WO2021111910A1 - Boron nitride particles, and method for producing same - Google Patents

Boron nitride particles, and method for producing same Download PDF

Info

Publication number
WO2021111910A1
WO2021111910A1 PCT/JP2020/043468 JP2020043468W WO2021111910A1 WO 2021111910 A1 WO2021111910 A1 WO 2021111910A1 JP 2020043468 W JP2020043468 W JP 2020043468W WO 2021111910 A1 WO2021111910 A1 WO 2021111910A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
boron nitride
gas
nitride particles
introduction
Prior art date
Application number
PCT/JP2020/043468
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 佐々木
建治 宮田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021562574A priority Critical patent/JPWO2021111910A1/ja
Priority to CN202080077812.XA priority patent/CN114728789B/en
Publication of WO2021111910A1 publication Critical patent/WO2021111910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • a heat radiating member having high thermal conductivity is used together with such an electronic component.
  • boron nitride particles have high thermal conductivity and high insulating properties, and are therefore widely used as fillers in heat radiating members.
  • Patent Document 1 states that a boron nitride agglomerated particle composition having high thermal conductivity and very useful for a heat dissipation sheet required for a power semiconductor device or the like is nitrided having an average particle diameter (D 50 ) of 1 ⁇ m to 200 ⁇ m.
  • D 50 average particle diameter
  • heat dissipation members are also required to have characteristics that contribute to them. Specifically, a heat radiating member having a low dielectric constant and a low dielectric loss tangent is desirable.
  • an object of the present invention is to obtain boron nitride particles capable of realizing a heat radiating member having a low dielectric constant and a low dielectric loss tangent.
  • boric acid ester in order to obtain boron nitride particles capable of realizing a heat radiation member having a low dielectric constant and a low dielectric loss tangent, boric acid ester is used. It has been found that the method of introducing the gas containing and the gas containing ammonia into the reactor is important.
  • the first gas introduced from the two or more inlets is introduced so that the side surface of the reactor is located on the extension line in the introduction direction. You can.
  • Another aspect of the present invention is the boron nitride particles having an average particle size of 1 ⁇ m or less and a difference between the 10% cumulative particle size and the 100% cumulative particle size of 10 ⁇ m or less in a volume-based particle size distribution. Is.
  • the average circularity of the boron nitride particles may be 0.8 or more.
  • Another aspect of the present invention is a resin composition containing a resin and the above-mentioned boron nitride particles.
  • boron nitride particles capable of realizing a heat radiating member having a low dielectric constant and a low dielectric loss tangent.
  • FIG. 1 is a side view of the reactor of FIG. 1 as viewed from the first introduction pipe side
  • (b) is a side view of the reactor of FIG. 1 as viewed from the second introduction pipe side
  • (A) is a side view of the reactor in another embodiment as viewed from the first introduction tube side
  • (b) is a side view of the reactor in another embodiment as viewed from the second introduction tube side. It is a figure.
  • (A) is a side view of the reactor in Comparative Example 1 as seen from the first introduction pipe side
  • (b) is a side view of the reactor in Comparative Example 2 as seen from the first introduction pipe side
  • (A) is a side view of the reactor in Comparative Example 3 as seen from the second introduction pipe side
  • (b) is a side view of the reactor in Comparative Example 4 as seen from the second introduction pipe side.
  • One embodiment of the present invention comprises a reaction step of reacting boric acid ester and ammonia at 750 ° C. or higher to obtain a precursor of boron nitride particles, and heating the precursor of boron nitride particles at 1000 ° C. or higher to obtain boron nitride particles.
  • a method for producing boron nitride particles which comprises a heating step for obtaining the particles.
  • the first gas containing boric acid ester and the second gas containing ammonia are separately introduced into the reactor.
  • FIG. 1 is a perspective view showing an example of a reactor.
  • the reactor 1 has, for example, a cylindrical shape in which both ends are open (both ends are open surfaces), and is located between one end surface 1a and the other end surface 1b. It has an internal space S.
  • the length of the reactor 1 may be, for example, 1000 mm or more and 1600 mm or less.
  • the inner diameter of the reactor 1 may be, for example, 30 mm or more, and may be 100 mm or less.
  • Both ends of the reactor 1 are held by the holding member 2 so that the outside and the internal space S of the reactor 1 can be blocked (so that the internal space S can be a closed system if necessary).
  • the reactor 1 is installed so that the heating portion H is located in a resistance heating furnace (not shown) in order to heat only a part (hereinafter referred to as “heating portion”) H between both end faces 1a and 1b.
  • the length of the heating portion H (the length in the longitudinal direction of the reactor 1) may be, for example, 500 mm or more and 900 mm or less.
  • the temperature of the heating unit H may be, for example, 750 ° C. or higher, and may be 1500 ° C. or lower.
  • FIG. 2A is a side view of the reactor 1 as viewed from the side of the first introduction pipe 3.
  • FIG. 2B is a side view of the reactor 1 as viewed from the side of the second introduction pipe 4.
  • the first introduction pipe 3 has, for example, a shape (Y-shape) in which a cylindrical tip is branched and bent in two directions.
  • the first introduction pipe 3 extends substantially parallel to the extending direction D extending from one end surface 1a of the reactor 1 to the other end surface 1b (extending direction extending from one end surface 1a toward the other end surface 1b).
  • the reactor 1 is bent and extended in two bending directions d11 and d12 at a position where the distance from one end surface 1a is, for example, 10 to 40 mm.
  • the tip surfaces of the first introduction pipes 3 in the bending directions d11 and d12 are open to serve as introduction ports 3a and 3b for introducing the first gas. That is, the first introduction pipe 3 has two introduction ports 3a and 3b.
  • the angle formed by the extending direction D is ⁇ 12 .
  • the bending directions d11 and d12 of the first introduction pipe 3 are defined as directions perpendicular to the introduction ports 3a and 3b (tip surfaces) of the first introduction pipe 3, respectively.
  • the second introduction pipe 4 has, for example, a shape (Y-shape) in which a cylindrical tip is branched and bent in two directions.
  • the second introduction pipe 4 extends substantially parallel to the extending direction D extending from one end surface 1a of the reactor 1 to the other end surface 1b (extending direction extending from one end surface 1a toward the other end surface 1b).
  • it bends and extends in the two bending directions d21 and d22 at a position where the distance from one end surface 1a is, for example, 10 to 40 mm.
  • the tip surfaces of the second introduction pipes 4 in the bending directions d21 and d22 are open to serve as introduction ports 4a and 4b for introducing the first gas. That is, the second introduction pipe 4 has two introduction ports 4a and 4b.
  • the first gas containing the boric acid ester is introduced into the internal space S of the reactor 1 through the first introduction pipe 3 from each of the two introduction ports 3a and 3b of the first introduction pipe 3. Will be done. Further, separately from the first gas, a second gas containing ammonia is passed through the second introduction pipe 4 from each of the two introduction ports 4a and 4b of the second introduction pipe 4 of the reactor 1. It is introduced into the internal space S.
  • the first gas is obtained, for example, by passing an inert gas through a liquid boric acid ester.
  • the first gas is a gas composed of a boric acid ester and an inert gas.
  • the borate ester may be, for example, an alkyl borate ester, preferably trimethyl borate.
  • the inert gas include rare gases such as helium, neon and argon, and nitrogen gas.
  • the second gas is, for example, a gas composed of ammonia.
  • the molar ratio of the amount of ammonia introduced to the amount of boric acid introduced may be, for example, 1 or more and 10 or less.
  • the boric acid ester and ammonia introduced into the reactor 1 react in the heated reactor 1 to produce a precursor (white powder) of boron nitride particles.
  • a part of the precursor of the generated boron nitride particles adheres to the inside of the reactor 1, but most of the precursors of the boron nitride particles are on the other end surface 1b side of the reactor 1 due to the inert gas or unreacted ammonia gas. It is sent to a collection container (not shown) attached to and collected.
  • the reaction time for reacting the boric acid ester with ammonia is preferably 30 seconds or less from the viewpoint of easily reducing the particle size of the obtained boron nitride particles.
  • the reaction time is the time during which the borate ester and ammonia stay in the heating portion H of the reactor 1, and is adjusted by the gas flow rate when the first gas and the second gas are introduced and the length of the heating portion H. can do.
  • the first introduction pipe 3 and the second introduction pipe 4 each have two introduction ports
  • the first gas and the second gas each have two introduction ports. It is introduced into the reactor 1.
  • the first gas and the second gas are more likely to be mixed uniformly with each other, and the obtained nitride is obtained. It is presumed that the variation in the particle size of the boron particles is reduced. Then, when the boron nitride particles having reduced variation in particle size are used, the dielectric constant and the dielectric loss tangent of the heat radiating member can be lowered.
  • the angles ⁇ 11 and ⁇ 12 are the side surfaces of the reactor 1 on the extension lines of the bending directions d11 and d12 of the first introduction pipe 3 (side surfaces along the extending direction D; the same applies hereinafter).
  • the angle is such that 1c is located (the extension lines of the bending directions d11 and d12 of the first introduction pipe 3 intersect the side surface 1c of the reactor 1).
  • the side surface 1c of the reactor 1 is located on the extension line of the bending directions d21 and d22 of the second introduction pipe 4 (the bending directions d21 and d22 of the second introduction pipe 4).
  • the extension line of the reactor 1 intersects the side surface 1c of the reactor 1).
  • the first gas is also introduced into the introduction directions d11 and d12 in which the angles formed by the reactor 1 with the extending direction D are the angles ⁇ 11 and ⁇ 12 as described above.
  • the second gas is also introduced into the introduction directions d21 and d22 in which the angles formed by the reactor 1 with the extending direction D are the angles ⁇ 21 and ⁇ 22 as described above. That is, in this embodiment, the side surface 1c of the reactor 1 is located on the extension lines of the first gas introduction directions d11 and d12 and on the extension lines of the second gas introduction directions d21 and d22.
  • the first gas introduction directions d11 and d12 are defined as directions perpendicular to the introduction ports 3a and 3b of the first introduction pipe 3 as in the bending directions d11 and d12 of the first introduction pipe 3. ..
  • the second gas introduction directions d21 and d22 are defined as directions perpendicular to the introduction ports 4a and 4b of the second introduction pipe 4, similarly to the bending directions d21 and d22 of the second introduction pipe 4.
  • the angles ⁇ 11 , ⁇ 12 , ⁇ 21 and ⁇ 22 are preferably 50 ° or more, more preferably 60 ° or more, still more preferably 65, respectively, from the viewpoint of further reducing the variation in the particle size of the obtained boron nitride particles. ° or more, particularly preferably 70 ° or more.
  • the angles ⁇ 11 , ⁇ 12 , ⁇ 21 and ⁇ 22 are each less than 90 ° and may be, for example, 80 ° or less.
  • tan ⁇ 11 , tan ⁇ 12 , tan ⁇ 21 and tan ⁇ 22 are preferable from the viewpoint of further reducing the variation in the particle size of the obtained boron nitride particles.
  • tan ⁇ 11 , tan ⁇ 12 , tan ⁇ 21 and tan ⁇ 22 may be, for example, 11.4 or less, respectively.
  • FIG. 3A is a side view of the reactor in another embodiment as viewed from the first introduction tube side
  • FIG. 3B is a second introduction of the reactor in another embodiment. It is a side view seen from the pipe side.
  • the gas is introduced from one of the first gas introduced from the two inlets 13a and 13b of the first inlet pipe 13. Only the first gas is introduced into the reactor 1 at an angle ⁇ 11 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction direction d11. Will be done.
  • the preferable range of the angle ⁇ 11 at this time is the same as that of the above-mentioned angle ⁇ 11 .
  • the introduction direction d14 of the first gas introduced from the other introduction port 13b of the first introduction pipe 13 is, for example, a direction substantially parallel to the extending direction D of the reactor 1 (that is, introduction of the first gas).
  • the angle formed by the direction d14 and the extending direction D of the reactor 1 may be approximately 0 °).
  • the second gas introduced from the two introduction ports 14a and 14b of the second introduction pipe 14 is introduced from one of the introduction ports 14a. Only the second gas is introduced into the reactor 1 at an angle ⁇ 21 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction direction d21. Will be done.
  • the preferable range of the angle ⁇ 21 at this time is the same as that of the above-mentioned angle ⁇ 21 .
  • the introduction direction d24 of the second gas introduced from the other introduction port 14b of the second introduction pipe 14 is, for example, a direction substantially parallel to the extending direction D of the reactor 1 (that is, introduction of the second gas).
  • the angle formed by the direction d24 and the extending direction D of the reactor 1 may be approximately 0 °).
  • the variation in the particle size of the obtained boron nitride particles can be further reduced.
  • the boron nitride particles are introduced from the two introduction ports 3a and 3b of the first introduction tube 3 as in the embodiment shown in FIG. 2A. Both of the first gases react with angles ⁇ 11 and ⁇ 12 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction directions d11 and d12. It is more preferable to be introduced into the vessel 1.
  • both of the second gases introduced from the two introduction ports 4a and 4b of the second introduction pipe 4 are extensions of the introduction directions d21 and d22. It is more preferable that the reactor 1 is introduced into the reactor 1 with angles ⁇ 21 and ⁇ 22 formed by the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the line.
  • two introduction ports 3a, 3b are provided by branching each tip of the first introduction pipe 3 (13), but another embodiment.
  • the first introduction pipe two introduction pipes are independently inserted into the reactor 1, and one introduction port is provided for each of the two introduction pipes, so that the two introduction pipes are provided as a whole.
  • the first gas may be introduced into the reactor 1.
  • two introduction ports 4a, 4b are provided by branching each tip of the second introduction pipe 4 (14), but the other one.
  • the second introduction pipe two introduction pipes are independently inserted into the reactor 1, and one introduction port is provided for each of the two introduction pipes, so that the two introduction pipes as a whole are provided.
  • the second gas may be introduced into the reactor 1.
  • two introduction ports 3a, 3b (13a, 13b) for introducing the first gas are provided, but the number of introduction ports for introducing the first gas. May be 2 or more, and may be 3 or more, for example.
  • two introduction ports 4a, 4b (14a, 14b) for introducing the second gas are provided, but the introduction port for introducing the second gas
  • the number may be two or more, and may be three or more, for example. In these cases, among the first gases introduced from the three or more inlets, the first gas introduced from at least one inlet has the side surface 1c of the reactor 1 on the extension line in the introduction direction.
  • the gas is introduced so as to be located, and among the second gases introduced from the three or more inlets, the second gas introduced from at least one inlet is on an extension of the introduction direction. It is preferable to introduce the reactor 1 so that the side surface 1c is located.
  • the precursor of the boron nitride particles obtained in the reaction step is heated at 1000 ° C. or higher to obtain boron nitride particles.
  • the heating steps include, for example, a first heating step of heating a precursor of boron nitride particles at 1000 to 1600 ° C. to obtain a first precursor, and a first heating step of heating the first precursor at 1000 to 1600 ° C. It may include a second heating step of obtaining the precursor of 2 and a third heating step of heating the second precursor at 1800 to 2200 ° C. to obtain boron nitride particles.
  • the environmental temperature at which the first precursor is placed is once lowered to room temperature (10 to 30 ° C.).
  • the first heating step may be omitted and the second heating step and the third heating step may be performed.
  • the precursor of the boron nitride particles obtained in the reaction step is placed in another reaction tube (for example, an alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately charged. Introduce into the reaction tube.
  • the gas introduced at this time may be only ammonia gas.
  • the flow rates of nitrogen gas and ammonia gas may be appropriately adjusted so that the reaction time becomes a desired value, respectively. For example, the higher the flow rate of nitrogen gas and ammonia gas, the shorter the reaction time.
  • reaction tube is heated to 1000 to 1600 ° C.
  • the heating time may be, for example, 1 hour or more and 10 hours or less. This gives the first precursor.
  • the power of the resistance heating furnace is turned off, the introduction of nitrogen gas and ammonia gas is stopped, and the temperature in the reaction tube is lowered to room temperature (10 to 30 ° C.). Allow the precursor to stand.
  • the standing time may be, for example, 0.5 hours or more and 96 hours or less.
  • nitrogen gas and ammonia gas are reintroduced into the reaction tube, and the reaction tube is heated again to 1000 to 1600 ° C.
  • Examples of the flow rates of nitrogen gas and ammonia gas, and the heating time may be the same as those described in the first heating step.
  • the conditions of the first heating step and the conditions of the second heating step may be the same as each other or may be different from each other. This gives a second precursor.
  • the second precursor obtained in the second heating step is placed in a boron nitride rutsubo and heated to 1800 to 2200 ° C. in an induction heating furnace under a nitrogen atmosphere.
  • the heating time may be, for example, 0.5 hours or more, and may be 10 hours or less. As a result, boron nitride particles are obtained.
  • boron nitride particles having an average particle size of 1 ⁇ m or less and a difference between 10% cumulative particle size and 100% cumulative particle size of 10 ⁇ m or less can be obtained in a volume-based particle size distribution. Be done. That is, in another embodiment of the present invention, in the volume-based particle size distribution, the average particle size is 1 ⁇ m or less, and the difference between the 10% cumulative particle size (D10) and the 100% cumulative particle size (D100). (D100-D10) is a boron nitride particle having a size of 10 ⁇ m or less.
  • the average particle size of the boron nitride particles is preferably 0.9 ⁇ m or less, 0.8 ⁇ m or less, or 0.9 ⁇ m or less from the viewpoint of lowering the dielectric constant of the heat radiating member containing the boron nitride particles (hereinafter, also simply referred to as “heat radiating member”). It may be 0.7 ⁇ m or less.
  • the average particle size of the boron nitride particles is preferably 0.01 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, 0.2 ⁇ m or more from the viewpoint of suppressing an increase in viscosity when the boron nitride particles and the resin are mixed. , 0.3 ⁇ m or more, or 0.4 ⁇ m or more.
  • the boron nitride particles D100-D10 may be preferably 8 ⁇ m or less, 6 ⁇ m or less, 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less from the viewpoint of lowering the dielectric constant of the heat radiating member.
  • the D100-D10 of the boron nitride particles may be, for example, 0.5 ⁇ m or more, 0.8 ⁇ m or more, or 1 ⁇ m or more.
  • the average particle size and D100-D10 of the boron nitride particles are measured by the following procedure. Distilled water is used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate is used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed with an ultrasonic homogenizer (for example, manufactured by Nippon Seiki Seisakusho Co., Ltd., trade name: US-300E) at 80% AMPLITUDE (amplitude).
  • an ultrasonic homogenizer for example, manufactured by Nippon Seiki Seisakusho Co., Ltd., trade name: US-300E
  • a dispersion of boron nitride particles is prepared by performing this once every 1 minute and 30 seconds. This dispersion is separated while stirring at 60 rpm, and the volume-based particle size distribution is measured by a laser diffraction / scattering method particle size distribution measuring device (for example, manufactured by Beckman Coulter, trade name: LS-13 320). At this time, 1.33 is used as the refractive index of water, and 1.7 is used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as the particle size (median diameter, d50) of the cumulative value of the cumulative particle size distribution of 50%, and the particle size of the cumulative value of the cumulative particle size distribution is 100%. D100-D10 is calculated as the value obtained by subtracting D10.
  • Boron nitride particles preferably have a spherical shape or a shape close to a spherical shape from the viewpoint of improving the filling property when manufacturing the heat radiating member and making the characteristics (thermal conductivity, dielectric constant, etc.) of the heat radiating member isotropic. have. From the same viewpoint, the average circularity of the boron nitride particles may be preferably 0.8 or more, 0.82 or more, 0.84 or more, 0.86 or more, or 0.88 or more.
  • the average circularity of the boron nitride particles is measured by the following procedure.
  • Image analysis software for example, manufactured by Mountech, trade name: MacView
  • SEM scanning electron microscope
  • the projected area (S) and the peripheral length (L) of the boron nitride particles are calculated by image analysis using.
  • Circularity 4 ⁇ S / L 2 Calculate the circularity according to.
  • the average value of the circularity obtained for 100 arbitrarily selected boron nitride particles is defined as the average circularity.
  • the boron nitride particles described above are suitably used for, for example, a heat radiating member.
  • a heat radiating member having a low dielectric constant and a low dielectric loss tangent can be obtained.
  • the boron nitride particles are used, for example, as a resin composition mixed with a resin. That is, another embodiment of the present invention is a resin composition containing the resin and the above-mentioned boron nitride particles.
  • the content of the above-mentioned boron nitride particles is preferably 30% by volume or more, based on the total volume of the resin composition, from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance. It is preferably 40% by volume or more, more preferably 50% by volume or more, and preferably 85% by volume or less, more preferably 85% by volume or less, from the viewpoint of suppressing the generation of voids during molding and the decrease in insulating property and mechanical strength. It is 80% by volume or less, more preferably 70% by volume or less.
  • the resin examples include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyolefin (polyethylene, etc.), polyimide, polyamideimide, polyetherimide, and poly.
  • the content of the resin may be 15% by volume or more, 20% by volume or more, or 30% by volume or more, based on the total volume of the resin composition, and is 70% by volume or less, 60% by volume or less, or 50% by volume. It may be:
  • the resin composition may further contain a curing agent that cures the resin.
  • the curing agent is appropriately selected depending on the type of resin.
  • examples of the curing agent include phenol novolac compounds, acid anhydrides, amino compounds, and imidazole compounds.
  • the content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
  • the resin composition may further contain boron nitride particles other than the above-mentioned boron nitride particles (for example, known boron nitride particles such as massive boron nitride particles formed by aggregating scaly primary particles).
  • boron nitride particles other than the above-mentioned boron nitride particles (for example, known boron nitride particles such as massive boron nitride particles formed by aggregating scaly primary particles).
  • Example 1 Boron nitride particles were prepared by the following procedure. First, in the reaction step, a cylindrical reactor (quartz tube, reactor length: 1300 mm, reactor inner diameter: 75 mm, inside the resistance heating furnace) as shown in FIGS. 1 and 2 installed in the resistance heating furnace. The length of the portion located in (800 mm) was heated to raise the temperature to 1150 ° C. On the other hand, the first gas obtained by passing nitrogen gas through trimethyl borate was introduced into the reactor from the first introduction tube. On the other hand, ammonia gas was introduced directly into the reactor.
  • the first introduction tube in the internal space of the reactor, the distance from one end surface of the reactor is 25 mm, and the angles formed with the extending direction of the reactor are ⁇ 11 and ⁇ 12 , respectively.
  • a branch was provided in one direction.
  • the first gas was introduced from each of the two introduction ports so that the angles formed by the introduction direction of the first introduction gas and the extension direction of the reactor were ⁇ 11 and ⁇ 12, respectively.
  • the second introduction tube in the internal space of the reactor, the distance from one end surface of the reactor is 25 mm, and the angles formed by the extending direction of the reactor are ⁇ 21 and ⁇ 22 , respectively.
  • a branch was provided in one direction.
  • the second gas was introduced from each of the two introduction ports so that the angles formed by the introduction direction of the second introduction gas and the extension direction of the reactor were ⁇ 21 and ⁇ 22, respectively.
  • the angles of ⁇ 11 , ⁇ 12 , ⁇ 21 and ⁇ 22 were set so that tan ⁇ 11 , tan ⁇ 12 , tan ⁇ 21 and tan ⁇ 22 were the values shown in Table 1, respectively.
  • the molar ratio of the amount of ammonia introduced to the amount of trimethyl borate introduced was 4.5.
  • trimethyl borate was reacted with ammonia to obtain a precursor (white powder) of boron nitride particles.
  • the reaction time was 10 seconds.
  • the precursor of the boron nitride particles obtained in the reaction step is placed in another reaction tube (alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately charged at 10 L. It was introduced into the reaction tube at a flow rate of / min and 15 L / min. Then, the reaction tube was heated at 1500 ° C. for 2.5 hours. As a result, a first precursor was obtained (first heating step).
  • alumina tube alumina tube
  • the power of the resistance heating furnace was turned off, the introduction of nitrogen gas and ammonia gas was stopped, and the first precursor was allowed to stand for 2 hours in a state where the temperature in the reaction tube was lowered to 25 ° C.
  • the second precursor obtained in the second heating step was placed in a boron nitride rutsubo and heated in an induction heating furnace at 2000 ° C. for 5 hours in a nitrogen atmosphere (third heating step). As a result, boron nitride particles were obtained.
  • Example 2 Boron nitride particles were produced in the same manner as in Example 1 except that the configurations of the first introduction pipe and the second introduction pipe were changed to the configurations shown in FIGS. 3 (a) and 3 (b), respectively. That is, only the first gas introduced from one of the two inlets is introduced so that the side surface of the reactor is located on the extension line in the introduction direction, and is introduced from the other inlet.
  • the gas No. 1 was introduced in a direction parallel to the extending direction of the reactor (the direction in which the angle between the introduction direction of the first gas and the extending direction of the reactor is 0 °) (second gas). The same applies to).
  • Example 3 The angles ⁇ 11 , ⁇ 12 , ⁇ 21 and ⁇ 22 such that tan ⁇ 11 , tan ⁇ 12 , tan ⁇ 21 and tan ⁇ 22 are the values shown in Table 1 for the introduction direction of the first gas and the introduction direction of the second gas. Boron nitride particles were produced in the same manner as in Example 1 except that they were changed to.
  • Distilled water was used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate was used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution.
  • Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, trade name: US-300E) at 80% AMPLITUDE (amplitude).
  • a dispersion of boron nitride particles was prepared by performing this once every 1 minute and 30 seconds. This dispersion was separated while stirring at 60 rpm, and the volume-based particle size distribution was measured with a laser diffraction / scattering method particle size distribution measuring device (manufactured by Beckman Coulter, trade name: LS-13 320). At this time, 1.33 was used as the refractive index of water, and 1.7 was used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as the particle size (median diameter, d50) of the cumulative value of the cumulative particle size distribution of 50%, and the particle size of the cumulative value of the cumulative particle size distribution is 100%. D100-D10 was calculated as the value obtained by subtracting D10.
  • the permittivity and dielectric loss tangent when each of the obtained boron nitride particles was used was measured by the following method. The results are shown in Table 1. Boron nitride particles are kneaded with polyethylene (manufactured by Japan Polyethylene Corporation, trade name "Novatec HY540") in an amount that makes the amount of boron nitride particles 20% by volume, and sheet molding is performed to obtain a 0.2 mm thick sheet. Got Kneading and sheet forming were carried out using a twin-screw extruder under the condition of a temperature of 180 ° C. Using a measuring device of the cavity resonator method, the sheet obtained under the conditions of a frequency of 36 GHz and a temperature of 25 ° C. was measured, and the dielectric constant and the dielectric loss tangent of the sheet were determined.

Abstract

One aspect of the present invention is a method for producing boron nitride particles, comprising a reaction step of introducing a first gas containing a boronic acid ester and a second gas containing ammonia separately into a cylindrical reactor from one end face of the reactor and reacting the boronic acid ester with ammonia at 750℃ or higher in the reactor to produce a precursor of boron nitride particles, and a heating step of heating the precursor of boron nitride particles at 1000℃ or higher to produce boron nitride particles, wherein the first gas is introduced into the reactor through at least two inlets and the second gas is introduced into the reactor through at least two inlets in the reaction step.

Description

窒化ホウ素粒子及びその製造方法Boron Nitride Particles and Their Manufacturing Methods
 本発明は、窒化ホウ素粒子及びその製造方法に関する。 The present invention relates to boron nitride particles and a method for producing the same.
 トランジスタ、サイリスタ、CPU等の電子部品においては、使用時に発生する熱を効率良く放熱することが重要な問題となっている。そのため、このような電子部品と共に、高い熱伝導性を有する放熱部材が用いられる。一方、窒化ホウ素粒子は、高熱伝導性及び高絶縁性を有しているため、放熱部材における充填材として幅広く利用されている。 In electronic components such as transistors, thyristors, and CPUs, it is an important issue to efficiently dissipate heat generated during use. Therefore, a heat radiating member having high thermal conductivity is used together with such an electronic component. On the other hand, boron nitride particles have high thermal conductivity and high insulating properties, and are therefore widely used as fillers in heat radiating members.
 例えば特許文献1には、高い熱伝導性を示しパワー半導体デバイスなどで必要とされる放熱シートに非常に有用な窒化ホウ素凝集粒子組成物として、平均粒子径(D50)が1μm~200μmの窒化ホウ素凝集粒子の組成物であって、所定の条件を満たすことを特徴とする窒化ホウ素凝集粒子組成物が開示されている。 For example, Patent Document 1 states that a boron nitride agglomerated particle composition having high thermal conductivity and very useful for a heat dissipation sheet required for a power semiconductor device or the like is nitrided having an average particle diameter (D 50 ) of 1 μm to 200 μm. A composition of boron nitride agglomerated particles, which is characterized by satisfying a predetermined condition, is disclosed.
特開2017-036190号公報Japanese Unexamined Patent Publication No. 2017-036190
 近年、電子部品を搭載したデバイスでは、信号の高速伝送化や大容量化が進んでいるため、放熱部材にもそれに寄与するような特性が求められている。具体的には、低誘電率かつ低誘電正接の放熱部材が望ましい。 In recent years, devices equipped with electronic components have been increasing in speed and capacity of signals, and therefore, heat dissipation members are also required to have characteristics that contribute to them. Specifically, a heat radiating member having a low dielectric constant and a low dielectric loss tangent is desirable.
 そこで、本発明は、低誘電率かつ低誘電正接の放熱部材を実現できる窒化ホウ素粒子を得ることを目的とする。 Therefore, an object of the present invention is to obtain boron nitride particles capable of realizing a heat radiating member having a low dielectric constant and a low dielectric loss tangent.
 本発明者らが検討したところ、ホウ酸エステル及びアンモニアから窒化ホウ素粒子を得る製造方法において、低誘電率かつ低誘電正接の放熱部材を実現できる窒化ホウ素粒子を得るためには、ホウ酸エステルを含むガス及びアンモニアを含むガスの反応器への導入方法が重要であることが見出された。 As a result of the study by the present inventors, in the production method for obtaining boron nitride particles from boric acid ester and ammonia, in order to obtain boron nitride particles capable of realizing a heat radiation member having a low dielectric constant and a low dielectric loss tangent, boric acid ester is used. It has been found that the method of introducing the gas containing and the gas containing ammonia into the reactor is important.
 本発明の一側面は、ホウ酸エステルを含む第1のガスと、アンモニアを含む第2のガスとを、筒状の反応器の一端面からそれぞれ別個に反応器内に導入し、反応器内において、ホウ酸エステル及びアンモニアを750℃以上で反応させて窒化ホウ素粒子の前駆体を得る反応工程と、窒化ホウ素粒子の前駆体を1000℃以上で加熱して窒化ホウ素粒子を得る加熱工程と、備える窒化ホウ素粒子の製造方法であって、反応工程において、第1のガスを2つ以上の導入口から反応器内に導入すると共に、第2のガスを2つ以上の導入口から反応器内に導入する、製造方法である。 One aspect of the present invention is to introduce a first gas containing borate ester and a second gas containing ammonia into the reactor separately from one end surface of the tubular reactor, and inside the reactor. In the reaction step of reacting borate ester and ammonia at 750 ° C. or higher to obtain a precursor of boron nitride particles, and a heating step of heating the precursor of boron nitride particles at 1000 ° C. or higher to obtain boron nitride particles. A method for producing boron nitride particles, wherein in the reaction step, the first gas is introduced into the reactor from two or more inlets, and the second gas is introduced into the reactor from two or more inlets. It is a manufacturing method to be introduced in.
 2つ以上の導入口から導入される第1のガスのうち、少なくとも1つの導入口から導入される第1のガスは、その導入方向の延長線上に反応器の側面が位置するように導入されてよい。 Of the first gas introduced from the two or more inlets, the first gas introduced from at least one inlet is introduced so that the side surface of the reactor is located on the extension line in the introduction direction. You can.
 2つ以上の導入口から導入される第2のガスのうち、少なくとも1つの導入口から導入される第2のガスは、その導入方向の延長線上に反応器の側面が位置するように導入されてよい。 Of the second gas introduced from the two or more inlets, the second gas introduced from at least one inlet is introduced so that the side surface of the reactor is located on the extension line in the introduction direction. You can.
 本発明の他の一側面は、体積基準の粒度分布において、平均粒子径が1μm以下であり、かつ、10%累積粒子径と100%累積粒子径との差が10μm以下である、窒化ホウ素粒子である。 Another aspect of the present invention is the boron nitride particles having an average particle size of 1 μm or less and a difference between the 10% cumulative particle size and the 100% cumulative particle size of 10 μm or less in a volume-based particle size distribution. Is.
 窒化ホウ素粒子の平均円形度は、0.8以上であってよい。 The average circularity of the boron nitride particles may be 0.8 or more.
 本発明の他の一側面は、樹脂と、上記の窒化ホウ素粒子と、を含有する樹脂組成物である。 Another aspect of the present invention is a resin composition containing a resin and the above-mentioned boron nitride particles.
 本発明によれば、低誘電率かつ低誘電正接の放熱部材を実現できる窒化ホウ素粒子を得ることができる。 According to the present invention, it is possible to obtain boron nitride particles capable of realizing a heat radiating member having a low dielectric constant and a low dielectric loss tangent.
一実施形態に係る窒化ホウ素粒子の製造方法で用いられる反応器の一例を示す斜視図である。It is a perspective view which shows an example of the reactor used in the manufacturing method of the boron nitride particle which concerns on one Embodiment. (a)は図1の反応器を第1の導入管側から見た側面図であり、(b)は図1の反応器を第2の導入管側から見た側面図である。(A) is a side view of the reactor of FIG. 1 as viewed from the first introduction pipe side, and (b) is a side view of the reactor of FIG. 1 as viewed from the second introduction pipe side. (a)は他の一実施形態における反応器を第1の導入管側から見た側面図であり、(b)は他の一実施形態における反応器を第2の導入管側から見た側面図である。(A) is a side view of the reactor in another embodiment as viewed from the first introduction tube side, and (b) is a side view of the reactor in another embodiment as viewed from the second introduction tube side. It is a figure. (a)は比較例1における反応器を第1の導入管側から見た側面図であり、(b)は比較例2における反応器を第1の導入管側から見た側面図である。(A) is a side view of the reactor in Comparative Example 1 as seen from the first introduction pipe side, and (b) is a side view of the reactor in Comparative Example 2 as seen from the first introduction pipe side. (a)は比較例3における反応器を第2の導入管側から見た側面図であり、(b)は比較例4における反応器を第2の導入管側から見た側面図である。(A) is a side view of the reactor in Comparative Example 3 as seen from the second introduction pipe side, and (b) is a side view of the reactor in Comparative Example 4 as seen from the second introduction pipe side.
 本発明の一実施形態は、ホウ酸エステルとアンモニアとを750℃以上で反応させて窒化ホウ素粒子の前駆体を得る反応工程と、窒化ホウ素粒子の前駆体を1000℃以上で加熱して窒化ホウ素粒子を得る加熱工程と、を備える、窒化ホウ素粒子の製造方法である。 One embodiment of the present invention comprises a reaction step of reacting boric acid ester and ammonia at 750 ° C. or higher to obtain a precursor of boron nitride particles, and heating the precursor of boron nitride particles at 1000 ° C. or higher to obtain boron nitride particles. A method for producing boron nitride particles, which comprises a heating step for obtaining the particles.
 反応工程では、ホウ酸エステルを含む第1のガスと、アンモニアを含む第2のガスとをそれぞれ別個に反応器内に導入する。 In the reaction step, the first gas containing boric acid ester and the second gas containing ammonia are separately introduced into the reactor.
 図1は、反応器の一例を示す斜視図である。図1に示すように、反応器1は、例えば、両端がそれぞれ開口している(両端面が開口面である)円筒状となっており、一端面1aと他端面1bとの間に位置する内部空間Sを有している。反応器1の長さは、例えば、1000mm以上であってよく、1600mm以下であってよい。反応器1の内径は、例えば、30mm以上であってよく、100mm以下であってよい。 FIG. 1 is a perspective view showing an example of a reactor. As shown in FIG. 1, the reactor 1 has, for example, a cylindrical shape in which both ends are open (both ends are open surfaces), and is located between one end surface 1a and the other end surface 1b. It has an internal space S. The length of the reactor 1 may be, for example, 1000 mm or more and 1600 mm or less. The inner diameter of the reactor 1 may be, for example, 30 mm or more, and may be 100 mm or less.
 反応器1の両端は、反応器1の外部と内部空間Sとを遮断可能なように(必要に応じて内部空間Sを閉鎖系にできるように)、その両端がそれぞれ保持部材2に保持されている。反応器1は、その両端面1a,1b間の一部(以下「加熱部」という)Hのみを加熱するために、加熱部Hが抵抗加熱炉(図示せず)内に位置するように設置されている。加熱部Hの長さ(反応器1の長手方向の長さ)は、例えば、500mm以上であってよく、900mm以下であってよい。反応器1の加熱部Hが加熱されることにより、加熱部Hにおいて、ホウ酸エステルとアンモニアとが反応する。加熱部Hの温度は、例えば、750℃以上であってよく、1500℃以下であってよい。 Both ends of the reactor 1 are held by the holding member 2 so that the outside and the internal space S of the reactor 1 can be blocked (so that the internal space S can be a closed system if necessary). ing. The reactor 1 is installed so that the heating portion H is located in a resistance heating furnace (not shown) in order to heat only a part (hereinafter referred to as “heating portion”) H between both end faces 1a and 1b. Has been done. The length of the heating portion H (the length in the longitudinal direction of the reactor 1) may be, for example, 500 mm or more and 900 mm or less. When the heating part H of the reactor 1 is heated, the boric acid ester and ammonia react in the heating part H. The temperature of the heating unit H may be, for example, 750 ° C. or higher, and may be 1500 ° C. or lower.
 反応器1の一端面1aには、反応器1の外部から内部空間Sへガスを導入可能なように、第1の導入管3及び第2の導入管4がそれぞれ別個に取り付けられている。図2(a)は、反応器1を第1の導入管3側から見た側面図である。図2(b)は、反応器1を第2の導入管4側から見た側面図である。 A first introduction pipe 3 and a second introduction pipe 4 are separately attached to one end surface 1a of the reactor 1 so that gas can be introduced into the internal space S from the outside of the reactor 1. FIG. 2A is a side view of the reactor 1 as viewed from the side of the first introduction pipe 3. FIG. 2B is a side view of the reactor 1 as viewed from the side of the second introduction pipe 4.
 図1及び図2(a)に示すように、第1の導入管3は、例えば、円筒状の先端が分岐して2つの方向に折れ曲がった形状(Y字状)をしている。第1の導入管3は、反応器1の一端面1aから他端面1bへ延びる延在方向(一端面1aを起点として他端面1bへ向けて延びる延在方向)Dと略平行に延びるように、反応器1の外部から内部空間Sへ導入されると共に、内部空間S内において、一端面1aからの距離が例えば10~40mmの位置で2つの折り曲げ方向d11,d12へ向かって折れ曲がって延びている。第1の導入管3の各折り曲げ方向d11,d12の先端面は開口しており、第1のガスを導入するための導入口3a,3bとなっている。すなわち、第1の導入管3は、2つの導入口3a,3bを有している。 As shown in FIGS. 1 and 2 (a), the first introduction pipe 3 has, for example, a shape (Y-shape) in which a cylindrical tip is branched and bent in two directions. The first introduction pipe 3 extends substantially parallel to the extending direction D extending from one end surface 1a of the reactor 1 to the other end surface 1b (extending direction extending from one end surface 1a toward the other end surface 1b). In addition to being introduced into the internal space S from the outside of the reactor 1, the reactor 1 is bent and extended in two bending directions d11 and d12 at a position where the distance from one end surface 1a is, for example, 10 to 40 mm. There is. The tip surfaces of the first introduction pipes 3 in the bending directions d11 and d12 are open to serve as introduction ports 3a and 3b for introducing the first gas. That is, the first introduction pipe 3 has two introduction ports 3a and 3b.
 第1の導入管3の一方の折り曲げ方向d11と反応器1の延在方向Dとのなす角度はθ11となっており、第1の導入管3の他方の折り曲げ方向d12と反応器1の延在方向Dとのなす角度はθ12となっている。第1の導入管3の折り曲げ方向d11,d12は、それぞれ第1の導入管3の導入口3a,3b(先端面)に垂直な方向として定義される。 Angle between the first one of the bending direction d11 to the extending direction D of the reactor 1 of the introduction tube 3 has become a theta 11, the reactor 1 and the first other bending direction d12 of the inlet pipe 3 The angle formed by the extending direction D is θ 12 . The bending directions d11 and d12 of the first introduction pipe 3 are defined as directions perpendicular to the introduction ports 3a and 3b (tip surfaces) of the first introduction pipe 3, respectively.
 図1及び図2(b)に示すように、第2の導入管4は、例えば、円筒状の先端が分岐して2つの方向に折れ曲がった形状(Y字状)をしている。第2の導入管4は、反応器1の一端面1aから他端面1bへ延びる延在方向(一端面1aを起点として他端面1bへ向けて延びる延在方向)Dと略平行に延びるように、反応器1の外部から内部空間Sへ導入されると共に、内部空間S内において、一端面1aからの距離が例えば10~40mmの位置で2つの折り曲げ方向d21,d22へ向かって折れ曲がって延びている。第2の導入管4の各折り曲げ方向d21,d22の先端面は開口しており、第1のガスを導入するための導入口4a,4bとなっている。すなわち、第2の導入管4は、2つの導入口4a,4bを有している。 As shown in FIGS. 1 and 2 (b), the second introduction pipe 4 has, for example, a shape (Y-shape) in which a cylindrical tip is branched and bent in two directions. The second introduction pipe 4 extends substantially parallel to the extending direction D extending from one end surface 1a of the reactor 1 to the other end surface 1b (extending direction extending from one end surface 1a toward the other end surface 1b). In addition to being introduced into the internal space S from the outside of the reactor 1, it bends and extends in the two bending directions d21 and d22 at a position where the distance from one end surface 1a is, for example, 10 to 40 mm. There is. The tip surfaces of the second introduction pipes 4 in the bending directions d21 and d22 are open to serve as introduction ports 4a and 4b for introducing the first gas. That is, the second introduction pipe 4 has two introduction ports 4a and 4b.
 第2の導入管4の一方の折り曲げ方向d21と反応器1の延在方向Dとのなす角度はθ21となっており、他方の折り曲げ方向d22と反応器1の延在方向Dとのなす角度はθ22となっている。第2の導入管4の折り曲げ方向d21,d22は、それぞれ第2の導入管4の導入口4a,4b(先端面)に垂直な方向として定義される。 The angle formed by one bending direction d21 of the second introduction tube 4 and the extending direction D of the reactor 1 is θ 21 , and the other bending direction d22 and the extending direction D of the reactor 1 form. The angle is θ 22 . The bending directions d21 and d22 of the second introduction pipe 4 are defined as directions perpendicular to the introduction ports 4a and 4b (tip surfaces) of the second introduction pipe 4, respectively.
 反応工程では、ホウ酸エステルを含む第1のガスが、第1の導入管3を通じて、第1の導入管3の2つの導入口3a,3bのそれぞれから、反応器1の内部空間Sへ導入される。また、第1のガスとは別個に、アンモニアを含む第2のガスが、第2の導入管4を通じて、第2の導入管4の2つの導入口4a,4bのそれぞれから、反応器1の内部空間Sへ導入される。 In the reaction step, the first gas containing the boric acid ester is introduced into the internal space S of the reactor 1 through the first introduction pipe 3 from each of the two introduction ports 3a and 3b of the first introduction pipe 3. Will be done. Further, separately from the first gas, a second gas containing ammonia is passed through the second introduction pipe 4 from each of the two introduction ports 4a and 4b of the second introduction pipe 4 of the reactor 1. It is introduced into the internal space S.
 第1のガスは、例えば、不活性ガスを液状のホウ酸エステルに通過させることにより得られる。この場合は、第1のガスは、ホウ酸エステル及び不活性ガスからなるガスである。ホウ酸エステルは、例えばアルキルホウ酸エステルであってよく、好ましくはホウ酸トリメチルである。不活性ガスとしては、例えば、ヘリウム、ネオン、アルゴンなどの希ガス、及び窒素ガスが挙げられる。第2のガスは、例えば、アンモニアからなるガスである。 The first gas is obtained, for example, by passing an inert gas through a liquid boric acid ester. In this case, the first gas is a gas composed of a boric acid ester and an inert gas. The borate ester may be, for example, an alkyl borate ester, preferably trimethyl borate. Examples of the inert gas include rare gases such as helium, neon and argon, and nitrogen gas. The second gas is, for example, a gas composed of ammonia.
 ホウ酸エステルの導入量に対するアンモニアの導入量のモル比(アンモニア/ホウ酸エステル)は、例えば、1以上であってよく、10以下であってよい。 The molar ratio of the amount of ammonia introduced to the amount of boric acid introduced (ammonia / boric acid ester) may be, for example, 1 or more and 10 or less.
 反応器1内に導入されたホウ酸エステル及びアンモニアは、加熱された反応器1内で反応し、窒化ホウ素粒子の前駆体(白色粉末)を生成する。生成した窒化ホウ素粒子の前駆体の一部は反応器1内に付着するが、窒化ホウ素粒子の前駆体の多くは、不活性ガスや未反応のアンモニアガスにより、反応器1の他端面1b側に取り付けられた回収容器(図示せず)に送られて回収される。ホウ酸エステルとアンモニアとを反応させる反応時間は、得られる窒化ホウ素粒子の粒子径を小さくしやすい観点から、好ましくは、30秒間以内である。反応時間は、ホウ酸エステル及びアンモニアが反応器1の加熱部Hにとどまる時間であり、第1のガス及び第2のガスを導入する際のガス流量と、加熱部Hの長さとによって、調整することができる。 The boric acid ester and ammonia introduced into the reactor 1 react in the heated reactor 1 to produce a precursor (white powder) of boron nitride particles. A part of the precursor of the generated boron nitride particles adheres to the inside of the reactor 1, but most of the precursors of the boron nitride particles are on the other end surface 1b side of the reactor 1 due to the inert gas or unreacted ammonia gas. It is sent to a collection container (not shown) attached to and collected. The reaction time for reacting the boric acid ester with ammonia is preferably 30 seconds or less from the viewpoint of easily reducing the particle size of the obtained boron nitride particles. The reaction time is the time during which the borate ester and ammonia stay in the heating portion H of the reactor 1, and is adjusted by the gas flow rate when the first gas and the second gas are introduced and the length of the heating portion H. can do.
 以上説明した反応工程において、第1の導入管3及び第2の導入管4がそれぞれ2つの導入口を有していることから、第1のガス及び第2のガスがそれぞれ2つの導入口から反応器1内に導入される。この場合、第1のガス及び第2のガスをそれぞれ1つの導入口から反応器内に導入する場合に比べて、第1のガス及び第2のガスが互いに均一に混合しやすく、得られる窒化ホウ素粒子の粒子径のばらつきが低減されると推察される。そして、粒子径のばらつきが低減された窒化ホウ素粒子を用いると、放熱部材の誘電率及び誘電正接を低くすることができる。 In the reaction step described above, since the first introduction pipe 3 and the second introduction pipe 4 each have two introduction ports, the first gas and the second gas each have two introduction ports. It is introduced into the reactor 1. In this case, as compared with the case where the first gas and the second gas are each introduced into the reactor from one inlet, the first gas and the second gas are more likely to be mixed uniformly with each other, and the obtained nitride is obtained. It is presumed that the variation in the particle size of the boron particles is reduced. Then, when the boron nitride particles having reduced variation in particle size are used, the dielectric constant and the dielectric loss tangent of the heat radiating member can be lowered.
 上記実施形態においては、上記角度θ11及びθ12は、第1の導入管3の折り曲げ方向d11,d12の延長線上に反応器1の側面(延在方向Dに沿った側面。以下同様。)1cが位置する(第1の導入管3の折り曲げ方向d11,d12の延長線が反応器1の側面1cに交わる)ような角度となっている。同様に、上記角度θ21及びθ22は、第2の導入管4の折り曲げ方向d21,d22の延長線上に反応器1の側面1cが位置する(第2の導入管4の折り曲げ方向d21,d22の延長線が反応器1の側面1cに交わる)ような角度となっている。 In the above embodiment, the angles θ 11 and θ 12 are the side surfaces of the reactor 1 on the extension lines of the bending directions d11 and d12 of the first introduction pipe 3 (side surfaces along the extending direction D; the same applies hereinafter). The angle is such that 1c is located (the extension lines of the bending directions d11 and d12 of the first introduction pipe 3 intersect the side surface 1c of the reactor 1). Similarly, at the angles θ 21 and θ 22 , the side surface 1c of the reactor 1 is located on the extension line of the bending directions d21 and d22 of the second introduction pipe 4 (the bending directions d21 and d22 of the second introduction pipe 4). The extension line of the reactor 1 intersects the side surface 1c of the reactor 1).
 この場合、第1のガスも、反応器1の延在方向Dとのなす角が上述したような角度θ11及びθ12となる導入方向d11,d12へ導入される。同様に、第2のガスも、反応器1の延在方向Dとのなす角が上述したような角度θ21及びθ22となる導入方向d21,d22へ導入される。つまり、この実施形態では、第1のガスの導入方向d11,d12の延長線上及び第2のガスの導入方向d21,d22の延長線上には、反応器1の側面1cが位置している。なお、第1のガスの導入方向d11,d12は、第1の導入管3の折り曲げ方向d11,d12と同様に、第1の導入管3の導入口3a,3bに垂直な方向として定義される。第2のガスの導入方向d21,d22は、第2の導入管4の折り曲げ方向d21,d22と同様に、第2の導入管4の導入口4a,4bに垂直な方向として定義される。 In this case, the first gas is also introduced into the introduction directions d11 and d12 in which the angles formed by the reactor 1 with the extending direction D are the angles θ 11 and θ 12 as described above. Similarly, the second gas is also introduced into the introduction directions d21 and d22 in which the angles formed by the reactor 1 with the extending direction D are the angles θ 21 and θ 22 as described above. That is, in this embodiment, the side surface 1c of the reactor 1 is located on the extension lines of the first gas introduction directions d11 and d12 and on the extension lines of the second gas introduction directions d21 and d22. The first gas introduction directions d11 and d12 are defined as directions perpendicular to the introduction ports 3a and 3b of the first introduction pipe 3 as in the bending directions d11 and d12 of the first introduction pipe 3. .. The second gas introduction directions d21 and d22 are defined as directions perpendicular to the introduction ports 4a and 4b of the second introduction pipe 4, similarly to the bending directions d21 and d22 of the second introduction pipe 4.
 このような実施形態においては、得られる窒化ホウ素粒子の粒子径のばらつきを更に低減できる。その理由は定かではないが、第1のガス及び第2のガスのそれぞれが、反応器1の側面1cにぶつかりながら、反応器1の延在方向Dに対して角度をもって反応器1内を進むため、例えば、第1のガス及び第2のガスを反応器1の延在方向Dと平行に導入する場合に比べて、第1のガス及び第2のガスが互いにより均一に混合しやすいことが理由であると推察される。そして、粒子径のばらつきが更に低減された窒化ホウ素粒子を用いると、放熱部材の誘電率及び誘電正接を更に低くすることができる。 In such an embodiment, the variation in the particle size of the obtained boron nitride particles can be further reduced. The reason is not clear, but each of the first gas and the second gas travels in the reactor 1 at an angle with respect to the extending direction D of the reactor 1 while colliding with the side surface 1c of the reactor 1. Therefore, for example, as compared with the case where the first gas and the second gas are introduced in parallel with the extending direction D of the reactor 1, the first gas and the second gas are more likely to be mixed more uniformly with each other. Is presumed to be the reason. By using boron nitride particles in which the variation in particle size is further reduced, the dielectric constant and the dielectric loss tangent of the heat radiating member can be further reduced.
 角度θ11、θ12、θ21及びθ22は、得られる窒化ホウ素粒子の粒子径のばらつきを更に低減できる観点から、それぞれ、好ましくは50°以上、より好ましくは60°以上、更に好ましくは65°以上、特に好ましくは70°以上である。角度θ11、θ12、θ21及びθ22は、それぞれ、90°未満であり、例えば80°以下であってよい。言い換えれば、角度θ11、θ12、θ21及びθ22について、tanθ11、tanθ12、tanθ21及びtanθ22は、得られる窒化ホウ素粒子の粒子径のばらつきを更に低減できる観点から、それぞれ、好ましくは1.2以上、より好ましくは1.7以上、更に好ましくは2.1以上、特に好ましくは2.7以上である。tanθ11、tanθ12、tanθ21及びtanθ22は、それぞれ、例えば11.4以下であってよい。 The angles θ 11 , θ 12 , θ 21 and θ 22 are preferably 50 ° or more, more preferably 60 ° or more, still more preferably 65, respectively, from the viewpoint of further reducing the variation in the particle size of the obtained boron nitride particles. ° or more, particularly preferably 70 ° or more. The angles θ 11 , θ 12 , θ 21 and θ 22 are each less than 90 ° and may be, for example, 80 ° or less. In other words, with respect to the angles θ 11 , θ 12 , θ 21 and θ 22 , tan θ 11 , tan θ 12 , tan θ 21 and tan θ 22 are preferable from the viewpoint of further reducing the variation in the particle size of the obtained boron nitride particles. Is 1.2 or more, more preferably 1.7 or more, still more preferably 2.1 or more, and particularly preferably 2.7 or more. tanθ 11 , tanθ 12 , tanθ 21 and tanθ 22 may be, for example, 11.4 or less, respectively.
 第1のガス及び第2のガスの導入方法は、上記実施形態以外の他の実施形態をとり得る。図3(a)は、他の一実施形態における反応器を第1の導入管側から見た側面図であり、図3(b)は、他の一実施形態における反応器を第2の導入管側から見た側面図である。 The method for introducing the first gas and the second gas may be an embodiment other than the above embodiment. FIG. 3A is a side view of the reactor in another embodiment as viewed from the first introduction tube side, and FIG. 3B is a second introduction of the reactor in another embodiment. It is a side view seen from the pipe side.
 図3(a)に示すように、他の一実施形態では、第1の導入管13の2つの導入口13a,13bから導入される第1のガスのうち、一方の導入口13aから導入される第1のガスのみが、その導入方向d11の延長線上に反応器1の側面1cが位置するように、反応器1の延在方向Dとのなす角度θ11をもって、反応器1内に導入される。このときの角度θ11の好ましい範囲は、上述した角度θ11と同様である。第1の導入管13の他方の導入口13bから導入される第1のガスの導入方向d14は、例えば、反応器1の延在方向Dに略平行な方向(すなわち、第1のガスの導入方向d14と反応器1の延在方向Dとのなす角度が略0°となる方向)であってよい。 As shown in FIG. 3A, in another embodiment, the gas is introduced from one of the first gas introduced from the two inlets 13a and 13b of the first inlet pipe 13. Only the first gas is introduced into the reactor 1 at an angle θ 11 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction direction d11. Will be done. The preferable range of the angle θ 11 at this time is the same as that of the above-mentioned angle θ 11 . The introduction direction d14 of the first gas introduced from the other introduction port 13b of the first introduction pipe 13 is, for example, a direction substantially parallel to the extending direction D of the reactor 1 (that is, introduction of the first gas). The angle formed by the direction d14 and the extending direction D of the reactor 1 may be approximately 0 °).
 図3(b)に示すように、他の一実施形態では、第2の導入管14の2つの導入口14a,14bから導入される第2のガスのうち、一方の導入口14aから導入される第2のガスのみが、その導入方向d21の延長線上に反応器1の側面1cが位置するように、反応器1の延在方向Dとのなす角度θ21をもって、反応器1内に導入される。このときの角度θ21の好ましい範囲は、上述した角度θ21と同様である。第2の導入管14の他方の導入口14bから導入される第2のガスの導入方向d24は、例えば、反応器1の延在方向Dに略平行な方向(すなわち、第2のガスの導入方向d24と反応器1の延在方向Dとのなす角度が略0°となる方向)であってよい。 As shown in FIG. 3B, in another embodiment, the second gas introduced from the two introduction ports 14a and 14b of the second introduction pipe 14 is introduced from one of the introduction ports 14a. Only the second gas is introduced into the reactor 1 at an angle θ 21 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction direction d21. Will be done. The preferable range of the angle θ 21 at this time is the same as that of the above-mentioned angle θ 21 . The introduction direction d24 of the second gas introduced from the other introduction port 14b of the second introduction pipe 14 is, for example, a direction substantially parallel to the extending direction D of the reactor 1 (that is, introduction of the second gas). The angle formed by the direction d24 and the extending direction D of the reactor 1 may be approximately 0 °).
 このような実施形態においても、得られる窒化ホウ素粒子の粒子径のばらつきを更に低減できる。ただし、得られる窒化ホウ素粒子の粒子径のばらつきをより低減できる観点から、図2(a)に示す実施形態のように、第1の導入管3の2つの導入口3a,3bから導入される第1のガスの両方が、その導入方向d11,d12の延長線上に反応器1の側面1cが位置するように、反応器1の延在方向Dとのなす角度θ11,θ12をもって、反応器1内に導入されることがより好ましい。同様に、図2(b)に示す実施形態のように、第2の導入管4の2つの導入口4a,4bから導入される第2のガスの両方が、その導入方向d21,d22の延長線上に反応器1の側面1cが位置するように、反応器1の延在方向Dとのなす角度θ21,θ22をもって、反応器1内に導入されることがより好ましい。 Even in such an embodiment, the variation in the particle size of the obtained boron nitride particles can be further reduced. However, from the viewpoint of further reducing the variation in the particle size of the obtained boron nitride particles, the boron nitride particles are introduced from the two introduction ports 3a and 3b of the first introduction tube 3 as in the embodiment shown in FIG. 2A. Both of the first gases react with angles θ 11 and θ 12 with the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the extension line of the introduction directions d11 and d12. It is more preferable to be introduced into the vessel 1. Similarly, as in the embodiment shown in FIG. 2B, both of the second gases introduced from the two introduction ports 4a and 4b of the second introduction pipe 4 are extensions of the introduction directions d21 and d22. It is more preferable that the reactor 1 is introduced into the reactor 1 with angles θ 21 and θ 22 formed by the extending direction D of the reactor 1 so that the side surface 1c of the reactor 1 is located on the line.
 また、上記の各実施形態では、第1の導入管3(13)の各先端が分岐することにより、2つの導入口3a,3b(13a,13b)が設けられているが、他の一実施形態では、第1の導入管として、別個独立に2つの導入管を反応器1内に挿入し、当該2つの導入管に1つずつ導入口を設けることにより、全体として、2つの導入口から第1のガスを反応器1内に導入してもよい。同様に、上記の各実施形態では、第2の導入管4(14)の各先端が分岐することにより、2つの導入口4a,4b(14a,14b)が設けられているが、他の一実施形態では、第2の導入管として、別個独立に2つの導入管を反応器1内に挿入し、当該2つの導入管に1つずつ導入口を設けることにより、全体として、2つの導入口から第2のガスを反応器1内に導入してもよい。 Further, in each of the above embodiments, two introduction ports 3a, 3b (13a, 13b) are provided by branching each tip of the first introduction pipe 3 (13), but another embodiment. In the embodiment, as the first introduction pipe, two introduction pipes are independently inserted into the reactor 1, and one introduction port is provided for each of the two introduction pipes, so that the two introduction pipes are provided as a whole. The first gas may be introduced into the reactor 1. Similarly, in each of the above embodiments, two introduction ports 4a, 4b (14a, 14b) are provided by branching each tip of the second introduction pipe 4 (14), but the other one. In the embodiment, as the second introduction pipe, two introduction pipes are independently inserted into the reactor 1, and one introduction port is provided for each of the two introduction pipes, so that the two introduction pipes as a whole are provided. The second gas may be introduced into the reactor 1.
 また、上記の各実施形態では、第1のガスを導入するための導入口3a,3b(13a,13b)が2つ設けられているが、第1のガスを導入するための導入口の数は2つ以上であればよく、例えば3つ以上であってもよい。同様に、上記の各実施形態では、第2のガスを導入するための導入口4a,4b(14a,14b)が2つ設けられているが、第2のガスを導入するための導入口の数は2つ以上であればよく、例えば3つ以上であってもよい。これらの場合、3つ以上の導入口から導入される第1のガスのうち、少なくとも1つの導入口から導入される第1のガスが、その導入方向の延長線上に反応器1の側面1cが位置するように導入されることが好ましく、3つ以上の導入口から導入される第2のガスのうち、少なくとも1つの導入口から導入される第2のガスが、その導入方向の延長線上に反応器1の側面1cが位置するように導入されることが好ましい。 Further, in each of the above embodiments, two introduction ports 3a, 3b (13a, 13b) for introducing the first gas are provided, but the number of introduction ports for introducing the first gas. May be 2 or more, and may be 3 or more, for example. Similarly, in each of the above embodiments, two introduction ports 4a, 4b (14a, 14b) for introducing the second gas are provided, but the introduction port for introducing the second gas The number may be two or more, and may be three or more, for example. In these cases, among the first gases introduced from the three or more inlets, the first gas introduced from at least one inlet has the side surface 1c of the reactor 1 on the extension line in the introduction direction. It is preferable that the gas is introduced so as to be located, and among the second gases introduced from the three or more inlets, the second gas introduced from at least one inlet is on an extension of the introduction direction. It is preferable to introduce the reactor 1 so that the side surface 1c is located.
 以上説明した反応工程に続く加熱工程では、反応工程で得られた窒化ホウ素粒子の前駆体を1000℃以上で加熱して窒化ホウ素粒子を得る。加熱工程は、例えば、窒化ホウ素粒子の前駆体を1000~1600℃で加熱して第1の前駆体を得る第1の加熱工程と、第1の前駆体を1000~1600℃で加熱して第2の前駆体を得る第2の加熱工程と、第2の前駆体を1800~2200℃で加熱して窒化ホウ素粒子を得る第3の加熱工程と、を含んでいてよい。この場合、第1の加熱工程の終了後、第2の加熱工程の開始前に、第1の前駆体が置かれる環境温度を常温(10~30℃)まで一旦下げる。他の一実施形態では、加熱工程において、第1の加熱工程を省略して、第2の加熱工程及び第3の加熱工程を行ってもよい。 In the heating step following the reaction step described above, the precursor of the boron nitride particles obtained in the reaction step is heated at 1000 ° C. or higher to obtain boron nitride particles. The heating steps include, for example, a first heating step of heating a precursor of boron nitride particles at 1000 to 1600 ° C. to obtain a first precursor, and a first heating step of heating the first precursor at 1000 to 1600 ° C. It may include a second heating step of obtaining the precursor of 2 and a third heating step of heating the second precursor at 1800 to 2200 ° C. to obtain boron nitride particles. In this case, after the completion of the first heating step and before the start of the second heating step, the environmental temperature at which the first precursor is placed is once lowered to room temperature (10 to 30 ° C.). In another embodiment, in the heating step, the first heating step may be omitted and the second heating step and the third heating step may be performed.
 第1の加熱工程では、反応工程で得られた窒化ホウ素粒子の前駆体を、抵抗加熱炉内に設置された別の反応管(例えばアルミナ管)に入れ、窒素ガス及びアンモニアガスをそれぞれ別々に反応管内に導入する。このとき導入するガスは、アンモニアガスのみであってもよい。窒素ガス及びアンモニアガスの流量は、それぞれ、反応時間が所望の値となるように適宜調整されればよい。例えば、窒素ガス及びアンモニアガスの流量が多いほど、反応時間が短くなる。 In the first heating step, the precursor of the boron nitride particles obtained in the reaction step is placed in another reaction tube (for example, an alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately charged. Introduce into the reaction tube. The gas introduced at this time may be only ammonia gas. The flow rates of nitrogen gas and ammonia gas may be appropriately adjusted so that the reaction time becomes a desired value, respectively. For example, the higher the flow rate of nitrogen gas and ammonia gas, the shorter the reaction time.
 続いて、反応管を1000~1600℃に加熱する。加熱する時間は、例えば、1時間以上であってよく、10時間以下であってよい。これにより、第1の前駆体が得られる。 Subsequently, the reaction tube is heated to 1000 to 1600 ° C. The heating time may be, for example, 1 hour or more and 10 hours or less. This gives the first precursor.
 第1の加熱工程が終了した後、抵抗加熱炉の電源を切り、窒素ガス及びアンモニアガスの導入を停止し、反応管内の温度を常温(10~30℃)まで下げた状態で、第1の前駆体を静置する。静置する時間は、例えば、0.5時間以上であってよく、96時間以下であってよい。 After the first heating step is completed, the power of the resistance heating furnace is turned off, the introduction of nitrogen gas and ammonia gas is stopped, and the temperature in the reaction tube is lowered to room temperature (10 to 30 ° C.). Allow the precursor to stand. The standing time may be, for example, 0.5 hours or more and 96 hours or less.
 第2の加熱工程では、窒素ガス及びアンモニアガスを反応管内に再び導入すると共に、反応管を1000~1600℃に再び加熱する。窒素ガス及びアンモニアガスの流量、並びに加熱する時間の例は、第1の加熱工程で説明したものと同様であってよい。第1の加熱工程の条件と第2の加熱工程の条件は、互いに同一であってよく、互いに異なっていてもよい。これにより、第2の前駆体が得られる。 In the second heating step, nitrogen gas and ammonia gas are reintroduced into the reaction tube, and the reaction tube is heated again to 1000 to 1600 ° C. Examples of the flow rates of nitrogen gas and ammonia gas, and the heating time may be the same as those described in the first heating step. The conditions of the first heating step and the conditions of the second heating step may be the same as each other or may be different from each other. This gives a second precursor.
 第3の加熱工程では、第2の加熱工程で得られた第2の前駆体を窒化ホウ素製ルツボに入れ、誘導加熱炉において、窒素雰囲気下で1800~2200℃に加熱する。加熱する時間は、例えば、0.5時間以上であってよく、10時間以下であってよい。これにより、窒化ホウ素粒子が得られる。 In the third heating step, the second precursor obtained in the second heating step is placed in a boron nitride rutsubo and heated to 1800 to 2200 ° C. in an induction heating furnace under a nitrogen atmosphere. The heating time may be, for example, 0.5 hours or more, and may be 10 hours or less. As a result, boron nitride particles are obtained.
 以上説明した製造方法により、体積基準の粒度分布において、平均粒子径が1μm以下であり、かつ、10%累積粒子径と100%累積粒子径との差が10μm以下である、窒化ホウ素粒子が得られる。すなわち、本発明の他の一実施形態は、体積基準の粒度分布において、平均粒子径が1μm以下であり、かつ、10%累積粒子径(D10)と100%累積粒子径(D100)との差(D100-D10)が10μm以下である、窒化ホウ素粒子である。 By the production method described above, boron nitride particles having an average particle size of 1 μm or less and a difference between 10% cumulative particle size and 100% cumulative particle size of 10 μm or less can be obtained in a volume-based particle size distribution. Be done. That is, in another embodiment of the present invention, in the volume-based particle size distribution, the average particle size is 1 μm or less, and the difference between the 10% cumulative particle size (D10) and the 100% cumulative particle size (D100). (D100-D10) is a boron nitride particle having a size of 10 μm or less.
 窒化ホウ素粒子の平均粒子径は、窒化ホウ素粒子を含む放熱部材(以下、単に「放熱部材」ともいう)の誘電率を低くする観点から、好ましくは、0.9μm以下、0.8μm以下、又は0.7μm以下であってもよい。窒化ホウ素粒子の平均粒子径は、窒化ホウ素粒子と樹脂とを混合した際の粘度増加を抑制できる観点から、好ましくは、0.01μm以上、0.05μm以上、0.1μm以上、0.2μm以上、0.3μm以上、又は0.4μm以上であってもよい。 The average particle size of the boron nitride particles is preferably 0.9 μm or less, 0.8 μm or less, or 0.9 μm or less from the viewpoint of lowering the dielectric constant of the heat radiating member containing the boron nitride particles (hereinafter, also simply referred to as “heat radiating member”). It may be 0.7 μm or less. The average particle size of the boron nitride particles is preferably 0.01 μm or more, 0.05 μm or more, 0.1 μm or more, 0.2 μm or more from the viewpoint of suppressing an increase in viscosity when the boron nitride particles and the resin are mixed. , 0.3 μm or more, or 0.4 μm or more.
 窒化ホウ素粒子のD100-D10は、放熱部材の誘電率を低くする観点から、好ましくは、8μm以下、6μm以下、5μm以下、4μm以下、又は3μm以下であってもよい。窒化ホウ素粒子のD100-D10は、例えば、0.5μm以上、0.8μm以上、又は1μm以上であってもよい。 The boron nitride particles D100-D10 may be preferably 8 μm or less, 6 μm or less, 5 μm or less, 4 μm or less, or 3 μm or less from the viewpoint of lowering the dielectric constant of the heat radiating member. The D100-D10 of the boron nitride particles may be, for example, 0.5 μm or more, 0.8 μm or more, or 1 μm or more.
 窒化ホウ素粒子の平均粒子径及びD100-D10は、以下の手順により測定される。
 窒化ホウ素粒子を分散させる分散媒として蒸留水を用い、分散剤としてヘキサメタリン酸ナトリウムを用い、0.125質量%ヘキサメタリン酸ナトリウム水溶液を調製する。この水溶液中に0.1g/80mLの比率で窒化ホウ素粒子を加え、超音波ホモジナイザー(例えば、日本精機製作所製、商品名:US-300E)により、AMPLITUDE(振幅)80%にて超音波分散を1分30秒間で1回行うことで、窒化ホウ素粒子の分散液を調製する。この分散液を60rpmで撹拌しながら分取し、レーザー回折散乱法粒度分布測定装置(例えば、ベックマンコールター社製、商品名:LS-13 320)により体積基準の粒度分布を測定する。このとき、水の屈折率として1.33を用い、窒化ホウ素粒子の屈折率として1.7を用いる。測定結果から、累積粒度分布の累積値50%の粒径(メジアン径、d50)として平均粒子径を算出すると共に、累積粒度分布の累積値100%の粒子径D100から累積値10%の粒子径D10を差し引いた値として、D100-D10を算出する。
The average particle size and D100-D10 of the boron nitride particles are measured by the following procedure.
Distilled water is used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate is used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed with an ultrasonic homogenizer (for example, manufactured by Nippon Seiki Seisakusho Co., Ltd., trade name: US-300E) at 80% AMPLITUDE (amplitude). A dispersion of boron nitride particles is prepared by performing this once every 1 minute and 30 seconds. This dispersion is separated while stirring at 60 rpm, and the volume-based particle size distribution is measured by a laser diffraction / scattering method particle size distribution measuring device (for example, manufactured by Beckman Coulter, trade name: LS-13 320). At this time, 1.33 is used as the refractive index of water, and 1.7 is used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as the particle size (median diameter, d50) of the cumulative value of the cumulative particle size distribution of 50%, and the particle size of the cumulative value of the cumulative particle size distribution is 100%. D100-D10 is calculated as the value obtained by subtracting D10.
 窒化ホウ素粒子は、放熱部材を作製する際の充填性を向上させ、放熱部材の特性(熱伝導性、誘電率など)を等方的にする観点から、好ましくは、球状、又は球状に近い形状を有している。同様の観点から、窒化ホウ素粒子の平均円形度は、好ましくは、0.8以上、0.82以上、0.84以上、0.86以上、又は0.88以上であってよい。 Boron nitride particles preferably have a spherical shape or a shape close to a spherical shape from the viewpoint of improving the filling property when manufacturing the heat radiating member and making the characteristics (thermal conductivity, dielectric constant, etc.) of the heat radiating member isotropic. have. From the same viewpoint, the average circularity of the boron nitride particles may be preferably 0.8 or more, 0.82 or more, 0.84 or more, 0.86 or more, or 0.88 or more.
 窒化ホウ素粒子の平均円形度は、以下の手順で測定される。
 走査型電子顕微鏡(SEM)を用いて撮影した窒化ホウ素粒子の像(倍率:10,000倍、画像解像度:1280×1024ピクセル)について、画像解析ソフト(例えば、マウンテック社製、商品名:MacView)を用いた画像解析により、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出する。投影面積(S)及び周囲長(L)を用いて、以下に式:
  円形度=4πS/L
に従って円形度を求める。任意に選ばれた100個の窒化ホウ素粒子について求めた円形度の平均値を平均円形度と定義する。
The average circularity of the boron nitride particles is measured by the following procedure.
Image analysis software (for example, manufactured by Mountech, trade name: MacView) for images of boron nitride particles (magnification: 10,000 times, image resolution: 1280 x 1024 pixels) taken with a scanning electron microscope (SEM). The projected area (S) and the peripheral length (L) of the boron nitride particles are calculated by image analysis using. Using the projected area (S) and the perimeter (L), the following equation:
Circularity = 4πS / L 2
Calculate the circularity according to. The average value of the circularity obtained for 100 arbitrarily selected boron nitride particles is defined as the average circularity.
 以上説明した窒化ホウ素粒子は、例えば、放熱部材に好適に用いられる。上記の窒化ホウ素粒子を用いることにより、低誘電率かつ低誘電正接の放熱部材が得られる。窒化ホウ素粒子は、放熱部材に用いられる場合、例えば樹脂と共に混合された樹脂組成物として用いられる。すなわち、本発明の他の一実施形態は、樹脂と、上記の窒化ホウ素粒子とを含有する樹脂組成物である。 The boron nitride particles described above are suitably used for, for example, a heat radiating member. By using the above-mentioned boron nitride particles, a heat radiating member having a low dielectric constant and a low dielectric loss tangent can be obtained. When the boron nitride particles are used for a heat radiating member, they are used, for example, as a resin composition mixed with a resin. That is, another embodiment of the present invention is a resin composition containing the resin and the above-mentioned boron nitride particles.
 上記の窒化ホウ素粒子の含有量は、樹脂組成物の全体積を基準として、樹脂組成物の熱伝導率を向上させ、優れた放熱性能が得られやすい観点から、好ましくは30体積%以上、より好ましくは40体積%以上であり、更に好ましくは50体積%以上であり、成形時に空隙の発生、並びに、絶縁性及び機械強度の低下を抑制できる観点から、好ましくは85体積%以下、より好ましくは80体積%以下、更に好ましくは70体積%以下である。 The content of the above-mentioned boron nitride particles is preferably 30% by volume or more, based on the total volume of the resin composition, from the viewpoint of improving the thermal conductivity of the resin composition and easily obtaining excellent heat dissipation performance. It is preferably 40% by volume or more, more preferably 50% by volume or more, and preferably 85% by volume or less, more preferably 85% by volume or less, from the viewpoint of suppressing the generation of voids during molding and the decrease in insulating property and mechanical strength. It is 80% by volume or less, more preferably 70% by volume or less.
 樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリオレフィン(ポリエチレン等)、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、及びAES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂が挙げられる。 Examples of the resin include epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyolefin (polyethylene, etc.), polyimide, polyamideimide, polyetherimide, and poly. Butylene terephthalate, polyethylene terephthalate, polyphenylene ether, polyphenylene sulfide, total aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber / styrene) ) Resin and AES (acrylonitrile / ethylene / propylene / diene rubber-styrene) resin.
 樹脂の含有量は、樹脂組成物の全体積を基準として、15体積%以上、20体積%以上、又は30体積%以上であってよく、70体積%以下、60体積%以下、又は50体積%以下であってよい。 The content of the resin may be 15% by volume or more, 20% by volume or more, or 30% by volume or more, based on the total volume of the resin composition, and is 70% by volume or less, 60% by volume or less, or 50% by volume. It may be:
 樹脂組成物は、樹脂を硬化させる硬化剤を更に含有していてよい。硬化剤は、樹脂の種類によって適宜選択される。例えば、樹脂がエポキシ樹脂である場合、硬化剤としては、フェノールノボラック化合物、酸無水物、アミノ化合物、及びイミダゾール化合物が挙げられる。硬化剤の含有量は、樹脂100質量部に対して、例えば、0.5質量部以上又は1.0質量部以上であってよく、15質量部以下又は10質量部以下であってよい。 The resin composition may further contain a curing agent that cures the resin. The curing agent is appropriately selected depending on the type of resin. For example, when the resin is an epoxy resin, examples of the curing agent include phenol novolac compounds, acid anhydrides, amino compounds, and imidazole compounds. The content of the curing agent may be, for example, 0.5 parts by mass or more or 1.0 part by mass or more, and may be 15 parts by mass or less or 10 parts by mass or less with respect to 100 parts by mass of the resin.
 樹脂組成物は、上記の窒化ホウ素粒子以外の窒化ホウ素粒子(例えば、鱗片状の一次粒子が凝集してなる塊状窒化ホウ素粒子等の公知の窒化ホウ素粒子)を更に含有してもよい。 The resin composition may further contain boron nitride particles other than the above-mentioned boron nitride particles (for example, known boron nitride particles such as massive boron nitride particles formed by aggregating scaly primary particles).
 以下、実施例により本発明をより具体的に説明する。ただし、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.
[実施例1]
 以下の手順により、窒化ホウ素粒子を作製した。
 まず、反応工程では、抵抗加熱炉内に設置された図1,2に示すような円筒状の反応器(石英管、反応器の長さ:1300mm、反応器の内径:75mm、抵抗加熱炉内に位置する部分の長さ:800mm)を加熱して、1150℃まで昇温した。一方、窒素ガスをホウ酸トリメチルに通過させることにより得た第1のガスを第1の導入管から反応器内に導入した。他方、アンモニアガスを反応器内に直接導入した。
[Example 1]
Boron nitride particles were prepared by the following procedure.
First, in the reaction step, a cylindrical reactor (quartz tube, reactor length: 1300 mm, reactor inner diameter: 75 mm, inside the resistance heating furnace) as shown in FIGS. 1 and 2 installed in the resistance heating furnace. The length of the portion located in (800 mm) was heated to raise the temperature to 1150 ° C. On the other hand, the first gas obtained by passing nitrogen gas through trimethyl borate was introduced into the reactor from the first introduction tube. On the other hand, ammonia gas was introduced directly into the reactor.
 第1の導入管としては、反応器の内部空間内において、反応器の一端面からの距離が25mmの位置で、反応器の延在方向とのなす角度がそれぞれθ11及びθ12となる2つの方向へ向かって分岐したものを設けた。言い換えれば、第1の導入ガスの導入方向と反応器の延在方向とのなす角がそれぞれθ11及びθ12となるように、2つの導入口のそれぞれから第1のガスを導入した。第2の導入管としては、反応器の内部空間内において、反応器の一端面からの距離が25mmの位置で、反応器の延在方向とのなす角度がそれぞれθ21及びθ22となる2つの方向へ向かって分岐したものを設けた。言い換えれば、第2の導入ガスの導入方向と反応器の延在方向とのなす角がそれぞれθ21及びθ22となるように、2つの導入口のそれぞれから第2のガスを導入した。なお、θ11、θ12、θ21及びθ22は、それぞれtanθ11、tanθ12、tanθ21及びtanθ22が表1に示す値となるような角度とした。 As the first introduction tube, in the internal space of the reactor, the distance from one end surface of the reactor is 25 mm, and the angles formed with the extending direction of the reactor are θ 11 and θ 12 , respectively. A branch was provided in one direction. In other words, the first gas was introduced from each of the two introduction ports so that the angles formed by the introduction direction of the first introduction gas and the extension direction of the reactor were θ 11 and θ 12, respectively. As the second introduction tube, in the internal space of the reactor, the distance from one end surface of the reactor is 25 mm, and the angles formed by the extending direction of the reactor are θ 21 and θ 22 , respectively. A branch was provided in one direction. In other words, the second gas was introduced from each of the two introduction ports so that the angles formed by the introduction direction of the second introduction gas and the extension direction of the reactor were θ 21 and θ 22, respectively. The angles of θ 11 , θ 12 , θ 21 and θ 22 were set so that tan θ 11 , tan θ 12 , tan θ 21 and tan θ 22 were the values shown in Table 1, respectively.
 ホウ酸トリメチルの導入量に対するアンモニアの導入量のモル比(アンモニア/ホウ酸トリメチル)は、4.5とした。これにより、ホウ酸トリメチルとアンモニアとを反応させて、窒化ホウ素粒子の前駆体(白色粉末)を得た。なお、反応時間は10秒間とした。 The molar ratio of the amount of ammonia introduced to the amount of trimethyl borate introduced (ammonia / trimethyl borate) was 4.5. As a result, trimethyl borate was reacted with ammonia to obtain a precursor (white powder) of boron nitride particles. The reaction time was 10 seconds.
 続いて、加熱工程では、反応工程で得られた窒化ホウ素粒子の前駆体を、抵抗加熱炉内に設置された別の反応管(アルミナ管)に入れ、窒素ガス及びアンモニアガスをそれぞれ別々に10L/分及び15L/分の流量で反応管内に導入した。そして、反応管を1500℃で2.5時間加熱した。これにより、第1の前駆体を得た(第1の加熱工程)。 Subsequently, in the heating step, the precursor of the boron nitride particles obtained in the reaction step is placed in another reaction tube (alumina tube) installed in the resistance heating furnace, and nitrogen gas and ammonia gas are separately charged at 10 L. It was introduced into the reaction tube at a flow rate of / min and 15 L / min. Then, the reaction tube was heated at 1500 ° C. for 2.5 hours. As a result, a first precursor was obtained (first heating step).
 続いて、抵抗加熱炉の電源を切り、窒素ガス及びアンモニアガスの導入を停止し、反応管内の温度を25℃まで下げた状態で、第1の前駆体を2時間静置した。 Subsequently, the power of the resistance heating furnace was turned off, the introduction of nitrogen gas and ammonia gas was stopped, and the first precursor was allowed to stand for 2 hours in a state where the temperature in the reaction tube was lowered to 25 ° C.
 続いて、第1の加熱工程と同じ条件で窒素ガス及びアンモニアガスの導入及び反応管内の加熱を行った。これにより、第2の前駆体を得た(第2の加熱工程)。 Subsequently, nitrogen gas and ammonia gas were introduced and the inside of the reaction tube was heated under the same conditions as in the first heating step. As a result, a second precursor was obtained (second heating step).
 続いて、第2の加熱工程で得られた第2の前駆体を窒化ホウ素製ルツボに入れ、誘導加熱炉において、窒素雰囲気下、2000℃で5時間加熱した(第3の加熱工程)。これにより、窒化ホウ素粒子を得た。 Subsequently, the second precursor obtained in the second heating step was placed in a boron nitride rutsubo and heated in an induction heating furnace at 2000 ° C. for 5 hours in a nitrogen atmosphere (third heating step). As a result, boron nitride particles were obtained.
[実施例2]
 第1の導入管及び第2の導入管の構成をそれぞれ図3(a)及び(b)に示すような構成に変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。すなわち、2つの導入口のうち一方の導入口から導入される第1のガスのみ、その導入方向の延長線上に反応器の側面が位置するように導入し、他方の導入口から導入される第1のガスについては、反応器の延在方向に平行な方向(第1のガスの導入方向と反応器の延在方向とのなす角度が0°となる方向)に導入した(第2のガスについても同様)。
[Example 2]
Boron nitride particles were produced in the same manner as in Example 1 except that the configurations of the first introduction pipe and the second introduction pipe were changed to the configurations shown in FIGS. 3 (a) and 3 (b), respectively. That is, only the first gas introduced from one of the two inlets is introduced so that the side surface of the reactor is located on the extension line in the introduction direction, and is introduced from the other inlet. The gas No. 1 was introduced in a direction parallel to the extending direction of the reactor (the direction in which the angle between the introduction direction of the first gas and the extending direction of the reactor is 0 °) (second gas). The same applies to).
[実施例3]
 第1のガスの導入方向及び第2のガスの導入方向を、tanθ11、tanθ12、tanθ21及びtanθ22が表1に示す値となるような角度θ11、θ12、θ21及びθ22にそれぞれ変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。
[Example 3]
The angles θ 11 , θ 12 , θ 21 and θ 22 such that tan θ 11 , tan θ 12 , tan θ 21 and tan θ 22 are the values shown in Table 1 for the introduction direction of the first gas and the introduction direction of the second gas. Boron nitride particles were produced in the same manner as in Example 1 except that they were changed to.
[比較例1]
 第1の導入管の構成を図4(a)(反応器を第1の導入管側から見た側面図)に示すような構成に変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。すなわち、第1の導入管として、1つの導入口103aのみを有する第1の導入管103を用い、当該導入口103aから、反応器1の延在方向Dに平行な方向(第1のガスの導入方向と反応器の延在方向とのなす角度が0°となる方向)d101に、反応器1の略中心を進むように、第1のガスを導入した。
[Comparative Example 1]
Boron nitride particles in the same manner as in Example 1 except that the configuration of the first introduction tube was changed to the configuration shown in FIG. 4 (a) (side view of the reactor viewed from the first introduction tube side). Was produced. That is, as the first introduction pipe, the first introduction pipe 103 having only one introduction port 103a is used, and the direction parallel to the extending direction D of the reactor 1 from the introduction port 103a (of the first gas). The first gas was introduced into d101 (the direction in which the angle formed by the introduction direction and the extending direction of the reactor is 0 °) so as to advance substantially in the center of the reactor 1.
[比較例2]
 第1の導入管の構成を図4(b)(反応器を第1の導入管側から見た側面図)に示すような構成に変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。すなわち、第1の導入管として、1つの導入口113aのみを有する第1の導入管113を用い、当該導入口113aから、反応器1の延在方向Dに平行な方向(第1のガスの導入方向と反応器の延在方向とのなす角度が0°となる方向)d111に、反応器1の中心から側面沿いにずれた位置を進むように、第1のガスを導入した。
[Comparative Example 2]
Boron nitride particles in the same manner as in Example 1 except that the configuration of the first introduction tube was changed to the configuration shown in FIG. 4 (b) (side view of the reactor viewed from the first introduction tube side). Was produced. That is, as the first introduction pipe, the first introduction pipe 113 having only one introduction port 113a is used, and the direction parallel to the extending direction D of the reactor 1 from the introduction port 113a (of the first gas). The first gas was introduced into d111 (the direction in which the angle formed by the introduction direction and the extending direction of the reactor is 0 °) so as to advance at a position deviated from the center of the reactor 1 along the side surface.
[比較例3]
 第2の導入管の構成を図5(a)(反応器を第2の導入管側から見た側面図)に示すような構成に変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。すなわち、第2の導入管として、1つの導入口104aのみを有する第2の導入管104を用い、当該導入口104aから、反応器1の延在方向Dに平行な方向(第2のガスの導入方向と反応器の延在方向とのなす角度が0°となる方向)d102に、反応器1の略中心を進むように、第2のガスを導入した。
[Comparative Example 3]
Boron nitride particles in the same manner as in Example 1 except that the configuration of the second introduction tube was changed to the configuration shown in FIG. 5 (a) (side view of the reactor viewed from the side of the second introduction tube). Was produced. That is, as the second introduction pipe, the second introduction pipe 104 having only one introduction port 104a is used, and the direction parallel to the extending direction D of the reactor 1 from the introduction port 104a (of the second gas). A second gas was introduced at d102 (the direction in which the angle formed by the introduction direction and the extending direction of the reactor is 0 °) so as to advance substantially in the center of the reactor 1.
[比較例4]
 第2の導入管の構成を図5(b)(反応器を第2の導入管側から見た側面図)に示すような構成に変更した以外は、実施例1と同様にして窒化ホウ素粒子を作製した。すなわち、第2の導入管として、1つの導入口114aのみを有する第2の導入管114を用い、当該導入口114aから、反応器1の延在方向Dに平行な方向(第2のガスの導入方向と反応器の延在方向とのなす角度が0°となる方向)d112に、反応器1の中心から側面沿いにずれた位置を進むように、第2のガスを導入した。
[Comparative Example 4]
Boron nitride particles in the same manner as in Example 1 except that the configuration of the second introduction tube was changed to the configuration shown in FIG. 5 (b) (side view of the reactor viewed from the side of the second introduction tube). Was produced. That is, as the second introduction tube, a second introduction tube 114 having only one introduction port 114a is used, and the direction parallel to the extending direction D of the reactor 1 from the introduction port 114a (of the second gas). A second gas was introduced into d112 (the direction in which the angle formed by the introduction direction and the extending direction of the reactor is 0 °) so as to advance at a position deviated from the center of the reactor 1 along the side surface.
 得られた各窒化ホウ素粒子について、平均粒子径、10%累積粒子径と100%累積粒子径との差(D100-D10)、及び平均円形度を以下の方法によりそれぞれ測定した。結果を表1に示す。 For each of the obtained boron nitride particles, the average particle size, the difference between the 10% cumulative particle size and the 100% cumulative particle size (D100-D10), and the average circularity were measured by the following methods. The results are shown in Table 1.
(平均粒子径及びD100-D10)
 窒化ホウ素粒子を分散させる分散媒として蒸留水を用い、分散剤としてヘキサメタリン酸ナトリウムを用い、0.125質量%ヘキサメタリン酸ナトリウム水溶液を調製した。この水溶液中に0.1g/80mLの比率で窒化ホウ素粒子を加え、超音波ホモジナイザー(日本精機製作所製、商品名:US-300Eを使用)により、AMPLITUDE(振幅)80%にて超音波分散を1分30秒間で1回行うことで、窒化ホウ素粒子の分散液を調製した。この分散液を60rpmで撹拌しながら分取し、レーザー回折散乱法粒度分布測定装置(ベックマンコールター社製、商品名:LS-13 320)により体積基準の粒度分布を測定した。このとき、水の屈折率として1.33を用い、窒化ホウ素粒子の屈折率として1.7を用いた。測定結果から、累積粒度分布の累積値50%の粒径(メジアン径、d50)として平均粒子径を算出すると共に、累積粒度分布の累積値100%の粒子径D100から累積値10%の粒子径D10を差し引いた値として、D100-D10を算出した。
(Average particle size and D100-D10)
Distilled water was used as a dispersion medium for dispersing the boron nitride particles, and sodium hexametaphosphate was used as a dispersant to prepare a 0.125 mass% sodium hexametaphosphate aqueous solution. Boron nitride particles are added to this aqueous solution at a ratio of 0.1 g / 80 mL, and ultrasonic dispersion is performed with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, trade name: US-300E) at 80% AMPLITUDE (amplitude). A dispersion of boron nitride particles was prepared by performing this once every 1 minute and 30 seconds. This dispersion was separated while stirring at 60 rpm, and the volume-based particle size distribution was measured with a laser diffraction / scattering method particle size distribution measuring device (manufactured by Beckman Coulter, trade name: LS-13 320). At this time, 1.33 was used as the refractive index of water, and 1.7 was used as the refractive index of the boron nitride particles. From the measurement results, the average particle size is calculated as the particle size (median diameter, d50) of the cumulative value of the cumulative particle size distribution of 50%, and the particle size of the cumulative value of the cumulative particle size distribution is 100%. D100-D10 was calculated as the value obtained by subtracting D10.
(平均円形度)
 まず、走査型電子顕微鏡(SEM)を用いて撮影した窒化ホウ素粒子の像(倍率:10,000倍、画像解像度:1280×1024ピクセル)について、画像解析ソフト(例えば、マウンテック社製、商品名:MacView)を用いた画像解析により、窒化ホウ素粒子の投影面積(S)及び周囲長(L)を算出した。次に、投影面積(S)及び周囲長(L)を用いて、以下に式:
  円形度=4πS/L
に従って円形度を求めた。任意に選ばれた100個の窒化ホウ素粒子について求めた円形度の平均値を平均円形度として算出した。
(Average circularity)
First, for an image of boron nitride particles (magnification: 10,000 times, image resolution: 1280 x 1024 pixels) taken with a scanning electron microscope (SEM), image analysis software (for example, manufactured by Mountech Co., Ltd., trade name: The projected area (S) and peripheral length (L) of the boron nitride particles were calculated by image analysis using a MacView). Next, using the projected area (S) and the perimeter (L), the following equation:
Circularity = 4πS / L 2
The circularity was calculated according to. The average value of the circularity obtained for 100 arbitrarily selected boron nitride particles was calculated as the average circularity.
 得られた各窒化ホウ素粒子を用いたときの誘電率及び誘電正接を以下の方法により測定した。結果を表1に示す。
 窒化ホウ素粒子が20体積%となる分量で、窒化ホウ素粒子とポリエチレン(日本ポリエチレン(株)製、商品名「ノバテックHY540」)とを混錬し、シート成形を行って、0.2mm厚のシートを得た。混錬及びシート成形は、二軸押し出し機を用い、温度180℃の条件で行った。空洞共振器法の測定装置を用いて、周波数36GHz、温度25℃の条件で得られたシートの測定を行い、シートの誘電率及び誘電正接を求めた。
The permittivity and dielectric loss tangent when each of the obtained boron nitride particles was used was measured by the following method. The results are shown in Table 1.
Boron nitride particles are kneaded with polyethylene (manufactured by Japan Polyethylene Corporation, trade name "Novatec HY540") in an amount that makes the amount of boron nitride particles 20% by volume, and sheet molding is performed to obtain a 0.2 mm thick sheet. Got Kneading and sheet forming were carried out using a twin-screw extruder under the condition of a temperature of 180 ° C. Using a measuring device of the cavity resonator method, the sheet obtained under the conditions of a frequency of 36 GHz and a temperature of 25 ° C. was measured, and the dielectric constant and the dielectric loss tangent of the sheet were determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1…反応器、1a…反応器の一端面、1b…反応器の他端面、1c…反応器の側面、2…保持部材、3,13…第1の導入管、3a,3b,13a,13b…第1の導入管の導入口、4,14…第2の導入管、4a,4b,14a,14b…第2の導入管の導入口、D…反応器の延在方向、S…反応器の内部空間、d11,d12,d13,d14…第1のガスの導入方向、d21,d22,d23,d24…第2のガスの導入方向。 1 ... Reactor, 1a ... One end surface of the reactor, 1b ... The other end surface of the reactor, 1c ... Side surface of the reactor, 2 ... Holding member, 3, 13 ... First introduction tube, 3a, 3b, 13a, 13b ... First introduction tube introduction port, 4, 14 ... Second introduction tube, 4a, 4b, 14a, 14b ... Second introduction tube introduction port, D ... Reactor extension direction, S ... Reactor Internal space, d11, d12, d13, d14 ... First gas introduction direction, d21, d22, d23, d24 ... Second gas introduction direction.

Claims (6)

  1.  ホウ酸エステルを含む第1のガスと、アンモニアを含む第2のガスとを、筒状の反応器の一端面からそれぞれ別個に反応器内に導入し、前記反応器内において、前記ホウ酸エステル及び前記アンモニアを750℃以上で反応させて窒化ホウ素粒子の前駆体を得る反応工程と、
     前記窒化ホウ素粒子の前駆体を1000℃以上で加熱して窒化ホウ素粒子を得る加熱工程と、
    を備える窒化ホウ素粒子の製造方法であって、
     前記反応工程において、前記第1のガスを2つ以上の導入口から前記反応器内に導入すると共に、前記第2のガスを2つ以上の導入口から前記反応器内に導入する、製造方法。
    A first gas containing a borate ester and a second gas containing ammonia are separately introduced into the reactor from one end surface of the tubular reactor, and the borate ester is introduced in the reactor. And the reaction step of reacting the ammonia at 750 ° C. or higher to obtain a precursor of boron nitride particles.
    A heating step of heating the precursor of the boron nitride particles at 1000 ° C. or higher to obtain boron nitride particles,
    A method for producing boron nitride particles comprising
    In the reaction step, a production method in which the first gas is introduced into the reactor from two or more inlets and the second gas is introduced into the reactor from two or more inlets. ..
  2.  前記2つ以上の導入口から導入される前記第1のガスのうち、少なくとも1つの導入口から導入される前記第1のガスが、その導入方向の延長線上に前記反応器の側面が位置するように導入される、請求項1に記載の製造方法。 Of the first gas introduced from the two or more inlets, the first gas introduced from at least one inlet is located on the side surface of the reactor on an extension line in the introduction direction. The manufacturing method according to claim 1, which is introduced as described above.
  3.  前記2つ以上の導入口から導入される前記第2のガスのうち、少なくとも1つの導入口から導入される前記第2のガスが、その導入方向の延長線上に前記反応器の側面が位置するように導入される、請求項1又は2に記載の製造方法。 Of the second gas introduced from the two or more inlets, the second gas introduced from at least one inlet is located on the side surface of the reactor on an extension line in the introduction direction. The manufacturing method according to claim 1 or 2, which is introduced as described above.
  4.  体積基準の粒度分布において、平均粒子径が1μm以下であり、かつ、10%累積粒子径と100%累積粒子径との差が10μm以下である、窒化ホウ素粒子。 Boron nitride particles having an average particle size of 1 μm or less and a difference between the 10% cumulative particle size and the 100% cumulative particle size of 10 μm or less in the volume-based particle size distribution.
  5.  平均円形度が0.8以上である、請求項4に記載の窒化ホウ素粒子。 The boron nitride particles according to claim 4, which have an average circularity of 0.8 or more.
  6.  樹脂と、請求項4又は5に記載の窒化ホウ素粒子と、を含有する樹脂組成物。 A resin composition containing a resin and the boron nitride particles according to claim 4 or 5.
PCT/JP2020/043468 2019-12-06 2020-11-20 Boron nitride particles, and method for producing same WO2021111910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021562574A JPWO2021111910A1 (en) 2019-12-06 2020-11-20
CN202080077812.XA CN114728789B (en) 2019-12-06 2020-11-20 Boron nitride particles and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-221273 2019-12-06
JP2019221273 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021111910A1 true WO2021111910A1 (en) 2021-06-10

Family

ID=76222208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043468 WO2021111910A1 (en) 2019-12-06 2020-11-20 Boron nitride particles, and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2021111910A1 (en)
TW (1) TW202126572A (en)
WO (1) WO2021111910A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469941A (en) * 1967-09-05 1969-09-30 Green Refractories Ultrafine boron nitride and process of making same
JP2008038163A (en) * 2006-08-01 2008-02-21 Napura:Kk Nano spherical particle having composite structure, powder and method for producing the same
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
JP2016531972A (en) * 2013-07-08 2016-10-13 ユニヴェルシテ ポール サバティエ トゥールーズ トロワUniversite Paul Sabatier Toulouse Iii Electrically insulating composite material, method for producing the material, and method of using the material as an electrical insulator
CN107161960A (en) * 2017-06-06 2017-09-15 哈尔滨工业大学深圳研究生院 A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder
JP2019085446A (en) * 2017-11-01 2019-06-06 デンカ株式会社 Boron nitride-containing resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469941A (en) * 1967-09-05 1969-09-30 Green Refractories Ultrafine boron nitride and process of making same
JP2008038163A (en) * 2006-08-01 2008-02-21 Napura:Kk Nano spherical particle having composite structure, powder and method for producing the same
JP2010180066A (en) * 2009-02-03 2010-08-19 National Institute For Materials Science Boron nitride spherical nanoparticle and method of producing the same
JP2016531972A (en) * 2013-07-08 2016-10-13 ユニヴェルシテ ポール サバティエ トゥールーズ トロワUniversite Paul Sabatier Toulouse Iii Electrically insulating composite material, method for producing the material, and method of using the material as an electrical insulator
CN107161960A (en) * 2017-06-06 2017-09-15 哈尔滨工业大学深圳研究生院 A kind of high pressure vapor prepares the method and apparatus of boron nitride spherical powder
JP2019085446A (en) * 2017-11-01 2019-06-06 デンカ株式会社 Boron nitride-containing resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, C. ET AL.: "Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles", ADVANCED FUNCTIONAL MATERIALS, vol. 18, 30 October 2008 (2008-10-30), pages 3653 - 3661, XP001517179, DOI: 10.1002/adfm.200800493 *

Also Published As

Publication number Publication date
TW202126572A (en) 2021-07-16
CN114728789A (en) 2022-07-08
JPWO2021111910A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
Sun et al. Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding
JP6793282B1 (en) Spherical silica powder
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
CN110730607B (en) Heat-conducting wave-absorbing insulating sheet with high heat-conducting performance and preparation method thereof
JP2019085446A (en) Boron nitride-containing resin composition
CN110240130A (en) The method for preparing hexagonal boron nitride by templating
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
Yu et al. Enhancement of the heat conduction performance of boron nitride/cellulosic fibre insulating composites
CN109982965A (en) The method for preparing expansion hexagonal boron nitride by template
WO2021111910A1 (en) Boron nitride particles, and method for producing same
Ryu et al. Quasi-isotropic thermal conduction in percolation networks: Using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites
JP2020132827A (en) Filler and production method of the same, and high heat-conducting insulation material and production method of the same
WO2021100816A1 (en) Boron nitride particles and resin composition
WO2021111909A1 (en) Boron nitride particles and method for manufacturing same
Luo et al. Surface modification of h‐BN and preparation of h‐BN/PEI thermally conductive flexible films
Wang et al. Investigation of PTFE-based ultra-low dielectric constant composite substrates with hollow silica ceramics
CN114728789B (en) Boron nitride particles and method for producing same
Wang et al. Direct ink writing of thermoresistant, lightweight composite polyimide honeycombs with tunable X-band electromagnetic wave absorption properties
Yang et al. Ultra-high dielectric constant and thermal conductivity SrTiO3@ VTMS/PB composite for microwave substrate application
WO2021100808A1 (en) Boron nitride particles and resin composition
WO2021100817A1 (en) Boron nitride particles and resin composition
WO2021193765A1 (en) Boron nitride particles and method for producing same, and resin composition and receptor containing said boron nitride particles
JP2020167667A (en) 5g communication antenna array, antenna structure, noise suppression heat conduction sheet, and heat conduction sheet
Li et al. 0D surface modification and 3D silicon carbide network construction for improving the thermal conductivity of epoxy resins
CN112243534A (en) Semiconductor device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20896990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20896990

Country of ref document: EP

Kind code of ref document: A1