WO2021196447A1 - 一种塑模成型功率电感元件及制作方法 - Google Patents

一种塑模成型功率电感元件及制作方法 Download PDF

Info

Publication number
WO2021196447A1
WO2021196447A1 PCT/CN2020/101831 CN2020101831W WO2021196447A1 WO 2021196447 A1 WO2021196447 A1 WO 2021196447A1 CN 2020101831 W CN2020101831 W CN 2020101831W WO 2021196447 A1 WO2021196447 A1 WO 2021196447A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
conductor
magnetic
rectangular parallelepiped
base
Prior art date
Application number
PCT/CN2020/101831
Other languages
English (en)
French (fr)
Inventor
王莹莹
余鑫树
夏胜程
李有云
车鑫
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to US17/238,224 priority Critical patent/US20210304956A1/en
Publication of WO2021196447A1 publication Critical patent/WO2021196447A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to the technical field of plastic molding, in particular to a plastic molded power inductance element and a manufacturing method.
  • the one-piece inductors in electronic components are in short supply in automotive electronics, artificial intelligence, 5G and other fields due to their ultra-thin size, superior high-current characteristics, and ultra-high stability.
  • the coil spot welding technology is mainly used, and the phenomenon of virtual welding and missing welding may occur.
  • the molding process the coil and the solder joints are pressed by cold pressing or hot pressing, and the pressure is as high as Above 900MPa, the solder joints, the coil coating, and the insulating layer of the magnetic powder are all easily damaged, and open and short circuits are easy to appear.
  • the conductor is deformed due to the high molding pressure during the pressing process; and the conductor is too wide, the adhesion between the magnetic powder is insufficient, and the magnet is prone to cracking. Furthermore, the electrodes are drawn from both sides of the magnet, and the side electrodes are located outside the magnet, which cannot make full use of the volume of the magnet.
  • the prior art lacks an integrated inductor with low molding pressure and simple process.
  • the present invention provides a plastic molded power inductor element and a manufacturing method.
  • a plastic molded power inductance component the conductor includes an integrally formed insulated base, an insulated side enclosure, and an electrode, the base and the side enclosure pass through the magnetic core They are assembled together without gaps, and the magnetic plastic sealing layer covers the conductor and the magnetic core without gaps.
  • the shape of the conductor is a zigzag;
  • the magnetic core is a rectangular parallelepiped, the base is located in a groove on the upper surface of the rectangular parallelepiped, and the side enclosing portions are respectively located on the first side of the rectangular parallelepiped opposite to each other.
  • the groove body on the second side surface, the lower surface of the electrode part is coplanar with the lower surface of the magnetic core, and the electrode part extends in a direction away from the first side surface and the second side surface, respectively.
  • the shape of the conductor is an arch shape;
  • the magnetic core is a rectangular parallelepiped
  • the base is located in a groove on the upper surface of the rectangular parallelepiped, and the side enclosing portions are respectively located on the first side of the rectangular parallelepiped opposite to each other.
  • the groove body on the second side surface, the lower surface of the electrode portion is coplanar with the lower surface of the magnetic core, and the electrode portion extends away from the third side surface and the fourth side surface, respectively.
  • the shape of the conductor is a U-shape
  • the magnetic core is a rectangular parallelepiped
  • the base portion and the side-enclosing portion are located in a groove on the upper surface of the rectangular parallelepiped, and the electrode portion is away from the rectangular parallelepiped. In the direction of extension.
  • the outside of the electrode portion includes a tin layer, and the thickness of the tin layer is 3-8 ⁇ m; or, the outside of the electrode portion includes a nickel layer and a tin layer in sequence, and the thickness of the nickel layer is 0.3-1.3 ⁇ m, The thickness of the tin layer is 6-8 ⁇ m.
  • the magnetic core is made of metal, and the magnetic plastic sealing layer is made of metal; or, the magnetic core is made of ferrite, and the magnetic plastic sealing layer is made of metal.
  • the present invention also provides a method for manufacturing a plastic molded power inductance component, which includes the following steps: S1: prefabricated conductors, the conductors include an integrally formed insulated base, insulated side enclosures and electrode portions; S2 : Prefabricated magnetic core and arranging the conductor on the prefabricated magnetic core; S3: The magnetic plastic encapsulation layer covers the magnetic core, the base part of the conductor and the side enclosure part through a molding process; the molding pressure is lower than 300MPA, curing the organic layer of the magnetic plastic encapsulation layer by baking at 100°C for more than 1 hour.
  • the magnetic core is manufactured by a molding or injection molding process.
  • arranging the conductor on the magnetic core includes: assembling the base part and the side edge surrounding part of the conductor with the magnetic core without gaps; the lower surface of the electrode and the magnetic core The lower surface is coplanar.
  • the central column of the magnetic core is slotted, and the size of the slot body matches the conductor.
  • the beneficial effect of the present invention is to provide a plastic molded power inductor element and a manufacturing method.
  • the plastic encapsulation layer completely covers the prefabricated magnetic core and the part of the conductor except the electrode. Molded structure, less leakage flux; when the equivalent permeability is as high as 60 or more, the equivalent saturation flux density can reach 0.55T or more, and the space advantage is high, which is conducive to the design of miniaturized inductors.
  • the electrode is a part of the conductor, and there is no risk of open or short circuit.
  • the prefabricated magnetic core bears little pressure, is not easily damaged, and the conductor is not easy to shift or deform; and the magnetic plastic encapsulation layer and the magnetic core assembly
  • the bonding force is high, and there is no air gap between the inner and outer magnetic media. It can maintain a higher inductance and a higher DC superimposing performance under larger current conditions. It has almost no noise at high frequencies and has high reliability.
  • FIG. 1A is a schematic diagram of a structure of a zigzag conductor in an embodiment of the present invention.
  • Fig. 1B is a schematic structural diagram of a magnetic core according to an embodiment of the present invention.
  • FIG. 1C is a schematic structural diagram of an assembly in which a conductor is placed on a magnetic core according to an embodiment of the present invention.
  • FIG. 1D is a schematic diagram of the structure of a product after a magnetic plastic encapsulation layer is formed according to an embodiment of the present invention.
  • Fig. 2A is a schematic structural diagram of a bow-shaped conductor in an embodiment of the present invention.
  • Fig. 2B is a schematic structural diagram of another magnetic core according to an embodiment of the present invention.
  • 2C is a schematic structural diagram of another assembly with a conductor placed on a magnetic core according to an embodiment of the present invention.
  • FIG. 2D is a schematic diagram of the structure of another product after the magnetic plastic encapsulation layer is formed according to the embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a manufacturing method of a plastic molded power inductor element in an embodiment of the present invention.
  • connection can be used for fixing or circuit connection.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the present invention provides a plastic molded power inductance component, comprising: a conductor, a magnetic core, and a magnetic plastic encapsulation layer; the conductor includes an integrally formed insulated base, an insulated side enclosure, and an electrode.
  • the base The side enclosure part and the magnetic core are assembled together through a gapless fit, and the magnetic plastic encapsulation layer covers the conductor and the magnetic core without gaps.
  • the shape of the conductor 10 is a zigzag; the conductor 10 includes an integrally formed insulated base 101, insulated side enclosing portions 102, 104 and electrode portions 103, 105, and a magnetic core 20 It is a rectangular parallelepiped, the base 101 and the side enclosing parts 102, 104 and the magnetic core 20 are assembled together through a gapless fit.
  • the magnetic plastic encapsulation layer 40 covers the conductor 10 and the magnetic core 20 without gaps.
  • the base 101 is located in the groove body on the upper surface of the cuboid of the magnet 20, the side enclosing parts 102 and 104 are respectively located on the groove body on the first and second sides of the cuboid opposite to each other, and the lower surfaces of the electrode parts 103 and 105 are connected to the magnetic core 20.
  • the lower surface of the slab is coplanar, and the electrode portions 103 and 105 respectively extend away from the first side surface and the second side surface. It can be understood that, in order to increase the length of the conductor 10 on the magnetic core 20, the base 101 of the conductor 20 is in the groove body in the length direction of the rectangular parallelepiped.
  • the thickness of the magnet 20 is generally less than 0.2 mm, and the width-to-thickness ratio is greater than 10 to select a smaller molding pressure.
  • the inductance magnet is a combined magnetic core structure design without a magnetic core gap, and the equivalent number of turns of the inductance is 0.8 to 1.0.
  • the conductor may be a bare copper wire, a tin-plated copper wire, or a metal sheet, and the shape may be a U-shape, a polygonal shape, or a bow shape, and the shape can be arbitrarily changed according to specific electrical requirements.
  • the conductor 10 is a flat wire, such as a metal sheet; or a round wire, or a metal terminal, which can be formed by bending, or forging or stamping.
  • the base 101 and the side surrounding portions 102 and 104 are insulated, and the electrode portions 103 and 105 are matte tin, and the thickness of the tin layer is 3-8 ⁇ m.
  • the electrode portion includes a nickel layer and a tin layer in sequence, the thickness of the nickel layer is 0.3-1.3 ⁇ m, and the thickness of the tin layer is 6-8 ⁇ m.
  • the ferrite I-shaped magnetic core 20 can be made by molding or injection molding.
  • the magnetic permeability of the ferrite core is preferably 3000 ⁇ 5000, the saturation flux is 400 ⁇ 500mT, and the central column of the magnetic core is slotted.
  • the size of the slot body and the wire base 101 are clearance fits, and the preferred fit clearance is greater than 0.10 mm.
  • the magnetic core 20 can be made of ferrite or metal soft magnetic material according to actual production requirements and product performance, and the shape can also be changed arbitrarily.
  • the magnetic core can be manufactured by any existing processing technology, and preferably, it is formed at one time by a molding process.
  • the arrangement of the conductor 10 and the magnetic core 20 may be in-situ folding on the magnetic core to form a conductor winding. Another way is to form the conductor once, and then place the conductor on the prefabricated core to form a winding.
  • the conductor 10 is assembled on the magnetic core 20.
  • the bottom surface of the electrode portions 103 and 105 and the bottom surface of the prefabricated magnetic core 20 are on the same level.
  • the magnetic core needs to be fixed to avoid the movement of the magnetic core during injection molding.
  • adhesive paper is used to fix the magnetic core.
  • the electrode and the magnetic core are on the same level, it is helpful to fix the assembly (10+20).
  • FIG. 1D is a schematic diagram of the finished inductor after the magnetic plastic encapsulation layer 40 covers the conductor 10 and the magnetic core 20.
  • the magnetic powder contained in the magnetic plastic encapsulation layer 40 is preferably ferrosilicon chromium powder graded according to different particle sizes, with a particle size of 1-50 ⁇ m, and the solid content of the magnetic powder of the magnetic plastic encapsulation material is preferably between 80 and 97 wt%; the organic binder is preferably used
  • the content of the silicone resin is preferably between 3-20 wt%; the curing agent is preferably an amino resin, and the amount of the curing agent is preferably 6 wt% of the content of the silicone resin.
  • a magnetic plastic molding layer 40 is formed on the periphery of the magnetic core conductor assembly through a molding process.
  • the molding pressure is preferably 100-300 MPa, and the organic components of the molding layer are preferably cured by baking at 1001°C/1H.
  • the shape of the conductor is a U-shape;
  • the magnetic core is a rectangular parallelepiped, the base and side enclosures are located in the grooves on the upper surface of the rectangular parallelepiped, and the electrode portion faces away from the rectangular parallelepiped.
  • Direction extension is located in the grooves on the upper surface of the rectangular parallelepiped, and the electrode portion faces away from the rectangular parallelepiped.
  • the shape of the conductor 10 is a bow shape;
  • the magnetic core 20 is a rectangular parallelepiped,
  • the base 101 is located in the groove on the upper surface of the rectangular parallelepiped, and the side enclosing portions 102 and 104 are located on the first side opposite to the rectangular parallelepiped.
  • the groove on the second side, the lower surfaces of the electrode portions 103, 105 are coplanar with the lower surface of the magnetic core 20, and the electrode portions 103, 105 extend away from the third side and the fourth side, respectively.
  • the third side surface and the fourth side surface are adjacent surfaces of the first side surface and the second side surface, respectively.
  • the outside of the electrode part includes a tin layer, and the thickness of the tin layer is 3-8 ⁇ m; or, the outside of the electrode part includes a nickel layer and a tin layer in turn, the thickness of the nickel layer is 0.3-1.3 ⁇ m, and the thickness of the tin layer is 6 ⁇ 8 ⁇ m.
  • a special-shaped magnetic core 20 made of FeSiAl material is produced by a one-time compression molding process.
  • the magnetic permeability of the ferrite core is preferably 300-80, the saturation flux is 1000-1500mT, and the preferred matching gap is 0.05-0.15mm. .
  • the conductor 10 is assembled on the magnetic core 20.
  • the bottom surface of the electrode portions 103, 105 and the bottom surface of the prefabricated magnetic core 2 are on the same level.
  • FIG. 2D is a schematic diagram of a finished inductor after the magnetic plastic encapsulation layer 40 covers the conductor 10 and the magnetic core 20.
  • the magnetic powder contained in the magnetic plastic sealing layer 40 is preferably carbonyl iron powder with a particle size of 1-50 ⁇ m, and the solid content of the magnetic powder of the magnetic plastic sealing material is preferably between 60 and 80 wt%; the organic binder is preferably silicone resin, and the content is preferably 3 to Between 20 wt%; the curing agent is preferably an amino resin, and the amount of the curing agent is preferably 6 wt% of the silicone resin content.
  • a magnetic plastic molding layer 40 is formed on the periphery of the magnetic core conductor assembly through a molding process.
  • the molding pressure is preferably 1-100 MPa, and the organic components of the plastic molding layer are preferably cured by baking at 150°C/1H.
  • the magnetic core is made of metal, and the magnetic plastic sealing layer is made of metal; or, the magnetic core is made of ferrite, and the magnetic plastic sealing layer is made of metal.
  • the magnetic plastic encapsulation layer is FeSiCr/FeSi or the like.
  • the equivalent magnetic permeability is as high as 60 or more
  • the equivalent saturation magnetic flux density can reach 0.55T or more, and the space advantage is high, which is conducive to the design of miniaturized inductors.
  • a method for manufacturing a plastic molded power inductor element includes the following steps:
  • S1 a prefabricated conductor, the conductor includes an integrally formed insulated base, an insulated side enclosure, and an electrode;
  • the conductor is made of round wire, flat wire, or metal sheet, and according to design requirements, one or more of the existing processes of flattening, cutting, bending, and stamping are used to make the conductor;
  • the magnetic plastic encapsulation layer covers the magnetic core, the base of the conductor and the side enclosures through a molding process; the molding pressure is lower than 300MPA, and the magnetic plastic encapsulation layer is baked at 100°C for more than 1 hour. The organic layer is cured.
  • the magnetic core is an I-shaped magnetic core or a special-shaped magnetic core adapted to a conductor, and the magnetic core is made by a molding or injection molding process.
  • step S1 the conductor is prefabricated, and the conductor base and the electrode are integrated.
  • the inductor uses both ends of the conductor as electrodes.
  • the bottom electrode of the conductor can be further flattened to increase the area of the pad.
  • step S2 the first-made conductor is assembled on the central pillar of the magnetic core, or embedded in a magnetic core slot body that matches the shape and size of the conductor, and the size of the slot body matches the conductor; in step S3, the magnetic plastic encapsulation layer
  • the magnetic core and the conductor are covered by a molding process, and the magnetic core can be completely covered or partially covered during the covering.
  • the two ends of the conductor or the two ends of the lead end are used as electrodes and are exposed to the outside of the magnet.
  • the power inductance element of the present invention Compared with the traditional assembled magnetic core type power inductor, the power inductance element of the present invention has better comprehensive electrical characteristics, higher utilization rate of the magnet, and higher reliability.
  • the power inductance element of the present invention has the advantages of low EMI, high reliability, large saturation current, and small DC resistance. It is a combined magnetic core structure design without magnetic core gaps. When the equivalent permeability Ui60 is above, the equivalent saturation is achieved.
  • the magnetic flux density Bs can reach more than 0.55T, which is higher than the one-piece power inductance component under the same conditions, and its effective saturation magnetic flux density Bs can only reach more than 0.45T.
  • the power inductor element of the present invention is suitable for digital cameras, mobile phones, computers, televisions, set-top boxes, game consoles, automotive electronics, and LED lighting electronic products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一种塑模成型功率电感元件及制作方法,塑模成型功率电感元件包括:导体(10)、磁芯(20)以及磁性塑封层(40);所述导体(10)包括一体成型的绝缘处理的基部(101)、绝缘处理的侧边围合部(102、104)和电极部(103、105),所述基部(101)和所述侧边围合部(102、104)与所述磁芯(20)通过无间隙配合装配在一起,所述磁性塑封层(40)无间隙的包覆在所述导体(10)和所述磁芯(20)外。该磁性塑封层(40)完全包覆预制磁芯(20)和导体(10)除电极外的部分,一体成型结构,漏磁通少;在等效磁导率高达到60以上时,等效饱和磁通密度可达0.55T以上,空间利空率高,有利于小型化电感设计。

Description

一种塑模成型功率电感元件及制作方法 技术领域
本发明涉及塑模成型技术领域,尤其涉及一种塑模成型功率电感元件及制作方法。
背景技术
电子元器件中的一体成型电感凭借其超薄的体型,优越的大电流特性,超高的稳定性,在汽车电子、人工智能、5G等领域供不应求。传统粉末一体成型电感生产过程中,主要采用线圈点焊技术,可能会出现虚焊、漏焊的现象,而且在模压成型过程中,采用冷压或者热压的方式压制线圈和焊点,压强高达900MPa以上,焊点、线圈皮膜、磁粉的绝缘层均容易损伤,易出现开路、短路现象。
现有技术中的高可靠性模压成型工艺,在压制过程中成型压力大会导致导体变形;而且导体太宽,磁粉间的粘合力不足,磁体容易开裂。更进一步的,电极从磁体两侧引出,侧面电极位于磁体外部,不能充分利用磁体体积。
现有技术中磁芯穿孔成型工艺,随着功率电感小型化、薄型化的发展趋势以及磁芯加工工艺水平的限制,自动化生产难度大、成本高。
传统的组合磁芯型功率电感,多采用铁氧体磁芯,表面涂覆胶水,导体与磁芯之间存在间隙,不仅漏磁通多,而且易产生声响。
现有技术中缺乏一种成型压力小、工艺简单的一体成型电感。
以上背景技术内容的公开仅用于辅助理解本发明的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应当用于评价本申请的新颖性和创造性。
发明内容
本发明为了解决现有的问题,提供一种塑模成型功率电感元件及制作方法。
为了解决上述问题,本发明采用的技术方案如下所述:
一种塑模成型功率电感元件,所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部,所述基部和所述侧边围合部与所述磁芯通过无间隙配合装配在一起,所述磁性塑封层无间隙的包覆在所述导体和所述磁芯外。
优选地,所述导体的形状为几字形;所述磁芯为长方体,所述基部位于所述 长方体的上表面的槽体,所述侧边围合部分别位于所述长方体相对的第一侧面和第二侧面的槽体,所述电极部的下表面与所述磁芯的下表面共面,且所述电极部分别向远离所述第一侧面、所述第二侧面的方向延伸。
优选地,所述导体的形状为弓字形;所述磁芯为长方体,所述基部位于所述长方体的上表面的槽体,所述侧边围合部分别位于所述长方体相对的第一侧面和第二侧面的槽体,所述电极部的下表面与所述磁芯的下表面共面,且所述电极部分别向远离第三侧面和第四侧面的方法延伸。
优选地,所述导体的形状为U字形;所述磁芯为长方体,所述基部、所述侧边围合部位于所述长方体的上表面的槽体,所述电极部向远离所述长方体的方向延伸。
优选地,所述电极部外包括锡层,所述锡层的厚度为3~8μm;或,所述电极部外依次包括镍层和锡层,所述镍层的厚度为0.3-1.3μm,所述锡层的厚度为6~8μm。
优选地,所述磁芯是金属材质,所述磁性塑封层是金属材质;或,所述磁芯是铁氧体材质,所述磁性塑封层是金属材质。
本发明还提供一种塑模成型功率电感元件的制作方法,包括如下步骤:S1:预制导体,所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部;S2:预制磁芯并在所述预制磁芯上安置所述导体;S3:磁性塑封层通过模塑成型工艺包覆所述磁芯、所述导体的基部和侧边围合部;成型压力低于300MPA,经100℃以上烘烤1小时以上使所述磁性塑封层的有机层固化。
优选地,采用模压或注塑工艺制得所述磁芯。
优选地,在所述磁芯上安置所述导体包括:将所述导体的基部、侧边围合部与所述磁芯无间隙配合装配在一起;所述电极的下表面与所述磁芯的下表面共面。
优选地,所述磁芯中柱开槽,槽体尺寸与所述导体匹配。
本发明的有益效果为:提供一种塑模成型功率电感元件及制作方法,通过无磁芯间隙的组合式磁芯结构设计,塑封层完全包覆预制磁芯和导体除电极外的部分,一体成型结构,漏磁通少;在等效磁导率高达到60以上时,等效饱和磁通密度可达0.55T以上,空间利空率高,有利于小型化电感设计。
进一步的,电极为导体的一部分,不存在开短路风险。在磁芯上装配导体, 并通过模塑方式形成磁性塑封层包裹内置的磁芯组件,预制磁芯承受压力小,不易受损,导体不容易移位、变形;而且磁性塑封层与磁芯组件间的结合力高,内外磁性介质间不存在气隙,能在较大电流情况下维持较高的感值以及较高的直流叠加性能,在高频下几乎无噪音产生,可靠性高。
附图说明
图1A是本发明实施例中一种几字形导体的结构示意图。
图1B是本发明实施例一种磁芯的结构示意图。
图1C是本发明实施例一种导体安放在磁芯的组装件的结构示意图。
图1D是本发明实施例一种磁性塑封层成型后的产品的结构示意图。
图2A是本发明实施例中一种弓字形导体的结构示意图。
图2B是本发明实施例又一种磁芯的结构示意图。
图2C是本发明实施例又一种导体安放在磁芯的组装件的结构示意图。
图2D是本发明实施例又一种磁性塑封层成型后的产品的结构示意图。
图3是本发明的实施例中一种塑模成型功率电感元件的制作方法的示意图。
具体实施方式
为了使本发明实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。另外,连接既可以是用于固定作用也可以是用于电路连通作用。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多该特征。在本发明实施例 的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明提供一种塑模成型功率电感元件,包括:导体、磁芯以及磁性塑封层;所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部,所述基部和所述侧边围合部与所述磁芯通过无间隙配合装配在一起,所述磁性塑封层无间隙的包覆在所述导体和所述磁芯外。
如图1A-图1D所示,导体10的形状为几字形;导体10包括一体成型的绝缘处理的基部101、绝缘处理的侧边围合部102、104和电极部103、105,磁芯20为长方体,基部101和侧边围合部102、104与磁芯20通过无间隙配合装配在一起,磁性塑封层40无间隙包覆在所述导体10和所述磁芯20外,导体20部分只有电极部103漏在外面。具体的:
基部101位于磁体20的长方体的上表面的槽体,侧边围合部102、104分别位于长方体相对的第一侧面和第二侧面的槽体,电极部103、105的下表面与磁芯20的下表面共面,且电极部103、105分别向远离第一侧面、所述第二侧面的方向延伸。可以理解的是,为了增加导体10在磁芯20上的长度,导体20的基部101是在长方体的长度方向的槽体内。磁体20的一般在0.2mm以下厚度,宽厚比大于10的选择小的成型压力。
电感磁体为无磁芯间隙的组合式磁芯结构设计,所述电感的等效圈数为0.8~1.0。
在本发明的一种实施例中,导体可以为裸铜线、镀锡铜线、金属片,形状可以为U形、几字形、弓字形,形状上可以根据具体电性需求任意变换。在一种实施例中,导体10是扁平线,比如金属片;或圆导线,或金属端子,可以通过折弯成型,也可以采用锻造或冲压成型。之后对基部101和侧边围合部102、104进行绝缘处理,对电极部103、105进行雾锡,锡层厚度3~8μm。在本发明的另一种实施例中,电极部外依次包括镍层和锡层,所述镍层的厚度为0.3-1.3μm,所述锡层的厚度为6~8μm。
如图1B所示,可采用模压或注塑工艺制得铁氧体工字型磁芯20,铁氧体磁芯磁导率优选3000~5000,饱和磁通400~500mT,磁芯中柱开槽,槽体尺寸与导线基部101为间隙配合,优选的配合间隙大于0.10mm。
磁芯20可根据实际制作需求及产品性能上选择铁氧体或金属软磁材质,形状上也可以任意变换。磁芯可以采用任意已有加工工艺制作完成,优选地,采用模 塑工艺一次成型。
导体10与磁芯20的安置方式可以是在磁芯上原位折整形成导体绕组。另一种方式是导体一次成型,然后再将导体安置在预制磁芯上形成绕组。
如图1C所示,将导体10装配在磁芯20上,优选地,电极部103、105底部下表面与预制磁芯20底部下表面在同一水平面上。注塑成型时,因需固定磁芯,避免注塑时,磁芯移动,该实例中采用胶纸固定磁芯,当电极与磁芯在同一水平面上时,有利于装配体(10+20)固定。
如图1D为磁性塑封层40包覆导体10和磁芯20成型后的电感成品示意图。磁性塑封层40中所含磁粉优选为按不同粒度进行级配的铁硅铬粉末,粒径为1~50μm,磁性塑封料磁粉固含量优选在80~97wt%之间;有机粘结剂优选采用硅树脂,含量优选在3~20wt%之间;固化剂优选为氨基树脂,固化剂的用量优选为硅树脂含量的6wt%。使用配制好的磁性塑封料,通过模塑工艺在磁芯导体组配件***形成磁性塑封层40,成型压力优选为100~300MPa,然后优选经过1001℃/1H烘烤使塑封层有机成分固化。
在本发明的一种实施例中,导体的形状为U字形;磁芯为长方体,基部、侧边围合部位于所述长方体的上表面的槽体,所述电极部向远离所述长方体的方向延伸。
如图2A-图2D所示,导体10的形状为弓字形;磁芯20为长方体,基部101位于长方体的上表面的槽体,侧边围合部102、104分别位于长方体相对的第一侧面和第二侧面的槽体,电极部103、105的下表面与磁芯20的下表面共面,且电极部103、105分别向远离第三侧面和第四侧面的方法延伸,可以理解的是,第三侧面和第四侧面分别是第一侧面和第二侧面的邻面。
同样的,电极部外包括锡层,所述锡层的厚度为3~8μm;或,电极部外依次包括镍层和锡层,镍层的厚度为0.3-1.3μm,锡层的厚度为6~8μm。
如图2B所示,采用一次压制成型工艺制得FeSiAl材料的异形磁芯20,铁氧体磁芯磁导率优选300~80,饱和磁通1000~1500mT,优选的配合间隙为0.05~0.15mm。
如图2C所示,将导体10装配在磁芯20上,优选地电极部103、105底部下表面与预制磁芯2底部下表面在同一水平面上。
图2D为磁性塑封层40包覆导体10和磁芯20成型后的电感成品示意图。磁性 塑封层40中所含磁粉优选为羰基铁粉,粒径为1~50μm,磁性塑封料磁粉固含量优选在60~80wt%之间;有机粘结剂优选采用硅树脂,含量优选在3~20wt%之间;固化剂优选为氨基树脂,固化剂的用量优选为硅树脂含量的6wt%。使用配制好的磁性塑封料,通过模塑工艺在磁芯导体组配件***形成磁性塑封层40,成型压力优选为1~100MPa,然后优选经过150℃/1H烘烤使塑封层有机成分固化。
在本发明的一种实施例中,所述磁芯是金属材质,所述磁性塑封层是金属材质;或,所述磁芯是铁氧体材质,所述磁性塑封层是金属材质。在本发明的一种实施例中,磁性塑封层是FeSiCr/FeSi等。
基于上述材质组合结合优化组合设计结构,在等效磁导率高达到60以上时,等效饱和磁通密度可达0.55T以上,空间利空率高,有利于小型化电感设计。
如图3所示,一种塑模成型功率电感元件的制作方法,包括如下步骤:
S1:预制导体,所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部;
具体的,导体选用圆线、扁平线、或者金属片,根据设计需求,采用现有打扁、切割、折弯、冲压等一种或多种工艺制作导体;
S2:预制磁芯并在所述预制磁芯上安置所述导体;
S3:磁性塑封层通过模塑成型工艺包覆所述磁芯、所述导体的基部和侧边围合部;成型压力低于300MPA,经100℃以上烘烤1小时以上使所述磁性塑封层的有机层固化。
具体的,磁芯为工字形磁芯或与导体适配的异形磁芯,用模压或注塑工艺制得所述磁芯。
步骤S1中,预制导体,导体基部和电极为一整体,电感是以导体的两端作为电极,导体的底部电极可进一步打扁,以增加焊盘面积。步骤S2中,将先制作好的导体装配在在磁芯中柱上,或者镶嵌到与导体形状尺寸适配的磁芯槽体内,槽体尺寸与所述导体匹配;步骤S3中,磁性塑封层通过模塑成型工艺包覆所述磁芯和导体,包覆时可以将磁芯全部包覆,也可以部分包覆,导体的两端端面或者引出端两端作为电极,暴露在磁体外部。
本发明的功率电感元件与传统组装式磁芯型功率电感相比,综合电气特性更优,磁体利用率更高、可靠性更高。
本发明的功率电感元件具有EMI小、可靠性高、饱和电流大、直流电阻小的 优点,为无磁芯间隙的组合式磁芯结构设计,在等效磁导率Ui60以上时,等效饱和磁通密度Bs可达0.55T以上,高于同等条件下一体成型功率电感元件,其效饱和磁通密度Bs只可达0.45T以上。
本发明的功率电感元件适用于数码相机、手机、计算机、电视机、机顶盒、游戏机、汽车电子、LED照明灯电子产品。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种塑模成型功率电感元件,其特征在于,包括:导体、磁芯以及磁性塑封层;
    所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部,所述基部和所述侧边围合部与所述磁芯通过无间隙配合装配在一起,所述磁性塑封层无间隙的包覆在所述导体和所述磁芯外。
  2. 如权利要求1所述的塑模成型功率电感元件,其特征在于,所述导体的形状为几字形;
    所述磁芯为长方体,所述基部位于所述长方体的上表面的槽体,所述侧边围合部分别位于所述长方体相对的第一侧面和第二侧面的槽体,所述电极部的下表面与所述磁芯的下表面共面,且所述电极部分别向远离所述第一侧面、所述第二侧面的方向延伸。
  3. 如权利要求1所述的塑模成型功率电感元件,其特征在于,所述导体的形状为弓字形;
    所述磁芯为长方体,所述基部位于所述长方体的上表面的槽体,所述侧边围合部分别位于所述长方体相对的第一侧面和第二侧面的槽体,所述电极部的下表面与所述磁芯的下表面共面,且所述电极部分别向远离第三侧面和第四侧面的方法延伸。
  4. 如权利要求1所述的塑模成型功率电感元件,其特征在于,所述导体的形状为U字形;
    所述磁芯为长方体,所述基部、所述侧边围合部位于所述长方体的上表面的槽体,所述电极部向远离所述长方体的方向延伸。
  5. 如权利要求1-4任一所述的塑模成型功率电感元件,其特征在于,所述电极部外包括锡层,所述锡层的厚度为3~8μm;
    或,所述电极部外依次包括镍层和锡层,所述镍层的厚度为0.3-1.3μm,所述锡层的厚度为6~8μm。
  6. 如权利要求1-4任一所述的塑模成型功率电感元件,其特征在于,所述磁芯是金属材质,所述磁性塑封层是金属材质;
    或,所述磁芯是铁氧体材质,所述磁性塑封层是金属材质。
  7. 一种塑模成型功率电感元件的制作方法,其特征在于,包括如下步骤:
    S1:预制导体,所述导体包括一体成型的绝缘处理的基部、绝缘处理的侧边围合部和电极部;
    S2:预制磁芯并在所述预制磁芯上安置所述导体;
    S3:磁性塑封层通过模塑成型工艺包覆所述磁芯、所述导体的基部和侧边围合部;成型压力低于300MPA,经100℃以上烘烤1小时以上使所述磁性塑封层的有机层固化。
  8. 如权利要求7所述的塑模成型功率电感元件的制作方法,其特征在于,采用模压或注塑工艺制得所述磁芯。
  9. 如权利要求8所述的塑模成型功率电感元件的制作方法,其特征在于,在所述磁芯上安置所述导体包括:
    将所述导体的基部、侧边围合部与所述磁芯无间隙配合装配在一起;
    所述电极的下表面与所述磁芯的下表面共面。
  10. 如权利要求9所述的塑模成型功率电感元件的制作方法,其特征在于,所述磁芯中柱开槽,槽体尺寸与所述导体匹配。
PCT/CN2020/101831 2020-03-30 2020-07-14 一种塑模成型功率电感元件及制作方法 WO2021196447A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/238,224 US20210304956A1 (en) 2020-03-30 2021-04-23 Molded-forming power inductor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010237414.1A CN111508685B (zh) 2020-03-30 2020-03-30 一种塑模成型功率电感元件及制作方法
CN202010237414.1 2020-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,224 Continuation US20210304956A1 (en) 2020-03-30 2021-04-23 Molded-forming power inductor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021196447A1 true WO2021196447A1 (zh) 2021-10-07

Family

ID=71874339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101831 WO2021196447A1 (zh) 2020-03-30 2020-07-14 一种塑模成型功率电感元件及制作方法

Country Status (2)

Country Link
CN (1) CN111508685B (zh)
WO (1) WO2021196447A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216472A (zh) * 2020-09-07 2021-01-12 深圳顺络电子股份有限公司 一种电感排及其制作方法
CN112635173B (zh) * 2020-12-03 2022-08-09 品翔电子元件(漳州)有限公司 一种变压器及其成型方法
DE102020215704A1 (de) * 2020-12-11 2022-06-15 Würth Elektronik eiSos Gmbh & Co. KG Spule, Verfahren zum Herstellen einer Spule und Anordnung
CN112927917A (zh) * 2021-01-25 2021-06-08 浙江三钛科技有限公司 一种电感元件
CN112927915B (zh) * 2021-01-25 2023-07-21 浙江三钛科技有限公司 一种电感元件以及其制造方法
CN112927929B (zh) * 2021-01-25 2023-07-18 浙江三钛科技有限公司 电感元件及其制造方法
CN112927916A (zh) * 2021-01-25 2021-06-08 浙江三钛科技有限公司 一种电感元件及其制造方法
CN113593843B (zh) * 2021-07-13 2024-05-03 三积瑞科技(苏州)有限公司 一种超低电阻的热压非耦合双电感及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286658A (ja) * 2005-03-31 2006-10-19 Hitachi Ferrite Electronics Ltd 複合コアを用いたコイル部品
CN1949411A (zh) * 2005-10-14 2007-04-18 胜美达电机(香港)有限公司 电感器及其制造方法
CN201051434Y (zh) * 2007-06-14 2008-04-23 联振电子(深圳)有限公司 一种扼流线圈
CN202887902U (zh) * 2012-09-17 2013-04-17 深圳顺络电子股份有限公司 模塑成型功率电感元件
CN105914008A (zh) * 2016-04-15 2016-08-31 深圳顺络电子股份有限公司 一种大电流功率电感及其制作方法
CN108389679A (zh) * 2018-03-20 2018-08-10 深圳顺络电子股份有限公司 一种电感元件及制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286658A (ja) * 2005-03-31 2006-10-19 Hitachi Ferrite Electronics Ltd 複合コアを用いたコイル部品
CN1949411A (zh) * 2005-10-14 2007-04-18 胜美达电机(香港)有限公司 电感器及其制造方法
CN201051434Y (zh) * 2007-06-14 2008-04-23 联振电子(深圳)有限公司 一种扼流线圈
CN202887902U (zh) * 2012-09-17 2013-04-17 深圳顺络电子股份有限公司 模塑成型功率电感元件
CN105914008A (zh) * 2016-04-15 2016-08-31 深圳顺络电子股份有限公司 一种大电流功率电感及其制作方法
CN108389679A (zh) * 2018-03-20 2018-08-10 深圳顺络电子股份有限公司 一种电感元件及制造方法

Also Published As

Publication number Publication date
CN111508685A (zh) 2020-08-07
CN111508685B (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2021196447A1 (zh) 一种塑模成型功率电感元件及制作方法
US11769621B2 (en) Inductor with an electrode structure
WO2012105489A1 (ja) 面実装インダクタと面実装インダクタの製造方法
WO2019178737A1 (zh) 一种电感元件及制造方法
JP4566649B2 (ja) 磁性素子
KR102022272B1 (ko) 면실장 인덕터와 그 제조 방법
CN107039158B (zh) 线圈部件及其制造方法
CN110223829B (zh) 表面安装电感器
KR101994755B1 (ko) 전자부품
JPWO2006070544A1 (ja) 磁性素子
TWI451455B (zh) Inductor and its manufacturing method
US20190311841A1 (en) Surface mount inductor
JP2013098282A (ja) 面実装インダクタ
US20210304956A1 (en) Molded-forming power inductor and manufacturing method thereof
KR101761944B1 (ko) 권선형 인덕터
JP2004281778A (ja) チョークコイル及びその製造方法
US12014865B2 (en) Inductor and method for manufacturing the same
JP2013098283A (ja) 面実装インダクタの製造方法
JP2001060523A (ja) 表面実装型インダクタ。
JP2001044044A (ja) 表面実装型インダクタ。
JP2019186523A (ja) 表面実装インダクタ
JPH06290975A (ja) コイル部品並びにその製造方法
KR101123424B1 (ko) 평면형 트랜스포머의 제조 방법
JP2015201537A (ja) コイル部品およびその製造方法
JPH04361506A (ja) インダクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20928891

Country of ref document: EP

Kind code of ref document: A1