WO2021196747A1 - 分光探测器 - Google Patents

分光探测器 Download PDF

Info

Publication number
WO2021196747A1
WO2021196747A1 PCT/CN2020/136986 CN2020136986W WO2021196747A1 WO 2021196747 A1 WO2021196747 A1 WO 2021196747A1 CN 2020136986 W CN2020136986 W CN 2020136986W WO 2021196747 A1 WO2021196747 A1 WO 2021196747A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
input
lens
detector
spectroscopic
Prior art date
Application number
PCT/CN2020/136986
Other languages
English (en)
French (fr)
Inventor
罗腾
洪小鹏
范杰乔
肖清明
Original Assignee
武汉光谷信息光电子创新中心有限公司
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光谷信息光电子创新中心有限公司, 武汉光迅科技股份有限公司 filed Critical 武汉光谷信息光电子创新中心有限公司
Publication of WO2021196747A1 publication Critical patent/WO2021196747A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/108Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal

Definitions

  • This application relates to the field of optical communication technology, and in particular to a spectroscopic detector.
  • the spectroscopic detector is a kind of optical power detector.
  • the spectroscopic detector obtains the optical signal information of the entire optical transmission line by detecting the tiny optical signal separated from the optical transmission line. It is widely used in the optical fiber communication system. On-line monitoring of the power of the optical signal, so as to realize the power monitoring and management of the optical signal.
  • the existing spectroscopic detector has a large outer diameter, which is not conducive to the use of miniaturized modules.
  • the embodiments of the present application expect to provide a spectroscopic detector with a smaller outer diameter.
  • the technical solutions of the embodiments of the present application are implemented as follows:
  • An embodiment of the present application provides a spectroscopic detector, including:
  • the input and output part includes an input end and an output end, and the input end is used for inputting an input light beam;
  • a beam splitting lens for dividing the input light beam from the input end into a transmitted light beam and a reflected light beam, and the output end is used for outputting the reflected light beam;
  • a detector chip for converting the transmitted light beam into an electrical signal, and a passivation film is provided on the surface of the detector chip;
  • the tube is sealed, and the input and output part, the spectroscopic lens and the detector chip are non-airtightly packaged in the tube.
  • the spectroscopic lens includes a collimator lens and a spectroscopic film arranged on the light exit surface of the collimator lens, the input and output part is bonded to the light entrance surface of the collimator lens, and the detector chip Located on the side of the collimating lens away from the input and output part, the collimating lens is used to collimate the input light beam at the input end, and the input light beam at the input end is divided into the transmitted light beam and the transmitted light beam by the light splitting film. ⁇ reflected beam.
  • the collimating lens is a GRIN lens.
  • the spectroscopic detector includes a focusing lens, the focusing lens is located between the collimating lens and the detector chip, and the focusing lens is used to converge the transmitted light beam onto the detector chip .
  • the focusing lens is a spherical lens, and the distance between the spherical lens and the detector chip is L, where 1mm ⁇ L ⁇ 2mm.
  • the spectroscopic detector includes:
  • a wedge prism is bonded to the light exit surface of the collimating lens, and the wedge prism is used to deflect the light beam from the output end from the detector chip and deflect the transmitted light beam to the detector chip.
  • the wedge-angle prism includes a flat end surface and a wedge surface opposite to the flat end surface, the light exit surface of the collimating lens is bonded to the flat end surface, and the output from the output end from the wedge surface The light beam deviates from the detector chip, and the transmitted light beam emitted from the wedge surface is deviated toward the detector chip.
  • the included angle between the wedge surface and the flat end surface is ⁇ , where 7° ⁇ 9°;
  • the incident light beam at the input end is emitted from the bottom line of the wedge surface, and the reflected light beam at the output end is emitted from the top line of the wedge surface;
  • the flat end surface is provided with an antireflection film.
  • the included angle between the light incident surface of the spectroscopic lens and the optical axis of the spectroscopic lens is ⁇ , where 7° ⁇ 9°;
  • the photosensitive surface of the detector chip is greater than or equal to the light spot formed by the transmitted light beam
  • the sealing tube is non-airtightly sealed with waterproof glue
  • the input and output part is a double-core pin.
  • the input and output unit, the spectroscopic lens and the detector chip are non-airtightly packaged in the sealed tube, that is, the detector chip is not capped and protected, and there is no space in the sealed tube for accommodating
  • the cavity structure of the inert gas in this way, can reduce the outer diameter of the spectroscopic detector, which is conducive to the miniaturization and modular use of the spectroscopic detector.
  • the passivation film prevents the detector chip from being affected by water vapor, ion charge, etc., so that the detector chip can obtain higher reliability and waterproof performance.
  • the sealed tube can not only prevent external stray light from affecting the internal light intensity detection, but also protect the optical structure in the sealed tube from damage.
  • the non-hermetic packaging process is simple, and the cost is low, while having high reliability, it is more conducive to the integration of miniaturized devices and modules.
  • FIG. 1 is a schematic structural diagram of a spectroscopic detector provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of the optical path of the spectroscopic detector in Fig. 1;
  • Figure 3 is an enlarged view of H in Figure 1;
  • Fig. 4 is an enlarged view of D in Fig. 1.
  • Spectroscopic detector 100 input and output unit 10; input end 11; output end 12; spectroscopic lens 20; collimating lens 21; light exit surface 21a; light entrance surface 21b; detector chip 30; sealed tube 40; focusing lens 50; wedge Corner prism 60; flat end surface 60a; wedge surface 60b.
  • the spectroscopic detector 100 includes an input and output unit 10, a spectroscopic lens 20, a detector chip 30 and a sealing tube 40.
  • the input and output unit 10 includes an input terminal 11 and an output terminal 12.
  • the input terminal 11 is used to input the input beam A.
  • the dichroic lens 20 is used to divide the input light beam A from the input end 11 into a transmitted light beam B and a reflected light beam C.
  • the output terminal 12 is used to output the reflected light beam C.
  • the detector chip 30 is used to convert the transmitted light beam B into an electrical signal.
  • the surface of the detector chip 30 is provided with a passivation film.
  • the input and output unit 10, the spectroscopic lens 20, and the detector chip 30 are non-airtightly packaged in the sealed tube 40.
  • the part of the input beam A at the input end 11 is reflected by the beam splitter lens 20 to become a reflected beam C to the output end 12 for continued transmission to achieve beam output.
  • the other part of the input beam A at the input end 11 is refracted by the beam splitter lens 20 to become a transmitted beam B to the detector chip 30, the detector chip 30 is used to convert the transmitted light beam B into an electrical signal, thereby obtaining the optical signal information of the entire optical transmission route, and realizing the monitoring of the entire optical transmission route.
  • the input and output unit 10, the spectroscopic lens 20 and the detector chip 30 are non-airtightly packaged in the sealed tube 40, that is, the detector chip 30 is not capped and protected, and there is no inert gas in the sealed tube 40 In this way, the outer diameter of the spectroscopic detector 100 can be reduced, which is conducive to the miniaturization and modular use of the spectroscopic detector for use in coherent networks, Erbium Doped Fiber Application Amplifier (EDFA, Erbium Doped Fiber Application Amplifier), optical Switch (OSW, namely Optical Switch) and other optoelectronic modules.
  • EDFA Erbium Doped Fiber Application Amplifier
  • OSW optical Switch
  • the passivation film prevents the detector chip 30 from being affected by water vapor, ion charges, etc., so that the detector chip 30 can obtain higher reliability and waterproof performance.
  • the sealed tube 40 can not only prevent external stray light from affecting the internal light intensity detection, but also protect the optical structure in the sealed tube 40 from damage.
  • the non-hermetic packaging process is simple, and the cost is low, while having high reliability, it is more conducive to the integration of miniaturized devices and modules.
  • the passivation film includes but is not limited to oxide, nitride, or synthetic resin.
  • Oxides include, but are not limited to, silica, alumina, or titanium oxide.
  • Nitride includes but is not limited to silicon nitride, boron nitride or gallium nitride.
  • Synthetic resins include but are not limited to polyimides or polysiloxanes.
  • the dichroic lens 20 includes a collimating lens 21 and a dichroic film (not shown in the figure) provided on the light exit surface 21 a of the collimating lens 21.
  • the input and output unit 10 is bonded to the light incident surface 21 b of the collimator lens 21.
  • the detector chip 30 is located on the side of the collimating lens 21 away from the input/output part 10.
  • the collimating lens 21 is used to collimate the input beam A at the input end 11.
  • the input light beam A at the input end 11 is divided into a transmitted light beam B and a reflected light beam C through the light splitting film.
  • the light incident surface 21 b of the collimating lens 21 refers to the end surface of the input light beam A from the input end 11 entering the collimating lens 21.
  • the light exit surface 21a of the collimator lens 21 refers to the end surface outside the collimator lens 21 that the transmitted light beam B emits.
  • the beam splitting film has a certain transmittance and reflectivity.
  • the input beam A at the input end 11 is collimated by the collimating lens 21 and becomes a parallel beam.
  • the part of the input beam A at the input end 11 is reflected by the beam splitting film as a reflected beam C to the output end 12.
  • the other part of the input light beam at the input end 11 is refracted by the light splitting film into a transmitted light beam B to the detector chip 30.
  • the light-incident surface 21b of the collimator lens 21 is bonded to the input/output part 10 for fixing the collimator lens 21, which not only improves the coupling efficiency, but also avoids the use of glass tubes to fix the collimator lens 21 and the input/output part 10, thereby simplifying the installation
  • the process further reduces the diameter of the spectroscopic detector 100, so that the overall optical structure is compact and the overall length is small.
  • the light splitting film can be set with different light splitting ratios, so that the detector chip 30 can obtain corresponding different responsivity, for example, the light splitting ratio of the light splitting film is between 1% and 10%.
  • the input/output part 10 and the light incident surface 21b of the collimator lens 21 can be bonded by ultraviolet glue.
  • the sealing tube 40 is a metal tube. In this way, the external stray light is further prevented from affecting the internal light intensity detection. In other embodiments, the sealing tube 40 may also be a ceramic tube.
  • the collimating lens 21 is a GRIN lens.
  • the GRIN lens that is, the gradient index lens, has the characteristic of small size, which is beneficial to further reduce the size of the spectroscopic detector 100.
  • the spectroscopic detector 100 includes a focusing lens 50.
  • the focusing lens 50 is located between the collimating lens 21 and the detector chip 30.
  • the focusing lens 50 is used to converge the transmitted light beam B onto the detector chip 30.
  • the part of the input beam A at the input end 11 is reflected by the beam splitting film into a reflected beam C to the output end 12, and the other part of the input beam A at the input end 11 is separated by the beam splitting film.
  • Refraction becomes the transmitted light beam B to the focusing lens 50, and the focusing lens 50 condenses the transmitted light beam B onto the detector chip 30.
  • the focusing lens 50 is used to focus the collimated transmitted light beam B onto the detector chip 30. In this way, the area of the photosensitive surface of the detector chip 30 can be reduced, which is beneficial to reduce the size of the detector chip 30, thereby further reducing the light splitting.
  • the size of the detector 100 is reflected by the beam splitting film into a reflected beam C to the output end 12, and the other part of the input beam A at the input end 11 is separated by the beam splitting film.
  • Refraction becomes the transmitted light beam B to the focusing lens 50, and the focusing lens 50 condenses the transmitted light beam B onto the detector chip 30.
  • the focusing lens 50 is used to
  • the focusing lens 50 is a spherical lens.
  • the distance between the spherical lens and the detector chip 30 is L, where 1mm ⁇ L ⁇ 2mm.
  • L may be 1mm, 1.2mm, 1.4mm, 1.5mm, 1.6mm, 1.8mm, 1.9mm, 2mm, etc. In this way, it is convenient for the spherical lens to converge the transmitted light beam B onto the detector chip 30.
  • a glass tube (not shown in the figure) is provided on the outside of the spherical lens, and the glass tube is bonded to the sealing tube 40. In this way, it is convenient to fix the spherical lens.
  • the spectroscopic detector 100 includes a wedge prism 60.
  • the wedge angle prism 60 is bonded to the light-emitting surface 21a of the collimating lens 21.
  • the wedge prism 60 is used to deflect the light beam from the output end 12 away from the detector chip 30 and deflect the transmitted light beam B toward the detector chip 30.
  • the detector chip 30 Since the light path is reversible, after the reflected light beam C enters the output terminal 12, it may be reflected back to the collimating lens 21 and then emitted from the light-emitting surface of the collimating lens 21, and projected to the detector chip 30. In this way, the detector chip 30 is reflected back by the reflection. The influence of the light beam C leads to an error in the monitoring of the optical signal information of the entire optical transmission route.
  • the wedge prism 60 is used to deviate the light beam from the output end 12 from the detector chip 30, that is, the wedge prism 60 is used to deflect the light beam from the output end 12 again so that the light beam from the output end 12 cannot be directed toward The detector chip 30, at the same time, deflects the transmitted light beam B toward the detector chip 30, thereby avoiding monitoring errors and obtaining higher directivity.
  • the wedge prism 60 is fixed by bonding the wedge prism 60 to the light exit surface of the collimating lens 21, which is convenient to obtain high directivity while reducing the size of the spectroscopic detector 100, further making the overall optical structure of the spectroscopic detector 100 compact , The overall diameter and length are small.
  • the collimating lens 21 is a GRIN lens. Since the end surface of the GRIN lens can be flat, it is convenient for the wedge prism 60 to be bonded to the end surface of the GRIN lens.
  • the wedge angle prism 60 includes a flat end surface 60a and a wedge surface 60b opposite to the flat end surface 60a.
  • the light-emitting surface 21a of the collimating lens 21 is bonded to the flat end surface 60a. That is, the wedge prism 60 is a right-angle wedge prism.
  • the light beam from the output terminal 12 emitted from the wedge surface 60 b deviates from the detector chip 30.
  • the transmitted light beam B emitted from the wedge surface 60 b is deflected toward the detector chip 30.
  • the angle between the wedge surface 60b and the flat end surface 60a is ⁇ , where 7° ⁇ 9°. That is, the wedge angle of the wedge angle prism 60 is ⁇ , where 7° ⁇ 9°. Exemplarily, ⁇ is 7°, 7.5°, 8°, 8.5°, 9°, etc. In this way, the light beam from the output end 12 emitted from the wedge surface 60b can be better deviated from the detector chip 30, and the transmitted light beam B emitted from the wedge surface 60b is deflected toward the detector chip 30, which further improves the directivity.
  • the incident light beam at the input end 12 exits from the bottom line F of the wedge surface 60b, and the reflected light beam at the output end 11 exits from the top line G of the wedge surface 60a.
  • the light beam from the output end 12 emitted from the wedge surface 60b can be better deviated from the detector chip 30, and the transmitted light beam B emitted from the wedge surface 60b is deflected toward the detector chip 30, which further improves the directivity.
  • the thick end of the wedge prism 60 is the bottom end
  • the thin end of the wedge prism 60 is the top end
  • the line of intersection between the wedge surface 60b and the bottom end surface of the wedge prism 60 is the bottom line F.
  • the line of intersection of the wedge surface 60b and the tip surface of the wedge angle prism 60 is the top line G.
  • the wedge prism 60 is a right-angle wedge prism, and the included angle between the flat end surface 60a and the bottom end surface of the wedge prism 60 is 90°.
  • the incident light beam at the input end 12 exits from the bottom line F of the wedge surface 60b, and the reflected light beam at the output end 11 exits from the top line G of the wedge surface 60a.
  • the bottom surface of the wedge prism 60 and the bottom surface of the collimating lens 21 are in the same plane, and the top surface of the wedge prism 60 and the top surface of the collimating lens 21 are in the same plane.
  • the flat end surface 60 a is provided with an anti-reflection film. Since the flat end surface 60a is the light incident surface of the wedge prism 60, the antireflection coating is used to reduce or eliminate the reflectivity of the flat end surface 60a, and increase the light transmission of the light incident surface of the wedge prism 60.
  • the angle between the light incident surface of the beam splitter lens 20 and the optical axis E of the beam splitter lens 20 is ⁇ , where 7° ⁇ 9°.
  • is 7°, 7.5°, 8°, 8.5°, 9°, etc. In this way, the return loss can be reduced.
  • the spectroscopic lens 20 includes a collimating lens 21 and a spectroscopic film disposed on the light exit surface 21 a of the collimating lens 21.
  • the angle between the light incident surface 21b of the collimating lens 21 and the optical axis E of the collimating lens 21 is ⁇ , where 7° ⁇ 9°.
  • the photosensitive surface of the detector chip 30 is greater than or equal to the light spot formed by the transmitted light beam B. In this way, the transmitted light beam B can all be emitted to the photosensitive surface of the detector chip 30, which improves the accuracy.
  • the sealing tube 40 is non-airtightly packaged with waterproof glue.
  • the waterproof glue prevents the sealing tube 40 from being deformed due to the water absorption of the glue, thereby preventing the structural position between the input and output part 10, the spectroscopic lens 20 and the detector chip 30 from changing, which may cause the optical path in the spectroscopic detector 100 to change. Therefore, the use of waterproof glue for non-airtight packaging can obtain stronger waterproof performance and better reliability.
  • the waterproof glue includes, but is not limited to, silicone-based packaging glue.
  • the input and output portion 10 is a double-core pin.
  • the dual-core pin includes a dual-core capillary tube and a sleeve located outside the dual-core capillary tube.
  • the input end 11 and the output end 12 are located in the dual-core capillary tube, and the sleeve is connected to the sealing tube 40.
  • the double-core pin is convenient for bonding with the spectroscopic lens 20.
  • the input end 11 may be a single-mode optical fiber.
  • the output end 12 may be a single-mode fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种分光探测器(100),包括输入输出部(10)、分光透镜(20)、探测器芯片(30)以及封管(40)。输入输出部(10)包括输入端(11)和输出端(12)。输入端(11)用于输入光束(A)。分光透镜(20)用于将来自输入端(11)的输入光束(A)分成透射光束(B)和反射光束(C)。输出端(12)用于输出反射光束(C)。探测器芯片(30)用于将透射光束(B)转换成电信号。探测器芯片(30)的表面设置有钝化膜。输入输出部(10)、分光透镜(20)和探测器芯片(30)通过非气密性的方式封装于封管(40)内。也就是说,探测器芯片(30)不进行封帽保护,如此,可以减小分光探测器(100)的外径,利于分光探测器(100)小型化模块化使用。钝化膜避免探测器芯片(30)受到水汽、离子电荷等的影响,以便探测器芯片(30)获得较高的可靠性和防水性能。

Description

分光探测器
相关申请的交叉引用
本申请基于申请号为202010235961.6、申请日为2020年3月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通信技术领域,尤其涉及一种分光探测器。
背景技术
分光探测器是光功率探测器的一种,分光探测器通过探测光传输线路中分出的微小光信号,获得整个光传输线路的光信号信息,它广泛应用于光纤通信***中,对光信号的功率进行在线监测,从而实现对光信号的功率监控和管理。现有的分光探测器外径较大,不利于小型化模块使用。
发明内容
有鉴于此,本申请实施例期望提供一种分光探测器,具有较小的外径。为达到上述有益效果,本申请实施例的技术方案是这样实现的:
本申请实施例提供一种分光探测器,包括:
输入输出部,包括输入端和输出端,所述输入端用于输入输入光束;
分光透镜,用于将来自所述输入端的输入光束分成透射光束和反射光束,所述输出端用于输出所述反射光束;
探测器芯片,用于将所述透射光束转换成电信号,所述探测器芯片的表面设置有钝化膜;以及
封管,所述输入输出部、所述分光透镜和所述探测器芯片通过非气密性封装于所述封管内。
进一步地,所述分光透镜包括准直透镜和设置在所述准直透镜的出光面上的分光膜,所述输入输出部与所述准直透镜的入光面粘接,所述探测器芯片位于所述准直透镜远离所述输入输出部的一侧,所述准直透镜用于准直所述输入端的输入光束,所述输入端的输入光束通过所述分光膜分成所述透射光束和所述反射光束。
进一步地,所述准直透镜为GRIN透镜。
进一步地,所述分光探测器包括聚焦透镜,所述聚焦透镜位于所述准直透镜和所述探测器芯片之间,所述聚焦透镜用于将所述透射光束会聚至所述探测器芯片上。
进一步地,所述聚焦透镜为球面透镜,所述球面透镜与所述探测器芯片之间的距离为L,其中,1mm≤L≤2mm。
进一步地,所述分光探测器包括:
楔角棱镜,与所述准直透镜的出光面粘接,所述楔角棱镜用于将来自所述输出端的光束偏离所述探测器芯片,且将所述透射光束偏向所述探测器芯片。
进一步地,所述楔角棱镜包括平端面和与所述平端面相对的楔面,所述准直透镜的出光面与所述平端面粘接,从所述楔面出射的来自所述输出端的光束偏离所述探测器芯片,从所述楔面出射的所述透射光束偏向所述探测器芯片。
进一步地,所述楔面与所述平端面之间的夹角为α,其中,7°≤α≤9°;
和/或,所述输入端的入射光束从所述楔面的底线射出,所述输出端的反射光束从所述楔面的顶线射出;
和/或,所述平端面设置有增透膜。
进一步地,所述分光透镜的入光面与所述分光透镜的光轴的夹角为β,其中,7°≤β≤9°;
和/或,所述探测器芯片的光敏面大于或等于所述透射光束形成的光斑;
和/或,所述封管采用防水胶进行非气密性封装;
和/或,所述输入输出部为双芯插针。
本申请实施例提供的分光探测器,输入输出部、分光透镜和探测器芯片通 过非气密性封装于封管内,也就是说,探测器芯片不进行封帽保护,封管内不存在用于容纳惰性气体的空腔结构,如此,可以减小分光探测器的外径,利于分光探测器小型化模块化使用。钝化膜避免探测器芯片受到水汽、离子电荷等的影响,以便探测器芯片获得较高的可靠性和防水性能。封管不仅能够防止外部杂散光影响内部光强探测,还能保护封管内的光学结构不受损伤。此外,非气密性封装工艺流程简单,且成本较低,在拥有高可靠性的同时,更有利于小型化器件与模块的集成。
附图说明
图1为本申请实施例提供的一种分光探测器的结构示意图;
图2为图1中分光探测器的光路示意图;
图3为图1中H处的放大图;
图4为图1中D处的放大图。
附图标记说明
分光探测器100;输入输出部10;输入端11;输出端12;分光透镜20;准直透镜21;出光面21a;入光面21b;探测器芯片30;封管40;聚焦透镜50;楔角棱镜60;平端面60a;楔面60b。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。其中,mm为国际单位毫米。下面结合附图及具体实施例对本申请再作进一步详细的说明。
请参见图1和图2,本申请实施例提供一种分光探测器,分光探测器100包括输入输出部10、分光透镜20、探测器芯片30以及封管40。输入输出部10包括输入端11和输出端12。输入端11用于输入输入光束A。分光透镜20用于将来自输入端11的输入光束A分成透射光束B和反射光束C。输出端12用 于输出反射光束C。探测器芯片30用于将透射光束B转换成电信号。探测器芯片30的表面设置有钝化膜。输入输出部10、分光透镜20和探测器芯片30通过非气密性封装于封管40内。
输入端11的输入光束A的部分被分光透镜20反射成为反射光束C至输出端12,用于继续传输,实现光束输出,输入端11的输入光束A的另部分被分光透镜20折射成为透射光束B至探测器芯片30上,利用探测器芯片30将透射光束B转换成电信号,从而获得整个光传输路线的光信号信息,实现整个光传输路线的监测。输入输出部10、分光透镜20和探测器芯片30通过非气密性封装于封管40内,也就是说,探测器芯片30不进行封帽保护,封管40内不存在用于容纳惰性气体的空腔结构,如此,可以减小分光探测器100的外径,利于分光探测器小型化模块化使用,以便用于相干网以及掺铒光纤放大器(EDFA,即Erbium Doped Fiber Application Amplifier)、光开关(OSW,即Optical Switch)等光电模块中。钝化膜避免探测器芯片30受到水汽、离子电荷等的影响,以便探测器芯片30获得较高的可靠性和防水性能。封管40不仅能够防止外部杂散光影响内部光强探测,还能保护封管40内的光学结构不受损伤。此外,非气密性封装工艺流程简单,且成本较低,在拥有高可靠性的同时,更有利于小型化器件与模块的集成。
进一步地,钝化膜包括但不限于氧化物、氮化物或合成树脂等。氧化物包括但不限于二氧化硅、氧化铝或氧化钛等。氮化物包括但不限于氮化硅、氮化硼或氮化镓等。合成树脂包括但不限于聚酰亚胺类或聚硅氧烷类等。
在一实施例中,请参见图1和图2,分光透镜20包括准直透镜21和设置在准直透镜21的出光面21a上的分光膜(图未示出)。输入输出部10与准直透镜21的入光面21b粘接。探测器芯片30位于准直透镜21远离输入输出部10的一侧。准直透镜21用于准直输入端11的输入光束A。输入端11的输入光束A通过分光膜分成透射光束B和反射光束C。
可以理解的是,准直透镜21的入光面21b是指输入端11的输入光束A进入准直透镜21内的端面。准直透镜21的出光面21a是指透射光束B射出准直 透镜21外的端面。
分光膜具有一定的透射率和反射率,输入端11的输入光束A经过准直透镜21准直后成为平行光束,输入端11的输入光束A的部分被分光膜反射成为反射光束C至输出端12,输入端11的输入光束的另部分被分光膜折射成为透射光束B至探测器芯片30上。准直透镜21的入光面21b与输入输出部10粘接用于固定准直透镜21,不仅可以提高耦合效率,还避免采用玻璃管固定安装准直透镜21与输入输出部10,从而简化安装工艺,进一步减小分光探测器100的直径,如此,整体光学结构紧凑,整体长度小。
进一步地,分光膜可以设置不同的分光比,如此,探测器芯片30可获得对应不同的响应度,例如分光膜的分光比在1%~10%之间。输入输出部10与准直透镜21的入光面21b可以采用紫外胶粘接。
在一些实施例中,封管40为金属管。如此,进一步避免外部杂散光影响内部光强探测。在另一些实施例中,封管40也可以为陶瓷管。
在一实施例中,请参见图1和图2,准直透镜21为GRIN透镜。GRIN透镜即梯度折射率透镜,具有体积小的特性,有利于进一步减小分光探测器100的尺寸。
在一实施例中,请参见图1和图2,分光探测器100包括聚焦透镜50。聚焦透镜50位于准直透镜21和探测器芯片30之间。聚焦透镜50用于将透射光束B会聚至探测器芯片30上。
输入端11的输入光束A经过准直透镜21准直后,输入端11的输入光束A的部分被分光膜反射成为反射光束C至输出端12,输入端11的输入光束的另部分被分光膜折射成为透射光束B至聚焦透镜50,聚焦透镜50将透射光束B会聚至探测器芯片30上。利用聚焦透镜50将准直的透射光束B聚焦投向探测器芯片30上,如此,可以减小探测器芯片30的光敏面的面积,有利于减小探测器芯片30的尺寸,从而进一步减小分光探测器100的尺寸。
在一实施例中,请参见图1和图2,聚焦透镜50为球面透镜。球面透镜与探测器芯片30之间的距离为L,其中,1mm≤L≤2mm。示例性的,L可以为1mm、 1.2mm、1.4mm、1.5mm、1.6mm、1.8mm、1.9mm、2mm等。如此,便于球面透镜将透射光束B会聚至探测器芯片30上。
在一实施例中,请参见图1和图2,球面透镜的外部设置有玻璃管(图未示出),玻璃管与封管40粘接。如此,便于固定球面透镜。
在一实施例中,请参见图1和图2,分光探测器100包括楔角棱镜60。楔角棱镜60与准直透镜21的出光面21a粘接。楔角棱镜60用于将来自输出端12的光束偏离探测器芯片30,且将透射光束B偏向探测器芯片30。
由于光路可逆,反射光束C进入输出端12后,可能会再次反射回准直透镜21再从准直透镜21的出光面射出,投向探测器芯片30,如此,探测器芯片30受到反射回的反射光束C的影响,导致整个光传输路线的光信号信息监测错误。本申请实施例利用楔角棱镜60将来自输出端12的光束偏离探测器芯片30,也就是说,利用楔角棱镜60将来自输出端12的光束再次偏折使得来自输出端12的光束无法投向探测器芯片30,同时,将透射光束B偏向探测器芯片30,从而避免监测错误,获得较高的方向性。通过楔角棱镜60与准直透镜21的出光面粘接来固定楔角棱镜60,便于在获取高方向性的同时,减小分光探测器100的尺寸,进一步使得分光探测器100整体光学结构紧凑,整体直径和长度小。
在一些实施例中,请参见图1和图2,准直透镜21为GRIN透镜,由于GRIN透镜的端面可以为平面,如此便于楔角棱镜60与GRIN透镜的端面粘接。
在一实施例中,请参见图1、图2和图3,楔角棱镜60包括平端面60a和与平端面60a相对的楔面60b。准直透镜21的出光面21a与平端面60a粘接。也就是说,楔角棱镜60为直角楔角棱镜。从楔面60b出射的来自输出端12的光束偏离探测器芯片30。从楔面60b出射的透射光束B偏向探测器芯片30。
在一实施例中,请参见图1、图2和图3,楔面60b与平端面60a之间的夹角为α,其中,7°≤α≤9°。也就是说,楔角棱镜60的楔角为α,其中,7°≤α≤9°。示例性的,α为7°、7.5°、8°、8.5°或9°等。如此,能够更好地使得从楔面60b出射的来自输出端12的光束偏离探测器芯片30,从楔面60b出射的透射光束B偏向探测器芯片30,进一步地提高方向性。
在一实施例中,请参见图1、图2和图3,输入端12的入射光束从楔面60b的底线F射出,输出端11的反射光束从楔面60a的顶线G射出。如此,能够更好地使得从楔面60b出射的来自输出端12的光束偏离探测器芯片30,从楔面60b出射的透射光束B偏向探测器芯片30,进一步地提高方向性。
需要说明的是,楔角棱镜60厚端为底端,楔角棱镜60薄端为顶端,楔面60b与楔角棱镜60的底端面的交线为底线F。楔面60b与楔角棱镜60的顶端面的交线为顶线G。楔角棱镜60为直角楔角棱镜,平端面60a与楔角棱镜60的底端面之间的夹角为90°。
可以理解的是,输入端12的入射光束从楔面60b的底线F射出,输出端11的反射光束从楔面60a的顶线G射出。则楔角棱镜60的底端面与准直透镜21的底面在同一平面内,楔角棱镜60的顶端面与准直透镜21的顶面在同一平面内。
在一实施例中,请参见图1和图2,平端面60a设置有增透膜。由于平端面60a为楔角棱镜60的入光面,增透膜用于减少或消除平端面60a的反射率,增加楔角棱镜60的入光面的透光量。
在一实施例中,请参见图1、图2和图4,分光透镜20的入光面与分光透镜20的光轴E的夹角为β,其中,7°≤β≤9°。示例性的,β为7°、7.5°、8°、8.5°或9°等。如此,可以减小回波损耗。
可以理解的是,分光透镜20包括准直透镜21和设置在准直透镜21的出光面21a上的分光膜。则准直透镜21的入光面21b与准直透镜21的光轴E之间的夹角为β,其中,7°≤β≤9°。
在一实施例中,请参见图1和图2,探测器芯片30的光敏面大于或等于透射光束B形成的光斑。如此,可以使得透射光束B均射出至探测器芯片30的光敏面上,提高准确性。
在一实施例中,请参见图1和图2,封管40采用防水胶进行非气密性封装。防水胶避免粘胶吸水导致封管40变形,从而避免输入输出部10、分光透镜20和探测器芯片30之间结构位置改变,导致分光探测器100内光路改变。因此, 采用防水胶进行非气密性封装可获得较强的防水性能和较好的可靠性。
具体的,防水胶包括但不限于有机硅类封装胶等。
在一实施例中,请参见图1和图2,输入输出部10为双芯插针。具体的,双芯插针包括双芯毛细管和位于双芯毛细管外部的套管,输入端11和输出端12位于双芯毛细管内,套管与封管40连接。双芯插针便于与分光透镜20粘接。
优选地,输入端11可以为单模光纤。输出端12可以为单模光纤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不仅限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种分光探测器,包括:
    输入输出部,包括输入端和输出端,所述输入端用于输入输入光束;
    分光透镜,用于将来自所述输入端的输入光束分成透射光束和反射光束,所述输出端用于输出所述反射光束;
    探测器芯片,用于将所述透射光束转换成电信号,所述探测器芯片的表面设置有钝化膜;以及
    封管,所述输入输出部、所述分光透镜和所述探测器芯片通过非气密性封装于所述封管内。
  2. 根据权利要求1所述的分光探测器,所述分光透镜包括准直透镜和设置在所述准直透镜的出光面上的分光膜,所述输入输出部与所述准直透镜的入光面粘接,所述探测器芯片位于所述准直透镜远离所述输入输出部的一侧,所述准直透镜用于准直所述输入端的输入光束,所述输入端的输入光束通过所述分光膜分成所述透射光束和所述反射光束。
  3. 根据权利要求2所述的分光探测器,所述准直透镜为GRIN透镜。
  4. 根据权利要求2所述的分光探测器,所述分光探测器包括聚焦透镜,所述聚焦透镜位于所述准直透镜和所述探测器芯片之间,所述聚焦透镜用于将所述透射光束会聚至所述探测器芯片上。
  5. 根据权利要求4所述的分光探测器,所述聚焦透镜为球面透镜,所述球面透镜与所述探测器芯片之间的距离为L,其中,1mm≤L≤2mm。
  6. 根据权利要求2所述的分光探测器,所述分光探测器包括:
    楔角棱镜,与所述准直透镜的出光面粘接,所述楔角棱镜用于将来自所述输出端的光束偏离所述探测器芯片,且将所述透射光束偏向所述探测器芯片。
  7. 根据权利要求6所述的分光探测器,所述楔角棱镜包括平端面和与 所述平端面相对的楔面,所述准直透镜的出光面与所述平端面粘接,从所述楔面出射的来自所述输出端的光束偏离所述探测器芯片,从所述楔面出射的所述透射光束偏向所述探测器芯片。
  8. 根据权利要求7所述的分光探测器,所述楔面与所述平端面之间的夹角为α,其中,7°≤α≤9°;
    和/或,所述输入端的入射光束从所述楔面的底线射出,所述输出端的反射光束从所述楔面的顶线射出;
    和/或,所述平端面设置有增透膜。
  9. 根据权利要求1~8任意一项所述的分光探测器,所述分光透镜的入光面与所述分光透镜的光轴的夹角为β,其中,7°≤β≤9°;
    和/或,所述探测器芯片的光敏面大于或等于所述透射光束形成的光斑;
    和/或,所述封管采用防水胶进行非气密性封装;
    和/或,所述输入输出部为双芯插针。
PCT/CN2020/136986 2020-03-30 2020-12-16 分光探测器 WO2021196747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010235961.6 2020-03-30
CN202010235961.6A CN111290087A (zh) 2020-03-30 2020-03-30 分光探测器

Publications (1)

Publication Number Publication Date
WO2021196747A1 true WO2021196747A1 (zh) 2021-10-07

Family

ID=71026112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136986 WO2021196747A1 (zh) 2020-03-30 2020-12-16 分光探测器

Country Status (2)

Country Link
CN (1) CN111290087A (zh)
WO (1) WO2021196747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047571A (zh) * 2022-06-27 2022-09-13 中国科学院半导体研究所 光探测器芯片镀膜结构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111290087A (zh) * 2020-03-30 2020-06-16 武汉光谷信息光电子创新中心有限公司 分光探测器
CN111708174A (zh) * 2020-06-18 2020-09-25 武汉光迅科技股份有限公司 分光透镜组及分光探测装置
CN111650701A (zh) * 2020-06-29 2020-09-11 成都新易盛通信技术股份有限公司 一种改善回波损耗的结构及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203069266U (zh) * 2012-12-17 2013-07-17 厦门三优光电股份有限公司 一种分光探测器
WO2013123001A1 (en) * 2012-02-16 2013-08-22 Corning Incorporated Non- hermetically sealed, multi - emitter laser pump packages and methods for forming the same
CN104516070A (zh) * 2014-12-05 2015-04-15 武汉电信器件有限公司 高可靠性非气密封装并行收发组件
CN205880286U (zh) * 2016-08-08 2017-01-11 南京华脉科技股份有限公司 一种小型分光探测器
CN209446841U (zh) * 2018-12-26 2019-09-27 深圳市科敏光通讯技术有限公司 一种保偏单向光功率探测器
CN209690567U (zh) * 2019-04-03 2019-11-26 杭州芯耘光电科技有限公司 一种非气密性封装装配结构的光器件
CN111290087A (zh) * 2020-03-30 2020-06-16 武汉光谷信息光电子创新中心有限公司 分光探测器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559705B2 (en) * 2004-01-26 2009-07-14 Opnext, Inc. Optical ROSA for long reach optical transceiver
CN102338909A (zh) * 2011-10-28 2012-02-01 武汉光迅科技股份有限公司 一种光分接头探测器
CN205157847U (zh) * 2015-11-12 2016-04-13 昂纳信息技术(深圳)有限公司 带隔离的光功率光电探测器
CN205484920U (zh) * 2015-11-27 2016-08-17 武汉电信器件有限公司 一种并行接收光器件
CN107991740A (zh) * 2017-12-14 2018-05-04 武汉电信器件有限公司 一种集成光电探测器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123001A1 (en) * 2012-02-16 2013-08-22 Corning Incorporated Non- hermetically sealed, multi - emitter laser pump packages and methods for forming the same
CN203069266U (zh) * 2012-12-17 2013-07-17 厦门三优光电股份有限公司 一种分光探测器
CN104516070A (zh) * 2014-12-05 2015-04-15 武汉电信器件有限公司 高可靠性非气密封装并行收发组件
CN205880286U (zh) * 2016-08-08 2017-01-11 南京华脉科技股份有限公司 一种小型分光探测器
CN209446841U (zh) * 2018-12-26 2019-09-27 深圳市科敏光通讯技术有限公司 一种保偏单向光功率探测器
CN209690567U (zh) * 2019-04-03 2019-11-26 杭州芯耘光电科技有限公司 一种非气密性封装装配结构的光器件
CN111290087A (zh) * 2020-03-30 2020-06-16 武汉光谷信息光电子创新中心有限公司 分光探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047571A (zh) * 2022-06-27 2022-09-13 中国科学院半导体研究所 光探测器芯片镀膜结构
CN115047571B (zh) * 2022-06-27 2023-12-05 中国科学院半导体研究所 光探测器芯片镀膜结构

Also Published As

Publication number Publication date
CN111290087A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021196747A1 (zh) 分光探测器
US4733094A (en) Bidirectional optoelectronic component operating as an optical coupling device
US10048456B2 (en) Packaging device of single optical multiplexed parallel optical receiver coupling system component and the system thereof
WO2021197240A1 (zh) 多通道光接收模块
US6021238A (en) Optoelectronic module for bidirectional optical data transmission
US20060251362A1 (en) Subassembly and optical module
JPS61124909A (ja) 光結合装置
US8664584B2 (en) Compact tap monitor with a reflection mask
US8437589B2 (en) Optical module
JPH10173207A (ja) 光送受信モジュール
WO2018079091A1 (ja) 光結合素子及び光通信システム
US11841539B2 (en) Optical module
CN111458814A (zh) 一种正交耦合光路
US4741595A (en) Optical transmission device
WO2022246917A1 (zh) 一种基于cob工艺的平面多通道单纤双向器件
WO2021010488A1 (ja) 半導体レーザモジュール、光源ユニット、光源装置および光ファイバレーザ
KR100553877B1 (ko) 광소자모듈
JP2004219523A (ja) 光モニタデバイス
JPH07168061A (ja) 光送受信モジュール
JPS62222211A (ja) 発光モジユ−ル
JPH02118607A (ja) 光結合回路
US5404414A (en) Optical coupler with high degree of isolation
CN212255789U (zh) 一种高回损的光电探测器及光接收器件
JP2000227529A (ja) 光コネクタ
KR20170090593A (ko) 광학 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929216

Country of ref document: EP

Kind code of ref document: A1