
收发单元1702用于向第二终端设备发送物理侧行控制信道PSCCH和/或物理侧行共享信道PSSCH。
在一种可能的实现方式中,上述第一终端设备的能力信息包括以下至少一种:
在同一时刻接收到的物理侧行反馈信道PSFCH个数;
在一个时间单元内接收到的PSFCH个数;
在不同通信类型接收到的PSFCH个数;
在一个时间单元内接收到的用于PSFCH传输的资源块RB个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的子信道个数;
一个组内能够进行通信的终端设备的个数。
在一种可能的实现方式中,所述在一个时间单元内接收到的PSFCH个数包括以下一种:
在一个时间单元内检测到的一个资源池内的PSFCH个数;
在一个时间单元内检测到的一个频带组合内的PSFCH个数;
在一个时间单元内检测到的一个频带内的PSFCH个数;
在一个时间单元内检测到的一个载波内的PSFCH个数。
在一种可能的实现方式中,所述在一个时间单元内接收到的用于PSFCH传输的资源块RB个数包括以下一种:
在一个时间单元内接收到的用于PSFCH传输的一个资源池内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带组合内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个频带内的资源块RB个数;
在一个时间单元内接收到的用于PSFCH传输的一个载波内的资源块RB个数。
在一种可能的实现方式中,所述在一个时间单元内发送的用于PSCCH和PSSCH传输 的子信道个数包括以下一种:
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个资源池内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带组合内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个频带内的子信道个数;
在一个时间单元内发送的用于PSCCH和PSSCH传输的一个载波内的子信道个数。
在一种可能的实现方式中,处理单元1700具体用于:
根据第一终端设备在一个时间单元接收到的PSFCH个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到的PSFCH个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,根据第一终端设备的能力信息确定选择窗的长度,包括:
根据第一终端设备在一个时间单元接收到的用于PSFCH传输的资源块RB个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元接收到用于PSFCH传输的资源块RB个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,处理单元1700具体用于:
根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个时间单元发送的用于PSCCH和PSSCH传输的子信道个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
在一种可能的实现方式中,处理单元1700具体用于:
根据第一终端设备在一个组内能够进行通信的终端设备的个数X1确定选择窗的长度为Y1个时间单元,以及根据第一终端设备在一个组内能够进行通信的终端设备的个数X2确定选择窗的长度为Y2个时间单元,当X1>X2时,Y1>Y2,其中X1、X2、Y1、Y2为自然数。
信息发送装置170中各个单元的描述还可以对应参考前述信息接收方法的图7-图8实施例,这里不再一一详述。信息发送装置170即可以为本申请上述图7-图8方法实施例中的终端设备的某个装置,,也可以为本申请实施例的终端设备本身。
如图18示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置18可以包括处理器180和存储器182。
处理器180可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
存储器182可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通 用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码或计算机程序并能够由计算机存取的任何其他介质,但不限于此。存储器182可以是独立存在,通过总线与处理器180相连接。存储器182也可以和处理器180集成在一起。
其中,上述存储器182用于存储执行以上方案的计算机程序,并由处理器180来控制执行。上述处理器180用于执行上述存储器182中存储的计算机程序。
存储器182存储的代码可用于执行以上图7-图8提供的信息发送方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
如图19示出的本申请提供的通信装置的另一实施例的结构示意图,通信装置19可以包括处理器190和接口电路192。
处理器190可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器190中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器190可以是通用处理器、数字通信器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
接口电路192可以完成数据、指令或者信息的发送或者接收,处理器190可以利用接口电路192接收的数据、指令或者其它信息,进行加工,可以将加工完成信息通过接口电路192发送出去。其中:
接口电路192具体用于接收代码指令并传输至所述处理器;
处理器190具体用于运行所述代码指令以执行以上图7-图8提供的信息发送方法中的步骤。具体可参考上述方法实施例的实现方式,这里不再赘述。
上述主要从电子设备实施的方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如电子设备、处理器等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备、摄像设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。该计算机可读存储介质包括:只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM)、 磁碟或者光盘等各种可存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (45)

  1. 一种信息发送方法,其特征在于,包括:
    接收物理侧行反馈信道PSFCH;
    确定第一时间段;
    在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
  2. 如权利要求1所述的方法,其特征在于,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
  3. 如权利要求1或2所述的方法,其特征在于,所述确定第一时间段,包括:
    根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,确定第一时间段,包括:
    根据子载波间隔确定第一时间段。
  5. 如权利要求4所述的方法,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  6. 如权利要求1-4中任一项所述的方法,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述PSFCH位于以下任意一种频域资源上:
    一个或多个资源池;或
    一个或者多个载波;或
    一个或者多个频带;或
    一个或者多个频带组合。
  8. 一种信息接收方法,其特征在于,包括:
    确定第一时间段;
    在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
  9. 如权利要求8所述的方法,其特征在于,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
  10. 如权利要求8或9所述的方法,其特征在于,所述确定第一时间段,包括:
    根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  11. 如权利要求8-10中任一项所述的方法,其特征在于,确定第一时间段,包括:
    根据子载波间隔确定第一时间段。
  12. 如权利要求11所述的方法,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  13. 如权利要求8-12中任一项所述的方法,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
  14. 一种信息发送装置,其特征在于,包括:
    收发单元,用于接收物理侧行反馈信道PSFCH;
    处理单元,用于确定第一时间段;
    所述收发单元,还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
  15. 如权利要求14所述的装置,其特征在于,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
  16. 如权利要求14或15所述的装置,其特征在于,所述处理单元,还用于:
    根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  17. 如权利要求14-16中任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据子载波间隔确定第一时间段。
  18. 如权利要求17所述的装置,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  19. 如权利要求14-17中任一项所述的装置,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
  20. 如权利要求14-19中任一项所述的装置,其特征在于,所述PSFCH位于以下任意一种频域资源上:
    一个或多个资源池;或
    一个或者多个载波;或
    一个或者多个频带;或
    一个或者多个频带组合。
  21. 一种信息接收装置,其特征在于,包括:
    处理单元,用于确定第一时间段;
    收发单元,用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
  22. 如权利要求21所述的装置,其特征在于,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
  23. 如权利要求21或22所述的装置,其特征在于,所述处理单元,还用于:
    根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  24. 如权利要求21-23中任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据子载波间隔确定第一时间段。
  25. 如权利要求24所述的装置,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  26. 如权利要求21-25中任一项所述的装置,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
  27. 一种终端设备,其特征在于,包括:
    收发单元,用于接收物理侧行反馈信道PSFCH;
    处理单元,用于确定第一时间段;
    所述收发单元,还用于在不早于第一时刻发送物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是接收所述PSFCH的结束时刻经过所述第一时间段之后的时刻。
  28. 如权利要求27所述的终端设备,其特征在于,所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是接收所述PSFCH结束时刻经过第一时间段之后的下一个符号。
  29. 如权利要求27或28所述的终端设备,其特征在于,所述处理单元,还用于:
    根据一个时隙中接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  30. 如权利要求27-29中任一项所述的终端设备,其特征在于,所述处理单元,还用于:
    根据子载波间隔确定第一时间段。
  31. 如权利要求30所述的终端设备,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  32. 如权利要求27-30中任一项所述的终端设备,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波间隔。
  33. 如权利要求27-32中任一项所述的终端设备,其特征在于,所述PSFCH位于以下任意一种频域资源上:
    一个或多个资源池;或
    一个或者多个载波;或
    一个或者多个频带;或
    一个或者多个频带组合。
  34. 一种网络设备,其特征在于,包括:
    处理单元,用于确定第一时间段;
    收发单元,用于在不早于第一时刻接收物理上行控制信道PUCCH或者物理上行共享信道PUSCH,所述第一时刻是终端设备接收物理侧行反馈信道PSFCH的结束时刻经过所述第一时间段之后的时刻。
  35. 如权利要求34所述的网络设备,其特征在于,所述第一时刻是终端设备接收PSFCH结束时刻经过第一时间段之后的时刻,包括:
    所述第一时刻是所述终端设备接收PSFCH结束时刻经过第一时间段之后的下一个符号。
  36. 如权利要求34或35所述的网络设备,其特征在于,所述处理单元,还用于:
    根据一个时隙中所述终端设备接收到的PSFCH个数确定第一时间段;或者
    根据一个时隙中所述终端设备接收到的用于PSFCH传输的资源块RB个数确定第一时间段。
  37. 如权利要求34-36中任一项所述的网络设备,其特征在于,所述处理单元,还用于:
    根据子载波间隔确定第一时间段。
  38. 如权利要求37所述的网络设备,其特征在于,所述子载波间隔为以下一种:
    PSFCH的子载波间隔;
    PUCCH的子载波间隔;
    PUSCH的子载波间隔;
    PSFCH和PUCCH的子载波间隔之中的最小值;
    PSFCH和PUSCH的子载波间隔之中的最小值。
  39. 如权利要求34-38中任一项所述的网络设备,其特征在于,所述第一时间段满足如下关系:
    T 1=(N 1+X)(2048+144)·κ2 ·T C
    其中,T 1为第一时间段,N 1是根据所述第一子载波间隔确定的符号个数,X是根据一个时隙中所述终端设备接收到的PSFCH个数或用于PSFCH传输的资源块RB个数确定的符号个数,T c为第一时间单元,T s为第二时间单元,κ为T s与T c的比值,μ为子载波 间隔。
  40. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1-7任一项所述的方法。
  41. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求8-13任一项所述的方法。
  42. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1-7中任一项所述的方法。
  43. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求8-13中任一项所述的方法。
  44. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1-7中任一项所述的方法被实现。
  45. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求8-13中任一项所述的方法被实现。
PCT/CN2020/084309 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备 WO2021203440A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020227037786A KR20220160101A (ko) 2020-04-10 2020-04-10 정보 송신 방법, 정보 수신 방법, 및 관련된 장치 및 디바이스
PCT/CN2020/084309 WO2021203440A1 (zh) 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备
EP20929943.7A EP4135363A4 (en) 2020-04-10 2020-04-10 METHOD FOR SENDING INFORMATION, METHOD FOR RECEIVING INFORMATION, AND ASSOCIATED APPARATUS AND DEVICES
CN202011630931.1A CN112866948B (zh) 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备
CN202080003200.6A CN113785602A (zh) 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备
JP2022561653A JP7516549B2 (ja) 2020-04-10 2020-04-10 情報送信方法、情報受信方法並びに関連する装置及びデバイス
TW110112987A TWI764666B (zh) 2020-04-10 2021-04-09 資訊傳輸方法及其裝置、通信裝置和電腦可讀存儲介質
US17/960,620 US20230037805A1 (en) 2020-04-10 2022-10-05 Information sending method, information receiving method, and related apparatus and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084309 WO2021203440A1 (zh) 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/960,620 Continuation US20230037805A1 (en) 2020-04-10 2022-10-05 Information sending method, information receiving method, and related apparatus and device

Publications (1)

Publication Number Publication Date
WO2021203440A1 true WO2021203440A1 (zh) 2021-10-14

Family

ID=78022364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084309 WO2021203440A1 (zh) 2020-04-10 2020-04-10 信息发送方法、信息接收方法、相关装置和设备

Country Status (7)

Country Link
US (1) US20230037805A1 (zh)
EP (1) EP4135363A4 (zh)
JP (1) JP7516549B2 (zh)
KR (1) KR20220160101A (zh)
CN (1) CN113785602A (zh)
TW (1) TWI764666B (zh)
WO (1) WO2021203440A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
US20200022089A1 (en) * 2018-07-11 2020-01-16 Samsung Electronics Co., Ltd. Method and apparatus for multi-antenna transmission in vehicle to vehicle communication
WO2020022752A1 (en) * 2018-07-23 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (v2x) communication
CN110943809A (zh) * 2018-09-21 2020-03-31 株式会社Kt 用于传送侧链路harq反馈信息的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019134085A1 (zh) * 2018-01-04 2019-07-11 Oppo广东移动通信有限公司 数据传输方法、终端设备、网络设备及计算机存储介质
US11108507B2 (en) * 2018-10-04 2021-08-31 Lg Electronics Inc. Method and apparatus for transmitting sidelink HARQ feedback in NR V2X
PL3905836T3 (pl) * 2018-12-29 2024-01-22 Beijing Xiaomi Mobile Software Co., Ltd. Sposób przesyłania danych, system i przyrząd do łączności bezpośredniej oraz urządzenie
CN113141662B (zh) * 2020-01-20 2023-05-30 维沃移动通信有限公司 一种确定物理旁链路反馈信息的方法和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363843A1 (en) * 2018-05-27 2019-11-28 Brian Gordaychik Next generation radio technologies
US20200022089A1 (en) * 2018-07-11 2020-01-16 Samsung Electronics Co., Ltd. Method and apparatus for multi-antenna transmission in vehicle to vehicle communication
WO2020022752A1 (en) * 2018-07-23 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (v2x) communication
CN110943809A (zh) * 2018-09-21 2020-03-31 株式会社Kt 用于传送侧链路harq反馈信息的方法和设备
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135363A4 *

Also Published As

Publication number Publication date
KR20220160101A (ko) 2022-12-05
TW202139636A (zh) 2021-10-16
JP7516549B2 (ja) 2024-07-16
EP4135363A4 (en) 2023-04-12
US20230037805A1 (en) 2023-02-09
CN113785602A (zh) 2021-12-10
EP4135363A1 (en) 2023-02-15
JP2023521986A (ja) 2023-05-26
TWI764666B (zh) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6940914B2 (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US20220190983A1 (en) Method for data transmission and terminal device
EP3925133B1 (en) User equipment and system performing transmission and reception operations
JP7228054B2 (ja) フィードバック情報送信方法及び装置
TW201412166A (zh) 方法及設備
WO2021031820A1 (zh) 侧行链路反馈信息传输的方法和通信装置
CN111294940B (zh) 发射功率的分配方法及装置、存储介质、终端
WO2021063375A1 (zh) 反馈信息处理方法及通信装置
TW202019221A (zh) 一種回饋資源配置方法、終端設備及網路設備
WO2021203440A1 (zh) 信息发送方法、信息接收方法、相关装置和设备
WO2021164603A1 (zh) 辅链路控制信息的资源指示方法与装置、终端设备
CN112866948B (zh) 信息发送方法、信息接收方法、相关装置和设备
WO2024017290A1 (zh) 通信方法及装置、计算机可读存储介质
US12052706B2 (en) User equipment and system performing transmission and reception operations
WO2024092673A1 (zh) 数据信道的调度方法、装置、设备及存储介质
RU2799505C2 (ru) Пользовательское оборудование и система, осуществляющая операции передачи и приема
WO2020187217A1 (zh) 一种传输信息的方法和装置
JP2024510280A (ja) 情報伝送方法、装置、デバイス及び記憶媒体
CN116455541A (zh) 通信方法及终端设备
WO2019015546A1 (zh) 用于传输信息的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561653

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020929943

Country of ref document: EP

Effective date: 20221108