WO2021197118A1 - 一种显示组件、显示装置和指纹识别方法 - Google Patents

一种显示组件、显示装置和指纹识别方法 Download PDF

Info

Publication number
WO2021197118A1
WO2021197118A1 PCT/CN2021/082248 CN2021082248W WO2021197118A1 WO 2021197118 A1 WO2021197118 A1 WO 2021197118A1 CN 2021082248 W CN2021082248 W CN 2021082248W WO 2021197118 A1 WO2021197118 A1 WO 2021197118A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
signal line
active layer
gate
metal layer
Prior art date
Application number
PCT/CN2021/082248
Other languages
English (en)
French (fr)
Inventor
赵阳
吴欣凯
刘俊彦
郭小军
贺虎
尹晓宽
侯霄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/915,909 priority Critical patent/US20230144932A1/en
Priority to JP2022559713A priority patent/JP7407967B2/ja
Priority to EP21780145.5A priority patent/EP4116877A4/en
Publication of WO2021197118A1 publication Critical patent/WO2021197118A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • H10K39/34Organic image sensors integrated with organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • This application relates to the field of display technology, and more specifically to a display assembly, a display device, and a fingerprint identification method.
  • under-screen optical fingerprint recognition has become the mainstream method of identity recognition for current electronic devices.
  • the optical fingerprint recognition module is placed on the back side of the display panel substrate, and the light emitted by the fingerprint recognition light source shines on the finger, and penetrates the display after being reflected by the finger.
  • the panel is then received by the photosensitive element, which converts the light signal into an electrical signal, and then realizes fingerprint recognition.
  • the light used for fingerprint identification has a large light loss after penetrating the entire display panel in the thickness direction of the display panel, which seriously affects the amount of light received by the photosensitive element, thereby affecting the accuracy of fingerprint identification.
  • the present application provides a display assembly, a display device, and a fingerprint identification method to solve the technical problem of low fingerprint identification accuracy in the prior art.
  • an embodiment of the present application provides a display assembly, including: a display panel and a fingerprint recognition module located on the light-emitting surface of the display panel.
  • the fingerprint recognition module includes a plurality of fingerprint recognition units, and each fingerprint recognition unit has at least Including a phototransistor and a switching transistor;
  • the phototransistor includes a first active layer, a first gate, a first source, and a first drain.
  • the material of the first active layer includes an organic semiconductor material. In the direction perpendicular to the display component, the first drain and the The first gate is partially overlapped to form a first capacitor;
  • the switching transistor includes a second active layer, a second gate, a second source, and a second drain;
  • the fingerprint recognition module includes a first metal layer, wherein the first source, the first drain, the second source and the second drain are all located on the first metal layer, and the first drain and the second source are connected.
  • the fingerprint identification module is arranged on the light-emitting surface of the display panel.
  • the light reflected by the finger does not need to penetrate the structural film of the display panel to be received by the fingerprint identification module, which shortens the fingerprint
  • the transmission distance of the reflected light can increase the collimation of the reflected light of the fingerprint, avoid the light loss caused by the reflected light of the fingerprint penetrating the structural film layer of the display panel, and ensure the accuracy of fingerprint recognition.
  • a phototransistor is used as a photosensitive element in the fingerprint recognition module.
  • the structure of the phototransistor and the switching transistor are similar.
  • the phototransistor and the switching transistor can share at least part of the process during production, which can reduce the complexity of the display component structure and process. It is also beneficial to reduce the overall thickness of the display assembly.
  • the fingerprint recognition module further includes a second metal layer and a first insulating layer, the second metal layer is located on the side of the first metal layer close to the display panel, and the first insulating layer is located between the first metal layer and the second metal layer.
  • the first gate is located in the second metal layer.
  • the phototransistor is a transistor with a bottom gate structure. The first gate will not block the light directed to the first active layer, so as to ensure that the reflected light of the fingerprint can be directed to the first active layer during the fingerprint recognition stage, so that the phototransistor will The optical signal is converted into an electrical signal.
  • first active layer and the second active layer are both located on the side of the first insulating layer away from the second metal layer, and both are in contact with the first insulating layer. It is equivalent to that the first active layer and the second active layer are located at the same film height, which can help reduce the film thickness of the fingerprint identification module, and thereby help reduce the overall thickness of the display assembly.
  • the first source and the first gate are not connected, and the fingerprint identification module includes a fingerprint control signal line, a fingerprint data signal line, a first voltage signal line, and a second voltage signal line; the second gate Electrically connected to the fingerprint control signal line, the second drain electrode is electrically connected to the fingerprint data signal line, the first gate electrode is electrically connected to the first voltage signal line, and the first source electrode is electrically connected to the second voltage signal line.
  • the voltage provided by the first voltage signal line to the first gate is greater than the voltage provided by the second voltage signal line to the first source.
  • the first source electrode and the first gate electrode are connected through a via hole on the first insulating layer.
  • the first gate and the first source of the phototransistor are turned on, and the phototransistor always works in the off state.
  • the leakage current of the phototransistor is very small.
  • the leakage current of the phototransistor is very small.
  • the internally generated carriers make the leakage current of the phototransistor significantly larger, which can ensure that the phototransistor has high light sensitivity.
  • the fingerprint identification module includes a fingerprint control signal line, a fingerprint data signal line and a third voltage signal line;
  • the second gate is electrically connected with the fingerprint control signal line
  • the second drain is electrically connected with the fingerprint data signal line
  • the first gate and the first source are both electrically connected with the third voltage signal line.
  • the second gate is located on the second metal layer.
  • the switching transistor and the phototransistor are both bottom gate structures, and the switching transistor and the phototransistor have the same structure and can be fabricated in the same process, which improves the accuracy of fingerprint recognition and further reduces the complexity of the display assembly structure and process.
  • the second active layer and the first active layer are made of the same layer and the same material. Simultaneously forming the pattern of the first active layer and the pattern of the second active layer in the same process can further simplify the process and reduce the complexity of the process.
  • the fingerprint recognition module further includes a plurality of shading parts, the shading part is located on the side of the second active layer away from the display panel, and the orthographic projection of the shading part on the plane where the second active layer is located covers the second active layer.
  • the light-shielding part can block the light to prevent the light from irradiating the surface of the second active layer and increase the carriers inside the second active layer. Large, avoid affecting the switching state of the switching transistor, thereby ensuring the accuracy and performance reliability of fingerprint identification detection.
  • the fingerprint recognition module further includes a third metal layer, the third metal layer is located on a side of the first metal layer away from the display panel, and the second gate is located on the third metal layer.
  • the second gate located on the side of the second active layer away from the display panel can be reused as a light shielding part.
  • the display panel includes a plurality of pixel areas and non-pixel areas located between adjacent pixel areas, wherein the orthographic projection of the fingerprint recognition unit on the display panel is located in the non-pixel area.
  • the fingerprint identification unit will not block the light from the pixel area, thereby ensuring that the setting of the fingerprint identification module does not affect the display effect.
  • an embodiment of the present application provides a display device, which is characterized by including the display component provided in any embodiment of the present application.
  • an embodiment of the present application provides a fingerprint identification method, which is suitable for the display assembly provided in any embodiment of the present application.
  • the fingerprint identification method includes:
  • control switch transistor and the phototransistor are both turned off, and the leakage current of the phototransistor causes the first capacitor to charge and accumulate the initial charge;
  • the phototransistor After the phototransistor receives the light reflected by the finger, the leakage current increases, and the first capacitor is charged to accumulate the fingerprint charge;
  • the control switch transistor is turned on, the first capacitor is discharged, and the fingerprint charge is read through the second drain.
  • the display assembly, display device, and fingerprint identification method provided by the present application have the following beneficial effects: the fingerprint identification module is arranged on the light-emitting surface of the display panel, and the light reflected by the finger does not need to penetrate the display panel during fingerprint identification.
  • the structural film can be received by the fingerprint recognition module, which shortens the transmission distance of the reflected light of the fingerprint, increases the collimation of the reflected light of the fingerprint, and avoids the light loss caused by the reflected light of the fingerprint penetrating the structural film of the display panel. Improve the accuracy of fingerprint recognition.
  • a phototransistor is used as a photosensitive element in the fingerprint recognition module.
  • the structure of the phototransistor and the switching transistor are similar.
  • the phototransistor and the switching transistor can share at least part of the process during production, which can reduce the complexity of the display component structure and process. It is also beneficial to reduce the overall thickness of the display assembly.
  • FIG. 1 is a schematic diagram of a partial film structure of a display module provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the light path of the light used by the display assembly for fingerprint detection in the fingerprint recognition stage in the embodiment of FIG. 1;
  • FIG. 3 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a circuit structure of a fingerprint identification unit in a display assembly provided by an embodiment of the application;
  • FIG. 6 is a timing diagram of the fingerprint identification circuit in the embodiment of FIG. 5;
  • FIG. 7 is a schematic diagram of a circuit structure of a fingerprint identification module in a display assembly provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a circuit structure of the fingerprint identification unit in the embodiment of FIG. 9;
  • FIG. 11 is a schematic partial top view of a display assembly provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a display device provided by an embodiment of the application.
  • the photosensitive element is integrated into the array substrate of the display panel.
  • the photosensitive element is integrated into the array substrate of the display panel.
  • the photosensitive element is integrated between two adjacent light-emitting devices, so that the light reflected by the finger only needs to penetrate the packaging structure of the display panel and part of the film layer of the light-emitting device layer.
  • the embodiments of the present application provide a display assembly suitable for any type of display device in the prior art, such as LCD (Liquid Crystal Display, liquid crystal display device), OLED (Organic Electroluminesence Display, organic light emitting display device) , Micro LED (micro Light Emitting Diode) display device, etc.
  • LCD Liquid Crystal Display, liquid crystal display device
  • OLED Organic Electroluminesence Display, organic light emitting display device
  • Micro LED micro Light Emitting Diode
  • FIG. 1 is a schematic diagram of a partial film structure of a display module provided by an embodiment of the application.
  • 2 is a schematic diagram of the light path of the light used for fingerprint detection by the display assembly in the embodiment of FIG. 1 in the fingerprint identification stage.
  • the display assembly includes: a display panel 10 and a fingerprint recognition module 20 located on the light-emitting surface of the display panel 10.
  • the light-emitting surface of the display panel 10 is the surface on the side of the display screen of the display panel.
  • the display panel 10 is any one of an organic light-emitting display panel, a liquid crystal display panel, and a micro-diode display panel. In FIG. 1, only the display panel is an organic light-emitting display panel for illustration.
  • the display panel 10 includes a base substrate 101, an array substrate 102, With the display layer 103 and the packaging structure 104, the light-emitting surface of the display panel 10 is the outer surface of the packaging structure 104 on the side away from the display layer 103.
  • the base substrate 101 may be a flexible substrate or a rigid substrate; the array substrate 102 includes a plurality of pixel circuits, and the figure only illustrates the driving transistor 1021 in the pixel circuit; the display layer 103 includes a pixel definition layer 1031 and a plurality of light emitting devices 1032 In the figure, only one light-emitting device 1032 is shown.
  • the light-emitting device 1032 includes an anode 31, a light-emitting layer 32, and a cathode 33 stacked in sequence.
  • the anode 31 is electrically connected to the driving transistor 1021 through a via hole;
  • the package isolates water and oxygen to ensure the service life of the light-emitting device.
  • the packaging structure 104 may be a rigid packaging, including a packaging cover plate and a frame sealant; the packaging structure 104 may be a thin film packaging, including at least one organic packaging layer and at least one inorganic packaging layer stacked alternately.
  • the fingerprint recognition module 20 includes a plurality of fingerprint recognition units, and each fingerprint recognition unit includes at least one phototransistor 1 and a switch transistor 2 connected to the phototransistor 1. Only one fingerprint recognition unit is shown in the figure. Among them, the phototransistor 1 is used as a photosensitive element, which can convert the light signal into an electrical signal after receiving the reflected light of the fingerprint in the fingerprint recognition stage.
  • the switch transistor 2 is electrically connected to the phototransistor 1. The switch transistor 2 is used to read the fingerprint electrical signal and output the electrical signal to the fingerprint data processing module, and finally the electrical signal is processed in the fingerprint data processing module to generate fingerprint information.
  • the phototransistor 1 includes a first active layer 11, a first gate 12, a first source 13 and a first drain 14.
  • the first active layer 11 is made of an organic semiconductor material, and is positioned perpendicular to the display component. , The first drain electrode 14 and the first gate electrode 12 partially overlap to form a first capacitor Cs.
  • the organic semiconductor materials are pentacene (Pentacene), 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene), copper phthalocyanine (CuPc), (di-naphtho[2 ,3-b:2′,3′-f]thieno[3,2-b]thiophene) (DNTT), 2,6-bis(methoxyphenyl)anthracene (BOPAnt), poly3-hexylthiophene (P3HT), poly(bis(3-dodecyl-2-thienyl)-2,2'-bisthiophene-5,5'-substituted)(Poly(bis(3-dodecyl-2-thienyl)- 2,2'-dithiophene-5,5'-diyl], PQT-12), PDVT-10(poly[2,5-bis(alkyl)pyrrol
  • the first active layer 11 When the first active layer 11 is fabricated, a solution method may be used to coat and form a film, and then an etching process may be used to form the pattern of the first active layer 11.
  • the first active layer 11 may also be formed by vapor deposition and film formation.
  • Organic semiconductor materials have strong absorption of light.
  • the first active layer 11 is used as a light sensing layer. When light is irradiated on the surface of the first active layer 11, each photon absorbed in the first active layer 11 corresponds to The generation of an electron-hole pair, due to the effect of the electric field, the electron-hole separation produces charge carriers, and the charge carriers migrate inside the material to form a current, thereby realizing the conversion of optical signals into electrical signals.
  • Different organic semiconductor materials have different sensitive wavelength bands to light.
  • the light sensitive wavelength band of organic semiconductor materials can be matched with the fingerprint recognition light source to realize fingerprint recognition.
  • the first active layer uses visible light-sensitive organic semiconductor materials, such as green light-sensitive organic semiconductor materials, and the corresponding fingerprint recognition light source emits green light; the first active layer uses infrared light-sensitive organic semiconductor materials, then The corresponding fingerprint recognition light source emits infrared light.
  • the working state of the phototransistor 1 includes a dark state and a bright state.
  • the dark state of the phototransistor 1 is the state when no light is irradiated on the surface of the first active layer 11. In the dark state, a bias voltage is applied to the phototransistor 1, There will be a small leakage current in the first active layer 11; correspondingly, the bright state of the phototransistor 1 is the state when light is irradiated on the surface of the first active layer 11. In the bright state, the first active layer 11 There is a small leakage current and photocurrent generated by light excitation.
  • the switching transistor 2 includes a second active layer 21, a second gate 22, a second source 23, and a second drain 24; wherein the material of the second active layer 21 can be a silicon semiconductor material, such as a single crystal Silicon semiconductor, polysilicon semiconductor; or organic semiconductor material.
  • the material of the second active layer 21 includes Pentacene, TIPS-pentacene, CuPc, DNTT, BOPAnt, P3HT, PQT-12, PDVT-10, DPP-DTT, 2,7-dioctyl [1] benzothieno [3,2-B]benzothiophene (C8-BTBT), [4,4,9,9-tetra(4-hexylphenyl)-s-benzobisindeno[1,2-b:5, 6-b']Dithiophene]-benzothiadiazole copolymer (C16-IDTBT), 2,8-difluoro-5,11-bis(triethylsilylethynyl)bisthiophenanthracene (diF-TES- ADT), 2,9-diphenyl-dinaphthyl[2,3-b:2',3'-f]thieno[3,2-b]thiophene (Dph-DNTT
  • the fingerprint recognition module 20 includes a first metal layer 41, wherein the first source 13, the first drain 14, the second source 23, and the second drain 24 are all located on the first metal layer 41, and the first drain 14 and the second source 23 are connected. That is, the first source 13, the first drain 14, the second source 23, and the second drain 24 can be manufactured in the same etching process during the manufacturing process of the display device, which can reduce the complexity of the process.
  • the first drain 14 and the second source 23 are integrally formed to form a common electrode, one end of the common electrode serves as the first drain 14 and the other end serves as the second source 23.
  • the fingerprint recognition module 20 also includes a passivation layer 91 on the first active layer 11 and the second active layer 21, wherein the passivation layer 91 can simultaneously serve as insulation and flatness.
  • the role of chemistry also includes a protective cover 92 on the fingerprint identification module 20.
  • the protective cover 92 may be a rigid cover or a flexible cover.
  • an anti-impact layer (not shown in the figure) is further provided between the passivation layer 91 and the protective cover 92. The anti-impact layer can buffer the external force of the display assembly to protect the display assembly. The components are protected from external force damage.
  • the display assembly provided by the embodiment of the application can realize the fingerprint recognition function, wherein the fingerprint recognition light source required to realize the fingerprint recognition function may be an external light source, such as a visible light source or an infrared light source, and the external light source is set on the display panel during application.
  • the side facing away from the fingerprint identification module when the display panel is an organic light-emitting display panel, the light-emitting devices in the display panel can be reused as a fingerprint identification light source.
  • FIG. 2 only uses the light emitting device 1032 to be multiplexed as a fingerprint identification light source for illustration. As shown in FIG.
  • the light emitted by the light emitting device 1032 is emitted from the light emitting surface of the display panel 10, penetrates the fingerprint identification module 20 and the protective cover 92 in turn, and then irradiates the user's finger 88.
  • the light reflected by the finger penetrates the protective cover 92 again and then irradiates the first active layer of the phototransistor 1.
  • the first active layer absorbs the light reflected by the fingerprint and converts the optical signal into an electrical signal.
  • fingerprint identification includes: a startup phase, an initial signal reading phase, a fingerprint signal accumulation phase, and a fingerprint signal Reading phase.
  • the control switch transistor 2 and the phototransistor 1 are both turned off, the phototransistor 1 is in the dark state, and the phototransistor 1 has a small leakage current, so that the first drain 14 and the first gate 12 of the phototransistor 1
  • the first capacitor Cs formed in between is charged to accumulate a small amount of initial charge, which is recorded as the initial charge Q0.
  • the switching transistor 2 In the initial signal reading phase, when the switching transistor 2 is controlled to be turned on, the second source 23 and the second drain 24 of the switching transistor 2 are turned on, and since the first drain 14 and the second source 23 are connected, then The first capacitor Cs is discharged, the initial charge Q0 is read through the second drain 24, and then the switching transistor 2 is controlled to turn off.
  • the phototransistor 1 receives the light reflected by the finger, the phototransistor 1 is in a bright state, and the first active layer 11 generates charge carriers inside after being irradiated with light, and the current in the phototransistor 1 increases Therefore, the amount of charge accumulated by charging the first capacitor Cs increases, which is recorded as the fingerprint charge amount Q1.
  • the ridge of the fingerprint of the finger When the finger is pressed on the surface of the display component, the ridge of the fingerprint of the finger directly contacts the surface of the display component, and the light emitted by the fingerprint recognition light source is reflected on the interface where the fingerprint ridge and the display component are in contact and is received by the phototransistor 1; the fingerprint valley of the finger There is air between the surface of the display component and the light emitted by the fingerprint recognition light source penetrates the interface between the display component and the air, is reflected by the fingerprint valley, and then penetrates the interface between the display component and the air before being received by the phototransistor 1. Therefore, the light reflected by the ridge is stronger than the light reflected by the valley.
  • the photocurrent generated in the phototransistor that receives the light reflected by the ridge is greater than that in the phototransistor that receives the light reflected by the valley.
  • the generated photocurrent, and then the charge accumulated on the first capacitor in the phototransistor that receives the reflected light from the ridge, is more. Therefore, the fingerprint valley and the fingerprint ridge can be distinguished according to the magnitude of the fingerprint charge in the subsequent arithmetic processing.
  • the switch transistor 2 In the fingerprint signal reading phase, the switch transistor 2 is controlled to be turned on, and the second source 23 and the second drain 24 of the switch transistor 2 are turned on again, the first capacitor Cs is discharged, and the fingerprint is read through the second drain 24 The amount of charge Q1.
  • the fingerprint data processing module collects more The fingerprint detection signal sent back by the fingerprint identification unit is processed and the fingerprint information is finally generated.
  • the fingerprint recognition module is arranged on the light-emitting surface of the display panel.
  • the light reflected by the finger does not need to penetrate the structural film of the display panel to be received by the fingerprint recognition module. , It shortens the transmission distance of the fingerprint reflected light, can increase the collimation of the fingerprint reflected light, avoid the fingerprint reflected light penetrating the structural film layer of the display panel and cause light loss, and improve the accuracy of fingerprint recognition.
  • a phototransistor is used as a photosensitive element in the fingerprint recognition module.
  • the structure of the phototransistor and the switching transistor are similar. The phototransistor and the switching transistor can share at least part of the process during production, which can reduce the complexity of the display component structure and process. It is also beneficial to reduce the overall thickness of the display assembly.
  • the photosensitive effect (ie, photosensitive effect) of the photosensitive element is related to the order of magnitude that the photocurrent can be divided by the dark current, that is, the greater the difference between the photocurrent and the dark current, the better the photosensitive effect, and the more sensitive the fingerprint recognition.
  • the dark current is the leakage current of the photosensitive element in the dark state (without light irradiation)
  • the photocurrent is the current generated by the light-excited light of the photosensitive element in the bright state (with light irradiation).
  • a photodiode is used as a photosensitive element, and its leakage current in the dark state is nA.
  • the fingerprint recognition module is placed on the display surface of the display panel, and the fingerprint recognition module blocks the display panel from light, which affects the display effect. .
  • a phototransistor and a switching transistor are used to form a fingerprint identification unit.
  • the leakage current of the phototransistor in the dark state is pA level, that is, the leakage current of the phototransistor in the dark state is much smaller than that of the photodiode in the dark state.
  • the phototransistor of the present application can achieve a relatively small size, but also has a good photosensitive effect.
  • the phototransistor is placed on the light-emitting surface of the display panel, which will not block the light from the display panel. .
  • the fingerprint recognition module 20 further includes a second metal layer 42 and a first insulating layer 51.
  • the second metal layer 42 is located on the side of the first metal layer 41 close to the display panel 10.
  • the first insulating layer 51 is located between the first metal layer 41 and the second metal layer 42; wherein, the first gate 12 is located on the second metal layer 42. That is, the first gate 12 of the phototransistor 1 is located on the side of the first active layer 11 close to the display panel 10.
  • the active layer 11 is blocked by light, so as to ensure that the reflected light of the fingerprint can be directed to the first active layer 11 during the fingerprint identification stage, so that the phototransistor 1 can convert the optical signal into an electrical signal.
  • the second gate 22 of the switching transistor 2 is also located on the second metal layer 42.
  • the second gate 22 of the switching transistor 2 can be made of the same layer and the same material as the first gate 12 of the phototransistor 1.
  • the switching transistor and the phototransistor are both bottom gate structures, and the switching transistor and the phototransistor have the same structure. , Can be manufactured in the same process, while improving the accuracy of fingerprint recognition, further reducing the complexity of the display assembly structure and process.
  • the first active layer 11 and the second active layer 21 are both located on the side of the first insulating layer 51 away from the second metal layer 42, and both are in contact with the first insulating layer 51.
  • a first insulating layer 51 is formed on the first gate electrode 12; then a first metal layer 41 is formed on the first insulating layer 51; A metal layer 41 is patterned to form the first source 13, the first drain 14, the second source 23, and the second drain 24; then the first active layer 11 and the second active layer 21 are fabricated.
  • Both ends of the source layer 11 are connected to the first source 13 and the first drain 14 respectively, and both ends of the second active layer 21 are connected to the second source 23 and the second drain 24 respectively. Both the first active layer 11 and the second active layer 21 are in contact with the first insulating layer 51, which is equivalent to that the first active layer 11 and the second active layer 21 are located at the same film height, which can help reduce fingerprints.
  • the thickness of the film layer of the identification module is further beneficial to reduce the overall thickness of the display assembly.
  • the first active layer and the second active layer are made of the same layer and the same material, that is, the pattern of the first active layer and the pattern of the second active layer are simultaneously formed in the same process. It can further simplify the process and reduce the complexity of the process.
  • the second active layer and the first active layer are made of the same layer and the same material, the second active layer and the first active layer have the same light-sensitive wavelength band.
  • FIG. 3 is another partial film of the display component provided by the embodiment of the present application.
  • Schematic diagram of layer structure The first source 13, the first drain 14, the second source 23, and the second drain 24 are all located on the first metal layer 41; the first gate 12 and the second gate 22 are all located on the second metal layer 42, The first active layer 11 and the second active layer 21 are made of the same layer and the same material, and both are in contact with the first insulating layer 51.
  • the fingerprint recognition module 20 also includes a plurality of shading parts 61 (only one is shown in the figure).
  • One shading part 61 corresponds to one switching transistor 2.
  • the shading part 61 is located on the side of the second active layer 21 away from the display panel 10.
  • the orthographic projection of 61 on the plane where the second active layer 21 is located covers the second active layer 21.
  • the light-shielding part 61 can be made of metal materials or organic light-absorbing materials.
  • the corresponding material can be selected to make the light-shielding part according to the photosensitive wavelength band of the organic semiconductor material used in the first active layer to ensure that the light-shielding part Block the light in this band.
  • the light shielding part can block the light to prevent the light from irradiating the surface of the second active layer to increase the carriers inside the second active layer, thereby avoiding affecting the switching state of the switching transistor and ensuring the accuracy and detection of fingerprint recognition. Performance reliability.
  • the switching transistor 1 it is necessary to control the switching transistor 1 to turn on a voltage signal to the light shielding portion 61.
  • the light shielding portion 61 can be used as the gate of the switching transistor 1, so that the switching transistor 1 forms a transistor with a double gate structure. , Can improve the turn-on speed of the switching transistor 1.
  • a passivation layer 91 is provided on the first active layer 11 and the second active layer 21, and a planarization layer 93 is further provided on the light shielding portion 61.
  • the display assembly further includes a protective cover 92.
  • an impact-resistant layer (not shown) is further provided on the protective cover 92 and the planarization layer 93.
  • the first active layer and the second active layer are both in contact with the first insulating layer, and the second active layer and the first active layer are made of different materials, then the second active layer
  • the light-sensitive wavelength band of the source layer is different from the light-sensitive wavelength band of the first active layer.
  • the first active layer is sensitive to the light emitted by the fingerprint recognition light source. Even if the fingerprint reflected light is irradiated on the surface of the second active layer, it will not be absorbed by the second active layer and affect the switching transistor. switch status.
  • This embodiment does not require a light-shielding portion to be provided on the second active layer to shield light, and can save the process of manufacturing the light-shielding portion.
  • FIG. 4 is a schematic diagram of another partial film structure of the display assembly provided by an embodiment of the application.
  • the first source 13, the first drain 14, the second source 23, and the second drain 24 are all located on the first metal layer 41;
  • the first gate 12 is located on the second metal layer 42, and
  • the second active layers 21 are all located on the side of the first insulating layer 51 away from the second metal layer 42 and are in contact with the first insulating layer 51.
  • the fingerprint recognition module 20 further includes a third metal layer 43, the third metal layer 43 is located on the side of the first metal layer 41 away from the display panel 10, and the second gate 22 is located on the third metal layer 43.
  • An insulating layer 94 is provided on the first active layer 11 and the second active layer 21, and a planarization layer 95 is provided on the second gate 22.
  • a protective cover 92 is also provided on the planarization layer 95.
  • the first active layer and the second active layer can be made of the same layer and the same material to ensure that the switching transistor and the phototransistor share part of the process and reduce the complexity of the manufacturing process.
  • the second grid located on the side of the second active layer away from the display panel can be reused as a light shielding part.
  • the second grid can block light to prevent fingerprint reflection light from irradiating the second
  • the surface of the active layer increases the carriers inside the second active layer, which affects the switching state of the switching transistor, thereby ensuring the accuracy and performance reliability of fingerprint recognition.
  • the first source electrode 13 and the first gate electrode 12 are connected through a via 511 on the first insulating layer 51. That is, the first gate 12 and the first source 13 of the phototransistor 1 are turned on, and the phototransistor 1 always works in the off state.
  • the phototransistor 1 does not illuminate the surface of the first active layer 11, the leakage current of the phototransistor 1 is very small.
  • the leakage current of the phototransistor 1 is very small.
  • the carriers generated inside an active layer make the leakage current of the phototransistor 1 significantly increase, which can ensure that the phototransistor has a higher light sensitivity.
  • FIG. 5 is a schematic diagram of a circuit structure of the fingerprint identification unit in the display assembly provided by an embodiment of the application
  • FIG. 6 is a timing diagram of the fingerprint identification circuit in the embodiment of FIG. 5.
  • the fingerprint identification module includes a fingerprint control signal line 71, a fingerprint data signal line 72, and a third voltage signal line 73; the second gate of the switch transistor 2 is electrically connected to the fingerprint control signal line 71, and the switch transistor 2
  • the second drain electrode is electrically connected to the fingerprint data signal line 72, and both the first gate electrode 12 and the first source electrode 13 are electrically connected to the third voltage signal line 73.
  • the switching transistors and phototransistors in the embodiments of the present application may be p-type transistors or n-type transistors, as long as the types of the switching transistors and phototransistors are the same.
  • FIG. 7 is a schematic diagram of a circuit structure of the fingerprint recognition module in the display assembly provided by an embodiment of the application.
  • the multiple fingerprint identification units 201 are arranged in an array.
  • Each fingerprint identification unit 201 includes at least one phototransistor 1 and one switching transistor 2.
  • the second gates of the multiple switching transistors 2 in the same row are connected to a fingerprint control signal.
  • the line 71 is electrically connected, the second drains of the plurality of switch transistors 2 in the same column are electrically connected to a fingerprint data signal line 72, and the first gates 12 and first sources of the plurality of phototransistors 1 in the same row are electrically connected 13 are electrically connected to a third voltage signal line 73.
  • the realization of the fingerprint recognition function requires a voltage signal to be applied to the gate, source, drain of the switching transistor, and one of the electrodes of the photodiode, respectively.
  • the drive circuit is more complicated.
  • the realization of the fingerprint recognition function only needs to pass voltage signals to the second gate, the second drain of the switching transistor and the first gate (or the first source) of the phototransistor, and the driving circuit is relatively simple.
  • the fingerprint identification module only three signal lines of fingerprint control signal line, fingerprint data signal line and third voltage signal line are required, which can also simplify the wiring method in the fingerprint identification module and save the space occupied by the wiring.
  • the fingerprint identification circuit and the circuit that drives the display of the display panel are independent of each other, and the fingerprint identification detection does not need to be time-division multiplexed with the scanning time of a frame of picture, which reduces the complexity of the circuit structure.
  • the fingerprint control signal line 71 provides the fingerprint control signal Vscan to the switch transistor 2.
  • the fingerprint control signal line 71 provides an inactive level signal to control the switch transistor 2 to turn off, and the fingerprint data signal line 72 A reading potential is applied to the second drain of the switching transistor 2, the first source and the first gate of the phototransistor 1 are turned on, and the bias voltage Vbias is applied through the third voltage signal line 73, and the phototransistor 1 In the off state, that is, the phototransistor 1 is in the dark state.
  • the first capacitor Cs Due to the leakage current of the phototransistor 1, the first capacitor Cs begins to charge and accumulate a small amount of charge, which is recorded as the initial charge Q0; in the initial signal reading phase, the fingerprint
  • the control signal line 71 provides an effective level signal to the switching transistor 2 to control the switching transistor 2 to turn on, the first capacitor Cs is discharged, the fingerprint data signal line 72 reads the initial charge Q0 through the second drain 24, and then the fingerprint control signal line 71 provides The non-effective level signal controls the switching transistor 2 to turn off; in the fingerprint signal accumulation phase, after the phototransistor 1 receives the light reflected by the finger, the phototransistor 1 changes from a dark state to a bright state (illumination), and the leakage current of the phototransistor 1 increases , So that the amount of charge accumulated by charging the first capacitor Cs increases, which is recorded as the fingerprint charge amount Q1; in the fingerprint signal reading phase, the fingerprint control signal line 71 provides an effective level signal to control the switching transistor 2 to turn on, and the
  • the fingerprint data signal line 72 and the second drain are located on the same metal layer, that is, the fingerprint data signal line 72 is located on the first metal layer (refer to the film position shown in FIG. 1), then the fingerprint data signal line 72 may be the same as the first metal layer.
  • the two drains are fabricated in the same process, and the fingerprint data signal line 72 and the second drain do not need to be connected through the via holes in the insulating layer, which simplifies the process.
  • the fingerprint control signal line 71 and the second gate are located on the same metal layer.
  • the fingerprint control signal line 71 and the second gate are manufactured in the same process.
  • the fingerprint control signal line 71 and the second gate do not need to pass through the insulating layer.
  • the via holes are connected to simplify the process.
  • the third voltage signal line 73 may be located on the same metal layer as the first gate electrode, or may be located on the same metal layer as the first source electrode.
  • the fingerprint data signal line and the second drain are located on the first metal layer
  • the fingerprint control signal line and the second gate are located on the third metal layer
  • the third voltage signal line and the first gate are located on the second metal layer.
  • the fingerprint data signal line, the fingerprint control signal line and the third voltage signal line are respectively wired in three different metal layers, which can reduce the wiring density in each metal layer.
  • FIG. 8 is a schematic diagram of another partial film structure of the display assembly provided by the embodiment of the application.
  • the display panel is an organic light-emitting display panel. As shown in FIG. 8, the display panel includes a base substrate 101, an array substrate 102, a display layer 103 and a packaging structure 104 arranged in sequence.
  • the array substrate 102 includes a gate metal layer 44, The metal layer (not shown), the source and drain metal layer 45 and the fourth metal layer 46 are provided with an insulating layer between two adjacent metal layers.
  • the gate 66 of the driving transistor 1021 and the gate scanning line 69 of the display panel are located on the gate metal layer 44, the source 67 and drain 68 of the driving transistor 1021, and the data line of the display panel are located at the source.
  • the drain metal layer 45, a capacitor plate in the pixel circuit and the reset signal line in the display panel are located on the capacitor metal layer, and the positive power signal line in the display panel is located on the fourth metal layer 46.
  • the second gate 22 of the switch transistor 2 in the fingerprint identification module 20 is connected to the gate scan line 69.
  • the figure shows that the second gate 22 is electrically connected to the gate scan line 69 through at least one connecting electrode 461.
  • the connecting electrode 461 is located on the fourth metal layer 46.
  • the second gate 22 is electrically connected to the connection electrode 461 through the via hole 77 penetrating the packaging structure 104 and the display layer 103, and the connection electrode 461 is electrically connected to the gate scan line 69 through the via hole 78 on the insulating layer. That is, the gate scan line 69 is multiplexed as a fingerprint control signal line in the fingerprint identification stage, and the control signal is provided to the switching transistor 2 through the gate scan line 69.
  • the second drain electrode 24 of the switch transistor 2 in the fingerprint identification module can be electrically connected to the data line located on the source and drain metal layer 45, and the data line is multiplexed as a fingerprint data signal line during the fingerprint identification stage;
  • the first gate 12 of the transistor 1 may be electrically connected to the positive power signal line in the fourth metal layer 46.
  • the positive power signal line is multiplexed as a third voltage signal line.
  • the traces for driving the display panel display in the array substrate are multiplexed as signal lines in the fingerprint recognition module, and the display driving timing and fingerprint recognition driving timing are coordinated to realize the display function and fingerprint recognition function at the same time. .
  • FIG. 9 is a schematic diagram of another partial film structure of a display assembly provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a circuit structure of the fingerprint identification unit in the embodiment of Fig. 9.
  • the fingerprint recognition module 20 is located on the light-emitting surface of the display panel 10.
  • the fingerprint recognition module 20 includes a plurality of fingerprint recognition units.
  • Each fingerprint recognition unit includes at least a phototransistor 1 and a switching transistor 2.
  • the phototransistor 1 includes a first active layer 11, a first gate 12, and a first source.
  • the electrode 13 and the first drain 14, the material of the first active layer 11 includes an organic semiconductor material, the first drain 14 and the first gate 12 partially overlap to form a first capacitor Cs;
  • the switching transistor 2 includes a second The source layer 21, the second gate 22, the second source 23 and the second drain 24, and the first drain 14 and the second source 23 are connected.
  • the embodiment of FIG. 9 there is no conduction between the first source electrode 13 and the first gate electrode 12.
  • the fingerprint identification module includes a fingerprint control signal line 71, a fingerprint data signal line 72, a first voltage signal line 74 and a second voltage signal line 75; the second grid is electrically connected to the fingerprint control signal line 71, The second drain is electrically connected to the fingerprint data signal line 72, the first gate is electrically connected to the first voltage signal line 74, and the first source is electrically connected to the second voltage signal line 75.
  • the first The voltage provided by the voltage signal line 74 to the first gate is greater than the voltage provided by the second voltage signal line 75 to the first source. Therefore, when the first voltage signal 74 passes a voltage signal to the first gate and the second voltage signal 75 passes a voltage signal to the first source, the phototransistor 1 can be controlled to be in the off state.
  • the working process of the fingerprint identification unit can be understood with reference to the above-mentioned embodiments of FIG. 5 and FIG. 6, and will not be repeated here.
  • FIG. 11 is a schematic partial top view of a display assembly provided by an embodiment of the application.
  • the non-pixel area 121 between adjacent pixel areas 111.
  • the pixel area 111 is a pixel light-emitting area
  • the non-pixel area 121 is a non-light-emitting area.
  • the pixel area 111 is the area where the light-emitting device is located
  • the non-pixel area 121 is the area where the pixel definition layer of the spacing light-emitting device is located.
  • the liquid crystal display panel includes a black matrix
  • the black matrix includes a plurality of openings
  • the area exposed by the openings is the pixel area 111
  • the area between adjacent openings is the non-pixel area.
  • the orthographic projection of the fingerprint identification unit 201 on the display panel 10 is located in the non-pixel area 121.
  • the orthographic projection direction of the fingerprint recognition unit 201 to the display panel 10 is the same as the top view direction, so in the top view direction, the fingerprint recognition unit 201 and the fingerprint recognition unit 201 overlap the front projection of the display panel 10.
  • the fingerprint recognition unit 201 represents Its orthographic projection on the display panel 10.
  • a fingerprint recognition unit 201 is provided in a part of the fixed area.
  • a fingerprint recognition unit may be provided corresponding to the entire surface of the display area.
  • the fingerprint identification unit corresponds to the non-pixel area of the display panel, and the fingerprint identification unit will not block the light from the pixel area when the display assembly is displayed, ensuring that the setting of the fingerprint identification module does not affect the display effect.
  • the foregoing embodiments all illustrate that the display panel is an organic light-emitting display panel, and in the display assembly provided in the embodiment of the present application, the display panel may also be a liquid crystal display panel.
  • the display panel may also be a liquid crystal display panel.
  • FIG. 12 which is an implementation of the application.
  • the example provides a schematic diagram of another partial film structure of the display module.
  • the display panel 10 includes a base substrate 101, an array substrate 105, a liquid crystal molecule layer 106, and a color filter substrate 107 that are sequentially stacked.
  • the array substrate 105 includes a plurality of pixel circuits. The figure only illustrates the driving transistor 1051 in the pixel circuit.
  • the array substrate also includes a pixel electrode 1052 and a common electrode 1053.
  • the driving transistor 1051 is connected to the pixel electrode 1052.
  • the relative positions of the common electrode 1053 can be interchanged.
  • the color filter substrate 107 includes a color resist layer and a black matrix.
  • the fingerprint identification module is located on the display panel.
  • the fingerprint identification module 20 includes a fingerprint identification unit.
  • the fingerprint identification unit includes at least a phototransistor 1 and a switch transistor 2.
  • the structure of the phototransistor 1 and the switching transistor 2 in the fingerprint identification module can be referred to the description in any of the above-mentioned embodiments, which will not be repeated here.
  • FIG. 13 is a schematic diagram of a display device provided in an embodiment of the present application.
  • the display device includes the display component 100 provided in any embodiment of the present application.
  • the specific structure of the display component 100 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the display device shown in FIG. 13 is only for schematic illustration, and the display device may be any electronic device with fingerprint recognition function, such as a mobile phone, a tablet computer, a notebook computer, an electronic paper book, or a television.
  • the display device may be a rigid display device, or a flexible or foldable display device.
  • the pixel units in the display panel are multiplexed as a light source for fingerprint recognition in the fingerprint recognition stage.
  • the display device includes a fingerprint recognition light source, and the fingerprint recognition light source is located on a side of the display panel away from the fingerprint recognition module.
  • the fingerprint recognition light source may be an infrared light source or a visible light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Image Input (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electroluminescent Light Sources (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请提供一种显示组件、显示装置和指纹识别方法。显示组件包括显示面板和位于显示面板出光面之上的指纹识别模组,指纹识别模组包括多个指纹识别单元,每个指纹识别单元均至少包括一个光电晶体管和一个开关晶体管;光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,第一有源层的制作材料包括有机半导体材料,第一漏极和第一栅极部分交叠形成第一电容;开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极。指纹识别模组包括第一金属层,第一源极、第一漏极、第二源极和第二漏极均位于第一金属层,且第一漏极和第二源极相连。本申请能够增大指纹反射光的准直性,提升指纹识别的准确度,同时降低显示组件结构和工艺的复杂度。

Description

一种显示组件、显示装置和指纹识别方法
本申请要求于2020年03月31日提交中国专利局、申请号为202010246037.8、申请名称为“一种显示组件、显示装置和指纹识别方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,更具体的涉及一种显示组件、显示装置和指纹识别方法。
背景技术
目前屏下光学指纹识别已成为当前电子设备进行身份识别的主流方法,将光学指纹识别模块置于显示面板基板的背侧,指纹识别光源发出的光线照射到手指,经手指的反射后穿透显示面板,然后被感光元件接收,将光信号转化成电信号,进而实现指纹识别。现有技术方案中,用于指纹识别的光线在显示面板厚度方向上穿透整个显示面板后光损失较大,严重影响感光元件接收的光量,进而影响指纹识别的准确度。
发明内容
有鉴于此,本申请提供一种显示组件、显示装置和指纹识别方法,以解决现有技术中指纹识别准确度低的技术问题。
第一方面,本申请实施例提供一种显示组件,包括:显示面板和位于显示面板出光面之上的指纹识别模组,指纹识别模组包括多个指纹识别单元,每个指纹识别单元均至少包括一个光电晶体管和一个开关晶体管;
光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,第一有源层的制作材料包括有机半导体材料,在垂直于显示组件方向上,第一漏极和第一栅极部分交叠形成第一电容;
开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极;
指纹识别模组包括第一金属层,其中,第一源极、第一漏极、第二源极和第二漏极均位于第一金属层,且第一漏极和第二源极相连。
本申请实施例将指纹识别模组设置在显示面板出光面之上,在指纹识别时,经手指反射的光不需要穿透显示面板的结构膜层即能够被指纹识别模组接收,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,避免指纹反射光穿透显示面板的结构膜层造成光损失,确保了指纹识别的准确度。同时,指纹识别模组中采用光电晶体管作为感光元件,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够降低显示组件结构和工艺的复杂度, 也有利于减小显示组件的整体厚度。
进一步的,指纹识别模组还包括第二金属层和第一绝缘层,第二金属层位于第一金属层的靠近显示面板一侧,第一绝缘层位于第一金属层和第二金属层之间;其中,第一栅极位于第二金属层。光电晶体管为底栅结构的晶体管,第一栅极不会对射向第一有源层光造成遮挡,从而确保在指纹识别阶段,指纹反射光能够射向第一有源层,从而光电晶体管将光信号转换成电信号。
进一步的,第一有源层和第二有源层均位于第一绝缘层远离第二金属层的一侧,且均与第一绝缘层相接触。相当于第一有源层和第二有源层位于同一膜层高度上,能够有利于减少指纹识别模组的膜层厚度,进而有利于减小显示组件整体厚度。
在一种实施例中,第一源极和第一栅极不连接,指纹识别模组包括指纹控制信号线、指纹数据信号线、第一电压信号线和第二电压信号线;第二栅极与指纹控制信号线电连接,第二漏极与指纹数据信号线电连接,第一栅极与第一电压信号线电连接,第一源极与第二电压信号线电连接,其中,在指纹识别阶段,第一电压信号线向第一栅极提供的电压大于第二电压信号线向第一源极提供的电压。
在一种实施例中,第一源极和第一栅极通过第一绝缘层上的过孔相连接。光电晶体管的第一栅极和第一源极导通,光电晶体管始终工作在关态。则光电晶体管在没有光线照射到第一有源层表面时,光电晶体管的漏电流非常小,而在指纹识别阶段,有指纹反射光照射到第一有源层表面时,在第一有源层内部产生的载流子使得光电晶体管的漏电流明显变大,能够保证光电晶体管具有较高的光灵敏度。
指纹识别模组包括指纹控制信号线、指纹数据信号线和第三电压信号线;
第二栅极与指纹控制信号线电连接,第二漏极与指纹数据信号线电连接,第一栅极和第一源极均与第三电压信号线电连接。在指纹识别模组中仅需要设置指纹控制信号线、指纹数据信号线和第三电压信号线三种信号线,也能够简化指纹识别模组中的布线方式,节省布线占据的空间。
可选的,第二栅极位于第二金属层。则开关晶体管和光电晶体管均为底栅结构,开关晶体管和光电晶体管结构相同,能够在相同的工艺中制作,在提高指纹识别准确度的同时进一步降低显示组件结构和工艺的复杂度。
可选的,第二有源层和第一有源层同层同材料制作。在同一个工艺制程中同时形成第一有源层的图案和第二有源层的图案,能够进一步简化工艺制程,降低工艺的复杂度。
进一步的,指纹识别模组还包括多个遮光部,遮光部位于第二有源层远离显示面板的一侧,遮光部在第二有源层所在平面的正投影覆盖第二有源层。当二有源层和第一有源层同层同材料制作时,遮光部能够对光线进行遮挡,防止光线照射到第二有源层的表面,使得第二有源层内部的载流子增大,避免影响开关晶体管的开关状态,从而确保指纹识别检测的准确度和性能可靠性。
在一种实施例中,指纹识别模组还包括第三金属层,第三金属层位于第一金属层远离显示面板的一侧,第二栅极位于第三金属层。在指纹识别阶段,位于第二有源层远离显示面板一侧设置的第二栅极能够复用为遮光部使用。
具体的,显示面板包括多个像素区和位于相邻像素区之间的非像素区,其中,指 纹识别单元在显示面板的正投影位于非像素区。在显示时,指纹识别单元不会对像素区的出光造成遮挡,从而保证指纹识别模组的设置不影响显示效果。
基于同一发明构思,本申请实施例提供一种显示装置,其特征在于,包括本申请任意实施例提供的显示组件。
基于同一发明构思,本申请实施例提供一种指纹识别方法,适用于本申请任意实施例提供的显示组件,指纹识别方法包括:
控制开关晶体管和光电晶体管均关闭,光电晶体管的漏电流作用使得第一电容充电积累初始电荷量;
控制开关晶体管打开,第一电容放电,通过第二漏极读取初始电荷量后控制开关晶体管关闭;
光电晶体管接收经手指反射的光线后漏电流增大,第一电容充电积累指纹电荷量;
控制开关晶体管打开,第一电容放电,通过第二漏极读取指纹电荷量。
本申请提供的显示组件、显示装置和指纹识别方法,具有如下有益效果:将指纹识别模组设置在显示面板出光面之上,在指纹识别时,经手指反射的光不需要穿透显示面板的结构膜层即能够被指纹识别模组接收,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,避免指纹反射光穿透显示面板的结构膜层造成光损失,确保了指纹识别的准确度。同时,指纹识别模组中采用光电晶体管作为感光元件,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够降低显示组件结构和工艺的复杂度,也有利于减小显示组件的整体厚度。
附图说明
图1为本申请实施例提供的显示组件局部膜层结构示意图;
图2为图1实施例中显示组件在指纹识别阶段用于指纹检测的光线的光路示意图;
图3为本申请实施例提供的显示组件另一种局部膜层结构示意图;
图4为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图5为本申请实施例提供的显示组件中指纹识别单元的一种电路结构示意图;
图6为图5实施例中指纹识别电路的时序图;
图7为本申请实施例提供的显示组件中指纹识别模组的一种电路结构示意图;
图8为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图9为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图10图9实施例中指纹识别单元的一种电路结构示意图;
图11为本申请实施例提供的显示组件的局部俯视示意图;
图12为本申请实施例提供的显示组件的另一种局部膜层结构示意图;
图13为本申请实施例提供的显示装置示意图。
具体实施方式
为了减少光线穿透显示面板的光损失,提升指纹识别的准确度。相关技术提出了 以下技术方案:将感光元件集成到显示面板的阵列基板中,在指纹识别时,经手指反射后的光线仅需要穿透显示面板的封装结构、发光器件层以及阵列基板中的部分膜层即能够被感光元件接收;或者将感光元件集成在相邻的两个发光器件之间,从而经手指反射后的光线仅需要穿透显示面板的封装结构以及发光器件层的部分膜层即能够被感光元件接收。上述方案虽然能够在一定程度上缩短指纹反射光所要传输的距离,但是也会增加面板结构和工艺的复杂度,而且通常仅适用于有机发光显示装置。
相关技术中还提出了另一种方案,将用于指纹识别的开关晶体管和感光元件(光敏二极管)设置在显示面板的封装薄膜之上。虽然进一步缩短了指纹反射光所要传输的距离,但是开关晶体管和感光元件在结构和制备工艺上差别较大,则需要分别制作开关晶体管和感光元件,导致面板制作工艺的复杂度增大,开关晶体管和感光元件构成的指纹识别模组的整体厚度也较大。
基于上述问题,本申请实施例提供一种显示组件,适用于现有技术中任意类型的显示装置,比如:LCD(Liquid Crystal Display,液晶显示装置)、OLED(Organic Electroluminesence Display,有机发光显示装置)、micro LED(micro Light Emitting Diode)显示装置等。将光电晶体管和开关晶体管集成指纹识别模组设置在显示面板出光面之上,能够提升指纹识别的准确度同时降低显示组件结构和工艺的复杂度。
图1为本申请实施例提供的显示组件局部膜层结构示意图。图2为图1实施例中显示组件在指纹识别阶段用于指纹检测的光线的光路示意图。
如图1所示,显示组件包括:显示面板10和位于显示面板10出光面之上的指纹识别模组20。显示面板10出光面即为显示面板显示画面一侧的表面。显示面板10为有机发光显示面板、液晶显示面板、微型二极管显示面板中任意一种,图1中仅以显示面板为有机发光显示面板进行示意,显示面板10包括衬底基板101、阵列基板102、显示层103和封装结构104,则显示面板10的出光面即为封装结构104的远离显示层103一侧的外表面。其中,衬底基板101可以为柔性基板或者刚性基板;阵列基板102包括多个像素电路,图中仅示意出像素电路中的驱动晶体管1021;显示层103包括像素定义层1031和多个发光器件1032,图中仅示意出一个发光器件1032,发光器件1032包括依次堆叠的阳极31、发光层32和阴极33,阳极31通过过孔与驱动晶体管1021电连接;封装结构104用于对显示层103进行封装隔绝水氧,以保证发光器件的使用寿命。封装结构104可以为刚性封装,包括封装盖板和封框胶;封装结构104可以为薄膜封装,包括交替堆叠的至少一层有机封装层和至少一层无机封装层。
指纹识别模组20包括多个指纹识别单元,每个指纹识别单元均至少包括一个光电晶体管1和与光电晶体管1相连的一个开关晶体管2。图中仅示意出一个指纹识别单元。其中,光电晶体管1作为感光元件,在指纹识别阶段能够接收指纹反射光后将光信号转化成电信号。开关晶体管2与光电晶体管1电连接,开关晶体管2用于将读取指纹电信号并将电信号输出给指纹数据处理模块,最终在指纹数据处理模块中对电信号进行运算处理,生成指纹信息。
光电晶体管1包括第一有源层11、第一栅极12、第一源极13和第一漏极14,第一有源层11的制作材料包括有机半导体材料,在垂直于显示组件方向上,第一漏极14和第一栅极12部分交叠形成第一电容Cs。其中,有机半导体材料为并五苯 (Pentacene)、6,13-双(三异丙基硅烷基乙炔基)并五苯(TIPS-pentacene)、酞菁铜(CuPc)、(双萘并[2,3-b:2′,3′-f]噻吩并[3,2-b]噻吩)(DNTT)、2,6-双(甲氧基苯基)蒽(BOPAnt)、聚3-己基噻吩(P3HT)、聚[双(3-十二烷基-2-噻吩基)-2,2'-双噻吩-5,5'-取代](Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene-5,5'-diyl],PQT-12)、PDVT-10(poly[2,5-bis(alkyl)pyrrolo[3,4-c]-1,4(2H,5H)-dione-alt-5,5’-di(thiophene-2-yl)-2,2’-(E)-2-(2-(thiophen-2-yl)vinyl)thio-phene])、双烷基取代吡咯并吡咯二酮-噻吩-联噻吩-噻吩共聚物(DPP-DTT)中任意一种或多种。第一有源层11制作时可以采用溶液法涂布成膜,然后采用刻蚀工艺形成第一有源层11的图案。第一有源层11也可以采用蒸镀发成膜形成。有机半导体材料对光线具有较强的吸收,第一有源层11作为光感应层,当有光线照射到第一有源层11表面时,每吸收一个光子在第一有源层11内部就相应的产生一个电子-空穴对,由于电场的作用电子-空穴发生分离产生电荷载流子,电荷载流子在材料内部迁移形成电流,从而实现将光信号转换成电信号。不同的有机半导体材料对光线的敏感波段不同,实际可以通过有机半导体材料的光敏感波段和指纹识别光源相配合,实现指纹识别。第一有源层选用对可见光敏感的有机半导体材料,比如对绿光敏感的有机半导体材料,则相应的指纹识别光源发出绿光;第一有源层选用对红外光敏感的有机半导体材料,则相应的指纹识别光源发出红外光。
光电晶体管1的工作状态包括暗态和亮态,光电晶体管1的暗态为没有光照射到第一有源层11的表面时的状态,在暗态下,对光电晶体管1施加偏置电压,第一有源层11内会有较小的漏电流;相应的,光电晶体管1的亮态为有光照射到第一有源层11表面时的状态,在亮态下,第一有源层11内存在较小的漏电流和受光激发产生的光电流。
开关晶体管2包括第二有源层21、第二栅极22、第二源极23和第二漏极24;其中,第二有源层21的制作材料可以为硅类半导体材料,比如单晶硅半导体、多晶硅半导体;或者也可以为有机半导体材料。第二有源层21的制作材料包括Pentacene、TIPS-pentacene、CuPc、DNTT、BOPAnt、P3HT、PQT-12、PDVT-10、DPP-DTT、2,7-二辛基[1]苯并噻吩并[3,2-B]苯并噻吩(C8-BTBT)、[4,4,9,9-四(4-己基苯基)-s-苯并二茚并[1,2-b:5,6-b']二噻吩]-苯并噻二唑共聚物(C16-IDTBT)、2,8-二氟-5,11-双(三乙基硅乙炔基)双噻吩蒽(diF-TES-ADT)、2,9-二苯基-二萘基[2,3-b:2’,3’-f]噻吩并[3,2-b]噻吩(Dph-DNTT)中任意一种或多种。第二有源层21可以与第一有源层11采用相同材料制作,第二有源层21的制作材料也可以与第一有源层11的制作材料不同。
指纹识别模组20包括第一金属层41,其中,第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41,且第一漏极14和第二源极23相连。也即,在显示组件制作过程中第一源极13、第一漏极14、第二源极23和第二漏极24能够在同一个刻蚀工艺中制作,能够降低工艺的复杂度。可选的,如图1所示的,第一漏极14和第二源极23一体成型形成共电极,共电极的一端作为第一漏极14,另一端作为第二源极23。
如图1所示的,指纹识别模组20还包括在第一有源层11和第二有源层21之上的有钝化层91,其中,钝化层91可以同时起到绝缘和平坦化的作用。显示组件还包括 位于指纹识别模组20之上的保护盖板92,保护盖板92可以为刚性盖板,也可以为柔性盖板。可选的,在钝化层91和保护盖板92之间还设置有抗冲击层(图中未示出),抗冲击层能够对显示组件承受的外力起到缓冲作用,以保护显示组件中的各元器件免受外力损伤。
本申请实施例提供的显示组件能够实现指纹识别功能,其中,实现指纹识别功能所需要的指纹识别光源可以为外置光源,比如可见光光源或者红外光源,在应用时将外置光源设置在显示面板的背离指纹识别模组的一侧;当显示面板为有机发光显示面板时,显示面板中的发光器件可以复用为指纹识别光源。图2仅以发光器件1032复用为指纹识别光源进行示意。如图2所示,在指纹识别阶段,发光器件1032发出的光线由显示面板10的出光面射出后,依次穿透指纹识别模组20和保护盖板92之后照射到用户手指88上。经手指反射后的光线再次穿透保护盖板92之后照射到光电晶体管1的第一有源层上,第一有源层吸收指纹反射的光之后将光信号转换成电信号。
在本申请实施例提供的显示组件能够应用的一种指纹识别方法中,以一个指纹识别单元的工作过程为例,指纹识别包括:启动阶段、初始信号读取阶段、指纹信号积累阶段和指纹信号读取阶段。其中,
在启动阶段,控制开关晶体管2和光电晶体管1均关闭,则光电晶体管1处于暗态下,光电晶体管1存在较小的漏电流,从而光电晶体管1的第一漏极14和第一栅极12之间形成的第一电容Cs充电积累少量的初始电荷,记为初始电荷量Q0。
在初始信号读取阶段,控制开关晶体管2打开,则开关晶体管2的第二源极23和第二漏极24之间导通,又由于第一漏极14和第二源极23相连,则第一电容Cs放电,通过第二漏极24读取初始电荷量Q0,然后控制开关晶体管2关闭。
在指纹信号积累阶段,光电晶体管1接收经手指反射的光线后,光电晶体管1处于亮态,第一有源层11经光照射后在内部产生电荷载流子,则光电晶体管1内电流增大,从而第一电容Cs充电积累的电荷量增加,记为指纹电荷量Q1。当手指按压在显示组件的表面时,手指指纹的脊与显示组件的表面直接接触,指纹识别光源发出的光线在指纹脊与显示组件接触的界面上发生反射后被光电晶体管1接收;手指指纹谷与显示组件的表面之间间隔有空气,指纹识别光源发出的光线穿透显示组件与空气的界面,然后被指纹谷反射,然后再穿透显示组件与空气的界面之后才能被光电晶体管1接收。所以经脊反射的光的光强大于经谷反射的光的光强,相应的在指纹信号积累阶段,接收脊反射的光的光电晶体管内产生的光电流大于接收谷反射的光的光电晶体管内产生的光电流,进而接收脊反射光的光电晶体管内第一电容上积累的电荷更多。从而在后续运算处理中能够根据指纹电荷量的大小区别出指纹谷和指纹脊。
在指纹信号读取阶段,控制开关晶体管2打开,则开关晶体管2的第二源极23和第二漏极24之间再次导通,第一电容Cs放电,通过第二漏极24读取指纹电荷量Q1。
通过第二漏极分别读取初始电荷量Q0和指纹电荷量Q1,并将取初始电荷量Q0和指纹电荷量Q1传输给指纹数据处理模块(***主板中的模块),指纹数据处理模块收集多个指纹识别单元回传的指纹检测信号并进行运算处理,最终生成指纹信息。
本申请实施例提供的显示组件将指纹识别模组设置在显示面板出光面之上,在指 纹识别时,经手指反射的光不需要穿透显示面板的结构膜层即能够被指纹识别模组接收,缩短了指纹反射光所要传输的距离,能够增大指纹反射光的准直性,避免指纹反射光穿透显示面板的结构膜层造成光损失,提升指纹识别的准确度。同时,指纹识别模组中采用光电晶体管作为感光元件,光电晶体管与开关晶体管的结构相似,在制作时光电晶体管与开关晶体管能够共用至少部分的工艺制程,能够降低显示组件结构和工艺的复杂度,也有利于减小显示组件的整体厚度。
另外,感光元件的感光效果(也即光敏效果)与光电流除以暗电流能够达到的数量级相关,也即光电流与暗电流差异越大,感光效果越好,则指纹识别越灵敏。其中,暗电流为感光元件在暗态下(没有光照射的状态下)的漏电流,光电流为感光元件在亮态下(有光照射的状态下)的受光激发产生的电流。在相关技术的指纹识别方案中采用光敏二极管作为感光元件,其在暗态下的漏电流为nA级,则通常需要将光敏二极管的感光面积做的比较大,以保证光敏二极管的感光效果,由此导致开关晶体管和光敏二极管构成的指纹识别模组占据的面积较大,将该指纹识别模组设置在显示面板显示面之上,指纹识别模组对显示面板的出光遮挡较高,影响显示效果。而本申请实施例中,采用光电晶体管和开关晶体管构成指纹识别单元,光电晶体管在暗态下的漏电流为pA级,也即光电晶体管在暗态下的漏电流远远小于光敏二极管在暗态下的漏电流,所以本申请光电晶体管能够做到尺寸相对较小的情况下,也具有很好的感光效果,将光电晶体管设置在显示面板出光面之上,不会对显示面板的出光造成遮挡。
继续参考图1所示的,指纹识别模组20还包括第二金属层42和第一绝缘层51,第二金属层42位于第一金属层41的靠近显示面板10一侧,第一绝缘层51位于第一金属层41和第二金属层42之间;其中,第一栅极12位于第二金属层42。也即,光电晶体管1的第一栅极12位于第一有源层11的靠近显示面板10的一侧,光电晶体管1为底栅结构的晶体管,第一栅极12不会对射向第一有源层11光造成遮挡,从而确保在指纹识别阶段,指纹反射光能够射向第一有源层11,实现光电晶体管1将光信号转换成电信号。
在一种实施例中,如图1中示意的,开关晶体管2的第二栅极22也位于第二金属层42。开关晶体管2的第二栅极22可以与光电晶体管1的第一栅极12同层同材料制作,在该实施例中,开关晶体管和光电晶体管均为底栅结构,开关晶体管和光电晶体管结构相同,能够在相同的工艺中制作,在提高指纹识别准确度的同时进一步降低显示组件结构和工艺的复杂度。
继续参考图1所示的,第一有源层11和第二有源层21均位于第一绝缘层51远离第二金属层42的一侧,且均与第一绝缘层51相接触。在制作过程中,完成第一栅极12的图案化工艺之后,在第一栅极12之上制作第一绝缘层51;然后在第一绝缘层51之上制作第一金属层41;对第一金属层41图案化形成第一源极13、第一漏极14、第二源极23和第二漏极24;然后制作第一有源层11和第二有源层21,第一有源层11的两端分别与第一源极13和第一漏极14连接,第二有源层21的两端分别与第二源极23和第二漏极24连接。第一有源层11和第二有源层21均与第一绝缘层51相接触,相当于第一有源层11和第二有源层21位于同一膜层高度上,能够有利于减少指纹识别模组的膜层厚度,进而有利于减小显示组件整体厚度。
在一种实施例中,第一有源层和第二有源层同层同材料制作,也即在同一个工艺制程中同时形成第一有源层的图案和第二有源层的图案,能够进一步简化工艺制程,降低工艺的复杂度。
当第二有源层和第一有源层同层同材料制作时,则第二有源层和第一有源层对光的敏感波段相同。基于此,为了保证在指纹识别阶段开关晶体管的性能可靠性,本申请实施例提出了另一种显示组件,如图3所示,图3为本申请实施例提供的显示组件另一种局部膜层结构示意图。第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41;第一栅极12和第二栅极22均位于第二金属层42,第一有源层11和第二有源层21同层同材料制作,且均与第一绝缘层51相接触。指纹识别模组20还包括多个遮光部61(图中仅示意一个),一个遮光部61对应一个开关晶体管2,遮光部61位于第二有源层21远离显示面板10的一侧,遮光部61在第二有源层21所在平面的正投影覆盖第二有源层21。其中,遮光部61的制作材料可以为金属材料或者有机吸光材料等,在实际中,可根据第一有源层采用的有机半导体材料的光敏波段,来选择相应的材料制作遮光部,保证遮光部对该波段的光进行遮挡。遮光部能够对光线进行遮挡,防止光线照射到第二有源层的表面使得第二有源层内部的载流子增大,从而避免影响开关晶体管的开关状态,确保指纹识别检测的准确度和性能可靠性。
可选的,在指纹识别阶段,需要控制开关晶体管1开启的时刻向遮光部61通入电压信号,遮光部61能够作为开关晶体管1的栅极使用,从而开关晶体管1形成了双栅结构的晶体管,能够提升开关晶体管1的开启速度。
在图3实施例提供的显示组件中,在第一有源层11和第二有源层21之上设置有钝化层91,在遮光部61之上还设置有平坦化层93。显示组件还包括保护盖板92,可选的,在保护盖板92和平坦化层93还设置有抗冲击层(未示出)。
在另一种实施例中,第一有源层和第二有源层均与第一绝缘层相接触,且第二有源层与第一有源层采用不同的材料制作,则第二有源层对光的敏感波段与第一有源层对光的敏感波段不同。在指纹识别阶段,仅有第一有源层对指纹识别光源发出的光敏感,指纹反射光即使照射到第二有源层的表面,也不会被第二有源层吸收而影响开关晶体管的开关状态。该种实施方式不需要对第二有源层设置遮光部来遮光,能够节省制作遮光部的工艺制程。
在另一种实施例中,开关晶体管的第二栅极与光电晶体管的第一栅极位于不同金属层。如图4所示,图4为本申请实施例提供的显示组件的另一种局部膜层结构示意图。第一源极13、第一漏极14、第二源极23和第二漏极24均位于第一金属层41;第一栅极12位于第二金属层42,第一有源层11和第二有源层21均位于第一绝缘层51远离第二金属层42的一侧,且均与第一绝缘层51相接触。指纹识别模组20还包括第三金属层43,第三金属层43位于第一金属层41远离显示面板10的一侧,第二栅极22位于第三金属层43。在第一有源层11和第二有源层21之上设置有绝缘层94,在第二栅极22之上设置有平坦化层95。在平坦化层95之上还设置有保护盖板92。该实施方式中,第一有源层和第二有源层可以同层同材料制作,以保证开关晶体管和光电晶体管共用部分工艺制程,降低制作工艺的复杂度。同时,在指纹识别阶段,位于第二有源层远离显示面板一侧设置的第二栅极能够复用为遮光部使用,第二栅极能够 对光线进行遮挡,避免指纹反射光照射到第二有源层的表面,使得第二有源层内部的载流子增大,而影响开关晶体管的开关状态,从而确保指纹识别的准确度和性能可靠性。
继续参考图1所示的,第一源极13和第一栅极12通过第一绝缘层51上的过孔511相连接。也即光电晶体管1的第一栅极12和第一源极13导通,光电晶体管1始终工作在关态。则光电晶体管1在没有光线照射到第一有源层11表面时,光电晶体管1的漏电流非常小,而在指纹识别阶段,有指纹反射光照射到第一有源层11表面时,在第一有源层内部产生的载流子使得光电晶体管1的漏电流明显变大,能够保证光电晶体管具有较高的光灵敏度。
图5为本申请实施例提供的显示组件中指纹识别单元的一种电路结构示意图,图6为图5实施例中指纹识别电路的时序图。如图5所示,指纹识别模组包括指纹控制信号线71、指纹数据信号线72和第三电压信号线73;开关晶体管2的第二栅极与指纹控制信号线71电连接,开关晶体管2的第二漏极与指纹数据信号线72电连接,第一栅极12和第一源极13均与第三电压信号线73电连接。需要说明的是,本申请实施例中开关晶体管和光电晶体管可以为p型晶体管,也可以为n型晶体管,只要保证开关晶体管和光电晶体管的类型相同即可。
具体的,指纹识别模组中多个指纹识别单元呈阵列排布,如图7所示,图7为本申请实施例提供的显示组件中指纹识别模组的一种电路结构示意图。多个指纹识别单元201呈阵列排布,每个指纹识别单元201均至少包括一个光电晶体管1和一个开关晶体管2,位于同一行的多个开关晶体管2的第二栅极均与一条指纹控制信号线71电连接,位于同一列的多个开关晶体管2的第二漏极均与一条指纹数据信号线72电连接,位于同一行的多个光电晶体管1的第一栅极12和第一源极13均与一条第三电压信号线73电连接。
在相关技术采用开关晶体管和光敏二极管构成的指纹识别模组的方案中,实现指纹识别功能需要向开关晶体管的栅极、源极、漏极、以及光敏二极管的其中一个电极分别通入电压信号,驱动电路较为复杂。而本申请实施例中,实现指纹识别功能仅需要向开关晶体管的第二栅极、第二漏极和光电晶体管的第一栅极(或者第一源极)通入电压信号,驱动电路相对简单。在指纹识别模组中仅需要设置指纹控制信号线、指纹数据信号线和第三电压信号线三种信号线,也能够简化指纹识别模组中的布线方式,节省布线占据的空间。而且指纹识别电路与驱动显示面板显示的电路相互独立,指纹识别检测不需要与一帧画面的扫描时间分时复用,降低了电路结构的复杂度。
在指纹识别过程中:在启动阶段,指纹控制信号线71向开关晶体管2提供指纹控制信号Vscan,在此阶段指纹控制信号线71提供非有效电平信号控制开关晶体管2关闭,指纹数据信号线72向开关晶体管2的第二漏极通入一个读取电位,光电晶体管1的第一源极和第一栅极导通,并通过第三电压信号线73通入偏置电压Vbias,光电晶体管1处于关闭状态,也即光电晶体管1处于暗态(dark),由于光电晶体管1的漏电流作用第一电容Cs开始充电积累少量的电荷,记为初始电荷量Q0;在初始信号读取阶段,指纹控制信号线71向开关晶体管2提供有效电平信号控制开关晶体管2打开,第一电容Cs放电,指纹数据信号线72通过第二漏极24读取初始电荷量Q0,然后指 纹控制信号线71提供非有效电平信号控制开关晶体管2关闭;在指纹信号积累阶段,光电晶体管1接收经手指反射的光线后,光电晶体管1由暗态变为亮态(illumination),光电晶体管1的漏电流增大,从而第一电容Cs充电积累的电荷量增加,记为指纹电荷量Q1;在指纹信号读取阶段,指纹控制信号线71提供有效电平信号控制开关晶体管2打开,则第一电容Cs放电,指纹数据信号线72通过第二漏极24读取指纹电荷量Q1。
具体的,指纹数据信号线72与第二漏极位于同一金属层,也即指纹数据信号线72位于第一金属层(参考图1示意的膜层位置),则指纹数据信号线72可以与第二漏极在同一个工艺制程中制作完成,指纹数据信号线72与第二漏极不需要通过绝缘层的过孔相连接,简化工艺制程。指纹控制信号线71与第二栅极位于同一金属层,指纹控制信号线71与第二栅极在同一个工艺制程中制作完成,指纹控制信号线71与第二栅极不需要通过绝缘层的过孔相连接,简化工艺制程。另外,第三电压信号线73可以与第一栅极位于同一金属层,也可以与第一源极位于同一金属层。
在一种实施例中,指纹数据信号线和第二漏极位于第一金属层,指纹控制信号线和第二栅极位于第三金属层,第三电压信号线和第一栅极位于第二金属层。将指纹数据信号线、指纹控制信号线和第三电压信号线分别在三个不同金属层中布线,能够减小各个金属层中的布线密度。
在另一种实施例中,图8为本申请实施例提供的显示组件的另一种局部膜层结构示意图。显示面板为有机发光显示面板,如图8所示,显示面板包括依次排列的衬底基板101、阵列基板102、显示层103和封装结构104,其中,阵列基板102包括栅极金属层44、电容金属层(未示出)、源漏金属层45和第四金属层46,在相邻的两个金属层之间都设置有绝缘层。驱动晶体管1021的栅极66和显示面板的栅极扫描线69(图中仅做示意)位于栅极金属层44,驱动晶体管1021的源极67和漏极68、以及显示面板的数据线位于源漏金属层45,像素电路中的一个电容极板以及显示面板中的复位信号线位于电容金属层,显示面板中的正极电源信号线位于第四金属层46。可选的,指纹识别模组20中开关晶体管2的第二栅极22与栅极扫描线69相连接。图中示意出第二栅极22通过至少一个连接电极461与栅极扫描线69电连接,可选的,连接电极461位于第四金属层46。其中,第二栅极22通过贯穿封装结构104和显示层103的过孔77与连接电极461电连接,连接电极461通过绝缘层上的过孔78与栅极扫描线69电连接。也即,在指纹识别阶段栅极扫描线69复用为指纹控制信号线,通过栅极扫描线69向开关晶体管2提供控制信号。另外,指纹识别模组中开关晶体管2的第二漏极24可以与位于源漏金属层45的数据线电连接,在指纹识别阶段数据线复用为指纹数据信号线;指纹识别模组中光电晶体管1的第一栅极12可以与第四金属层46中的正极电源信号线电连接,在指纹识别阶段,正极电源信号线复用为第三电压信号线。该实施方式中,将阵列基板中的驱动显示面板显示的走线复用为指纹识别模组中的信号线,通过显示驱动时序和指纹识别驱动时序相互配合,能够同时实现显示功能和指纹识别功能。
在另一种实施例中,第一源极和第一栅极之间不导通,在指纹识别阶段通过分别控制向第一源极和第一栅极通入电压的大小,来控制光电晶体管工作在关态。图9为 本申请实施例提供的显示组件的另一种局部膜层结构示意图。图10图9实施例中指纹识别单元的一种电路结构示意图。
如图9所示,仍然以显示面板10为有机发光显示面板为例,指纹识别模组20位于显示面板10出光面之上。指纹识别模组20包括多个指纹识别单元,每个指纹识别单元均至少包括一个光电晶体管1和一个开关晶体管2,光电晶体管1包括第一有源层11、第一栅极12、第一源极13和第一漏极14,第一有源层11的制作材料包括有机半导体材料,第一漏极14和第一栅极12部分交叠形成第一电容Cs;开关晶体管2包括第二有源层21、第二栅极22、第二源极23和第二漏极24,第一漏极14和第二源极23相连。与上述图1实施例不同的是,图9实施例中第一源极13和第一栅极12之间不导通。
如图10所示,指纹识别模组包括指纹控制信号线71、指纹数据信号线72、第一电压信号线74和第二电压信号线75;第二栅极与指纹控制信号线71电连接,第二漏极与指纹数据信号线72电连接,第一栅极与第一电压信号线74电连接,第一源极与第二电压信号线75电连接,其中,在指纹识别阶段,第一电压信号线74向第一栅极提供的电压大于第二电压信号线75向第一源极提供的电压。从而在第一电压信号74向第一栅极通入电压信号,且第二电压信号75向第一源极通入电压信号时,能够控制光电晶体管1处于关态。
该实施方式中,指纹识别单元的工作过程可以参照上述图5和图6实施例进行理解,在此不再赘述。
进一步的,图11为本申请实施例提供的显示组件的局部俯视示意图,如图11所示,显示面板10包括显示区55和非显示区56,显示区55包括多个像素区111和位于相邻像素区111之间的非像素区121。像素区111即为像素发光区,非像素区121即为非发光区。以有机发光显示面板为例,像素区111即为发光器件所在的区域,非像素区121即为间隔发光器件的像素定义层所在的区域。以液晶显示面板为例,液晶显示面板中包括黑矩阵,黑矩阵包括多个开口,开口暴露的区域即为像素区111,相邻的开口之间的区域即为非像素区。其中,指纹识别单元201在显示面板10的正投影位于非像素区121。指纹识别单元201向显示面板10的正投影方向与俯视方向相同,所以在俯视方向上指纹识别单元201与指纹识别单元201在显示面板10的正投影重合,在俯视图中,以指纹识别单元201代表其在显示面板10的正投影。图11中仅示意在部分固定区域设置有指纹识别单元201,可选的,也可以对应显示区整面设置指纹识别单元。该实施方式中,指纹识别单元与显示面板的非像素区相对应,在显示组件显示时指纹识别单元不会对像素区的出光造成遮挡,保证指纹识别模组的设置不影响显示效果。
上述实施例均以显示面板为有机发光显示面板进行示意,而本申请实施例提供的显示组件中,显示面板也可以为液晶显示面板,具体的参考图12中的示意,图12为本申请实施例提供的显示组件的另一种局部膜层结构示意图。显示面板10包括依次堆叠的衬底基板101、阵列基板105、液晶分子层106和彩膜基板107。阵列基板105包括多个像素电路,图中仅示意性像素电路中的驱动晶体管1051,阵列基板中还包括像素电极1052和公共电极1053,驱动晶体管1051与像素电极1052连接,图中像素电 极1052和公共电极1053的相对位置可以互换。彩膜基板107中包括色阻层和黑矩阵。指纹识别模组位于显示面板之上,指纹识别模组20包括指纹识别单元,指纹识别单元至少包括一个光电晶体管1和一个开关晶体管2。指纹识别模组中光电晶体管1和开关晶体管2的结构可以参考上述任意实施例中的说明,在此不再赘述。
基于同一发明构思,本申请实施例还提供一种显示装置,图13为本申请实施例提供的显示装置示意图,如图13所示,显示装置包括本申请任意实施例提供的显示组件100。其中,显示组件100的具体结构已经在上述实施例中进行了详细说明,此处不再赘述。当然,图13所示的显示装置仅仅为示意说明,该显示装置可以是例如手机、平板计算机、笔记本电脑、电纸书或电视机等任何具有指纹识别功能的电子设备。显示装置可以为刚性显示装置、也可以为柔性或者可折叠显示装置。在一种实施例中,显示面板中的像素单元在指纹识别阶段复用为指纹识别的光源。在另一种实施例中,显示装置包括指纹识别光源,指纹识别光源位于显示面板的远离指纹识别模组的一侧,其中,指纹识别光源可以为红外光源,也可以为可见光光源。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种显示组件,其特征在于,包括:显示面板和位于所述显示面板出光面之上的指纹识别模组,所述指纹识别模组包括多个指纹识别单元,每个所述指纹识别单元均至少包括一个光电晶体管和一个开关晶体管;
    所述光电晶体管包括第一有源层、第一栅极、第一源极和第一漏极,所述第一有源层的制作材料包括有机半导体材料,在垂直于所述显示组件方向上,所述第一漏极和所述第一栅极部分交叠形成第一电容;
    所述开关晶体管包括第二有源层、第二栅极、第二源极和第二漏极;
    所述指纹识别模组包括第一金属层,其中,所述第一源极、所述第一漏极、所述第二源极和所述第二漏极均位于所述第一金属层,且所述第一漏极和所述第二源极相连。
  2. 根据权利要求1所述的显示组件,其特征在于,
    所述指纹识别模组还包括第二金属层和第一绝缘层,所述第二金属层位于所述第一金属层的靠近所述显示面板一侧,所述第一绝缘层位于所述第一金属层和所述第二金属层之间;其中,
    所述第一栅极位于所述第二金属层。
  3. 根据权利要求2所述的显示组件,其特征在于,
    所述第一有源层和所述第二有源层均位于所述第一绝缘层远离所述第二金属层的一侧,且均与所述第一绝缘层相接触。
  4. 根据权利要求2所述的显示组件,其特征在于,
    所述指纹识别模组包括指纹控制信号线、指纹数据信号线、第一电压信号线和第二电压信号线;
    所述第二栅极与所述指纹控制信号线电连接,所述第二漏极与所述指纹数据信号线电连接,所述第一栅极与所述第一电压信号线电连接,所述第一源极与所述第二电压信号线电连接,其中,
    在指纹识别阶段,所述第一电压信号线向所述第一栅极提供的电压大于所述第二电压信号线向所述第一源极提供的电压。
  5. 根据权利要求2所述的显示组件,其特征在于,
    所述第一源极和所述第一栅极通过所述第一绝缘层上的过孔相连接。
  6. 根据权利要求5所述的显示组件,其特征在于,
    所述指纹识别模组包括指纹控制信号线、指纹数据信号线和第三电压信号线;
    所述第二栅极与所述指纹控制信号线电连接,所述第二漏极与所述指纹数据信号线电连接,所述第一栅极和所述第一源极均与所述第三电压信号线电连接。
  7. 根据权利要求2所述的显示组件,其特征在于,
    所述第二栅极位于所述第二金属层。
  8. 根据权利要求7所述的显示组件,其特征在于,
    所述第二有源层和所述第一有源层同层同材料制作。
  9. 根据权利要求8所述的显示组件,其特征在于,
    所述指纹识别模组还包括多个遮光部,所述遮光部位于所述第二有源层远离所述 显示面板的一侧,所述遮光部在所述第二有源层所在平面的正投影覆盖所述第二有源层。
  10. 根据权利要求1所述的显示组件,其特征在于,
    所述指纹识别模组还包括第三金属层,所述第三金属层位于所述第一金属层远离所述显示面板的一侧,所述第二栅极位于所述第三金属层。
  11. 根据权利要求1所述的显示组件,其特征在于,
    所述显示面板包括多个像素区和位于相邻所述像素区之间的非像素区,其中,
    所述指纹识别单元在所述显示面板的正投影位于所述非像素区。
  12. 一种显示装置,其特征在于,包括权利要求1至11任一项所述的显示组件。
  13. 一种指纹识别方法,适用于权利要求1至11任一项所述的显示组件,其特征在于,所述指纹识别方法包括:
    控制所述开关晶体管和所述光电晶体管均关闭,所述光电晶体管的漏电流作用使得所述第一电容充电积累初始电荷量;
    控制所述开关晶体管打开,所述第一电容放电,通过所述第二漏极读取所述初始电荷量后控制所述开关晶体管关闭;
    所述光电晶体管接收经手指反射的光线后漏电流增大,所述第一电容充电积累指纹电荷量;
    控制所述开关晶体管打开,所述第一电容放电,通过所述第二漏极读取所述指纹电荷量。
PCT/CN2021/082248 2020-03-31 2021-03-23 一种显示组件、显示装置和指纹识别方法 WO2021197118A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/915,909 US20230144932A1 (en) 2020-03-31 2021-03-23 Display assembly, display apparatus, and fingerprint recognition method
JP2022559713A JP7407967B2 (ja) 2020-03-31 2021-03-23 ディスプレイ組立体、ディスプレイ装置、およびフィンガプリント認識方法
EP21780145.5A EP4116877A4 (en) 2020-03-31 2021-03-23 DISPLAY ARRANGEMENT, DISPLAY DEVICE AND FINGERPRINT RECOGNITION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010246037.8A CN113471249A (zh) 2020-03-31 2020-03-31 一种显示组件、显示装置和指纹识别方法
CN202010246037.8 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021197118A1 true WO2021197118A1 (zh) 2021-10-07

Family

ID=77865675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082248 WO2021197118A1 (zh) 2020-03-31 2021-03-23 一种显示组件、显示装置和指纹识别方法

Country Status (5)

Country Link
US (1) US20230144932A1 (zh)
EP (1) EP4116877A4 (zh)
JP (1) JP7407967B2 (zh)
CN (1) CN113471249A (zh)
WO (1) WO2021197118A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11838019B2 (en) * 2020-06-09 2023-12-05 Wuhan China Star Optoelectronics Technology Co., Ltd. Optical fingerprint identification circuit and display panel
CN115909424A (zh) * 2022-11-23 2023-04-04 武汉华星光电半导体显示技术有限公司 显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850292A (zh) * 2015-06-01 2015-08-19 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN105184247A (zh) * 2015-08-28 2015-12-23 京东方科技集团股份有限公司 一种指纹识别元件、其识别方法、显示器件及显示装置
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
CN106326845A (zh) * 2016-08-15 2017-01-11 京东方科技集团股份有限公司 指纹识别单元及制作方法、阵列基板、显示装置及指纹识别方法
CN107425041A (zh) * 2017-07-27 2017-12-01 上海天马微电子有限公司 一种触控显示面板、装置及制作方法
CN109656048A (zh) * 2019-01-10 2019-04-19 昆山龙腾光电有限公司 液晶显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873497B1 (ko) 2002-10-17 2008-12-15 삼성전자주식회사 지문 인식 소자를 내장한 일체형 액정표시장치 및 이의제조 방법
JP2007310628A (ja) 2006-05-18 2007-11-29 Hitachi Displays Ltd 画像表示装置
TWI498786B (zh) * 2009-08-24 2015-09-01 Semiconductor Energy Lab 觸控感應器及其驅動方法與顯示裝置
JP5174988B2 (ja) * 2010-04-07 2013-04-03 シャープ株式会社 回路基板および表示装置
JP2015159133A (ja) 2012-06-14 2015-09-03 シャープ株式会社 受光装置
KR102592857B1 (ko) 2016-12-16 2023-10-24 삼성디스플레이 주식회사 표시패널 및 이를 포함하는 표시장치
KR101981318B1 (ko) * 2017-04-19 2019-05-23 크루셜텍(주) 발광 지문 인식 패널 및 이를 포함하는 지문 인식 디스플레이 장치
JP2019165129A (ja) * 2018-03-20 2019-09-26 株式会社ジャパンディスプレイ 光センサー装置、および、表示装置
CN110008885B (zh) * 2019-03-29 2021-04-30 厦门天马微电子有限公司 显示面板和显示装置
CN110286796B (zh) * 2019-06-27 2023-10-27 京东方科技集团股份有限公司 电子基板及其制作方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850292A (zh) * 2015-06-01 2015-08-19 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN105184247A (zh) * 2015-08-28 2015-12-23 京东方科技集团股份有限公司 一种指纹识别元件、其识别方法、显示器件及显示装置
CN106096595A (zh) * 2016-08-08 2016-11-09 京东方科技集团股份有限公司 一种指纹识别模组、其制作方法及指纹识别显示装置
CN106326845A (zh) * 2016-08-15 2017-01-11 京东方科技集团股份有限公司 指纹识别单元及制作方法、阵列基板、显示装置及指纹识别方法
CN107425041A (zh) * 2017-07-27 2017-12-01 上海天马微电子有限公司 一种触控显示面板、装置及制作方法
CN109656048A (zh) * 2019-01-10 2019-04-19 昆山龙腾光电有限公司 液晶显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116877A4

Also Published As

Publication number Publication date
JP2023519994A (ja) 2023-05-15
US20230144932A1 (en) 2023-05-11
EP4116877A1 (en) 2023-01-11
EP4116877A4 (en) 2023-07-26
CN113471249A (zh) 2021-10-01
JP7407967B2 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
US11502138B2 (en) Electronic substrate, manufacturing method thereof, and display panel
WO2020186428A1 (zh) 显示面板及其制作方法
CN110504275B (zh) 阵列基板及其制作方法、显示面板和显示装置
CN110164847B (zh) 阵列基板、光检测方法及组件、显示装置
WO2020042616A1 (en) Display panel and fabricating method thereof
WO2021197118A1 (zh) 一种显示组件、显示装置和指纹识别方法
JP2010153449A (ja) 光源一体型光電変換装置
JP2023531340A (ja) 表示基板及び表示装置
EP4050658B1 (en) Display substrate, preparation method therefor, and display device
WO2021104050A1 (zh) 显示基板、显示面板及显示装置
CN109545835B (zh) 显示基板及其制备方法、显示装置
WO2021197079A1 (zh) 一种显示组件、显示装置和驱动方法
CN113299726A (zh) 显示基板及其制作方法、显示装置
CN110164946B (zh) 显示基板及制造方法、显示装置
JP2022521622A (ja) 薄膜トランジスタ及び有機フォトダイオードを備えている画像センサマトリクスアレイデバイス
CN216054712U (zh) 显示基板及显示装置
US20220115443A1 (en) Display device and image sensing method thereof
CN112420618B (zh) 显示面板及显示面板的制备方法
US20240188373A1 (en) Display Substrate, Manufacturing Method Thereof, and Display Apparatus
US20230309346A1 (en) Imaging device, display apparatus, and method for manufacturing display apparatus
CN118234303A (zh) 显示面板及显示终端
KR20240055919A (ko) 표시 장치
CN116744735A (zh) 显示面板、显示装置和制备方法
CN117460352A (zh) 显示面板及显示装置
CN114899336A (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021780145

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE