WO2021197240A1 - 多通道光接收模块 - Google Patents

多通道光接收模块 Download PDF

Info

Publication number
WO2021197240A1
WO2021197240A1 PCT/CN2021/083431 CN2021083431W WO2021197240A1 WO 2021197240 A1 WO2021197240 A1 WO 2021197240A1 CN 2021083431 W CN2021083431 W CN 2021083431W WO 2021197240 A1 WO2021197240 A1 WO 2021197240A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
channel
receiving module
optoelectronic chip
chip array
Prior art date
Application number
PCT/CN2021/083431
Other languages
English (en)
French (fr)
Inventor
陈土泉
刘成刚
史如玉
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to EP21781782.4A priority Critical patent/EP4131801A4/en
Priority to US17/639,084 priority patent/US11754787B2/en
Publication of WO2021197240A1 publication Critical patent/WO2021197240A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/368Mechanical coupling means for mounting fibres to supporting carriers with pitch conversion between input and output plane, e.g. for increasing packing density
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4243Mounting of the optical light guide into a groove

Definitions

  • This application relates to the field of optical communication technology, and in particular to a multi-channel optical receiving module.
  • the optical transmitting module and the optical receiving module are the key components in the optical communication system.
  • the transimpedance amplifier TIA, optoelectronic chip and optical splitting component are the three main core parts of the optical receiving module.
  • the three core components generally use the same channel spacing.
  • the channel spacing between the TIA and the optoelectronic chip is 750 ⁇ m, 500 ⁇ m, and 250 ⁇ m.
  • the smaller the channel interval between the TIA and the optoelectronic chip the smaller the area of the optoelectronic chip.
  • the same size wafer can produce more optoelectronic chips, and its price will be correspondingly greatly reduced.
  • the channel spacing of the optical filter splitting components currently used in batches is generally 750 ⁇ m.
  • the smaller the channel spacing of the splitting components the size of the filter will be correspondingly reduced, and the mounting accuracy will be higher, making it difficult to mass produce.
  • the interval between the TIA and the optoelectronic chip can be reduced, but the channel interval between the filters of the light splitting component is difficult to reduce, and the contradiction between the two becomes an urgent problem to be solved.
  • the purpose of the embodiments of the present application is to provide a multi-channel optical receiving module to solve the technical problem that the large channel spacing of the optical filter in the optical splitting assembly and the small channel spacing of the optoelectronic chip are difficult to match in the prior art.
  • the embodiment of the application provides a multi-channel light receiving module, which includes an incident collimator, a light splitting component, an optical path conversion component, and an optoelectronic chip array arranged in sequence.
  • the optical splitting component After the external optical signal is converted into collimated light by the incident collimator Entering the optical splitting component, the optical splitting component outputs multiple optical signals and is respectively coupled to the optoelectronic chip array through the optical path conversion component to be converted into electrical signals;
  • the optical splitting component includes an internal reflector and a plurality of optical filters The optical filters are respectively arranged at the output end of the internal reflector; the channel spacing of the optoelectronic chips in the optoelectronic chip array is smaller than the channel spacing of the adjacent optical filters;
  • the optical path conversion component includes a plurality of emission A collimator and an optical fiber connected to each of the exit collimators, the multiple optical signals output by the optical splitting assembly are respectively coupled into the corresponding optical fibers after the multiple exit collimators, and the multiple optical signals are The
  • an oblique reflective surface is formed on the end of the optical fiber far away from the exit collimator to couple the optical signal to the optoelectronic chip array.
  • the included angle between the oblique reflecting surface and the direction of the optical path in the optical fiber is 45°.
  • the end face of the end of the optical fiber away from the exit collimator is perpendicular to the direction of the optical path in the optical fiber, and the optical path conversion assembly further includes a first prism, and the first prism is disposed on the optical fiber away from the optical fiber.
  • One end of the exit collimator; the optical signal enters the first prism from the output end of the optical fiber and is coupled to the optoelectronic chip array after being reflected by the first prism.
  • optical signal is reflected by the first prism and then turned 90° to enter the optoelectronic chip array.
  • the optical path conversion assembly includes a first substrate, and a plurality of grooves are formed on the first substrate, and the grooves are respectively arranged corresponding to the optical fibers; and the plurality of optical fibers are respectively arranged in the grooves. Inside, the optical fibers are respectively arranged corresponding to the optoelectronic chip array.
  • the number of the exit collimator is equal to the number of the filter, and the exit collimator is arranged corresponding to the filter.
  • the multi-channel light receiving module further includes a second prism, and the second prism is arranged on a side of the light splitting component away from the filter to make the collimated light output by the incident collimator Reflected to the incident area of the internal reflector.
  • the multi-channel optical receiving module further includes a tube case, a second substrate, an optical port pin, a transimpedance amplifier array, and a flexible circuit board, the second substrate is disposed in the tube case, and the light splitting assembly ,
  • the optical path conversion components are all disposed on the second substrate; one end of the optical port pin extends into the tube case, and the other end is connected to an external optical path; the optoelectronic chip array and the transimpedance amplifier array
  • the transimpedance amplifier array is electrically connected to the optoelectronic chip array; the transimpedance amplifier array is connected to the flexible circuit board and the flexible circuit board outputs electrical signals.
  • the incident collimator is arranged in the optical port pin.
  • the channel spacing between adjacent filters of the optical splitting component is greater than the channel spacing of adjacent optoelectronic chips in the optoelectronic chip array; multiple exit collimators receive the filters of the optical splitting component The outputted multiple optical signals are respectively coupled to the optical fibers corresponding to the exit collimator, and then the multiple optical signals are respectively output from the optical fibers and can be coupled to the corresponding optoelectronic chips.
  • the above-mentioned multi-channel optical receiving module utilizes an optical path conversion assembly composed of multiple exit collimators and optical fibers corresponding to the exit collimators to convert the optical path components from the large channel interval of the filter to the small channel interval of the optoelectronic chip.
  • FIG. 1 is a schematic structural diagram of a multi-channel optical receiving module provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the structure of an optical path conversion component in an embodiment of the application.
  • Fig. 3 is a cross-sectional view of the optical fiber shown in Fig. 2 matching with the first substrate;
  • Fig. 5 is a cross-sectional view of a multi-channel optical receiving module in another embodiment.
  • first and second in the embodiments of the present application are only used for descriptive purposes, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number or order of the indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • a plurality of means at least two, such as two, three, etc., unless otherwise specifically defined.
  • an embodiment of the present application provides a multi-channel light receiving module, including an incident collimator 11, a light splitting component 30, a light path conversion component 40, and an optoelectronic chip array 50 arranged in sequence.
  • the external light signal is incident
  • the collimator 11 converts the collimated light into the light splitting component 30, and the light splitting component 30 outputs multiple optical signals which are respectively coupled to the optoelectronic chip array 50 through the optical path conversion component 40 and converted into electrical signals.
  • the light splitting assembly 30 includes an internal reflector 31 and a plurality of optical filters 32.
  • the optical filters 32 are respectively arranged at the output end of the internal reflector 31; the channel spacing of the optoelectronic chips in the optoelectronic chip array 50 is smaller than that of adjacent filters 32 interval.
  • the optical path conversion assembly 40 includes a plurality of exit collimators 41 and an optical fiber 42 connected to each exit collimator 41, and the multiple optical signals output by the optical splitting assembly 30 pass through the plurality of exit collimators.
  • the straighteners 41 are respectively coupled to the corresponding optical fibers 42, and the multiple optical signals are output from the output ends of the multiple optical fibers 42 and then coupled to the optoelectronic chip array 50.
  • the internal reflector 31 includes two opposite end faces, and the two end faces are arranged in parallel. One of the end faces is close to the incident collimator 11.
  • the internal reflector 31 has an incident area and a reflection area.
  • the incident area of the internal reflector 31 is coated with an antireflection coating of the target wavelength, and the reflection area is coated with a reflective coating.
  • the collimated light output by the incident collimator 11 is incident by the internal reflector 31 The area enters the internal reflector 31.
  • the other end surface is located on the end of the internal reflector 31 far away from the incident collimator 11, and a plurality of filters 32 are arranged on the inner reflector 31, and the filters 32 are arranged in sequence on the end surface.
  • the channel of each filter 32 can transmit optical signals of its target wavelength and reflect optical signals of the remaining wavelengths.
  • the channel spacing between adjacent filters 32 determines the width of the filter 32. The larger the width of the filter 32, the larger the clear aperture, and the lower the accuracy requirement when mounting the filter 32.
  • the channel interval between adjacent filters 32 is set to 750 ⁇ m or 500 ⁇ m.
  • the number of filters 32 is four, and two adjacent filters 32 are adjacent to each other, so that the space on the end surface is fully utilized.
  • the optical splitting component 30 divides the collimated light into multiple optical signals according to wavelength and outputs them.
  • the optical path conversion assembly 40 is provided with a plurality of exit collimators 41, and the exit collimators 41 are respectively arranged corresponding to the filters 32, so that the output from the filter 32 of the light splitting assembly 30 is more
  • the path light signals enter the corresponding exit collimator 41 respectively.
  • the number of the exit collimator 41 is equal to the number of the filter 32, and the exit collimator 41 and the filter 32 are arranged correspondingly. It is understandable that the corresponding arrangement of the exit collimator 41 and the optical filter 32 can ensure that the multiple optical signals at the output end of the optical splitting assembly 30 can be input to the exit collimator 41 and reduce optical signal loss.
  • the exit collimator 41 may be a collimating lens.
  • the optical path conversion assembly 40 is also provided with optical fibers 42 respectively connected to the exit collimator 41, and the optical signals entering the exit collimator 41 are respectively coupled to the corresponding optical fibers 42.
  • the channel interval of the optoelectronic chips in the optoelectronic chip array 50 is set to be smaller than the channel interval of the filter 32 in the light splitting assembly 30. Specifically, the channel interval between adjacent optoelectronic chips is set to 500 ⁇ m or 250 ⁇ m.
  • the optical signal output from the end of the optical fiber 42 away from the exit collimator 41 can be coupled to the photosensitive area of the corresponding optoelectronic chip in the optoelectronic chip array 50, that is, the end of the optical fiber 42 away from the exit collimator 41 is respectively arranged corresponding to the optoelectronic chip .
  • the optical path spacing of the multiple optical signals is reduced after passing through the optical path conversion component 40, so that it can be matched with the optoelectronic chip array 50.
  • the channel spacing between adjacent filters 32 of the optical splitting assembly 30 is greater than the channel spacing between adjacent optoelectronic chips in the optoelectronic chip array 50;
  • the multiple optical signals output by the optical filter 32 and the multiple optical signals are respectively coupled to the optical fibers 42 corresponding to the exit collimator 41, and then the multiple optical signals are output by the optical fibers 42 and can be coupled to the corresponding settings within the optoelectronic chip.
  • the above-mentioned multi-channel light receiving module utilizes the optical path conversion assembly 40 composed of multiple exit collimators 41 and optical fibers 42 corresponding to the exit collimators 41 to convert the optical path components from the large channel interval of the filter 32 to photoelectric
  • the small channel spacing of the chip solves the problem that the large channel spacing of the filter 32 of the light splitting assembly 30 is difficult to match with the small channel spacing of the optoelectronic chip array 50, which reduces the cost of the optoelectronic chip and also reduces the filter 32.
  • the difficulty of assembly is possible to solve the problem that the large channel spacing of the filter 32 of the light splitting assembly 30 is difficult to match with the small channel spacing of the optoelectronic chip array 50, which reduces the cost of the optoelectronic chip and also reduces the filter 32. The difficulty of assembly.
  • the end of the optical fiber 42 away from the exit collimator 41 forms an oblique reflective surface to couple the optical signal to the optoelectronic chip array 50.
  • the optical signal emitted from the optical fiber 42 can be optically coupled with the external optoelectronic chip array 50, so that the parameter information of the optical signal can be obtained more accurately.
  • the angle between the oblique reflecting surface and the direction of the optical path in the optical fiber 42 is 45°. All components in the multi-channel light receiving module are arranged along the direction of the light path, which facilitates the smooth flow of the light path and the installation of the components.
  • the angle of 45° between the oblique reflecting surface and the direction of the optical path enables the optical signal to enter the photosensitive area of the optoelectronic chip array 50 after being reflected by the oblique reflecting surface and the optical path turns 90°, and the parameter information of the optical signal can be obtained more accurately.
  • the end face of the end of the optical fiber 42 away from the exit collimator 41 is perpendicular to the direction of the optical path in the optical fiber 42.
  • the optical path conversion assembly 40 further includes a first prism 43, which is disposed at The optical fiber 42 is far away from the end of the exit collimator 41; the optical signal enters the first prism 43 from the output end of the optical fiber 42, is reflected by the first prism 43, and is coupled to the optoelectronic chip array 50.
  • the signal output end of the optical fiber 42 is a non-oblique reflective surface, but the exit end surface is arranged perpendicular to the direction of the optical path in the optical fiber 42, so the optical signal at the output end of the optical fiber 42 will not be deflected.
  • a first prism 43 is arranged at the signal output end of the optical fiber 42, and the optical signal is deflected by reflecting the optical signal through the first prism 43, thereby coupling the optical path with the external optoelectronic chip array 50, which can obtain the parameter information of the optical signal more accurately .
  • the light signal is reflected by the first prism 43 and turned 90° to enter the optoelectronic chip array 50.
  • the first prism 43 can be pasted on the first substrate 44 and located between the output end of the optical fiber 42 and the optoelectronic chip array 50.
  • the first prism 43 is a right-angle turning prism, and its main cross-section is an isosceles right-angled triangle.
  • the optical path conversion assembly 40 includes a first substrate 44.
  • a plurality of grooves 44a are formed on the first substrate 44.
  • the grooves 44a are respectively arranged corresponding to the optical fibers 42;
  • the optical fibers 42 are respectively arranged corresponding to the optoelectronic chip array 50.
  • a plurality of optical fibers 42 are placed in the corresponding grooves 44a.
  • the optical fibers 42 can respectively correspond to the optoelectronic chips in the optoelectronic chip array 50.
  • the plurality of grooves 44a of the first substrate 44 are used to respectively position the plurality of optical fibers 42 so as to more accurately couple the optical signal at the output end of the optical path conversion component 40 to the photosensitive area of the optoelectronic chip array 50.
  • the center distance between the adjacent grooves 44a is the same as the channel spacing of the optoelectronic chips in the optoelectronic chip array 50, which can ensure that the optical fibers 42 placed in the grooves 44a are accurately matched with the optoelectronic chips, so that the optical signal parameters can be obtained more accurately.
  • the groove 44a may be configured as a V-shaped groove, the V-shaped groove is obtained by etching on the first substrate 44, and the optical fibers 42 are respectively fixed in the V-shaped groove by means of glue.
  • the multi-channel light receiving module further includes a second prism 20, and the second prism 20 is disposed on the side of the light splitting assembly 30 away from the filter 32 so that the collimated light output by the incident collimator 11 is reflected to The incident area of the internal reflector 31.
  • the second prism 20 is disposed between the incident collimator 11 and the internal reflector 31, that is, the second prism 20 is located at the input end of the internal reflector 31, and it can change the incidence of the optical signal on the internal reflector 31.
  • the spot diameter of the collimated light needs to be smaller than the effective clear aperture of the beam splitter 30.
  • the multi-channel optical receiving module further includes a tube case 80, a second substrate, an optical port pin 10, a transimpedance amplifier array 60, and a flexible circuit board 70.
  • the second substrate is disposed in the tube case 80, and the light splitting component 30.
  • the light path conversion components 40 are all arranged on the second substrate.
  • One end of the optical port pin 10 extends into the tube shell 80, and the other end is connected to the external optical path;
  • the optoelectronic chip array 50 and the transimpedance amplifier array 60 are both arranged in the tube shell 80, and the transimpedance amplifier array 60 is electrically connected to the optoelectronic chip array 50 ;
  • the transimpedance amplifier array 60 is connected to the flexible circuit board 70 and the flexible circuit board 70 outputs electrical signals.
  • the components of the multi-channel optical receiving module are all arranged in the tube shell 80, referring to FIG. On the second substrate in the housing 80 to ensure that the transmission path of the multiple optical signals in the module is more stable and reliable.
  • the optical port pin 10 is located at the input end of the multi-channel optical receiving module, and is used for inputting an external optical signal and converting the optical signal into collimated light through the incident collimator 11.
  • the incident collimator 11 is disposed in the optical port pin 10.
  • the flexible circuit board 70 is located at the output end of the multi-channel light receiving module, and is used to provide the light receiving module with a DC power supply and output the light receiving monitoring current and differential voltage signals.
  • the shell 80 connects the input and output parts.
  • the transimpedance amplifier array 60 is used to convert the current signal output by the optoelectronic chip array 50 into a voltage signal, and output the electrical signal through the flexible circuit board 70.
  • the transimpedance amplifier array 60 is disposed between the optoelectronic chip array 50 and the flexible circuit board 70 and is connected to the optoelectronic chip array 50 and the flexible circuit board 70 respectively.
  • the assembly sequence of the multi-channel optical receiving module is to first mount the transimpedance amplifier array 60 and the optoelectronic chip array 50 in the corresponding positions in the tube case 80, and in order to reduce the cost, the transimpedance amplifier with small channel spacing is adopted.
  • Amplifier and optoelectronic chip specifically 500 ⁇ m or 250 ⁇ m.
  • the optical path conversion component 40 and the optical splitting component 30 are first assembled outside the envelope 80 through active coupling.
  • the coupling assembly method is as follows: A beam of collimated light of four wavelengths is incident on the incident end of the optical splitting component 30, Place a large-area optical power meter on the other end. Adjust the angle and position of the incident collimated light and the beam splitter assembly 30 to ensure that the optical signal difference between the four filters 32 of the beam splitter assembly 30 is less than 0.5dB. The difference value is measured by subtracting the incident light intensity from the optical power meter. The light intensity is calculated. Then, move the optical path transfer assembly to the output end of the optical splitting assembly 30, that is, the output end of the filter 32, and move the optical power meter below the optical fiber array.
  • the exit collimator 41 is respectively coupled with the corresponding filter 32, and the criterion for qualified coupling is that the difference between the incident optical power of each channel and the optical power emitted by the optical fiber 42 measured by the optical power meter is less than 1 dB.
  • the light splitting assembly 30 and the optical path conversion assembly 40 are respectively fixed to the second substrate by means of adhesive.
  • the optical fiber array and the optoelectronic chip array 50 are coupled and fixed.
  • the exit collimator 41 has a larger receiving clear aperture, so the coupling assembly tolerance between it and the filter 32 is larger, and it is suitable for mass production.
  • the above-mentioned assembly scheme only needs to use a six-dimensional adjustment frame and a conventional area power meter. Compared with the coupling scheme using a beam quality analyzer, the equipment cost is greatly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例提供了一种多通道光接收模块,包括依次设置的入射准直器、分光组件、光路转换组件以及光电芯片阵列,分光组件包括内反射器和多个滤光片,滤光片分别设置于内反射器的输出端;光电芯片阵列中光电芯片的通道间隔小于相邻滤光片的通道间隔;光路转换组件包括多个出射准直器及与每一出射准直器连接的光纤,分光组件输出的多路光信号经多个出射准直器后分别耦合至对应的光纤内,多路光信号由多个光纤的输出端输出后耦合至光电芯片阵列。该光接收模块使光路元器件从滤光片的大通道间隔转换为光电芯片的小通道间隔,解决了滤光片与光电芯片的通道间隔难以匹配的问题,降低光电芯片成本的同时也降低了滤光片的装配难度。

Description

多通道光接收模块
相关申请的交叉引用
本申请基于申请号为202010244053.3、申请日为2020年03月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通信技术领域,特别涉及一种多通道光接收模块。
背景技术
光发射模块和光接收模块是光通信***中的关键元器件。随着光通信***容量的不断增大,光收发模块的速率也在增加。跨阻放大器TIA、光电芯片与分光组件是光接收模块三个主要的核心部分。为了便于批量封装,三个核心组件一般采用相同的通道间隔。一般TIA与光电芯片的通道间隔有750μm、500μm与250μm等尺寸。TIA与光电芯片的通道间隔越小,光电芯片的面积就相应减少,相同大小的晶元就可以产出更多的光电芯片,其价格也会相应大幅降低。但是目前批量使用的滤光片分光组件的通道间隔一般为750μm,分光组件的通道间隔越小,滤光片的尺寸也会相应减小,其贴装精度就会要求更高,难以批量生产。TIA与光电芯片之间的间隔可以减小,但分光组件的滤光片之间的通道间隔难以减小,两者之间的矛盾成为亟需解决的问题。
发明内容
本申请实施例的目的在于提供一种多通道光接收模块,以解决现有技术中分光组件中滤光片的大通道间隔与光电芯片的小通道间隔难以匹配的技术问题。
为达到上述目的,本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种多通道光接收模块,包括依次设置的入射准直器、分光组件、光路转换组件以及光电芯片阵列,外部光信号经所述入射准直器转换为准直光后进入所述分光组件,所述分光组件输出多路光信号并经所述光路转换组件分别耦合至所述光电芯片阵列内转换为电信号;所述分光组件包括内反射器和多个滤光片,所述滤光片分别设置于所述内反射器的输出端;所述光电芯片阵列中光电芯片的通道间隔小于相邻所述滤光片的通道间隔;所述光路转换组件包括多个出射准直器及与每一所述出射准直器连接的光纤,所述分光组件输出的多路光信号经多个所述出射准直器后分别耦合至对应的所述光纤内,多路光信号由多个所述光纤的输出端输出后耦合至所述光电芯片阵列。
进一步地,所述光纤上远离所述出射准直器的一端形成斜反射面以将光信号耦合至所述光电芯片阵列。
进一步地,所述斜反射面与所述光纤内光路方向的夹角为45°。
进一步地,所述光纤远离所述出射准直器的一端的端面与所述光纤内光路方向垂直,所述光路转换组件还包括第一棱镜,所述第一棱镜设置于所述光纤远离所述出射准直器的一端;光信号由所述光纤的输出端进入所述第一棱镜并经所述第一棱镜反射后耦合至所述光电芯片阵列。
进一步地,光信号经所述第一棱镜反射后转向90°进入所述光电芯片阵列。
进一步地,所述光路转换组件包括第一基板,所述第一基板上形成有多个凹槽,所述凹槽分别与所述光纤对应设置;多个所述光纤分别设置于所述凹槽内使所述光纤分别与所述光电芯片阵列对应设置。
进一步地,所述出射准直器的数量与所述滤光片的数量相等,且所述出射准直器与所述滤光片对应设置。
进一步地,所述多通道光接收模块还包括第二棱镜,所述第二棱镜设置于所述分光组件上远离所述滤光片的一侧以使所述入射准直器输出的准直光反射至所述内反射器的入射区域。
进一步地,所述多通道光接收模块还包括管壳、第二基板、光口插针、跨 阻放大器阵列和柔性电路板,所述第二基板设置于所述管壳内,所述分光组件、所述光路转换组件均设置于所述第二基板上;所述光口插针的一端伸入所述管壳,另一端与外部光路连接;所述光电芯片阵列与所述跨阻放大器阵列均设置于所述管壳内,所述跨阻放大器阵列与所述光电芯片阵列电连接;所述跨阻放大器阵列与所述柔性电路板连接并由所述柔性电路板输出电信号。
进一步地,所述入射准直器设置于所述光口插针内。
本申请实施例提供的多通道光接收模块,分光组件的相邻滤光片的通道间隔大于光电芯片阵列中相邻光电芯片的通道间隔;多个出射准直器接收由分光组件的滤光片输出的多路光信号,并将多路光信号分别耦合至与出射准直器对应设置的光纤内,然后多路光信号由光纤分别输出后能够耦合至对应设置的光电芯片内。上述多通道光接收模块,利用多个出射准直器、与出射准直器对应设置的光纤组成的光路转换组件,使光路元器件从滤光片的大通道间隔转换为光电芯片的小通道间隔,解决了分光组件滤光片的大通道间隔与光电芯片阵列光电芯片的小通道间隔之间难以匹配的问题,降低光电芯片成本的同时也降低了滤光片的装配难度。
附图说明
图1为本申请实施例提供的多通道光接收模块的结构示意图;
图2为本申请一实施例中光路转换组件的结构示意图;
图3为图2中所示光纤与第一基板配合的剖视图;
图4为本另一实施例中光路转换组件的剖视图;
图5为本另一实施例中多通道光接收模块的剖视图。
具体实施方式
下面结合附图及具体实施例对本申请实施例再作进一步详细的说明。在本申请实施例中的“第一”、“第二”等描述,仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量或顺序。由此, 限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请实施例的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
参照图1至图5,本申请实施例提供了一种多通道光接收模块,包括依次设置的入射准直器11、分光组件30、光路转换组件40以及光电芯片阵列50,外部光信号经入射准直器11转换为准直光后进入分光组件30,分光组件30输出多路光信号并经光路转换组件40分别耦合至光电芯片阵列50内转换为电信号。分光组件30包括内反射器31和多个滤光片32,滤光片32分别设置于内反射器31的输出端;光电芯片阵列50中光电芯片的通道间隔小于相邻滤光片32的通道间隔。
本申请实施例中,参照图1,光路转换组件40包括多个出射准直器41及与每一出射准直器41连接的光纤42,分光组件30输出的多路光信号经多个出射准直器41后分别耦合至对应的光纤42内,多路光信号由多个光纤42的输出端输出后耦合至光电芯片阵列50。
可以理解地,参照图1,内反射器31包括相对设置的两个端面,两个端面平行布设。其中一个端面靠近入射准直器11。内反射器31具有入射区域和反射区域,内反射器31的入射区域镀有目标波长的增透膜,反射区域镀反射膜,入射准直器11输出的准直光由内反射器31的入射区域进入内反射器31。其中另一端面位于内反射器31上远离入射准直器11的一端,其上布设多个滤光片32,且滤光片32在端面上依次排列。每个滤光片32的通道能够透射其目标波长的光信号并反射其余波长的光信号。相邻滤光片32的通道间隔大小决定了滤光片32的宽度,滤光片32宽度越大则其通光孔径越大,贴装滤光片32时精度要求就会越低。本申请实施例中,相邻滤光片32的通道间隔设置为750μm或者500μm。具体地,滤光片32的数量为4个,相邻的两块滤光片32邻接,充分利用端面的空间。分光组件30将准直光按波长分为多路光信号输出。
本申请实施例中,参照图2,光路转换组件40设置多个出射准直器41,出射准直器41分别与滤光片32对应设置,使从分光组件30的滤光片32输出的 多路光信号分别进入对应的出射准直器41中。进一步地,出射准直器41的数量与滤光片32的数量相等,且出射准直器41与滤光片32对应设置。可以理解地,出射准直器41与滤光片32的对应设置,能够保证分光组件30输出端的多路光信号能够输入至出射准直器41,减小光信号差损。具体地,出射准直器41可以为准直透镜。光路转换组件40还设置有与出射准直器41分别连接的光纤42,进入出射准直器41中的光信号分别耦合至对应的光纤42内。
本申请实施例中,光电芯片阵列50中光电芯片的通道间隔设置为小于分光组件30中滤光片32的通道间隔。具体地,相邻光电芯片的通道间隔设置为500μm或250μm。光纤42远离出射准直器41的一端输出的光信号能够耦合至光电芯片阵列50中对应的光电芯片的感光区域,也就是说,光纤42远离出射准直器41的一端分别与光电芯片对应设置。多路光信号的光路间距通过光路转换组件40之后减小,使其能够与光电芯片阵列50匹配。
本申请实施例的多通道光接收模块,分光组件30的相邻滤光片32的通道间隔大于光电芯片阵列50中相邻光电芯片的通道间隔;多个出射准直器41接收由分光组件30的滤光片32输出的多路光信号,并将多路光信号分别耦合至与出射准直器41对应设置的光纤42内,然后多路光信号由光纤42分别输出后能够耦合至对应设置的光电芯片内。上述多通道光接收模块,利用多个出射准直器41、与出射准直器41对应设置的光纤42组成的光路转换组件40,使光路元器件从滤光片32的大通道间隔转换为光电芯片的小通道间隔,解决了分光组件30滤光片32的大通道间隔与光电芯片阵列50光电芯片的小通道间隔之间难以匹配的问题,降低光电芯片成本的同时也降低了滤光片32的装配难度。
在一些实施例中,光纤42上远离出射准直器41的一端形成斜反射面以将光信号耦合至光电芯片阵列50。通过将光纤42的信号输出端设置为斜反射面,能够比较方便的使得从光纤42出射的光信号与外部的光电芯片阵列50进行光路耦合,从而能够更加准确的获取光信号的参数信息。具体地,斜反射面与光纤42内光路方向的夹角为45°。多通道光接收模块中各元件都沿着光路的方向设置,便于光路的畅通及各元件的安装。斜反射面与光路方向夹角45°能够 使光信号经斜反射面反射后光路转向90°进入光电芯片阵列50的感光区域,能够更加准确的获取光信号的参数信息。
在一些实施例中,参照图4、图5,光纤42远离出射准直器41的一端的端面与光纤42内光路方向垂直,光路转换组件40还包括第一棱镜43,第一棱镜43设置于光纤42远离出射准直器41的一端;光信号由光纤42的输出端进入第一棱镜43并经第一棱镜43反射后耦合至光电芯片阵列50。也就是说,光纤42的信号输出端为非斜反射面,而是出射端面与光纤42内的光路方向垂直设置,因而光纤42输出端的光信号不会发生转向。在光纤42的信号输出端设置第一棱镜43,通过第一棱镜43对光信号进行反射使光信号转向,从而与外部的光电芯片阵列50进行光路耦合,能够更加准确的获取光信号的参数信息。具体地,光信号经第一棱镜43反射后转向90°进入光电芯片阵列50。第一棱镜43可以粘贴在第一基板44上,且位于光纤42输出端与光电芯片阵列50之间。第一棱镜43为直角转折棱镜,其主截面为等腰直角三角形。
在一些实施例中,参照图3,光路转换组件40包括第一基板44,第一基板44上形成有多个凹槽44a,凹槽44a分别与光纤42对应设置;多个光纤42分别设置于凹槽44a内使光纤42分别与光电芯片阵列50对应设置。也就是说,多个光纤42放置于相对应的凹槽44a内,此时,光纤42能够分别与光电芯片阵列50中光电芯片的相对应。可以理解地,第一基板44的多个凹槽44a用于分别对多个光纤42进行定位,以更加精确地使光路转换组件40的输出端的光信号耦合至光电芯片阵列50的感光区域。相邻凹槽44a之间的中心距离与光电芯片阵列50中光电芯片的通道间距相同,能够保证放置于凹槽44a内的光纤42分别与光电芯片精确匹配,便于更加准确地获取光信号的参数信息。具体地,凹槽44a可以设置为V型槽,V型槽通过在第一基板44上刻蚀得到,光纤42分别通过胶粘的方式固定在V型槽内。
在一些实施例中,多通道光接收模块还包括第二棱镜20,第二棱镜20设置于分光组件30上远离滤光片32的一侧以使入射准直器11输出的准直光反射至内反射器31的入射区域。可以理解地,第二棱镜20设置于入射准直器11与 内反射器31之间,即第二棱镜20位于内反射器31的输入端,它能够改变光信号在内反射器31上的入射方向,以便于光信号的入射方向与内反射器31的入射通道相匹配,减小光信号差损。其中,准直光的光斑直径需要小于分光组件30的有效通光孔径。
在一些实施例中,多通道光接收模块还包括管壳80、第二基板、光口插针10、跨阻放大器阵列60和柔性电路板70,第二基板设置于管壳80内,分光组件30、光路转换组件40均设置于第二基板上。光口插针10的一端伸入管壳80,另一端与外部光路连接;光电芯片阵列50与跨阻放大器阵列60均设置于管壳80内,跨阻放大器阵列60与光电芯片阵列50电连接;跨阻放大器阵列60与柔性电路板70连接并由柔性电路板70输出电信号。
可以理解地,本申请实施例中,多通道光接收模块的各元器件均设置于管壳80内,参照图1,按照光路结构依次布置,且分光组件30、光路转换组件40均设置于管壳80内的第二基板上,以保证模块中多路光信号的传输路径更加稳定可靠。光口插针10位于多通道光接收模块的输入端,用于输入外部的光信号,且使光信号经过入射准直器11转换为准直光。本申请实施例中,入射准直器11设置于光口插针10内。柔性电路板70位于多通道光接收模块的输出端,用于给光接收模块提供直流电源并输出光接收监控电流及差分电压信号。管壳80将输入输出部分连接起来。跨阻放大器阵列60用于将光电芯片阵列50输出的电流信号转换为电压信号,并通过柔性电路板70输出电信号。跨阻放大器阵列60设置于光电芯片阵列50与柔性电路板70之间且分别与光电芯片阵列50、柔性电路板70连接。
本申请实施例中,多通道光接收模块的装配顺序为,先在管壳80内相应的位置贴装跨阻放大器阵列60和光电芯片阵列50,且为了减少成本,采用小通道间隔的跨阻放大器和光电芯片,具体为500μm或250μm。
光路转换组件40与分光组件30先在管壳80外通过有源耦合的方式装配好,耦合装配方式如下:在分光组件30的入射端面入射一束四波长的准直光,在分光组件30的另一端放置一个大面积的光功率计。调整入射的准直光与分光 组件30的角度及位置,保证分光组件30的4个滤光片32出射的光信号差损小于0.5dB,差损值通过将入射光强度减去光功率计测试的光强度计算出来。然后,将光路转组件移到分光组件30的输出端,即滤光片32的输出端,将光功率计移到光纤阵列的下方。出射准直器41分别与对应的滤光片32进行耦合,耦合合格的判断标准为每通道入射光功率与光功率计测到的光纤42出射的光功率差值小于1dB。耦合完成后将分光组件30和光路转换组件40分别通过胶粘的方式固定到第二基板上。最后将光纤阵列与光电芯片阵列50耦合固定。
上述有源装配方案具有以下优势:出射准直器41具有较大的接收通光孔径,因此其与滤光片32的耦合装配容差较大,适合批量生产。另外,上述装配方案只需要用到六维调整架与常规的面功率计,相对于利用光束质量分析仪的耦合方案,设备成本大幅降低。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不同限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。并且,本申请实施例各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请实施例要求的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种多通道光接收模块,包括依次设置的入射准直器、分光组件、光路转换组件以及光电芯片阵列,外部光信号经所述入射准直器转换为准直光后进入所述分光组件,所述分光组件输出多路光信号并经所述光路转换组件分别耦合至所述光电芯片阵列内转换为电信号;所述分光组件包括内反射器和多个滤光片,所述滤光片分别设置于所述内反射器的输出端;所述光电芯片阵列中光电芯片的通道间隔小于相邻所述滤光片的通道间隔;
    所述光路转换组件包括多个出射准直器及与每一所述出射准直器连接的光纤,所述分光组件输出的多路光信号经多个所述出射准直器后分别耦合至对应的所述光纤内,多路光信号由多个所述光纤的输出端输出后耦合至所述光电芯片阵列。
  2. 根据权利要求1所述的多通道光接收模块,所述光纤上远离所述出射准直器的一端形成斜反射面以将光信号耦合至所述光电芯片阵列。
  3. 根据权利要求2所述的多通道光接收模块,所述斜反射面与所述光纤内光路方向的夹角为45°。
  4. 根据权利要求1所述的多通道光接收模块,所述光纤远离所述出射准直器的一端的端面与所述光纤内光路方向垂直,所述光路转换组件还包括第一棱镜,所述第一棱镜设置于所述光纤远离所述出射准直器的一端;
    光信号由所述光纤的输出端进入所述第一棱镜并经所述第一棱镜反射后耦合至所述光电芯片阵列。
  5. 根据权利要求4所述的多通道光接收模块,光信号经所述第一棱镜反射后转向90°进入所述光电芯片阵列。
  6. 根据权利要求1~5任意一项所述的多通道光接收模块,所述光路转换组件包括第一基板,所述第一基板上形成有多个凹槽,所述凹槽分别与 所述光纤对应设置;多个所述光纤分别设置于所述凹槽内使所述光纤分别与所述光电芯片阵列对应设置。
  7. 根据权利要求1~5任意一项所述的多通道光接收模块,所述出射准直器的数量与所述滤光片的数量相等,且所述出射准直器与所述滤光片对应设置。
  8. 根据权利要求1~5任意一项所述的多通道光接收模块,所述多通道光接收模块还包括第二棱镜,所述第二棱镜设置于所述分光组件上远离所述滤光片的一侧以使所述入射准直器输出的准直光反射至所述内反射器的入射区域。
  9. 根据权利要求1~5任意一项所述的多通道光接收模块,所述多通道光接收模块还包括管壳、第二基板、光口插针、跨阻放大器阵列和柔性电路板,所述第二基板设置于所述管壳内,所述分光组件、所述光路转换组件均设置于所述第二基板上;
    所述光口插针的一端伸入所述管壳,另一端与外部光路连接;所述光电芯片阵列与所述跨阻放大器阵列均设置于所述管壳内,所述跨阻放大器阵列与所述光电芯片阵列电连接;所述跨阻放大器阵列与所述柔性电路板连接并由所述柔性电路板输出电信号。
  10. 根据权利要求9所述的多通道光接收模块,所述入射准直器设置于所述光口插针内。
PCT/CN2021/083431 2020-03-31 2021-03-26 多通道光接收模块 WO2021197240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21781782.4A EP4131801A4 (en) 2020-03-31 2021-03-26 MULTI-CHANNEL LIGHT CAPTURE MODULE
US17/639,084 US11754787B2 (en) 2020-03-31 2021-03-26 Multi-channel light-receiving module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010244053.3A CN111404609B (zh) 2020-03-31 2020-03-31 多通道光接收模块
CN202010244053.3 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197240A1 true WO2021197240A1 (zh) 2021-10-07

Family

ID=71413661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083431 WO2021197240A1 (zh) 2020-03-31 2021-03-26 多通道光接收模块

Country Status (4)

Country Link
US (1) US11754787B2 (zh)
EP (1) EP4131801A4 (zh)
CN (1) CN111404609B (zh)
WO (1) WO2021197240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967003A (zh) * 2022-05-27 2022-08-30 武汉光迅科技股份有限公司 一种800g光器件及其生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111404609B (zh) 2020-03-31 2021-05-11 武汉光迅科技股份有限公司 多通道光接收模块
CN113114358B (zh) * 2021-03-24 2022-03-29 中航光电科技股份有限公司 大偏移光接触件、光互连组件及远距离空间光通信***
CN113467016A (zh) * 2021-06-29 2021-10-01 武汉光迅科技股份有限公司 一种光接收组件及光模块
CN114070414B (zh) * 2021-11-09 2023-04-11 中国电子科技集团公司第二十九研究所 一种多通道射频光接收装置
CN114812634A (zh) * 2022-04-19 2022-07-29 南京邮电大学 一种光纤光栅波长解调仪
CN115347907B (zh) * 2022-10-17 2023-03-24 上海三菲半导体有限公司 一种多通道射频接收组件
CN116032372A (zh) * 2023-03-31 2023-04-28 成都光创联科技有限公司 光接收器件及光模块、光接收器件的过载控制方法
CN116931200B (zh) * 2023-09-19 2023-12-12 武汉钧恒科技有限公司 一种400g dr4光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099016A1 (en) * 2001-11-27 2003-05-29 International Business Machines Corporation Fiber optic transceiver array for implementing testing
CN203191577U (zh) * 2013-03-18 2013-09-11 深圳市中兴新地通信器材有限公司 光路转接装置及光纤阵列装置
CN103823281A (zh) * 2014-02-27 2014-05-28 珠海保税区光联通讯技术有限公司 多通道光接收组件
CN105334580A (zh) * 2015-11-26 2016-02-17 武汉光迅科技股份有限公司 一种波分复用光接收组件
CN208999614U (zh) * 2018-12-05 2019-06-18 众瑞速联(武汉)科技有限公司 一种通用波分复用光接收组件
CN111404609A (zh) * 2020-03-31 2020-07-10 武汉光迅科技股份有限公司 多通道光接收模块

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377739B1 (en) * 1999-03-09 2002-04-23 Creo Srl Two dimensional fiber optic output array
US6684010B1 (en) * 2000-03-03 2004-01-27 Digital Optics Corp. Wavelength compensated optical wavelength division coupler and associated methods
US6870976B2 (en) * 2001-03-13 2005-03-22 Opnext, Inc. Filter based multiplexer/demultiplexer component
FR2830334B1 (fr) * 2001-10-01 2004-07-16 Highwave Optical Tech Composant optique a fonction de separation spectrale
US6587621B2 (en) * 2001-11-30 2003-07-01 The Boeing Company Reconfigurable optical cable splice
JP4066665B2 (ja) * 2002-02-08 2008-03-26 住友電気工業株式会社 パラレル送受信モジュール
JP4036008B2 (ja) * 2002-02-13 2008-01-23 住友電気工業株式会社 パラレル送受信モジュール
US7038191B2 (en) * 2003-03-13 2006-05-02 The Boeing Company Remote sensing apparatus and method
US7756382B2 (en) * 2005-06-30 2010-07-13 Corning Cable Systems Llc Optical fiber splitter module and fiber optic array therefor
JP2007212565A (ja) * 2006-02-07 2007-08-23 Fuji Xerox Co Ltd 多チャンネル光通信モジュール
US9350454B2 (en) * 2011-01-21 2016-05-24 Finisar Corporation Multi-laser transmitter optical subassembly
CN102393248B (zh) * 2011-10-26 2013-09-11 中国科学院空间科学与应用研究中心 一种时间分辨极弱光多光谱成像***及方法
US9485046B1 (en) * 2013-04-12 2016-11-01 Alliance Fiber Optic Products, Inc. Optical spot array pitch compressor
US9618708B2 (en) * 2013-11-13 2017-04-11 Finisar Corporation Multiplexer/demultiplexer based on diffractive optical elements
US9551833B1 (en) * 2014-04-18 2017-01-24 Alliance Fiber Optic Products, Inc. Ultra compact free-space multiplexer/demultiplexer
CN104020527A (zh) * 2014-06-11 2014-09-03 武汉电信器件有限公司 一种多通道集成光波分复用/解复用的组件结构
KR20160145956A (ko) * 2015-06-11 2016-12-21 주식회사 지피 파장 다중화 광수신 모듈
US11460641B2 (en) * 2015-12-18 2022-10-04 Alliance Fiber Optic Products, Inc. Free-space optical collimator
CN106646784A (zh) * 2017-02-20 2017-05-10 众瑞速联(武汉)科技有限公司 一种基于阵列波导光栅的波分复用光发射器件
US10120149B1 (en) * 2017-07-13 2018-11-06 Hewlett Packard Enterprise Development Lp Wavelength division multiplexing (WDM) optical modules
US10663665B2 (en) * 2017-11-30 2020-05-26 Corning Research & Development Corporation Ribbon handling device for fusion splicer and methods of fusion splicing
CN108168843A (zh) * 2017-12-22 2018-06-15 长飞光纤光缆股份有限公司 一种快速测量不同传输波长下光纤链路衰减特性的装置及方法
US10182275B1 (en) * 2017-12-22 2019-01-15 Alliance Fiber Optic Products, Inc. Passive optical subassembly with a signal pitch router
DE102018107029A1 (de) * 2018-03-23 2019-09-26 Huber+Suhner Cube Optics Ag Multiplexer- bzw. Demultiplexermodul
CN208953742U (zh) * 2018-09-06 2019-06-07 大连优迅科技有限公司 适用于小型化封装多路光高速传输接收装置
CN109683257A (zh) * 2018-12-27 2019-04-26 武汉联特科技有限公司 一种多通道平行光路压缩组件及其接收光器件
US10514507B1 (en) * 2019-06-04 2019-12-24 Auxora (Shenzhen) Inc. Ultra-small-pitch optical filter assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099016A1 (en) * 2001-11-27 2003-05-29 International Business Machines Corporation Fiber optic transceiver array for implementing testing
CN203191577U (zh) * 2013-03-18 2013-09-11 深圳市中兴新地通信器材有限公司 光路转接装置及光纤阵列装置
CN103823281A (zh) * 2014-02-27 2014-05-28 珠海保税区光联通讯技术有限公司 多通道光接收组件
CN105334580A (zh) * 2015-11-26 2016-02-17 武汉光迅科技股份有限公司 一种波分复用光接收组件
CN208999614U (zh) * 2018-12-05 2019-06-18 众瑞速联(武汉)科技有限公司 一种通用波分复用光接收组件
CN111404609A (zh) * 2020-03-31 2020-07-10 武汉光迅科技股份有限公司 多通道光接收模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131801A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967003A (zh) * 2022-05-27 2022-08-30 武汉光迅科技股份有限公司 一种800g光器件及其生产方法
CN114967003B (zh) * 2022-05-27 2024-02-23 武汉光迅科技股份有限公司 一种适用于800g光器件的无形变的封装***

Also Published As

Publication number Publication date
US11754787B2 (en) 2023-09-12
EP4131801A4 (en) 2024-04-17
CN111404609B (zh) 2021-05-11
EP4131801A1 (en) 2023-02-08
US20220299708A1 (en) 2022-09-22
CN111404609A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021197240A1 (zh) 多通道光接收模块
WO2017118271A1 (zh) 一种用于双链路传输的并行收发光模块和制作方法
US20130330080A1 (en) Wavelength Division Multiplexing/De-Multiplexing Optical Assembly for High Speed Parallel Long Distance Transmission
US9002161B2 (en) Optical module
KR20160145956A (ko) 파장 다중화 광수신 모듈
US20140301703A1 (en) Optical module
CN109613654B (zh) 多通道并行波分复用/解复用分光组件及其光器件
WO2015039394A1 (zh) 光波导芯片和pd阵列透镜耦合装置
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
CN207601363U (zh) 一种波分复用光学组件
CN215575818U (zh) 一种耦合装置及光模块
JPH10173207A (ja) 光送受信モジュール
CN111290087A (zh) 分光探测器
CN112558238A (zh) 一种光模块
CN109884753B (zh) 一种光接收组件以及组装方法
US9541720B1 (en) Optical element with light-splitting function
CN211123390U (zh) 一种硅光波分复用光引擎
CN218547061U (zh) 一种光模块
CN108333688B (zh) 用于自由空间光传播的波分复用解复用光器件
US5742716A (en) Light trigger thyristor
CN112887030B (zh) 一种用于旋转关节的光信号传输***及方法
CN211905786U (zh) 一种新型多通道并行接收光器件
CN212933046U (zh) 一种多通道波分复用光传输器件、接收器件和收发设备
US20210063653A1 (en) Optical module and optical communication network system having the same
WO2020000775A1 (zh) 一种紧凑型Tap PD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021781782

Country of ref document: EP

Effective date: 20221031