WO2020187217A1 - 一种传输信息的方法和装置 - Google Patents

一种传输信息的方法和装置 Download PDF

Info

Publication number
WO2020187217A1
WO2020187217A1 PCT/CN2020/079850 CN2020079850W WO2020187217A1 WO 2020187217 A1 WO2020187217 A1 WO 2020187217A1 CN 2020079850 W CN2020079850 W CN 2020079850W WO 2020187217 A1 WO2020187217 A1 WO 2020187217A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
terminal device
downlink data
information
network device
Prior art date
Application number
PCT/CN2020/079850
Other languages
English (en)
French (fr)
Inventor
张旭
薛丽霞
刘建琴
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020187217A1 publication Critical patent/WO2020187217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for transmitting information.
  • a terminal device receives downlink data and generates hybrid automatic repeat request (HARQ) feedback information.
  • the HARQ feedback information includes positive acknowledgement (ACK) and negative acknowledgement messages (negative acknowledgement, NACK).
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • a positive response message indicates that the terminal device successfully received (correctly received) downlink data; a negative response message indicates that the terminal device did not successfully receive (incorrectly received) downlink data.
  • terminal devices Since terminal devices frequently send HARQ feedback information, it may cause interference between HARQ feedback information sent by different terminal devices, thereby causing network devices to fail to receive HARQ feedback information correctly.
  • the network device may erroneously interpret the NACK as an ACK, and the network device no longer retransmits the transport block (TB) that has failed, resulting in a decrease in the transmission efficiency of the system and deterioration of the indicators of the communication system.
  • TB transport block
  • the network device may also incorrectly interpret ACK as NACK, and then retransmit the TB that does not need to be retransmitted, causing the retransmitted TB to occupy additional system resources, block the transmission of other data, and reduce the data transmission efficiency of the system.
  • the present application provides a method and device for transmitting information, which helps to improve the transmission efficiency of the system.
  • a method for transmitting information includes: a terminal device receives downlink data from a network device; and the terminal device determines a first sequence or a second sequence, where the first sequence is the downlink data received by the terminal device. The sequence determined when the data is successfully received; the second sequence is the sequence determined when the terminal device fails to successfully receive the downlink data; the amplitude of the first sequence is different from the amplitude of the second sequence; the terminal device reports to the network The device sends the first sequence or the second sequence.
  • the terminal device feeds back sequences of different amplitudes to the network device through the reception of downlink data, which helps to reduce the interference of uplink control information, thereby helping to improve the transmission efficiency of the system.
  • the amplitude of the first sequence is smaller than the amplitude of the second sequence.
  • the amplitude of the first sequence obtained by the terminal device when the downlink data is correctly received is smaller than the amplitude of the second sequence obtained by the terminal device when the downlink data is not successfully received, which helps to reduce the certainty.
  • the interference of the uplink control channel introduced by the response message helps to improve the transmission efficiency of the system in the scenario of low-latency and high-reliability services.
  • the terminal device determining the first sequence or the second sequence includes: the terminal device determining feedback information, the feedback information is used to indicate the success of receiving the downlink data or The reception is not successful; the terminal device maps the feedback information into complex-valued symbols according to the first modulation mode; the terminal device determines the first sequence or the second sequence according to the complex-valued symbols.
  • the terminal device determines the feedback information based on the reception status of the downlink data, and can modulate the bit values of different feedback information into different complex-valued symbols, and the different complex-valued symbols are used to determine the difference.
  • the sequence of amplitude helps reduce the interference of uplink control information, thereby helping to improve the transmission efficiency of the system.
  • the method further includes: the terminal device receives from the network device
  • the first indication information is used to indicate one or more modulation modes, and the one or more modulation modes include the first modulation mode.
  • the one or more modulation methods include the on-off keying OOK modulation method.
  • the OOK modulation method can be used to determine the all-zero sequence, which helps reduce the positive response band.
  • the interference of the incoming uplink control channel helps to improve the transmission efficiency of the system.
  • the first indication information includes information for indicating the one or more modulation modes.
  • the network device may indicate one or more modulation modes to the terminal device by displaying an indication, so that the terminal device can determine a sequence according to the one or more modulation modes.
  • the first indication information includes information for indicating that the downlink data is data with high reliability and low delay.
  • the terminal device can determine that the network device expects it to generate complex-valued symbols through the OOK modulation method and then generate a sequence.
  • the network device may indicate one or more modulation modes to the terminal device through an implicit indication, so that the terminal device can determine a sequence according to the one or more modulation modes.
  • the method further includes: the terminal device selects from the multiple modulation modes according to the feedback information Determine the first modulation method.
  • the terminal device when the network device indicates multiple modulation modes, the terminal device can determine the corresponding modulation mode according to the bit length of the feedback information, so that the terminal device can map the bit value of the feedback information to complex-valued symbols.
  • the multiple modulation methods include OOK modulation methods.
  • the complex-valued symbol when the bit length of the feedback information is 1 bit, the complex-valued symbol satisfies: Among them, d(i) is the complex-valued symbol, b(i) is the bit value of the i+1th bit in the feedback information, and i is an integer greater than or equal to 0.
  • the terminal device when the bit value of the determined feedback information of the terminal device is 1, the value of the complex-valued symbol is 0, and the terminal device can generate an all-zero sequence.
  • the terminal device sends the all-zero sequence to the network device.
  • the network device receives the all-zero sequence, it can be determined that the terminal device has successfully received the downlink data, which helps to reduce the interference of the uplink control channel introduced by the acknowledgement message, thereby helping to improve the transmission efficiency of the system.
  • the complex-valued symbol satisfies: Among them, d(i) is the complex-valued symbol, b(2i) is the bit value of the 2i-th bit in the feedback information, b(2i+1) the bit value of the 2i+1-th bit in the feedback information, i Is an integer greater than or equal to 0.
  • the terminal device when the bit value of the determined feedback information of the terminal device is 11, the value of the complex-valued symbol is 0, and the terminal device can generate an all-zero sequence.
  • the terminal device sends the all-zero sequence to the network device.
  • the network device receives the all-zero sequence, it can be determined that the terminal device has successfully received the downlink data, which helps to reduce the interference of the uplink control channel introduced by the acknowledgement message, thereby helping to improve the transmission efficiency of the system.
  • the terminal device determining the first sequence or the second sequence includes: the terminal device determining feedback information, the feedback information is used to indicate that the downlink data is successfully received or The reception is not successful; the terminal device determines the first sequence or the second sequence according to the feedback information and a preset mapping relationship, and the preset mapping relationship is a mapping relationship between a bit value of the feedback information and a sequence.
  • the terminal device determines the feedback information based on the receiving situation of the downlink data, and can directly map different feedback information into a sequence of different amplitudes, which helps to reduce the interference of the uplink control information, thereby helping to improve the system The transmission efficiency.
  • the terminal device sending the first sequence or the second sequence to the network device includes: the terminal device is on one or more uplink resources that have successfully competed , Sending the first sequence or the second sequence to the network device.
  • the method before the terminal device sends the first sequence or the second sequence to the network device, the method further includes: the terminal device competes to obtain the one or the other from the uplink resource set corresponding to the downlink data. Multiple uplink resources.
  • the terminal device can compete for the uplink resource in the uplink resource set in the unlicensed frequency band, and send the sequence on the uplink resource that successfully competes, and the network device can uplink each uplink resource set.
  • the sequence is received on the resource to determine whether the terminal device successfully receives the downlink data or fails to receive it.
  • a method for transmitting information includes: a network device sends downlink data to a terminal device; when the network device receives a first sequence sent by the terminal device, the network device determines that the terminal device is Data reception is successful; when the network device receives the second sequence sent by the terminal device, the network device determines that the terminal device did not successfully receive the downlink data; wherein the amplitude of the first sequence is different from the amplitude of the second sequence .
  • the network device can determine the receiving status of the terminal device on the downlink data according to the received sequence of different amplitudes, which helps to reduce the interference of the uplink control channel and improve the reception accuracy of the network device , which helps to improve the transmission efficiency of the system.
  • the amplitude of the first sequence is smaller than the amplitude of the second sequence.
  • the amplitude of the sequence received by the network device is small, which helps to reduce the interference of the uplink control channel introduced by the positive response and improve the network device’s performance. Receiving accuracy helps to improve the transmission efficiency of the system.
  • the method before the network device receives the first sequence or the second sequence sent by the terminal device, the method further includes: the network device sends the first sequence to the terminal device An indication information, the first indication information is used to indicate one or more modulation modes, and the one or more modulation modes are used to determine the first sequence or the second sequence.
  • the one or more modulation methods include OOK modulation methods.
  • the first indication information includes information for indicating the one or more modulation modes.
  • the first indication information includes information for indicating that the downlink data is high-reliability and low-latency data.
  • the network device receiving the first sequence or the second sequence sent by the terminal device includes: the network device receives on one or more uplink resources The first sequence or the second sequence sent by the terminal device.
  • the network device receives the first sequence or the second sequence on an uplink resource set corresponding to the downlink data, and the uplink resource set includes the one or more uplink resources.
  • a method for transmitting information includes: a terminal device receives downlink data sent by a network device, and the terminal device does not receive downlink control information for scheduling the downlink data; the terminal device responds to the downlink data When the reception is not successful, the terminal device sends the first information to the network device; when the terminal device successfully receives the downlink data, the terminal device does not send the first information to the network device.
  • the terminal device when the terminal device successfully receives the downlink data, it does not send any information to the network device, which helps to reduce the interference of the uplink control channel introduced by the acknowledgement message, thereby helping to improve the efficiency of spectrum use and the system's efficiency. Transmission efficiency.
  • the first information is a sequence or a complex-valued symbol group.
  • the terminal device sending the first information to the network device includes: the terminal device sends to the network device on one or more uplink resources that have successfully competed The first information.
  • the terminal device can compete for the uplink resource in the uplink resource set in the unlicensed frequency band, and send the sequence on the uplink resource that successfully competes, and the network device can uplink each uplink resource set.
  • the sequence is received on the resource to determine whether the terminal device successfully receives the downlink data or fails to receive it.
  • a method for transmitting information includes: a network device sends downlink data to a terminal device, and the network device does not send downlink control information for scheduling the downlink data to the terminal device; the network device receives the When the first information sent by the terminal device, the network device determines that the terminal device has not successfully received the downlink data; when the network device does not receive the first information sent by the terminal device, the network device determines that the terminal device has received the downlink data Data received successfully.
  • the network device can determine whether the terminal device receives the downlink data according to whether the first information is received or not, which helps to reduce the interference of the uplink control channel and improve the network device Receiving accuracy, thereby improving the transmission efficiency of the system.
  • the first information is a sequence or a complex-valued symbol group.
  • the network device does not receive the first information sent by the terminal device, including: the network device is on each of the one or more uplink resources None of the first information sent by the terminal device is received.
  • the network device after the network device does not receive the first information on one or more uplink resources corresponding to the downlink data, it can be determined that the terminal device successfully receives the downlink data.
  • the network device receiving the first information sent by the terminal device includes: the network device receives the first information sent by the terminal device on one or more uplink resources First information.
  • the present application provides a device for transmitting information, which includes units or means for performing the steps of the first aspect or the third aspect.
  • the present application provides a device for transmitting information, which includes units or means for performing each step of the second aspect or the fourth aspect.
  • the present application provides a device for transmitting information, including at least one processor, configured to connect with a memory to call a program in the memory to execute the method provided in the first aspect or the third aspect.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application provides a device for transmitting information, including at least one processor, configured to connect with a memory to call a program in the memory to execute the method provided in the second or fourth aspect above.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the present application provides a device for transmitting information, including at least one processor and an interface circuit, and the at least one processor is configured to execute the method provided in the above first aspect or the third aspect.
  • the present application provides a device for transmitting information, including at least one processor and an interface circuit, and the at least one processor is configured to execute the method provided in the second or fourth aspect above.
  • a terminal device in an eleventh aspect, includes the device provided in the above fifth aspect, or the terminal device includes the device provided in the above seventh aspect, or the terminal device includes the above ninth aspect. Device.
  • a network device in a twelfth aspect, includes the device provided in the sixth aspect, or the network device includes the device provided in the eighth aspect, or the network device includes the device provided in the tenth aspect Device.
  • this application provides a program, which is used to execute the method provided in the first aspect or the third aspect when the program is executed by a processor.
  • this application provides a program that, when executed by a processor, is used to execute the method provided in the second or fourth aspect above.
  • this application provides a program product, such as a computer-readable storage medium, including the above program.
  • Fig. 1 is a schematic diagram of an application scenario of a technical solution provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another network architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • Fig. 5 is a mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 6 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 7 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 8 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 9 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 10 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • FIG. 11 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • Fig. 12 is another mapping relationship diagram between complex-valued symbols and bit values of feedback information in a complex coordinate system.
  • FIG. 13 is a schematic diagram of a terminal device according to an embodiment of the present application sending a sequence on an uplink resource with a successful contention.
  • FIG. 14 is another schematic flowchart of a method for transmitting information provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a terminal device feeding back first information according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a device for transmitting information provided by an embodiment of the present application.
  • FIG. 17 is another schematic block diagram of a device for transmitting information according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of another structure of a network device provided by an embodiment of the present application.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the network device is a device in the wireless network, for example, a radio access network (RAN) node that connects the terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of an application scenario of the technical solution provided by an embodiment of the present application.
  • a terminal device 130 accesses a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with Communication with other terminal devices.
  • the wireless network includes a RAN110 and a core network (CN) 120.
  • the RAN110 is used to connect the terminal device 130 to the wireless network
  • the CN120 is used to manage the terminal device and provide a gateway for communication with the external network.
  • the method for transmitting information provided in this application can be applied to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1.
  • a wireless communication connection between two communication devices in the wireless communication system and one of the two communication devices may correspond to the terminal device 130 shown in FIG. 1, for example, it may be the terminal device 130 in FIG. , It may also be a chip configured in the terminal device 130; the other communication device of the two communication devices may correspond to the RAN110 shown in FIG. 1, for example, it may be the RAN110 in FIG. 1, or may be configured in The chip in RAN110.
  • Fig. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture includes CN equipment and RAN equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented separately from the baseband device, or integrated into the baseband device, or partially remote Integrated in the baseband device.
  • the RAN equipment eNB
  • the radio frequency device can be arranged remotely from the baseband device, such as a remote radio unit (radio unit).
  • RRU is arranged farther away from the BBU.
  • the control plane protocol layer structure may include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • a RAN device can implement radio resource control (RRC), packet data convergence protocol (PDCP), radio link control (RLC), and media access control ( Media access control, MAC) and other protocol layer functions; or multiple nodes can implement these protocol layer functions; for example, in an evolution structure, RAN equipment may include a centralized unit (CU) and a distributed unit ( Distributed unit, DU), multiple DUs can be centrally controlled by one CU. As shown in Figure 2, CU and DU can be divided according to the protocol layers of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • MAC media access control
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay, and functions that need to meet the delay requirement for processing time are set in the DU, and functions that do not need to meet the delay requirement are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • FIG. 3 shows a schematic diagram of another network architecture provided by an embodiment of the present application.
  • the control plane (CP) and the user plane (UP) of the CU can also be combined. Separation is achieved by dividing into different entities, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU can directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal device, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • the RRC or PDCP layer signaling will eventually be processed as the PHY layer signaling and sent to the terminal device, or converted from the received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the CU is divided into network equipment on the RAN side.
  • the CU can also be divided into network equipment on the CN side, which is not limited here.
  • the devices in the following embodiments of the present application may be located in the terminal device according to the functions implemented by them.
  • the network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • FIG. 4 shows a schematic flowchart of a method 200 for transmitting information according to an embodiment of the present application.
  • the execution subject of the method 200 may be a device for transmitting information (for example, a terminal device or a chip of a terminal device or Device, network device, or chip or device of the network device), the method 200 includes:
  • a network device sends downlink data to a terminal device, and the terminal device receives the downlink data sent by the network device.
  • the downlink data is carried on a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the terminal device receiving downlink data from the network device can also be understood as the terminal device acquiring the time-frequency resource of the PDSCH and receiving the PUSCH.
  • the downlink data may include one or more transport blocks (TB).
  • TB transport blocks
  • the terminal device determines a first sequence or a second sequence, where the first sequence is a sequence determined when the terminal device successfully receives the downlink data; the second sequence is that the terminal device fails to successfully receive the downlink data Time determined sequence; the amplitude of the first sequence is different from the amplitude of the second sequence.
  • the first sequence and the second sequence may include multiple elements. Since the amplitude of each element in the first sequence may be the same, the amplitude of each element in the second sequence They may all be the same, and the amplitude of the first sequence and the amplitude of the second sequence are different, and it can also be understood that the amplitude of any element in the first sequence is different from the amplitude of any element in the second sequence. Optionally, the value of the amplitude includes zero.
  • the terminal device may send the first sequence or the second sequence to the network device according to the successful or unsuccessful reception of each transmission block in the downlink data.
  • the terminal device may send the first sequence to the network device; if the terminal device does not successfully receive the transmission block, The terminal device may send the second sequence to the network device.
  • the terminal device may send the first sequence to the network device; When one transmission block of the two transmission blocks is successfully received and the other transmission block is not successfully received, or when neither of the two transmission blocks is successfully received, the terminal device may send the second sequence to the network device.
  • the terminal device may also send a corresponding sequence to the network device according to the successful or unsuccessful reception of each transmission block.
  • the downlink data may also include 3 or more transmission blocks, and the embodiment of the present application is not limited to this.
  • the terminal device can send the network to the network on two different uplink resources (uplink resource 1 and uplink resource 2).
  • the device sends the sequence.
  • the terminal device may send the first sequence on the uplink resource 1 when the transmission block 1 and the transmission block 2 are successfully received; the terminal device may transmit the first sequence on the uplink resource 2 when the transmission block 3 is not successfully received. Send the second sequence on.
  • the terminal device determining the first sequence or the second sequence includes:
  • the terminal device determines feedback information, where the feedback information is used to indicate that the downlink data is received successfully or not;
  • the terminal device maps the feedback information into complex-valued symbols according to the first modulation mode
  • the terminal device determines the first sequence or the second sequence according to the complex-valued symbol.
  • the terminal device may generate 1-bit feedback information for each transmission block in the downlink data.
  • the terminal device receives the downlink data, but does not receive downlink control information (DCI) for scheduling the downlink data, and the terminal device generates 1-bit feedback information for the downlink data.
  • DCI downlink control information
  • the terminal device receives downlink control information for scheduling downlink data, the downlink control information instructs the terminal device to periodically receive downlink data, and the terminal device generates 1-bit feedback information for the downlink data.
  • the terminal device receives downlink data in the first period and receives downlink control information for scheduling the downlink data.
  • the downlink control information instructs the terminal device to periodically receive the downlink data.
  • the terminal device Only the downlink data is received and the downlink control information for scheduling the downlink data is not received.
  • the terminal device only receives downlink data and does not receive the downlink control information for scheduling downlink data. It can also be understood that the terminal device receives the PDSCH and does not receive the physical downlink control information for scheduling the PDSCH. channel, PDCCH).
  • the terminal device may also generate 2-bit feedback information for two of the transmission blocks.
  • the response information includes a negative acknowledgement message (NACK).
  • NACK can indicate that the terminal device fails to receive the downlink data or fails to receive successfully;
  • ACK positive acknowledgement message
  • ACK can indicate that the terminal device responds to downlink data. Data received successfully.
  • the value of the bit of the feedback information is 0, indicating a negative acknowledgement message (NACK); the value of the bit of the feedback information is 1, indicating an acknowledgement message (ACK).
  • the downlink data includes one or more transmission blocks, and the terminal device may generate 1 bit feedback information for each transmission block of the one or more transmission blocks. If the terminal device successfully receives the transmission block, it is determined that the bit value of the feedback information is 1; if the terminal device fails to receive the transmission block, it is determined that the bit value of the feedback information is 0.
  • the downlink data includes two transmission blocks. If the terminal device successfully receives the two transmission blocks, it is determined that the bit value of the feedback information is 1; if the terminal device only responds to the two transmission blocks If one of the transmission blocks is successfully received, it is determined that the bit value of the feedback information is 0; if the terminal device fails to receive the two transmission blocks, it is determined that the bit value of the feedback information is 0.
  • the downlink data includes two transmission blocks. If the terminal device successfully receives the two transmission blocks, it is determined that the bit value of the feedback information is 11; if the terminal device only receives the two transmission blocks If the first transmission block is successfully received and the second transmission block fails, the bit value of the feedback information is determined to be 10; if the terminal device only fails to receive the first transmission block of the two transmission blocks and the second transmission block fails If the transmission block is successfully received, the bit value of the feedback information is determined to be 01; if the terminal device fails to receive the two transmission blocks, it is determined that the bit value of the feedback information is 00.
  • the terminal device may map the bits of the feedback information to complex-valued symbols according to the first modulation mode.
  • the method further includes:
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate one or more modulation modes, and the one or more modulation modes include the first modulation mode.
  • the modulation method used in the implementation of this application may include binary phase shift keying (BPSK) modulation method, quadrature phase shift keying (quadrature phase shift keying, QPSK) modulation method, or on-off keying (on-off keying). , OOK) modulation method.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • OOK on-off keying
  • the OOK modulation method may also be referred to as a binary on-off keying modulation method, or may also be referred to as a binary amplitude keying modulation method.
  • the OOK modulation method may also include a 1-bit OOK modulation method and a multi-bit OOK modulation method.
  • the network device may indicate the one or more modulation modes by displaying an indication.
  • the first indication information includes information used to indicate the one or more modulation modes.
  • the first indication information includes configuration information of the OOK modulation mode.
  • the configuration information of the OOK modulation mode includes at least one of phase offset information or amplitude information in the OOK modulation mode.
  • the first indication information is carried in RRC signaling.
  • the network device may indicate the one or more modulation modes in an implicit indication manner.
  • the network device may carry the first indication information in a cyclic redundancy check (CRC) in the downlink control information (downlink control information, DCI), and the first indication information is used to indicate Downlink data is data with high reliability and low latency.
  • CRC cyclic redundancy check
  • the terminal device may determine the modulation mode according to the bit length of the feedback information.
  • the first indication information is used to indicate the OOK modulation method
  • the OOK modulation method may include a 1-bit OOK modulation method and a multi-bit OOK modulation method.
  • the terminal device determines that the bit length of the feedback information is 1 bit
  • the terminal device maps the bit value of the feedback information to complex-valued symbols according to the 1-bit OOK modulation mode
  • the terminal device determines that the bit length of the feedback information is In the case of 2 bits
  • the terminal device maps the bit value of the feedback information to complex-valued symbols according to the multi-bit OOK modulation mode.
  • the first indication information indicates a binary phase shift keying (BPSK) modulation method and an OOK modulation method.
  • BPSK binary phase shift keying
  • OOK OOK modulation method
  • the terminal device determines that the modulation mode is the OOK modulation mode, and the bit value of the i+1 bit in the feedback information bit is b(i), the complex-valued symbol d(i) satisfies the following formula (1):
  • mapping relationship between the complex-valued symbol d(i) and the value of the feedback information bit is shown in FIG. 5.
  • the feedback information bit pair (the bit value b(2i) of the 2i bit in the feedback information and the bit value b(2i+ 1)) Meet:
  • mapping relationship between the complex-valued symbol d(i) and the feedback information bit pair is shown in FIG. 8.
  • Figure 10 in the complex coordinate system.
  • the terminal device may determine the first sequence or the second sequence according to the complex-valued symbol.
  • the terminal device may determine the block of complex-valued block according to formula (3):
  • y(n) is a complex-valued symbol block
  • d(0) is a complex-valued symbol
  • PAPR peak to average power ratio
  • the terminal device can determine the first sequence or the second sequence according to formula (4):
  • w i (m) is an orthogonal sequence
  • OFDM orthogonal frequency division multiplexing
  • the amplitude of the first sequence of 0 can also be understood as the amplitude of each element in the first sequence is zero.
  • the amplitude of each element in the first sequence is the same, and the amplitude of each element in the second sequence is the same, the amplitude of the first sequence and the second sequence are different, it is also understandable It is that the amplitude of any element in the first sequence is different from the amplitude of any element in the second sequence.
  • the terminal device can determine the sequence of different amplitudes according to the successful or unsuccessful reception of the downlink data, which helps to reduce the interference of the uplink control channel introduced by the acknowledgement message, thereby helping to improve the system The transmission efficiency.
  • the first sequence and the second sequence can also be determined in other ways. For example, taking the bit length of the feedback information of 1 bit as an example, the corresponding complex-valued symbol can be determined by formula (5):
  • a is greater than 0 and less than 1.
  • the first sequence or the second sequence can be determined by (3) and (4).
  • the first sequence can be obtained according to formula (4).
  • the amplitude of this first sequence is a.
  • the second sequence can be obtained according to formula (4). The amplitude of this second sequence is 1+a.
  • the terminal device determining the first sequence or the second sequence includes:
  • the terminal device determines feedback information, where the feedback information is used to indicate successful or unsuccessful reception of the downlink data
  • the terminal device determines the first sequence or the second sequence according to the feedback information and a preset mapping relationship, and the preset mapping relationship is a mapping relationship between a bit value of the feedback information and a sequence.
  • Table 1 shows a mapping relationship between bit length and sequence of feedback information.
  • the terminal device can determine the first sequence to be sent according to Table 1.
  • the first sequence can be ⁇ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⁇ .
  • the amplitude of this first sequence is zero.
  • the terminal device can determine the second sequence to be sent according to Table 1.
  • the second sequence can be ⁇ exp(-2 ⁇ /4j), exp(2 ⁇ /4j+ ⁇ ), exp(-2 ⁇ /4j+2 ⁇ ), exp(-2 ⁇ /4j+3 ⁇ ), exp(-2 ⁇ /4j+4 ⁇ ), exp( ⁇ j+5 ⁇ ), exp(-2 ⁇ /4j+6 ⁇ ), exp (7 ⁇ ), exp(2 ⁇ /4j+8 ⁇ ), exp(2 ⁇ /4j+9 ⁇ ), exp(2 ⁇ /4j+10 ⁇ ), exp(-2 ⁇ /4j+11 ⁇ ) ⁇ .
  • the amplitude of this second sequence is 1.
  • Table 2 shows the mapping relationship between the bit value and sequence of another feedback information
  • the terminal device can determine the first sequence to be sent according to Table 2.
  • the first sequence can be ⁇ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⁇ .
  • the amplitude of this first sequence is zero.
  • the terminal device may determine the second sequence to be sent according to Table 2.
  • the second sequence may be ⁇ exp(-2 ⁇ /4j), exp( 2 ⁇ /4j+ ⁇ ), exp(-2 ⁇ /4j+2 ⁇ ), exp(-2 ⁇ /4j+3 ⁇ ), exp(-2 ⁇ /4j+4 ⁇ ), exp( ⁇ j+5 ⁇ ), exp(-2 ⁇ /4j +6 ⁇ ), exp(7 ⁇ ), exp(2 ⁇ /4j+8 ⁇ ), exp(2 ⁇ /4j+9 ⁇ ), exp(2 ⁇ /4j+10 ⁇ ), exp(-2 ⁇ /4j+11 ⁇ ) ⁇ .
  • the amplitude of this second sequence is 1.
  • Table 3 shows the mapping relationship between the bit value and sequence of another feedback information
  • the terminal device may determine the first sequence to be sent according to Table 3, and the first sequence may be the same as the first sequence in Table 2 above.
  • the terminal device can determine the second sequence to be sent according to Table 3; when the bit value of the feedback information is 01, the terminal device can determine the third sequence that needs to be sent according to Table 3.
  • the amplitudes of the second sequence, the third sequence, and the fourth sequence may be the same; or, the amplitudes of the second sequence, the third sequence, and the fourth sequence may be partially the same; or, the second sequence, the third sequence, and the The amplitude of the fourth sequence may all be different.
  • the amplitude of the first sequence is different from the amplitude of any one of the second, third, and fourth sequences.
  • the terminal device can determine the sequence of different amplitudes according to the successful or unsuccessful reception of the downlink data.
  • the amplitude of the sequence corresponding to the positive response message is smaller than the amplitude of the sequence corresponding to the negative response message, which is helpful To reduce the interference of the uplink control channel introduced by the acknowledgement message, thereby helping to improve the transmission efficiency of the system.
  • S230 The terminal device sends the first sequence or the second sequence to the network device, and the network device receives the first sequence or the second sequence sent by the terminal device.
  • the terminal device sends the first sequence or the second sequence to the network device on a predetermined uplink resource, and the network device receives the first sequence or the second sequence on the predetermined uplink resource.
  • the terminal device may send the first sequence or the second sequence to the network device on a predetermined uplink resource, without competing for uplink resources to send the first sequence or the second sequence.
  • the predetermined uplink resource may be an uplink resource agreed in advance by the terminal device and the network device.
  • the terminal device sending the first sequence or the second sequence to the network device includes:
  • the terminal device sends the first sequence or the second sequence to the network device on one or more uplink resources that have successfully competed.
  • the terminal device In the unlicensed frequency band, the terminal device needs to access through competition, and only if the competition succeeds can it send the first sequence or the second sequence to the network device on the successfully competing uplink resource.
  • the uplink resource set includes one or more uplink resources.
  • the terminal device When receiving the downlink data, the terminal device can determine the uplink resource set corresponding to the downlink data, and the terminal device can compete to obtain one or more uplink resources from the uplink resource set.
  • the terminal device may send the first sequence or the second sequence to the network device on at least part of the uplink resources of the one or more uplink resources.
  • the terminal device when it successfully receives the downlink data, it may determine the first sequence, and the uplink resource set corresponding to the downlink data includes uplink resource 1, uplink resource 2, and uplink resource 3.
  • the terminal equipment can obtain uplink resource 1 and uplink resource 2 through competition.
  • the terminal device may send the first sequence on the uplink resource 1 and the uplink resource 2 where the competition succeeds; or, the terminal device may also send the first sequence on the uplink resource 1 where the competition succeeds; or, the terminal device may also The first sequence is sent on the uplink resource 2 where the competition succeeds.
  • FIG. 13 shows a schematic diagram of a terminal device sending a sequence on an uplink resource that has successfully competed.
  • a network device sends downlink data to a terminal device. If the terminal device fails to receive the downlink data, the terminal device can compete for uplink Resource 1, uplink resource 2, and uplink resource 3. If the terminal device successfully competes for uplink resource 3, the second sequence may be sent on the uplink resource 3.
  • S240 When the network device receives the first sequence sent by the terminal device, the network device determines that the terminal device successfully receives the downlink data; when the network device receives the second sequence sent by the terminal device, the network device determines that the terminal device The device did not successfully receive the downlink data.
  • the network device determines that the terminal device successfully receives the downlink data; the network device receives the terminal device's transmission on the predetermined uplink resource In the second sequence of, the network device determines that the terminal device has not successfully received the downlink data.
  • the network device receiving the first sequence sent by the terminal device includes:
  • the network device receives the first sequence on each uplink resource in the uplink resource set.
  • the uplink resource set may include one or more uplink resources, and there is a correspondence between the downlink data and the uplink resource set.
  • the network device can configure an uplink resource set to allow terminal devices to compete.
  • the terminal device can compete for one or more uplink resources from the uplink resource set, and send the first sequence on the one or more uplink resources, and the network device needs Receive on each uplink resource in the uplink resource set.
  • the network device receiving the second sequence sent by the terminal device includes:
  • the network device receives the second sequence on each uplink resource in the uplink resource set.
  • the terminal device can determine the sequence of different amplitudes according to the successful or unsuccessful reception of the downlink data, which helps to reduce the response message caused by the response message corresponding to the sequence with the lower amplitude.
  • the interference of the uplink control channel improves the reception accuracy of network equipment.
  • FIG. 14 shows a schematic flowchart of a method 300 for transmitting information according to an embodiment of the present application.
  • the execution subject of the method 300 may be a device for transmitting information (for example, a terminal device or a chip of a terminal device or Device, network device, or chip or device of the network device), the method 300 includes:
  • S310 The terminal device receives downlink data sent by the network device.
  • the terminal device may receive downlink data sent by the network device according to a predetermined period.
  • the terminal device may receive downlink data 1 and the DCI for scheduling the downlink data in the first predetermined period, and the DCI may instruct the terminal device to receive downlink data in each subsequent predetermined period.
  • the terminal device receives downlink data and does not receive the DCI for scheduling the downlink data.
  • the terminal device in the second predetermined period, can receive downlink data 2 and does not receive the DCI for scheduling the downlink data 2; in the third predetermined period, the terminal device can receive downlink data 3 and does not receive the scheduling DCI of downlink data 3.
  • the network device configures periodic transmission of downlink data through high-level signaling (for example, RRC signaling).
  • the network device periodically sends downlink data to the terminal device, and there is no need to send downlink control information.
  • the terminal device receives downlink data on each resource that receives downlink data and does not receive downlink control information for scheduling the data.
  • a network device sends downlink data and schedules DCI for downlink data according to a predetermined cycle, and the terminal device can receive the downlink data sent by the network device according to the predetermined cycle, and the terminal device receives the scheduling before receiving the downlink data in each preset cycle.
  • the DCI of the downlink data for example, the network device periodically sends downlink data to the terminal device, and there is no need to send downlink control information.
  • the terminal device receives downlink data on each resource that receives downlink data and does not receive downlink control information for scheduling the data.
  • a network device sends downlink data and schedules DCI for downlink data according to a predetermined cycle
  • the terminal device can send the downlink data
  • the first information may be sent to the network device; when the terminal device successfully receives the downlink data, the terminal device does not send the first information to the network device.
  • FIG. 15 shows a schematic diagram of the terminal device feeding back the first information.
  • the terminal device if the terminal device successfully receives the downlink data 1 in the first predetermined period, the terminal device does not send the first information on the uplink resource 1.
  • N is a positive integer greater than 1.
  • the first information may be a complex-valued symbol group.
  • the terminal device When the terminal device fails to receive the downlink data successfully, it may first determine the feedback information bit (for example, the feedback information bit may be 0), and the terminal device may perform channel coding and modulation on the feedback information bit to generate a complex value symbol And send the complex-valued symbol group to the network device; the terminal device may not generate feedback information bits when receiving the downlink data successfully, so that the complex-valued symbol group will not be sent to the network device.
  • the feedback information bit for example, the feedback information bit may be 0
  • the terminal device may perform channel coding and modulation on the feedback information bit to generate a complex value symbol
  • send the complex-valued symbol group to the network device
  • the terminal device may not generate feedback information bits when receiving the downlink data successfully, so that the complex-valued symbol group will not be sent to the network device.
  • the first information may be a sequence.
  • the terminal device may send the second sequence to the network device; when the terminal device successfully receives the downlink data, the terminal device may Do not send the first information to the network device.
  • the terminal device may first determine the second sequence. For the process of determining the second sequence, reference may be made to the description in the above method 200. For brevity, details are not repeated here.
  • the terminal device may not send information to the network device. It can also be understood that when the terminal device successfully receives the downlink data, the corresponding feedback information bit is not generated. Therefore, the first information will not be sent to the network device.
  • the terminal device determines that the bit length of the feedback information is 1 bit, and when the bit value of the feedback information is 0, the terminal device sends the second sequence to the network device; when the bit value of the feedback information is 1, the The terminal device does not send the first information to the network device.
  • the terminal device determines that the bit length of the feedback information is 2 bits, and when the bit value of the feedback information is 00, 01, or 10, the terminal device sends the second sequence to the network device; when the bit value of the feedback information is When it is 11, the terminal device may not send the first information to the network device.
  • the terminal device determines that the bit length of the feedback information is 2 bits.
  • the bit value of the feedback information is 00
  • the terminal device sends the second sequence to the network device; when the bit value of the feedback information is 01, the The terminal device sends the third sequence to the network device; when the bit value of the feedback information is 10, the terminal device sends the fourth sequence to the network device; when the bit value of the feedback information is 11, the terminal device may not Send the first information to the network device.
  • the terminal device not sending the first information to the network device can also be understood as the terminal device not sending any information to the network device.
  • the terminal device does not send any signal or information to the network device when the terminal device does not generate corresponding feedback information bits and there is no other uplink feedback information.
  • the terminal device does not generate the corresponding feedback information bit and there is other uplink feedback information, the terminal device only sends the other uplink feedback information.
  • the other uplink feedback information may be the feedback information of the terminal device to the downlink data sent by the network device aperiodically; or, the other uplink feedback information may also be the channel state information generated by the terminal device during channel measurement. information, CSI).
  • the terminal device may send the first information to the network device when the downlink data is not successfully received;
  • the second information may be sent to the network device;
  • the terminal device successfully receives the downlink data the terminal device does not send the first information or the second information to the network device.
  • the terminal device determines that the bit length of the feedback information is 1 bit, when the bit value of the feedback information is 0, the terminal device sends the first information to the network device; when the bit value of the feedback information is 1, it means the terminal If the device fails to receive the DCI for scheduling downlink data, the terminal device may send the second information to the network device; when the terminal device determines that the downlink data is successfully received, it may not send the first information or the second information to the network device .
  • the first information and the second information are sequences of different amplitudes.
  • the terminal device sending the first information to the network device includes:
  • the terminal device sends the first information to the network device on a predetermined uplink resource.
  • the terminal device sending the first information to the network device includes:
  • the terminal device sends the first information to the network device on one or more uplink resources that have successfully competed.
  • the terminal device may compete to obtain one or more uplink resources from the uplink resource set, and transmit to at least part of the uplink resources in the one or more uplink resources.
  • the network device sends the first information.
  • the network device receiving the first information sent by the terminal device includes:
  • the network device receives the first information on a predetermined uplink resource.
  • the network device does not receive the first information sent by the terminal device, including:
  • the network device does not receive the first information sent by the terminal device on each of the one or more uplink resources.
  • the network device receiving the first information sent by the terminal device includes:
  • the network device receives the first information sent by the terminal device on one or more uplink resources.
  • the network device may configure an uplink resource set to allow terminal devices to compete, and the downlink data and the uplink resource set may have a corresponding relationship.
  • the terminal device may compete to obtain one or more uplink resources from the set of uplink resources, and may send the first information to the network device on the one or more uplink resources that have succeeded in the competition, and the network device is in the uplink resource
  • the first information is received on each uplink resource in the set. If the network device does not receive the first information on each uplink resource in the set of uplink resources, the network device determines that the terminal device receives the downlink data Success; if the network device receives the first information on one or more uplink resources in the uplink resource set, the network device determines that the terminal device has not successfully received the downlink data.
  • the network device For the case where the network device only issues the DCI for scheduling downlink data within the first predetermined period, or the case where the network device periodically sends downlink data to the terminal device without sending DCI, when the network device receives the first information , Can retransmit the downlink data to the terminal device.
  • the network device sends the downlink data and schedules the DCI of the downlink data according to the predetermined period
  • the network device when the network device receives the first information, it can retransmit the downlink data and schedule the DCI of the downlink data to the terminal device; when the network device receives When the second information is reached, the downlink data can be retransmitted to the terminal device.
  • the terminal device when the terminal device successfully receives the downlink data, it may not send information to the network device, which helps to reduce the interference of the uplink control information introduced by the affirmative response, thereby helping to improve the spectrum usage effectiveness.
  • the embodiment of the present application also provides a device for implementing any of the above methods.
  • a device is provided that includes modules (or units) for implementing each step performed by the terminal in any of the above methods.
  • another device is also provided, including a module (or unit) for implementing each step executed by the network device in any of the above methods.
  • FIG. 16 shows a schematic block diagram of a device 400 for transmitting information according to an embodiment of the present application.
  • the device 400 for transmitting information may include a transceiver module 410 and a processing module 420.
  • the apparatus 400 may be the terminal device in the aforementioned method 200 or method 300, or a chip configured in the terminal device.
  • the transceiver module 410 is configured to receive downlink data from a network device
  • the processing module 420 is configured to determine a first sequence or a second sequence, where the first sequence is a sequence determined when the device successfully receives the downlink data; the second sequence is when the device fails to successfully receive the downlink data A determined sequence; the amplitude of the first sequence is different from the amplitude of the second sequence;
  • the transceiver module is also used to send the first sequence or the second sequence to the network device.
  • the amplitude of the first sequence is less than the amplitude of the second sequence.
  • processing module 420 is specifically configured to:
  • the first sequence or the second sequence is determined.
  • the transceiver module 410 is further configured to receive first indication information from the network device, where the first indication information is used to indicate one or more modulation methods, and the one or more modulation methods include the first modulation method. the way.
  • the processing module 420 is further configured to determine the first modulation mode from the multiple modulation modes according to the feedback information.
  • processing module 420 is specifically configured to:
  • the feedback information is used to indicate that the downlink data is received successfully or unsuccessfully;
  • the first sequence or the second sequence is determined according to the feedback information and a preset mapping relationship, and the preset mapping relationship is a mapping relationship between a bit value of the feedback information and a sequence.
  • the transceiver module 410 is specifically configured to:
  • the transceiver module 410 is configured to receive downlink data sent by a network device, and the terminal device does not receive downlink control information for scheduling the downlink data;
  • the processing module 420 is configured to determine whether the downlink data is successfully received or the downlink data is not successfully received;
  • the transceiver module 410 is further configured to send the first information to the network device when the processing module determines that the downlink data is not successfully received; or, when the processing module successfully receives the downlink data, not to The network device sends the first information.
  • the transceiver module 420 is specifically configured to:
  • the apparatus 400 may correspond to the terminal device in the method 200 or the method 300 for transmitting information according to an embodiment of the present application, and the apparatus 400 may include a unit for executing the method 200 or the method executed by the terminal device of the method 300.
  • each unit in the device 400 and other operations and/or functions described above are used to implement the corresponding procedures of the method 200 or the method 300, respectively.
  • FIG. 17 shows a schematic block diagram of a device 500 for transmitting information according to an embodiment of the present application.
  • the device 500 for transmitting information may include a transceiver module 510 and a processing module 520.
  • the apparatus for transmitting information may be the network device in the above method 200 or method 300, or a chip configured in the network device.
  • the transceiver module 510 is configured to send downlink data to the terminal device;
  • the transceiver module 510 is also configured to receive the first sequence or the second sequence sent by the terminal device;
  • the processing module 520 is configured to determine when the transceiver module receives the first sequence sent by the terminal device, that the terminal device successfully receives the downlink data; or, when the transceiver module receives the second sequence sent by the terminal device, determine The terminal device did not successfully receive the downlink data;
  • the amplitude of the first sequence is different from the amplitude of the second sequence.
  • the amplitude of the first sequence is less than the amplitude of the second sequence.
  • the transceiver module 510 is further configured to send first indication information to the terminal device, where the first indication information is used to indicate one or more modulation modes, and the one or more modulation modes are used to determine the first sequence Or this second sequence.
  • the transceiver module 510 is specifically configured to:
  • the transceiver module 510 is configured to send downlink data to a terminal device, and does not send downlink control information for scheduling the downlink data to the terminal device;
  • the processing module 520 is configured to determine that the terminal device has not successfully received the downlink data when the transceiver module receives the first information sent by the terminal device; or, when the transceiver module does not receive the first information sent by the terminal device Information, it is determined that the terminal device successfully receives the downlink data.
  • the transceiver module 510 is specifically configured to:
  • the first information sent by the terminal device is not received on each of the one or more uplink resources.
  • the transceiver module 510 is specifically configured to:
  • the first information sent by the terminal device is received on one or more uplink resources.
  • the apparatus 500 may correspond to a network device in the method 200 or method 300 for transmitting information according to an embodiment of the present application, and the apparatus 500 may include a unit for executing the method 200 or the method executed by the network device in the method 300.
  • each unit in the device 500 and other operations and/or functions described above are used to implement the corresponding procedures of the method 200 or the method 300, respectively.
  • each unit in the device can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 18 shows a schematic structural diagram of a terminal device provided in an embodiment of the present application, which may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal includes: an antenna 610, a radio frequency part 620, and a signal processing part 630.
  • the antenna 610 is connected to the radio frequency part 620.
  • the radio frequency part 620 receives the information sent by the network device through the antenna 610, and sends the information sent by the network device to the signal processing part 630 for processing.
  • the signal processing part 630 processes the information of the terminal and sends it to the radio frequency part 620
  • the radio frequency part 620 processes the information of the terminal device and sends it to the network device via the antenna 610.
  • the signal processing part 630 may include a modem subsystem, which is used to process data at various communication protocol layers; it may also include a central processing subsystem, which is used to process terminal equipment operating systems and application layers; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for terminal equipment may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 631, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 632 and an interface circuit 633.
  • the storage element 632 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 632, but stored in a memory outside the modem subsystem.
  • the modem subsystem is loaded and used.
  • the interface circuit 633 is used to communicate with other subsystems.
  • the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
  • the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement the steps in the above methods can be integrated together and implemented in the form of SOC, and the SOC chip is used to implement the above methods.
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device can also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 19 shows a schematic structural diagram of a network device provided by an embodiment of the present application, which may be the network device in the above embodiment, and is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 701, a radio frequency device 702, and a baseband device 703.
  • the antenna 701 is connected to the radio frequency device 702.
  • the radio frequency device 702 receives the information sent by the terminal device through the antenna 701, and sends the information sent by the terminal device to the baseband device 703 for processing.
  • the baseband device 703 processes the information of the terminal device and sends it to the radio frequency device 702, and the radio frequency device 702 processes the information of the terminal device and sends it to the terminal device via the antenna 701.
  • the baseband device 703 may include one or more processing elements 7031, for example, a main control CPU and other integrated circuits.
  • the baseband device 703 may also include a storage element 7032 and an interface 7033.
  • the storage element 7032 is used to store programs and data; the interface 7033 is used to exchange information with the radio frequency device 702.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 703.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 703.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of an SOC.
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device can be executed in combination with the first method and the second method.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 20 shows another schematic structural diagram of a network device provided by an embodiment of the present application, which may be the network device in the foregoing embodiment, and is used to implement the operation of the network device in the foregoing embodiment.
  • the network device includes: a processor 810, a memory 820, and an interface 830, and the processor 810, the memory 820, and the interface 830 are in signal connection.
  • the above apparatus 500 for transmitting information may be located in the network device, and the functions of each unit may be implemented by the processor 810 calling a program stored in the memory 820. That is, the above apparatus 500 for transmitting information includes a memory and a processor, and the memory is used to store a program, and the program is called by the processor to execute the method in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the functions of the above units can be realized by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the method in the above embodiment .
  • the present application also provides a computer-readable medium with a program code stored in the computer-readable interpretation, and when the program code runs on a computer, the computer executes the method in the foregoing embodiment .
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the aforementioned terminal device, and/or, the aforementioned network device.
  • the foregoing method embodiments in the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the “uplink” direction generally refers to the direction in which data/information is transmitted from the terminal device to the network side, or The transmission direction from the distributed unit to the centralized unit.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal equipment, or the direction from the centralized unit to the distributed unit. It can be understood that the “uplink” and “Downlink” is only used to describe the direction of data/information transmission, and the specific start and end devices of the data/information transmission are not limited.
  • the architecture of the CU and DU in the embodiment of the application is not limited to 5G NR gNB, and can also be applied to the scenario where the LTE base station is divided into CU and DU; the CU can also be further divided into two parts, CP and UP.
  • the protocol layer does not include an SDAP layer.
  • the computer program product may include one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic disk), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该方法包括:终端设备从网络设备接收下行数据;终端设备在对该下行数据接收成功时确定第一序列,或,该终端设备在对该下行数据没有成功接收时确定第二序列,其中,该第一序列的幅值与该第二序列的幅值不同;终端设备向该网络设备发送该第一序列或该第二序列。本申请提供一种传输信息的方法和装置,有助于提升***的传输效率。

Description

一种传输信息的方法和装置
本申请要求于2019年3月18日提交中国专利局、申请号为201910204987.1、申请名称为“一种传输信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信息的方法和装置。
背景技术
在现有通信***中,终端设备接收下行数据,生成混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息,其中,HARQ反馈信息包括肯定应答消息(positive acknowledgement,ACK)和否定应答消息(negative acknowledgement,NACK)。肯定应答消息表示终端设备成功接收(correctly received)下行数据;否定应答消息表示终端设备没有成功接收(incorrectly received)下行数据。
由于终端设备频繁的发送HARQ反馈信息,可能导致不同的终端设备发送的HARQ反馈信息之间的干扰,从而导致网络设备无法正确接收到HARQ反馈信息。
网络设备可能将NACK错误的理解为ACK,进而网络设备不再对已经失败的传输块(TB,Transport block)进行重传,导致***的传输效率下降,恶化通信***的指标。
网络设备还有可能将ACK错误的理解为NACK,进而对无需重传的TB重新发送,导致重发的TB占用额外的***资源,阻塞其他数据的发送,也会使得***的数据传输效率下降。
发明内容
本申请提供一种传输信息的方法和装置,有助于提升***的传输效率。
第一方面,提供了一种传输信息的方法,该方法包括:终端设备从网络设备接收下行数据;终端设备确定第一序列或第二序列,其中,该第一序列为该终端设备对该下行数据接收成功时确定的序列;该第二序列为该终端设备对该下行数据没有成功接收时确定的序列;该第一序列的幅值与该第二序列的幅值不同;终端设备向该网络设备发送该第一序列或该第二序列。
本申请实施例的传输信息的方法,终端设备通过下行数据的接收情况,向网络设备反馈不同幅值的序列,有助于降低上行控制信息的干扰,从而有助于提升***的传输效率。
结合第一方面,在第一方面的某些实现方式中,该第一序列的幅值小于该第二序列的幅值。
由于低延时高可靠性业务的需求,为无线网络设计特别是第5代移动通信***及其演进无线通信***的设计提出了新的挑战。例如,对数据传输的延时和可靠性提出了很高要 求。例如,数据传输的成功概率从大于90%,提高到大于99.99%;并且数据传输的延时要小于0.5ms。本申请实施例的传输的方法,终端设备在对下行数据正确接收时得到的第一序列的幅值小于终端设备对下行数据没有成功接收时得到的第二序列的幅值,有助于降低肯定应答消息所引入的上行控制信道的干扰,在低时延高可靠性业务的场景下有助于提升***的传输效率。
结合第一方面,在第一方面的某些实现方式中,该终端设备确定第一序列或第二序列,包括:该终端设备确定反馈信息,该反馈信息用于指示对该下行数据接收成功或没有成功接收;该终端设备根据第一调制方式,将该反馈信息映射为复值符号;该终端设备根据该复值符号,确定该第一序列或该第二序列。
本申请实施例的传输信息的方法,终端设备通过下行数据的接收情况确定反馈信息,并可以将不同的反馈信息的比特取值调制为不同的复值符号,通过不同的复值符号来确定不同幅值的序列,有助于降低上行控制信息的干扰,从而有助于提升***的传输效率。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据第一调制方式,将该反馈信息映射为复值符号之前,该方法还包括:该终端设备接收来自于该网络设备的第一指示信息,该第一指示信息用于指示一个或者多个调制方式,该一个或者多个调制方式包括该第一调制方式。
在一些可能的实现方式中,该一个或者多个调制方式包括开关键控OOK调制方式,当终端设备通过成功接收下行数据时,可以通过OOK调制方式确定全零序列,有助于降低肯定应答带来的上行控制信道的干扰,从而有助于提升***传输效率。
在一些可能的实现方式中,该第一指示信息包括用于指示该一个或者多个调制方式的信息。
本申请实施例中,网络设备可以通过显示指示的方式将一个或者多个调制方式指示给终端设备,以便于终端设备根据一个或者多个调制方式确定序列。
在一些可能的实现方式中,该第一指示信息包括用于指示该下行数据为高可靠低时延数据的信息。终端设备在接收到该第一指示信息后,可以确定网络设备希望其通过OOK调制方式生成复值符号并进而生成序列。
本申请实施例中,网络设备可以通过隐式指示的方式将一个或者多个调制方式指示给终端设备,以便于终端设备根据一个或者多个调制方式确定序列。
结合第一方面,在第一方面的某些实现方式中,该一个或者多个调制方式为多个调制方式时,该方法还包括:该终端设备根据该反馈信息,从该多个调制方式中确定该第一调制方式。
本申请实施例中,当网络设备指示了多个调制方式时,终端设备可以根据反馈信息的比特长度来确定对应的调制方式,以便于终端设备将反馈信息的比特取值映射为复值符号。
在一些可能的实现方式中,该多个调制方式包括OOK调制方式。
在一些可能的实现方式中,在该反馈信息的比特长为1比特的情况下,该复值符号满足:
Figure PCTCN2020079850-appb-000001
其中,d(i)为该复值符号,b(i)为该反馈信息中的第i+1位的比特值,i为大于或者等于0的整数。
本申请实施例中,当终端设备的确定的反馈信息的比特取值为1时,复值符号的取值 为0,进而终端设备可以生成全零序列,终端设备通过向网络设备发送全零序列,网络设备在接收到全零序列时,可以确定终端设备对下行数据成功接收,这样有助于降低肯定应答消息所引入的上行控制信道的干扰,从而有助于提升***的传输效率。
在一些可能的实现方式中,在该反馈信息的比特长为2比特的情况下,该复值符号满足:
Figure PCTCN2020079850-appb-000002
其中,d(i)为该复值符号,b(2i)为该反馈信息中的第2i位的比特值,b(2i+1)该反馈信息中的第2i+1位的比特值,i为大于或者等于0的整数。
本申请实施例中,当终端设备的确定的反馈信息的比特取值为11时,复值符号的取值为0,进而终端设备可以生成全零序列,终端设备通过向网络设备发送全零序列,网络设备在接收到全零序列时,可以确定终端设备对下行数据成功接收,这样有助于降低肯定应答消息所引入的上行控制信道的干扰,从而有助于提升***的传输效率。
结合第一方面,在第一方面的某些实现方式中,该终端设备确定第一序列或第二序列,包括:该终端设备确定反馈信息,该反馈信息用于指示对该下行数据接收成功或者没有成功接收;该终端设备根据该反馈信息和预设的映射关系,确定该第一序列或该第二序列,该预设的映射关系为该反馈信息的比特取值和序列的映射关系。
本申请实施例中,终端设备通过下行数据的接收情况确定反馈信息,并可以将不同的反馈信息直接映射为不同幅值的序列,有助于降低上行控制信息的干扰,从而有助于提升***的传输效率。
结合第一方面,在第一方面的某些实现方式中,该终端设备向该网络设备发送该第一序列或该第二序列,包括:该终端设备在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一序列或者该第二序列。
在一些可能的实现方式中,该终端设备向该网络设备发送该第一序列或者该第二序列之前,该方法还包括:该终端设备从该下行数据对应的上行资源集合中竞争获得该一个或者多个上行资源。
本申请实施例的传输信息的方法,终端设备在免授权频段可以通过竞争上行资源集合中的上行资源,并在竞争成功的上行资源上发送序列,网络设备可以在上行资源集合中的每个上行资源上接收序列,从而确定终端设备对下行数据接收成功或者没有成功接收。
第二方面,提供了一种传输信息额方法,该方法包括:网络设备向终端设备发送下行数据;该网络设备接收该终端设备发送的第一序列时,该网络设备确定该终端设备对该下行数据接收成功;该网络设备接收该终端设备发送的第二序列时,该网络设备确定终端设备对该下行数据没有成功接收;其中,该第一序列的幅值和该第二序列的幅值不同。
本申请实施例的传输信息的方法,网络设备可以根据接收到的不同幅值的序列来确定终端设备对下行数据的接收情况,有助于降低上行控制信道的干扰,提升网络设备的接收准确性,从而有助于提升***的传输效率。
结合第二方面,在第二方面的某些可能的实现方式中,该第一序列的幅值小于该第二序列的幅值。
本申请实施例的传输信息的方法,在终端设备对下行数据接收成功时网络设备接收到的序列的幅值较小,有助于降低肯定应答所引入的上行控制信道的干扰,提升网络设备的接收准确性,从而有助于提升***的传输效率。
结合第二方面,在第二方面的某些实现方式中,该网络设备接收该终端设备发送的该第一序列或者该第二序列之前,该方法还包括:该网络设备向该终端设备发送第一指示信息,该第一指示信息用于指示一个或者多个调制方式,该一个或者多个调制方式用于确定该第一序列或者该第二序列。
在一些可能的实现方式中,该一个或者多个调制方式包括OOK调制方式。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括用于指示该一个或者多个调制方式的信息。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息包括用于指示该下行数据为高可靠低时延数据的信息。
结合第二方面,在第二方面的某些实现方式中,该网络设备接收该终端设备发送的该第一序列或者该第二序列,包括:该网络设备在一个或者多个上行资源上,接收该终端设备发送的该第一序列或者该第二序列。
在一些可能的实现方式中,该网络设备在该下行数据对应的上行资源集合上接收该第一序列或者该第二序列,该上行资源集合包括该一个或者多个上行资源。
第三方面,提供了一种传输信息的方法,该方法包括:终端设备接收网络设备发送的下行数据,且该终端设备没有接收到调度该下行数据的下行控制信息;该终端设备对该下行数据没有成功接收时,该终端设备向该网络设备发送第一信息;该终端设备对该下行数据接收成功时,该终端设备不向该网络设备发送该第一信息。
本申请实施例中,当终端设备对下行数据接收成功时不向网络设备发送任何信息,有助于降低肯定应答消息所引入的上行控制信道的干扰,从而有助于提升频谱使用效率和***的传输效率。
在一些可能的实现方式中,该第一信息为序列或者复值符号组。
结合第三方面,在第三方面的某些实现方式中,该终端设备向该网络设备发送第一信息,包括:该终端设备在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一信息。
本申请实施例的传输信息的方法,终端设备在免授权频段可以通过竞争上行资源集合中的上行资源,并在竞争成功的上行资源上发送序列,网络设备可以在上行资源集合中的每个上行资源上接收序列,从而确定终端设备对下行数据接收成功或者没有成功接收。
第四方面,提供了一种传输信息的方法,该方法包括:网络设备向终端设备发送下行数据,且该网络设备不向该终端设备发送调度该下行数据的下行控制信息;该网络设备接收该终端设备发送的第一信息时,该网络设备确定该终端设备对该下行数据没有成功接收;该网络设备没有接收到该终端设备发送的第一信息时,该网络设备确定该终端设备对该下行数据接收成功。
本申请实施例的传输信息的方法,网络设备可以根据接收到第一信息或者没有接收到第一信息来确定终端设备对下行数据的接收情况,有助于降低上行控制信道的干扰,提升网络设备的接收准确性,从而提升***的传输效率。
在一些可能的实现方式中,该第一信息为序列或者复值符号组。
结合第四方面,在第四方面的某些实现方式中,该网络设备没有接收到该终端设备发送的第一信息,包括:该网络设备在一个或者多个上行资源中的每一个上行资源上均没有 接收到该终端设备发送的该第一信息。
本申请实施例的传输信息的方法,网络设备在下行数据对应的一个或者多个上行资源上都没有接收到第一信息后,从而可以确定终端设备对该下行数据接收成功。
结合第四方面,在第四方面的某些实现方式中,该网络设备接收该终端设备发送的第一信息,包括:该网络设备在一个或者多个上行资源上接收到该终端设备发送的该第一信息。
第五方面,本申请提供一种传输信息的装置,包括用于执行以上第一方面或者第三方面各个步骤的单元或者手段(means)。
第六方面,本申请提供一种传输信息的装置,包括用于执行以上第二方面或者第四方面各个步骤的单元或者手段(means)。
第七方面,本申请提供一种传输信息的装置,包括至少一个处理器,用于与存储器连接,以调用存储器中的程序执行以上第一方面或者第三方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或者多个。
第八方面,本申请提供一种传输信息的装置,包括至少一个处理器,用于与存储器连接,以调用存储器中的程序执行以上第二方面或者第四方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或者多个。
第九方面,本申请提供一种传输信息的装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面或者第三方面提供的方法。
第十方面,本申请提供一种传输信息的装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第二方面或者第四方面提供的方法。
第十一方面,提供了一种终端设备,该终端设备包括上述第五方面提供的装置,或者,该终端设备包括上述第七方面提供的装置,或者,该终端设备包括上述第九方面提供的装置。
第十二方面,提供了一种网络设备,该网络设备包括上述第六方面提供的装置,或者,该网络设备包括上述第八方面提供的装置,或者,该网络设备包括上述第十方面提供的装置。
第十三方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第一方面或者第三方面提供的方法。
第十四方面,本申请提供一种程序,该程序在被处理器执行时,用于执行以上第二方面或者第四方面提供的方法。
第十五方面,本申请提供一种程序产品,例如计算机可读存储介质,包括以上程序。
附图说明
图1是本申请实施例提供的技术方案的应用场景的示意图。
图2是本申请实施例提供的一种网络架构的示意图。
图3是本申请实施例提供的另一种网络架构的示意图。
图4是本申请实施例提供的传输信息的方法的示意性流程图。
图5是复数坐标系下复值符号和反馈信息的比特取值的映射关系图。
图6是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图7是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图8是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图9是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图10是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图11是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图12是复数坐标系下复值符号和反馈信息的比特取值的另一映射关系图。
图13是本申请实施例提供的终端设备在竞争成功的上行资源上发送序列的示意图。
图14是本申请实施例提供的传输信息的方法的另一示意性流程图。
图15是本申请实施例提供的终端设备反馈第一信息的示意图。
图16是本申请实施例提供的传输信息的装置的示意性框图。
图17是本申请实施例提供的传输信息的装置的另一示意性框图。
图18是本申请实施例提供的终端设备的结构示意图。
图19是本申请实施例提供的网络设备的结构示意图。
图20是本申请实施例提供的网络设备的另一结构示意图。
具体实施方式
以下,对本申请中的部分用语进行说明:
1)、终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
2)、网络设备是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意 味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或新无线(new radio,NR)等。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例提供技术方案的应用场景的示意图,如图1所示,终端设备130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端设备通信。该无线网络包括RAN110和核心网(CN)120,其中RAN110用于将终端设备130接入到无线网络,CN120用于对终端设备进行管理并提供与外网通信的网关。
应理解,本申请提供的传输信息的方法可适用于无线通信***,例如,图1中所示的无线通信***100。处于无线通信***中的两个通信装置间具有无线通信连接,该两个通信装置中的一个通信装置可对应于图1中所示的终端设备130,例如,可以为图1中的终端设备130,也可以为配置于终端设备130中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的RAN110,例如,可以为图1中的RAN110,也可以为配置于 RAN110中的芯片。
图2是本申请实施例提供的一种网络架构的示意图,如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在长期演进(Long Term Evolution,LTE)通信***中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端设备之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现无线资源控制(radio resource control,RRC)、分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、和媒体接入控制(media access control,MAC)等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在一种演进结构中,RAN设备可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,图3示出了本申请实施例提供的另一种网络架构的示意图,相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频 发送的。
在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
图4示出了本申请实施例的传输信息的方法200的示意性流程图,如图4所示,该方法200的执行主体可以是传输信息的装置(例如,终端设备或者终端设备的芯片或者装置、网络设备或者网络设备的芯片或者装置),该方法200包括:
S210,网络设备向终端设备发送下行数据,该终端设备接收该网络设备发送的该下行数据。
可选地,该下行数据承载在物理下行共享信道(physical downlink shared channel,PDSCH)上。
应理解,该终端设备接收来自于网络设备的下行数据还可以理解为该终端设备获取PDSCH的时频资源,接收该PUSCH。
还应理解,该下行数据中可以包括一个或者多个传输块(transport block,TB)。
S220,该终端设备确定第一序列或者第二序列,其中,该第一序列为该终端设备对该下行数据接收成功时确定的序列;该第二序列为该终端设备对该下行数据没有接收成功时确定的序列;该第一序列的幅值和该第二序列的幅值不同。
应理解,本申请实施例中,该第一序列和该第二序列中可以包括多个元素,由于第一序列中每个元素的幅值可以都相同,第二序列中每个元素的幅值可以都相同,该第一序列的幅值和该第二序列的幅值不同也可以理解为该第一序列中任意一个元素的幅值和该第二序列中任意一个元素的幅值不同。可选的,所述幅值的取值包括零。
还应理解,该终端设备可以根据对下行数据中每个传输块接收成功或者没有接收成功,向网络设备发送第一序列或者第二序列。
例如,当该下行数据中仅包括一个传输块时,若该终端设备对该传输块接收成功,该终端设备可以向网络设备发送第一序列;若该终端设备对该传输块没有成功接收时,该终端设备可以向该网络设备发送第二序列。
又例如,当该下行数据中包括两个传输块时,若该终端设备对这两个传输块都接收成功时,该终端设备可以向该网络设备发送第一序列;若该终端设备对这两个传输块中的一个传输块接收成功,另一个传输块没有接收成功,或者对这两个传输块都没有接收成功时,该终端设备可以向网络设备发送第二序列。
应理解,当该下行数据中包括两个传输块时,终端设备也可以根据对每个传输块的接收成功或者没有接收成功,从而向网络设备发送对应的序列。
还应理解,上述举例中仅仅是以下行数据包括一个或者两个传输块为例进行说明,该下行数据还可以包括3个或者3个以上的传输块,本申请实施实例并不限于此。例如,对于下行数据中包括3个传输块(传输块1、传输块2和传输块3)的情况,该终端设备可以在两个不同的上行资源(上行资源1和上行资源2)上向网络设备发送序列。示例性的,该终端设备可以在对传输块1和传输块2都接收成功时,在上行资源1上发送第一序列; 该终端设备可以在对传输块3没有接收成功时,在上行资源2上发送第二序列。
可选地,该终端设备确定第一序列或者第二序列,包括:
该终端设备确定反馈信息,该反馈信息用于指示对该下行数据接收成功或者没有接收成功;
该终端设备根据第一调制方式,将该反馈信息映射为复值符号;
该终端设备根据该复值符号,确定该第一序列或者该第二序列。
可选地,该终端设备可以为该下行数据中的每一个传输块生成1比特反馈信息。
可选地,该终端设备接收到该下行数据,但是没有接收到调度该下行数据地下行控制信息(downlink control information,DCI),该终端设备为该下行数据生成1比特反馈信息。
可选地,该终端设备接收到调度下行数据的下行控制信息,该下行控制信息指示该终端设备周期性接收下行数据,该终端设备为该下行数据生成1比特反馈信息。
例如,该终端设备在第一个周期内接收到下行数据且接收到调度该下行数据的下行控制信息,该下行控制信息指示该终端设备周期性地接收下行数据,在之后地周期内,终端设备仅接收下行数据而不接收调度下行数据的下行控制信息。
应理解,本申请实施例中,终端设备仅接收下行数据而没有接收调度下行数据的下行控制信息,也可以理解为该终端设备接收PDSCH且没有接收调度该PDSCH的物理下行控制信息(physical downlink control channel,PDCCH)。
可选地,该下行数据包括多个传输块时,该终端设备还可以为其中两个传输块生成2比特的反馈信息。
可选地,该反馈信息中比特的不同取值用于表示不同的应答消息。该应答信息包括否定应答消息(negative acknowledgement,NACK),NACK可以表示该终端设备对该下行数据接收失败或者没有接收成功;肯定应答消息(positive acknowledgement,ACK),ACK可以表示该终端设备对该下行数据接收成功。
例如,该反馈信息的比特取值为0表示否定应答消息(NACK);该反馈信息的比特取值为1表示肯定应答消息(ACK)。
例如,该下行数据中包括一个或者多个传输块,该终端设备可以为该一个或者多个传输块中每一个传输块生成1bit反馈信息。如果该终端设备对传输块接收成功,则确定反馈信息的比特取值为1;如果该终端设备对传输块接收失败,则确定反馈信息的比特取值为0。
又例如,该下行数据中包括两个传输块,如果该终端设备对这两个传输块都接收成功,则确定反馈信息的比特取值为1;如果该终端设备只对这两个传输块中的一个传输块接收成功,则确定反馈信息的比特取值为0;如果该终端设备对这两个传输块都接收失败,则确定反馈信息的比特取值为0。
又例如,该下行数据中包括两个传输块,如果该终端设备对这两个传输块都接收成功,则确定反馈信息的比特取值为11;如果该终端设备只对这两个传输块中第一个传输块接收成功且第二个传输块接收失败,则确定反馈信息的比特取值为10;如果该终端设备只对这两个传输块中第一个传输块接收失败且第二个传输块接收成功,则确定反馈信息的比特取值为01;如果该终端设备对这两个传输块都接收失败,则确定反馈信息的比特取值 为00。
该终端设备确定该反馈信息后,可以根据第一调制方式,将该反馈信息的比特映射为复值符号。
可选地,该终端设备根据该第一调制方式,将该反馈信息的比特映射为复值符号之前,该方法还包括:
该终端设备接收该网络设备发送的第一指示信息,该第一指示信息用于指示一个或者多个调制方式,该一个或者多个调制方式中包括该第一调制方式。
本申请实施中的调制方式可以包括二进制相移键控(binary phase shift keying,BPSK)调制方式,正交相移键控(quadrature phase shift keying,QPSK)调制方式或者开关键控(on-off keying,OOK)调制方式。
应理解,该OOK调制方式也可以称为二进制启闭键控调制方式,或者,还可以称为二进制振幅键控调制方式。
还应理解,OOK调制方式还可以包括1比特的OOK调制方式和多比特的OOK调制方式。
可选地,该网络设备可以通过显示指示的方式指示该一个或者多个调制方式。
可选地,该第一指示信息包括用于指示该一个或者多个调制方式的信息。
例如,该第一指示信息中包括OOK调制方式的配置信息。其中,所述OOK调制方式的配置信息包括OOK调制方式下相位偏移信息,或幅值信息中的至少一种。
可选地,该第一指示信息承载在RRC信令中。
可选地,该网络设备可以通过隐示指示的方式指示该一个或者多个调制方式。
示例性的,该网络设备可以在下行控制信息(downlink control information,DCI)中的循环冗余校验码(cyclic redundancy check,CRC)中携带该第一指示信息,该第一指示信息用于指示下行数据是高可靠低时延的数据。
可选地,该第一指示信息指示多个调制方式时,该终端设备可以根据反馈信息的比特长度来确定调制方式。
例如,该第一指示信息用于指示OOK调制方式,OOK调制方式可以包括1比特OOK调制方式和多比特OOK调制方式。当该终端设备确定反馈信息的比特长度为1bit时,该终端设备根据1比特的OOK调制方式,将该反馈信息的比特取值映射为复值符号;当该终端设备确定反馈信息的比特长度为2bit时,该终端设备根据多比特的OOK调制方式,将该反馈信息的比特取值映射为复值符号。
又例如,该第一指示信息指示二进制相移键控(binary phase shift keying,BPSK)调制方式和OOK调制方式。当该终端设备确定反馈信息的比特长度为1bit时,该终端设备根据BPSK调制方式,将该反馈信息的比特取值映射为复值符号;当该终端设备确定反馈信息的比特长度为2bit时,该终端设备根据多比特的OOK调制方式,将该反馈信息的比特取值映射为复值符号。
以上介绍了本申请实施例中终端设备确定调制方式的过程,下面对本申请实施例中终端设备通过OOK调制方式对反馈信息进行调制的过程进行说明。
若该终端设备确定调制方式为OOK调制方式,该反馈信息比特中第i+1位的比特值为b(i),则复值符号d(i)满足以下公式(1):
Figure PCTCN2020079850-appb-000003
其中,复值符号d(i)与反馈信息比特取值的映射关系如图5所示。
例如,该反馈信息比特取值为0,则b(i)映射的复值符号
Figure PCTCN2020079850-appb-000004
在复数坐标系下如图6所示。
又例如,该反馈信息比特取值为1,则b(i)映射的复值符号d(i)=0,在复数坐标系下如图7所示。
若该终端设备确定的调制方式为多比特OOK调制方式,该反馈信息比特对(反馈信息中第2i位的比特值b(2i)和反馈信息中第2i+1位的比特值b(2i+1))满足:
Figure PCTCN2020079850-appb-000005
其中,复值符号d(i)与反馈信息比特对的映射关系如图8所示。
例如,该反馈信息比特对取值为b(2i)=0,b(2i+1)=0,则b(2i)和b(2i+1)映射的复值符号
Figure PCTCN2020079850-appb-000006
在复数坐标系下如图9所示。
又例如,该反馈信息比特对取值为b(2i)=0,b(2i+1)=1,则b(2i)和b(2i+1)映射的复值符号d(i)=-1,在复数坐标系下如图10所示。
又例如,该反馈信息比特对取值为b(2i)=1,b(2i+1)=0,则b(2i)和b(2i+1)映射的复值符号d(i)=-j,在复数坐标系下如图11所示。
又例如,该反馈信息比特对取值为b(2i)=1,b(2i+1)=1,则b(2i)和b(2i+1)映射的复值符号d(i)=0,在复数坐标系下如图12所示。
该终端设备在确定该复值符号后,可以根据该复值符号,确定第一序列或者第二序列。
示例性的,该终端设备可以根据公式(3)确定复值符号块(the block of complex-valued block):
Figure PCTCN2020079850-appb-000007
其中,y(n)为复值符号块,d(0)为复值符号,
Figure PCTCN2020079850-appb-000008
为低峰值平均功率比(peak to average power ratio,PAPR)序列,
Figure PCTCN2020079850-appb-000009
为资源块包括的子载波的数量。
该终端设备可以根据公式(4)确定第一序列或者第二序列:
Figure PCTCN2020079850-appb-000010
其中,
Figure PCTCN2020079850-appb-000011
为该第一序列或者第二序列,w i(m)为正交序列,
Figure PCTCN2020079850-appb-000012
为上行控制信道占用的时域连续的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号数量。
应理解,上述公式(3)和(4)是确定第一序列或第二序列的一种可能的实现方式,还可以有其他实现方式来确定第一序列或者第二序列,本申请实施例并不限于此。
例如,终端设备生成1比特的反馈信息且调制方式为1比特的OOK调制方式时,当反馈信息的比特取值为1时,复值符号d(i)=0,该终端设备可以根据公式(3)和公式 (4)确定该第一序列。若
Figure PCTCN2020079850-appb-000013
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={0 0 0 0 0 0 0 0 0 0 0 0};进一步可以根据公式(4)获取第一序列。其中,α为相位偏移。该第一序列的幅值为0。
应理解,该第一序列的幅值为0也可以理解为该第一序列中每个元素的幅值均为0。
当反馈信息的比特取值为0时,复值符号
Figure PCTCN2020079850-appb-000014
此时该终端设备可以根据公式(3)和公式(4)确定第二序列。若
Figure PCTCN2020079850-appb-000015
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={exp(-2π/4j),exp(2π/4j+α),exp(-2π/4j+2α),exp(-2π/4j+3α),exp(-2π/4j+4α),exp(πj+5α),exp(-2π/4j+6α),exp(7α),exp(2π/4j+8α),exp(2π/4j+9α),exp(2π/4j+10α),exp(-2π/4j+11α)};进一步可以根据公式(4)获取第二序列。该第二序列的幅值为1。
应理解,该第二序列的幅值为1也可以理解为该第二序列中每个元素的幅值为1。
又例如,终端设备生成2比特的反馈信息且调制方式为多比特的OOK调制方式时,当反馈信息的比特取值为11时,复值符号d(i)=0,该终端设备可以根据公式(3)和公式(4)确定该第一序列。若
Figure PCTCN2020079850-appb-000016
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={0 0 0 0 0 0 0 0 0 0 0 0};进一步可以根据公式(4)获取第一序列。该第一序列的幅值为0。
当反馈信息的比特取值为01时,复值符号d(i)=-1,该终端设备可以根据公式(3)和公式(4)确定该第二序列。若
Figure PCTCN2020079850-appb-000017
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={exp(1π/4j),exp(5π/4j+α),exp(1π/4j+2α),exp(1π/4j+3α),exp(1π/4j+4α),exp(7π/4j+5α),exp(1π/4j+6α),exp(3π/4j+7α),exp(5π/4j+8α),exp(5π/4j+9α),exp(5π/4j+10α),exp(1π/4j+11α)};进一步可以根据公式(4)获取第二序列。该第二序列的幅值为1。
当反馈信息的比特取值为10时,复值符号d(i)=-j,该终端设备可以根据公式(3)和公式(4)确定该第二序列。若
Figure PCTCN2020079850-appb-000018
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={exp(-5π/4j),exp(-π/4j+α),exp(-5π/4j+2α),exp(-5π/4j+3α),exp(-5π/4j+4α),exp(1π/4j+5α),exp(-5π/4j+6α),exp(-3π/4j+7α),exp(-π/4j+8α),exp(-π/4j+9α),exp(-π/4j+10α),exp(-5π/4j+11α)};进一步可以根据公式(4)获取第二序列。该第二序列的幅值为1。
当反馈信息的比特取值为00时,复值符号
Figure PCTCN2020079850-appb-000019
该终端设备可以根据公式(3)和公式(4)确定该第二序列。若
Figure PCTCN2020079850-appb-000020
为{exp(-3π/4j),exp(π/4j+α),exp(-3π/4j+2α),exp(-3π/4j+3α),exp(-3π/4j+4α),exp(3π/4j+5α),exp(-3π/4j+6α),exp(-π/4j+7α),exp(π/4j+8α),exp(π/4j+9α),exp(π/4j+10α),exp(-3π/4j+11α)},则y(n)={exp(-2π/4j),exp(2π/4j+α),exp(-2π/4j+2α),exp(-2π/4j+3α),exp(-2π/4j+4α),exp(πj+5α),exp(-2π/4j+6α),exp(7α),exp(2π/4j+8α),exp(2π/4j+9α),exp(2π/4j+10α),exp(-2π/4j+11α)};进一步可以根据公 式(4)获取第二序列。该第二序列的幅值为1。
本申请实施例中,由于第一序列中每个元素的幅值都相同,第二序列中每个元素的幅值都相同,该第一序列和该第二序列的幅值不同,也可以理解为该第一序列中任意一个元素的幅值和该第二序列中任意一个元素的幅值不同。
本申请实施例中,终端设备可以根据对下行数据接收成功或者接收不成功,从而确定不同幅值的序列,有助于降低肯定应答消息所引入的上行控制信道的干扰,从而有助于提升***的传输效率。
应理解,以上通过举例的方式列出了通过公式(1)至(4)确定不同幅值的序列的过程,其中当终端设备对下行数据成功接收时,终端设备确定的第一序列的幅值为0;当终端设备对下行数据没有成功接收时,终端设备确定的第二序列的幅值为1。
还可以通过其他方式确定第一序列和第二序列,示例性的,以反馈信息的比特长度为1bit为例,可以通过公式(5)来确定对应的复值符号:
Figure PCTCN2020079850-appb-000021
其中,a大于0小于1。
通过公式(5)确定复值符号后,可以通过(3)和(4)来确定第一序列或者第二序列。
示例性的,可以通过公式(3)确定y(n)={a·exp(-2π/4j),a·exp(2π/4j+α),a·exp(-2π/4j+2α),a·exp(-2π/4j+3α),a·exp(-2π/4j+4α),a·exp(πj+5α),a·exp(-2π/4j+6α),a·exp(7α),a·exp(2π/4j+8α),a·exp(2π/4j+9α),a·exp(2π/4j+10α),a·exp(-2π/4j+11α)}。进一步可以根据公式(4)获取第一序列。该第一序列的幅值为a。
示例性的,可以通过公式(3)确定y(n)={(1+a)·exp(-2π/4j),(1+a)·exp(2π/4j+α),(1+a)·exp(-2π/4j+2α),(1+a)·exp(-2π/4j+3α),(1+a)·exp(-2π/4j+4α),(1+a)·exp(πj+5α),(1+a)·exp(-2π/4j+6α),(1+a)·exp(7α),(1+a)·exp(2π/4j+8α),(1+a)·exp(2π/4j+9α),(1+a)·exp(2π/4j+10α),(1+a)·exp(-2π/4j+11α)}。进一步可以根据公式(4)获取第二序列。该第二序列的幅值为1+a。
以上介绍了通过复值符号来确定第一序列或者第二序列的方式,下面介绍另一种确定第一序列或者第二序列的方式。
可选地,该终端设备确定第一序列或者第二序列,包括:
该终端设备确定反馈信息,该反馈信息用于指示对该下行数据接收成功或者没有成功接收;
该终端设备根据该反馈信息和预设的映射关系,确定该第一序列或者该第二序列,该预设的映射关系为该反馈信息的比特取值和序列的映射关系。
表1示出了一种反馈信息的比特长度和序列的映射关系。
表1反馈信息的比特取值和序列的映射关系
反馈信息的比特取值 0 1
序列 第二序列 第一序列
例如,当反馈信息的比特取值为1时,该终端设备可以根据表1确定需要发送的第一序列,该第一序列可以为{0 0 0 0 0 0 0 0 0 0 0 0}。该第一序列的幅值为0。
例如,当反馈信息的比特取值为0时,该终端设备可以根据表1确定需要发送的第二 序列,该第二序列可以为{exp(-2π/4j),exp(2π/4j+α),exp(-2π/4j+2α),exp(-2π/4j+3α),exp(-2π/4j+4α),exp(πj+5α),exp(-2π/4j+6α),exp(7α),exp(2π/4j+8α),exp(2π/4j+9α),exp(2π/4j+10α),exp(-2π/4j+11α)}。该第二序列的幅值为1。
表2示出了另一种反馈信息的比特取值和序列的映射关系
表2反馈信息的比特取值和序列的映射关系
Figure PCTCN2020079850-appb-000022
例如,当反馈信息的比特取值为11时,该终端设备可以根据表2确定需要发送的第一序列,该第一序列可以为{0 0 0 0 0 0 0 0 0 0 0 0}。该第一序列的幅值为0。
又例如,当反馈信息的比特取值为10、01或者00时,该终端设备可以根据表2确定需要发送的第二序列,该第二序列可以为{exp(-2π/4j),exp(2π/4j+α),exp(-2π/4j+2α),exp(-2π/4j+3α),exp(-2π/4j+4α),exp(πj+5α),exp(-2π/4j+6α),exp(7α),exp(2π/4j+8α),exp(2π/4j+9α),exp(2π/4j+10α),exp(-2π/4j+11α)}。该第二序列的幅值为1。
表3示出了另一种反馈信息的比特取值和序列的映射关系
Figure PCTCN2020079850-appb-000023
当反馈信息的比特取值为11时,该终端设备可以根据表3确定需要发送的第一序列,该第一序列可以和上述表2中的第一序列相同。
当反馈信息的比特取值为00时,该终端设备可以根据表3确定需要发送的第二序列;当反馈信息的比特取值为01时,该终端设备可以根据表3确定需要发送的第三序列;当反馈信息的比特取值为10时,该终端设备可以根据表3确定需要发送的第四序列。该第二序列、第三序列和第四序列的幅值可以相同;或者,该第二序列、第三序列和第四序列的幅值可以部分相同;或者,该第二序列、第三序列和第四序列的幅值可以均不相同。而第一序列的幅值和该第二序列、第三序列和第四序列中任意一个序列的幅值都不相同。
本申请实施例中,终端设备可以根据对下行数据接收成功或者接收不成功,从而确定不同幅值的序列,肯定应答消息对应的序列的幅值小于否定应答消息对应的序列的幅值,有助于降低肯定应答消息所引入的上行控制信道的干扰,从而有助于提升***的传输效率。
S230,该终端设备向该网络设备发送该第一序列或者该第二序列,该网络设备接收该终端设备发送的该第一序列或者该第二序列。
可选地,该终端设备在预定的上行资源上向该网络设备发送该第一序列或者第二序列,该网络设备在该预定的上行资源上接收该第一序列或者该第二序列。
终端设备可以在预定的上行资源上向该网络设备发送该第一序列或者该第二序列,而不需要竞争上行资源来发送该第一序列或者该第二序列。
应理解,该预定的上行资源可以是终端设备和网络设备提前约定好的上行资源。
可选地,该终端设备向该网络设备发送该第一序列或者该第二序列,包括:
该终端设备在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一序列或者该第二序列。
在免授权频段,终端设备需要通过竞争接入,只有竞争成功才可以在竞争成功的上行资源上向该网络设备发送该第一序列或者第二序列。
可选地,该下行数据与上行资源集合之间有对应关系,该上行资源集合中包括一个或者多个上行资源。
终端设备在接收该下行数据时,可以确定该下行数据对应的上行资源集合,终端设备可以从上行资源集合中竞争获得一个或者多个上行资源。该终端设备可以在该一个或者多个上行资源中的至少部分上行资源上向该网络设备发送该第一序列或者该第二序列。
例如,该终端设备在对该下行数据接收成功时,可以确定第一序列,该下行数据对应的上行资源集合包括上行资源1、上行资源2和上行资源3。终端设备可以通过竞争获得上行资源1和上行资源2。该终端设备可以在竞争成功的上行资源1和上行资源2上发送该第一序列;或者,该终端设备也可以在竞争成功的上行资源1上发送该第一序列;或者,该终端设备还可以在竞争成功的上行资源2上发送该第一序列。
图13示出了一种终端设备在竞争成功的上行资源上发送序列的示意图,如图13所示,网络设备向终端设备发送下行数据,终端设备没有成功接收该下行数据,终端设备可以竞争上行资源1、上行资源2和上行资源3,终端设备对上行资源3竞争成功,则可以在该上行资源3上发送该第二序列。
S240,该网络设备接收该终端设备发送的第一序列时,该网络设备确定该终端设备对该下行数据接收成功;该网络设备接收该终端设备发送的第二序列时,该网络设备确定该终端设备对该下行数据没有接成功接收。
可选地,该网络设备在预定的上行资源上接收到该第一序列时,该网络设备确定该终端设备对该下行数据接收成功;该网络设备在预定的上行资源上接收到该终端设备发送的第二序列时,该网络设备确定该终端设备对该下行数据没有接收成功。
可选地,该网络设备接收该终端设备发送的第一序列,包括:
该网络设备在上行资源集合中的每一个上行资源上接收该第一序列。
应理解,该上行资源集合可以包括一个或者多个上行资源,该下行数据和该上行资源集合之间有对应关系。网络设备可以配置上行资源集合来让终端设备竞争,终端设备可以从该上行资源集合中竞争获得一个或者多个上行资源,并在该一个或者多个上行资源上发送第一序列,而网络设备需要在上行资源集合中的每个上行资源上接收。
可选地,该网络设备接收该终端设备发送的第二序列,包括:
该网络设备在上行资源集合中的每一个上行资源上接收该第二序列。
本申请实施例中的传输信息的方法,终端设备可以根据对下行数据接收成功或者接收不成功,从而确定不同幅值的序列,有助于降低幅值较低的序列对应的应答消息所带来的上行控制信道的干扰,提高网络设备接收准确性。
图14示出了本申请实施例的传输信息的方法300的示意性流程图,如图14所示,该方法300的执行主体可以是传输信息的装置(例如,终端设备或者终端设备的芯片或者装置、网络设备或者网络设备的芯片或者装置),该方法300包括:
S310,终端设备接收网络设备发送的下行数据。
例如,终端设备可以接收网络设备按照预定周期发送的下行数据。该终端设备可以在第一个预定周期内接收下行数据1以及调度该下行数据的DCI,该DCI可以指示该终端设备在以后的每个预定周期内接收下行数据。在以后的每个预定周期中,终端设备接收下行数据且没有接收调度该下行数据的DCI。例如,在第二个预定周期中,该终端设备可以接收下行数据2且没有接收调度该下行数据2的DCI;在第三个预定周期中,该终端设备可以接收下行数据3且没有接收调度该下行数据3的DCI。
又例如,网络设备通过高层信令(例如,RRC信令)配置周期发送下行数据。在这种情况下,网络设备周期的发送下行数据给终端设备,且无需再发送下行控制信息。终端设备在每个接收下行数据的资源上接收下行数据且没有接收调度该数据的下行控制信息。又例如,网络设备按照预定周期下发下行数据和调度下行数据的DCI,终端设备可以接收网络设备按照预定周期发送的下行数据,且该终端设备在每个预设周期内接收下行数据之前接收调度该下行数据的DCI。
S320,该终端设备对该下行数据没有成功接收时,该终端设备向该网络设备发送第一信息;该终端设备对该下行数据接收成功时,该终端设备不向该网络设备发送该第一信息。
例如,对于网络设备仅在第一个预定周期内下发调度下行数据的DCI的情况,或者,网络设备周期的发送下行数据给终端设备且无需发送DCI的情况,终端设备可以在对该下行数据没有成功接收时,可以向该网络设备发送第一信息;该终端设备对该下行数据接收成功时,该终端设备不向该网络设备发送该第一信息。
图15示出了终端设备反馈第一信息的示意图,如图15所示,在第一个预定周期中,终端设备对下行数据1成功接收,则该终端设备在上行资源1上不发送第一信息;该第N个预定周期中,终端设备对下行数据N没有成功接收,则该终端设备在上行资源N上发送第一信息。N为大于1的正整数。
可选的,该第一信息可以为复值符号组。
该终端设备在对该下行数据没有成功接收时,可以先确定反馈信息比特(例如,反馈信息比特可以为0),该终端设备可以对该反馈信息比特进行信道编码、调制后,生成复值符号组,并向网络设备发送该复值符号组;该终端设备在对该下行数据接收成功时,可以不生成反馈信息比特,从而也不会向网络设备发送复值符号组。
可选地,该第一信息可以为序列。
当该第一信息为序列时,当终端设备对该下行数据没有接收成功时,该终端设备可以向该网络设备发送第二序列;当该终端设备对该下行数据接收成功时,该终端设备可以不向该网络设备发送第一信息。
应理解,该终端设备对该下行数据没有接收成功时,可以先确定第二序列,确定第二序列的过程可以参考上述方法200中的描述,为了简洁,在此不再赘述。
还应理解,当该终端设备对该下行数据接收成功时,该终端设备可以不向该网络设备发送信息,也可以理解为该终端设备对该下行数据接收成功时,不生成对应的反馈信息比特,从而也不会向该网络设备发送该第一信息。
例如,该终端设备确定反馈信息的比特长度为1bit,当反馈信息的比特取值为0时,该终端设备向该网络设备发送该第二序列;当反馈信息的比特取值为1时,该终端设备不 向该网络设备发送第一信息。
又例如,该终端设备确定反馈信息的比特长度为2bit,当反馈信息的比特取值为00、01或者10时,该终端设备向该网络设备发送该第二序列;当反馈信息的比特取值为11时,该终端设备可以不向该网络设备发送第一信息。
又例如,该终端设备确定反馈信息的比特长度为2bit,当反馈信息的比特取值为00时,该终端设备向该网络设备发送第二序列;当反馈信息的比特取值为01时,该终端设备向该网络设备发送第三序列;当反馈信息的比特取值为10时,该终端设备向该网络设备发送第四序列;当反馈信息的比特取值为11时,该终端设备可以不向该网络设备发送第一信息。
应理解,该第二序列、第三序列和第四序列可以参考上述方法200中的描述,为了简洁,在此不再赘述。
还应理解,本申请实施例中,在该终端设备确定对该下行数据接收成功时,该终端设备不向网络设备发送第一信息还可以理解为该终端设备不向网络设备发送任何信息。
还应理解,对于终端设备在对该下行数据接收成功的情况,该终端设备在不生成对应的反馈信息比特,且无其他上行反馈信息时,该终端设备不发送任何信号或信息给网络设备。而该终端设备在不生成对应的反馈信息比特,且有其他上行反馈信息时,该终端设备仅发送该其他上行反馈信息。
例如,该其他上行反馈信息可以为终端设备对网络设备非周期性发送的下行数据的反馈信息;或者,该其他上行反馈信息还可以为终端设备在进行信道测量时生成的信道状态信息(channel state information,CSI)。
又例如,对于网络设备按照预定周期下发下行数据和调度下行数据的DCI的情况,终端设备可以在对该下行数据没有成功接收时,可以向该网络设备发送第一信息;终端设备在没有接收到调度下行数据的DCI时,可以向该网络设备发送第二信息;该终端设备对该下行数据接收成功时,该终端设备不向该网络设备发送该第一信息或者该第二信息。
当该终端设备确定反馈信息的比特长度为1bit,当反馈信息的比特取值为0时,该终端设备向该网络设备发送该第一信息;当反馈信息的比特取值为1时,表示终端设备没有成功接收调度下行数据的DCI,该终端设备可以向该网络设备发送第二信息;当终端设备确定对下行数据成功接收时,可以不向该网络设备发送该第一信息或者该第二信息。
可选地,该第一信息和该第二信息为不同幅值的序列。可选地,该终端设备向该网络设备发送第一信息,包括:
该终端设备在预定的上行资源上,向该网络设备发送该第一信息。
可选地,该终端设备向该网络设备发送第一信息,包括:
该终端设备在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一信息。
当该终端设备确定对该下行数据没有接收成功时,该终端设备可以从上行资源集合中竞争获得一个或者多个上行资源,并在该一个或者多个上行资源中的至少部分上行资源上,向该网络设备发送该第一信息。
S330,该网络设备接收该终端设备发送的第一信息时,该网络设备确定该终端设备对该下行数据没有成功接收;该网络设备没有接收到该终端设备发送的第一信息时,该网络设备确定该终端设备对该下行数据接收成功。
可选地,该网络设备接收该终端设备发送的第一信息,包括:
该网络设备在预定的上行资源上接收该第一信息。
可选地,该网络设备没有接收到该终端设备发送的第一信息,包括:
该网络设备在一个或者多个上行资源中的每一个上行资源上均没有接收到该终端设备发送的该第一信息。
可选地,该网络设备接收该终端设备发送的第一信息,包括:
该网络设备在一个或者多个上行资源上接收到该终端设备发送的该第一信息。
网络设备可以配置上行资源集合来让终端设备竞争,该下行数据和该上行资源集合可以有对应关系。终端设备可以在从该上行资源集合中竞争获得一个或者多个上行资源上,并可以在竞争成功的该一个或者多个上行资源向该网络设备发送该第一信息,该网络设备在该上行资源集合中的每个上行资源上接收该第一信息,若该网络设备在上行资源集合中的每个上行资源上都没有接收到该第一信息,则该网络设备确定终端设备对该下行数据接收成功;若该网络设备在该上行资源集合中的一个或者多个上行资源上接收到该第一信息,则该网络设备确定该终端设备对该下行数据没有接收成功。
对于网络设备仅在第一个预定周期内下发调度下行数据的DCI的情况,或者,网络设备周期的发送下行数据给终端设备且无需发送DCI的情况,当网络设备接收到该第一信息时,可以向终端设备重传下行数据。
对于网络设备按照预定周期下发下行数据和调度下行数据的DCI的情况,当网络设备接收到该第一信息时,可以向终端设备重传下行数据以及调度该下行数据的DCI;当网络设备接收到该第二信息时,可以向终端设备重传下行数据。
本申请实施例的传输信息的方法,终端设备在对下行数据接收成功时,可以不向网络设备发送信息,有助于降低肯定应答所引入的上行控制信息的干扰,从而有助于提高频谱使用效率。
以上,结合图5至图15对本申请实施提供的传输信息的方法进行了详细地说明。以下,结合附图对本申请实施例提供的传输信息的装置做详细说明。
本申请实施例还提供用于实现以上任一种方法的装置。例如,提供一种装置,包括用以实现以上任一种方法中终端所执行的各个步骤的模块(或单元)。再如,还提供另一种装置,包括用以实现以上任一种方法中网络设备所执行的各个步骤的模块(或单元)。
图16示出了本申请实施例提供的传输信息的装置400的示意性框图,如图16所示,该传输信息的装置400可以包括收发模块410和和处理模块420。
在一种可能的设计中,该装置400可以为上述方法200或方法300中的终端设备,或者配置于终端设备中的芯片。
具体地,收发模块410,用于从网络设备接收下行数据;
处理模块420,用于确定第一序列或第二序列,其中,该第一序列为该装置对该下行数据接收成功时确定的序列;该第二序列为该装置对该下行数据没有成功接收时确定的序列;该第一序列的幅值与该第二序列的幅值不同;
该收发模块还用于向该网络设备发送该第一序列或该第二序列。
可选地,该第一序列的幅值小于该第二序列的幅值。
可选地,该处理模块420具体用于:
确定反馈信息,该反馈信息用于指示对该下行数据接收成功或没有成功接收;
根据第一调制方式,将该反馈信息映射为复值符号;
根据该复值符号,确定该第一序列或该第二序列。
可选地,该收发模块410还用于接收来自于该网络设备的第一指示信息,该第一指示信息用于指示一个或者多个调制方式,该一个或者多个调制方式包括该第一调制方式。
可选地,该一个或者多个调制方式为多个调制方式时,该处理模块420还用于根据该反馈信息,从该多个调制方式中确定该第一调制方式。
可选地,该处理模块420具体用于:
确定反馈信息,该反馈信息用于指示对该下行数据接收成功或者没有成功接收;
根据该反馈信息和预设的映射关系,确定该第一序列或该第二序列,该预设的映射关系为该反馈信息的比特取值和序列的映射关系。
可选地,该收发模块410具体用于:
在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一序列或者该第二序列。
在另一种可能的设计中,收发模块410,用于接收网络设备发送的下行数据,且该终端设备没有接收到调度该下行数据的下行控制信息;
处理模块420,用于确定对该下行数据接收成功或者对该下行数据没有成功接收;
该收发模块410,还用于在该处理模块确定对该下行数据接收没有成功接收时,向该网络设备发送第一信息;或者,用于在该处理模块对该下行数据接收成功时,不向该网络设备发送该第一信息。
可选地,该收发模块420具体用于:
在竞争成功的一个或者多个上行资源上,向该网络设备发送该第一信息。
应理解,装置400可以对应于根据本申请实施例的传输信息的方法200或方法300中的终端设备,该装置400可以包括用于执行方法200或方法300的终端设备执行的方法的单元。并且,该装置400中的各单元和上述其他操作和/或功能分别为了实现方法200或方法300的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图4和图14的方法实施例的描述,为了简洁,这里不再赘述。
图17示出了本申请实施例提供的传输信息的装置500的示意性框图,如图17所示,该传输信息的装置500可以包括收发模块510和处理模块520。
在一种可能的设计中,该传输信息的装置可以为上述方法200或方法300中的网络设备,或者配置于网络设备中的芯片。
具体地,收发模块510,用于向终端设备发送下行数据;
该收发模块510还用于接收终端设备发送的第一序列或者第二序列;
处理模块520,用于在该收发模块接收终端设备发送的第一序列时,确定该终端设备对该下行数据接收成功;或者,用于在该收发模块接收终端设备发送的第二序列时,确定该终端设备对该下行数据没有成功接收;
其中,该第一序列的幅值和该第二序列的幅值不同。
可选地,该第一序列的幅值小于该第二序列的幅值。
可选地,该收发模块510还用于向该终端设备发送第一指示信息,该第一指示信息用 于指示一个或者多个调制方式,该一个或者多个调制方式用于确定该第一序列或者该第二序列。
可选地,该收发模块510具体用于:
在一个或者多个上行资源上,接收该终端设备发送的该第一序列或者该第二序列。
在另一种可能的设计中,收发模块510,用于向终端设备发送下行数据,且不向该终端设备发送调度该下行数据的下行控制信息;
处理模块520,用于在该收发模块接收该终端设备发送的第一信息时,确定该终端设备对该下行数据没有成功接收;或者,用于在该收发模块没有接收该终端设备发送的第一信息时,确定该终端设备对该下行数据接收成功。
可选地,该收发模块510具体用于:
在一个或者多个上行资源中的每一个上行资源上均没有接收到该终端设备发送的该第一信息。
可选地,该收发模块510具体用于:
在一个或者多个上行资源上接收到该终端设备发送的该第一信息。
应理解,装置500可以对应于根据本申请实施例的传输信息的方法200或方法300中的网络设备,该装置500可以包括用于执行方法200或方法300的网络设备执行的方法的单元。并且,该装置500中的各单元和上述其他操作和/或功能分别为了实现方法200或方法300的相应流程。各单元执行上述相应步骤的具体过程请参照前文中结合图4和图14的方法实施例的描述,为了简洁,这里不再赘述。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接 口电路。
图18示出了本申请实施例提供的终端设备的结构示意图,其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图18所示,该终端包括:天线610、射频部分620、信号处理部分630。天线610与射频部分620连接。在下行方向上,射频部分620通过天线610接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分630进行处理。在上行方向上,信号处理部分630对终端的信息进行处理,并发送给射频部分620,射频部分620对终端设备的信息进行处理后经过天线610发送给网络设备。
信号处理部分630可以包括调制解调子***,用于实现对数据各通信协议层的处理;还可以包括中央处理子***,用于实现对终端设备操作***以及应用层的处理;此外,还可以包括其它子***,例如多媒体子***,周边子***等,其中多媒体子***用于实现对终端设备相机,屏幕显示等的控制,周边子***用于实现与其它设备的连接。调制解调子***可以为单独设置的芯片。可选的,以上用于终端设备的装置可以位于该调制解调子***。
调制解调子***可以包括一个或多个处理元件631,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子***还可以包括存储元件632和接口电路633。存储元件632用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件632中,而是存储于调制解调子***之外的存储器中,使用时调制解调子***加载使用。接口电路633用于与其它子***通信。以上用于终端设备的装置可以位于调制解调子***,该调制解调子***可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子***上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以 以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图19示出了本申请实施例提供的网络设备的结构示意图,其可以为上述实施例中的网络设备,用于实现以上实施例中网络设备的操作。如图19所示,该网络设备包括:天线701、射频装置702、基带装置703。天线701与射频装置702连接。在上行方向上,射频装置702通过天线701接收终端设备发送的信息,将终端设备发送的信息发送给基带装置703进行处理。在下行方向上,基带装置703对终端设备的信息进行处理,并发送给射频装置702,射频装置702对终端设备的信息进行处理后经过天线701发送给终端设备。
基带装置703可以包括一个或多个处理元件7031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置703还可以包括存储元件7032和接口7033,存储元件7032用于存储程序和数据;接口7033用于与射频装置702交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置703,例如,以上用于网络设备的装置可以为基带装置703上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网 络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
图20示出了本申请实施例提供的网络设备的另一结构示意图,其可以为上述实施例中的网络设备,用于实现以上实施例中网络设备的操作。
如图20所示,该网络设备包括:处理器810,存储器820,和接口830,处理器810、存储器820和接口830信号连接。
以上传输信息的装置500可以位于该网络设备中,且各个单元的功能可以通过处理器810调用存储器820中存储的程序来实现。即,以上传输信息的装置500包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上各个单元的功能可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信***,该通信***包括:上述终端设备,和/或,上述网络设备。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端设备向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端设备传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/***/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本申请实施例中CU和DU的架构不限于5G NR gNB,还可以应用在LTE基站划分为CU和DU的场景;CU还可以进一步划分为CP和UP两部分。可选的,当为LTE基站时,所述协议层不包含SDAP层。
本申请实施例描述的网络架构以及业务场景是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种传输信息的方法,其特征在于,包括:
    终端设备从网络设备接收下行数据;
    所述终端设备确定第一序列或第二序列,其中,所述第一序列为所述终端设备对所述下行数据接收成功时确定的序列;所述第二序列为所述终端设备对所述下行数据没有成功接收时确定的序列;所述第一序列的幅值与所述第二序列的幅值不同;
    所述终端设备向所述网络设备发送所述第一序列或所述第二序列。
  2. 根据权利要求1所述的方法,其特征在于,所述第一序列的幅值小于所述第二序列的幅值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定第一序列或第二序列,包括:
    所述终端设备确定反馈信息,所述反馈信息用于指示对所述下行数据接收成功或没有成功接收;
    所述终端设备根据第一调制方式,将所述反馈信息映射为复值符号;
    所述终端设备根据所述复值符号,确定所述第一序列或所述第二序列。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据第一调制方式,将所述反馈信息映射为复值符号之前,所述方法还包括:
    所述终端设备接收来自于所述网络设备的第一指示信息,所述第一指示信息用于指示一个或者多个调制方式,所述一个或者多个调制方式包括所述第一调制方式。
  5. 根据权利要求4所述的方法,其特征在于,所述一个或者多个调制方式为多个调制方式时,所述方法还包括:
    根据所述反馈信息,从所述多个调制方式中确定所述第一调制方式。
  6. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定第一序列或第二序列,包括:
    所述终端设备确定反馈信息,所述反馈信息用于指示对所述下行数据接收成功或者没有成功接收;
    所述终端设备根据所述反馈信息和预设的映射关系,确定所述第一序列或所述第二序列,所述预设的映射关系为所述反馈信息的比特取值和序列的映射关系。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备向所述网络设备发送所述第一序列或所述第二序列,包括:
    所述终端设备在竞争成功的一个或者多个上行资源上,向所述网络设备发送所述第一序列或者所述第二序列。
  8. 一种传输信息的方法,其特征在于,包括:
    网络设备向终端设备发送下行数据;
    所述网络设备接收所述终端设备发送的第一序列时,所述网络设备确定所述终端设备对所述下行数据接收成功;
    所述网络设备接收所述终端设备发送的第二序列时,所述网络设备确定终端设备对所 述下行数据没有成功接收;
    其中,所述第一序列的幅值和所述第二序列的幅值不同。
  9. 根据权利要求8所述的方法,其特征在于,所述第一序列的幅值小于所述第二序列的幅值。
  10. 根据权利要求8或9所述的方法,其特征在于,所述网络设备接收所述终端设备发送的所述第一序列或者所述第二序列之前,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示一个或者多个调制方式,所述一个或者多个调制方式用于确定所述第一序列或者所述第二序列。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述网络设备接收所述终端设备发送的所述第一序列或者所述第二序列,包括:
    所述网络设备在一个或者多个上行资源上,接收所述终端设备发送的所述第一序列或者所述第二序列。
  12. 一种传输信息的方法,其特征在于,包括:
    终端设备接收网络设备发送的下行数据,且所述终端设备没有接收到调度所述下行数据的下行控制信息;
    所述终端设备对所述下行数据没有成功接收时,所述终端设备向所述网络设备发送第一信息;
    所述终端设备对所述下行数据接收成功时,所述终端设备不向所述网络设备发送所述第一信息。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备向所述网络设备发送第一信息,包括:
    所述终端设备在竞争成功的一个或者多个上行资源上,向所述网络设备发送所述第一信息。
  14. 一种传输信息的方法,其特征在于,包括:
    网络设备向终端设备发送下行数据,且所述网络设备不向所述终端设备发送调度所述下行数据的下行控制信息;
    所述网络设备接收所述终端设备发送的第一信息时,所述网络设备确定所述终端设备对所述下行数据没有成功接收;
    所述网络设备没有接收到所述终端设备发送的第一信息时,所述网络设备确定所述终端设备对所述下行数据接收成功。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备没有接收到所述终端设备发送的第一信息,包括:
    所述网络设备在一个或者多个上行资源中的每一个上行资源上均没有接收到所述终端设备发送的所述第一信息。
  16. 根据权利要求14所述的方法,其特征在于,所述网络设备接收所述终端设备发送的反馈信息,包括:
    所述网络设备在一个或者多个上行资源上接收到所述终端设备发送的所述反馈信息。
  17. 一种传输信息的装置,其特征在于,包括:
    收发模块,用于从网络设备接收下行数据;
    处理模块,用于确定第一序列或第二序列,其中,所述装置对所述下行数据接收成功时,所述处理模块确定所述第一序列;所述装置对所述下行数据没有成功接收时,所述处理模块确定所述第二序列;所述第一序列的幅值与所述第二序列的幅值不同;
    所述收发模块还用于向所述网络设备发送所述第一序列或所述第二序列。
  18. 根据权利要求17所述的装置,其特征在于,所述第一序列的幅值小于所述第二序列的幅值。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理模块具体用于:
    确定反馈信息,所述反馈信息用于指示对所述下行数据接收成功或没有成功接收;
    根据第一调制方式,将所述反馈信息映射为复值符号;
    根据所述复值符号,确定所述第一序列或所述第二序列。
  20. 根据权利要求19所述的装置,其特征在于,所述收发模块还用于接收来自于所述网络设备的第一指示信息,所述第一指示信息用于指示一个或者多个调制方式,所述一个或者多个调制方式包括所述第一调制方式。
  21. 根据权利要求20所述的装置,其特征在于,所述一个或者多个调制方式为多个调制方式时,所述处理模块还用于根据所述反馈信息,从所述多个调制方式中确定所述第一调制方式。
  22. 根据权利要求17或18所述的装置,其特征在于,所述处理模块具体用于:
    确定反馈信息,所述反馈信息用于指示对所述下行数据接收成功或者没有成功接收;
    根据所述反馈信息和预设的映射关系,确定所述第一序列或所述第二序列,所述预设的映射关系为所述反馈信息的比特取值和序列的映射关系。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述收发模块具体用于:
    在竞争成功的一个或者多个上行资源上,向所述网络设备发送所述第一序列或者所述第二序列。
  24. 一种传输信息的装置,其特征在于,包括:
    收发模块,用于向终端设备发送下行数据;
    所述收发模块还用于接收终端设备发送的第一序列或者第二序列;
    处理模块,用于在所述收发模块接收终端设备发送的第一序列时,确定所述终端设备对所述下行数据接收成功;或者,用于在所述收发模块接收终端设备发送的第二序列时,确定所述终端设备对所述下行数据没有成功接收;
    其中,所述第一序列的幅值和所述第二序列的幅值不同。
  25. 根据权利要求24所述的装置,其特征在于,所述第一序列的幅值小于所述第二序列的幅值。
  26. 根据权利要求24或25所述的装置,其特征在于,所述收发模块还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示一个或者多个调制方式,所述一个或者多个调制方式用于确定所述第一序列或者所述第二序列。
  27. 根据权利要求24至26中任一项所述的装置,其特征在于,所述收发模块具体用于:
    在一个或者多个上行资源上,接收所述终端设备发送的所述第一序列或者所述第二序 列。
  28. 一种传输信息的装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的下行数据,且所述终端设备没有接收到调度所述下行数据的下行控制信息;
    处理模块,用于确定对所述下行数据接收成功或者对所述下行数据没有成功接收;
    所述收发模块,还用于在所述处理模块确定对所述下行数据接收没有成功接收时,向所述网络设备发送第一信息;或者,用于在所述处理模块对所述下行数据接收成功时,不向所述网络设备发送所述第一信息。
  29. 根据权利要求28所述的装置,其特征在于,所述收发模块具体用于:
    在竞争成功的一个或者多个上行资源上,向所述网络设备发送所述第一信息。
  30. 一种传输信息的装置,其特征在于,包括:
    收发模块,用于向终端设备发送下行数据,且不向所述终端设备发送调度所述下行数据的下行控制信息;
    处理模块,用于在所述收发模块接收所述终端设备发送的第一信息时,确定所述终端设备对所述下行数据没有成功接收;或者,用于在所述收发模块没有接收所述终端设备发送的所述第一信息时,确定所述终端设备对所述下行数据接收成功。
  31. 根据权利要求30所述的装置,其特征在于,所述收发模块具体用于:
    在一个或者多个上行资源中的每一个上行资源上均没有接收到所述终端设备发送的所述第一信息。
  32. 根据权利要求30所述的装置,其特征在于,所述收发模块具体用于:
    在一个或者多个上行资源上接收到所述终端设备发送的所述第一信息。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7中任意一项所述的方法,或者使得所述计算机执行如权利要求8~11中任意一项所述的方法,或者使得所述计算机执行如权利要求12~13中任意一项所述的方法,或者使得所述计算机执行如权利要求14~16中任意一项所述的方法。
PCT/CN2020/079850 2019-03-18 2020-03-18 一种传输信息的方法和装置 WO2020187217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910204987.1 2019-03-18
CN201910204987.1A CN111711993B (zh) 2019-03-18 2019-03-18 一种传输信息的方法和装置

Publications (1)

Publication Number Publication Date
WO2020187217A1 true WO2020187217A1 (zh) 2020-09-24

Family

ID=72518978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079850 WO2020187217A1 (zh) 2019-03-18 2020-03-18 一种传输信息的方法和装置

Country Status (2)

Country Link
CN (1) CN111711993B (zh)
WO (1) WO2020187217A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836401A (zh) * 2003-08-15 2006-09-20 皇家飞利浦电子股份有限公司 用于组播数据传输的反馈信令
CN101002440A (zh) * 2004-08-11 2007-07-18 Lg电子株式会社 无线通信***中的分组传输确认
CN101039304A (zh) * 2007-05-09 2007-09-19 中兴通讯股份有限公司 Harq反馈信号生成方法及其装置
CN102036267A (zh) * 2009-09-30 2011-04-27 鼎桥通信技术有限公司 一种e-hich的联合检测方法和装置
CN102365836A (zh) * 2009-03-27 2012-02-29 日本电气株式会社 Harq指示符的确定
CN107566094A (zh) * 2016-06-30 2018-01-09 北京信威通信技术股份有限公司 一种数据重传的方法及装置
CN108075862A (zh) * 2016-11-16 2018-05-25 深圳市中兴微电子技术有限公司 一种物理上行共享信道上ack/nack检测的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651525B (zh) * 2008-08-15 2012-08-22 富士通株式会社 响应信号的传送资源分配方法、反馈方法和处理方法
CN101959303A (zh) * 2009-07-13 2011-01-26 鼎桥通信技术有限公司 E-hich上签名序列的分配方法
US10305650B2 (en) * 2013-11-01 2019-05-28 Lg Electronics Inc. Method for transmitting discovery message in wireless communication system and device therefor
CN106330407A (zh) * 2015-06-30 2017-01-11 深圳市中兴微电子技术有限公司 一种信息传输方法及***、发送设备及接收设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836401A (zh) * 2003-08-15 2006-09-20 皇家飞利浦电子股份有限公司 用于组播数据传输的反馈信令
CN101002440A (zh) * 2004-08-11 2007-07-18 Lg电子株式会社 无线通信***中的分组传输确认
CN101039304A (zh) * 2007-05-09 2007-09-19 中兴通讯股份有限公司 Harq反馈信号生成方法及其装置
CN102365836A (zh) * 2009-03-27 2012-02-29 日本电气株式会社 Harq指示符的确定
CN102036267A (zh) * 2009-09-30 2011-04-27 鼎桥通信技术有限公司 一种e-hich的联合检测方法和装置
CN107566094A (zh) * 2016-06-30 2018-01-09 北京信威通信技术股份有限公司 一种数据重传的方法及装置
CN108075862A (zh) * 2016-11-16 2018-05-25 深圳市中兴微电子技术有限公司 一种物理上行共享信道上ack/nack检测的方法和装置

Also Published As

Publication number Publication date
CN111711993B (zh) 2024-07-09
CN111711993A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
US11533150B2 (en) Feedback information transmission method and communication device
US20210091893A1 (en) Information Transmission Method and Communications Device
WO2020143709A1 (zh) 一种信息处理方法、终端设备及网络设备
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
WO2020030113A1 (zh) 传输上行控制信息的方法和通信装置
WO2020063576A1 (zh) 传输块与码字的对应关系、相关设备以及***
US11451347B2 (en) Communication method, apparatus, and system
WO2019029579A1 (zh) 无线通信的方法、芯片和***
JPWO2020026532A1 (ja) 端末及び通信方法
WO2021109483A1 (en) Methods and devices for configuring harq-ack feedback
US20200067644A1 (en) Data feedback method and related device
WO2018126833A1 (zh) 无线通信的方法和设备
WO2021203976A1 (zh) 数据处理方法、装置及***
WO2019028916A1 (zh) 数据传输方法和装置
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
AU2017418439A1 (en) Data transmission method, terminal device, and network device
WO2016161584A1 (zh) 一种数据重传方法、设备及***
EP3648390B1 (en) Communication method and device
WO2020164134A1 (zh) 通信方法、装置及***
WO2018228495A1 (zh) 一种传输信息的方法和装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2020143813A1 (zh) 传输信息的方法和装置
WO2021068140A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020187217A1 (zh) 一种传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773382

Country of ref document: EP

Kind code of ref document: A1