WO2021196092A1 - 光学指纹传感模组、显示面板及电子设备 - Google Patents

光学指纹传感模组、显示面板及电子设备 Download PDF

Info

Publication number
WO2021196092A1
WO2021196092A1 PCT/CN2020/082827 CN2020082827W WO2021196092A1 WO 2021196092 A1 WO2021196092 A1 WO 2021196092A1 CN 2020082827 W CN2020082827 W CN 2020082827W WO 2021196092 A1 WO2021196092 A1 WO 2021196092A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
photosensitive unit
optical fingerprint
fingerprint sensor
sensor module
Prior art date
Application number
PCT/CN2020/082827
Other languages
English (en)
French (fr)
Inventor
郑智仁
Original Assignee
北京小米移动软件有限公司南京分公司
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司南京分公司, 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司南京分公司
Priority to PCT/CN2020/082827 priority Critical patent/WO2021196092A1/zh
Priority to CN202080098781.6A priority patent/CN115298709A/zh
Publication of WO2021196092A1 publication Critical patent/WO2021196092A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the technical field of electronic equipment, and in particular to an optical fingerprint sensor module, a display panel and electronic equipment.
  • the optical fingerprint sensor module can be placed under the screen to implement under-screen fingerprint technology.
  • the optical fingerprint sensor module includes a plurality of pixel circuits.
  • the pixel circuit includes a photosensitive unit and a switch unit arranged on the same layer. Increasing the area of the photosensitive unit can allow each pixel circuit to receive more light, but it will reduce the pixel circuit. Resolution. Based on this, it is particularly important to design an optical fingerprint sensor module that has good resolution and the photosensitive unit can receive more light.
  • the present disclosure provides an improved optical fingerprint sensor module, display panel and electronic equipment.
  • the optical fingerprint sensing module includes: a pixel circuit array, the pixel circuit array includes a plurality of pixel circuits; the pixel circuit includes: a photosensitive unit and A switch unit connected to the photosensitive unit, the photosensitive unit is used to convert a light signal into an electrical signal, the photosensitive unit includes a light-receiving surface for receiving light, the switch unit is provided on the photosensitive unit away from the On one side of the light receiving surface, the photosensitive unit outputs the electrical signal through the switch unit.
  • the optical fingerprint sensor module further includes a wiring, at least a part of the wiring is connected to the pixel circuit, and the wiring is provided on a side of the photosensitive unit away from the light receiving surface.
  • the wiring includes a scan line connected to the switch unit, and a first coupling capacitor for transferring charge is formed between the scan line and the photosensitive unit; the wiring further includes a compensation line, A compensation coupling capacitor for transferring charges is formed between the compensation line and the photosensitive unit; the optical fingerprint sensor module further includes a driving module connected to the compensation line and the scan line, the driving module Used for: during the exposure period of the photosensitive unit, before the switch unit is turned on, output a driving signal to the compensation line so that the charge transfer direction between the compensation line and the photosensitive unit is in line with the scanning line The direction of charge transfer between the photosensitive units is opposite.
  • the pixel circuit is a passive pixel circuit
  • the driving module is further configured to: during the exposure period of the photosensitive unit, after the switch unit is turned off, output a driving signal to the compensation line to enable the The direction of charge transfer between the compensation line and the photosensitive unit is opposite to the direction of charge transfer between the scan line and the photosensitive unit.
  • the driving module is configured to: send a scan signal for controlling the switch unit to turn on to the scan line; and make the rising edge time of the drive signal be located after the falling edge time of the scan signal, And, the time of the falling edge of the drive signal is positioned before the time of the rising edge of the scan signal.
  • the size of the first coupling capacitor is equal to the size of the compensation coupling capacitor.
  • the pixel circuit is an active pixel circuit, and the active pixel circuit further includes a reset unit connected to the photosensitive unit and the switch unit for resetting the photosensitive unit, and the reset unit It is arranged on the side of the photosensitive unit away from the light receiving surface.
  • the wiring further includes a reset line connected to the reset unit, a second coupling capacitor for transferring charge is formed between the reset line and the photosensitive unit; the reset line and the drive Module connection, the drive module is also used to drive the reset unit to turn off after the switch unit is turned off, and to output the drive signal to the compensation line after the reset unit is turned off, so that the compensation line and The direction of charge transfer between the photosensitive cells is opposite to the direction of charge transfer between the reset line and the photosensitive cells.
  • the driving module is configured to: send a scan signal for controlling the opening of the switch unit to the scan line; and send a reset signal to the reset line, and the reset signal is used to drive the reset unit Resetting the photosensitive unit; and making the rising edge time of the drive signal after the falling edge time of the reset signal, and making the falling edge time of the drive signal before the rising edge time of the scan signal.
  • the size of the second coupling capacitor is equal to the size of the compensation coupling capacitor.
  • At least part of the scan line and at least part of the compensation line are arranged on the same layer; and/or, at least part of the scan line and the switch unit are arranged on the same layer.
  • the optical fingerprint sensor module further includes a micro lens array, which is arranged on a side of the photosensitive unit away from the switch unit.
  • the optical fingerprint sensor module further includes a collimating element arranged between the microlens array and the photosensitive unit, and the collimating element is provided with the microlens array and the The collimation hole of the photosensitive unit.
  • Another aspect of the present disclosure provides a display panel including any one of the optical fingerprint sensing modules mentioned above.
  • Another aspect of the present disclosure provides an electronic device including the above-mentioned display panel.
  • the switch unit is arranged on the side of the photosensitive unit away from the light receiving surface, that is, the switch unit and the photosensitive unit are arranged on different layers, so that the switch unit provides a space for the photosensitive unit to ensure the pixel resolution. Bottom, it is conducive to enlarge the size of the photosensitive unit, increase the amount of light received by the photosensitive unit, and then help the optical fingerprint sensor module to accurately detect fingerprints.
  • Fig. 1 shows a partial cross-sectional view of a display panel according to an exemplary embodiment.
  • FIG. 2 is a partial cross-sectional view of the optical fingerprint sensor module in FIG. 1.
  • FIG. 3 is a partial enlarged schematic diagram of the optical fingerprint sensor module in FIG. 2.
  • FIG. 4 is a top view of the optical fingerprint sensor module in FIG. 1.
  • Fig. 5 is a schematic structural diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • Fig. 6 shows a partial cross-sectional view of an optical fingerprint sensor module according to an exemplary embodiment of the present disclosure.
  • Fig. 7 shows a partial schematic diagram of a pixel circuit array according to an exemplary embodiment of the present disclosure.
  • Fig. 8 shows a partial schematic diagram of a pixel circuit array according to an exemplary embodiment of the present disclosure.
  • Fig. 9 shows a partial cross-sectional view of an optical fingerprint sensor module according to an exemplary embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram showing the formation of the first coupling capacitor and the compensation coupling capacitor according to an exemplary embodiment of the present disclosure.
  • FIG. 11 shows a working sequence diagram of scan lines and compensation lines according to an exemplary embodiment of the present disclosure.
  • Fig. 12 shows a circuit diagram of an active pixel circuit according to an exemplary embodiment of the present disclosure.
  • Fig. 13 shows a partial schematic diagram of a pixel circuit array according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram showing the formation of the first coupling capacitor, the second coupling capacitor, and the compensation coupling capacitor according to an exemplary embodiment of the present disclosure.
  • FIG. 15 shows a working sequence diagram of scan lines, compensation lines, and reset lines according to an exemplary embodiment of the present disclosure.
  • Fig. 1 shows a partial cross-sectional view of a display panel according to an exemplary embodiment.
  • the display panel includes a display layer 110, a cover layer 120 disposed above the display layer 110, and an optical fingerprint sensor module 130 disposed below the display layer 110.
  • the display layer 110 is an OLED (Organic Light-Emitting Diode, organic light emitting semiconductor) display layer.
  • OLED Organic Light-Emitting Diode, organic light emitting semiconductor
  • FIG. 2 shows a partial cross-sectional view of the optical fingerprint sensor module 130 in Figure 1
  • Figure 3 shows a partial enlarged schematic view of the optical fingerprint sensor module 130 in Figure 2
  • Figure 4 shows the optical fingerprint sensor module in Figure 1
  • the optical fingerprint sensor module 130 includes a pixel circuit array, and the pixel circuit array includes a plurality of pixel circuits.
  • the pixel circuit includes a photosensitive unit 131 and a switch unit 132 connected to the photosensitive unit 131, and the photosensitive unit 131 and the switch unit 132 are arranged on the same layer.
  • the light-sensing unit 131 is used to convert light into electrical signals, and output the electrical signals through the switch unit 132. Based on the electrical signal, the shape of the fingerprint can be determined.
  • the optical fingerprint sensor module 130 further includes a collimator 133 provided on the light receiving surface side of the photosensitive unit 131, and a microlens array provided on the light incident side of the collimator 133 134.
  • the collimator 133 is provided with a collimating hole 135, and the collimating hole 135 is used to collimate the light passing through the microlens array 134 to the photosensitive unit 131.
  • FIG. 1 for example, in FIG.
  • the collimator 133 allows the solid line of light to pass through the collimating hole 135 to irradiate the photosensitive unit 131, and block the dashed line of light from irradiating the photosensitive unit 131, so as to avoid the superimposition of the light reflected by the ridges and valleys of the fingerprint to cause light mixing problems. , Which facilitates the optical fingerprint sensor module 130 to accurately detect fingerprints.
  • the switch unit 132 can receive the light collimated by the collimator hole 135 and receive the switch unit 132
  • the light area is called the switch unit area 136, referring to FIG. 4, which reduces the amount of light received by the photosensitive unit 131, which is not conducive to the optical fingerprint sensor module 130 to accurately detect fingerprints. If all the collimating holes 135 are aligned with the photosensitive unit 131, the photosensitive unit 131 will receive a larger amount of light, thereby facilitating accurate fingerprint detection, but this increases the production cost.
  • the area of the photosensitive unit 131 is increased, due to the limited area of the pixel array, this will reduce the number of photosensitive units 131 and reduce the resolution of the optical fingerprint sensor module 130. Moreover, due to process limitations, it is not easy to reduce the size of the switch unit 132. Therefore, the above-mentioned optical fingerprint sensor module 130 cannot simultaneously have a good resolution and the photosensitive unit 131 can receive more light.
  • embodiments of the present disclosure provide an optical fingerprint sensor module, a display panel, and an electronic device, which are described below with reference to the accompanying drawings:
  • electronic devices include, but are not limited to, smart devices such as mobile phones, tablet computers, iPads, digital broadcasting terminals, messaging devices, game consoles, medical equipment, fitness equipment, and personal digital assistants.
  • FIG. 5 is a schematic structural diagram of an electronic device 200 according to an exemplary embodiment of the present disclosure.
  • FIG. 6 shows a partial cross-sectional view of an optical fingerprint sensor module 300 according to an exemplary embodiment of the present disclosure.
  • the electronic device 200 includes a display panel 210, and the display panel 210 includes an optical fingerprint sensor module 300 (refer to FIG. 6).
  • the display area of the display panel 210 is formed with a fingerprint detection area 220, and the optical fingerprint sensor module 300 is disposed in the fingerprint detection area 220.
  • the display panel 210 further includes a display layer (not shown), and the display layer includes a display surface.
  • the optical fingerprint sensor module 300 is arranged on the side of the display layer away from the display surface to realize the under-screen fingerprint technology, which is beneficial to increase the screen-to-body ratio.
  • the optical fingerprint sensor module 300 is integrated with the display layer, which is beneficial to reduce the thickness of the display panel 210 and reduce the size of the display panel 210 and the electronic device 200.
  • the optical fingerprint sensing module 300 includes: a pixel circuit array 301.
  • the pixel circuit array 301 includes a plurality of pixel circuits 310.
  • the multiple pixel circuits 310 are arranged in multiple rows and multiple columns, or the multiple pixel circuits 310 are arranged in multiple rows and one column.
  • the pixel circuit 310 includes a photosensitive unit 311 and a switch unit 312 connected to the photosensitive unit 311.
  • the photosensitive unit 311 is used to convert light signals into electrical signals.
  • the photosensitive unit 311 includes a light receiving surface 302 for receiving light.
  • the switch unit 312 is provided with On the side of the photosensitive unit 311 facing away from the light receiving surface 302, the photosensitive unit 311 outputs an electrical signal through the switch unit 312.
  • the photosensitive unit 311 and the switch unit 312 are arranged on different layers.
  • FIG. 7 shows the arrangement of the photosensitive unit 311 on one layer
  • FIG. 8 shows the arrangement of the switch unit 312 on the other layer.
  • the photosensitive unit 311 includes a photodiode
  • the switch unit 312 includes a TFT (Thin Film Transistor).
  • the TFT may be directly formed on the glass substrate 320.
  • the photosensitive unit 311 and the switch unit 312 may be defined by an insulating resin matrix 330 to define relative positions, so that the switch unit 312 is fixed on a side away from the light receiving surface 302 of the photosensitive unit 311.
  • the switch unit 312 provides a space for the photosensitive unit 311.
  • the switch unit 312 provides a space for the photosensitive unit 311.
  • the fingerprint sensor module 300 accurately detects fingerprints.
  • the optical fingerprint sensor module 300 further includes a micro lens array 340, which is disposed on the side of the photosensitive unit 311 away from the switch unit 312.
  • the microlens array 340 is used for condensing light, so that the light can effectively irradiate the photosensitive unit 311.
  • the microlens array 340 includes a plurality of microlenses distributed in an array.
  • one micro lens corresponds to multiple photosensitive units 311.
  • a plurality of micro lenses corresponds to one photosensitive unit 311.
  • the optical fingerprint sensor module 300 further includes a collimating member 350 disposed between the microlens array 340 and the photosensitive unit 311, and the collimating member 350 is provided with a conducting microlens array 340 and the collimation hole 351 of the photosensitive unit 311.
  • the collimating hole 351 achieves a light-receiving collimation effect, avoiding the superposition of light reflected by the ridges and valleys of the fingerprint and causing light mixing problems, which is beneficial to the optical fingerprint sensor module 300 to accurately detect the fingerprint.
  • FIG. 9 shows a partial cross-sectional view of an optical fingerprint sensor module 300 according to an exemplary embodiment of the present disclosure.
  • the optical fingerprint sensor module 300 further includes a wiring 360, at least a part of the wiring 360 is connected to the pixel circuit 310, and the wiring 360 is set away from the photosensitive unit 311 One side of the light receiving surface 302. In this way, it is avoided that the wiring 360 occupies the gap between the photosensitive unit 311 and the photosensitive unit 311, so as to ensure the resolution of the optical fingerprint sensor module 300, which is beneficial to increase the size of the photosensitive unit 311 and increase the photosensitive unit 311. The amount of received light further facilitates the optical fingerprint sensor module 300 to accurately detect fingerprints.
  • the wiring 360 is easy to form a coupling capacitor with the photosensitive unit 311.
  • the wiring 360 is easy to pass the coupling
  • the capacitor outputs charges to the photosensitive unit 311 or receives the charges output by the photosensitive unit 311 through the coupling capacitor, which will interfere with the electrical signal of the photosensitive unit 311.
  • FIG. 10 is a schematic diagram showing the formation of the first coupling capacitor 371 and the compensation coupling capacitor 372 according to an exemplary embodiment of the present disclosure.
  • the wiring 360 includes a gateline 361 connected to the switch unit 312, and a gateline 361 is formed between the scan line 361 and the photosensitive unit 311 for transferring charges.
  • the wiring 360 further includes a compensation line 362, and a compensation coupling capacitor 372 for charge transfer is formed between the compensation line 362 and the photosensitive unit 311.
  • the optical fingerprint sensor module 300 also includes a driving module 381 connected to the compensation line 362 and the scan line 361.
  • the driving module 381 is used to output a driving signal to the compensation line 362 during the exposure period of the photosensitive unit 311 and before the switch unit 312 is turned on.
  • the direction of charge transfer between the compensation line 362 and the photosensitive unit 311 is opposite to the direction of charge transfer between the scan line 361 and the photosensitive unit 311, that is, the compensation signal is output to the photosensitive unit 311 through the compensation coupling capacitor 372 before the switch unit 312 is turned on .
  • the pixel circuit 310 is a passive pixel circuit
  • the driving module 381 is also used to output a driving signal to the compensation line 362 during the exposure period of the photosensitive unit 311 and after the switch unit 312 is turned off, so that the compensation line 362 and the photosensitive
  • the direction of charge transfer between the units 311 is opposite to the direction of charge transfer between the scan line 361 and the photosensitive unit 311.
  • the exposure period of the photosensitive unit 311 in the passive pixel circuit refers to the period from when the switch unit 312 is turned off to the switch unit 312 is turned on again, and until the electrical signal of the photosensitive unit 311 is read (corresponding to t1 in FIG. 11 -t5 time period).
  • the driving module 381 After the switch unit 312 is turned off and before the switch unit 312 is turned on, the driving module 381 outputs a driving signal to the compensation line 362, so that the charge transfer direction between the compensation line 362 and the photosensitive unit 311 and the charge transfer direction between the scan line 361 and the photosensitive unit 311 On the contrary, the interference caused by the opening and closing of the switch unit 312 can be eliminated, and the accuracy of reading the electrical signal of the photosensitive unit 311 can be ensured.
  • the present disclosure provides the following embodiments:
  • FIG. 11 shows a working timing diagram of the scan line 361 and the compensation line 362 according to an exemplary embodiment of the present disclosure.
  • the driving module 381 is configured to: send a scan signal for controlling the switch unit 312 to turn on to the scan line 361; The time t3 of the falling edge of the driving signal is before the time t4 of the rising edge of the scan signal.
  • the switching unit 312 and the compensation line 362 are driven to work.
  • the switch unit 312 is turned on, and at the time of the falling edge of the scan signal, the switch unit 312 is turned off.
  • the compensation line 362 starts to work, and at the moment of the falling edge of the driving signal, the compensation line 362 stops working.
  • the scanning signal driving switch unit 312 is turned on to reset the photosensitive unit 311.
  • the switch unit 312 is turned off.
  • the driving module 381 sends a driving signal to the compensation line 362.
  • the compensation line 362 transfers charges between the compensation coupling capacitor 372 and the photosensitive unit 311 according to the rising and falling edges of the driving signal.
  • the switch unit 312 is turned on, and the light-sensing unit 311 continues to accumulate and stabilize the light signal.
  • time t5 the electrical signal converted from the light signal by the light-sensing unit 311 is read.
  • time t1 to time t5 is the exposure period of the photosensitive unit 311
  • t5 is the eve of the rising edge of the scan line, that is, a time before the switch unit 312 is turned off.
  • the scan line 361 will receive part of the charge output by the photosensitive unit 311 through the first coupling capacitor 371, which will affect the electrical signal of the photosensitive unit 311.
  • the compensation line 362 is made to output a part of the charge to the photosensitive unit 311 through the compensation coupling capacitor 372 to compensate for the amount of charge lost by the photosensitive unit 311, thereby ensuring that the electrical signal of the photosensitive unit 311 is stable.
  • the scan line 361 outputs a part of the charge to the photosensitive unit 311 through the first coupling capacitor 371.
  • the compensation line 362 receives part of the charge output by the photosensitive unit 311 through the compensation coupling capacitor 372 to compensate the partial charge input from the scan line 361 to the photosensitive unit 311 through the first coupling capacitor 371, thereby ensuring that the electrical signal of the photosensitive unit 311 is stable.
  • the electrical signal of the photosensitive unit 311 is read.
  • the size of the scan signal ⁇ VG can be equal to the size of the drive signal ⁇ VD, which is beneficial to make the amount of charge output or received by the compensation line 362 through the compensation coupling capacitor 372 equal to the amount of charge output or received by the scan line 361 through the first coupling capacitor 371. This effectively ensures that the electrical signal of the photosensitive unit 311 is stable.
  • the scanning signal and the driving signal can also be low-level pulse signals, and the working principle is similar to the above, and will not be described in detail here.
  • the size of the first coupling capacitor 371 is equal to the size of the compensation coupling capacitor 372.
  • the structure and arrangement of the scan line 361 and the compensation line 362 are the same, which facilitates the first coupling capacitor 371 formed by the scan line 361 and the photosensitive unit 311 and the compensation coupling capacitor formed by the compensation line 362 and the photosensitive unit 311 372 are equal.
  • the amount of charge output from the compensation line 362 to the photosensitive unit 311 through the compensation coupling capacitor 372 is equal to the amount of charge output from the photosensitive unit 311 to the scanning line 361 through the first coupling capacitor 371, and the photosensitive unit 311 passes through the first coupling capacitor.
  • the amount of charge received by 371 of the scanning line 361 is equal to the amount of charge output by the photosensitive unit 311 to the compensation line 362 through the compensation coupling capacitor 372, thereby effectively stabilizing the electrical signal of the photosensitive unit 311.
  • the optical fingerprint sensor module 300 further includes: an amplification module 382 and an analog-to-digital conversion module 383.
  • the wiring 360 also includes a data line 363, which is connected to the output terminal of the switch unit 312, and is used to output the electrical signal of the photosensitive unit 311.
  • the amplifying module 382 is connected to the data line 363, the analog-to-digital conversion module 383 is connected to the amplifying module 382, the amplifying module 382 is used to amplify the electrical signal output by the photosensitive unit 311, and the analog-to-digital conversion module 383 is used to convert the electrical signal into a digital signal, To facilitate the formation of digital images of fingerprints.
  • the pixel circuit 310 is an active pixel circuit, and the differences between the active pixel circuit and the passive pixel circuit are as follows:
  • Fig. 12 is a circuit diagram of an active pixel circuit according to an exemplary embodiment of the present disclosure.
  • Fig. 13 shows a partial schematic diagram of a pixel circuit array according to an exemplary embodiment of the present disclosure.
  • the active pixel circuit further includes a reset unit 313 connected to the photosensitive unit 311 and the switch unit 312 for resetting the photosensitive unit 311.
  • the reset unit 313 is provided on the photosensitive unit 311 facing away from the light receiving surface 302. One side.
  • the active pixel circuit also includes a source follower unit 314. One end is connected between the photosensitive unit 311 and the reset unit 313, and the other end is connected with the switch unit 312.
  • the source follower unit 314 is provided on a side of the photosensitive unit 311 away from the light receiving surface 302. side. Referring to FIG. 13, the switch unit 312, the reset unit 313, and the source follower unit 314 are arranged on the same layer, and are arranged on a different layer from the photosensitive unit 311 in FIG. In this way, the reset unit 313 and the source follower unit 314 are prevented from occupying the gap between the photosensitive unit 311 and the photosensitive unit 311, which is beneficial to increase the size of the photosensitive unit 311, so as to increase the amount of light received by the photosensitive unit 311, thereby facilitating optical fingerprint transmission.
  • the sensing module 300 accurately detects fingerprints.
  • FIG. 14 is a schematic diagram showing the formation of the first coupling capacitor 371, the second coupling capacitor 373, and the compensation coupling capacitor 372 according to an exemplary embodiment of the present disclosure. 13 and 14 in combination, in some embodiments, the wiring 360 further includes a reset line 364 connected to the reset unit 313, and a second coupling capacitor 373 for transferring charges is formed between the reset line 364 and the photosensitive unit 311.
  • the reset line 364 is connected to the driving module 381, and the driving module 381 is also used to drive the reset unit 313 to turn off after the switch unit 312 is turned off, and output a driving signal to the compensation line 362, so that the charge transfer between the compensation line 362 and the photosensitive unit 311 The direction is opposite to the direction of charge transfer between the reset line 364 and the photosensitive unit 311.
  • the driving module 381 drives the reset unit 313 to reset the photosensitive unit 311, the photosensitive unit 311 starts to expose until the electrical signal output by the photosensitive unit 311 is read. However, when the reset unit 313 is turned off, the photosensitive unit 311 will output charges to the reset line 364 through the second coupling capacitor 373, which affects the accuracy of reading the electrical signal of the photosensitive unit 311.
  • the driving module 381 outputs a driving signal to the compensation line 362 after the reset unit 313 is closed, so that the charge transfer direction between the compensation line 362 and the photosensitive unit 311 is opposite to the charge transfer direction between the reset line 364 and the photosensitive unit 311 to eliminate reset
  • the interference signal caused when the unit 313 is closed ensures the accuracy of reading the electrical signal of the photosensitive unit 311.
  • FIG. 15 shows a working timing diagram of the scan line 361, the compensation line 362, and the reset line 364 according to an exemplary embodiment of the present disclosure.
  • the driving module 381 is used to: send a scan signal to the scan line 361 for controlling the switch unit 312 to turn on; and send a reset signal to the reset line 364, the reset signal is used to drive the reset unit 313 to reset the photosensitive unit 311 And make the rising edge time t8 of the drive signal after the falling edge time t7 of the reset signal, and make the falling edge time t9 of the drive signal before the rising edge time t10 of the scan signal.
  • the reset signal is a high-level pulse signal
  • the reset unit 313 is driven to work.
  • the reset unit 313 is turned on, and at the moment of the falling edge of the reset signal, the reset unit 313 is turned off.
  • the driving signal and the scanning signal are also high-level pulse signals, the compensation line 362 and the switch unit 312 work.
  • the reset signal drives the reset unit 313 to reset the photosensitive unit 311.
  • the driving module 381 sends a driving signal to the compensation line 362.
  • the switch unit 312 is turned on, and the photosensitive unit 311 continues to accumulate the light signal and stabilizes.
  • t11 read the electrical signal converted by the photosensitive unit 311 into the light signal, and t11 is the eve of the rising edge of the scan line, that is Near the moment before the switch unit is turned off.
  • the time t7 to the time t11 are the exposure period of the photosensitive unit 311.
  • the closing time t7 of the reset unit 313 is after the closing time of the switch unit 312, in other words, the falling edge time t7 of the reset signal is after the falling edge time of the scan signal.
  • the switch unit 312 is turned off, the potential of the point P of the photosensitive unit 311 is maintained at the potential VRST of the reset unit 313, so there is no need to compensate for the falling edge of the scan signal, which reduces the number of compensation times for the driving module 381 to drive the compensation line 362, and can Play a good compensation effect.
  • the rising edge time t8 of the driving signal transmitted by the compensation line 362 is located after the falling edge time t7 of the reset signal.
  • the compensation line 362 outputs the charge to the photosensitive unit 311 through the compensation coupling capacitor 372 to compensate for the negative edge of the reset signal. 311 is the charge lost to the reset line 364 through the second coupling capacitor 373. Then the falling edge time t9 of the driving signal sent by the driving module 381 to the compensation line 362 is before the rising edge time t10 of the scan signal, which makes the compensation line 362 receive the charge output from the photosensitive unit 311 through the compensation coupling capacitor 372 to compensate the scan line
  • the amount of charge input by 361 to the photosensitive unit 311 through the first coupling capacitor 371 further ensures that the electrical signal of the photosensitive unit 311 is stable.
  • the scanning signal, the driving signal and the reset signal can also be low-level pulse signals, and the working principle is similar to the above, and will not be described in detail here.
  • the magnitude of the reset signal is equal to the magnitude of the drive signal, which is beneficial to make the amount of charge received or output by the compensation line 362 through the compensation coupling capacitor 372 equal to the amount of charge output or received by the reset line 364 through the second coupling capacitor 373. , Thereby effectively ensuring that the electrical signal of the photosensitive unit 311 is stable.
  • the size of the second coupling capacitor 373 is equal to the size of the compensation coupling capacitor 372. For example, referring to FIG.
  • the reset line 364 and the compensation line 362 have the same structure and arrangement, which facilitates the second coupling capacitor 373 formed by the reset line 364 and the photosensitive unit 311 and the compensation coupling capacitor formed by the compensation line 362 and the photosensitive unit 311 372 are equal.
  • the amount of charge output from the photosensitive unit 311 to the reset line 364 through the second coupling capacitor 373 is equal to the amount of charge output from the compensation line 362 to the photosensitive unit 311 through the compensation coupling capacitor 372, or the reset line 364 passes through the second coupling capacitor.
  • the amount of charge output from 373 to the photosensitive unit 311 is equal to the amount of charge output from the photosensitive unit 311 to the compensation line 362 through the compensation coupling capacitor 372, thereby effectively stabilizing the electrical signal of the photosensitive unit 311.
  • At least part of the scan line 361 and at least part of the compensation line 362 are arranged on the same layer; and/or, at least part of the scan line 361 and the switch unit 312 are arranged on the same layer. In this way, it is beneficial to thin the optical fingerprint sensor module 300.
  • the optical fingerprint sensor module 300, the display panel 210, and the electronic device 200 provided by the embodiments of the present disclosure are arranged on the side of the photosensitive unit 311 away from the light receiving surface 302 based on the switch unit 312 and the wiring 360, which is the photosensitive unit 311 Provide space to make room for increasing the size of the photosensitive unit 311, increase the area of the light receiving surface 302 of the photosensitive unit 311, and increase the amount of light received by the photosensitive unit 311 while ensuring the number of pixel circuits 310 and the pixel resolution. The amount of light facilitates the optical fingerprint sensor module 300 to accurately detect fingerprints.
  • the wiring 360 and the switch unit 312 are arranged on the same layer, which is beneficial to reduce the thickness of the optical fingerprint sensor module 300, the display panel 210, and the electronic device 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学指纹传感模组(300)、显示面板(210)及电子设备(200)。光学指纹传感模组(300)包括:像素电路阵列,像素电路阵列包括多个像素电路。像素电路包括:感光单元(131)以及与感光单元(131)连接的开关单元(132),感光单元(131)用于将光信号转换为电信号,感光单元(131)包括用于接收光线的光接收面(302),开关单元(132)设于感光单元(131)背离光接收面(302)的一侧,感光单元(131)通过开关单元(132)输出电信号。通过使开关单元(132)设于感光单元(131)背离光接收面(302)的一侧,使开关单元(132)为感光单元(131)提供让位空间,以在像素分辨率的前提下,利于做大感光单元(131)的尺寸,增大感光单元(131)的光接收面(302)面积,进而利于光学指纹传感模组(300)精确地检测指纹。

Description

光学指纹传感模组、显示面板及电子设备 技术领域
本公开涉及电子设备技术领域,尤其涉及一种光学指纹传感模组、显示面板及电子设备。
背景技术
随着显示屏技术的快速发展,全面屏越来越备受用户的青睐。各大厂商为了满足用户的需求,提出了多种提高屏占比的方案,比如,可以将光学指纹传感模组设于屏幕下方,实现屏下指纹技术。其中,光学指纹传感模组包括多个像素电路,像素电路包括布设于同一层的感光单元和开关单元,增大感光单元的面积可使每个像素电路接收更多光量,但是会降低像素电路的分辨率。基于此,设计一种兼顾具有良好的分辨率及感光单元能接收较多光量的光学指纹传感模组尤为重要。
发明内容
本公开提供了一种改进的光学指纹传感模组、显示面板及电子设备。
本公开的一个方面提供一种光学指纹传感模组,所述光学指纹传感模组包括:像素电路阵列,所述像素电路阵列包括多个像素电路;所述像素电路包括:感光单元以及与所述感光单元连接的开关单元,所述感光单元用于将光信号转换为电信号,所述感光单元包括用于接收光线的光接收面,所述开关单元设于所述感光单元背离所述光接收面的一侧,所述感光单元通过所述开关单元输出所述电信号。
可选地,所述光学指纹传感模组还包括走线,至少部分所述走线与所述像素电路连接,所述走线设于所述感光单元背离所述光接收面的一侧。
可选地,所述走线包括与所述开关单元连接的扫描线,所述扫描线与所述感光单元之间形成用于传输电荷的第一耦合电容;所述走线还包括补偿线,所述补偿线与所述感光单元之间形成用于传输电荷的补偿耦合电容;所述光学指纹传感模组还包括与所述补偿线及所述扫描线连接的驱动模块,所述驱动模块用于:在所述感光单元曝光期间,在所述开关单元开启之前,输出驱动信号给所述补偿线,使所述补偿线和所述感光单元之间的电荷传输方向与所述扫描线和所述感光单元之间的电荷传输方向相反。
可选地,所述像素电路为无源像素电路,所述驱动模块还用于:在所述感光单元曝光期间,在所述开关单元关闭之后,输出驱动信号给所述补偿线,使所述补偿线和所述感光单元之间的电荷传输方向与所述扫描线和所述感光单元之间的电荷传输方向相反。
可选地,所述驱动模块用于:向所述扫描线发送用于控制所述开关单元开启的扫描信号;且使所述驱动信号的上升沿时刻位于所述扫描信号的下降沿时刻之后,以及,使所述驱动信号的下降沿时刻位于所述扫描信号的上升沿时刻之前。
可选地,所述第一耦合电容的大小与所述补偿耦合电容的大小相等。
可选地,所述像素电路为有源像素电路,所述有源像素电路还包括复位单元,与所述感光单元及所述开关单元连接,用于对所述感光单元复位,所述复位单元设于所述感光单元背离所述光接收面的一侧。
可选地,所述走线还包括与所述复位单元连接的复位线,所述复位线与所述感光单元之间形成用于传输电荷的第二耦合电容;所述复位线与所述驱动模块连接,所述驱动模块还用于:驱动所述复位单元在所述开关单元关闭之后关闭,以及在所述复位单元关闭之后输出所述驱动信号给所述补偿线, 使所述补偿线和所述感光单元之间的电荷传输方向与所述复位线和所述感光单元之间的电荷传输方向相反。
可选地,所述驱动模块用于:向所述扫描线发送用于控制所述开关单元开启的扫描信号;以及向所述复位线发送复位信号,所述复位信号用于驱动所述复位单元对所述感光单元复位;且使所述驱动信号的上升沿时刻位于所述复位信号的下降沿时刻之后,以及,使所述驱动信号的下降沿时刻位于所述扫描信号的上升沿时刻之前。
可选地,所述第二耦合电容的大小与所述补偿耦合电容的大小相等。
可选地,所述扫描线的至少部分与所述补偿线的至少部分布设于同一层;和/或,所述扫描线的至少部分与所述开关单元布设于同一层。
可选地,所述光学指纹传感模组还包括微透镜阵列,设于所述感光单元背离所述开关单元的一侧。
可选地,所述光学指纹传感模组还包括设于所述微透镜阵列与所述感光单元之间的准直件,所述准直件设有导通所述微透镜阵列与所述感光单元的准直孔。
本公开的另一个方面提供一种显示面板,所述显示面板包括上述提及的任一种所述的光学指纹传感模组。
本公开的另一个方面提供一种电子设备,所述电子设备包括上述提及的显示面板。
本公开通过使开关单元设于感光单元背离光接收面的一侧,也即将开关单元与感光单元设于不同层,这使开关单元为感光单元提供让位空间,以在保证像素分辨率的前提下,利于做大感光单元的尺寸,增加感光单元所接收的光量,进而利于光学指纹传感模组精确地检测指纹。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1所示为一示例性实施例示出的显示面板的局部剖视图。
图2所示为图1中光学指纹传感模组的局部剖视图。
图3所示为图2中光学指纹传感模组的局部放大示意图。
图4所示为图1中光学指纹传感模组的俯视图。
图5所示为本公开根据一示例性实施例示出的电子设备的结构示意图。
图6所示为本公开根据一示例性实施例示出的光学指纹传感模组的局部剖视图。
图7所示为本公开根据一示例性实施例示出的像素电路阵列的局部示意图。
图8所示为本公开根据一示例性实施例示出的像素电路阵列的局部示意图。
图9所示为本公开根据一示例性实施例示出的光学指纹传感模组的局部剖视图。
图10所示为本公开根据一示例性实施例示出的第一耦合电容及补偿耦合电容的形成示意图。
图11所示为本公开根据一示例性实施例示出的扫描线与补偿线的工作时序图。
图12所示为本公开根据一示例性实施例示出的有源像素电路的电路 图。
图13所示为本公开根据一示例性实施例示出的像素电路阵列的局部示意图。
图14所示为本公开根据一示例性实施例示出的第一耦合电容、第二耦合电容及补偿耦合电容的形成示意图。
图15所示为本公开根据一示例性实施例示出的扫描线、补偿线及复位线的工作时序图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下 部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”或者“若干”等类似词语表示两个及两个以上。
图1所示为一示例性实施例示出的显示面板的局部剖视图。一些实施例中,参考图1,显示面板包括显示层110、设于显示层110上方的遮盖层120、以及设于显示层110下方的光学指纹传感模组130。其中,显示层110为OLED(OrganicLight-Emitting Diode,有机发光半导体)显示层。当手指140按压于遮盖层120时,OLED显示层110可向手指140发射光线,光线经手指140指纹的脊和谷反射后被光学指纹传感模组130接收,基于光学指纹传感模组130所接收的光线来检测指纹。
图2所示为图1中光学指纹传感模组130的局部剖视图,图3所示为图2中光学指纹传感模组130的局部放大示意图,图4所示为图1中光学指纹传感模组的俯视图。光学指纹传感模组130包括像素电路阵列,像素电路阵列包括多个像素电路。参考图2,像素电路包括感光单元131以及与感光单元131连接的开关单元132,感光单元131和开关单元132布设于同一层。感光单元131用于将光线转换为电信号,并通过开关单元132输出电信号。基于该电信号可确定指纹的形状。
结合参考图2和图3,光学指纹传感模组130还包括设于感光单元131的光接收面一侧的准直件133、以及设于准直件133的光线入射一侧的微透镜阵列134。其中,准直件133设有准直孔135,准直孔135用于将经过微透镜阵列134的光线准直照射于感光单元131。比如,在图3中,准直件133使实线光线通过准直孔135照射于感光单元131,阻挡虚线光线照射于感光单元131,避免指纹的脊和谷反射的光线叠加而造成混光问题,利于光学指纹传感模组130精确地检测指纹。
结合参考图2和图4,若部分准直孔135与感光单元131未对齐,而与 开关单元132对齐,那么,开关单元132可接收准直孔135准直后的光线,将开关单元132接收光线的区域称为开关单元区域136,参见图4,这减少感光单元131所接收的光量,不利于光学指纹传感模组130准确地检测指纹。倘若将所有准直孔135与感光单元131对齐,利于感光单元131接收较多光量,进而利于精确地检测指纹,但这增加了生产成本。倘若增加感光单元131的面积,由于像素阵列的面积有限,这将减少感光单元131的数目,降低光学指纹传感模组130的分辨率。并且,由于工艺限制,不易将开关单元132的尺寸做小。因此,上述光学指纹传感模组130不能同时兼顾具有良好的分辨率及感光单元131能接收较多光量。
为了解决上述问题,本公开实施例提供了一种光学指纹传感模组、显示面板及电子设备,以下结合附图进行阐述:
在本公开实施例中,电子设备包括但不限于:手机、平板电脑、iPad、数字广播终端、消息收发设备、游戏控制台、医疗设备、健身设备、个人数字助理等智能设备。
图5所示为本公开根据一示例性实施例示出的电子设备200的结构示意图。图6所示为本公开根据一示例性实施例示出的光学指纹传感模组300的局部剖视图。参考图5,电子设备200包括显示面板210,显示面板210包括光学指纹传感模组300(参考图6)。显示面板210的显示区域形成有指纹检测区域220,光学指纹传感模组300设于指纹检测区域220。
在一些实施例中,显示面板210还包括显示层(未图示),显示层包括显示面。光学指纹传感模组300设于显示层背离显示面的一侧,以实现屏下指纹技术,利于提高屏占比。在另一些实施例中,光学指纹传感模组300与显示层集成于一体,利于减薄显示面板210的厚度,以及使显示面板210及电子设备200的体积小型化。
图7所示为本公开根据一示例性实施例示出的像素电路阵列的局部示 意图。图8所示为本公开根据一示例性实施例示出的像素电路阵列的局部示意图。结合参考图6至图8,光学指纹传感模组300包括:像素电路阵列301。像素电路阵列301包括多个像素电路310。示例性地,多个像素电路310排布为多行多列,或者多个像素电路310排布为多行一列。像素电路310包括:感光单元311以及与感光单元311连接的开关单元312,感光单元311用于将光信号转换为电信号,感光单元311包括用于接收光线的光接收面302,开关单元312设于感光单元311背离光接收面302的一侧,感光单元311通过开关单元312输出电信号。换言之,感光单元311与开关单元312设于不同层,如图7中示出了感光单元311在一层的布设方式,图8中示出了开关单元312在另一层的布设方式。
示例性地,感光单元311包括光敏二极管,开关单元312包括TFT(Thin Film Transistor,薄膜晶体管),参考图6,TFT可直接形成于玻璃基板320上。示例性地,感光单元311及开关单元312可通过绝缘的树脂基体330限定相对位置,使开关单元312固定于背离感光单元311的光接收面302的一侧。
基于上述,通过使开关单元312设于感光单元311背离光接收面302的一侧,也即将开关单元312与感光单元311设于不同层,这使开关单元312为感光单元311提供让位空间,以在保证像素电路310的数目及像素分辨率的前提下,利于做大感光单元311的尺寸,增大感光单元311的光接收面302的面积,进而增加感光单元311所接收的光量,利于光学指纹传感模组300精确地检测指纹。
请继续参考图6,在一些实施例中,光学指纹传感模组300还包括微透镜阵列340,设于感光单元311背离开关单元312的一侧。微透镜阵列340用于聚光,以使光线有效地照射至感光单元311。示例性地,微透镜阵列340包括呈阵列分布的多个微透镜。示例性地,一个微透镜对应多个感光单元311。示例性地,多个微透镜对应一个感光单元311。
请继续参考图6,在一些实施例中,光学指纹传感模组300还包括设于微透镜阵列340与感光单元311之间的准直件350,准直件350设有导通微透镜阵列340与感光单元311的准直孔351。通过准直孔351起到收光准直效果,避免指纹的脊和谷反射的光线叠加而造成混光问题,利于光学指纹传感模组300精确地检测指纹。
图9所示为本公开根据一示例性实施例示出的光学指纹传感模组300的局部剖视图。在一些实施例中,结合参考图6、图8和图9,光学指纹传感模组300还包括走线360,至少部分走线360与像素电路310连接,走线360设于感光单元311背离光接收面302的一侧。如此,避免走线360占用感光单元311与感光单元311之间的间隙,以在保证光学指纹传感模组300的分辨率的前提下,利于将感光单元311的尺寸做大,增加感光单元311所接收的光量,进而利于光学指纹传感模组300精确地检测指纹。
基于上述,虽然至少部分走线360与感光单元311分设于不同层,但走线360容易与感光单元311之间形成耦合电容,当开关单元312等部件开启或关闭时,走线360容易通过耦合电容向感光单元311输出电荷,或接收感光单元311通过耦合电容输出的电荷,这会干扰感光单元311的电信号。
图10所示为本公开根据一示例性实施例示出的第一耦合电容371及补偿耦合电容372的形成示意图。为了解决上述问题,在一些实施例中,结合参考图8至图10,走线360包括与开关单元312连接的扫描线(gateline)361,扫描线361与感光单元311之间形成用于传输电荷的第一耦合电容371。走线360还包括补偿线362,补偿线362与感光单元311之间形成用于传输电荷的补偿耦合电容372。光学指纹传感模组300还包括与补偿线362及扫描线361连接的驱动模块381,驱动模块381用于:在感光单元311曝光期间,在开关单元312开启之前,输出驱动信号给补偿线362,使补偿线362和感光单元311之间的电荷传输方向与扫描线361和感光单元311之间的电荷传输方向相反,即在开关单元312开启之前通过补偿耦合电容372向感光单元311输出 补偿信号。在一些实施例中,像素电路310为无源像素电路,驱动模块381还用于:在感光单元311曝光期间,在开关单元312关闭之后,输出驱动信号给补偿线362,使补偿线362和感光单元311之间的电荷传输方向与扫描线361和感光单元311之间的电荷传输方向相反。需要说明的是,无源像素电路中感光单元311的曝光期间指的是:由开关单元312关闭至开关单元312再次开启,以及至读取感光单元311的电信号的期间(对应图11中t1-t5的时间段)。通过驱动模块381在开关单元312关闭之后及开启之前,输出驱动信号给补偿线362,使补偿线362和感光单元311之间的电荷传输方向与扫描线361和感光单元311之间的电荷传输方向相反,以消除开关单元312开启和关闭带来的干扰,进而保证读取感光单元311的电信号的精度。为了更清楚地理解如何通过补偿线362消除干扰,本公开给出以下实施例:
图11所示为本公开根据一示例性实施例示出的扫描线361与补偿线362的工作时序图。在一些实施例中,驱动模块381用于:向扫描线361发送用于控制开关单元312开启的扫描信号;且使驱动信号的上升沿时刻t2位于扫描信号的下降沿时刻t1之后,以及,使驱动信号的下降沿时刻t3位于扫描信号的上升沿时刻t4之前。在一些实施例中,扫描信号和驱动信号均为高电平脉冲信号时,驱动开关单元312及补偿线362工作。换言之,参考图11,在扫描信号的上升沿时刻,开关单元312开启,在扫描信号的下降沿时刻,开关单元312关闭。在驱动信号的上升沿时刻,补偿线362开始工作,在驱动信号的下降沿时刻,补偿线362停止工作。
具体而言,参考图11,时刻t0至时刻t1期间,扫描信号驱动开关单元312打开,以对感光单元311复位。时刻t1至时刻t4期间,开关单元312关闭。时刻t2至时刻t3期间,驱动模块381向补偿线362发送驱动信号。在时刻t2及时刻t3时,补偿线362根据驱动信号的上升沿和下降沿通过补偿耦合电容372与感光单元311之间传输电荷。在时刻t4至时刻t5,开关单元312打开,感光单元311继续积累光信号并稳定,在时刻t5时,读取感光单元311 将光信号转换为的电信号。其中,时刻t1至时刻t5为感光单元311的曝光期间,t5为扫描线上升沿前夕,即在临近开关单元312关闭前的一个时刻。在扫描信号的下降沿时刻t1扫描线361会接收感光单元311通过第一耦合电容371输出的部分电荷,这会影响感光单元311的电信号,通过使驱动信号的上升沿时刻t2位于扫描信号的下降沿时刻t1之后,使补偿线362通过补偿耦合电容372向感光单元311输出部分电荷,以补偿感光单元311所流失的电荷量,进而保证感光单元311的电信号稳定。在扫描信号的上升沿时刻t4时,扫描线361通过第一耦合电容371向感光单元311输出部分电荷,通过使驱动信号的下降沿时刻t3位于扫描信号的上升沿时刻t4之前,这使补偿线362通过补偿耦合电容372接收感光单元311输出的部分电荷,以补偿扫描线361通过第一耦合电容371向感光单元311输入的部分电荷,进而保证感光单元311的电信号稳定。在时刻t5时,读取感光单元311的电信号。其中,扫描信号的大小ΔVG可与驱动信号的大小ΔVD相等,利于使补偿线362通过补偿耦合电容372输出或接收的电荷量与扫描线361通过第一耦合电容371输出或接收的电荷量相等,进而有效保证感光单元311的电信号稳定。
此外,扫描信号和驱动信号还可为低电平脉冲信号,工作原理与上述类似,此处不再详述。
进一步地,在一些实施例中,第一耦合电容371的大小与补偿耦合电容372的大小相等。比如,参考图8,扫描线361与补偿线362的结构及布设方式相同,这利于使扫描线361及感光单元311形成的第一耦合电容371与补偿线362及感光单元311形成的补偿耦合电容372相等。如此,利于使补偿线362通过补偿耦合电容372向感光单元311输出的电荷量与感光单元311通过第一耦合电容371向扫描线361输出的电荷量相等,以及使感光单元311通过第一耦合电容371接收扫描线361的电荷量与感光单元311通过补偿耦合电容372向补偿线362输出的电荷量相等,进而有效稳定感光单元311的电信号。
在一些实施例中,请继续参考8,光学指纹传感模组300还包括:放大模块382及模数转换模块383。走线360还包括数据线(dataline)363,与开关单元312的输出端连接,用于输出感光单元311的电信号。放大模块382与数据线363连接,模数转换模块383与放大模块382连接,放大模块382用于将感光单元311输出的电信号放大,模数转换模块383用于将电信号转换为数字信号,以利于形成指纹的数字图像。
在另一些实施例中,像素电路310为有源像素电路,有源像素电路与无源像素电路的不同之处如下:
图12所示为本公开根据一示例性实施例示出的有源像素电路的电路图。图13所示为本公开根据一示例性实施例示出的像素电路阵列的局部示意图。结合参考图12和图13,有源像素电路还包括复位单元313,与感光单元311及开关单元312连接,用于对感光单元311复位,复位单元313设于感光单元311背离光接收面302的一侧。有源像素电路还包括源极跟随单元314,一端连接至感光单元311与复位单元313之间,另一端与开关单元312连接,源极跟随单元314设于感光单元311背离光接收面302的一侧。参考图13,开关单元312、复位单元313及源极跟随单元314设于同一层,与图7中的感光单元311设于不同层。如此,避免复位单元313及源极跟随单元314占用感光单元311与感光单元311之间的间隙,利于将感光单元311的尺寸做大,以增加感光单元311所接收的光量,进而利于光学指纹传感模组300精确地检测指纹。
图14所示为本公开根据一示例性实施例示出的第一耦合电容371、第二耦合电容373及补偿耦合电容372的形成示意图。结合参考图13和图14,在一些实施例中,走线360还包括与复位单元313连接的复位线364,复位线364与感光单元311之间形成用于传输电荷的第二耦合电容373。复位线364与驱动模块381连接,驱动模块381还用于:驱动复位单元313在开关单元312关闭之后关闭,并输出驱动信号给补偿线362,使补偿线362和感光单元 311之间的电荷传输方向与复位线364和感光单元311之间的电荷传输方向相反。驱动模块381驱动复位单元313使感光单元311复位后,感光单元311开始曝光,直至读取感光单元311输出的电信号。但是,在复位单元313关闭时,感光单元311会通过第二耦合电容373向复位线364输出电荷,这影响读取感光单元311的电信号的精度。驱动模块381在复位单元313关闭之后向补偿线362输出驱动信号,使补偿线362和感光单元311之间的电荷传输方向与复位线364和感光单元311之间的电荷传输方向相反,以消除复位单元313关闭时带来的干扰信号,进而保证读取感光单元311的电信号的精度。为了更清楚地理解如何通过补偿线362消除干扰,给出以下实施例:
图15所示为本公开根据一示例性实施例示出的扫描线361、补偿线362及复位线364的工作时序图。在一些实施例中,驱动模块381用于:向扫描线361发送用于控制开关单元312开启的扫描信号;以及向复位线364发送复位信号,复位信号用于驱动复位单元313对感光单元311复位;且使驱动信号的上升沿时刻t8位于复位信号的下降沿时刻t7之后,以及,使驱动信号的下降沿时刻t9位于扫描信号的上升沿时刻t10之前。在一些实施例中,复位信号为高电平脉冲信号时,驱动复位单元313工作。换言之,在复位信号的上升沿时刻,复位单元313开启,在复位信号的下降沿时刻,复位单元313关闭。驱动信号和扫描信号也为高电平脉冲信号时,补偿线362和开关单元312工作。
具体而言,参考图15,在时刻t6至时刻t7期间,复位信号驱动复位单元313对感光单元311复位。在时刻t8至时刻t9期间,驱动模块381向补偿线362发送驱动信号。在时刻t10至时刻t11,开关单元312打开,感光单元311继续积累光信号并稳定,在时刻t11时,读取感光单元311将光信号转换为的电信号,t11为扫描线上升沿前夕,即在临近开关单元关闭前的一个时刻。其中,时刻t7至时刻t11为感光单元311的曝光期间。复位单元313的关闭时刻t7在开关单元312的关闭时刻之后,换言之,复位信号的下降沿时刻t7 在扫描信号的下降沿时刻之后。在开关单元312关闭之后,感光单元311的P点电位被维持于复位单元313的电位VRST,因此可不用对扫描信号的下降沿进行补偿,减少驱动模块381驱动补偿线362的补偿次数,且可起到良好的补偿效果。使补偿线362传输的驱动信号的上升沿时刻t8位于复位信号的下降沿时刻t7之后,补偿线362通过补偿耦合电容372向感光单元311输出电荷,以补偿因复位信号的下降沿而使感光单元311通过第二耦合电容373向复位线364流失的电荷。然后驱动模块381向补偿线362发出的驱动信号的下降沿时刻t9位于扫描信号的上升沿时刻t10之前,这使补偿线362通过补偿耦合电容372接收感光单元311输出的电荷量,以补偿扫描线361通过第一耦合电容371向感光单元311输入的电荷量,进而保证感光单元311的电信号稳定。
此外,扫描信号、驱动信号及复位信号还可为低电平脉冲信号,工作原理与上述类似,此处不再详述。
在一些实施例中,复位信号的大小与驱动信号的大小相等,利于使补偿线362通过补偿耦合电容372接收或输出的电荷量与复位线364通过第二耦合电容373输出或接收的电荷量相等,进而有效保证感光单元311的电信号稳定。在一些实施例中,第二耦合电容373的大小与补偿耦合电容372的大小相等。比如,参考图13,复位线364与补偿线362的结构及布设方式相同,这利于使复位线364及感光单元311形成的第二耦合电容373与补偿线362及感光单元311形成的补偿耦合电容372相等。如此,利于使感光单元311通过第二耦合电容373向复位线364输出的电荷量与补偿线362通过补偿耦合电容372向感光单元311输出的电荷量相等,或者使复位线364通过第二耦合电容373向感光单元311输出的电荷量与感光单元311通过补偿耦合电容372向补偿线362输出的电荷量相等,进而有效稳定感光单元311的电信号。
在一些实施例中,扫描线361的至少部分与补偿线362的至少部分布 设于同一层;和/或,扫描线361的至少部分与开关单元312布设于同一层。如此,利于减薄光学指纹传感模组300。
本公开实施例提供的光学指纹传感模组300、显示面板210及电子设备200,基于开关单元312及走线360等设于感光单元311背离光接收面302的一侧,这为感光单元311提供让位空间,以在保证像素电路310的数目及像素分辨率的前提下,利于做大感光单元311的尺寸,增大感光单元311的光接收面302面积,进而增加感光单元311所接收的光量,利于光学指纹传感模组300精确地检测指纹。且,不需要采用精密的设备将感光单元311与准直件350的准直孔351对齐,利于降低生产成本,提升显示面板210及电子设备200的竞争力。此外,走线360的至少部分与开关单元312布设于同一层,利于减薄光学指纹传感模组300、显示面板210及电子设备200的厚度。
本公开上述各个实施例,在不产生冲突的情况下,可以互为补充。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (15)

  1. 一种光学指纹传感模组,其特征在于,所述光学指纹传感模组包括:
    像素电路阵列,所述像素电路阵列包括多个像素电路;
    所述像素电路包括:感光单元以及与所述感光单元连接的开关单元,所述感光单元用于将光信号转换为电信号,所述感光单元包括用于接收光线的光接收面,所述开关单元设于所述感光单元背离所述光接收面的一侧,所述感光单元通过所述开关单元输出所述电信号。
  2. 根据权利要求1所述的光学指纹传感模组,其特征在于,所述光学指纹传感模组还包括走线,至少部分所述走线与所述像素电路连接,所述走线设于所述感光单元背离所述光接收面的一侧。
  3. 根据权利要求2所述的光学指纹传感模组,其特征在于,所述走线包括与所述开关单元连接的扫描线,所述扫描线与所述感光单元之间形成用于传输电荷的第一耦合电容;
    所述走线还包括补偿线,所述补偿线与所述感光单元之间形成用于传输电荷的补偿耦合电容;
    所述光学指纹传感模组还包括与所述补偿线及所述扫描线连接的驱动模块,所述驱动模块用于:在所述感光单元曝光期间,在所述开关单元开启之前,输出驱动信号给所述补偿线,使所述补偿线和所述感光单元之间的电荷传输方向与所述扫描线和所述感光单元之间的电荷传输方向相反。
  4. 根据权利要求3所述的光学指纹传感模组,其特征在于,所述像素电路为无源像素电路,所述驱动模块还用于:在所述感光单元曝光期间,在所述开关单元关闭之后,输出驱动信号给所述补偿线,使所述补偿线和所述感光单元之间的电荷传输方向与所述扫描线和所述感光单元之间的电荷传输方向相反。
  5. 根据权利要求4所述的光学指纹传感模组,其特征在于,所述驱动模块用于:向所述扫描线发送用于控制所述开关单元开启的扫描信号;
    且使所述驱动信号的上升沿时刻位于所述扫描信号的下降沿时刻之后,以及,使所述驱动信号的下降沿时刻位于所述扫描信号的上升沿时刻之前。
  6. 根据权利要求3所述的光学指纹传感模组,其特征在于,所述第一耦合电容的大小与所述补偿耦合电容的大小相等。
  7. 根据权利要求3所述的光学指纹传感模组,其特征在于,所述像素电路为有源像素电路,所述有源像素电路还包括复位单元,与所述感光单元及所述开关单元连接,用于对所述感光单元复位,所述复位单元设于所述感光单元背离所述光接收面的一侧。
  8. 根据权利要求7所述的光学指纹传感模组,其特征在于,所述走线还包括与所述复位单元连接的复位线,所述复位线与所述感光单元之间形成用于传输电荷的第二耦合电容;
    所述复位线与所述驱动模块连接,所述驱动模块还用于:驱动所述复位单元在所述开关单元关闭之后关闭,并输出所述驱动信号给所述补偿线,使所述补偿线和所述感光单元之间的电荷传输方向与所述复位线和所述感光单元之间的电荷传输方向相反。
  9. 根据权利要求8所述的光学指纹传感模组,其特征在于,所述驱动模块用于:向所述扫描线发送用于控制所述开关单元开启的扫描信号;以及
    向所述复位线发送复位信号,所述复位信号用于驱动所述复位单元对所述感光单元复位;
    且使所述驱动信号的上升沿时刻位于所述复位信号的下降沿时刻之后,以及,使所述驱动信号的下降沿时刻位于所述扫描信号的上升沿时刻之前。
  10. 根据权利要求8所述的光学指纹传感模组,其特征在于,所述第二耦合电容的大小与所述补偿耦合电容的大小相等。
  11. 根据权利要求3所述的光学指纹传感模组,其特征在于,所述扫描线的至少部分与所述补偿线的至少部分布设于同一层;和/或,
    所述扫描线的至少部分与所述开关单元布设于同一层。
  12. 根据权利要求1所述的光学指纹传感模组,其特征在于,所述光学指纹传感模组还包括微透镜阵列,设于所述感光单元背离所述开关单元的一侧。
  13. 根据权利要求12所述的光学指纹传感模组,其特征在于,所述光学指纹传感模组还包括设于所述微透镜阵列与所述感光单元之间的准直件,所述准直件设有导通所述微透镜阵列与所述感光单元的准直孔。
  14. 一种显示面板,其特征在于,所述显示面板包括权利要求1~13任一项所述的光学指纹传感模组。
  15. 一种电子设备,其特征在于,所述电子设备包括权利要求14所述的显示面板。
PCT/CN2020/082827 2020-04-01 2020-04-01 光学指纹传感模组、显示面板及电子设备 WO2021196092A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/082827 WO2021196092A1 (zh) 2020-04-01 2020-04-01 光学指纹传感模组、显示面板及电子设备
CN202080098781.6A CN115298709A (zh) 2020-04-01 2020-04-01 光学指纹传感模组、显示面板及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/082827 WO2021196092A1 (zh) 2020-04-01 2020-04-01 光学指纹传感模组、显示面板及电子设备

Publications (1)

Publication Number Publication Date
WO2021196092A1 true WO2021196092A1 (zh) 2021-10-07

Family

ID=77927275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082827 WO2021196092A1 (zh) 2020-04-01 2020-04-01 光学指纹传感模组、显示面板及电子设备

Country Status (2)

Country Link
CN (1) CN115298709A (zh)
WO (1) WO2021196092A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329724B2 (en) * 2013-11-15 2016-05-03 Silicon Works Co., Ltd. Signal processing circuit for touch screen and method for controlling the same
CN107527032A (zh) * 2017-06-07 2017-12-29 友达光电股份有限公司 光感测单元及光学感测阵列结构
CN109634010A (zh) * 2019-01-02 2019-04-16 南京中电熊猫平板显示科技有限公司 一种显示装置
CN110164847A (zh) * 2019-05-28 2019-08-23 京东方科技集团股份有限公司 阵列基板、光检测方法及组件、显示装置
CN110491326A (zh) * 2019-08-28 2019-11-22 深圳市华星光电半导体显示技术有限公司 像素电路、显示面板及显示装置
CN110580473A (zh) * 2019-09-23 2019-12-17 上海思立微电子科技有限公司 指纹识别组件、显示组件、以及电子设备
CN210072654U (zh) * 2019-05-25 2020-02-14 华为机器有限公司 显示面板及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9329724B2 (en) * 2013-11-15 2016-05-03 Silicon Works Co., Ltd. Signal processing circuit for touch screen and method for controlling the same
CN107527032A (zh) * 2017-06-07 2017-12-29 友达光电股份有限公司 光感测单元及光学感测阵列结构
CN109634010A (zh) * 2019-01-02 2019-04-16 南京中电熊猫平板显示科技有限公司 一种显示装置
CN210072654U (zh) * 2019-05-25 2020-02-14 华为机器有限公司 显示面板及电子设备
CN110164847A (zh) * 2019-05-28 2019-08-23 京东方科技集团股份有限公司 阵列基板、光检测方法及组件、显示装置
CN110491326A (zh) * 2019-08-28 2019-11-22 深圳市华星光电半导体显示技术有限公司 像素电路、显示面板及显示装置
CN110580473A (zh) * 2019-09-23 2019-12-17 上海思立微电子科技有限公司 指纹识别组件、显示组件、以及电子设备

Also Published As

Publication number Publication date
CN115298709A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
JP7291561B2 (ja) イメージセンサー
US11409075B2 (en) Plastic optical lens assembly, imaging lens module and electronic device
US10410039B2 (en) Optical fingerprint module
US8847860B2 (en) Image display device with imaging unit
US10410038B2 (en) Optical fingerprint module
US20200201117A1 (en) Backlight module and display device
KR101174015B1 (ko) 평판 표시장치 및 그 제조 방법
TWI732804B (zh) 感測器ic及電子裝置
CN211653679U (zh) 指纹感测模块及电子装置
WO2019206079A1 (zh) 显示面板和显示装置
WO2018214799A1 (zh) 光电传感器及其制作方法、显示装置
KR20100106920A (ko) 고체 촬상 장치, 고체 촬상 장치의 구동 방법, 및 전자 기기
JP7262600B2 (ja) スクリーンアセンブリ及び電子装置
KR20150018954A (ko) 이미지 센서, 이의 동작 방법, 및 이를 포함하는 시스템
CN103858235A (zh) 固态图像传感器和电子设备
CN111753627A (zh) 指纹传感器及包括指纹传感器的显示设备
CN108279810B (zh) 显示组件及其制备方法、显示装置
CN108596015B (zh) 显示组件及其制备方法、显示装置
WO2023246640A1 (zh) 电子设备
WO2021196092A1 (zh) 光学指纹传感模组、显示面板及电子设备
CN112054017B (zh) 一种显示面板、制备方法及显示装置
CN212135461U (zh) 具有交错收光结构的光学生物特征感测器
US20230063838A1 (en) Light-receiving cell and optical biometrics sensor using the same
CN212783451U (zh) 具有抗杂光干扰结构的光学生物特征感测器
WO2020224426A1 (zh) 指纹传感器、指纹模组及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929594

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20929594

Country of ref document: EP

Kind code of ref document: A1