WO2021193715A1 - Vehicular braking device - Google Patents

Vehicular braking device Download PDF

Info

Publication number
WO2021193715A1
WO2021193715A1 PCT/JP2021/012237 JP2021012237W WO2021193715A1 WO 2021193715 A1 WO2021193715 A1 WO 2021193715A1 JP 2021012237 W JP2021012237 W JP 2021012237W WO 2021193715 A1 WO2021193715 A1 WO 2021193715A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
differential pressure
brake
liquid passage
hydraulic pressure
Prior art date
Application number
PCT/JP2021/012237
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 余語
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2021193715A1 publication Critical patent/WO2021193715A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force

Definitions

  • the present invention relates to a vehicle braking device.
  • a vehicle braking device including a master cylinder, an electric cylinder, and an ESC actuator is known.
  • This vehicle braking device is configured to be able to output hydraulic pressure to two systems by a master cylinder and an ESC actuator.
  • Japanese Patent No. 6202741 also discloses a vehicle braking device including a master cylinder, an electric cylinder, and an ESC actuator. In this device, the master cylinder is connected to only one system.
  • the inventor newly focused on the fact that the hydraulic pressure input to each system of the ESC actuator can change depending on the state of the vehicle braking device (for example, the normal state or the failed state). If the target differential pressure of the differential pressure control valve is set to the same value in both systems even though the input hydraulic pressure of each system is different, a difference in wheel pressure occurs between the systems. The unintentional difference in wheel pressure between the systems of the vehicle braking device leads to a decrease in the behavior stability of the vehicle depending on the arrangement of the systems.
  • An object of the present invention is to provide a vehicle braking device capable of appropriately adjusting the wheel pressure of each system even when the state of the device changes.
  • the vehicle braking device of the present invention is connected to a first pressure supply unit capable of supplying a first brake pressure and the first pressure supply unit via a first liquid passage, and is input from the first liquid passage.
  • a first hydraulic pressure output unit that generates a first differential pressure between the hydraulic pressure and the hydraulic pressure of the first wheel cylinder, and a second brake pressure that can supply a second brake pressure independently of the first pressure supply unit.
  • a second differential pressure is applied between the pressure supply unit and the second pressure supply unit via the second liquid passage, and the hydraulic pressure input from the second liquid passage and the hydraulic pressure of the second wheel cylinder.
  • a communication control valve which is an electromagnetic valve provided in a communication passage connecting the second hydraulic pressure output unit to be generated and the first liquid passage and the second liquid passage, and opens and closes the communication passage, and the first.
  • a cut valve which is an electromagnetic valve provided on the first pressure supply portion side of the connection portion between the first liquid passage and the communication passage, and a first differential pressure target value.
  • the setting unit includes a target differential pressure and a setting unit for setting a second target differential pressure which is a target value of the second differential pressure.
  • the communication control valve is closed and the cut valve is opened.
  • the first target differential pressure and the second target differential pressure are set based on the first brake pressure and the second brake pressure in the valved specific state.
  • the setting unit can set the first target differential pressure and the second target differential pressure after recognizing the difference between the first brake pressure and the second brake pressure.
  • the wheel pressures of both systems can be set to the same level (for example, the same pressure).
  • the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
  • the vehicle braking device 1 of the first embodiment includes an upstream unit 11, an actuator 3 constituting the downstream unit, a first brake ECU 901, a second brake ECU 902, a power supply device 903, and the like. It has.
  • the upstream unit 11 is configured to be able to supply the basal hydraulic pressure to the downstream unit.
  • the upstream unit 11 includes an electric cylinder (corresponding to the "second pressure supply unit") 2, a master cylinder (corresponding to the "first pressure supply unit”) 4, a first liquid passage 51, and a second liquid passage. It includes 52, a communication passage 53, a brake fluid supply path 54, a communication control valve 61, and a master cut valve (corresponding to a “cut valve”) 62.
  • the first brake ECU 901 controls at least the upstream unit 11.
  • the second brake ECU 902 controls at least the actuator 3.
  • the first brake ECU 901 and the second brake ECU 902 constitute a control device. Note that FIG. 1 shows a non-energized state of the vehicle braking device 1.
  • the electric cylinder 2 is a pressurizing unit capable of supplying brake pressure to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84.
  • the hydraulic pressure supplied by the master cylinder 4 (master pressure) corresponds to the first brake pressure
  • the hydraulic pressure supplied by the electric cylinder 2 corresponds to the second brake pressure.
  • the output hydraulic pressure of the electric cylinder 2 is referred to as a second brake pressure.
  • the electric cylinder 2 is configured to be able to supply a second brake pressure independently of the master cylinder 4.
  • the first wheel cylinders 81 and 82 are the wheel cylinders of the first system
  • the second wheel cylinders 83 and 84 are the wheel cylinders of the second system.
  • the first system is a system in which the brake fluid is supplied through the first liquid passage 51
  • the second system is a system in which the brake fluid is supplied through the second liquid passage 52.
  • the first wheel cylinder 81 is provided on the right front wheel
  • the first wheel cylinder 82 is provided on the left rear wheel
  • the second wheel cylinder 83 is provided on the left front wheel
  • the second wheel cylinder 84 is on the right. It is provided on the rear wheel. That is, the arrangement of the system of the first embodiment is a cross pipe (X pipe).
  • the electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, an output chamber 24, and an urging member 25.
  • the electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts a rotary motion into a linear motion.
  • the electric cylinder 2 is a single type electric cylinder in which a single output chamber 24 is formed in the cylinder 21.
  • the piston 23 slides in the cylinder 21 in the axial direction by driving the electric motor 22.
  • the piston 23 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction. That is, the piston 23 includes a cylindrical portion that forms an opening and a cylindrical portion that forms a bottom surface (pressure receiving surface).
  • the output chamber 24 is partitioned by the cylinder 21 and the piston 23, and the volume changes due to the movement of the piston 23.
  • the output chamber 24 is connected to the reservoir 45 and the actuator 3.
  • the piston 23 slides in a sliding region composed of a communication region for communicating between the output chamber 24 and the reservoir 45 and a blocking region for blocking between the output chamber 24 and the reservoir 45.
  • the communication area includes the initial position of the piston 23 that maximizes the volume of the output chamber 24.
  • the blocking region is larger than the communication region in the axial direction.
  • the urging member 25 is a spring that is arranged in the output chamber 24 and urges the piston 23 to the other side in the axial direction (toward the initial position).
  • the electric motor 22 is stopped, and the urging member 25 returns the piston 23 to the initial position.
  • the actuator 3 has a first hydraulic pressure output unit 31 configured to be able to regulate the pressure of the first wheel cylinders 81 and 82, and a second hydraulic pressure output unit 32 configured to be able to adjust the pressure of the second wheel cylinders 83 and 84. It is a pressure adjusting unit (downstream unit) including.
  • the actuator 3 is connected to the electric cylinder 2.
  • the first hydraulic pressure output unit 31 generates a first differential pressure between the hydraulic pressure input from the first liquid passage 51 and the hydraulic pressures of the first wheel cylinders 81 and 82, so that the first wheel cylinder 81, It is configured to pressurize 82.
  • the second hydraulic pressure output unit 32 generates a second differential pressure between the hydraulic pressure input from the second hydraulic passage 52 and the hydraulic pressures of the second wheel cylinders 83 and 84, so that the second wheel cylinder 83, It is configured to pressurize 84.
  • the actuator 3 is a so-called ESC actuator, and can independently regulate the hydraulic pressure of each wheel cylinder 81 to 84.
  • the actuator 3 executes, for example, anti-skid control (also referred to as ABS control), electronic stability control (ESC), traction control, or the like according to the control of the second brake ECU 902.
  • the first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit of the actuator 3. The configuration of the actuator 3 will be described later.
  • the master cylinder 4 is a pressure supply unit capable of supplying the master pressure (hydraulic pressure of the master chamber 41a) to the first hydraulic pressure output unit 31 via the first liquid passage 51. More specifically, the master cylinder 4 is connected to the reservoir 45 and mechanically supplies the brake fluid to the first hydraulic pressure output unit 31 of the actuator 3 according to the operating amount (stroke and / or pedaling force) of the brake operating member Z. It is a unit to do.
  • the master cylinder 4 is configured to be able to pressurize the first wheel cylinders 81 and 82 via the first hydraulic pressure output unit 31.
  • the master cylinder 4 includes a cylinder 41 and a piston 42.
  • the cylinder 41 is a bottomed cylindrical member.
  • An input port 411 and an output port 412 are formed in the cylinder 41.
  • the piston 42 is a piston member that slides in the cylinder 41 according to the amount of operation of the brake operating member Z.
  • the piston 42 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction.
  • a single master chamber 41a is formed in the cylinder 41 by the piston 42.
  • one master chamber 41a is formed by the cylinder 41 and the piston 42.
  • the volume of the master chamber 41a changes with the movement of the piston 42.
  • the master chamber 41a is provided with an urging member 41b that urges the piston 42 toward the initial position (on the other side in the axial direction).
  • the urging member 41b returns the piston 42 to the initial position.
  • the master cylinder 4 of the first embodiment is a single type master cylinder.
  • the output port 412 communicates the master chamber 41a with the first liquid passage 51.
  • the input port 411 communicates the master chamber 41a and the reservoir 45 with the through hole 421 formed in the cylindrical portion of the piston 42.
  • the input port 411 and the through hole 421 overlap, and the master chamber 41a and the reservoir 45 communicate with each other.
  • the piston 42 moves by a predetermined amount (overlap distance) from the initial position to one side in the axial direction, the connection between the master chamber 41a and the reservoir 45 is cut off.
  • a stroke simulator 43 is connected to the master cylinder 4 via a simulator cut valve 44.
  • the stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake operating member Z.
  • the stroke simulator 43 is composed of, for example, a cylinder, a piston, and an urging member.
  • the stroke simulator 43 and the output port 412 of the cylinder 41 are connected by a liquid passage 43a.
  • the simulator cut valve 44 is a normally closed type solenoid valve provided in the liquid passage 43a.
  • the first liquid passage 51 connects the master chamber 41a and the first hydraulic pressure output unit 31.
  • the second liquid passage 52 connects the electric cylinder 2 and the second hydraulic pressure output unit 32.
  • the communication passage 53 connects the first liquid passage 51 and the second liquid passage 52.
  • the communication control valve 61 is a normally closed type solenoid valve provided in the communication passage 53.
  • the communication control valve 61 permits or prohibits the supply of the brake fluid to the first hydraulic pressure output unit 31 by the electric cylinder 2.
  • the communication control valve 61 has a valve body on the first wheel cylinder 81, 82 side (first system) of the valve seat in order to prevent backflow of brake fluid from the first wheel cylinders 81, 82 to the electric cylinder 2 when the valve is closed. It is located on the side).
  • the master cut valve 62 is a normally open type solenoid valve provided between the connection portion 50 between the first liquid passage 51 and the communication passage 53 and the cylinder 41 of the first liquid passage 51. In other words, the master cut valve 62 is provided on the master cylinder 4 side of the connecting portion 50 in the first liquid passage 51. The master cut valve 62 permits or prohibits the supply of brake fluid from the master cylinder 4 to the first hydraulic pressure output unit 31.
  • the brake fluid supply path 54 connects the reservoir 45 and the input port 211 of the electric cylinder 2.
  • the input port 211 is formed between the two sealing members.
  • the reservoir 45 stores the brake fluid, and the internal pressure is maintained at atmospheric pressure. Further, the inside of the reservoir 45 is divided into two rooms 451 and 452, respectively, in which the brake fluid is stored.
  • a master cylinder 4 is connected to one room 451 of the reservoir 45, and an electric cylinder 2 is connected to the other room 452 via a brake fluid supply path 54.
  • the reservoir 45 may consist of two separate reservoirs instead of the two chambers.
  • the first hydraulic output unit 31 of the actuator 3 mainly includes a liquid passage 311, a differential pressure control valve 312, a holding valve 313, a pressure reducing valve 314, a pump 315, and an electric motor. It includes a 316, a reservoir 317, a perfusion fluid passage 317a, and a pressure sensor 75.
  • the liquid passage 311 connects the first liquid passage 51 and the first wheel cylinder 81.
  • the pressure sensor 75 is installed in the liquid passage 311.
  • the pressure sensor 75 detects the input hydraulic pressure from the first liquid passage 51 to the first hydraulic pressure output unit 31.
  • the differential pressure control valve 312 is a normally open type linear solenoid valve. By controlling the opening degree of the differential pressure control valve 312 (force toward the valve closing side due to electromagnetic force), it is possible to generate a differential pressure between upstream and downstream.
  • a check valve 312a that allows only the flow of brake fluid from the first liquid passage 51 to the first wheel cylinder 81 is provided in parallel with the differential pressure control valve 312.
  • the holding valve 313 is a normally open type solenoid valve provided between the differential pressure control valve 312 and the first wheel cylinder 81 in the liquid passage 311. Further, a check valve 313a is provided in parallel with the holding valve 313.
  • the pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a.
  • the decompression liquid passage 314a connects the portion of the liquid passage 311 between the holding valve 313 and the first wheel cylinder 81 and the reservoir 317.
  • the pump 315 is operated by the driving force of the electric motor 316.
  • the pump 315 is provided in the pump liquid passage 315a.
  • the pump liquid passage 315a connects a portion of the liquid passage 311 between the differential pressure control valve 312 and the holding valve 313 (hereinafter referred to as “branch portion X”) and the reservoir 317.
  • the brake fluid in the reservoir 317 is discharged to the branch portion X.
  • Reservoir 317 is a pressure regulating reservoir.
  • the reflux liquid passage 317a connects the first liquid passage 51 and the reservoir 317.
  • the brake fluid in the reservoir 317 is preferentially sucked into the reservoir 317 by the operation of the pump 315, and when the brake fluid in the reservoir 317 decreases, the valve is opened and the brake is applied from the first fluid passage 51 via the reflux fluid passage 317a.
  • the liquid is configured to be inhaled.
  • the second brake ECU 902 When the first wheel cylinder 81 is pressurized by the actuator 3, the second brake ECU 902 responds to the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first liquid passage 51) in the differential pressure control valve 312. A control current is applied to close the differential pressure control valve 312. At this time, the holding valve 313 is open and the pressure reducing valve 314 is closed. Further, when the pump 315 is operated, the brake fluid is supplied from the first liquid passage 51 to the branch portion X via the reservoir 317. As a result, the first wheel cylinder 81 is pressurized.
  • the differential pressure control valve When the difference between the hydraulic pressure of the first wheel cylinder 81 (hereinafter, also referred to as “wheel pressure”) and the hydraulic pressure of the first liquid passage 51 is about to exceed the target differential pressure, the differential pressure control valve is affected by the magnitude of the force. 312 opens the valve.
  • the wheel pressure after pressurization is the sum of the hydraulic pressure of the first liquid passage 51 and the target differential pressure.
  • the actuator 3 pressurizes the wheel cylinders 81 to 84 by generating a differential pressure between the input hydraulic pressure (basic hydraulic pressure) from the upstream unit 11 and the wheel pressure.
  • the actuator 3 does not affect the basal hydraulic pressure in the pressurization control, and applies an additional pressure (hydraulic pressure corresponding to the differential pressure) to the basal hydraulic pressure.
  • the second brake ECU 902 When the wheel pressure is reduced by the actuator 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 with the pressure reducing valve 314 opened and the holding valve 313 closed to operate the pump 315 in the wheel cylinder 81. Reduce brake fluid.
  • the second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314.
  • the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
  • the first brake ECU 901 and the second brake ECU 902 are electronic control units including a CPU and a memory, respectively.
  • Each brake ECU 901, 902 includes one or more processors that perform various controls.
  • the first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
  • the first brake ECU 901 is controllably connected to the electric cylinder 2 and the solenoid valves 61, 62, 44, respectively.
  • the second brake ECU 902 is controllably connected to the actuator 3.
  • the brake ECUs 901 and 902 execute various controls based on the detection results of the various sensors.
  • the vehicle braking device 1 is provided with, for example, a stroke sensor 71, pressure sensors 72, 73, 75, a level switch 74, a wheel speed sensor (not shown), an acceleration sensor (not shown), and the like. There is.
  • the stroke sensor 71 detects the stroke of the brake operating member Z.
  • the vehicle braking device 1 is provided with two stroke sensors 71 so as to have a one-to-one correspondence with the brake ECUs 901 and 902.
  • the brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively.
  • the pressure sensor 72 is a sensor that detects the master pressure, and is provided, for example, in the portion of the first liquid passage 51 on the cylinder 41 side of the master cut valve 62.
  • the pressure sensor 73 is a sensor that detects the output hydraulic pressure (first brake pressure) of the electric cylinder 2, and is provided in, for example, the second liquid passage 52.
  • the level switch 74 is provided in the reservoir 45 and detects that the liquid level of the reservoir 45 has become less than a predetermined value.
  • the first brake ECU 901 receives the detection results of the stroke sensor 71, the pressure sensors 72, 73, and the level switch 74, and controls the electric cylinder 2 and the solenoid valves 61, 62, 44 based on the detection results.
  • the first brake ECU 901 can calculate each wheel pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the actuator 3.
  • the second brake ECU 902 receives the detection results of the stroke sensor 71 and the pressure sensor 75, and controls the actuator 3 based on the detection results.
  • the second brake ECU 902 can calculate each wheel pressure based on the control state of the pressure sensor 75 and the actuator 3.
  • the various sensors may be configured to transmit the detection result to both the brake ECUs 901 and 902.
  • the second brake ECU 902 includes a setting unit 91.
  • the setting unit 91 sets the first target differential pressure and the second differential pressure, which are the target values of the first differential pressure (the differential pressure between the hydraulic pressure of the first liquid passage 51 and the hydraulic pressure of the first wheel cylinders 81 and 82).
  • the second target differential pressure which is the target value of (the differential pressure between the hydraulic pressure of the second liquid passage 52 and the hydraulic pressure of the second wheel cylinders 83 and 84), is set.
  • the details of the setting unit 91 will be described later.
  • the power supply device 903 is a device that supplies electric power to the brake ECUs 901 and 902.
  • the power supply unit 903 includes a battery.
  • the power supply device 903 is connected to both brake ECUs 901 and 902. That is, in the first embodiment, power is supplied from the power supply device 903 common to the two brake ECUs 901 and 902.
  • the first brake ECU 901 executes normal control depending on the situation.
  • the communication control valve 61 and the simulator cut valve 44 are opened and the master cut valve 62 is closed, and the hydraulic pressure of the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84 is applied by the electric cylinder 2. It is a control (control mode) to be adjusted.
  • the master cylinder 4 and the wheel cylinders 81 to 84 are hydraulically separated to form a so-called by-wire mode in which the wheel pressure is adjusted by controlling the brake ECUs 901 and 902.
  • the first brake ECU 901 uses the electric cylinder 2 based on the data detected by the stroke sensor 71 in a state where the master cut valve 62 is closed and the simulator cut valve 44 and the communication control valve 61 are opened. Drive.
  • the first brake ECU 901 sets a target deceleration and a target wheel pressure based on the detection result of the stroke sensor 71, and controls the electric cylinder 2 so that the actual wheel pressure approaches the target wheel pressure.
  • the second brake ECU 902 operates the actuator 3 when executing anti-skid control or the like.
  • the setting unit 91 of the second brake ECU 902 sets the first target differential pressure and the second brake pressure based on the master pressure and the second brake pressure in a specific state in which the communication control valve 61 is closed and the master cut valve 62 is opened. Set the target differential pressure.
  • the specific state is formed, for example, when the first brake ECU 901 fails.
  • control to the solenoid valves 61, 62, 44 becomes impossible, and application of the control current to the solenoid valves 61, 62, 44 is stopped. That is, the solenoid valves 61, 62, and 44 are in a non-energized state.
  • the communication control valve 61 is closed, the master cut valve 62 is opened, and the simulator cut valve 44 is closed.
  • the electric cylinder 2 also becomes uncontrollable, and the application of the control current to the electric cylinder 2 is also stopped. That is, the electric cylinder 2 is in a non-energized state. As a result, the electric motor 22 is stopped, and the piston 23 is returned to the initial position by the urging member 25.
  • the second hydraulic pressure output unit 32 and the reservoir 45 communicate with each other via the electric cylinder 2.
  • the second brake pressure becomes 0 (atmospheric pressure). Therefore, when the specific state is formed and the electric cylinder 2 is in the non-energized state, the setting unit 91 sets the second brake pressure to 0 and sets the first target differential pressure and the second target differential pressure.
  • the second brake ECU 902 may determine that the piston 23 is located at the initial position after a predetermined time has elapsed after the electric motor 22 has stopped.
  • the predetermined time may be preset based on the elastic force of the urging member 25. After the lapse of a predetermined time, the setting unit 91 may set the second brake pressure to 0.
  • the master cylinder 4 supplies the master pressure to the first hydraulic pressure output unit 31 according to the operation amount of the brake operating member Z. That is, in the specific state, the input hydraulic pressure to the first hydraulic pressure output unit 31 is the master pressure.
  • the setting unit 91 sets the first target differential pressure and the second target differential pressure using this master pressure (for example, the detection result of the pressure sensor 75) in a specific state.
  • the setting unit 91 of the first embodiment has a first target differential pressure and a second target differential pressure so that the wheel pressures of both systems are the same when a specific state is formed and the electric cylinder 2 is in a non-energized state. To set.
  • the second brake ECU 902 detects a failure of the first brake ECU 901 (S101: Yes)
  • the second brake ECU 902 adjusts the wheel pressure by the actuator 3 based on the detection results of the stroke sensor 71 and the pressure sensor 75 (S102).
  • the second brake ECU 902 calculates the target deceleration and the target wheel pressure based on the detection results of the stroke sensor 71 and the pressure sensor 75.
  • the second brake ECU 902 sets the first target differential pressure and the second target differential pressure based on the master pressure and the second brake pressure so that the actual wheel pressure approaches the target wheel pressure (S103).
  • the setting unit 91 sets the first target differential pressure based on the target wheel pressure and the master pressure of the first system, and sets the second target differential pressure based on the target wheel pressure and the second brake pressure of the second system. Set. More specifically, when setting the target differential pressure, the setting unit 91 sets the input hydraulic pressure of the first hydraulic pressure output unit 31 to the master pressure based on the detection result of the pressure sensor 75, and sets the second hydraulic pressure output.
  • the second brake pressure which is the input hydraulic pressure of the unit 32, is set to 0.
  • Failures related to the first brake ECU 901 include, for example, a failure of the ECU, a disconnection of the connection line between the power supply device 903 and the first brake ECU 901, and the like.
  • the situation of switching to a specific state is a failure in which the upstream unit 11 cannot execute pressurization control, or a disconnection of the solenoid valve included in the upstream unit 11. It can also occur when a failure such as, etc. occurs.
  • the second brake ECU 902 determines that a failure has occurred in the first brake ECU 901, for example, when communication with the first brake ECU 901 is unsuccessful (for example, there is no reply or synchronization is not possible).
  • the master pressure is input to the first hydraulic pressure output unit 31, and the second brake pressure is input to the second hydraulic pressure output unit 32.
  • the setting unit 91 can set the first target differential pressure and the second target differential pressure after recognizing the difference between the master pressure and the second brake pressure.
  • the wheel pressures of both systems can be set to the same level (for example, the same pressure).
  • the wheel pressure of each system can be appropriately adjusted even when the state of the device changes, for example, due to a failure of the first brake ECU 901.
  • the piston 23 of the electric cylinder 2 when the specific state is formed and the electric cylinder 2 is in the non-energized state, the piston 23 of the electric cylinder 2 is located at the initial position due to the urging force of the urging member 25.
  • the electric cylinder 2 communicates with the reservoir 45, so that the second brake pressure is 0. That is, in this case, the input hydraulic pressure to the second hydraulic pressure output unit 32 is set to 0 when setting the second target differential pressure.
  • the first target differential pressure is set based on the master pressure.
  • the master pressure When the brake operating member Z is operated, the master pressure is greater than zero. When the brake operating member Z is not operated, the master pressure is 0.
  • the setting unit 91 sets the first target differential pressure to be smaller than the second target differential pressure by the amount of the master pressure.
  • the wheel pressure of each system can be appropriately adjusted.
  • the wheel pressures of both systems can be made the same with high accuracy. As a result, deterioration of vehicle behavior stability is suppressed during braking in a specific state and when the electric cylinder 2 is not operating.
  • the vehicle braking device 1 is provided with two brake ECUs 901 and 902, the redundancy is improved. Even if one ECU fails, the electric cylinder 2 or the actuator 3 is operated by the other ECU, the wheel pressure is adjusted, and the braking force is exerted. As described above, according to the first embodiment, the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
  • the power supply device 903 has a first power supply 903a that supplies electric power to the first brake ECU 901 and a second brake ECU 902 that is independent of the first power supply 903a.
  • a second power source 903b which supplies electric power to the power supply 903b, is provided.
  • the first power source 903a includes a first battery
  • the second power source 903b includes a second battery separate from the first battery.
  • the electric cylinder 2 or the actuator 3 can be operated and a braking force can be generated.
  • the redundancy is further improved.
  • the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
  • the present invention is not limited to the above embodiment.
  • the first pressure supply unit and the second pressure supply unit may be different or the same.
  • the pressure source of the first pressure supply unit is the master cylinder 4
  • the pressure source of the second pressure supply unit is the electric cylinder 2
  • these pressure sources are the master cylinder 4 and the electric cylinder 2, respectively.
  • control may be executed using the estimated hydraulic pressure in the second liquid passage 52 according to the time elapsed since the electric cylinder 2 is inactive. In this case, the second brake pressure may be reduced to 0 with the passage of time.
  • the state may be switched to a specific state.
  • the specific state does not have to be formed only when there is some kind of failure.
  • the vehicle braking device 1 may be switched to a specific state regardless of the state of the upstream unit 11.
  • the first target differential pressure and the second target differential pressure may not be set so that the wheel pressures of both systems are the same.
  • the first target differential pressure and the second target differential pressure may be set according to the target posture of the vehicle and the target braking force.
  • the first target differential pressure and the second target differential pressure may be set so that the pressures of the first wheel cylinders 81 and 82 and the pressures of the second wheel cylinders 83 and 84 are different.
  • the actuator 3 may be provided with an electric cylinder instead of the pump 315.
  • the vehicle braking device 1 may include, for example, a pressurizing unit including a pump instead of the electric cylinder 2.
  • the present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic braking control, or an autonomous driving vehicle.
  • the specific state may be formed by control, not limited to the time of failure.
  • the setting unit 91 may set the first target differential pressure and the second target differential pressure so that the wheel pressures of the first system and the second system are different.
  • the system may be arranged in front and rear piping so that, for example, the wheel cylinder of the first system is provided on the front wheel and the wheel cylinder of the second system is provided on the rear wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

The present invention comprises a first hydraulic pressure outputting part 31 and a second hydraulic pressure outputting part 32. The first hydraulic pressure outputting part 31: is connected via a first liquid path 51 to a first pressure supply part 4 that can generate first braking pressure; and generates a first differential pressure between the hydraulic pressure inputted from the first liquid path 51 and the hydraulic pressure of a first wheel cylinder. The second hydraulic pressure outputting part 32: is connected via a second liquid path 52 to a second pressure supply part 2 that can generate second braking pressure; and generates a second differential pressure between the hydraulic pressure inputted from the second liquid path 52 and the hydraulic pressure of a second wheel cylinder. In a specific state in which a communication control valve 61 is closed and a cut valve 62 is open, a setting unit 91 sets a first target differential pressure and a second target differential pressure on the basis of the first braking pressure and the second braking pressure.

Description

車両用制動装置Vehicle braking device
 本発明は、車両用制動装置に関する。 The present invention relates to a vehicle braking device.
 例えば特許第5631937号明細書に記載されているように、マスタシリンダと、電動シリンダと、ESCアクチュエータと、を備えた車両用制動装置が知られている。この車両用制動装置は、2つの系統に対して、マスタシリンダとESCアクチュエータとで液圧を出力可能に構成されている。また、例えば特許第6202741号明細書にも、マスタシリンダ、電動シリンダ、及びESCアクチュエータを備えた車両用制動装置が開示されている。この装置において、マスタシリンダは1系統のみに接続されている。 For example, as described in Japanese Patent No. 5631937, a vehicle braking device including a master cylinder, an electric cylinder, and an ESC actuator is known. This vehicle braking device is configured to be able to output hydraulic pressure to two systems by a master cylinder and an ESC actuator. Further, for example, Japanese Patent No. 6202741 also discloses a vehicle braking device including a master cylinder, an electric cylinder, and an ESC actuator. In this device, the master cylinder is connected to only one system.
特許第5631937号明細書Japanese Patent No. 5631937 特許第6202741号明細書Patent No. 6202741
 ここで、発明者は、ESCアクチュエータの各系統に入力される液圧が、車両用制動装置の状態(例えば正常状態又は失陥状態)によって変わり得ることに新たに着目した。各系統の入力液圧が異なっているにもかかわらず、差圧制御弁の目標差圧が両系統で同じ値に設定された場合、系統間でホイール圧に差が発生する。車両用制動装置が意図せずに系統間でホイール圧に差が生じることは、系統の配置によっては、車両の挙動安定性の低下につながる。 Here, the inventor newly focused on the fact that the hydraulic pressure input to each system of the ESC actuator can change depending on the state of the vehicle braking device (for example, the normal state or the failed state). If the target differential pressure of the differential pressure control valve is set to the same value in both systems even though the input hydraulic pressure of each system is different, a difference in wheel pressure occurs between the systems. The unintentional difference in wheel pressure between the systems of the vehicle braking device leads to a decrease in the behavior stability of the vehicle depending on the arrangement of the systems.
 本発明の目的は、装置の状態が変化した場合でも、適切に各系統のホイール圧を調圧することができる車両用制動装置を提供することである。 An object of the present invention is to provide a vehicle braking device capable of appropriately adjusting the wheel pressure of each system even when the state of the device changes.
 本発明の車両用制動装置は、第1ブレーキ圧を供給可能な第1圧力供給部と、前記第1圧力供給部に第1液路を介して接続され、前記第1液路から入力された液圧と第1ホイールシリンダの液圧との間に第1差圧を発生させる第1液圧出力部と、前記第1圧力供給部とは独立して第2ブレーキ圧を供給可能な第2圧力供給部と、前記第2圧力供給部に第2液路を介して接続され、前記第2液路から入力された液圧と第2ホイールシリンダの液圧との間に第2差圧を発生させる第2液圧出力部と、前記第1液路と前記第2液路との間を接続する連通路に設けられ、前記連通路を開閉する電磁弁である連通制御弁と、前記第1液路において、前記第1液路と前記連通路との接続部よりも前記第1圧力供給部側に設けられた電磁弁であるカット弁と、前記第1差圧の目標値である第1目標差圧、及び前記第2差圧の目標値である第2目標差圧を設定する設定部と、を備え、前記設定部は、前記連通制御弁が閉弁し且つ前記カット弁が開弁した特定状態において、前記第1ブレーキ圧と第2ブレーキ圧とに基づいて前記第1目標差圧及び前記第2目標差圧を設定する。 The vehicle braking device of the present invention is connected to a first pressure supply unit capable of supplying a first brake pressure and the first pressure supply unit via a first liquid passage, and is input from the first liquid passage. A first hydraulic pressure output unit that generates a first differential pressure between the hydraulic pressure and the hydraulic pressure of the first wheel cylinder, and a second brake pressure that can supply a second brake pressure independently of the first pressure supply unit. A second differential pressure is applied between the pressure supply unit and the second pressure supply unit via the second liquid passage, and the hydraulic pressure input from the second liquid passage and the hydraulic pressure of the second wheel cylinder. A communication control valve, which is an electromagnetic valve provided in a communication passage connecting the second hydraulic pressure output unit to be generated and the first liquid passage and the second liquid passage, and opens and closes the communication passage, and the first. In the first liquid passage, a cut valve which is an electromagnetic valve provided on the first pressure supply portion side of the connection portion between the first liquid passage and the communication passage, and a first differential pressure target value. The setting unit includes a target differential pressure and a setting unit for setting a second target differential pressure which is a target value of the second differential pressure. In the setting unit, the communication control valve is closed and the cut valve is opened. The first target differential pressure and the second target differential pressure are set based on the first brake pressure and the second brake pressure in the valved specific state.
 本発明によれば、装置の状態が特定状態になった場合、第1液圧出力部には第1ブレーキ圧が入力され、第2液圧出力部には第2ブレーキ圧が入力される。ここで、設定部は、第1ブレーキ圧と第2ブレーキ圧との差を認識した上で、第1目標差圧及び第2目標差圧を設定することができる。これにより、特定状態においても、例えば両系統のホイール圧を同レベル(例えば同圧)にすることが可能となる。本発明によれば、装置の状態が変化した場合でも、適切に各系統のホイール圧を調圧することができる。 According to the present invention, when the state of the device becomes a specific state, the first brake pressure is input to the first hydraulic pressure output unit, and the second brake pressure is input to the second hydraulic pressure output unit. Here, the setting unit can set the first target differential pressure and the second target differential pressure after recognizing the difference between the first brake pressure and the second brake pressure. As a result, even in a specific state, for example, the wheel pressures of both systems can be set to the same level (for example, the same pressure). According to the present invention, the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
第1実施形態の車両用制動装置の構成図である。It is a block diagram of the vehicle braking device of 1st Embodiment. 第1実施形態のアクチュエータの構成図である。It is a block diagram of the actuator of 1st Embodiment. 第1実施形態の制御例を示すフローチャートである。It is a flowchart which shows the control example of 1st Embodiment. 第2実施形態の電源装置の構成図である。It is a block diagram of the power supply device of 2nd Embodiment.
 以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。また、説明に用いる各図は概念図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the following embodiments, parts that are the same or equal to each other are designated by the same reference numerals in the drawings. Moreover, each figure used for explanation is a conceptual diagram.
<第1実施形態>
 第1実施形態の車両用制動装置1は、図1に示すように、上流ユニット11と、下流ユニットを構成するアクチュエータ3と、第1ブレーキECU901と、第2ブレーキECU902と、電源装置903と、を備えている。上流ユニット11は、下流ユニットに基礎液圧を供給可能に構成されている。
<First Embodiment>
As shown in FIG. 1, the vehicle braking device 1 of the first embodiment includes an upstream unit 11, an actuator 3 constituting the downstream unit, a first brake ECU 901, a second brake ECU 902, a power supply device 903, and the like. It has. The upstream unit 11 is configured to be able to supply the basal hydraulic pressure to the downstream unit.
 上流ユニット11は、電動シリンダ(「第2圧力供給部」に相当する)2と、マスタシリンダ(「第1圧力供給部」に相当する)4と、第1液路51と、第2液路52と、連通路53と、ブレーキ液供給路54と、連通制御弁61と、マスタカット弁(「カット弁」に相当する)62と、を備えている。 The upstream unit 11 includes an electric cylinder (corresponding to the "second pressure supply unit") 2, a master cylinder (corresponding to the "first pressure supply unit") 4, a first liquid passage 51, and a second liquid passage. It includes 52, a communication passage 53, a brake fluid supply path 54, a communication control valve 61, and a master cut valve (corresponding to a “cut valve”) 62.
 第1ブレーキECU901は、少なくとも上流ユニット11を制御する。第2ブレーキECU902は、少なくともアクチュエータ3を制御する。第1ブレーキECU901及び第2ブレーキECU902は制御装置を構成している。なお、図1は、車両用制動装置1の非通電状態を表している。 The first brake ECU 901 controls at least the upstream unit 11. The second brake ECU 902 controls at least the actuator 3. The first brake ECU 901 and the second brake ECU 902 constitute a control device. Note that FIG. 1 shows a non-energized state of the vehicle braking device 1.
 電動シリンダ2は、第1ホイールシリンダ81、82及び第2ホイールシリンダ83、84にブレーキ圧を供給可能な加圧ユニットである。第1実施形態において、マスタシリンダ4が供給する液圧(マスタ圧)は第1ブレーキ圧に相当し、電動シリンダ2が供給する液圧は第2ブレーキ圧に相当する。以下、電動シリンダ2の出力液圧を第2ブレーキ圧と称する。電動シリンダ2は、マスタシリンダ4とは独立して第2ブレーキ圧を供給可能に構成されている。 The electric cylinder 2 is a pressurizing unit capable of supplying brake pressure to the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84. In the first embodiment, the hydraulic pressure supplied by the master cylinder 4 (master pressure) corresponds to the first brake pressure, and the hydraulic pressure supplied by the electric cylinder 2 corresponds to the second brake pressure. Hereinafter, the output hydraulic pressure of the electric cylinder 2 is referred to as a second brake pressure. The electric cylinder 2 is configured to be able to supply a second brake pressure independently of the master cylinder 4.
 第1ホイールシリンダ81、82は第1系統のホイールシリンダであり、第2ホイールシリンダ83、84は第2系統のホイールシリンダである。第1系統は第1液路51を介してブレーキ液が供給される系統であり、第2系統は第2液路52を介してブレーキ液が供給される系統である。第1実施形態では、第1ホイールシリンダ81は右前輪に設けられ、第1ホイールシリンダ82は左後輪に設けられ、第2ホイールシリンダ83は左前輪に設けられ、第2ホイールシリンダ84は右後輪に設けられている。つまり、第1実施形態の系統の配置は、クロス配管(X配管)となっている。 The first wheel cylinders 81 and 82 are the wheel cylinders of the first system, and the second wheel cylinders 83 and 84 are the wheel cylinders of the second system. The first system is a system in which the brake fluid is supplied through the first liquid passage 51, and the second system is a system in which the brake fluid is supplied through the second liquid passage 52. In the first embodiment, the first wheel cylinder 81 is provided on the right front wheel, the first wheel cylinder 82 is provided on the left rear wheel, the second wheel cylinder 83 is provided on the left front wheel, and the second wheel cylinder 84 is on the right. It is provided on the rear wheel. That is, the arrangement of the system of the first embodiment is a cross pipe (X pipe).
 電動シリンダ2は、シリンダ21と、電気モータ22と、ピストン23と、出力室24と、付勢部材25と、を有する。電気モータ22は、回転運動を直線運動に変換する直動機構22aを介してピストン23に接続されている。電動シリンダ2は、シリンダ21内に単一の出力室24が形成されているシングルタイプの電動シリンダである。 The electric cylinder 2 includes a cylinder 21, an electric motor 22, a piston 23, an output chamber 24, and an urging member 25. The electric motor 22 is connected to the piston 23 via a linear motion mechanism 22a that converts a rotary motion into a linear motion. The electric cylinder 2 is a single type electric cylinder in which a single output chamber 24 is formed in the cylinder 21.
 ピストン23は、電気モータ22の駆動によりシリンダ21内を軸方向に摺動する。ピストン23は、軸方向一方側に開口し軸方向他方側に底面を有する有底円筒状に形成されている。つまり、ピストン23は、開口を形成する筒状部分と、底面(受圧面)を形成する円柱部分と、を備えている。 The piston 23 slides in the cylinder 21 in the axial direction by driving the electric motor 22. The piston 23 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction. That is, the piston 23 includes a cylindrical portion that forms an opening and a cylindrical portion that forms a bottom surface (pressure receiving surface).
 出力室24は、シリンダ21とピストン23により区画されピストン23の移動により容積が変化する。出力室24は、リザーバ45及びアクチュエータ3に接続されている。ピストン23は、出力室24とリザーバ45との間を連通させる連通領域、及び出力室24とリザーバ45との間を遮断する遮断領域で構成された摺動領域を摺動する。連通領域は、出力室24の容積が最大となるピストン23の初期位置を含んでいる。遮断領域は、軸方向において、連通領域よりも大きい。 The output chamber 24 is partitioned by the cylinder 21 and the piston 23, and the volume changes due to the movement of the piston 23. The output chamber 24 is connected to the reservoir 45 and the actuator 3. The piston 23 slides in a sliding region composed of a communication region for communicating between the output chamber 24 and the reservoir 45 and a blocking region for blocking between the output chamber 24 and the reservoir 45. The communication area includes the initial position of the piston 23 that maximizes the volume of the output chamber 24. The blocking region is larger than the communication region in the axial direction.
 付勢部材25は、出力室24に配置され、ピストン23を軸方向他方側に(初期位置に向けて)付勢するばねである。電動シリンダ2が非通電状態になると、電気モータ22が停止し、付勢部材25によりピストン23は初期位置に戻される。 The urging member 25 is a spring that is arranged in the output chamber 24 and urges the piston 23 to the other side in the axial direction (toward the initial position). When the electric cylinder 2 is de-energized, the electric motor 22 is stopped, and the urging member 25 returns the piston 23 to the initial position.
 アクチュエータ3は、第1ホイールシリンダ81、82を調圧可能に構成された第1液圧出力部31と、第2ホイールシリンダ83、84を調圧可能に構成された第2液圧出力部32と、を備える調圧ユニット(下流ユニット)である。アクチュエータ3は、電動シリンダ2に接続されている。 The actuator 3 has a first hydraulic pressure output unit 31 configured to be able to regulate the pressure of the first wheel cylinders 81 and 82, and a second hydraulic pressure output unit 32 configured to be able to adjust the pressure of the second wheel cylinders 83 and 84. It is a pressure adjusting unit (downstream unit) including. The actuator 3 is connected to the electric cylinder 2.
 第1液圧出力部31は、第1液路51から入力された液圧と第1ホイールシリンダ81、82の液圧との間に第1差圧を発生させることで第1ホイールシリンダ81、82を加圧するように構成されている。第2液圧出力部32は、第2液路52から入力された液圧と第2ホイールシリンダ83、84の液圧との間に第2差圧を発生させることで第2ホイールシリンダ83、84を加圧するように構成されている。 The first hydraulic pressure output unit 31 generates a first differential pressure between the hydraulic pressure input from the first liquid passage 51 and the hydraulic pressures of the first wheel cylinders 81 and 82, so that the first wheel cylinder 81, It is configured to pressurize 82. The second hydraulic pressure output unit 32 generates a second differential pressure between the hydraulic pressure input from the second hydraulic passage 52 and the hydraulic pressures of the second wheel cylinders 83 and 84, so that the second wheel cylinder 83, It is configured to pressurize 84.
 アクチュエータ3は、いわゆるESCアクチュエータであって、各ホイールシリンダ81~84の液圧を独立に調圧することができる。アクチュエータ3は、第2ブレーキECU902の制御に応じて、例えばアンチスキッド制御(ABS制御とも呼ばれる)、横滑り防止制御(ESC)、又はトラクションコントロール等を実行する。第1液圧出力部31と第2液圧出力部32とは、アクチュエータ3の液圧回路上、互いに独立している。アクチュエータ3の構成については後述する。 The actuator 3 is a so-called ESC actuator, and can independently regulate the hydraulic pressure of each wheel cylinder 81 to 84. The actuator 3 executes, for example, anti-skid control (also referred to as ABS control), electronic stability control (ESC), traction control, or the like according to the control of the second brake ECU 902. The first hydraulic pressure output unit 31 and the second hydraulic pressure output unit 32 are independent of each other on the hydraulic pressure circuit of the actuator 3. The configuration of the actuator 3 will be described later.
 マスタシリンダ4は、第1液路51を介して、第1液圧出力部31にマスタ圧(マスタ室41aの液圧)を供給可能な圧力供給ユニットである。より詳細に、マスタシリンダ4は、リザーバ45に接続され、ブレーキ操作部材Zの操作量(ストローク及び/又は踏力)に応じて機械的にアクチュエータ3の第1液圧出力部31にブレーキ液を供給するユニットである。マスタシリンダ4は、第1液圧出力部31を介して第1ホイールシリンダ81、82を加圧可能に構成されている。マスタシリンダ4は、シリンダ41と、ピストン42と、を備えている。 The master cylinder 4 is a pressure supply unit capable of supplying the master pressure (hydraulic pressure of the master chamber 41a) to the first hydraulic pressure output unit 31 via the first liquid passage 51. More specifically, the master cylinder 4 is connected to the reservoir 45 and mechanically supplies the brake fluid to the first hydraulic pressure output unit 31 of the actuator 3 according to the operating amount (stroke and / or pedaling force) of the brake operating member Z. It is a unit to do. The master cylinder 4 is configured to be able to pressurize the first wheel cylinders 81 and 82 via the first hydraulic pressure output unit 31. The master cylinder 4 includes a cylinder 41 and a piston 42.
 シリンダ41は、有底円筒状の部材である。シリンダ41には、入力ポート411と出力ポート412が形成されている。ピストン42は、ブレーキ操作部材Zの操作量に応じて、シリンダ41内を摺動するピストン部材である。ピストン42は、軸方向一方側に開口し軸方向他方側に底面を有する有底円筒状に形成されている。 The cylinder 41 is a bottomed cylindrical member. An input port 411 and an output port 412 are formed in the cylinder 41. The piston 42 is a piston member that slides in the cylinder 41 according to the amount of operation of the brake operating member Z. The piston 42 is formed in a bottomed cylindrical shape that opens on one side in the axial direction and has a bottom surface on the other side in the axial direction.
 シリンダ41内には、ピストン42により単一のマスタ室41aが形成されている。換言すると、マスタシリンダ4には、シリンダ41とピストン42とにより1つのマスタ室41aが形成されている。マスタ室41aの容積は、ピストン42の移動により変化する。ピストン42が軸方向一方側に移動すると、マスタ室41aの容積が小さくなり、マスタ圧が増大する。マスタ室41aには、ピストン42を初期位置に向けて(軸方向他方側に)付勢する付勢部材41bが設けられている。ブレーキ操作が解除されると、付勢部材41bによりピストン42が初期位置に戻される。第1実施形態のマスタシリンダ4は、シングルタイプのマスタシリンダである。 A single master chamber 41a is formed in the cylinder 41 by the piston 42. In other words, in the master cylinder 4, one master chamber 41a is formed by the cylinder 41 and the piston 42. The volume of the master chamber 41a changes with the movement of the piston 42. When the piston 42 moves to one side in the axial direction, the volume of the master chamber 41a decreases and the master pressure increases. The master chamber 41a is provided with an urging member 41b that urges the piston 42 toward the initial position (on the other side in the axial direction). When the brake operation is released, the urging member 41b returns the piston 42 to the initial position. The master cylinder 4 of the first embodiment is a single type master cylinder.
 出力ポート412は、マスタ室41aと第1液路51とを連通させる。入力ポート411は、ピストン42の筒状部分に形成された貫通孔421を介して、マスタ室41aとリザーバ45とを連通させる。マスタ室41aの容積が最大となるピストン42の初期位置において、入力ポート411と貫通孔421とはオーバーラップし、マスタ室41aとリザーバ45とが連通する。ピストン42が初期位置から軸方向一方側に所定量(オーバーラップ距離)移動すると、マスタ室41aとリザーバ45との接続が遮断される。 The output port 412 communicates the master chamber 41a with the first liquid passage 51. The input port 411 communicates the master chamber 41a and the reservoir 45 with the through hole 421 formed in the cylindrical portion of the piston 42. At the initial position of the piston 42 where the volume of the master chamber 41a is maximized, the input port 411 and the through hole 421 overlap, and the master chamber 41a and the reservoir 45 communicate with each other. When the piston 42 moves by a predetermined amount (overlap distance) from the initial position to one side in the axial direction, the connection between the master chamber 41a and the reservoir 45 is cut off.
 マスタシリンダ4には、シミュレータカット弁44を介してストロークシミュレータ43が接続されている。ストロークシミュレータ43は、ブレーキ操作部材Zの操作に対して反力(負荷)を発生させる装置である。ストロークシミュレータ43は、例えばシリンダ、ピストン、及び付勢部材により構成される。ストロークシミュレータ43とシリンダ41の出力ポート412とは、液路43aにより接続されている。シミュレータカット弁44は、液路43aに設けられたノーマルクローズ型の電磁弁である。 A stroke simulator 43 is connected to the master cylinder 4 via a simulator cut valve 44. The stroke simulator 43 is a device that generates a reaction force (load) with respect to the operation of the brake operating member Z. The stroke simulator 43 is composed of, for example, a cylinder, a piston, and an urging member. The stroke simulator 43 and the output port 412 of the cylinder 41 are connected by a liquid passage 43a. The simulator cut valve 44 is a normally closed type solenoid valve provided in the liquid passage 43a.
(液路と電磁弁)
 第1液路51は、マスタ室41aと第1液圧出力部31とを接続している。第2液路52は、電動シリンダ2と第2液圧出力部32とを接続している。連通路53は、第1液路51と第2液路52とを接続している。
(Liquid passage and solenoid valve)
The first liquid passage 51 connects the master chamber 41a and the first hydraulic pressure output unit 31. The second liquid passage 52 connects the electric cylinder 2 and the second hydraulic pressure output unit 32. The communication passage 53 connects the first liquid passage 51 and the second liquid passage 52.
 連通制御弁61は、連通路53に設けられたノーマルクローズ型の電磁弁である。連通制御弁61は、電動シリンダ2による第1液圧出力部31へのブレーキ液の供給を許可又は禁止する。連通制御弁61は、閉弁時の第1ホイールシリンダ81、82から電動シリンダ2へのブレーキ液の逆流を防ぐため、弁体が弁座よりも第1ホイールシリンダ81、82側(第1系統側)に配置されている。これにより、連通制御弁61閉弁時に第1ホイールシリンダ81、82の液圧が電動シリンダ2の出力圧よりも高くなっても、弁体には弁座に押し付けられる方向に力が加わるため(セルフシールされ)、閉弁が維持される。 The communication control valve 61 is a normally closed type solenoid valve provided in the communication passage 53. The communication control valve 61 permits or prohibits the supply of the brake fluid to the first hydraulic pressure output unit 31 by the electric cylinder 2. The communication control valve 61 has a valve body on the first wheel cylinder 81, 82 side (first system) of the valve seat in order to prevent backflow of brake fluid from the first wheel cylinders 81, 82 to the electric cylinder 2 when the valve is closed. It is located on the side). As a result, even if the hydraulic pressure of the first wheel cylinders 81 and 82 becomes higher than the output pressure of the electric cylinder 2 when the communication control valve 61 is closed, a force is applied to the valve body in the direction of being pressed against the valve seat ( Self-sealing) and keeps the valve closed.
 マスタカット弁62は、第1液路51のうち、第1液路51と連通路53との接続部50と、シリンダ41との間に設けられたノーマルオープン型の電磁弁である。換言すると、マスタカット弁62は、第1液路51における接続部50よりもマスタシリンダ4側の部分に設けられている。マスタカット弁62は、マスタシリンダ4から第1液圧出力部31へのブレーキ液の供給を許可又は禁止する。 The master cut valve 62 is a normally open type solenoid valve provided between the connection portion 50 between the first liquid passage 51 and the communication passage 53 and the cylinder 41 of the first liquid passage 51. In other words, the master cut valve 62 is provided on the master cylinder 4 side of the connecting portion 50 in the first liquid passage 51. The master cut valve 62 permits or prohibits the supply of brake fluid from the master cylinder 4 to the first hydraulic pressure output unit 31.
 ブレーキ液供給路54は、リザーバ45と電動シリンダ2の入力ポート211とを接続している。入力ポート211は、2つのシール部材の間に形成されている。なお、リザーバ45は、ブレーキ液を貯留し、内部の圧力は大気圧に保たれている。また、リザーバ45の内部は、各々ブレーキ液が貯留された2つの部屋451、452に区画されている。リザーバ45の一方の部屋451にはマスタシリンダ4が接続され、他方の部屋452にはブレーキ液供給路54を介して電動シリンダ2が接続されている。リザーバ45は、2つの部屋でなく、2つの別々のリザーバで構成されてもよい。 The brake fluid supply path 54 connects the reservoir 45 and the input port 211 of the electric cylinder 2. The input port 211 is formed between the two sealing members. The reservoir 45 stores the brake fluid, and the internal pressure is maintained at atmospheric pressure. Further, the inside of the reservoir 45 is divided into two rooms 451 and 452, respectively, in which the brake fluid is stored. A master cylinder 4 is connected to one room 451 of the reservoir 45, and an electric cylinder 2 is connected to the other room 452 via a brake fluid supply path 54. The reservoir 45 may consist of two separate reservoirs instead of the two chambers.
(アクチュエータの構成例)
 アクチュエータ3の構成例について、第1ホイールシリンダ81に接続された液路を例に簡単に説明する。アクチュエータ3の第1液圧出力部31は、図2に示すように、主に、液路311と、差圧制御弁312と、保持弁313と、減圧弁314と、ポンプ315と、電気モータ316と、リザーバ317と、還流液路317aと、圧力センサ75と、を備えている。
(Example of actuator configuration)
A configuration example of the actuator 3 will be briefly described by taking a liquid passage connected to the first wheel cylinder 81 as an example. As shown in FIG. 2, the first hydraulic output unit 31 of the actuator 3 mainly includes a liquid passage 311, a differential pressure control valve 312, a holding valve 313, a pressure reducing valve 314, a pump 315, and an electric motor. It includes a 316, a reservoir 317, a perfusion fluid passage 317a, and a pressure sensor 75.
 液路311は、第1液路51と第1ホイールシリンダ81とを接続している。圧力センサ75は、液路311に設置されている。圧力センサ75は、第1液路51から第1液圧出力部31への入力液圧を検出する。差圧制御弁312は、ノーマルオープン型のリニアソレノイドバルブである。差圧制御弁312の開度(電磁力による閉弁側への力)が制御されることで、上下流間に差圧を発生させることができる。第1液路51から第1ホイールシリンダ81へのブレーキ液の流通のみを許可するチェックバルブ312aが差圧制御弁312と並列に設けられている。 The liquid passage 311 connects the first liquid passage 51 and the first wheel cylinder 81. The pressure sensor 75 is installed in the liquid passage 311. The pressure sensor 75 detects the input hydraulic pressure from the first liquid passage 51 to the first hydraulic pressure output unit 31. The differential pressure control valve 312 is a normally open type linear solenoid valve. By controlling the opening degree of the differential pressure control valve 312 (force toward the valve closing side due to electromagnetic force), it is possible to generate a differential pressure between upstream and downstream. A check valve 312a that allows only the flow of brake fluid from the first liquid passage 51 to the first wheel cylinder 81 is provided in parallel with the differential pressure control valve 312.
 保持弁313は、液路311のうち差圧制御弁312と第1ホイールシリンダ81との間に設けられたノーマルオープン型の電磁弁である。また、チェックバルブ313aが保持弁313と並列に設けられている。減圧弁314は、減圧液路314aに設けられたノーマルクローズ型の電磁弁である。減圧液路314aは、液路311のうち保持弁313と第1ホイールシリンダ81との間の部分と、リザーバ317とを接続している。 The holding valve 313 is a normally open type solenoid valve provided between the differential pressure control valve 312 and the first wheel cylinder 81 in the liquid passage 311. Further, a check valve 313a is provided in parallel with the holding valve 313. The pressure reducing valve 314 is a normally closed type solenoid valve provided in the pressure reducing liquid passage 314a. The decompression liquid passage 314a connects the portion of the liquid passage 311 between the holding valve 313 and the first wheel cylinder 81 and the reservoir 317.
 ポンプ315は、電気モータ316の駆動力により作動する。ポンプ315は、ポンプ液路315aに設けられている。ポンプ液路315aは、液路311のうち差圧制御弁312と保持弁313との間の部分(以下「分岐部X」という)と、リザーバ317とを接続している。ポンプ315が作動すると、リザーバ317内のブレーキ液が分岐部Xに吐出される。 The pump 315 is operated by the driving force of the electric motor 316. The pump 315 is provided in the pump liquid passage 315a. The pump liquid passage 315a connects a portion of the liquid passage 311 between the differential pressure control valve 312 and the holding valve 313 (hereinafter referred to as “branch portion X”) and the reservoir 317. When the pump 315 operates, the brake fluid in the reservoir 317 is discharged to the branch portion X.
 リザーバ317は、調圧リザーバである。還流液路317aは、第1液路51とリザーバ317とを接続している。リザーバ317は、ポンプ315の作動により、リザーバ317内のブレーキ液が優先的に吸入され、リザーバ317内のブレーキ液が減少すると開弁して還流液路317aを介して第1液路51からブレーキ液が吸入されるように構成されている。 Reservoir 317 is a pressure regulating reservoir. The reflux liquid passage 317a connects the first liquid passage 51 and the reservoir 317. The brake fluid in the reservoir 317 is preferentially sucked into the reservoir 317 by the operation of the pump 315, and when the brake fluid in the reservoir 317 decreases, the valve is opened and the brake is applied from the first fluid passage 51 via the reflux fluid passage 317a. The liquid is configured to be inhaled.
 第2ブレーキECU902は、アクチュエータ3により第1ホイールシリンダ81を加圧する場合、差圧制御弁312に目標差圧(第1ホイールシリンダ81の液圧>第1液路51の液圧)に応じた制御電流を印加し、差圧制御弁312を閉弁させる。この際、保持弁313は開弁しており、減圧弁314は閉弁している。また、ポンプ315が作動することで、第1液路51からリザーバ317を介して分岐部Xにブレーキ液が供給される。これにより、第1ホイールシリンダ81が加圧される。 When the first wheel cylinder 81 is pressurized by the actuator 3, the second brake ECU 902 responds to the target differential pressure (hydraulic pressure of the first wheel cylinder 81> hydraulic pressure of the first liquid passage 51) in the differential pressure control valve 312. A control current is applied to close the differential pressure control valve 312. At this time, the holding valve 313 is open and the pressure reducing valve 314 is closed. Further, when the pump 315 is operated, the brake fluid is supplied from the first liquid passage 51 to the branch portion X via the reservoir 317. As a result, the first wheel cylinder 81 is pressurized.
 第1ホイールシリンダ81の液圧(以下「ホイール圧」ともいう)と第1液路51の液圧との差が目標差圧を超えて高くなろうとすると、力の大小関係から差圧制御弁312が開弁する。加圧後のホイール圧は、第1液路51の液圧と、目標差圧との和になる。このように、アクチュエータ3は、上流ユニット11からの入力液圧(基礎液圧)とホイール圧との間に差圧を発生させることで、ホイールシリンダ81~84を加圧する。アクチュエータ3は、加圧制御において、基礎液圧に影響を与えず、基礎液圧に対して付加圧(差圧分の液圧)を付加する。 When the difference between the hydraulic pressure of the first wheel cylinder 81 (hereinafter, also referred to as “wheel pressure”) and the hydraulic pressure of the first liquid passage 51 is about to exceed the target differential pressure, the differential pressure control valve is affected by the magnitude of the force. 312 opens the valve. The wheel pressure after pressurization is the sum of the hydraulic pressure of the first liquid passage 51 and the target differential pressure. In this way, the actuator 3 pressurizes the wheel cylinders 81 to 84 by generating a differential pressure between the input hydraulic pressure (basic hydraulic pressure) from the upstream unit 11 and the wheel pressure. The actuator 3 does not affect the basal hydraulic pressure in the pressurization control, and applies an additional pressure (hydraulic pressure corresponding to the differential pressure) to the basal hydraulic pressure.
 第2ブレーキECU902は、アンチスキッド制御等によりアクチュエータ3によりホイール圧を減圧する場合、減圧弁314を開弁させ且つ保持弁313を閉弁させた状態でポンプ315を作動させ、ホイールシリンダ81内のブレーキ液を減少させる。第2ブレーキECU902は、アクチュエータ3によりホイール圧を保持する場合、保持弁313及び減圧弁314を閉弁させる。電動シリンダ2又はマスタシリンダ4の作動のみによりホイール圧を加圧又は減圧する場合、第2ブレーキECU902は、差圧制御弁312及び保持弁313を開弁し、減圧弁314を閉弁させる。 When the wheel pressure is reduced by the actuator 3 by anti-skid control or the like, the second brake ECU 902 operates the pump 315 with the pressure reducing valve 314 opened and the holding valve 313 closed to operate the pump 315 in the wheel cylinder 81. Reduce brake fluid. When the wheel pressure is held by the actuator 3, the second brake ECU 902 closes the holding valve 313 and the pressure reducing valve 314. When the wheel pressure is pressurized or reduced only by operating the electric cylinder 2 or the master cylinder 4, the second brake ECU 902 opens the differential pressure control valve 312 and the holding valve 313, and closes the pressure reducing valve 314.
(ブレーキECU及び各種センサ)
 第1ブレーキECU901及び第2ブレーキECU902(以下「ブレーキECU901、902」ともいう)は、それぞれCPUやメモリを備える電子制御ユニットである。各ブレーキECU901、902は、各種制御を実行する1つ又は複数のプロセッサを備えている。第1ブレーキECU901と第2ブレーキECU902とは、別個のECUであって、互いに情報(制御情報等)を通信可能に接続されている。
(Brake ECU and various sensors)
The first brake ECU 901 and the second brake ECU 902 (hereinafter, also referred to as " brake ECUs 901 and 902") are electronic control units including a CPU and a memory, respectively. Each brake ECU 901, 902 includes one or more processors that perform various controls. The first brake ECU 901 and the second brake ECU 902 are separate ECUs, and are connected to each other so that information (control information, etc.) can be communicated with each other.
 第1ブレーキECU901は、電動シリンダ2及び各電磁弁61、62、44に制御可能に接続されている。第2ブレーキECU902は、アクチュエータ3に制御可能に接続されている。各ブレーキECU901、902は、各種センサの検出結果に基づいて各種制御を実行する。各種センサとして、車両用制動装置1には、例えば、ストロークセンサ71、圧力センサ72、73、75、レベルスイッチ74、車輪速度センサ(図示略)、及び加速度センサ(図示略)等が設けられている。 The first brake ECU 901 is controllably connected to the electric cylinder 2 and the solenoid valves 61, 62, 44, respectively. The second brake ECU 902 is controllably connected to the actuator 3. The brake ECUs 901 and 902 execute various controls based on the detection results of the various sensors. As various sensors, the vehicle braking device 1 is provided with, for example, a stroke sensor 71, pressure sensors 72, 73, 75, a level switch 74, a wheel speed sensor (not shown), an acceleration sensor (not shown), and the like. There is.
 ストロークセンサ71は、ブレーキ操作部材Zのストロークを検出する。車両用制動装置1には、各ブレーキECU901、902に一対一で対応するように、2つのストロークセンサ71が設けられている。ブレーキECU901、902は、それぞれ対応するストロークセンサ71からストローク情報を取得する。圧力センサ72は、マスタ圧を検出するセンサであって、例えば第1液路51のうちマスタカット弁62よりもシリンダ41側の部分に設けられている。圧力センサ73は、電動シリンダ2の出力液圧(第1ブレーキ圧)を検出するセンサであって、例えば第2液路52に設けられている。レベルスイッチ74は、リザーバ45に設けられ、リザーバ45の液面レベルが所定値未満になったことを検出する。 The stroke sensor 71 detects the stroke of the brake operating member Z. The vehicle braking device 1 is provided with two stroke sensors 71 so as to have a one-to-one correspondence with the brake ECUs 901 and 902. The brake ECUs 901 and 902 acquire stroke information from the corresponding stroke sensors 71, respectively. The pressure sensor 72 is a sensor that detects the master pressure, and is provided, for example, in the portion of the first liquid passage 51 on the cylinder 41 side of the master cut valve 62. The pressure sensor 73 is a sensor that detects the output hydraulic pressure (first brake pressure) of the electric cylinder 2, and is provided in, for example, the second liquid passage 52. The level switch 74 is provided in the reservoir 45 and detects that the liquid level of the reservoir 45 has become less than a predetermined value.
 第1ブレーキECU901は、ストロークセンサ71、圧力センサ72、73、及びレベルスイッチ74の検出結果を受信し、当該検出結果に基づいて電動シリンダ2及び各電磁弁61、62、44を制御する。第1ブレーキECU901は、圧力センサ72、73の検出結果及びアクチュエータ3の制御状態に基づいて、各ホイール圧を演算することができる。 The first brake ECU 901 receives the detection results of the stroke sensor 71, the pressure sensors 72, 73, and the level switch 74, and controls the electric cylinder 2 and the solenoid valves 61, 62, 44 based on the detection results. The first brake ECU 901 can calculate each wheel pressure based on the detection results of the pressure sensors 72 and 73 and the control state of the actuator 3.
 第2ブレーキECU902は、ストロークセンサ71及び圧力センサ75の検出結果を受信し、当該検出結果に基づいてアクチュエータ3を制御する。第2ブレーキECU902は、圧力センサ75及びアクチュエータ3の制御状態に基づいて、各ホイール圧を演算することができる。なお、各種センサは、ブレーキECU901、902の両方に検出結果を送信するように構成されてもよい。 The second brake ECU 902 receives the detection results of the stroke sensor 71 and the pressure sensor 75, and controls the actuator 3 based on the detection results. The second brake ECU 902 can calculate each wheel pressure based on the control state of the pressure sensor 75 and the actuator 3. The various sensors may be configured to transmit the detection result to both the brake ECUs 901 and 902.
 第2ブレーキECU902は、設定部91を備えている。設定部91は、第1差圧(第1液路51の液圧と第1ホイールシリンダ81、82の液圧との差圧)の目標値である第1目標差圧、及び第2差圧(第2液路52の液圧と第2ホイールシリンダ83、84の液圧との差圧)の目標値である第2目標差圧を設定する。設定部91の詳細は後述する。 The second brake ECU 902 includes a setting unit 91. The setting unit 91 sets the first target differential pressure and the second differential pressure, which are the target values of the first differential pressure (the differential pressure between the hydraulic pressure of the first liquid passage 51 and the hydraulic pressure of the first wheel cylinders 81 and 82). The second target differential pressure, which is the target value of (the differential pressure between the hydraulic pressure of the second liquid passage 52 and the hydraulic pressure of the second wheel cylinders 83 and 84), is set. The details of the setting unit 91 will be described later.
 電源装置903は、各ブレーキECU901、902に電力を供給する装置である。電源装置903は、バッテリを備えている。電源装置903は、両ブレーキECU901、902に接続されている。つまり、第1実施形態では、2つのブレーキECU901、902に共通の電源装置903から電力が供給される。 The power supply device 903 is a device that supplies electric power to the brake ECUs 901 and 902. The power supply unit 903 includes a battery. The power supply device 903 is connected to both brake ECUs 901 and 902. That is, in the first embodiment, power is supplied from the power supply device 903 common to the two brake ECUs 901 and 902.
(通常制御)
 第1ブレーキECU901は、状況に応じて、通常制御を実行する。通常制御は、連通制御弁61及びシミュレータカット弁44を開弁し且つマスタカット弁62を閉弁し、電動シリンダ2により第1ホイールシリンダ81、82及び第2ホイールシリンダ83、84の液圧を調整する制御(制御モード)である。
(Normal control)
The first brake ECU 901 executes normal control depending on the situation. In normal control, the communication control valve 61 and the simulator cut valve 44 are opened and the master cut valve 62 is closed, and the hydraulic pressure of the first wheel cylinders 81 and 82 and the second wheel cylinders 83 and 84 is applied by the electric cylinder 2. It is a control (control mode) to be adjusted.
 通常制御は、マスタシリンダ4とホイールシリンダ81~84とを液圧的に切り離し、ブレーキECU901、902の制御によりホイール圧を調整するいわゆるバイワイヤモードを形成する。具体的に、第1ブレーキECU901は、マスタカット弁62が閉弁され且つシミュレータカット弁44及び連通制御弁61が開弁された状態で、ストロークセンサ71が検出したデータを基に電動シリンダ2を駆動させる。第1ブレーキECU901は、ストロークセンサ71の検出結果に基づいて目標減速度及び目標ホイール圧を設定し、実際のホイール圧が目標ホイール圧に近づくように電動シリンダ2を制御する。第2ブレーキECU902は、アンチスキッド制御等の実行に際してアクチュエータ3を作動させる。 In normal control, the master cylinder 4 and the wheel cylinders 81 to 84 are hydraulically separated to form a so-called by-wire mode in which the wheel pressure is adjusted by controlling the brake ECUs 901 and 902. Specifically, the first brake ECU 901 uses the electric cylinder 2 based on the data detected by the stroke sensor 71 in a state where the master cut valve 62 is closed and the simulator cut valve 44 and the communication control valve 61 are opened. Drive. The first brake ECU 901 sets a target deceleration and a target wheel pressure based on the detection result of the stroke sensor 71, and controls the electric cylinder 2 so that the actual wheel pressure approaches the target wheel pressure. The second brake ECU 902 operates the actuator 3 when executing anti-skid control or the like.
(特定状態における第2ブレーキECUによる制御)
 第2ブレーキECU902の設定部91は、連通制御弁61が閉弁し且つマスタカット弁62が開弁した特定状態において、マスタ圧と第2ブレーキ圧とに基づいて第1目標差圧及び第2目標差圧を設定する。
(Control by the second brake ECU in a specific state)
The setting unit 91 of the second brake ECU 902 sets the first target differential pressure and the second brake pressure based on the master pressure and the second brake pressure in a specific state in which the communication control valve 61 is closed and the master cut valve 62 is opened. Set the target differential pressure.
 特定状態は、例えば第1ブレーキECU901が故障した場合に形成される。第1ブレーキECU901が故障すると、電磁弁61、62、44への制御が不能となり、電磁弁61、62、44への制御電流の印加が停止される。つまり、電磁弁61、62、44は、非通電状態となる。これにより、連通制御弁61は閉弁し、マスタカット弁62は開弁し、シミュレータカット弁44は閉弁する。 The specific state is formed, for example, when the first brake ECU 901 fails. When the first brake ECU 901 fails, control to the solenoid valves 61, 62, 44 becomes impossible, and application of the control current to the solenoid valves 61, 62, 44 is stopped. That is, the solenoid valves 61, 62, and 44 are in a non-energized state. As a result, the communication control valve 61 is closed, the master cut valve 62 is opened, and the simulator cut valve 44 is closed.
 また、第1ブレーキECU901が故障すると、電動シリンダ2も制御不能となり、電動シリンダ2への制御電流の印加も停止される。つまり、電動シリンダ2は、非通電状態となる。これにより、電気モータ22が停止し、ピストン23は付勢部材25により初期位置に戻される。 Further, if the first brake ECU 901 fails, the electric cylinder 2 also becomes uncontrollable, and the application of the control current to the electric cylinder 2 is also stopped. That is, the electric cylinder 2 is in a non-energized state. As a result, the electric motor 22 is stopped, and the piston 23 is returned to the initial position by the urging member 25.
 電動シリンダ2のピストン23が初期位置に位置する場合、第2液圧出力部32とリザーバ45とが電動シリンダ2を介して連通する。これにより、第2ブレーキ圧は0(大気圧)となる。したがって、設定部91は、特定状態が形成され且つ電動シリンダ2が非通電状態である場合、第2ブレーキ圧を0に設定して第1目標差圧及び第2目標差圧を設定する。 When the piston 23 of the electric cylinder 2 is located at the initial position, the second hydraulic pressure output unit 32 and the reservoir 45 communicate with each other via the electric cylinder 2. As a result, the second brake pressure becomes 0 (atmospheric pressure). Therefore, when the specific state is formed and the electric cylinder 2 is in the non-energized state, the setting unit 91 sets the second brake pressure to 0 and sets the first target differential pressure and the second target differential pressure.
 第2ブレーキECU902は、電気モータ22が停止してから所定時間経過後、ピストン23が初期位置に位置していると判断してもよい。所定時間は、付勢部材25の弾性力に基づいて予め設定されていてもよい。所定時間経過後、設定部91は第2ブレーキ圧を0に設定してもよい。 The second brake ECU 902 may determine that the piston 23 is located at the initial position after a predetermined time has elapsed after the electric motor 22 has stopped. The predetermined time may be preset based on the elastic force of the urging member 25. After the lapse of a predetermined time, the setting unit 91 may set the second brake pressure to 0.
 また、特定状態において、マスタシリンダ4は、ブレーキ操作部材Zの操作量に応じてマスタ圧を第1液圧出力部31に供給する。つまり、特定状態において第1液圧出力部31への入力液圧はマスタ圧である。設定部91は、特定状態において、このマスタ圧(例えば圧力センサ75の検出結果)を用いて第1目標差圧及び第2目標差圧を設定する。第1実施形態の設定部91は、特定状態が形成され且つ電動シリンダ2が非通電状態である場合、両系統のホイール圧が同圧となるように第1目標差圧及び第2目標差圧を設定する。 Further, in the specific state, the master cylinder 4 supplies the master pressure to the first hydraulic pressure output unit 31 according to the operation amount of the brake operating member Z. That is, in the specific state, the input hydraulic pressure to the first hydraulic pressure output unit 31 is the master pressure. The setting unit 91 sets the first target differential pressure and the second target differential pressure using this master pressure (for example, the detection result of the pressure sensor 75) in a specific state. The setting unit 91 of the first embodiment has a first target differential pressure and a second target differential pressure so that the wheel pressures of both systems are the same when a specific state is formed and the electric cylinder 2 is in a non-energized state. To set.
 図3を参照し、制御例を説明する。第2ブレーキECU902は、第1ブレーキECU901の故障を検出した場合(S101:Yes)、ストロークセンサ71及び圧力センサ75の検出結果に基づいてアクチュエータ3でホイール圧を調圧する(S102)。具体的に、第2ブレーキECU902は、ストロークセンサ71及び圧力センサ75の検出結果に基づいて目標減速度及び目標ホイール圧を演算する。そして、第2ブレーキECU902は、実際のホイール圧が目標ホイール圧に近づくように、マスタ圧及び第2ブレーキ圧に基づいて、第1目標差圧及び第2目標差圧を設定する(S103)。 A control example will be described with reference to FIG. When the second brake ECU 902 detects a failure of the first brake ECU 901 (S101: Yes), the second brake ECU 902 adjusts the wheel pressure by the actuator 3 based on the detection results of the stroke sensor 71 and the pressure sensor 75 (S102). Specifically, the second brake ECU 902 calculates the target deceleration and the target wheel pressure based on the detection results of the stroke sensor 71 and the pressure sensor 75. Then, the second brake ECU 902 sets the first target differential pressure and the second target differential pressure based on the master pressure and the second brake pressure so that the actual wheel pressure approaches the target wheel pressure (S103).
 設定部91は、第1系統の目標ホイール圧とマスタ圧とに基づいて第1目標差圧を設定し、第2系統の目標ホイール圧と第2ブレーキ圧とに基づいて第2目標差圧を設定する。より具体的に、目標差圧を設定する際、設定部91は、圧力センサ75の検出結果に基づいて第1液圧出力部31の入力液圧をマスタ圧に設定し、第2液圧出力部32の入力液圧である第2ブレーキ圧を0に設定する。 The setting unit 91 sets the first target differential pressure based on the target wheel pressure and the master pressure of the first system, and sets the second target differential pressure based on the target wheel pressure and the second brake pressure of the second system. Set. More specifically, when setting the target differential pressure, the setting unit 91 sets the input hydraulic pressure of the first hydraulic pressure output unit 31 to the master pressure based on the detection result of the pressure sensor 75, and sets the second hydraulic pressure output. The second brake pressure, which is the input hydraulic pressure of the unit 32, is set to 0.
 第1系統のホイール圧P1は、マスタ圧Pmに第1目標差圧ΔPt1を加えた値となる(P1=Pm+ΔPt1)。第2系統のホイール圧P2は、第2ブレーキ圧が0であるため、第2目標差圧ΔPt2の値となる(P2=0+ΔPt2)。例えば両系統の目標ホイール圧が同圧である場合、設定部91は、ΔPt2=ΔPt1+Pmを満たすように、第1目標差圧ΔPt1及び第2目標差圧ΔPt2を設定する。第2目標差圧ΔPt2は、目標ホイール圧に設定される。 The wheel pressure P1 of the first system is a value obtained by adding the first target differential pressure ΔPt1 to the master pressure Pm (P1 = Pm + ΔPt1). Since the second brake pressure is 0, the wheel pressure P2 of the second system becomes the value of the second target differential pressure ΔPt2 (P2 = 0 + ΔPt2). For example, when the target wheel pressures of both systems are the same, the setting unit 91 sets the first target differential pressure ΔPt1 and the second target differential pressure ΔPt2 so as to satisfy ΔPt2 = ΔPt1 + Pm. The second target differential pressure ΔPt2 is set to the target wheel pressure.
 第1ブレーキECU901に関する故障は、例えば、ECUの故障や、電源装置903と第1ブレーキECU901との接続ラインの断線等が挙げられる。また、特定状態に切り替わる状況(又は制御によって切り替える状況)は、第1ブレーキECU901の故障以外にも、上流ユニット11が加圧制御を実行できなくなる故障や、上流ユニット11に含まれる電磁弁の断線等といった故障が発生した場合にも起こり得る。第2ブレーキECU902は、例えば、第1ブレーキECU901との通信が不成立(例えば返信がない又は同期できない等)になると、第1ブレーキECU901に関して故障が発生したと判定する。 Failures related to the first brake ECU 901 include, for example, a failure of the ECU, a disconnection of the connection line between the power supply device 903 and the first brake ECU 901, and the like. In addition to the failure of the first brake ECU 901, the situation of switching to a specific state (or the situation of switching by control) is a failure in which the upstream unit 11 cannot execute pressurization control, or a disconnection of the solenoid valve included in the upstream unit 11. It can also occur when a failure such as, etc. occurs. The second brake ECU 902 determines that a failure has occurred in the first brake ECU 901, for example, when communication with the first brake ECU 901 is unsuccessful (for example, there is no reply or synchronization is not possible).
(第1実施形態の効果)
 第1実施形態によれば、特定状態が形成された場合、第1液圧出力部31にはマスタ圧が入力され、第2液圧出力部32には第2ブレーキ圧が入力される。ここで、設定部91は、マスタ圧と第2ブレーキ圧との差を認識した上で、第1目標差圧及び第2目標差圧を設定することができる。これにより、特定状態においても、例えば両系統のホイール圧を同レベル(例えば同圧)にすることも可能となる。本実施形態によれば、例えば第1ブレーキECU901の故障など装置の状態が変化した場合でも、適切に各系統のホイール圧を調圧することができる。
(Effect of the first embodiment)
According to the first embodiment, when a specific state is formed, the master pressure is input to the first hydraulic pressure output unit 31, and the second brake pressure is input to the second hydraulic pressure output unit 32. Here, the setting unit 91 can set the first target differential pressure and the second target differential pressure after recognizing the difference between the master pressure and the second brake pressure. As a result, even in a specific state, for example, the wheel pressures of both systems can be set to the same level (for example, the same pressure). According to this embodiment, the wheel pressure of each system can be appropriately adjusted even when the state of the device changes, for example, due to a failure of the first brake ECU 901.
 また、第1実施形態では、特定状態が形成され且つ電動シリンダ2が非通電状態である場合、付勢部材25の付勢力により、電動シリンダ2のピストン23は初期位置に位置する。ピストン23が初期位置に位置する場合、電動シリンダ2はリザーバ45と連通するので、第2ブレーキ圧は0である。つまり、この場合、第2目標差圧の設定にあたり、第2液圧出力部32への入力液圧は0に設定される。一方、第1目標差圧は、マスタ圧を基に設定される。ブレーキ操作部材Zが操作されている場合、マスタ圧は0より大きい。ブレーキ操作部材Zが操作されていない場合、マスタ圧は0である。 Further, in the first embodiment, when the specific state is formed and the electric cylinder 2 is in the non-energized state, the piston 23 of the electric cylinder 2 is located at the initial position due to the urging force of the urging member 25. When the piston 23 is located at the initial position, the electric cylinder 2 communicates with the reservoir 45, so that the second brake pressure is 0. That is, in this case, the input hydraulic pressure to the second hydraulic pressure output unit 32 is set to 0 when setting the second target differential pressure. On the other hand, the first target differential pressure is set based on the master pressure. When the brake operating member Z is operated, the master pressure is greater than zero. When the brake operating member Z is not operated, the master pressure is 0.
 例えば両系統のホイール圧を同圧にする制御を実行する場合、設定部91は、第1目標差圧をマスタ圧分だけ第2目標差圧よりも小さく設定する。このように、第1実施形態によれば、適切に各系統のホイール圧を調圧することができる。また、例えば第1実施形態のように系統の配置がクロス配管である場合、制動時に両系統のホイール圧に差があると、車両の挙動安定性が低下し得る。しかしながら、第1実施形態によれば、両系統のホイール圧を精度良く同圧にすることができる。これにより、特定状態且つ電動シリンダ2非作動時の制動時において、車両の挙動安定性の低下が抑制される。 For example, when executing control to make the wheel pressures of both systems the same, the setting unit 91 sets the first target differential pressure to be smaller than the second target differential pressure by the amount of the master pressure. As described above, according to the first embodiment, the wheel pressure of each system can be appropriately adjusted. Further, for example, when the system is arranged in a cross pipe as in the first embodiment, if there is a difference in wheel pressure between the two systems during braking, the behavior stability of the vehicle may deteriorate. However, according to the first embodiment, the wheel pressures of both systems can be made the same with high accuracy. As a result, deterioration of vehicle behavior stability is suppressed during braking in a specific state and when the electric cylinder 2 is not operating.
 また、車両用制動装置1が2つのブレーキECU901、902を備えているため、冗長性は向上する。一方のECUが故障しても、他方のECUにより電動シリンダ2又はアクチュエータ3が作動し、ホイール圧が調圧され、制動力が発揮される。このように、第1実施形態によれば、装置の状態が変化した場合でも、適切に各系統のホイール圧を調圧することができる。 Further, since the vehicle braking device 1 is provided with two brake ECUs 901 and 902, the redundancy is improved. Even if one ECU fails, the electric cylinder 2 or the actuator 3 is operated by the other ECU, the wheel pressure is adjusted, and the braking force is exerted. As described above, according to the first embodiment, the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
<第2実施形態>
 第2実施形態の車両用制動装置では、図4に示すように、電源装置903が、第1ブレーキECU901に電力を供給する第1電源903aと、第1電源903aから独立して第2ブレーキECU902に電力を供給する第2電源903bと、を備えている。例えば、第1電源903aは第1バッテリを備え、第2電源903bは第1バッテリとは別個の第2バッテリを備えている。これにより、一方の電源又は電源ラインが故障しても他方の電源により第1ブレーキECU901又は第2ブレーキECU902は作動する。つまり、故障等により一方の電源からの給電が停止しても、電動シリンダ2又はアクチュエータ3を作動させることができ、制動力を発生させることができる。第2実施形態によれば、冗長性がさらに向上する。第2実施形態によっても、装置の状態が変化した場合でも、適切に各系統のホイール圧を調圧することができる。
<Second Embodiment>
In the vehicle braking device of the second embodiment, as shown in FIG. 4, the power supply device 903 has a first power supply 903a that supplies electric power to the first brake ECU 901 and a second brake ECU 902 that is independent of the first power supply 903a. A second power source 903b, which supplies electric power to the power supply 903b, is provided. For example, the first power source 903a includes a first battery, and the second power source 903b includes a second battery separate from the first battery. As a result, even if one power supply or power supply line fails, the first brake ECU 901 or the second brake ECU 902 operates by the other power supply. That is, even if the power supply from one of the power sources is stopped due to a failure or the like, the electric cylinder 2 or the actuator 3 can be operated and a braking force can be generated. According to the second embodiment, the redundancy is further improved. Also according to the second embodiment, the wheel pressure of each system can be appropriately adjusted even when the state of the device changes.
<その他>
 本発明は、上記実施形態に限られない。例えば、第1圧力供給部と第2圧力供給部とは異なるものでもよいし、同一のものでもよい。上記実施形態では第1圧力供給部の加圧源をマスタシリンダ4とし、第2圧力供給部の加圧源を電動シリンダ2としたが、それらの加圧源はそれぞれマスタシリンダ4と電動シリンダ2とに限定されるものではない。
 また、例えば、図3で示される制御において、目標差圧を設定する場合(S103)、第2ブレーキ圧を0に設定しなくてもよい。また、例えば、電動シリンダ2を非作動状態としてから経過した時間に応じて、推定された第2液路52内の液圧を用いて制御が実行されてもよい。この場合、時間の経過に応じて第2ブレーキ圧を0まで減少させてもよい。
 また、第1液路51と第2液路52のうち一方で液漏れが発生している場合に、特定状態に切り替えられてもよい。また、特定状態は、何等かの故障があった場合にのみ形成されるものでなくてもよい。例えば車両用制動装置1は、上流ユニット11の状態にかかわらず特定状態に切り替えてもよい。
 また、特定状態において、両系統のホイール圧が同圧となるように第1目標差圧及び第2目標差圧が設定されなくてもよい。車両の目標姿勢や、目標制動力に応じて、第1目標差圧と第2目標差圧とが設定されてもよい。例えば、第1ホイールシリンダ81、82と第2ホイールシリンダ83、84とで異なる圧力となるように、第1目標差圧及び第2目標差圧が設定されてもよい。
<Others>
The present invention is not limited to the above embodiment. For example, the first pressure supply unit and the second pressure supply unit may be different or the same. In the above embodiment, the pressure source of the first pressure supply unit is the master cylinder 4, and the pressure source of the second pressure supply unit is the electric cylinder 2, but these pressure sources are the master cylinder 4 and the electric cylinder 2, respectively. It is not limited to.
Further, for example, in the control shown in FIG. 3, when the target differential pressure is set (S103), the second brake pressure does not have to be set to 0. Further, for example, control may be executed using the estimated hydraulic pressure in the second liquid passage 52 according to the time elapsed since the electric cylinder 2 is inactive. In this case, the second brake pressure may be reduced to 0 with the passage of time.
Further, when a liquid leak occurs in one of the first liquid passage 51 and the second liquid passage 52, the state may be switched to a specific state. Further, the specific state does not have to be formed only when there is some kind of failure. For example, the vehicle braking device 1 may be switched to a specific state regardless of the state of the upstream unit 11.
Further, in a specific state, the first target differential pressure and the second target differential pressure may not be set so that the wheel pressures of both systems are the same. The first target differential pressure and the second target differential pressure may be set according to the target posture of the vehicle and the target braking force. For example, the first target differential pressure and the second target differential pressure may be set so that the pressures of the first wheel cylinders 81 and 82 and the pressures of the second wheel cylinders 83 and 84 are different.
 また、例えば、アクチュエータ3は、ポンプ315に替えて電動シリンダを備えてもよい。また、車両用制動装置1は、電動シリンダ2に替えて、例えばポンプを含む加圧ユニットを備えてもよい。また、本発明は、例えば、回生制動装置を含む車両(ハイブリッド車や電気自動車)、自動ブレーキ制御を実行する車両、又は自動運転車両にも適用できる。 Further, for example, the actuator 3 may be provided with an electric cylinder instead of the pump 315. Further, the vehicle braking device 1 may include, for example, a pressurizing unit including a pump instead of the electric cylinder 2. The present invention can also be applied to, for example, a vehicle including a regenerative braking device (hybrid vehicle or electric vehicle), a vehicle that executes automatic braking control, or an autonomous driving vehicle.
 特定状態は、故障時に限らず、制御により形成されてもよい。また、設定部91は、第1系統と第2系統とで異なるホイール圧となるように、第1目標差圧及び第2目標差圧を設定してもよい。また、系統の配置は、例えば第1系統のホイールシリンダが前輪に設けられ、第2系統のホイールシリンダが後輪に設けられるように、前後配管でもよい。 The specific state may be formed by control, not limited to the time of failure. Further, the setting unit 91 may set the first target differential pressure and the second target differential pressure so that the wheel pressures of the first system and the second system are different. Further, the system may be arranged in front and rear piping so that, for example, the wheel cylinder of the first system is provided on the front wheel and the wheel cylinder of the second system is provided on the rear wheel.

Claims (3)

  1.  第1ブレーキ圧を供給可能な第1圧力供給部と、
     前記第1圧力供給部に第1液路を介して接続され、前記第1液路から入力された液圧と第1ホイールシリンダの液圧との間に第1差圧を発生させる第1液圧出力部と、
     前記第1圧力供給部とは独立して第2ブレーキ圧を供給可能な第2圧力供給部と、
     前記第2圧力供給部に第2液路を介して接続され、前記第2液路から入力された液圧と第2ホイールシリンダの液圧との間に第2差圧を発生させる第2液圧出力部と、
     前記第1液路と前記第2液路との間を接続する連通路に設けられ、前記連通路を開閉する電磁弁である連通制御弁と、
     前記第1液路において、前記第1液路と前記連通路との接続部よりも前記第1圧力供給部側に設けられた電磁弁であるカット弁と、
     前記第1差圧の目標値である第1目標差圧、及び前記第2差圧の目標値である第2目標差圧を設定する設定部と、
     を備え、
     前記設定部は、前記連通制御弁が閉弁し且つ前記カット弁が開弁した特定状態において、前記第1ブレーキ圧及び前記第2ブレーキ圧に基づいて前記第1目標差圧及び前記第2目標差圧を設定する車両用制動装置。
    The first pressure supply unit that can supply the first brake pressure and
    A first liquid that is connected to the first pressure supply unit via a first liquid passage and generates a first differential pressure between the hydraulic pressure input from the first liquid passage and the hydraulic pressure of the first wheel cylinder. Pressure output section and
    A second pressure supply unit capable of supplying a second brake pressure independently of the first pressure supply unit,
    A second liquid that is connected to the second pressure supply unit via a second liquid passage and generates a second differential pressure between the hydraulic pressure input from the second liquid passage and the hydraulic pressure of the second wheel cylinder. Pressure output section and
    A communication control valve, which is a solenoid valve provided in a communication passage connecting the first liquid passage and the second liquid passage and opens and closes the communication passage,
    In the first liquid passage, a cut valve which is an electromagnetic valve provided on the first pressure supply portion side of the connection portion between the first liquid passage and the communication passage, and a cut valve.
    A setting unit for setting a first target differential pressure, which is a target value of the first differential pressure, and a second target differential pressure, which is a target value of the second differential pressure.
    With
    The setting unit has the first target differential pressure and the second target based on the first brake pressure and the second brake pressure in a specific state in which the communication control valve is closed and the cut valve is opened. A braking device for vehicles that sets the differential pressure.
  2.  前記第2圧力供給部は、シリンダと、電気モータと、前記電気モータの駆動により前記シリンダ内を軸方向一方側に摺動するピストンと、前記ピストンを軸方向他方側に付勢する付勢部材と、を備える電動シリンダであり、
     前記設定部は、前記特定状態が形成され且つ前記第2圧力供給部が非通電状態である場合、前記第2ブレーキ圧を0に設定して前記第1目標差圧及び前記第2目標差圧を設定する請求項1に記載の車両用制動装置。
    The second pressure supply unit includes a cylinder, an electric motor, a piston that slides in the cylinder to one side in the axial direction by driving the electric motor, and an urging member that urges the piston to the other side in the axial direction. It is an electric cylinder equipped with
    When the specific state is formed and the second pressure supply unit is in the non-energized state, the setting unit sets the second brake pressure to 0 and sets the first target differential pressure and the second target differential pressure. The vehicle braking device according to claim 1.
  3.  前記設定部は、前記特定状態が形成され且つ前記第2圧力供給部が非通電状態である場合、前記第1ホイールシリンダの液圧と前記第2ホイールシリンダの液圧とが同圧となるように前記第1目標差圧及び前記第2目標差圧を設定する請求項2に記載の車両用制動装置。 In the setting unit, when the specific state is formed and the second pressure supply unit is in the non-energized state, the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder become the same pressure. The vehicle braking device according to claim 2, wherein the first target differential pressure and the second target differential pressure are set.
PCT/JP2021/012237 2020-03-25 2021-03-24 Vehicular braking device WO2021193715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053649 2020-03-25
JP2020053649A JP7443872B2 (en) 2020-03-25 2020-03-25 Vehicle braking device

Publications (1)

Publication Number Publication Date
WO2021193715A1 true WO2021193715A1 (en) 2021-09-30

Family

ID=77887105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012237 WO2021193715A1 (en) 2020-03-25 2021-03-24 Vehicular braking device

Country Status (2)

Country Link
JP (1) JP7443872B2 (en)
WO (1) WO2021193715A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059458A (en) * 2017-09-25 2019-04-18 株式会社アドヴィックス Brake control device
JP2020001439A (en) * 2018-06-25 2020-01-09 株式会社アドヴィックス Vehicle brake control device
JP2020032962A (en) * 2018-08-31 2020-03-05 株式会社アドヴィックス Brake control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059458A (en) * 2017-09-25 2019-04-18 株式会社アドヴィックス Brake control device
JP2020001439A (en) * 2018-06-25 2020-01-09 株式会社アドヴィックス Vehicle brake control device
JP2020032962A (en) * 2018-08-31 2020-03-05 株式会社アドヴィックス Brake control device

Also Published As

Publication number Publication date
JP2021151846A (en) 2021-09-30
JP7443872B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
KR101724969B1 (en) Brake system having pedal simulator
JP6600031B2 (en) Braking control device
CN110356381B (en) Vehicle brake system
CN112572380A (en) Brake system for a motor vehicle, motor vehicle and method for controlling a brake system
CN109552286B (en) Brake control device
JP5407107B2 (en) Brake device
JP7167656B2 (en) vehicle braking device
WO2021187435A1 (en) Vehicle braking device
JP2015123934A (en) Brake hydraulic pressure generator
WO2021193715A1 (en) Vehicular braking device
WO2021200663A1 (en) Braking device for vehicle
JP5093082B2 (en) Brake hydraulic pressure control device
WO2021200661A1 (en) Vehicular braking device
US20240116484A1 (en) Vehicle control device
JP2016020101A (en) Driving circuit of brake device
WO2022138815A1 (en) Brake device for vehicle
JP7424165B2 (en) Vehicle braking device
WO2022138814A1 (en) Vehicular braking device and electric cylinder
WO2023054492A1 (en) Brake device for vehicle
CN114423652B (en) Brake device for vehicle
CN115593378A (en) Electronic hydraulic brake system
JP2021160418A (en) Braking control device
WO2019017203A1 (en) Braking device and brake control method
JP2017171246A (en) Vehicular brake device
JP2015024711A (en) Vehicular hydraulic pressure brake apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774545

Country of ref document: EP

Kind code of ref document: A1