WO2021200526A1 - 高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法 - Google Patents

高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法 Download PDF

Info

Publication number
WO2021200526A1
WO2021200526A1 PCT/JP2021/012465 JP2021012465W WO2021200526A1 WO 2021200526 A1 WO2021200526 A1 WO 2021200526A1 JP 2021012465 W JP2021012465 W JP 2021012465W WO 2021200526 A1 WO2021200526 A1 WO 2021200526A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
dispersed liquid
base material
transparent
Prior art date
Application number
PCT/JP2021/012465
Other languages
English (en)
French (fr)
Inventor
森 重恭
義浩 大西
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2021200526A1 publication Critical patent/WO2021200526A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a polymer-dispersed liquid crystal panel, a polymer-dispersed liquid crystal display, and a method for manufacturing a polymer-dispersed liquid crystal panel.
  • Patent Document 1 a polymer-dispersed liquid crystal panel having a polymer-dispersed liquid crystal layer between a pair of transparent electrode layers is known (see, for example, Patent Document 1).
  • the polymer-dispersed liquid crystal panel can change the degree of scattering of transmitted light in the polymer-dispersed liquid crystal layer according to the amount of voltage applied to the pair of transparent electrode layers. By switching between and, it is possible to switch between a state in which light is scattered (scattered state) and a state in which light is transmitted (non-scattered state or transparent state).
  • One of the uses of such a polymer-dispersed liquid crystal panel is its use as a light control film.
  • a polymer-dispersed liquid crystal device including a polymer-dispersed liquid crystal panel and a drive circuit for driving the polymer-dispersed liquid crystal panel to an existing window glass, it can function as a blind shutter. ..
  • the conventional polymer-dispersed liquid crystal display can be driven by a commercial AC power supply that can be easily used in homes and offices.
  • driving by a commercial AC power supply has a problem that the frequency is short, so that the power consumption is large and the environmental load is large.
  • An object of the present invention is to provide a polymer-dispersed liquid crystal display capable of driving with low power consumption.
  • a pair of transparent substrates a pair of transparent electrode layers provided between the pair of transparent substrates, and a polymer provided between the pair of transparent electrode layers.
  • a polymer-dispersed liquid crystal panel comprising a polymer-dispersed liquid crystal film having a dispersed liquid crystal layer and having a water content of the polymer-dispersed liquid crystal layer of 0.3 wt% or less.
  • 0.01 g / g / humidity of the polymer-dispersed liquid crystal film in an environment of 40 ° C. and 90% RH on the side opposite to the side where the transparent electrode layer of the pair of transparent substrates is provided.
  • the low moisture permeable substrate is a glass substrate. In one embodiment, the thickness of the glass substrate is 10 ⁇ m or more. In one embodiment, the low moisture permeable base material is a resin base material with a moisture barrier membrane. In one embodiment, the polymer-dispersed liquid crystal panel further includes a sealing portion arranged so as to cover an end portion of the polymer-dispersed liquid crystal film, and the moisture permeability of the sealing portion is 40 ° C. and 90 ° C. It is 0.1 g / m 2 / 24h or less under the% RH environment.
  • a low moisture permeability adhesive layer is less than 0.1g / m 2 / 24h at the under 40 ° C. 90% RH environment moisture permeability It is pasted together.
  • the moisture absorption of the transparent substrate is 0.1 wt% 24 h or more in a 40 ° C. 90% RH environment.
  • the transparent substrate comprises a polyethylene terephthalate resin.
  • the transparent substrate comprises a cycloolefin resin.
  • the polymer-dispersed liquid crystal layer is formed by applying a voltage between the polymer-dispersed liquid crystal panel and the pair of transparent electrode layers constituting the polymer-dispersed liquid crystal panel.
  • a polymer-dispersed liquid crystal display including a drive circuit that puts the surface into a non-scattered state or a scattered state, and a power source that supplies a DC voltage to the drive circuit.
  • a drive circuit that puts the surface into a non-scattered state or a scattered state
  • a power source that supplies a DC voltage to the drive circuit.
  • on the transparent electrode layer side surface of the first transparent electrode layered base material having the transparent base material and the transparent electrode layer provided on one side of the transparent base material.
  • a base material with a second transparent electrode layer having a transparent base material and a transparent electrode layer provided on one side of the transparent base material is placed on a mold liquid crystal layer, and the surface on the transparent electrode layer side is polymer-dispersed.
  • the laminate is laminated so as to face the type liquid crystal layer to obtain a laminate, and the laminate is subjected to heat treatment to reduce the water content in the polymer-dispersed liquid crystal layer to 0.3 wt% or less.
  • a method for manufacturing a polymer-dispersed liquid crystal panel including.
  • the moisture permeability of the laminated body after the heat treatment is 40 ° C. and 90% on the surface of the first transparent electrode layered base material and the second transparent electrode layered base material on the transparent base material side.
  • the laminating of the low moisture permeable base material is performed within 60 minutes after the completion of the heat treatment. It is said.
  • the present invention by controlling the water content in the polymer-dispersed liquid crystal layer, it is possible to obtain a polymer-dispersed liquid crystal apparatus capable of driving with low power consumption.
  • FIG. 3 is a schematic cross-sectional view of a PDLC panel according to one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a PDLC panel according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a PDLC panel according to still another embodiment of the present invention.
  • It is a schematic front view of the PDLC panel by one Embodiment of this invention.
  • It is a schematic front view of the PDLC apparatus according to one Embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view taken along the line AA of the PDLC apparatus shown in FIG. It is a graph which shows the initial current value when the PDLC apparatus is continuously driven, and the current value after 120 hours drive. It is a graph which shows the change of the weight and the current value when the PDLC film is heated. It is a graph which shows the relationship between the type of a transparent base material, and the current value at the time of driving
  • the present invention is not limited to these embodiments.
  • each embodiment can be combined appropriately.
  • the transparent base material and the transparent electrode layer provided on one side thereof may be collectively referred to as a base material with a transparent electrode layer.
  • the Polymer Dispersed Liquid Crystal (Polymer Dispersed Liquid Crystal, hereinafter referred to as “PDLC”) panel comprises a pair of transparent base materials and the pair of transparent base materials.
  • a PDLC film having a pair of transparent electrode layers provided between the two transparent electrode layers and a PDLC layer provided between the pair of transparent electrode layers, and the water content of the PDLC layer is 0.3 wt% or less.
  • FIG. 1 is a schematic cross-sectional view of a PDLC panel according to one embodiment of the present invention.
  • the PDLC panel 110a is formed between the pair of transparent base materials 10a and 10b, the pair of transparent electrode layers 20a and 20b provided between the pair of transparent base materials 10a and 10b, and the pair of transparent electrode layers 20a and 20b.
  • the PDLC film 100 having the provided PDLC layer 30 is included.
  • FIG. 2 is a schematic cross-sectional view of a PDLC panel according to another embodiment of the present invention.
  • the PDLC panel 110b has a pair of low moisture permeability base materials 102a on both sides of the PDLC film 100 (specifically, the side opposite to the side where the transparent electrode layers 20a and 20b of the pair of transparent base materials 10a and 10b are provided). , 102b are arranged, which is different from the PDLC panel 110a.
  • the transparent base materials 10a and 10b and the low moisture permeable base materials 102a and 102b are typically bonded via any suitable adhesive layer (for example, an adhesive layer or an adhesive layer).
  • any suitable adhesive layer for example, an adhesive layer or an adhesive layer.
  • the transparent substrate 10a and the low moisture permeable substrate 102a and / or the transparent substrate 10b and the low moisture permeable substrate 102b are bonded together via a low moisture permeable adhesive layer (not shown). There is.
  • FIG. 3 is a schematic cross-sectional view of a PDLC panel according to still another embodiment of the present invention.
  • the PDLC panel 110c differs from the PDLC panel 100b in that it includes a sealing portion 104 that covers the end of the PDLC film 100.
  • the low moisture permeable base materials 102a and 102b have a shape corresponding to the PDLC film 100 and have a slightly larger dimension, and the sealing portion is PDLC so that the ends of the PDLC panel 110c are flush with each other. It is provided on the peripheral edge of the edge of the film 100.
  • a PDLC film has a pair of transparent substrates, a pair of transparent electrode layers provided between the pair of transparent substrates, and a PDLC layer provided between the pair of transparent electrode layers. ..
  • the PDLC panel may further have other layers, depending on the purpose. Examples of other layers include a refractive index adjusting layer, a hard coat layer, a protective layer, an adhesive layer and the like.
  • the PDLC film can change the degree of scattering of transmitted light (resulting in haze) in the PDLC layer according to the amount of voltage applied to the pair of transparent electrode layers.
  • the PDLC film can change the degree of scattering of transmitted light (resulting in haze) in the PDLC layer according to the amount of voltage applied to the pair of transparent electrode layers.
  • the PDLC film may have, for example, 70% to 92%, more preferably 75% to 90% haze in the scattered state. Further, the PDLC film may have a haze of, for example, less than 30%, preferably 15% or less, more preferably 0.1% to 12% in a transparent state.
  • the transparent base material constitutes a base material with a transparent electrode layer by providing a transparent electrode layer on one side thereof.
  • the base material with a transparent electrode layer may have a hard coat layer on one side or both sides of the transparent base material, if necessary, and a refractive index adjusting layer may be provided between the transparent base material and the transparent electrode layer. You may have.
  • the surface resistance value of the base material with the transparent electrode layer is preferably 1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and further preferably 10 ⁇ / ⁇ to 200 ⁇ / ⁇ .
  • the haze value of the base material with the transparent electrode layer is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 10%.
  • the total light transmittance of the base material with the transparent electrode layer is preferably 30% or more, more preferably 60% or more, and further preferably 80% or more.
  • the transparent substrate can be formed using any suitable material.
  • a polymer film containing a thermoplastic resin as a main component can be used as the transparent base material.
  • the thermoplastic resin include cycloolefin resins such as polynorbornene; acrylic resins; polyester resins such as polyethylene terephthalate; polycarbonate resins; cellulose resins and the like. Of these, cycloolefin-based resins, polyethylene terephthalate-based resins, and polycarbonate-based resins can be preferably used.
  • the above-mentioned thermoplastic resin may be used alone or in combination of two or more.
  • the humidity absorption of the transparent substrate is, for example, 0.1 wt% / 24 h or more, preferably 0.2 wt% / 24 h or more, and more preferably 0.5 wt% / 24 h to 5 wt% / in an environment of 40 ° C. and 90% RH. It can be 24 hours.
  • the moisture absorption of the transparent substrate is within the above range, the water content of the PDLC layer can be preferably controlled by heat treatment.
  • the hygroscopicity is a value indicating how much water is absorbed under high temperature and high humidity, and is obtained based on the change in weight before and after placing in high temperature and high humidity.
  • the moisture absorption can change depending on the surface area, but since the transparent substrate has a sufficiently large length and width with respect to the thickness, the amount of moisture absorption changes substantially in proportion to the thickness.
  • the moisture absorption of the transparent base material is the moisture absorption when the thickness of the transparent base material is 50 ⁇ m.
  • the thickness of the transparent base material is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m.
  • the transparent electrode layer can be formed by using, for example, a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2).
  • a metal oxide such as indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2).
  • the metal oxide may be an amorphous metal oxide or a crystallized metal oxide.
  • the transparent electrode layer can also be formed of metal nanowires such as silver nanowires (AgNW), carbon nanotubes (CNTs), organic conductive films, metal layers or laminates thereof.
  • metal nanowires such as silver nanowires (AgNW), carbon nanotubes (CNTs), organic conductive films, metal layers or laminates thereof.
  • the transparent electrode layer may be patterned in a desired shape according to the purpose.
  • the thickness of the transparent electrode layer is preferably 0.01 ⁇ m to 0.10 ⁇ m, and more preferably 0.01 ⁇ m to 0.045 ⁇ m.
  • the PDLC layer typically has a structure in which droplets of a liquid crystal compound are dispersed in a resin matrix.
  • the orientation state of the liquid crystal compound changes according to the voltage applied between the transparent electrode layers, and this changes the scattering degree of the transmitted light to change the scattered state and the transparent state. You can switch.
  • the PDLC layer becomes transparent when a voltage is applied, and becomes a scattered state when no voltage is applied (normal mode).
  • the liquid crystal compound when no voltage is applied, the liquid crystal compound is not oriented, so that it is in a light scattering state.
  • the voltage is applied, the liquid crystal compound is oriented and the refractive index of the liquid crystal compound and the refractive index of the resin matrix are aligned. As a result, it becomes transparent.
  • the PDLC layer becomes a scattered state when a voltage is applied, and becomes a transparent state when a voltage is not applied (reverse mode).
  • the alignment film provided on the surface of the transparent electrode layer causes the liquid crystal compound to be oriented and becomes transparent when no voltage is applied, and the orientation of the liquid crystal compound is disturbed by the application of voltage to cause a scattered state.
  • the water content of the PDLC layer is typically 0.3 wt% or less, preferably 0.25 wt% or less, more preferably 0.2 wt% or less, still more preferably 0.15 wt% or less. If the water content in the PDLC layer exceeds 0.3 wt%, the current value when a voltage is applied may increase and the power consumption may increase, so that the effect of the present invention may not be obtained.
  • the water content of the PDLC layer may also be 0.0 wt% or higher, for example 0.01 wt% or higher or 0.05 wt% or higher.
  • any suitable non-polymerized liquid crystal compound is used.
  • nematic type, smectic type and cholesteric type liquid crystal compounds can be mentioned.
  • a nematic liquid crystal compound examples include biphenyl compounds, phenylbenzoate compounds, cyclohexylbenzene compounds, azoxybenzene compounds, azobenzene compounds, azomethine compounds, terphenyl compounds, biphenylbenzoate compounds, and cyclohexylbiphenyl compounds.
  • the average particle size of the liquid crystal compound droplets when viewed from the direction perpendicular to the main surface of the PDLC layer is, for example, 2 ⁇ m to 10 ⁇ m, preferably 3 ⁇ m to 9 ⁇ m.
  • the average particle size of the droplets of the liquid crystal compound is the volume average particle size.
  • the content ratio of the liquid crystal compound in the PDLC layer is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 35% by weight or more, still more preferably 40% by weight or more.
  • the content ratio is, for example, 90% by weight or less, preferably 70% by weight or less.
  • the resin forming the resin matrix can be appropriately selected according to the light transmittance, the refractive index of the liquid crystal compound, and the like.
  • examples thereof include water-soluble resins such as urethane-based resins, polyvinyl alcohol-based resins, polyethylene-based resins, polypropylene-based resins, and acrylic-based resins, or water-dispersible resins.
  • the content ratio of the matrix resin in the PDLC layer is, for example, 90% by weight or less, preferably 70% by weight or less, more preferably 65% by weight or less, still more preferably 60% by weight or less.
  • the content ratio is, for example, 10% by weight or more, preferably 30% by weight or more.
  • the thickness of the PDLC layer is preferably 2 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m.
  • the low moisture permeability base material prevents moisture from penetrating the base material with the transparent electrode layer and invading the PDLC layer, and as a result, keeps the water content of the PDLC layer within a predetermined range. Can contribute to doing so.
  • Moisture permeability of low moisture permeability substrate for example, 40 ° C. or less 0.01g / m 2 / 24h under 90% RH environment, preferably not more than 0.005g / m 2 / 24h, more preferably 0.001 g / It can be m 2 / 24h or less.
  • the effect of the present invention can be more preferably obtained.
  • the low moisture permeability base material may have any suitable composition as long as it has a desired moisture permeability.
  • the low moisture permeability base material may be, for example, a single-layer base material or a laminated body having two or more layers.
  • a glass base material can be preferably exemplified.
  • the glass constituting the glass base material include soda-lime glass, borosilicate glass, aluminosilicate glass, quartz glass and the like according to the classification according to the composition. Further, according to the classification according to the alkaline component, non-alkali glass and low-alkali glass can be mentioned.
  • the thickness of the glass substrate is, for example, 10 ⁇ m or more, preferably 50 ⁇ m to 3000 ⁇ m, and more preferably 50 ⁇ m to 2000 ⁇ m.
  • the thickness of the glass base material is within the above range, it is possible to more preferably prevent the PDLC layer from absorbing moisture, and it is possible to prevent the workability when being attached to the window frame or the like from being lowered due to the increase in weight. obtain.
  • Examples of the low-moisture-permeable base material which is a laminated body include a resin base material having a water barrier membrane having a resin base material and a water barrier membrane provided on one side or both sides thereof.
  • thermoplastic resin forming the resin base material examples include cycloolefin resins such as polynorbornene; acrylic resins; polyester resins such as polyethylene terephthalate; polycarbonate resins; cellulose resins and the like.
  • the thickness of the resin base material is, for example, 20 ⁇ m to 200 ⁇ m, preferably 30 ⁇ m to 100 ⁇ m.
  • Moisture barrier film for example, silicon oxide (SiO X), silicon nitride (SiN X), silicon oxynitride (SiON) and aluminum oxide (AlO) the inorganic material chemical vapor deposition such as chemical vapor deposition (CVD) or atomic layer deposition It can be formed by forming a film on a resin substrate using the (ALD) method or the like.
  • SiO X silicon oxide
  • SiN X silicon nitride
  • SiON silicon oxynitride
  • AlO aluminum oxide
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the thickness of the moisture barrier membrane is, for example, 0.05 ⁇ m to 5 ⁇ m, preferably 0.1 ⁇ m to 2 ⁇ m.
  • the encapsulation can prevent moisture from entering from the edges of the PDLC film and, as a result, can contribute to keeping the moisture content of the PDLC layer within a predetermined range.
  • Moisture permeability of the sealing portion is not more than 0.1g / m 2 / 24h under example 40 ° C. 90% RH environment, preferably 0.05g / m 2 / 24h or less, more preferably 0.01 g / m 2 It can be less than / 24h.
  • the effect of the present invention can be more preferably obtained.
  • the thickness of the sealing portion is, for example, 1 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m.
  • any suitable material can be used as long as the desired moisture permeability can be obtained.
  • a curable resin composition such as an epoxy resin, a polyester resin, an acrylic resin, an amide resin, a silicone resin, or a urethane resin is applied to the sealing portion so as to cover the peripheral edge of the PDLC film. And can be formed by curing.
  • the low moisture permeable adhesive layer prevents moisture from penetrating the substrate with the transparent electrode layer and invading the PDLC layer, and as a result, keeps the moisture content of the PDLC layer within a predetermined range. Can contribute to doing so.
  • Moisture permeability of low moisture permeability adhesive layer is, for example 40 ° C. or less 0.1g / m 2 / 24h under 90% RH environment, preferably not more than 0.05g / m 2 / 24h, more preferably 0.01 g / It can be m 2 / 24h or less.
  • the effect of the present invention can be more preferably obtained.
  • the thickness of the low moisture-permeable adhesive layer is, for example, 1 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 100 ⁇ m.
  • any adhesive composition and pressure-sensitive adhesive composition can be used as long as the desired moisture permeability can be obtained.
  • the low moisture permeable adhesive layer can be formed by a hot melt adhesive.
  • the hot melt adhesive include ethylene vinyl acetate (EVA) type hot melt adhesives, olefin type hot melt adhesives, acrylic type hot melt adhesives and the like. Of these, EVA-based hot melt adhesives can be preferably used because good adhesion can be obtained.
  • the PDLC panel manufacturing method is as follows. On the surface of the first transparent electrode layer-attached base material having the transparent base material and the transparent electrode layer provided on one side of the transparent base material, polymer particles and liquid crystal particles are contained in an aqueous solvent. To form a coating layer by applying an emulsion in which the particles are dispersed (step I), The coating layer is dried to form a PDLC layer (step II). On the PDLC layer, a base material with a second transparent electrode layer having a transparent base material and a transparent electrode layer provided on one side of the transparent base material is provided, and the surface on the transparent electrode layer side is the PDLC layer.
  • the laminated body Laminating them so as to face each other to obtain a laminated body (step III), and subjecting the laminated body to heat treatment to reduce the water content in the PDLC layer to 0.3 wt% or less (step IV).
  • step III Laminating them so as to face each other to obtain a laminated body
  • step IV heat treatment to reduce the water content in the PDLC layer to 0.3 wt% or less
  • step IV Including, preferably 0.01 g / m 2 on the transparent substrate side surface of the first transparent electrode layered substrate and the second transparent electrode layered substrate of the laminated body after the heat treatment in an environment where the moisture permeability is 40 ° C. and 90% RH.
  • step V Further comprising laminating a low moisture permeable substrate of 24 hours or less.
  • the PDLC panel according to Item A can be preferably obtained.
  • the PDLC layer obtained by applying and drying an emulsion in which polymer particles and liquid crystal particles are dispersed in an aqueous solvent is from the viewpoint of ensuring adhesion to a substrate with a transparent electrode layer laminated on the emulsion layer.
  • the water content is controlled within a predetermined range by further subjecting the PDLC layer, which has been dried once and sandwiched between the base materials with the transparent electrode layer, to heat treatment.
  • the PDLC panel according to item A can be preferably obtained, and as a result, a PDLC device capable of driving with low power consumption can be preferably obtained.
  • each step will be specifically described.
  • step I a polymer in an aqueous solvent is placed on the surface of the first transparent electrode layer-attached base material having the transparent base material and the transparent electrode layer provided on one side of the transparent base material on the transparent electrode layer side surface.
  • An emulsion in which particles and liquid crystal particles are dispersed (hereinafter, may be referred to as an emulsion coating liquid) is applied to form a coating layer.
  • the first base material with a transparent electrode layer is obtained by forming a transparent electrode layer on one side of the transparent base material by, for example, sputtering. After forming a metal oxide layer by sputtering, it can be crystallized by annealing. Annealing is performed, for example, by heat treatment at 120 ° C. to 300 ° C. for 10 minutes to 120 minutes.
  • the transparent base material and the transparent electrode layer are as described in Section A.
  • the polymer particles and liquid crystal particles contained in the emulsion coating liquid may be water-dispersible resin or water-soluble resin and liquid crystal compound particles (droplets) exemplified as the matrix-forming resin according to Item A, respectively.
  • the emulsion coating liquid can be obtained by mixing a resin emulsion in which polymer particles are dispersed in an aqueous solvent and a liquid crystal emulsion in which liquid crystal particles are dispersed in an aqueous solvent. If necessary, any suitable aqueous solvent or additive (for example, dispersant, surface conditioner) may be further added at the time of mixing. Alternatively, the emulsion coating liquid can also be prepared by adding a liquid crystal compound and a water-dispersible resin to an aqueous solvent and mechanically dispersing them. As the aqueous solvent, water or a mixed solvent of water and a water-miscible organic solvent can be typically used.
  • the solid content concentration of the emulsion coating liquid can be, for example, 50% by weight to 90% by weight, preferably 60% by weight to 80% by weight.
  • any appropriate method can be adopted as the coating method of the emulsion coating liquid.
  • a roll coating method, a spin coating method, a wire bar coating method, a dip coating method, a die coating method, a curtain coating method, a spray coating method, a knife coating method (comma coating method, etc.) and the like can be mentioned.
  • the coating thickness can be appropriately set according to the thickness desired for the PDLC layer.
  • step II the coating layer is dried to form a PDLC layer. Specifically, by drying the coating layer to remove the aqueous solvent, the polymer particles are fused to each other to form a resin matrix, and as a result, the liquid crystal particles are dispersed in the resin matrix PDLC. Layers are formed.
  • the water content of the PDLC layer formed in step II exceeds 0.5 wt%, preferably 0.6 wt% or more, more preferably 0.8 wt% to 2 wt%, still more preferably 0. It can be between 8 wt% and 1 wt%. If the water content is low, the adhesion to the second transparent electrode layered base material laminated in step III may be insufficient.
  • the drying temperature and drying time can be appropriately set according to the thickness of the coating layer, the concentration of the emulsion coating liquid, and the like.
  • the drying temperature can be, for example, 20 ° C to 80 ° C, preferably 25 ° C to 50 ° C.
  • the drying time can be, for example, 1 minute to 120 minutes, preferably 5 minutes to 30 minutes.
  • step III a base material with a second transparent electrode layer having a transparent base material and a transparent electrode layer provided on one side of the transparent base material is placed on the PDLC layer on the surface on the transparent electrode layer side. Is laminated so as to face the PDLC layer to obtain a laminated body.
  • the obtained laminate has a structure of [transparent base material / transparent electrode layer / PDLC layer / transparent electrode layer / transparent base material].
  • the lamination can be performed while applying a laminating pressure using a laminator from the viewpoint of obtaining sufficient adhesion.
  • the same description as for the first transparent electrode layered base material can be applied to the second transparent electrode layered base material.
  • the first transparent electrode layered base material and the second transparent electrode layered base material may have the same configuration or different configurations.
  • step IV the laminate is subjected to heat treatment to reduce the water content in the PDLC layer to 0.3 wt% or less.
  • the heat treatment is preferably performed so that the water content in the PDLC layer is 0.25 wt% or less, more preferably 0.2 wt% or less.
  • the heat treatment can be performed, for example, by placing the laminate in a heating environment.
  • the heating temperature and heating time can be appropriately set according to the desired water content.
  • the heating temperature can be, for example, 40 ° C. to 90 ° C., preferably 50 ° C. to 80 ° C., and more preferably 50 ° C. to 70 ° C.
  • the heating time is, for example, 1 hour or more, preferably 3 hours or more, more preferably 5 hours or more, still more preferably 10 hours or more, still more preferably 30 hours or more, still more preferably 50 hours or more, still more preferably 70. It can be more than an hour.
  • the upper limit of the heating time can be, for example, 150 hours or less, preferably 100 hours or less, from the viewpoint of production efficiency.
  • step V the moisture permeability of the laminated body (PDLC film) after the heat treatment is 40 ° C. and 90% on the surface of the base material with the first transparent electrode layer and the base material with the second transparent electrode layer on the transparent base material side.
  • a low moisture permeable base material having a pressure of 0.01 g / m 2 / 24h or less is bonded under an RH environment.
  • the bonding between the first transparent electrode layered base material or the second transparent electrode layered base material and the low moisture permeability base material can be performed via any suitable adhesive layer.
  • the adhesive layer is preferably a low moisture permeability adhesive layer.
  • the low moisture permeable base material and the low moisture permeable adhesive layer are as described in Section A.
  • the bonding is performed on a PDLC film having the composition of [base material with first transparent electrode layer / PDLC layer / base material with second transparent electrode layer].
  • a hot melt adhesive and a low moisture permeability base material are laminated in this order on both sides, and [low moisture permeability base material / hot melt adhesive / PDLC film / hot melt adhesive / low moisture permeability This can be done by producing a laminate having the composition of [base material] and hot-pressing the laminate.
  • the bonding between the first transparent electrode layered base material or the second transparent electrode layered base material and the low moisture permeability base material is preferably carried out within 120 minutes, more preferably within 60 minutes after the heat treatment in step IV. It is said.
  • the PDLC layer can absorb moisture through the base material with the transparent electrode layer.
  • the above manufacturing method may further include additional steps other than steps I to V, if necessary.
  • additional step include a step of forming a sealing portion, a step of manufacturing an electrode, and the like.
  • the formation of the sealing portion is preferably performed after step V.
  • the production of the electrode may be performed before or after the step V, but is preferably performed after the step V.
  • the electrode can be formed on a transparent electrode layer exposed at the extending portion by extending a part of the PDLC film outward from the low moisture permeable base material.
  • a part of the PDLC film 100 is extended outward from the low moisture permeability base material 102a (102b), and in the extending portion, one base material with a transparent electrode layer and PDLC Remove the layer.
  • the transparent electrode layer 20b (20a) of the other base material with the transparent electrode layer is exposed, and an electrode is formed on the exposed transparent electrode layer.
  • FIG. 5 is a schematic front view of the PDLC device 200 according to one embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional view taken along the line AA of the PDLC device shown in FIG.
  • the PDLC device 200 is a flat and rectangular device.
  • the PDLC device 200 has a rectangular PDLC panel 110, and by driving the PDLC panel 110, it is possible to switch between a transparent state in which light is transmitted and a scattering state in which light is scattered.
  • the PDLC device 200 can function as a blind shutter for the window 300 by being attached to the window 300.
  • the PDLC panel 110 in the normal mode is in a scattered state when no drive voltage is applied, and is completely whitened. Therefore, one side in the depth direction (Y-axis direction in the figure). Although the other side cannot be visually recognized from the above, it becomes transparent by applying a driving voltage, and the depth direction can be visually recognized.
  • the PDLC device 200 includes a PDLC panel 110, a frame 120, a battery 130, and a drive circuit 140.
  • the PDLC panel 110 is the PDLC panel according to item A, and is a flat plate-shaped and rectangular member in the present embodiment. As shown in FIGS. 5 and 6, the PDLC panel 110 has an outer peripheral edge sandwiched by a frame 120.
  • the frame 120 is a frame-shaped member provided with a constant width and a constant thickness along the outer peripheral edge of the PDLC panel 110 (that is, the four sides of the PDLC panel 110).
  • the external dimensions of the frame 120 are substantially the same as the internal dimensions of the sash 310 as the window frame included in the window 300.
  • the PDLC device 200 can be easily attached to the window 300 in a state of being overlapped with the window glass 320 included in the window 300 by being fitted inside the sash 310.
  • the battery 130 supplies a DC voltage to the drive circuit 140.
  • the battery 130 may be a primary battery or a secondary battery.
  • various secondary batteries such as a lithium ion battery and a lithium polymer battery can be used.
  • the PDLC panel 110 is driven by applying a DC voltage because the water content in the PDLC layer is adjusted to a predetermined range and the resistance at the time of applying a voltage can be increased. Power consumption can be reduced.
  • the drive circuit 140 generates a drive voltage for the PDLC panel 110. Specifically, the drive circuit 140 generates a DC drive voltage higher than the voltage generated by the battery 130. The drive circuit 140 drives the PDLC panel 110 by applying the generated drive voltage between the pair of transparent electrode layers 20a and 20b.
  • the drive circuit 140 is electrically connected to the transparent electrode layers 20a and 20b of the PDLC panel 110 by wiring (not shown). Specifically, a part of the transparent electrode layers 20a and 20b is exposed to form an exposed portion, an electrode is formed in the exposed portion, and the electrode and the drive circuit are connected via wiring. As a result, a drive voltage can be applied from the drive circuit 140 to the transparent electrode layers 20a and 20b.
  • the drive circuit 140 may be configured to generate a DC drive voltage whose polarity changes periodically. By applying a DC voltage whose polarity is periodically reversed, low power consumption and stable driving become possible.
  • the polarity reversal period can be, for example, 1 second or more and 2 hours or less, preferably 1 second or more and 1 hour or less, and more preferably 1 second or more and 30 minutes or less.
  • the water content was measured using a Karl Fischer titer. Specifically, the sample was cut into 5 cm 2 (1 cm ⁇ 5 cm) and stored under each condition. Then, the sample is separated into a laminate of [PET / ITO] and [PDLC / ITO / PET], each is weighed, put into a heated vaporization section, and the gas generated at 150 ° C. is introduced into the titration cell to introduce the water content.
  • the water content of the PDLC layer was determined by subtracting the water content of the [PET / ITO] laminate from the water content of the [PDLC / ITO / PET] laminate.
  • Coulometric titration type moisture measuring device Mitsubishi Chemical Analytech, CA-200 type Heat vaporizer: Mitsubishi Chemical Analytech, VA-200 type Method: Heat vaporization method / 150 ° C ⁇ Measurement of thickness ⁇ The spectroscopic interference method was used for the film thickness measurement. The film thickness was obtained by analyzing a peculiar spectrum depending on the film thickness by injecting white light into the sample. ⁇ Measurement of moisture permeability ⁇ The moisture permeability was measured in accordance with JIS standard K7129.
  • Example 1 (Preparation of base material with transparent electrode layer) By forming an ITO film on one side of a PET film having a thickness of 188 ⁇ m by sputtering, a first transparent electrode layered base material and a second transparent electrode-based base material were obtained.
  • emulsion coating liquid 50 parts by weight of an aqueous aliphatic polyurethane latex (manufactured by Geneca, trade name “Neorez R-967", including 35% by weight of latex particles) is added to 50 parts by weight of a liquid crystal compound (manufactured by Chisso, trade name "JM1000XX”). After that, the mixture was stirred with an Excel autohomogenizer (manufactured by Nippon Seiki Co., Ltd.) while maintaining the stirring portion at 40 ° C. to obtain an emulsion coating liquid. The viscosity of the emulsion coating liquid was 65 mPas.
  • the obtained PDLC film was subjected to heat treatment at 70 ° C. for 3 days.
  • the water content of the PDLC layer was 0.24 wt%.
  • the EVA hot melt resin and the glass base material were placed on both sides of the PDLC film in this order, and heat pressing was performed to obtain [glass base material / adhesive layer / PDLC film / adhesive layer].
  • a PDLC panel having the composition of [/ glass substrate] was obtained.
  • the thickness of the adhesive layer formed from the EVA hot melt resin was 40 ⁇ m, and the moisture permeability was 0.01 g / m 2 / 24h under a 90 ° C. 90% RH environment.
  • a curable epoxy resin composition (manufactured by ThreeBond Co., Ltd., product name "TB2022") is applied to the peripheral edge of the PDLC film of the PDLC panel so that the ends are flush with each other, and the sealing portion is cured.
  • the thickness of the formed sealing portion was 100 ⁇ m, and the moisture permeability was 0.01 g / m 2 / 24h under a 90% RH environment at 40 ° C.
  • An electrode was prepared on the PDLC panel according to a conventional method, and a drive circuit and a battery were connected to obtain a PDLC device 1.
  • the drive circuit is configured to boost the DC voltage of 1.5 V supplied from the battery and apply a DC voltage of 70 V between the transparent electrodes while reversing the polarity at a 1-minute cycle.
  • Example 2 PDLC apparatus 2 was obtained in the same manner as in Example 1 except that the sealing portion was not formed.
  • Example 3 PDLC devices 3A and 3B were obtained in the same manner as in Example 1 except that the glass substrates were not bonded to both sides of the PDLC film.
  • Example 4 PDLC devices 4A and 4B were obtained in the same manner as in Example 1 except that the glass substrates were not bonded to both sides of the PDLC film and the sealing portion was not provided.
  • Example 5 PDLC devices 5A and 5B were used in the same manner as in Example 1 except that a PET film having a thickness of 50 ⁇ m was used instead of the PET film having a thickness of 188 ⁇ m and glass substrates were not bonded to both sides of the PDLC film. Obtained.
  • Example 6 Example 1 and Example 1 except that a PET film having a thickness of 50 ⁇ m was used instead of the PET film having a thickness of 188 ⁇ m, glass substrates were not attached to both sides of the PDLC film, and a sealing portion was not formed. Similarly, PDLC devices 6A and 6B were obtained.
  • Example 7 By subjecting a commercially available PDLC device (manufactured by Becat Co., Ltd., “Kasmy”) to heat treatment at 70 ° C. for 3 days, and then providing a sealing portion for sealing the end portion of the PDLC film in the same manner as in Example 1. , PDLC devices 7A and 7B were obtained. The water content of the PDLC layer after the heat treatment was 0.26 wt%.
  • PDLC devices 8A and 8B were obtained by subjecting a commercially available PDLC device (manufactured by Becat Co., Ltd., "Kasmy”) to heat treatment at 70 ° C. for 3 days.
  • the PDLC apparatus was continuously driven by applying a DC voltage of 70 V while reversing the polarity at a cycle of 1 minute in an environment of 40 ° C. and 90% RH.
  • the initial current value and the current value after driving for 120 hours were measured with a multimeter. The results are shown in FIG.
  • the initial current values of all the PDLC devices of Examples 1 to 8 in which the water content of the PDLC layer was reduced by heat treatment were extremely low, and low power consumption was realized.
  • the PDLC devices of Examples 1 and 2 in which the water content of the PDLC layer is reduced by heat treatment and glass substrates are provided on both sides of the PDLC film are extremely low, which is equal to or less than the initial level even after 120 hours of continuous driving. It shows the current value, and from this, it can be seen that it can be driven with low power consumption for a long time.
  • the initial current value is low and low power consumption is realized, but the PDLC device is passed through the base material with a transparent electrode layer over time. As a result of the PDLC layer absorbing moisture, it is considered that the current value after 120 hours has increased.
  • the sample weight decreased sharply from the time the oven was put into the oven to about 10 hours.
  • the decrease in sample weight continued slowly thereafter, and tended to saturate after about 60 hours.
  • the same tendency is seen for the current value, and the current value decreases sharply within about 10 hours after being put in the oven, and the decrease in the current value tends to saturate after about 60 hours have passed. rice field.
  • the weight gradually increased, and the current value tended to recover accordingly.
  • the current value decreases (as a result, the resistance value increases) due to the decrease in the water content in the PDLC layer due to the heat treatment, and the current value due to the PDLC layer absorbing moisture after the heat treatment. Can be recovered (as a result, the resistance value decreases).
  • Example 2 (Sample 1) PDLC film in the same manner as in Example 1 except that a PET film having a thickness of 50 ⁇ m (humidity absorption under a 90 ° C. and 90% RH environment: 0.2 wt% / 24 h) was used instead of the PET film having a thickness of 188 ⁇ m.
  • the obtained PDLC film was heat-treated at 70 ° C. for 120 hours. Next, an electrode was produced by cutting out into a size of 50 m ⁇ 50 m.
  • Example 2 Same as Example 1 except that a cycloolefin (COP) film having a thickness of 50 ⁇ m (humidity absorption at 40 ° C. and 90% RH environment: 0.2 wt% / 24 h) was used instead of the PET film having a thickness of 188 ⁇ m.
  • COP cycloolefin
  • Example 3 A PDLC film with electrodes was produced in the same manner as in Example 1 except that a glass film having a thickness of 50 ⁇ m was used instead of the PET film having a thickness of 188 ⁇ m.
  • Example 4 The same as in Example 1 except that a PET film with a moisture barrier film (moisture permeability under a 40 ° C. 90% RH environment: 0.0001 g / m 2 / 24h) was used instead of the PET film having a thickness of 188 ⁇ m. , A PDLC film with electrodes was prepared. A silicon nitride film was used as the moisture barrier film.
  • a PET film with a moisture barrier film moisture permeability under a 40 ° C. 90% RH environment: 0.0001 g / m 2 / 24h
  • the PDLC films with electrodes of the above samples 1 to 4 were placed in an oven at 70 ° C. and further subjected to heat treatment.
  • the heat treatment time was 0 hour, 24 hours, and 48 hours
  • the PDLC film with electrodes was connected to the drive circuit and the battery to drive, and the current value at that time was measured with a multimeter.
  • the current value was measured on the PDLC film that had returned to room temperature by being taken out of the oven and left for 5 minutes. The results are shown in FIG.
  • the current value of the PDLC film (Samples 1 and 2) using the transparent substrate having high moisture absorption is as low as about 25 ⁇ A immediately after the start of the heat treatment, and is 10 ⁇ A or less after 24 hours. rice field.
  • the current value of the PDLC film (Samples 3 and 4) using the transparent substrate having low moisture permeability was a value exceeding 200 ⁇ A immediately after the start of the heat treatment, and was a high value exceeding 100 ⁇ A even after 48 hours. From this, it can be seen that the effect of removing water from the PDLC layer by heat treatment can be preferably obtained by using a transparent base material having high moisture absorption (moisture permeability).
  • a PDLC film is prepared using a transparent substrate having high moisture absorption (moisture permeability), and the PDLC film is heat-treated to remove water from the PDLC layer. Therefore, it can be seen that the PDLC layer can be maintained in a state of low water content for a long time by providing low moisture permeability substrates on both sides thereof.
  • the present invention can be suitably used for a light control film or the like.
  • Transparent base material 10
  • Transparent electrode layer 30
  • PDLC layer 100
  • PDLC film 102
  • Low moisture permeability base material 104
  • Sealing part 110
  • PDLC panel 120
  • Frame 130
  • Battery 140 Drive circuit 200

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本発明は、低消費電力での駆動を可能とする高分子分散型液晶装置を提供する。本発明の高分子分散型液晶パネルは、一対の透明基材と、該一対の透明基材の間に設けられた一対の透明電極層と、該一対の透明電極層の間に設けられた高分子分散型液晶層と、を備え、該高分子分散型液晶層の水分含有量が、0.3wt%以下である。

Description

高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法
 本発明は、高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法に関する。
 従来、一対の透明電極層の間に高分子分散型液晶層を有する高分子分散型液晶パネルが知られている(例えば、特許文献1参照)。
 高分子分散型液晶パネルは、一対の透明電極層に対する電圧の印加量に応じて、高分子分散型液晶層における透過光の散乱度合いを変化させることができ、例えば、電圧印加状態と無印加状態とを切り替えることにより、光を散乱させる状態(散乱状態)と光を透過させる状態(非散乱状態または透明状態)とを切り替えることができる。
 このような高分子分散型液晶パネルの用途の一つとして、調光フィルムとしての利用が挙げられる。例えば、高分子分散型液晶パネルと該高分子分散型液晶パネルを駆動させる駆動回路とを備えた高分子分散型液晶装置を既存の窓ガラスに貼りつけることで、ブラインドシャッタとして機能させることができる。
特開2018-116273号公報
 従来の高分子分散型液晶装置は、家庭やオフィス等で容易に使用が可能な商用交流電源により駆動可能とされている。しかしながら、商用交流電源による駆動は、周波数が短いため消費電力が大きく、環境負荷が大きいという問題がある。
 本発明は、低消費電力での駆動を可能とする高分子分散型液晶装置を提供することを目的とする。
 本発明の1つの局面によれば、一対の透明基材と、該一対の透明基材の間に設けられた一対の透明電極層と、該一対の透明電極層の間に設けられた高分子分散型液晶層と、を有する高分子分散型液晶フィルムを含み、該高分子分散型液晶層の水分含有量が、0.3wt%以下である、高分子分散型液晶パネルが提供される。
 1つの実施形態において、上記高分子分散型液晶フィルムの上記一対の透明基材の上記透明電極層が設けられた側と反対側に、透湿度が40℃90%RH環境下で0.01g/m/24h以下である一対の低透湿性基材が配置されている。
 1つの実施形態において、上記低透湿性基材が、ガラス基材である。
 1つの実施形態において、上記ガラス基材の厚みが、10μm以上である。
 1つの実施形態において、上記低透湿性基材が、水分バリア膜付樹脂基材である。
 1つの実施形態において、上記高分子分散型液晶パネルが、上記高分子分散型液晶フィルムの端部を覆うように配置された封止部をさらに含み、該封止部の透湿度が40℃90%RH環境下で0.1g/m/24h以下である。
 1つの実施形態において、上記透明基材と、上記低透湿性基材とが、透湿度が40℃90%RH環境下で0.1g/m/24h以下である低透湿性接着層を介して貼り合わせられている。
 1つの実施形態において、上記透明基材の吸湿度が、40℃90%RH環境下で0.1wt%24h以上である。
 1つの実施形態において、上記透明基材が、ポリエチレンテレフタレート系樹脂を含む。
 1つの実施形態において、上記透明基材が、シクロオレフィン系樹脂を含む。
 本発明の別の局面によれば、上記高分子分散型液晶パネルと、該高分子分散型液晶パネルを構成する一対の透明電極層の間に電圧を印加することにより、高分子分散型液晶層を非散乱状態又は散乱状態とする駆動回路と、該駆動回路に直流電圧を供給する電源と、を備えた高分子分散型液晶装置が提供される。
 本発明の別の局面によれば、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第1の透明電極層付基材の該透明電極層側表面に、水性溶媒中にポリマー粒子と液晶粒子とが分散されたエマルションを塗布して、塗布層を形成すること、該塗布層を乾燥させて、高分子分散型液晶層を形成すること、該高分子分散型液晶層上に、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第2の透明電極層付基材を、該透明電極層側表面が該高分子分散型液晶層と対向するように、積層して、積層体を得ること、および、該積層体を熱処理に供して、高分子分散型液晶層中の水分含有量を0.3wt%以下にすること、を含む、高分子分散型液晶パネルの製造方法が提供される。
 1つの実施形態において、上記熱処理後の積層体の上記第1の透明電極層付基材および上記第2の透明電極層付基材の上記透明基材側表面に、透湿度が40℃90%RH環境下で0.01g/m/24h以下である低透湿性基材を貼り合わせることをさらに含み、該低透湿性基材の貼り合わせが、上記熱処理の終了後から60分以内に行われる。
 本発明によれば、高分子分散型液晶層中の水分含有量を制御することにより、低消費電力での駆動を可能とする高分子分散型液晶装置を得ることができる。
本発明の1つの実施形態によるPDLCパネルの概略断面図である。 本発明の別の実施形態によるPDLCパネルの概略断面図である。 本発明のさらに別の実施形態によるPDLCパネルの概略断面図である。 本発明の1つの実施形態によるPDLCパネルの概略正面図である。 本発明の1つの実施形態によるPDLC装置の概略正面図である。 図5に示すPDLC装置のA-A概略断面図である。 PDLC装置を連続駆動した際の初期電流値と120時間駆動後の電流値を示すグラフである。 PDLCフィルムを加熱した際の重量と電流値の変化を示すグラフである。 透明基材の種類とPDLCパネルの駆動時の電流値との関係を示すグラフである。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、各実施形態は、適宜組み合わせることができる。また、本明細書においては、透明基材とその片側に設けられた透明電極層とをまとめて透明電極層付基材と称する場合がある。
A.高分子分散型液晶パネルの全体構成
 本発明の実施形態による高分子分散型液晶(Polymer Dispersed Liquid Crystal、以下、「PDLC」と称する)パネルは、一対の透明基材と、当該一対の透明基材の間に設けられた一対の透明電極層と、当該一対の透明電極層の間に設けられたPDLC層と、を有するPDLCフィルムを含み、当該PDLC層の水分含有量が、0.3wt%以下である。一定の駆動電圧が供給された場合における消費電力は、抵抗に反比例することから、PDLC層中の水分含有量を低減して抵抗を増大させることにより、低消費電力での駆動が可能なPDLC装置が得られ得る。
 図1は、本発明の1つの実施形態によるPDLCパネルの概略断面図である。PDLCパネル110aは、一対の透明基材10a、10bと、一対の透明基材10a、10bの間に設けられた一対の透明電極層20a、20bと、一対の透明電極層20a、20bの間に設けられたPDLC層30と、を有するPDLCフィルム100を含む。
 図2は、本発明の別の実施形態によるPDLCパネルの概略断面図である。PDLCパネル110bは、PDLCフィルム100の両側(具体的には、一対の透明基材10a、10bの透明電極層20a、20bが設けられた側と反対側)に、一対の低透湿性基材102a、102bが配置されている点において、PDLCパネル110aと異なっている。
 透明基材10a、10bと低透湿性基材102a、102bとは、代表的には、任意の適切な接着層(例えば、接着剤層、粘着剤層)を介して貼り合わせられている。1つの実施形態において、透明基材10aと低透湿性基材102aおよび/または透明基材10bと低透湿性基材102bは、低透湿性接着層(図示せず)を介して貼り合わせられている。
 図3は、本発明のさらに別の実施形態によるPDLCパネルの概略断面図である。PDLCパネル110cは、PDLCフィルム100の端部を覆う封止部104を含む点において、PDLCパネル100bと異なっている。図示例においては、低透湿性基材102a、102bはPDLCフィルム100に対応する形状で一回り大きい寸法を有しており、封止部はPDLCパネル110cの端部が面一となるようにPDLCフィルム100の端部周縁に設けられている。
A-1.PDLCフィルム
 PDLCフィルムは、一対の透明基材と、当該一対の透明基材の間に設けられた一対の透明電極層と、当該一対の透明電極層の間に設けられたPDLC層と、を有する。PDLCパネルは、目的に応じて、その他の層をさらに有し得る。その他の層としては、例えば、屈折率調整層、ハードコート層、保護層、粘着剤層等が挙げられる。
 上記の通り、PDLCフィルムは、一対の透明電極層に対する電圧の印加量に応じて、PDLC層における透過光の散乱度合い(結果として、ヘイズ)を変化させることができ、例えば、電圧印加状態と無印加状態とを切り替えることにより、散乱状態と非散乱状態(透明状態)とを切り替えることができる。
 1つの実施形態において、PDLCフィルムは、散乱状態において、例えば70%~92%、より好ましくは75%~90%のヘイズを有し得る。また、PDLCフィルムは、透明状態において、例えば30%未満、好ましくは15%以下、より好ましくは0.1%~12%のヘイズを有し得る。
A-1-1.透明基材
 透明基材は、その片側に透明電極層が設けられることにより、透明電極層付基材を構成する。透明電極層付基材は、必要に応じて、透明基材の片面または両面にハードコート層を有していてもよく、また、透明基材と透明電極層との間に屈折率調整層を有していてもよい。
 透明電極層付基材の表面抵抗値は、好ましくは1Ω/□~1000Ω/□であり、より好ましくは5Ω/□~300Ω/□であり、さらに好ましくは10Ω/□~200Ω/□である。
 透明電極層付基材のヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~10%である。
 透明電極層付基材の全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。
 透明基材は、任意の適切な材料を用いて形成され得る。好ましくは、熱可塑性樹脂を主成分とする高分子フィルムが、透明基材として用いられ得る。熱可塑性樹脂としては、例えば、ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリエチレンテレフタレート系等のポリエステル系樹脂;ポリカーボネート系樹脂;セルロース系樹脂等が挙げられる。なかでも、シクロオレフィン系樹脂、ポリエチレンテレフタレート系樹脂またはポリカーボネート系樹脂が好ましく用いられ得る。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。
 透明基材の吸湿度は、例えば40℃90%RH環境下で0.1wt%/24h以上であり、好ましくは0.2wt%/24h以上、より好ましくは0.5wt%/24h~5wt%/24hであり得る。透明基材の吸湿度が当該範囲内であることにより、熱処理によるPDLC層の水分含有量の制御を好適に行うことができる。なお、吸湿度は、高温高湿下でどのくらいの水を吸水するかを表す値であり、高温高湿下に置く前後の重量の変化に基づいて求められる。吸湿度は表面積に依存して変化し得るが、透明基材は厚みに対して縦横の長さが十分に大きいため、吸湿量は実質的に厚みに比例して変化する。本明細書において、透明基材の吸湿度は、透明基材の厚みを50μmとした場合の吸湿度である。
 透明基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~100μmである。
A-1-2.透明電極層
 透明電極層は、例えば、インジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO)等の金属酸化物を用いて形成され得る。この場合、金属酸化物は、アモルファス金属酸化物であってもよく、結晶化金属酸化物であってもよい。
 透明電極層はまた、銀ナノワイヤー(AgNW)等の金属ナノワイヤ、カーボンナノチューブ(CNT)、有機導電膜、金属層またはこれらの積層体によって形成され得る。
 透明電極層は、目的に応じて、所望の形状にパターニングされていてもよい。
 透明電極層の厚みは、好ましくは0.01μm~0.10μmであり、より好ましくは0.01μm~0.045μmである。
A-1-3.PDLC層
 PDLC層は、代表的には、樹脂マトリクス中に液晶化合物の液滴が分散した構造を有する。PDLC層においては、透明電極層間に印加される電圧に対応して液晶化合物の配向状態が変化し、これにより、透過光の散乱度合いが変化することを利用して、散乱状態と透明状態とを切り替えることができる。
 1つの実施形態において、PDLC層は、電圧が印加されることにより透明状態となり、電圧が印加されていない状態で散乱状態となる(ノーマルモード)。この実施形態においては、電圧無印加時においては液晶化合物が配向していないために光散乱状態となり、電圧の印加によって液晶化合物が配向して液晶化合物の屈折率と樹脂マトリクスの屈折率とが揃う結果、透明状態となる。
 別の実施形態において、PDLC層は、電圧が印加されることにより散乱状態となり、電圧が印加されていない状態で透明状態となる(リバースモード)。この実施形態においては、透明電極層表面に設けられた配向膜によって電圧無印加時に液晶化合物が配向して透明状態となり、電圧の印加によって液晶化合物の配向が乱れて散乱状態となる。
 PDLC層の水分含有量は、代表的には0.3wt%以下であり、好ましくは0.25wt%以下、より好ましくは0.2wt%以下、さらに好ましくは0.15wt%以下である。PDLC層中の水分含有量が0.3wt%を超えると、電圧印加時の電流値が大きくなって消費電力が増大し得ることから、本発明の効果が得られない場合がある。PDLC層の水分含有量はまた、0.0wt%以上、例えば0.01wt%以上または0.05wt%以上であってよい。
 上記液晶化合物としては、非重合型の任意の適切な液晶化合物が用いられる。例えば、ネマティック型、スメクティック型、コレステリック型液晶化合物が挙げられる。透過モードにおいて優れた透明性を実現する観点からは、ネマティック型液晶化合物を用いることが好ましい。上記ネマティック型液晶化合物としては、ビフェニル系化合物、フェニルベンゾエート系化合物、シクロヘキシルベンゼン系化合物、アゾキシベンゼン系化合物、アゾベンゼン系化合物、アゾメチン系化合物、ターフェニル系化合物、ビフェニルベンゾエート系化合物、シクロヘキシルビフェニル系化合物、フェニルピリジン系化合物、シクロヘキシルピリミジン系化合物、コレステロール系化合物等が挙げられる。
 PDLC層の主面に垂直な方向から見た場合の液晶化合物の液滴の平均粒子径は、例えば2μm~10μmであり、好ましくは3μm~9μmであり得る。なお、当該液晶化合物の液滴の平均粒子径は、体積平均粒子径である。
 PDLC層における液晶化合物の含有割合は、例えば10重量%以上、好ましくは30重量%以上、より好ましくは35重量%以上、さらに好ましくは40重量%以上である。該含有割合は、例えば90重量%以下、好ましくは70重量%以下である。
 上記樹脂マトリクスを形成する樹脂としては、光透過率、上記液晶化合物の屈折率等に応じて適切に選択され得る。例えば、ウレタン系樹脂、ポリビニルアルコール系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂等の水溶性樹脂または水分散性樹脂が挙げられる。
 PDLC層におけるマトリクス樹脂の含有割合は、例えば90重量%以下、好ましくは70重量%以下、より好ましくは65重量%以下、さらに好ましくは60重量%以下である。また、該含有割合は、例えば10重量%以上、好ましくは30重量%以上である。
 PDLC層の厚みは、好ましくは2μm~30μm、より好ましくは3μm~20μm、さらに好ましくは5μm~15μmである。
A-2.低透湿性基材
 低透湿性基材は、水分が透明電極層付基材を透過してPDLC層に侵入することを防止し、結果として、PDLC層の水分含有量を所定の範囲内に維持することに寄与し得る。
 低透湿性基材の透湿度は、例えば40℃90%RH環境下で0.01g/m/24h以下であり、好ましくは0.005g/m/24h以下、より好ましくは0.001g/m/24h以下であり得る。低透湿性基材の透湿度が当該範囲内であることにより、本発明の効果がより好適に得られ得る。
 低透湿性基材は、所望の透湿度を有する限りにおいて、任意の適切な構成であってよい。低透湿性基材は、例えば、単層の基材であってもよく、二層以上の積層体であってもよい。
 単層の低透湿性基材としては、ガラス基材が好ましく例示できる。ガラス基材を構成するガラスとしては、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。
 ガラス基材の厚みは、例えば10μm以上であり、好ましくは50μm~3000μm、より好ましくは50μm~2000μmである。ガラス基材の厚みが当該範囲内であることにより、PDLC層の吸湿をより好適に防止し得るとともに、重量の増加に伴って窓枠等に貼り付ける際の作業性が低下することを回避し得る。
 積層体である低透湿性基材としては、樹脂基材とその片面または両面に設けられた水分バリア膜とを有する水分バリア膜付樹脂基材が挙げられる。
 樹脂基材を形成する熱可塑性樹脂としては、例えば、ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリエチレンテレフタレート系等のポリエステル系樹脂;ポリカーボネート系樹脂;セルロース系樹脂等が挙げられる。
 樹脂基材の厚みは、例えば20μm~200μmであり、好ましくは30μm~100μmである。
 水分バリア膜は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN),酸窒化シリコン(SiON)および酸化アルミニウム(AlO)等の無機材料を化学気相成長(CVD)法または原子層堆積(ALD)法等を用いて樹脂基材上に成膜することにより形成され得る。
 水分バリア膜の厚みは、例えば0.05μm~5μmであり、好ましくは0.1μm~2μmである。
A-3.封止部
 封止部は、PDLCフィルムの端部から水分が侵入することを防止し、結果として、PDLC層の水分含有量を所定の範囲内に維持することに寄与し得る。
 封止部の透湿度は、例えば40℃90%RH環境下で0.1g/m/24h以下であり、好ましくは0.05g/m/24h以下、より好ましくは0.01g/m/24h以下であり得る。封止部の透湿度が当該範囲内であることにより、本発明の効果がより好適に得られ得る。
 封止部の厚みは、例えば1μm~1000μmであり、好ましくは10μm~100μmである。
 封止部の形成材料としては、所望の透湿度が得られる限りにおいて任意の適切な材料を用いることができる。封止部は、例えば、PDLCフィルムの端部周縁を被覆するように、エポキシ樹脂、ポリエステル系樹脂、アクリル系樹脂、アミド系樹脂、シリコーン系樹脂、ウレタン系樹脂等の硬化性樹脂組成物を塗布し、硬化させることによって形成され得る。
A-4.低透湿性接着層
 低透湿性接着層は、水分が透明電極層付基材を透過してPDLC層に侵入することを防止し、結果として、PDLC層の水分含有量を所定の範囲内に維持することに寄与し得る。
 低透湿性接着層の透湿度は、例えば40℃90%RH環境下で0.1g/m/24h以下であり、好ましくは0.05g/m/24h以下、より好ましくは0.01g/m/24h以下であり得る。低透湿性接着層の透湿度が当該範囲内であることにより、本発明の効果がより好適に得られ得る。
 低透湿性接着層の厚みは、例えば1μm~1000μmであり、好ましくは10μm~100μmである。
 低透湿性接着層の形成材料としては、所望の透湿度が得られる限りにおいて、任意の接着剤組成物および粘着剤組成性物を用いることができる。
 1つの実施形態において、低透湿性接着層は、ホットメルト接着剤によって形成され得る。ホットメルト接着剤としては、エチレン酢酸ビニル(EVA)系ホットメルト接着剤、オレフィン系ホットメルト接着剤、アクリル系ホットメルト接着剤等が挙げられる。なかでも、良好な密着性が得られることから、EVA系ホットメルト接着剤が好ましく用いられ得る。
B.PDLCパネルの製造方法
 本発明の実施形態によるPDLCパネルの製造方法は、
 透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第1の透明電極層付基材の該透明電極層側表面に、水性溶媒中にポリマー粒子と液晶粒子とが分散されたエマルションを塗布して、塗布層を形成すること(工程I)、
 該塗布層を乾燥させて、PDLC層を形成すること(工程II)、
 該PDLC層上に、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第2の透明電極層付基材を、該透明電極層側表面が該PDLC層と対向するように積層して、積層体を得ること(工程III)、および
 該積層体を熱処理に供して、PDLC層中の水分含有量を0.3wt%以下にすること(工程IV)、を含み、好ましくは、
 熱処理後の積層体の第1の透明電極層付基材および第2の透明電極層付基材の透明基材側表面に、透湿度が40℃90%RH環境下で0.01g/m/24h以下である低透湿性基材を貼り合わせること(工程V)、をさらに含む。上記製造方法によれば、A項に記載のPDLCパネルが好適に得られ得る。
 従来、水性溶媒中にポリマー粒子と液晶粒子とが分散されたエマルションを塗布および乾燥させて得られるPDLC層は、その上に積層される透明電極層付基材との密着性を確保する観点から、比較的高い水分含有量となるように乾燥させて作製される。これに対し、上記製造方法においては、一旦乾燥され、一対の透明電極層付基材間に挟持されたPDLC層をさらに熱処理に供することにより、水分含有量を所定の範囲に制御する。これにより、A項に記載のPDLCパネルが好適に得られ、結果として、低消費電力での駆動が可能であるPDLC装置が好適に得られ得る。以下、各工程について具体的に説明する。
B-1.工程I
 工程Iにおいては、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第1の透明電極層付基材の該透明電極層側表面に、水性溶媒中にポリマー粒子と液晶粒子とが分散されたエマルション(以下、エマルション塗工液と称する場合がある)を塗布して、塗布層を形成する。
 第1の透明電極層付基材は、例えば、スパッタリングよって、透明電極層を透明基材の片側に形成することによって得られる。スパッタリングによって金属酸化物層を形成後、アニーリングすることにより結晶化することができる。アニーリングは、例えば120℃~300℃、10分~120分熱処理することにより行われる。透明基材、透明電極層については、A項で記載したとおりである。
 エマルション塗工液に含まれるポリマー粒子および液晶粒子はそれぞれ、A項に記載のマトリクス形成用樹脂として例示された水分散性樹脂または水溶性樹脂および液晶化合物の粒子(液滴)であり得る。
 エマルション塗工液は、水性溶媒中にポリマー粒子が分散された樹脂エマルションと水性溶媒中に液晶粒子が分散された液晶エマルションとを混合することによって得られ得る。必要に応じて、混合時に、任意の適切な水性溶媒や添加剤(例えば、分散剤、表面調整剤)をさらに添加してもよい。あるいは、エマルション塗工液は、水性溶媒中に液晶化合物と水分散性樹脂とを添加し、機械的に分散させること等によっても調製され得る。なお、水性溶媒としては、代表的には、水または水と水混和性有機溶媒との混合溶媒が用いられ得る。
 エマルション塗工液の固形分濃度は、例えば50重量%~90重量%、好ましくは60重量%~80重量%であり得る。
 エマルション塗工液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレコート法、ナイフコート法(コンマコート法等)等が挙げられる。また、塗布厚みは、PDLC層に所望される厚みに応じて適切に設定され得る。
B-2.工程II
 工程IIにおいては、上記塗布層を乾燥させて、PDLC層を形成する。具体的には、塗布層を乾燥させて水性溶媒を除去することにより、ポリマー粒子が相互に融着して樹脂マトリクスを形成する結果、当該樹脂マトリクス中に液晶粒子が分散された構成を有するPDLC層が形成される。
 1つの実施形態において、工程IIにおいて形成されるPDLC層の水分含有量は、0.5wt%を超え、好ましくは0.6wt%以上、より好ましくは0.8wt%~2wt%、さらに好ましくは0.8wt%~1wt%であり得る。当該水分含有量が少ないと、工程IIIにおいて積層される第2の透明電極層付基材との密着性が不十分となり得る。
 乾燥温度および乾燥時間は、塗布層の厚み、エマルション塗工液の濃度等に応じて適切に設定され得る。乾燥温度は、例えば20℃~80℃、好ましくは25℃~50℃であり得る。乾燥時間は、例えば1分~120分、好ましくは5分~30分であり得る。
B-3.工程III
 工程IIIにおいては、上記PDLC層上に、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第2の透明電極層付基材を、該透明電極層側表面がPDLC層と対向するように積層して、積層体を得る。得られた積層体は、[透明基材/透明電極層/PDLC層/透明電極層/透明基材]の構成を有する。当該積層は、十分な密着性を得る観点から、ラミネーターを用いて、ラミネート圧をかけながら行われ得る。
 第2の透明電極層付基材については、第1の透明電極層付基材と同様の説明が適用できる。第1の透明電極層付基材と第2の透明電極層付基材とは、互いに同じ構成を有していてもよく、異なる構成を有していてもよい。
B-4.工程IV
 工程IVにおいては、上記積層体を熱処理に供して、PDLC層中の水分含有量を0.3wt%以下にする。好ましくはPDLC層中の水分含有量が0.25wt%以下、より好ましくは0.2wt%以下となるように熱処理を行う。
 熱処理は、例えば、積層体を加熱環境下に置くことで行われ得る。加熱温度および加熱時間は、目的とする水分含有量に応じて適切に設定され得る。加熱温度は、例えば40℃~90℃、好ましくは50℃~80℃、より好ましくは50℃~70℃であり得る。加熱時間は、例えば1時間以上、好ましくは3時間以上、より好ましくは5時間以上、さらに好ましくは10時間以上、さらにより好ましくは30時間以上、さらにより好ましくは50時間以上、さらにより好ましくは70時間以上であり得る。加熱時間の上限は、製造効率の観点から、例えば150時間以下、好ましくは100時間以下であり得る。
B-5.工程V
 工程Vにおいては、上記熱処理後の積層体(PDLCフィルム)の第1の透明電極層付基材および第2の透明電極層付基材の透明基材側表面に、透湿度が40℃90%RH環境下で0.01g/m/24h以下である低透湿性基材を貼り合わせる。
 第1の透明電極層付基材または第2の透明電極層付基材と低透湿性基材との貼り合わせは、任意の適切な接着層を介して行われ得る。接着層は、好ましくは低透湿性接着層である。低透湿性基材および低透湿性接着剤層については、A項で記載した通りである。
 上記接着層がホットメルト接着剤によって形成される場合、上記貼り合わせは、[第1の透明電極層付基材/PDLC層/第2の透明電極層付基材]の構成を有するPDLCフィルムの両側に、ホットメルト接着剤および低透湿性基材(好ましくはガラス基材)をこの順に積層して、[低透湿性基材/ホットメルト接着剤/PDLCフィルム/ホットメルト接着剤/低透湿性基材]の構成を有する積層体を作製し、当該積層体を熱プレスすることによって行われ得る。
 第1の透明電極層付基材または第2の透明電極層付基材と低透湿性基材との貼り合わせは、好ましくは工程IVの熱処理後120分以内、より好ましくは60分以内に行われる。熱処理後、室温で長時間放置すると、透明電極層付基材を介してPDLC層が吸湿し得る。
B-6.その他の工程
 上記製造方法は、必要に応じて、工程I~V以外の追加工程をさらに含み得る。追加工程としては、例えば、封止部を形成する工程、電極を作製する工程等が挙げられる。封止部の形成は、好ましくは工程Vよりも後に行われる。電極の作製は、工程Vよりも前に行われてもよく、後に行われてもよいが、工程Vよりも後に行われることが好ましい。
 電極は、PDLCフィルムの一部を低透湿性基材よりも外方へ延出させ、当該延出部において露出させた透明電極層上に形成され得る。例えば、図4に示すように、PDLCフィルム100の一部を低透湿性基材102a(102b)よりも外方へ延出させ、当該延出部において、一方の透明電極層付基材とPDLC層を除去する。これにより、他方の透明電極層付基材の透明電極層20b(20a)を露出させ、当該露出させた透明電極層上に電極が形成される。
C.PDLC装置
 図5は、本発明の1つの実施形態によるPDLC装置200の概略正面図であり、図6は、図5に示すPDLC装置のA-A概略断面図である。PDLC装置200は、平板状かつ矩形状の装置である。PDLC装置200は、矩形状のPDLCパネル110を有しており、当該PDLCパネル110を駆動することにより、光を透過させる透明状態と光を散乱させる散乱状態とを切り替えることが可能である。
 PDLC装置200は、窓300に取り付けられることにより、窓300に対するブラインドシャッタとして機能し得る。例えば、ノーマルモードである場合のPDLCパネル110は、駆動電圧が印加されていない状態では、散乱状態にあり、全面的に白色化することから、奥行き方向(図中Y軸方向)における一方の側から他方の側を視認することができないが、駆動電圧の印加によって透明状態となり、奥行き方向を視認することが可能となる。
 図5に示すように、PDLC装置200は、PDLCパネル110、額縁120、電池130および駆動回路140を備える。
 PDLCパネル110は、A項に記載のPDLCパネルであり、本実施形態においては、平板状かつ矩形状の部材である。図5および図6に示されるとおり、PDLCパネル110は、外周縁部が額縁120によって挟持されている。
 額縁120は、PDLCパネル110の外周縁部(すなわち、PDLCパネル110の四辺)に沿って、一定の幅及び一定の厚さを有して設けられている、枠状の部材である。額縁120の外形寸法は、窓300が備える窓枠としてのサッシ310の内形寸法とほぼ同一である。これにより、PDLC装置200は、サッシ310の内側に嵌め込むことにより、窓300が備える窓ガラス320と重なった状態で、窓300に対して容易に取り付け可能となっている。 
 電池130は、駆動回路140へ直流電圧を供給する。電池130は、一次電池であってもよく、二次電池であってもよい。二次電池としては、リチウムイオン電池、リチウムポリマー電池等の各種二次電池を用いることができる。
 A項に記載の通り、PDLCパネル110は、PDLC層中の水分含有量が所定の範囲に調整されており、電圧印加時の抵抗が増大し得ることから、直流電圧を印加して駆動した際の消費電力を低減することができる。
 駆動回路140は、PDLCパネル110の駆動電圧を生成する。具体的には、駆動回路140は、電池130が発生させる電圧に基づいて当該電圧よりも高電圧な直流の駆動電圧を生成する。駆動回路140は、生成した駆動電圧を、一対の透明電極層20a、20b間に印加することにより、PDLCパネル110を駆動する。
 駆動回路140は、配線(図示せず)によって、PDLCパネル110の透明電極層20a、20bと電気的に接続している。具体的には、透明電極層20a、20bの一部をそれぞれ露出させて露出部とし、当該露出部に電極を作製して当該電極と駆動回路とを配線を介して接続する。これにより、駆動回路140から透明電極層20a、20bに駆動電圧が印加され得る。
 駆動回路140は、極性が周期的に変化する直流の駆動電圧を生成するように構成され得る。周期的に極性が反転する直流電圧を印加することにより、低消費電力で、かつ安定した駆動が可能となる。極性反転周期は、例えば1秒以上2時間以下、好ましくは1秒以上1時間以下、より好ましくは1秒以上30分以下であり得る。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例には限定されない。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。
≪水分含有量の測定≫
 水分含有量は、カールフィッシャー水分計を用いて測定した。具体的には、試料を5cm(1cm×5cm)に切り出し、各条件で保管した。その後、試料を[PET/ITO]および[PDLC/ITO/PET]の積層体に分離し、それぞれを秤量後、加熱気化部へ入れ、150℃で発生したガスを滴定セル内に導入し水分量を測定した。[PDLC/ITO/PET]の積層体の水分量から[PET/ITO]の積層体の水分量を減算することにより、PDLC層の水分含有量を求めた。
  電量滴定式水分測定装置:三菱ケミカルアナリテック,CA-200型
  加熱気化装置:三菱ケミカルアナリテック,VA-200型
  方法:加熱気化法/150℃
≪厚みの測定≫
 膜厚測定には、分光干渉法を用いた。サンプルに白色光を入射することで、膜厚に依存した特有なスペクトルを解析することで膜厚を得た。
≪透湿度の測定≫
 透湿度測定は、JIS規格 K7129に準拠して、測定した。
[実施例1]
(透明電極層付基材の作製)
 厚み188μmのPETフィルムの片面に、スパッタリングによってITO膜を製膜することにより、第1の透明電極層付基材および第2の透明電極性基材を得た。
(エマルション塗工液の調製)
 液晶化合物(チッソ社製、商品名「JM1000XX」)50重量部に、水性脂肪族ポリウレタンラテックス(ゼネカ社製、商品名「Neorez R-967」、ラテックス粒子35重量%を含む)50重量部を添加した後、攪拌部を40℃に保持しつつ、エクセルオートホモジナイザー(日本精機製)を用いて撹拌して、エマルション塗工液を得た。エマルション塗工液の粘度は、65mPasであった。
(PDLCフィルムの作製)
 第1の透明電極層付基材のITO膜表面にエマルション塗工液を塗布し、25℃で10分乾燥させることにより、厚み24μmのPDLC層を形成した。得られたPDLC層上に、第2の透明電極層付基材をITO膜側がPDLC層と対向するように積層することによって、密着させた。これにより、PDLCフィルムを得た。得られたPDLCフィルムにおいて、PDLC層の水分含有量は、1.0wt%であった。
(熱処理)
 得られたPDLCフィルムを70℃で3日間の熱処理に供した。熱処理後のPDLCフィルムにおいて、PDLC層の水分含有量は、0.24wt%であった。
(低透湿性基材の貼り合わせ)
 上記熱処理後速やかに、PDLCフィルムの両側にEVAホットメルト樹脂およびガラス基材(厚み1000μm)をこの順で配置し、熱プレスを行うことにより、[ガラス基材/接着層/PDLCフィルム/接着層/ガラス基材]の構成を有するPDLCパネルを得た。EVAホットメルト樹脂から形成された接着層の厚みは、40μmであり、透湿度は40℃90%RH環境下で0.01g/m/24hであった。
(封止部の形成)
 硬化性エポキシ樹脂組成物(スリーボンド社製、製品名「TB2022」)を、上記PDLCパネルのPDLCフィルムの端部周縁に、端部が面一となるように塗布し、硬化することによって封止部を形成した。形成された封止部の厚みは、100μmであり、透湿度は40℃90%RH環境下で0.01g/m/24hであった。
(PDLC装置の作製)
 上記PDLCパネルに常法に従って電極を作製し、駆動回路および電池を接続することにより、PDLC装置1を得た。なお、駆動回路は、電池から供給される1.5Vの直流電圧を昇圧して、70Vの直流電圧を1分周期で極性反転しながら透明電極間に印加するように構成されている。
[実施例2]
 封止部を形成しなかったこと以外は実施例1と同様にしてPDLC装置2を得た。
[実施例3]
 PDLCフィルムの両側にガラス基材を貼り合わせなかったこと以外は実施例1と同様にして、PDLC装置3Aおよび3Bを得た。
[実施例4]
 PDLCフィルムの両側にガラス基材を貼り合わせなかったこと、および、封止部を設けなかったこと以外は実施例1と同様にして、PDLC装置4Aおよび4Bを得た。
[実施例5]
 厚み188μmのPETフィルムの代わりに厚み50μmのPETフィルムを用いたこと、および、PDLCフィルムの両側にガラス基材を貼り合わせなかったこと以外は実施例1と同様にして、PDLC装置5Aおよび5Bを得た。
[実施例6]
 厚み188μmのPETフィルムの代わりに厚み50μmのPETフィルムを用いたこと、PDLCフィルムの両側にガラス基材を貼り合わせなかったこと、および、封止部を形成しなかったこと以外は実施例1と同様にして、PDLC装置6Aおよび6Bを得た。
[実施例7]
 市販のPDLC装置(ビーキャット社製、「Kasmy」)を70℃で3日間の熱処理に供し、次いで、実施例1と同様にしてPDLCフィルムの端部を封止する封止部を設けることにより、PDLC装置7Aおよび7Bを得た。なお、熱処理後のPDLC層の水分含有量は、0.26wt%であった。
[実施例8]
 市販のPDLC装置(ビーキャット社製、「Kasmy」)を70℃で3日間の熱処理に供することにより、PDLC装置8Aおよび8Bを得た。
≪駆動信頼性試験≫
 40℃90%RHの環境下で、1分周期で極性反転させながら70Vの直流電圧を印加することにより、上記PDLC装置の連続駆動を行った。初期電流値と120時間駆動後の電流値をマルチメータで測定した。結果を図7に示す。
 図7に示されるとおり、熱処理によってPDLC層の水分含有量を減少させた実施例1~8のPDLC装置はいずれも、初期電流値が極めて低く、低消費電力が実現されていた。特に、熱処理によってPDLC層の水分含有量を減少させ、かつ、PDLCフィルムの両面にガラス基材を設けた実施例1および2のPDLC装置は120時間の連続駆動後も初期と同等以下の極めて低い電流値を示し、このことから、長時間にわたって低消費電力で駆動できることがわかる。一方、PDLCフィルムがガラス基板でサンドイッチされていない実施例3~8のPDLC装置は、初期の電流値は低く、低消費電力が実現されているものの、経時的に透明電極層付基材を介してPDLC層が吸湿した結果、120時間経過後の電流値が増大したものと考えられる。
[試験例1]
 実施例1において作製した熱処理前のPDLCフィルムを100m×100mサイズに切り出して測定サンプル(N=3)とした。当該測定サンプルに関して、70℃のオーブン内に投入後190時間加熱し、その後、室温で放置した際の重量およびDC70V印加時の電流値を経時的に測定した。なお、測定サンプルの初期重量は5.8gであった。また、電流値の測定は、オーブンから取り出して5分間おくことにより室温に戻ったサンプルに対して行った。結果を図8に示す。
 図8に示されるとおり、オーブン投入から約10時間までの間にサンプル重量は急激に減少した。サンプル重量の減少は、その後も緩やかに続き、約60時間を経過した時点で飽和する傾向がみられた。電流値についても同様の傾向がみられ、オーブン投入から約10時間までの間に電流値は急激に減少し、当該電流値の減少は、約60時間を経過した時点で飽和する傾向がみられた。また、オーブンから取り出して室温に戻してからは、重量が徐々に増加し、これに伴って電流値も回復する傾向をみせた。このことから、加熱処理によってPDLC層内の水分が減少することに起因して電流値が減少(結果として、抵抗値が増大)し、加熱処理後にPDLC層が吸湿することに起因して電流値が回復(結果として、抵抗値が減少)し得ることがわかる。
[試験例2]
(試料1)
 厚み188μmのPETフィルムの代わりに厚み50μmのPETフィルム(40℃90%RH環境下での吸湿度:0.2wt%/24h)を用いたこと以外は、実施例1と同様にして、PDLCフィルムを作製した。得られたPDLCフィルムを70℃で120時間熱処理した。次いで、50m×50mサイズに切り出して電極を作製した。
(試料2)
 厚み188μmのPETフィルムの代わりに厚み50μmのシクロオレフィン(COP)系フィルム(40℃90%RH環境下での吸湿度:0.2wt%/24h)を用いたこと以外は、実施例1と同様にして、電極付きPDLCフィルムを作製した。
(試料3)
 厚み188μmのPETフィルムの代わりに厚み50μmのガラスフィルムを用いたこと以外は、実施例1と同様にして、電極付きPDLCフィルムを作製した。
(試料4)
 厚み188μmのPETフィルムの代わりに水分バリア膜付PETフィルム(40℃90%RH環境下での透湿度:0.0001g/m/24h)を用いたこと以外は、実施例1と同様にして、電極付きPDLCフィルムを作製した。なお、水分バリア膜としては、シリコン窒化膜を用いた。
 上記試料1~4の電極付きPDLCフィルムを70℃のオーブンに入れてさらに熱処理に供した。熱処理時間が0時間、24時間、および48時間の時点で、電極付きPDLCフィルムを駆動回路および電池と接続して駆動し、その際の電流値をマルチメータで測定した。なお、電流値の測定は、オーブンから取り出して5分間おくことにより室温に戻ったPDLCフィルムに対して行った。結果を図9に示す。
 図9に示されるとおり、吸湿度の高い透明基材を用いたPDLCフィルム(試料1および2)の電流値は、熱処理開始直後において約25μAという低い値であり、24時間後は10μA以下であった。一方、透湿度の低い透明基材を用いたPDLCフィルム(試料3および4)の電流値は、熱処理開始直後において200μAを超える値であり、48時間後も100μAを超える高い値であった。このことから、吸湿度(透湿度)の高い透明基材を用いることにより、熱処理によるPDLC層からの水分除去効果が好適に得られることがわかる。さらに、実施例1~8の結果を合わせて考慮すると、吸湿度(透湿度)の高い透明基材を用いてPDLCフィルムを作製し、当該PDLCフィルムを熱処理してPDLC層から水分を除去してから、その両面に低透湿性基板を設けることにより、PDLC層を水分含有量が低い状態に長時間維持できることがわかる。
 本発明は、調光フィルム等に好適に用いられ得る。
 10  透明基材
 20  透明電極層
 30  PDLC層
100  PDLCフィルム
102  低透湿性基材
104  封止部
110  PDLCパネル
120  額縁
130  電池
140  駆動回路
200  PDLC装置

Claims (13)

  1.  一対の透明基材と、該一対の透明基材の間に設けられた一対の透明電極層と、該一対の透明電極層の間に設けられた高分子分散型液晶層と、を有する高分子分散型液晶フィルムを含み、
     該高分子分散型液晶層の水分含有量が、0.3wt%以下である、高分子分散型液晶パネル。
  2.  前記高分子分散型液晶フィルムの前記一対の透明基材の前記透明電極層が設けられた側と反対側に、透湿度が40℃90%RH環境下で0.01g/m/24h以下である一対の低透湿性基材が配置されている、請求項1に記載の高分子分散型液晶パネル。
  3.  前記低透湿性基材が、ガラス基材である、請求項2に記載の高分子分散型液晶パネル。
  4.  前記ガラス基材の厚みが、10μm以上である、請求項3に記載の高分子分散型液晶パネル。
  5.  前記低透湿性基材が、水分バリア膜付樹脂基材である、請求項2に記載の高分子分散型液晶パネル。
  6.  前記高分子分散型液晶フィルムの端部を覆うように配置された封止部をさらに含み、
     該封止部の透湿度が40℃90%RH環境下で0.1g/m/24h以下である、請求項2から5のいずれかに記載の高分子分散型液晶パネル。
  7.  前記透明基材と、前記低透湿性基材とが、透湿度が40℃90%RH環境下で0.1gg/m/24h以下である低透湿性接着層を介して貼り合わせられている、請求項2から6のいずれかに記載の高分子分散型液晶パネル。
  8.  前記透明基材の吸湿度が、40℃90%RH環境下で0.1wt%/24h以上である、請求項1から7のいずれかに記載の高分子分散型液晶パネル。
  9.  前記透明基材が、ポリエチレンテレフタレート系樹脂を含む、請求項1から8のいずれかに記載の高分子分散型液晶パネル。
  10.  前記透明基材が、シクロオレフィン系樹脂を含む、請求項1から8のいずれかに記載の高分子分散型液晶パネル。
  11.  請求項1から10のいずれかに記載の高分子分散型液晶パネルと、
     該高分子分散型液晶パネルを構成する一対の透明電極層の間に電圧を印加することにより、高分子分散型液晶層を非散乱状態又は散乱状態とする駆動回路と、
     該駆動回路に直流電圧を供給する電源と、を備えた高分子分散型液晶装置。
  12.  透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第1の透明電極層付基材の該透明電極層側表面に、水性溶媒中にポリマー粒子と液晶粒子とが分散されたエマルションを塗布して、塗布層を形成すること、
     該塗布層を乾燥させて、高分子分散型液晶層を形成すること、
     該高分子分散型液晶層上に、透明基材と該透明基材の一方の側に設けられた透明電極層とを有する第2の透明電極層付基材を、該透明電極層側表面が該高分子分散型液晶層と対向するように、積層して、積層体を得ること、および
     該積層体を熱処理に供して、高分子分散型液晶層中の水分含有量を0.3wt%以下にすること、
     を含む、高分子分散型液晶パネルの製造方法。
  13.  前記熱処理後の積層体の前記第1の透明電極層付基材および前記第2の透明電極層付基材の前記透明基材側表面に、透湿度が40℃90RH環境%下で0.01g/m/24h以下である低透湿性基材を貼り合わせることをさらに含み、
     該低透湿性基材の貼り合わせが、前記熱処理の終了後から60分以内に行われる、請求項12に記載の高分子分散型液晶パネルの製造方法。
     
PCT/JP2021/012465 2020-03-30 2021-03-25 高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法 WO2021200526A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020061003 2020-03-30
JP2020-061003 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200526A1 true WO2021200526A1 (ja) 2021-10-07

Family

ID=77929856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012465 WO2021200526A1 (ja) 2020-03-30 2021-03-25 高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法

Country Status (2)

Country Link
TW (1) TW202144876A (ja)
WO (1) WO2021200526A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224630A (ja) * 1988-07-14 1990-01-26 Asahi Glass Co Ltd 補強液晶光学素子、その製造方法、及び調光装置
JPH07110463A (ja) * 1993-10-12 1995-04-25 Nippon Sheet Glass Co Ltd 液晶調光体及びその製造方法
JPH1082982A (ja) * 1996-09-06 1998-03-31 Sharp Corp 液晶表示素子
JP2006334909A (ja) * 2005-06-01 2006-12-14 Gunze Ltd ガスバリア層付フィルム
JP2010175821A (ja) * 2009-01-29 2010-08-12 Fuji Xerox Co Ltd 表示媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224630A (ja) * 1988-07-14 1990-01-26 Asahi Glass Co Ltd 補強液晶光学素子、その製造方法、及び調光装置
JPH07110463A (ja) * 1993-10-12 1995-04-25 Nippon Sheet Glass Co Ltd 液晶調光体及びその製造方法
JPH1082982A (ja) * 1996-09-06 1998-03-31 Sharp Corp 液晶表示素子
JP2006334909A (ja) * 2005-06-01 2006-12-14 Gunze Ltd ガスバリア層付フィルム
JP2010175821A (ja) * 2009-01-29 2010-08-12 Fuji Xerox Co Ltd 表示媒体

Also Published As

Publication number Publication date
TW202144876A (zh) 2021-12-01

Similar Documents

Publication Publication Date Title
US8259380B2 (en) Electrodes of electrochemical/electrically-driven devices
US8405901B2 (en) Switchable glazings
KR102101874B1 (ko) 저항이 낮은 투명전극 구조를 가지는 전기변색소자
AU2016235455B2 (en) Laminated glazings with improved moisture protection
US20170122028A1 (en) Light control element and building material provided with same
WO2011033313A1 (en) Laminated glazing
JP2712327B2 (ja) 補強液晶光学素子、その製造方法、及び調光装置
CN102057318A (zh) 具有改善的光学性能和电性能的导电膜或电极
US20170235165A1 (en) Optical device
KR20150086892A (ko) 적외선 차단용 스마트 윈도우
AU2008331875C1 (en) SPD films and light valves incorporating overcoatings
WO2021200526A1 (ja) 高分子分散型液晶パネル、高分子分散型液晶装置および高分子分散型液晶パネルの製造方法
JPS62143032A (ja) 調光体
JPH0755541Y2 (ja) 電気光学装置及び調光装置
JP2569741B2 (ja) 調光装置およびその製造方法
JPH04216524A (ja) 保護フィルム付き液晶光学素子及びその製造方法
CN202720418U (zh) 单向透视型液晶膜
WO2019102773A1 (ja) 液晶フィルム、合わせガラス
JPH02208630A (ja) 調光積層体
JPH09304796A (ja) 全固体エレクトロクロミックセル
JP2019191481A (ja) 調光体
CN114568915B (zh) 电子窗帘及电子装置
TWI747646B (zh) 電子窗簾及電子裝置
JPH01276120A (ja) 調光装置及びその製造方法
RU132574U1 (ru) Жидкокристаллическое полимерное оптическое устройство с регулируемой прозрачностью

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP