WO2021193764A1 - Boron nitride particle and resin composition and container comprising same - Google Patents

Boron nitride particle and resin composition and container comprising same Download PDF

Info

Publication number
WO2021193764A1
WO2021193764A1 PCT/JP2021/012390 JP2021012390W WO2021193764A1 WO 2021193764 A1 WO2021193764 A1 WO 2021193764A1 JP 2021012390 W JP2021012390 W JP 2021012390W WO 2021193764 A1 WO2021193764 A1 WO 2021193764A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nitride particles
particles
resin
less
Prior art date
Application number
PCT/JP2021/012390
Other languages
French (fr)
Japanese (ja)
Inventor
建治 宮田
祐輔 佐々木
啓 久保渕
智成 宮崎
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022510628A priority Critical patent/JPWO2021193764A1/ja
Publication of WO2021193764A1 publication Critical patent/WO2021193764A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present disclosure relates to boron nitride particles, and a resin composition and an inclusion body containing the boron nitride particles.
  • heat dissipation members are used to efficiently dissipate heat generated during use.
  • the heat radiating member contains, for example, ceramic particles having high thermal conductivity.
  • ceramic particles boron nitride particles having characteristics such as high thermal conductivity, high insulation, and low relative permittivity are attracting attention.
  • ammonia alkoxide having a molar ratio of ammonia / borate alkoxide of 1 to 10 and ammonia are reacted in an inert gas stream at 750 ° C. or higher within 30 seconds, and then ammonia gas or After heat treatment at 1,000 to 1,600 ° C. for 1 hour or more in an atmosphere of a mixed gas of ammonia gas and an inert gas, and further in an atmosphere of an inert gas, 1,800 to 2,200 ° C., 0.5.
  • Examples thereof include a manufacturing method in which the gas is fired in an hour or longer (see, for example, Patent Document 1).
  • one aspect of the present invention is to provide boron nitride particles having a thermal conductivity equivalent to that of the conventional one, while being easier to manufacture than the conventional one.
  • One aspect of the present invention is a boron nitride particle comprising a central portion containing low crystallinity boron nitride and a peripheral portion arranged so as to surround the central portion and containing highly crystalline boron nitride.
  • the average circularity of the boron nitride particles may be 0.8 or more.
  • Another aspect of the present invention is a resin composition containing a resin and the above-mentioned boron nitride particles.
  • Another aspect of the present invention is an accommodating body including the above-mentioned boron nitride particles and a container for accommodating the boron nitride particles.
  • boron nitride particles having a thermal conductivity equivalent to that of the conventional one, while being more easily produced than the conventional one.
  • One embodiment of the present invention is a boron nitride particle comprising a central portion containing low crystalline boron nitride and a peripheral portion arranged so as to surround the central portion and containing highly crystalline boron nitride. ..
  • high crystallinity is derived from the h-BN (0002) plane in the range of 1 to 4 nm -1 on the reciprocal lattice space in the FFT image of the boron nitride particles obtained by the following method. It means a state in which a bright spot (peak) is present due to the periodicity of the above, and “low crystallinity” means a state in which the bright spot (peak) does not exist.
  • the existence of a bright spot (peak) means that the intensity S after subtracting the background by the B-spline method in the range of 1 to 4 nm -1 on the reciprocal lattice space is 15 times or more the noise intensity N. It means that there is a point that becomes.
  • the noise intensity N is defined as the value of the standard deviation in the range of more than 4 nm -1 and 6 nm -1 or less on the reciprocal lattice space after performing background processing by the B-spline method.
  • the bright spots (peaks) include those having fluctuations in the wave number direction or the circumferential direction.
  • the intensity S is preferably 20 times or more, more preferably 23 times the noise intensity N in the range of 1 to 4 nm -1 on the reciprocal lattice space. As mentioned above, there may be a point that is more preferably 25 times or more.
  • FFT image acquisition method First, using a transmission electron microscope (for example, "JEM-2100” manufactured by JEOL Ltd.), a TEM image of 400,000 times that of boron nitride particles is obtained under the following conditions. Objective lens aperture: ⁇ 120 ⁇ m Condenser lens aperture: ⁇ 150 ⁇ m Recording medium: "Orisus SC1000A1" manufactured by AMETEK Bining: 2 Exposure time: 0.5 seconds In addition, image analysis software (for example, "GMS3" manufactured by AMETEC) is used for TEM observation and FFT analysis described later. Subsequently, an FFT analysis is performed on a region of 8.556 nm square in the obtained TEM image, and an FFT image of 256 ⁇ 256 pixels is acquired.
  • a transmission electron microscope for example, "JEM-2100” manufactured by JEOL Ltd.
  • the diameter of the central portion of the boron nitride particles may be, for example, 0.1d or more, 0.15d or more, or 0.2d or more, and 0.6d or less, where d is the particle size of the boron nitride particles. , 0.5 or less, 0.4d or less, 0.35d or less, or 0.3d or less.
  • the diameter of the central portion in the boron nitride particles may be, for example, 1 nm or more, 5 nm or more, 10 nm or more, 20 nm or more, or 30 nm or more, and may be 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.
  • the diameter of the central portion in the boron nitride particles is derived from the h-BN (0002) plane in the “highly crystalline” portion defined as described above, that is, in the range of 1 to 4 nm -1 on the reciprocal lattice space. It means the diameter of the part where the bright spot (peak) exists due to the periodicity of.
  • the thickness of the peripheral portion in the boron nitride particles may be, for example, 0.3d or more, 0.33d or more, or 0.35d or more, and 0.45d or more, where d is the particle size of the boron nitride particles. Hereinafter, it may be 0.43d or less, or 0.4d or less.
  • the diameter of the central portion in the boron nitride particles may be, for example, 5 nm or more, 10 nm or more, 20 nm or more, 40 nm or more, or 60 nm or more, and may be 450 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less.
  • the thickness of the peripheral portion in the boron nitride particles is the h-BN (0002) plane in the “low crystallinity” portion defined as described above, that is, in the range of 1 to 4 nm -1 on the reciprocal lattice space. It means the thickness of the part where there is no bright spot (peak) due to the periodicity of origin.
  • the average particle size of the boron nitride particles is preferably 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.15 ⁇ m from the viewpoint of suppressing an increase in viscosity when the boron nitride particles and the resin are mixed.
  • the heat radiating member containing the boron nitride particles hereinafter, also simply referred to as “radiating member”.
  • the average particle size of the boron nitride particles is measured by the following procedure. Distilled water is used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate is used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed at 80% AMPLITUDE (amplitude) for 1 minute using an ultrasonic homogenizer (for example, "US-300E" manufactured by Nissei Tokyo Office).
  • an ultrasonic homogenizer for example, "US-300E" manufactured by Nissei Tokyo Office.
  • a dispersion of boron nitride particles is prepared by performing this once every 30 seconds. This dispersion is separated while stirring at 60 rpm, and the volume-based particle size distribution is measured by a laser diffraction / scattering method particle size distribution measuring device (for example, “LS-13 320” manufactured by Beckman Coulter). At this time, 1.33 is used as the refractive index of water, and 1.7 is used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as a particle size (median diameter, d50) of 50% of the cumulative value of the cumulative particle size distribution. The average particle size measured in this way is considered to be the average particle size of the boron nitride particles including the primary particles of the boron nitride particles and the particles (secondary particles) in which the primary particles are aggregated. ..
  • Boron nitride particles preferably have a spherical shape or a shape close to a spherical shape from the viewpoint of improving the filling property when manufacturing the heat radiating member and making the characteristics (thermal conductivity, dielectric constant, etc.) of the heat radiating member isotropic. have.
  • the average circularity of the boron nitride particles is preferably 0.8 or more, 0.82 or more, 0.84 or more, 0.86 or more, 0.88 or more, 0.90 or more, 0.91. As mentioned above, it may be 0.92 or more, 0.93 or more, or 0.94 or more.
  • the boron nitride particles as described above can be obtained by intentionally stopping the crystal growth of boron nitride in an incomplete state.
  • the crystal growth gradually progresses from the peripheral portion to the central portion of the particles, and the boron nitride particles obtained by stopping the crystal growth of boron nitride in an incomplete state are used.
  • the boron nitride contained in the peripheral portion has high crystallinity, while the boron nitride contained in the central portion has low crystallinity.
  • the above-mentioned boron nitride particles are nitrided by, for example, the first step of reacting boric acid ester and ammonia at 750 to 1400 ° C. to obtain a precursor of the boron nitride particles, and heating the precursor at 1000 to 1600 ° C. It is obtained by a production method comprising a second step of obtaining boron particles.
  • a reaction tube for example, a quartz tube installed in a resistance heating furnace is heated to raise the temperature to 750 to 1500 ° C.
  • the boric acid ester is introduced into the reaction tube by passing the inert gas through the liquid boric acid ester and then introducing it into the reaction tube.
  • ammonia gas is introduced directly into the reaction tube.
  • the inert gas include rare gases such as helium, neon and argon, and nitrogen gas.
  • the borate ester may be, for example, an alkyl borate ester, preferably trimethyl borate.
  • the molar ratio of the amount of ammonia introduced to the amount of boric acid introduced may be, for example, 1 or more and 10 or less.
  • the introduced boric acid ester and ammonia react in a heated reaction tube to produce a precursor of boron nitride particles.
  • This precursor contains amorphous boron nitride and may be, for example, a white powder.
  • a part of the generated precursor adheres to the inside of the reaction tube, but most of the precursor is sent to the recovery container attached to the tip of the reaction tube by the inert gas or unreacted ammonia gas and recovered.
  • the time (reaction time) for reacting the boric acid ester with ammonia in the first step is preferably within 30 seconds.
  • the reaction time is the time during which the boric acid ester and ammonia stay in the portion of the reaction tube heated to 750 to 1400 ° C. (heated portion), and the gas flow rate when introducing the boric acid ester and ammonia and resistance heating. It can be adjusted by the length of the reaction tube installed in the furnace (the length of the heated portion of the reaction tube).
  • the precursor obtained in the first step is placed in another reaction tube (for example, an alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately placed in the reaction tube. Introduce.
  • the gas introduced at this time may be only ammonia gas.
  • the flow rates of nitrogen gas and ammonia gas may be appropriately adjusted so that the reaction time becomes a desired value, respectively. For example, the higher the flow rate of ammonia gas, the shorter the reaction time.
  • the reaction tube is heated to 1000 to 1600 ° C.
  • the heating time may be, for example, 1 hour or more and 10 hours or less.
  • the crystallization of boron nitride in the precursor is promoted to obtain boron nitride particles.
  • all the boron nitride in the precursor is not crystallized, and low crystalline boron nitride remains inside the boron nitride particles.
  • the boron nitride particles obtained in the second step are heated at 1800 ° C. or higher (conventional step, which was conventionally carried out to promote the crystal growth of boron nitride). Does not have. That is, in this production method, the desired boron nitride particles are obtained in a state of incomplete crystal growth after heating in the second step.
  • the boron nitride particles obtained in the second step are subjected to 1700 ° C. or higher, 1600 ° C. or higher, 1500 ° C. or higher, 1400 ° C. or higher, 1300 ° C. or higher, 1200 ° C. or higher, 1100.
  • °C or more 1000 °C or more, 900 °C or more, 800 °C or more, 700 °C or more, 600 °C or more, 500 °C or more, 400 °C or more, 300 °C or more, 200 °C or more, 100 °C or more, 50 °C or more, 40 °C or more Or, it does not have to be provided with a step of heating at 30 ° C. or higher.
  • the above-mentioned boron nitride particles are suitably used for, for example, a heat radiating member.
  • the boron nitride particles are used, for example, in the form of a resin composition mixed with a resin.
  • another embodiment of the present invention is a resin composition containing the resin and the above-mentioned boron nitride particles. This resin composition is suitably used as a heat radiating member.
  • the content of the above-mentioned boron nitride particles is preferably 30% by volume or more, based on the total volume of the resin composition, from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance. It is preferably 40% by volume or more, more preferably 50% by volume or more, and preferably 85% by volume or less, more preferably 85% by volume or less, from the viewpoint of suppressing the generation of voids during molding and the decrease in insulating property and mechanical strength. It is 80% by volume or less, more preferably 70% by volume or less.
  • the resin examples include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate, polyethylene terephthalate, and the like.
  • the content of the resin may be 15% by volume or more, 20% by volume or more, or 30% by volume or more, based on the total volume of the resin composition, and is 70% by volume or less, 60% by volume or less, or 50% by volume. It may be:
  • the resin composition may further contain a curing agent that cures the resin.
  • the curing agent is appropriately selected depending on the type of resin.
  • examples of the curing agent include phenol novolac compounds, acid anhydrides, amino compounds, and imidazole compounds.
  • the content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
  • Boron nitride particles can be distributed in a container, for example. That is, another embodiment of the present invention is an accommodating body including the above-mentioned boron nitride particles and a container for accommodating the boron nitride particles.
  • the container may have a shape capable of accommodating boron nitride particles, and may be, for example, a bag, a box, a bottle, a can, or the like.
  • Example 1 (Preparation of boron nitride particles)
  • the reaction tube (quartz tube) installed in the resistance heating furnace was heated to raise the temperature to 1150 ° C.
  • trimethyl borate was introduced into the reaction tube by passing nitrogen gas through trimethyl borate and then introducing it into the reaction tube.
  • ammonia gas was introduced directly into the reaction tube.
  • the molar ratio of the amount of ammonia introduced to the amount of trimethyl borate introduced was 4.5.
  • trimethyl borate was reacted with ammonia to obtain a precursor (white powder) of boron nitride particles.
  • the reaction time was 10 seconds.
  • the precursor obtained in the first step is placed in another reaction tube (alumina tube) installed in the resistance heating furnace, and nitrogen gas 10 L / min and ammonia gas 15 L. Each was introduced into the reaction tube separately at a flow rate of / min. Then, the reaction tube was heated at 1500 ° C. for 2.5 hours. As a result, boron nitride particles were obtained.
  • alumina tube alumina tube
  • FIG. 1 shows a TEM bright-field image (magnification: 100,000 times) of the obtained boron nitride particles as a whole.
  • FIG. 2 shows a TEM dark-field image of the peripheral portion S of the boron nitride particles shown in FIG. 1 observed at a magnification of 400,000.
  • FIG. 4 FFT analysis was performed on the other regions S2 to S5 in the peripheral portion S of the boron nitride particles in the same manner as in the region S1.
  • FIGS. 4 and 5 bright spots (peaks) due to periodicity derived from the h-BN (0002) plane were confirmed in the range of 1 to 4 nm -1 on the reciprocal lattice space. That is, it was confirmed that the regions S2 to S5 in the peripheral portion S of the boron nitride particles were also composed of highly crystalline boron nitride.
  • FIG. 6 shows a TEM dark-field image of the central portion C of the boron nitride particles shown in FIG. 1 observed at a magnification of 400,000.
  • FFT analysis was also performed on the regions C1 to C4 in the central portion C of the boron nitride particles in the same manner as in the region S1.
  • no bright spot (peak) due to periodicity derived from the h-BN (0002) plane was confirmed in the range of 1 to 4 nm -1 on the reciprocal lattice space. That is, it was confirmed that the regions C1 to C4 in the central portion C of the boron nitride particles are composed of low crystallinity boron nitride.
  • the graphs shown in FIGS. 3 (b), 5 and 7 are graphs showing the intensity after subtracting the background by the B-spline method. Further, from the graphs shown in FIGS. 5 and 7 of FIG. 3B, the maximum intensity (relative intensity) Smax in the range of 1 to 4 nm -1 on the reciprocal lattice space for each of the regions S1 to S5 and C1 to C4. The noise intensity (standard deviation in the range of more than 4 nm -1 and 6 nm -1 or less on the reciprocal lattice space) N and their ratio (Smax / N) were obtained. The results are shown in Table 1.
  • the obtained boron nitride particles contain highly crystalline boron nitride in the peripheral portion (the region where the above-mentioned bright spot (peak) can be confirmed is dominant), and the central portion is low. It was found that crystalline boron nitride was contained (the region where the above-mentioned bright spot (peak) could not be confirmed was dominant).
  • the diameter of the central portion was about 40 nm, and the thickness of the peripheral portion was about 50 nm.
  • Distilled water was used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate was used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution.
  • Boron nitride particles obtained at a ratio of 0.1 g / 80 mL are added to this aqueous solution, and ultrasonic dispersion is performed at 80% AMPLITUDE (amplitude) by an ultrasonic homogenizer (“US-300E” manufactured by Nissei Tokyo Office).
  • a dispersion of boron nitride particles was prepared by performing the procedure once every minute and 30 seconds.
  • This dispersion was separated while stirring at 60 rpm, and the volume-based particle size distribution was measured with a laser diffraction / scattering method particle size distribution measuring device (“LS-13 320” manufactured by Beckman Coulter). At this time, 1.33 was used as the refractive index of water, and 1.7 was used as the refractive index of the boron nitride particles. From the measurement results, the average particle size was calculated as a particle size (median diameter, d50) of 50% of the cumulative value of the cumulative particle size distribution. The average particle size of the obtained boron nitride particles was 510 nm.
  • Comparative Example 1 After the second step of Example 1, the boron nitride particles were placed in a boron nitride crucible and heated in an induction heating furnace at 2000 ° C. for 5 hours in the same manner as in Example 1. Boron nitride particles for comparison were obtained. That is, in Comparative Example 1, comparative boron nitride particles were obtained by a conventional production method.
  • the thermal conductivity of the boron nitride particles obtained in Example 1 and the comparative boron nitride particles obtained in Comparative Example 1 was measured by the following procedure. 40 parts by mass of boron nitride particles with respect to a mixture of 100 parts by mass of naphthalene type epoxy resin (manufactured by DIC, "HP4032”) and 10 parts by mass of imidazoles (manufactured by Shikoku Kasei Co., Ltd., "2E4MZ-CN)) as a curing agent. A resin composition was obtained by mixing so as to be%.
  • the specific gravity B (kg / m 3 ) of the measurement sample was measured by the Archimedes method.
  • Example 1 the boron nitride particles obtained in Example 1 showed 1.13 W / (m ⁇ K), and the comparative boron nitride particles obtained in Comparative Example 1 showed 1.12 W / (m ⁇ K). rice field.
  • Example 1 although the step of Comparative Example 1 (the step carried out by the conventional manufacturing method) of heating at 2000 ° C. for 5 hours in a nitrogen atmosphere was omitted, it was different from that of Comparative Example 1. Boron nitride particles having the same thermal conductivity could be obtained.

Abstract

In one aspect, the present invention pertains to a boron nitride particle that comprises a core part, said core part containing low crystalline boron nitride, and a shell part, said shell part being disposed so as to surround the core part and containing high crystalline boron nitride.

Description

窒化ホウ素粒子、並びに、該窒化ホウ素粒子を含む樹脂組成物及び収容体Boron Nitride Particles, and Resin Compositions and Containers Containing the Boron Nitride Particles
 本開示は、窒化ホウ素粒子、並びに、該窒化ホウ素粒子を含む樹脂組成物及び収容体に関する。 The present disclosure relates to boron nitride particles, and a resin composition and an inclusion body containing the boron nitride particles.
 パワーデバイス、トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率的に放熱するための放熱部材が用いられる。放熱部材は、例えば、熱伝導率が高いセラミックス粒子を含有する。セラミックス粒子としては、高熱伝導率、高絶縁性、低比誘電率等の特性を有している窒化ホウ素粒子が注目されている。 In electronic components such as power devices, transistors, thyristors, and CPUs, heat dissipation members are used to efficiently dissipate heat generated during use. The heat radiating member contains, for example, ceramic particles having high thermal conductivity. As ceramic particles, boron nitride particles having characteristics such as high thermal conductivity, high insulation, and low relative permittivity are attracting attention.
 窒化ホウ素粒子の製造方法としては、種々の方法が知られている。当該製造方法の一つとして、アンモニア/ホウ酸アルコキシドのモル比が1~10のホウ酸アルコキシドとアンモニアを不活性ガス気流中、750℃以上、30秒以内で反応させた後、アンモニアガス、又は、アンモニアガスと不活性ガスの混合ガスの雰囲気下、1,000~1,600℃、1時間以上で熱処理後、さらに、不活性ガス雰囲気下、1,800~2,200℃、0.5時間以上で焼成する製造方法が挙げられる(例えば特許文献1を参照)。 Various methods are known as methods for producing boron nitride particles. As one of the production methods, ammonia alkoxide having a molar ratio of ammonia / borate alkoxide of 1 to 10 and ammonia are reacted in an inert gas stream at 750 ° C. or higher within 30 seconds, and then ammonia gas or After heat treatment at 1,000 to 1,600 ° C. for 1 hour or more in an atmosphere of a mixed gas of ammonia gas and an inert gas, and further in an atmosphere of an inert gas, 1,800 to 2,200 ° C., 0.5. Examples thereof include a manufacturing method in which the gas is fired in an hour or longer (see, for example, Patent Document 1).
国際公開第2015/122379号International Publication No. 2015/122379
 上述した製造方法では、条件を変えながら少なくとも三段階に分けて加熱を行う必要があるが、窒化ホウ素粒子をより効率良く製造するためには、プロセスの簡素化が望まれる。一方で、プロセスの簡素化によって、窒化ホウ素粒子に求められる熱伝導率といった特性が損なわれることは避けなければならない。 In the above-mentioned production method, it is necessary to heat in at least three stages while changing the conditions, but in order to produce boron nitride particles more efficiently, simplification of the process is desired. On the other hand, it must be avoided that the simplification of the process impairs the properties such as thermal conductivity required for boron nitride particles.
 そこで、本発明の一側面は、従来より簡便に製造可能でありながら、従来と同等の熱伝導率を有する窒化ホウ素粒子を提供することを目的とする。 Therefore, one aspect of the present invention is to provide boron nitride particles having a thermal conductivity equivalent to that of the conventional one, while being easier to manufacture than the conventional one.
 従来は、高い熱伝導率を得るために、粒子全体において窒化ホウ素をできる限り結晶化させる必要があると考えられていたが、本発明者らが鋭意検討したところ、粒子の周囲部の結晶化が充分に進んでいれば、粒子の中心部の窒化ホウ素の結晶化が不充分であっても、驚くべきことに、窒化ホウ素粒子の熱伝導率に悪影響がないことを見出した。つまり、窒化ホウ素を結晶化する工程を簡素化しても、従来と同等の熱伝導率が得られることが見出された。 Conventionally, it has been considered necessary to crystallize boron nitride as much as possible in the entire particle in order to obtain high thermal conductivity, but as a result of diligent studies by the present inventors, crystallization of the peripheral portion of the particle was performed. Surprisingly, it was found that the thermal conductivity of the boron nitride particles is not adversely affected even if the crystallization of boron nitride in the center of the particles is insufficient if the particles are sufficiently advanced. That is, it was found that even if the process of crystallizing boron nitride is simplified, the same thermal conductivity as the conventional one can be obtained.
 本発明の一側面は、低結晶性の窒化ホウ素を含む中心部と、中心部の周りを囲うように配置され、高結晶性の窒化ホウ素を含む周囲部と、を備える窒化ホウ素粒子である。 One aspect of the present invention is a boron nitride particle comprising a central portion containing low crystallinity boron nitride and a peripheral portion arranged so as to surround the central portion and containing highly crystalline boron nitride.
 上記窒化ホウ素粒子の平均円形度は、0.8以上であってよい。 The average circularity of the boron nitride particles may be 0.8 or more.
 本発明の他の一側面は、樹脂と、上記の窒化ホウ素粒子と、を含有する樹脂組成物である。 Another aspect of the present invention is a resin composition containing a resin and the above-mentioned boron nitride particles.
 本発明の他の一側面は、上記の窒化ホウ素粒子と、窒化ホウ素粒子を収容する容器と、を備える収容体である。 Another aspect of the present invention is an accommodating body including the above-mentioned boron nitride particles and a container for accommodating the boron nitride particles.
 本発明の一側面によれば、従来より簡便に製造可能でありながら、従来と同等の熱伝導率を有する窒化ホウ素粒子を提供することができる。 According to one aspect of the present invention, it is possible to provide boron nitride particles having a thermal conductivity equivalent to that of the conventional one, while being more easily produced than the conventional one.
実施例の窒化ホウ素粒子全体のTEM像である。It is a TEM image of the whole boron nitride particle of an Example. 図1における窒化ホウ素粒子の周囲部SのTEM像である。It is a TEM image of the peripheral part S of the boron nitride particle in FIG. 図2における窒化ホウ素粒子の領域S1についてFFT解析を行った結果を示す図及びグラフである。It is a figure and the graph which shows the result of having performed the FFT analysis about the region S1 of the boron nitride particle in FIG. 図1における窒化ホウ素粒子の周囲部Sの領域S2~S5についてFFT解析を行った結果を示す図である。It is a figure which shows the result of having performed FFT analysis about the region S2 to S5 of the peripheral portion S of the boron nitride particle in FIG. 1. 図1における窒化ホウ素粒子の周囲部Sの領域S2~S5についてFFT解析を行った結果を示すグラフである。It is a graph which shows the result of having performed FFT analysis about the region S2 to S5 of the peripheral part S of the boron nitride particle in FIG. 図1における窒化ホウ素粒子の中心部Cの領域C1~C4についてFFT解析を行った結果を示す図である。It is a figure which shows the result of having performed FFT analysis about the region C1 to C4 of the central portion C of the boron nitride particle in FIG. 1. 図1における窒化ホウ素粒子の中心部Cの領域C1~C4についてFFT解析を行った結果を示すグラフである。It is a graph which shows the result of having performed FFT analysis about the region C1 to C4 of the central portion C of the boron nitride particle in FIG. 1.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の一実施形態は、低結晶性の窒化ホウ素を含む中心部と、中心部の周りを囲うように配置され、高結晶性の窒化ホウ素を含む周囲部と、を備える窒化ホウ素粒子である。 One embodiment of the present invention is a boron nitride particle comprising a central portion containing low crystalline boron nitride and a peripheral portion arranged so as to surround the central portion and containing highly crystalline boron nitride. ..
 本明細書において、「高結晶性」とは、以下の方法により取得される窒化ホウ素粒子のFFT像において、逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が存在する状態を意味し、「低結晶性」とは、当該輝点(ピーク)が存在しない状態を意味する。輝点(ピーク)が存在するとは、上記逆格子空間上の1~4nm-1の範囲において、B-スプライン法にてバックグラウンドを差し引いた後の強度Sがノイズ強度Nに対して15倍以上となる点が存在することを意味する。ここで、ノイズ強度Nは、B-スプライン法にてバックグラウンド処理を行った後、上記逆格子空間上の4nm-1を超え6nm-1以下の範囲における標準偏差の値と定義される。また、輝点(ピーク)には、波数方向又は円周方向に揺らぎをもつものも含むこととする。高結晶性の窒化ホウ素を含む周囲部では、上記逆格子空間上の1~4nm-1の範囲において、上記強度Sが上記ノイズ強度Nに対して、好ましくは20倍以上、より好ましくは23倍以上、更に好ましくは25倍以上となる点が存在してよい。 In the present specification, "high crystallinity" is derived from the h-BN (0002) plane in the range of 1 to 4 nm -1 on the reciprocal lattice space in the FFT image of the boron nitride particles obtained by the following method. It means a state in which a bright spot (peak) is present due to the periodicity of the above, and “low crystallinity” means a state in which the bright spot (peak) does not exist. The existence of a bright spot (peak) means that the intensity S after subtracting the background by the B-spline method in the range of 1 to 4 nm -1 on the reciprocal lattice space is 15 times or more the noise intensity N. It means that there is a point that becomes. Here, the noise intensity N is defined as the value of the standard deviation in the range of more than 4 nm -1 and 6 nm -1 or less on the reciprocal lattice space after performing background processing by the B-spline method. In addition, the bright spots (peaks) include those having fluctuations in the wave number direction or the circumferential direction. In the peripheral portion containing highly crystalline boron nitride, the intensity S is preferably 20 times or more, more preferably 23 times the noise intensity N in the range of 1 to 4 nm -1 on the reciprocal lattice space. As mentioned above, there may be a point that is more preferably 25 times or more.
(FFT像の取得方法)
 まず、透過型電子顕微鏡(例えば、日本電子株式会社製「JEM-2100」)を用いて、以下の条件にて、窒化ホウ素粒子の400,000倍のTEM像を取得する。
  対物レンズ絞り:φ120μm
  集束レンズ絞り:φ150μm
  記録媒体:AMETEK社製「OrisusSC1000A1」
  Bining:2
  露光時間:0.5秒間
また、TEM観察及び後述するFFT解析のために、画像解析ソフト(例えば、AMETEC社製「GMS3」)を用いる。
 続いて、得られたTEM像における8.556nm角の領域に対してFFT解析を行い、256×256ピクセルのFFT像を取得する。
(FFT image acquisition method)
First, using a transmission electron microscope (for example, "JEM-2100" manufactured by JEOL Ltd.), a TEM image of 400,000 times that of boron nitride particles is obtained under the following conditions.
Objective lens aperture: φ120 μm
Condenser lens aperture: φ150 μm
Recording medium: "Orisus SC1000A1" manufactured by AMETEK
Bining: 2
Exposure time: 0.5 seconds In addition, image analysis software (for example, "GMS3" manufactured by AMETEC) is used for TEM observation and FFT analysis described later.
Subsequently, an FFT analysis is performed on a region of 8.556 nm square in the obtained TEM image, and an FFT image of 256 × 256 pixels is acquired.
 窒化ホウ素粒子中の中心部の径は、窒化ホウ素粒子の粒子径をdとしたときに、例えば、0.1d以上、0.15d以上、又は0.2d以上であってよく、0.6d以下、0.5以下、0.4d以下、0.35d以下、又は0.3d以下であってよい。窒化ホウ素粒子中の中心部の径は、例えば、1nm以上、5nm以上、10nm以上、20nm以上、又は30nm以上であってよく、400nm以下、300nm以下、200nm以下、又は100nm以下であってよい。窒化ホウ素粒子中の中心部の径は、上述したとおり定義される「高結晶性」の部分、すなわち、上記逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が存在する部分の径を意味する。 The diameter of the central portion of the boron nitride particles may be, for example, 0.1d or more, 0.15d or more, or 0.2d or more, and 0.6d or less, where d is the particle size of the boron nitride particles. , 0.5 or less, 0.4d or less, 0.35d or less, or 0.3d or less. The diameter of the central portion in the boron nitride particles may be, for example, 1 nm or more, 5 nm or more, 10 nm or more, 20 nm or more, or 30 nm or more, and may be 400 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less. The diameter of the central portion in the boron nitride particles is derived from the h-BN (0002) plane in the “highly crystalline” portion defined as described above, that is, in the range of 1 to 4 nm -1 on the reciprocal lattice space. It means the diameter of the part where the bright spot (peak) exists due to the periodicity of.
 窒化ホウ素粒子中の周囲部の厚さは、窒化ホウ素粒子の粒子径をdとしたときに、例えば、0.3d以上、0.33d以上、又は0.35d以上であってよく、0.45d以下、0.43d以下、又は0.4d以下であってよい。窒化ホウ素粒子中の中心部の径は、例えば、5nm以上、10nm以上、20nm以上、40nm以上、又は60nm以上であってよく、450nm以下、300nm以下、200nm以下、又は100nm以下であってよい。窒化ホウ素粒子中の周囲部の厚さは、上述したとおり定義される「低結晶性」の部分、すなわち、上記逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が存在しない部分の厚さを意味する。 The thickness of the peripheral portion in the boron nitride particles may be, for example, 0.3d or more, 0.33d or more, or 0.35d or more, and 0.45d or more, where d is the particle size of the boron nitride particles. Hereinafter, it may be 0.43d or less, or 0.4d or less. The diameter of the central portion in the boron nitride particles may be, for example, 5 nm or more, 10 nm or more, 20 nm or more, 40 nm or more, or 60 nm or more, and may be 450 nm or less, 300 nm or less, 200 nm or less, or 100 nm or less. The thickness of the peripheral portion in the boron nitride particles is the h-BN (0002) plane in the “low crystallinity” portion defined as described above, that is, in the range of 1 to 4 nm -1 on the reciprocal lattice space. It means the thickness of the part where there is no bright spot (peak) due to the periodicity of origin.
 窒化ホウ素粒子の平均粒子径は、窒化ホウ素粒子と樹脂とを混合した際の粘度増加を抑制できる観点から、好ましくは、0.01μm以上、0.05μm以上、0.1μm以上、又は0.15μm以上であり、窒化ホウ素粒子を含む放熱部材(以下、単に「放熱部材」ともいう)の絶縁破壊特性を向上させる観点から、1μm以下、0.8μm以下、0.6μm以下、又は0.4μm以下であってよい。 The average particle size of the boron nitride particles is preferably 0.01 μm or more, 0.05 μm or more, 0.1 μm or more, or 0.15 μm from the viewpoint of suppressing an increase in viscosity when the boron nitride particles and the resin are mixed. As described above, from the viewpoint of improving the insulation failure characteristics of the heat radiating member containing the boron nitride particles (hereinafter, also simply referred to as “radiating member”), 1 μm or less, 0.8 μm or less, 0.6 μm or less, or 0.4 μm or less. May be.
 窒化ホウ素粒子の平均粒子径は、以下の手順により測定される。
 窒化ホウ素粒子を分散させる分散媒として蒸留水を用い、分散剤としてヘキサメタリン酸ナトリウムを用い、0.125質量%ヘキサメタリン酸ナトリウム水溶液を調製する。この水溶液中に0.1g/80mLの比率で窒化ホウ素粒子を加え、超音波ホモジナイザー(例えば、日本精機製作所製「US-300E」)により、AMPLITUDE(振幅)80%にて超音波分散を1分30秒間で1回行うことで、窒化ホウ素粒子の分散液を調製する。この分散液を60rpmで撹拌しながら分取し、レーザー回折散乱法粒度分布測定装置(例えば、ベックマンコールター社製「LS-13 320」)により体積基準の粒度分布を測定する。このとき、水の屈折率として1.33を用い、窒化ホウ素粒子の屈折率として1.7を用いる。測定結果から、累積粒度分布の累積値50%の粒径(メジアン径、d50)として平均粒子径を算出する。なお、このように測定される平均粒子径は、窒化ホウ素粒子の一次粒子に加えて、当該一次粒子同士が凝集した粒子(二次粒子)も含む窒化ホウ素粒子の平均粒子径であると考えられる。
The average particle size of the boron nitride particles is measured by the following procedure.
Distilled water is used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate is used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed at 80% AMPLITUDE (amplitude) for 1 minute using an ultrasonic homogenizer (for example, "US-300E" manufactured by Nissei Tokyo Office). A dispersion of boron nitride particles is prepared by performing this once every 30 seconds. This dispersion is separated while stirring at 60 rpm, and the volume-based particle size distribution is measured by a laser diffraction / scattering method particle size distribution measuring device (for example, “LS-13 320” manufactured by Beckman Coulter). At this time, 1.33 is used as the refractive index of water, and 1.7 is used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as a particle size (median diameter, d50) of 50% of the cumulative value of the cumulative particle size distribution. The average particle size measured in this way is considered to be the average particle size of the boron nitride particles including the primary particles of the boron nitride particles and the particles (secondary particles) in which the primary particles are aggregated. ..
 窒化ホウ素粒子は、放熱部材を作製する際の充填性を向上させ、放熱部材の特性(熱伝導性、誘電率など)を等方的にする観点から、好ましくは、球状、又は球状に近い形状を有している。同様の観点から、窒化ホウ素粒子の平均円形度は、好ましくは、0.8以上、0.82以上、0.84以上、0.86以上、0.88以上、0.90以上、0.91以上、0.92以上、0.93以上、又は0.94以上であってよい。 Boron nitride particles preferably have a spherical shape or a shape close to a spherical shape from the viewpoint of improving the filling property when manufacturing the heat radiating member and making the characteristics (thermal conductivity, dielectric constant, etc.) of the heat radiating member isotropic. have. From the same viewpoint, the average circularity of the boron nitride particles is preferably 0.8 or more, 0.82 or more, 0.84 or more, 0.86 or more, 0.88 or more, 0.90 or more, 0.91. As mentioned above, it may be 0.92 or more, 0.93 or more, or 0.94 or more.
 窒化ホウ素粒子の平均円形度は、以下の手順で測定される。
 走査型電子顕微鏡(SEM)を用いて撮影した窒化ホウ素粒子の像(倍率:10,000倍、画像解像度:1280×1024ピクセル)について、画像解析ソフト(例えば、マウンテック社製「MacView」)を用いた画像解析により、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出する。投影面積(S)及び周囲長(L)を用いて、以下に式:
  円形度=4πS/L
に従って円形度を求める。任意に選ばれた100個の窒化ホウ素粒子について求めた円形度の平均値を平均円形度と定義する。
The average circularity of the boron nitride particles is measured by the following procedure.
For an image of boron nitride particles (magnification: 10,000 times, image resolution: 1280 x 1024 pixels) taken with a scanning electron microscope (SEM), use image analysis software (for example, "MacView" manufactured by Mountech). The projected area (S) and peripheral length (L) of the boron nitride particles are calculated by the image analysis. Using the projected area (S) and the perimeter (L), the following equation:
Circularity = 4πS / L 2
Calculate the circularity according to. The average value of the circularity obtained for 100 arbitrarily selected boron nitride particles is defined as the average circularity.
 以上説明したような窒化ホウ素粒子は、窒化ホウ素の結晶成長を敢えて不完全な状態で止めることによって得られる。窒化ホウ素粒子の製造においては、粒子の周囲部から中心部に向けて徐々に結晶成長が進行するところ、窒化ホウ素の結晶成長を不完全な状態で止めることにより、得られる窒化ホウ素粒子においては、周囲部に含まれる窒化ホウ素が高結晶性である一方で、中心部に含まれる窒化ホウ素が低結晶性となる。 The boron nitride particles as described above can be obtained by intentionally stopping the crystal growth of boron nitride in an incomplete state. In the production of boron nitride particles, the crystal growth gradually progresses from the peripheral portion to the central portion of the particles, and the boron nitride particles obtained by stopping the crystal growth of boron nitride in an incomplete state are used. The boron nitride contained in the peripheral portion has high crystallinity, while the boron nitride contained in the central portion has low crystallinity.
 以下、上述した窒化ホウ素粒子の製造方法について具体的に説明する。上述した窒化ホウ素粒子は、例えば、ホウ酸エステルとアンモニアとを750~1400℃で反応させて窒化ホウ素粒子の前駆体を得る第1の工程と、前駆体を1000~1600℃で加熱して窒化ホウ素粒子を得る第2の工程と、を備える製造方法により得られる。 Hereinafter, the above-mentioned method for producing boron nitride particles will be specifically described. The above-mentioned boron nitride particles are nitrided by, for example, the first step of reacting boric acid ester and ammonia at 750 to 1400 ° C. to obtain a precursor of the boron nitride particles, and heating the precursor at 1000 to 1600 ° C. It is obtained by a production method comprising a second step of obtaining boron particles.
 第1の工程では、例えば、抵抗加熱炉内に設置された反応管(例えば石英管)を加熱して、750~1500℃まで昇温する。一方、不活性ガスを液状のホウ酸エステルに通した上で反応管に導入することにより、ホウ酸エステルが反応管に導入される。他方、アンモニアガスを反応管に直接導入する。不活性ガスとしては、例えば、ヘリウム、ネオン、アルゴンなどの希ガス、及び窒素ガスが挙げられる。ホウ酸エステルは、例えばアルキルホウ酸エステルであってよく、好ましくはホウ酸トリメチルである。 In the first step, for example, a reaction tube (for example, a quartz tube) installed in a resistance heating furnace is heated to raise the temperature to 750 to 1500 ° C. On the other hand, the boric acid ester is introduced into the reaction tube by passing the inert gas through the liquid boric acid ester and then introducing it into the reaction tube. On the other hand, ammonia gas is introduced directly into the reaction tube. Examples of the inert gas include rare gases such as helium, neon and argon, and nitrogen gas. The borate ester may be, for example, an alkyl borate ester, preferably trimethyl borate.
 ホウ酸エステルの導入量に対するアンモニアの導入量のモル比(アンモニア/ホウ酸エステル)は、例えば、1以上であってよく、10以下であってよい。 The molar ratio of the amount of ammonia introduced to the amount of boric acid introduced (ammonia / boric acid ester) may be, for example, 1 or more and 10 or less.
 導入されたホウ酸エステル及びアンモニアは、加熱された反応管内で反応し、窒化ホウ素粒子の前駆体を生成する。この前駆体は、非結晶性の窒化ホウ素を含んでおり、例えば白色の粉末であってよい。生成した前駆体の一部は反応管内に付着するが、前駆体の多くは、不活性ガスや未反応のアンモニアガスにより、反応管の先に取り付けられた回収容器に送られて回収される。 The introduced boric acid ester and ammonia react in a heated reaction tube to produce a precursor of boron nitride particles. This precursor contains amorphous boron nitride and may be, for example, a white powder. A part of the generated precursor adheres to the inside of the reaction tube, but most of the precursor is sent to the recovery container attached to the tip of the reaction tube by the inert gas or unreacted ammonia gas and recovered.
 第1の工程においてホウ酸エステルとアンモニアとを反応させる時間(反応時間)は、好ましくは、30秒間以内である。反応時間は、ホウ酸エステル及びアンモニアが、反応管のうち750~1400℃に加熱された部分(加熱部分)にとどまる時間であり、ホウ酸エステル及びアンモニアを導入する際のガス流量と、抵抗加熱炉内に設置された反応管の長さ(反応管の加熱部分の長さ)とによって、調整することができる。 The time (reaction time) for reacting the boric acid ester with ammonia in the first step is preferably within 30 seconds. The reaction time is the time during which the boric acid ester and ammonia stay in the portion of the reaction tube heated to 750 to 1400 ° C. (heated portion), and the gas flow rate when introducing the boric acid ester and ammonia and resistance heating. It can be adjusted by the length of the reaction tube installed in the furnace (the length of the heated portion of the reaction tube).
 第2の工程では、第1の工程で得られた前駆体を、抵抗加熱炉内に設置された別の反応管(例えばアルミナ管)に入れ、窒素ガス及びアンモニアガスをそれぞれ別々に反応管内に導入する。このとき導入するガスは、アンモニアガスのみであってもよい。窒素ガス及びアンモニアガスの流量は、それぞれ、反応時間が所望の値となるように適宜調整されればよい。例えば、アンモニアガスの流量が多いほど、反応時間が短くなる。 In the second step, the precursor obtained in the first step is placed in another reaction tube (for example, an alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately placed in the reaction tube. Introduce. The gas introduced at this time may be only ammonia gas. The flow rates of nitrogen gas and ammonia gas may be appropriately adjusted so that the reaction time becomes a desired value, respectively. For example, the higher the flow rate of ammonia gas, the shorter the reaction time.
 続いて、反応管を1000~1600℃に加熱する。加熱する時間は、例えば、1時間以上であってよく、10時間以下であってよい。これにより、前駆体中の窒化ホウ素の結晶化を進行させ、窒化ホウ素粒子を得る。ただし、前駆体中のすべての窒化ホウ素は結晶化されずに、低結晶性の窒化ホウ素が窒化ホウ素粒子の内部に残留する。 Subsequently, the reaction tube is heated to 1000 to 1600 ° C. The heating time may be, for example, 1 hour or more and 10 hours or less. As a result, the crystallization of boron nitride in the precursor is promoted to obtain boron nitride particles. However, all the boron nitride in the precursor is not crystallized, and low crystalline boron nitride remains inside the boron nitride particles.
 この製造方法は、第2の工程の後に、第2の工程で得られた窒化ホウ素粒子を1800℃以上で加熱する工程(従来は窒化ホウ素の結晶成長を促進するために実施されていた工程)を備えていない。すなわち、この製造方法では、第2の工程における加熱後に、目的とする窒化ホウ素粒子が、不完全に結晶成長した状態で得られる。この製造方法は、第2の工程の後に、第2の工程で得られた窒化ホウ素粒子を、1700℃以上、1600℃以上、1500℃以上、1400℃以上、1300℃以上、1200℃以上、1100℃以上、1000℃以上、900℃以上、800℃以上、700℃以上、600℃以上、500℃以上、400℃以上、300℃以上、200℃以上、100℃以上、50℃以上、40℃以上、又は30℃以上で加熱する工程を備えていなくてもよい。 In this production method, after the second step, the boron nitride particles obtained in the second step are heated at 1800 ° C. or higher (conventional step, which was conventionally carried out to promote the crystal growth of boron nitride). Does not have. That is, in this production method, the desired boron nitride particles are obtained in a state of incomplete crystal growth after heating in the second step. In this production method, after the second step, the boron nitride particles obtained in the second step are subjected to 1700 ° C. or higher, 1600 ° C. or higher, 1500 ° C. or higher, 1400 ° C. or higher, 1300 ° C. or higher, 1200 ° C. or higher, 1100. ℃ or more, 1000 ℃ or more, 900 ℃ or more, 800 ℃ or more, 700 ℃ or more, 600 ℃ or more, 500 ℃ or more, 400 ℃ or more, 300 ℃ or more, 200 ℃ or more, 100 ℃ or more, 50 ℃ or more, 40 ℃ or more Or, it does not have to be provided with a step of heating at 30 ° C. or higher.
 上述した窒化ホウ素粒子は、例えば、放熱部材に好適に用いられる。窒化ホウ素粒子は、放熱部材に用いられる場合、例えば樹脂と共に混合された樹脂組成物の形態で用いられる。すなわち、本発明の他の一実施形態は、樹脂と、上記の窒化ホウ素粒子とを含有する樹脂組成物である。この樹脂組成物は、放熱部材として好適に用いられる。 The above-mentioned boron nitride particles are suitably used for, for example, a heat radiating member. When the boron nitride particles are used for a heat radiating member, they are used, for example, in the form of a resin composition mixed with a resin. That is, another embodiment of the present invention is a resin composition containing the resin and the above-mentioned boron nitride particles. This resin composition is suitably used as a heat radiating member.
 上記の窒化ホウ素粒子の含有量は、樹脂組成物の全体積を基準として、樹脂組成物の熱伝導率を向上させ、優れた放熱性能が得られやすい観点から、好ましくは30体積%以上、より好ましくは40体積%以上であり、更に好ましくは50体積%以上であり、成形時に空隙の発生、並びに、絶縁性及び機械強度の低下を抑制できる観点から、好ましくは85体積%以下、より好ましくは80体積%以下、更に好ましくは70体積%以下である。 The content of the above-mentioned boron nitride particles is preferably 30% by volume or more, based on the total volume of the resin composition, from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance. It is preferably 40% by volume or more, more preferably 50% by volume or more, and preferably 85% by volume or less, more preferably 85% by volume or less, from the viewpoint of suppressing the generation of voids during molding and the decrease in insulating property and mechanical strength. It is 80% by volume or less, more preferably 70% by volume or less.
 樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、及びAES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 Examples of the resin include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide, polybutylene terephthalate, polyethylene terephthalate, and the like. Polyphenylene ether, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, and AES (Acrylonitrile-acrylic rubber / styrene) resin. Acrylonitrile, ethylene, propylene, diene rubber-styrene) resin can be mentioned.
 樹脂の含有量は、樹脂組成物の全体積を基準として、15体積%以上、20体積%以上、又は30体積%以上であってよく、70体積%以下、60体積%以下、又は50体積%以下であってよい。 The content of the resin may be 15% by volume or more, 20% by volume or more, or 30% by volume or more, based on the total volume of the resin composition, and is 70% by volume or less, 60% by volume or less, or 50% by volume. It may be:
 樹脂組成物は、樹脂を硬化させる硬化剤を更に含有していてよい。硬化剤は、樹脂の種類によって適宜選択される。例えば、樹脂がエポキシ樹脂である場合、硬化剤としては、フェノールノボラック化合物、酸無水物、アミノ化合物、及びイミダゾール化合物が挙げられる。硬化剤の含有量は、樹脂100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。 The resin composition may further contain a curing agent that cures the resin. The curing agent is appropriately selected depending on the type of resin. For example, when the resin is an epoxy resin, examples of the curing agent include phenol novolac compounds, acid anhydrides, amino compounds, and imidazole compounds. The content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
 窒化ホウ素粒子は、例えば、容器に収容された形態で流通し得る。すなわち、本発明の他の一実施形態は、上記の窒化ホウ素粒子と、窒化ホウ素粒子を収容する容器と、を備える収容体である。容器は、窒化ホウ素粒子を収容できる形状を有していればよく、例えば、袋、箱、瓶、缶等であってよい。 Boron nitride particles can be distributed in a container, for example. That is, another embodiment of the present invention is an accommodating body including the above-mentioned boron nitride particles and a container for accommodating the boron nitride particles. The container may have a shape capable of accommodating boron nitride particles, and may be, for example, a bag, a box, a bottle, a can, or the like.
 以下、実施例により本発明をより具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.
[実施例1]
(窒化ホウ素粒子の作製)
 まず、第1の工程では、抵抗加熱炉内に設置された反応管(石英管)を加熱して、1150℃まで昇温した。一方、窒素ガスをホウ酸トリメチルに通した上で反応管に導入することにより、ホウ酸トリメチルを反応管に導入した。他方、アンモニアガスを反応管に直接導入した。ホウ酸トリメチルの導入量に対するアンモニアの導入量のモル比(アンモニア/ホウ酸トリメチル)は、4.5とした。これにより、ホウ酸トリメチルとアンモニアとを反応させて、窒化ホウ素粒子の前駆体(白色粉末)を得た。なお、反応時間は10秒間であった。
[Example 1]
(Preparation of boron nitride particles)
First, in the first step, the reaction tube (quartz tube) installed in the resistance heating furnace was heated to raise the temperature to 1150 ° C. On the other hand, trimethyl borate was introduced into the reaction tube by passing nitrogen gas through trimethyl borate and then introducing it into the reaction tube. On the other hand, ammonia gas was introduced directly into the reaction tube. The molar ratio of the amount of ammonia introduced to the amount of trimethyl borate introduced (ammonia / trimethyl borate) was 4.5. As a result, trimethyl borate was reacted with ammonia to obtain a precursor (white powder) of boron nitride particles. The reaction time was 10 seconds.
 続いて、第2の工程では、第1の工程で得られた前駆体を、抵抗加熱炉内に設置された別の反応管(アルミナ管)に入れ、窒素ガス10L/分、及びアンモニアガス15L/分の流量でそれぞれ別々に反応管内に導入した。そして、反応管を1500℃で2.5時間加熱した。これにより、窒化ホウ素粒子を得た。 Subsequently, in the second step, the precursor obtained in the first step is placed in another reaction tube (alumina tube) installed in the resistance heating furnace, and nitrogen gas 10 L / min and ammonia gas 15 L. Each was introduced into the reaction tube separately at a flow rate of / min. Then, the reaction tube was heated at 1500 ° C. for 2.5 hours. As a result, boron nitride particles were obtained.
(窒化ホウ素粒子の観察及び結晶性の評価)
 透過型電子顕微鏡(TEM;日本電子株式会社製「JEM-2100」)を用いて、以下の条件にて得られた窒化ホウ素粒子を観察した。
  対物レンズ絞り:φ120μm
  集束レンズ絞り:φ150μm
  記録媒体:AMETEK社製「OrisusSC1000A1」
  Bining:2
  露光時間:0.5秒間
また、TEM観察及び後述するFFT解析のための画像解析ソフトとして、AMETEK社製「GMS3」を用いた。
(Observation of boron nitride particles and evaluation of crystallinity)
Boron nitride particles obtained under the following conditions were observed using a transmission electron microscope (TEM; "JEM-2100" manufactured by JEOL Ltd.).
Objective lens aperture: φ120 μm
Condenser lens aperture: φ150 μm
Recording medium: "Orisus SC1000A1" manufactured by AMETEK
Bining: 2
Exposure time: 0.5 seconds In addition, "GMS3" manufactured by AMETEK, Inc. was used as image analysis software for TEM observation and FFT analysis described later.
 得られた窒化ホウ素粒子全体のTEM明視野像(倍率:100,000倍)を図1に示す。また、図1に示される窒化ホウ素粒子の周囲部Sについて、400,000倍で観察したTEM暗視野像を図2に示す。 FIG. 1 shows a TEM bright-field image (magnification: 100,000 times) of the obtained boron nitride particles as a whole. Further, FIG. 2 shows a TEM dark-field image of the peripheral portion S of the boron nitride particles shown in FIG. 1 observed at a magnification of 400,000.
 続いて、図2における8.556nm角の領域S1に対してFFT解析を行い、256×256ピクセルのFFT像を取得した。得られたFFT図形について、図3(a),(b)に示すように、逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が確認された。つまり、窒化ホウ素粒子の周囲部Sにおける領域S1は、高結晶性の窒化ホウ素で構成されていることが確認された。 Subsequently, FFT analysis was performed on the 8.556 nm square region S1 in FIG. 2, and an FFT image of 256 × 256 pixels was obtained. With respect to the obtained FFT figure, as shown in FIGS. 3 (a) and 3 (b), a bright spot due to periodicity derived from the h-BN (0002) plane in the range of 1 to 4 nm -1 on the reciprocal lattice space Peak) was confirmed. That is, it was confirmed that the region S1 in the peripheral portion S of the boron nitride particles was composed of highly crystalline boron nitride.
 また、図4に示すように、窒化ホウ素粒子の周囲部Sにおける他の領域S2~S5についても、領域S1と同様にしてFFT解析を行った。その結果、図4及び図5に示すように、逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が確認された。つまり、窒化ホウ素粒子の周囲部Sにおける領域S2~S5も、高結晶性の窒化ホウ素で構成されていることが確認された。 Further, as shown in FIG. 4, FFT analysis was performed on the other regions S2 to S5 in the peripheral portion S of the boron nitride particles in the same manner as in the region S1. As a result, as shown in FIGS. 4 and 5, bright spots (peaks) due to periodicity derived from the h-BN (0002) plane were confirmed in the range of 1 to 4 nm -1 on the reciprocal lattice space. That is, it was confirmed that the regions S2 to S5 in the peripheral portion S of the boron nitride particles were also composed of highly crystalline boron nitride.
 また、図1に示される窒化ホウ素粒子の中心部Cについて、400,000倍で観察したTEM暗視野像を図6に示す。図6に示すように、窒化ホウ素粒子の中心部Cにおける領域C1~C4についても、領域S1と同様にしてFFT解析を行った。その結果、図6及び図7に示すように、逆格子空間上の1~4nm-1の範囲で、h-BN(0002)面由来の周期性による輝点(ピーク)が確認されなかった。つまり、窒化ホウ素粒子の中心部Cにおける領域C1~C4は、低結晶性の窒化ホウ素で構成されていることが確認された。 Further, FIG. 6 shows a TEM dark-field image of the central portion C of the boron nitride particles shown in FIG. 1 observed at a magnification of 400,000. As shown in FIG. 6, FFT analysis was also performed on the regions C1 to C4 in the central portion C of the boron nitride particles in the same manner as in the region S1. As a result, as shown in FIGS. 6 and 7, no bright spot (peak) due to periodicity derived from the h-BN (0002) plane was confirmed in the range of 1 to 4 nm -1 on the reciprocal lattice space. That is, it was confirmed that the regions C1 to C4 in the central portion C of the boron nitride particles are composed of low crystallinity boron nitride.
 なお、図3(b)、図5及び図7に示すグラフは、B-スプライン法にてバックグラウンドを差し引いた後の強度を示すグラフである。また、図3(b)図5及び図7に示すグラフより、領域S1~S5及びC1~C4の各領域について、逆格子空間上の1~4nm-1の範囲における最大強度(相対強度)Smaxと、ノイズ強度(逆格子空間上の4nm-1を超え6nm-1以下の範囲における標準偏差)Nと、これらの比(Smax/N)とを求めた。結果を表1に示す。 The graphs shown in FIGS. 3 (b), 5 and 7 are graphs showing the intensity after subtracting the background by the B-spline method. Further, from the graphs shown in FIGS. 5 and 7 of FIG. 3B, the maximum intensity (relative intensity) Smax in the range of 1 to 4 nm -1 on the reciprocal lattice space for each of the regions S1 to S5 and C1 to C4. The noise intensity (standard deviation in the range of more than 4 nm -1 and 6 nm -1 or less on the reciprocal lattice space) N and their ratio (Smax / N) were obtained. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のとおり、得られた窒化ホウ素粒子の周囲部には高結晶性の窒化ホウ素が含まれており(上述した輝点(ピーク)が確認できる領域が支配的であり)、中心部には低結晶性の窒化ホウ素が含まれている(上述した輝点(ピーク)が確認できない領域が支配的である)ことが分かった。また、中心部の径は約40nmであり、周囲部の厚さは約50nmであった。 As described above, the obtained boron nitride particles contain highly crystalline boron nitride in the peripheral portion (the region where the above-mentioned bright spot (peak) can be confirmed is dominant), and the central portion is low. It was found that crystalline boron nitride was contained (the region where the above-mentioned bright spot (peak) could not be confirmed was dominant). The diameter of the central portion was about 40 nm, and the thickness of the peripheral portion was about 50 nm.
(平均円形度の測定)
 まず、走査型電子顕微鏡(SEM)を用いて、得られた窒化ホウ素粒子のSEM像(倍率:10,000倍、画像解像度:1280×1024ピクセル)を撮影した。得られたSEM像について、画像解析ソフト(例えば、マウンテック社製「MacView」)を用いた画像解析により、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出した。次に、投影面積(S)及び周囲長(L)を用いて、以下に式:
  円形度=4πS/L
に従って円形度を求めた。任意に選ばれた100個の窒化ホウ素粒子について求めた円形度の平均値を平均円形度として算出した。得られた窒化ホウ素粒子の平均円形度は、0.94であった。
(Measurement of average circularity)
First, using a scanning electron microscope (SEM), an SEM image (magnification: 10,000 times, image resolution: 1280 × 1024 pixels) of the obtained boron nitride particles was taken. The projected area (S) and peripheral length (L) of the boron nitride particles were calculated from the obtained SEM image by image analysis using image analysis software (for example, "MacView" manufactured by Mountech Co., Ltd.). Next, using the projected area (S) and the perimeter (L), the following equation:
Circularity = 4πS / L 2
The circularity was calculated according to. The average value of the circularity obtained for 100 arbitrarily selected boron nitride particles was calculated as the average circularity. The average circularity of the obtained boron nitride particles was 0.94.
(平均粒子径の測定)
 窒化ホウ素粒子を分散させる分散媒として蒸留水を用い、分散剤としてヘキサメタリン酸ナトリウムを用い、0.125質量%ヘキサメタリン酸ナトリウム水溶液を調製した。この水溶液中に0.1g/80mLの比率で得られた窒化ホウ素粒子を加え、超音波ホモジナイザー(日本精機製作所製「US-300E」)により、AMPLITUDE(振幅)80%にて超音波分散を1分30秒間で1回行うことで、窒化ホウ素粒子の分散液を調製した。この分散液を60rpmで撹拌しながら分取し、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製「LS-13 320」)により体積基準の粒度分布を測定した。このとき、水の屈折率として1.33を用い、窒化ホウ素粒子の屈折率として1.7を用いた。測定結果から、累積粒度分布の累積値50%の粒径(メジアン径、d50)として平均粒子径を算出した。得られた窒化ホウ素粒子の平均粒子径は、510nmであった。
(Measurement of average particle size)
Distilled water was used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate was used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles obtained at a ratio of 0.1 g / 80 mL are added to this aqueous solution, and ultrasonic dispersion is performed at 80% AMPLITUDE (amplitude) by an ultrasonic homogenizer (“US-300E” manufactured by Nissei Tokyo Office). A dispersion of boron nitride particles was prepared by performing the procedure once every minute and 30 seconds. This dispersion was separated while stirring at 60 rpm, and the volume-based particle size distribution was measured with a laser diffraction / scattering method particle size distribution measuring device (“LS-13 320” manufactured by Beckman Coulter). At this time, 1.33 was used as the refractive index of water, and 1.7 was used as the refractive index of the boron nitride particles. From the measurement results, the average particle size was calculated as a particle size (median diameter, d50) of 50% of the cumulative value of the cumulative particle size distribution. The average particle size of the obtained boron nitride particles was 510 nm.
[比較例1]
 実施例1の第2の工程の後に、窒化ホウ素粒子を窒化ホウ素製ルツボに入れ、誘導加熱炉において、窒素雰囲気下にて2000℃で5時間加熱した以外は、実施例1と同様にして、比較用窒化ホウ素粒子を得た。つまり、比較例1では、従来の製造方法により比較用窒化ホウ素粒子を得た。
[Comparative Example 1]
After the second step of Example 1, the boron nitride particles were placed in a boron nitride crucible and heated in an induction heating furnace at 2000 ° C. for 5 hours in the same manner as in Example 1. Boron nitride particles for comparison were obtained. That is, in Comparative Example 1, comparative boron nitride particles were obtained by a conventional production method.
<熱伝導率の測定>
 実施例1で得られた窒化ホウ素粒子、及び比較例1で得られた比較用窒化ホウ素粒子について、以下の手順で熱伝導率を測定した。
 ナフタレン型エポキシ樹脂(DIC社製、「HP4032」)100質量部と、硬化剤としてイミダゾール類(四国化成社製、「2E4MZ-CN))10質量部との混合物に対し、窒化ホウ素粒子を40体積%となるように混合して樹脂組成物を得た。この樹脂組成物を、PET製シート上に厚みが1.0mmになるように塗布した後、500Paの減圧脱泡を10分間行った。その後、温度150℃、圧力160kg/cm条件で60分間のプレス加熱加圧を行って、0.5mmのシートを作製した。
 得られたシートから10mm×10mmの大きさの測定用試料を切り出し、キセノンフラッシュアナライザ(NETZSCH社製、「LFA447NanoFlash」)を用いたレーザーフラッシュ法により、測定用試料の熱拡散率A(m/秒)を測定した。また、測定用試料の比重B(kg/m)をアルキメデス法により測定した。また、測定用試料の比熱容量C(J/(kg・K))を、示差走査熱量計(株式会社リガク製、「ThermoPlusEvoDSC8230」)を用いて測定した。これらの各物性値を用いて、熱伝導率H(W/(m・K))をH=A×B×Cの式から求めた。
<Measurement of thermal conductivity>
The thermal conductivity of the boron nitride particles obtained in Example 1 and the comparative boron nitride particles obtained in Comparative Example 1 was measured by the following procedure.
40 parts by mass of boron nitride particles with respect to a mixture of 100 parts by mass of naphthalene type epoxy resin (manufactured by DIC, "HP4032") and 10 parts by mass of imidazoles (manufactured by Shikoku Kasei Co., Ltd., "2E4MZ-CN)) as a curing agent. A resin composition was obtained by mixing so as to be%. After applying this resin composition on a PET sheet so as to have a thickness of 1.0 mm, vacuum defoaming at 500 Pa was performed for 10 minutes. Then, press heating and pressurization was performed for 60 minutes under two conditions of a temperature of 150 ° C. and a pressure of 160 kg / cm to prepare a 0.5 mm sheet.
A measurement sample having a size of 10 mm × 10 mm was cut out from the obtained sheet, and the thermal diffusivity A (m 2 / m 2 /) of the measurement sample was obtained by a laser flash method using a xenon flash analyzer (“LFA447NanoFlash” manufactured by NETZSCH). Seconds) were measured. In addition, the specific gravity B (kg / m 3 ) of the measurement sample was measured by the Archimedes method. Further, the specific heat capacity C (J / (kg · K)) of the sample for measurement was measured using a differential scanning calorimeter (“ThermoPlusEvoDSC8230” manufactured by Rigaku Co., Ltd.). Using each of these physical property values, the thermal conductivity H (W / (m · K)) was determined from the formula H = A × B × C.
 その結果、実施例1で得られた窒化ホウ素粒子は1.13W/(m・K)を示し、比較例1で得られた比較用窒化ホウ素粒子は1.12W/(m・K)を示した。このように、実施例1では、窒素雰囲気下にて2000℃で5時間加熱するという比較例1の工程(従来の製造方法で実施される工程)を省略したにもかかわらず、比較例1と同等の熱伝導率を有する窒化ホウ素粒子を得ることができた。 As a result, the boron nitride particles obtained in Example 1 showed 1.13 W / (m · K), and the comparative boron nitride particles obtained in Comparative Example 1 showed 1.12 W / (m · K). rice field. As described above, in Example 1, although the step of Comparative Example 1 (the step carried out by the conventional manufacturing method) of heating at 2000 ° C. for 5 hours in a nitrogen atmosphere was omitted, it was different from that of Comparative Example 1. Boron nitride particles having the same thermal conductivity could be obtained.

Claims (4)

  1.  低結晶性の窒化ホウ素を含む中心部と、
     前記中心部の周りを囲うように配置され、高結晶性の窒化ホウ素を含む周囲部と、を備える窒化ホウ素粒子。
    In the center containing low crystalline boron nitride,
    Boron nitride particles which are arranged so as to surround the central portion and include a peripheral portion containing highly crystalline boron nitride.
  2.  平均円形度が0.8以上である、請求項1に記載の窒化ホウ素粒子。 The boron nitride particles according to claim 1, which have an average circularity of 0.8 or more.
  3.  樹脂と、請求項1又は2に記載の窒化ホウ素粒子と、を含有する樹脂組成物。 A resin composition containing a resin and the boron nitride particles according to claim 1 or 2.
  4.  請求項1又は2に記載の窒化ホウ素粒子と、前記窒化ホウ素粒子を収容する容器と、を備える収容体。 An accommodating body including the boron nitride particles according to claim 1 or 2 and a container for accommodating the boron nitride particles.
PCT/JP2021/012390 2020-03-26 2021-03-24 Boron nitride particle and resin composition and container comprising same WO2021193764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510628A JPWO2021193764A1 (en) 2020-03-26 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020055894 2020-03-26
JP2020-055894 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193764A1 true WO2021193764A1 (en) 2021-09-30

Family

ID=77890698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012390 WO2021193764A1 (en) 2020-03-26 2021-03-24 Boron nitride particle and resin composition and container comprising same

Country Status (3)

Country Link
JP (1) JPWO2021193764A1 (en)
TW (1) TW202200492A (en)
WO (1) WO2021193764A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155052A1 (en) * 2001-04-24 2002-10-24 Paine Robert T. Organoboron route and process for preparation of boron nitride
CN1931719A (en) * 2005-12-01 2007-03-21 华中师范大学 Hexagonal nanometer boron nitride microsphere and its synthesis process and application
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
JP2011056438A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Metal-deposited crystalline boron nitride composite material, method for producing the same and use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020155052A1 (en) * 2001-04-24 2002-10-24 Paine Robert T. Organoboron route and process for preparation of boron nitride
CN1931719A (en) * 2005-12-01 2007-03-21 华中师范大学 Hexagonal nanometer boron nitride microsphere and its synthesis process and application
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
JP2011056438A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Metal-deposited crystalline boron nitride composite material, method for producing the same and use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANG, C. ET AL.: "Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles", ADVANCED FUNCTIONAL MATERIALS, vol. 18, no. 22, 30 October 2008 (2008-10-30), pages 3653 - 3661, XP001517179, DOI: 10.1002/adfm.200800493 *
XU FEN, XIE YI, ZHANG XU, ZHANG SHUYUAN, LIU XIANMING, TIAN XIAOBO: "Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures", INORGANIC CHEMISTRY, vol. 43, 18 December 2003 (2003-12-18), pages 822 - 829, XP055861834, DOI: 10.1021/ic0348751 *

Also Published As

Publication number Publication date
JPWO2021193764A1 (en) 2021-09-30
TW202200492A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP6467650B2 (en) Spherical boron nitride fine particles and production method thereof
JP6698953B2 (en) Boron nitride powder, method for producing the same, and heat dissipation member using the same
KR101398682B1 (en) Hexagonal boron nitride powder and method for producing same
JP6692050B2 (en) Boron nitride-containing resin composition
KR102560615B1 (en) Thermally conductive resin composition
JP7104503B2 (en) Manufacturing method of massive boron nitride powder and heat dissipation member using it
WO2021193765A1 (en) Boron nitride particles and method for producing same, and resin composition and receptor containing said boron nitride particles
WO2021193764A1 (en) Boron nitride particle and resin composition and container comprising same
WO2021100816A1 (en) Boron nitride particles and resin composition
WO2021111909A1 (en) Boron nitride particles and method for manufacturing same
WO2021100808A1 (en) Boron nitride particles and resin composition
WO2021100817A1 (en) Boron nitride particles and resin composition
WO2021111910A1 (en) Boron nitride particles, and method for producing same
WO2024024604A1 (en) Highly pure spinel particles and production method therefor
WO2023189589A1 (en) Inorganic powder, method for producing same, and resin composition
JP7357180B1 (en) Boron nitride particles and heat dissipation sheet
WO2022202827A1 (en) Boron nitride particles and method for producing same, and resin composition
CN114401923A (en) Bulk boron nitride particles and method for producing same
JP2023144293A (en) Aggregated boron nitride particle, boron nitride powder, and composite body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774324

Country of ref document: EP

Kind code of ref document: A1