WO2019017203A1 - Braking device and brake control method - Google Patents

Braking device and brake control method Download PDF

Info

Publication number
WO2019017203A1
WO2019017203A1 PCT/JP2018/025311 JP2018025311W WO2019017203A1 WO 2019017203 A1 WO2019017203 A1 WO 2019017203A1 JP 2018025311 W JP2018025311 W JP 2018025311W WO 2019017203 A1 WO2019017203 A1 WO 2019017203A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
wheel cylinder
pressure
hydraulic pressure
fluid pressure
Prior art date
Application number
PCT/JP2018/025311
Other languages
French (fr)
Japanese (ja)
Inventor
周彦 東
旭 渡辺
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019017203A1 publication Critical patent/WO2019017203A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/18Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump output delivery, e.g. by distributor valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force

Definitions

  • the present invention relates to a brake device.
  • a fluid pressure source capable of supplying brake fluid to a wheel cylinder fluid passage connected to a wheel cylinder and a fluid pressure sensor capable of detecting the fluid pressure in the wheel cylinder fluid passage are provided.
  • a brake device capable of controlling the hydraulic pressure of a cylinder.
  • the brake device disclosed in Patent Document 1 includes a first hydraulic pressure sensor capable of detecting the hydraulic pressure of a first wheel cylinder hydraulic path connected to the first wheel cylinder, and a second wheel connected to the second wheel cylinder. And a second fluid pressure sensor capable of detecting the fluid pressure in the cylinder fluid passage.
  • the brake device can control the fluid pressure of the wheel cylinder based on both the detection value of the first fluid pressure sensor and the detection value of the second fluid pressure sensor.
  • the outline of the brake system of a 1st embodiment is shown.
  • An example of a flow of boost control in a 1st embodiment is shown.
  • the deviation between the detected fluid pressure and the actual fluid pressure is shown.
  • the deviation between the target fluid pressure and the actual fluid pressure is shown.
  • An example of the time chart at the time of boost control in a 1st embodiment is shown.
  • An example of the time chart at the time of boost control in a 1st embodiment is shown.
  • the outline of the brake system of a 2nd embodiment is shown.
  • the outline of the brake system of a 3rd embodiment is shown.
  • the brake system 1 of the present embodiment is a vehicle equipped with only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle equipped with an electric motor (generator) in addition to the engine, and an electric motor Hydraulic brake system that can be mounted on an electric vehicle or the like equipped with only the brake pedal 100 and the wheel cylinder 101 of the wheels (left front wheel FL, right front wheel FR, left rear wheel RL, and right rear wheel RR). Placed in between.
  • the system 1 supplies the brake fluid as the hydraulic fluid to the wheel cylinder 101, and causes the wheel cylinder 101 to generate a fluid pressure of the brake fluid (brake fluid pressure).
  • the wheel cylinder 101 operates a brake shoe or a caliper according to the brake fluid pressure to apply friction braking force (hydraulic braking force) to the wheel.
  • the brake system 1 has two systems of brake piping.
  • the piping type is diagonal piping.
  • P system primary system
  • S system member of the secondary system
  • subscripts P and S are added to the end of each code.
  • the members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals.
  • the brake system 1 has a first unit 1A and a second unit 1B.
  • the first unit 1A integrally includes a push rod 3, a reservoir tank 4, a master cylinder 5, a stroke simulator 6, and a stroke sensor 95.
  • the second unit 1B integrally includes the hydraulic pressure unit 2, the electronic control unit 90, and the hydraulic pressure sensors 91 and 92.
  • the first unit 1A and the second unit 1B are connected to each other by a master cylinder pipe (M / C pipe) 10M, a suction pipe 10R, and a back pressure pipe 10X.
  • the second unit 1B and the wheel cylinders 101 of the wheels FL to RR are connected to each other by a wheel cylinder pipe (W / C pipe) 10W.
  • the first unit 1A has a housing 7. Inside the housing 7, there are cylinders 70 and 71, a replenishment fluid passage 72, a wheel cylinder fluid passage (W / C fluid passage) 73, a positive pressure fluid passage 74, discharge fluid passages 751 and 752, and a back pressure fluid passage 77.
  • the positive pressure fluid passage 74 branches from the W / C fluid passage 73S.
  • FIG. 1 shows a cross section of the first unit 1A passing the axes of the cylinders 70, 71.
  • the reservoir tank 4 is disposed on the upper side of the housing 7.
  • the reservoir tank 4 is a brake fluid source for storing the brake fluid, and is released to the atmospheric pressure.
  • a first chamber 41P, a second chamber 41S and a third chamber 42 are defined. Refilling fluid paths 72P and 72s are connected to the first chamber 41P and the second chamber 41S, respectively.
  • the side surface of the reservoir tank 4 has a port 420 communicating with the third chamber 26.
  • the port 29 is connected to a suction pipe 10R.
  • Master cylinder 5 is a first hydraulic pressure source that operates in response to the driver's operation of brake pedal 100 and can supply brake hydraulic pressure to wheel cylinder 101.
  • Master cylinder 5 is a tandem type, and has a piston 51 and a spring unit 52 for each of P and S systems.
  • the cylinder 70 of the master cylinder 5 is cylindrical and has a refill port 705 for each of the P and S systems.
  • the refilling port 705 is connected to the refilling fluid path 72.
  • the piston 51 is cylindrical.
  • the supply hole 510 penetrates the peripheral wall of the piston 51.
  • the piston 51 is accommodated in the cylinder 70 so as to be movable in the axial direction of the cylinder 70.
  • the piston 51 P is connected to the brake pedal 100 via the push rod 3.
  • the x axis is provided in the moving direction of the piston 51 (the axial direction of the cylinder 70).
  • the side on which the piston 51 moves in response to the depression operation of the brake pedal 100 is negative.
  • the end of the push rod 3 is in contact with the x-axis positive direction end of the piston 51P.
  • the push rod 3 is rotatably coupled to the brake pedal 100.
  • the push rod 3 has a buttock 30.
  • the piston 51S is a free piston type, and is disposed in series with the piston 51P on the x-axis negative direction side of the piston 51P.
  • the first fluid pressure chamber 50P is partitioned by the piston 51P and the piston 51S inside the cylinder 70, and the second fluid pressure chamber 50S is partitioned by the piston 51S in the negative x-axis direction of the first fluid pressure chamber 50P.
  • the sensor chamber 500 is partitioned on the x-axis positive direction side of the first fluid pressure chamber 50P.
  • the W / C fluid path 73 is always open in the fluid pressure chamber 50.
  • the opening of the W / C fluid passage 73 on the outer surface of the housing 7 functions as a connection port 76.
  • the M / C pipe 10M is connected to the connection port 76.
  • the spring unit 52 is accommodated in the hydraulic pressure chamber 50.
  • the first spring unit 52P (spring 520P) is between the piston 51P and the piston 51S.
  • the second spring unit 52S (spring 520S) is between the piston 51S and the inner surface of the cylinder 70.
  • the spring 520 functions as a return spring that normally biases the piston 51 in the positive x-axis direction in a state of being compressed in the axial direction of the cylinder 70.
  • the spring unit 52 has a stopper function that suppresses the amount of compression and the amount of extension of the spring 520 to a certain level or less.
  • the x-axis positive direction side of the piston 51 P and the push rod 3 are accommodated in the sensor chamber 500.
  • the movement of the push rod 3 in the positive x-axis direction is restricted by the contact of the collar 30 with the housing 7.
  • the first chamber 41 of the reservoir tank 4 receives the fluid of the master cylinder 5 through the replenishment fluid passage 72 and the replenishment hole 510.
  • the stroke sensor 95 has a magnet 950 and a sensor body 951.
  • the magnet 950 is disposed on the x-axis positive direction side of the piston 51P.
  • the sensor main body 951 is installed in the housing 7.
  • the swing of the brake pedal 100 is converted to the movement of the push rod 3 and the piston 51P (magnet 950) in the x-axis direction.
  • the sensor body 951 generates an electrical signal in response to the movement of the magnet 950.
  • the stroke sensor 95 detects the amount of movement of the piston 51P in the x-axis direction (the amount of displacement or the amount of operation of the brake pedal 100).
  • the stroke simulator 6 operates in response to the driver's brake operation, and can apply a reaction force corresponding to the operation amount (pedal stroke) of the brake pedal 100 to the brake pedal 100.
  • the stroke simulator 6 includes a piston 61, a first spring unit 62, a second spring unit 63, and seal members 65 and 66.
  • the axis of the cylinder 71 of the stroke simulator 6 extends in the x-axis direction.
  • the cylinder 71 has a small diameter portion 711 and a large diameter portion 712.
  • the small diameter portion 711 is on the x-axis negative direction side of the cylinder 71 and has a first groove 713 and a second groove 714.
  • a first seal member 65 is installed in the first groove 713, and a second seal member 66 is installed in the second groove 714.
  • the seal members 65 and 66 are annular and are U-shaped in cross section.
  • the large diameter portion 712 is on the x axis positive direction side of the cylinder 71.
  • the opening on the x-axis positive direction side of the large diameter portion 712 is closed by the lid member 64.
  • the positive pressure fluid passage 74 and the discharge fluid passage 751 are connected to the small diameter portion 711 on the x-axis negative direction side.
  • a back pressure fluid passage 77 and a discharge fluid passage 752 are connected to the x-axis negative direction side of the large diameter portion 712.
  • the piston 61 is accommodated in the cylinder 71 (small diameter portion 711) so as to be movable in the axial direction (x-axis direction) of the cylinder 71.
  • the outer periphery of the piston 61 is cylindrical.
  • the lip of the seal members 65 and 66 is in contact with the outer peripheral surface of the piston 61.
  • On the inner peripheral side of the piston 61 there are a bottomed cylindrical first recess 611 and a second recess 612 extending in the axial direction of the piston 61.
  • the first recess 611 is open on one side in the axial direction
  • the second recess 612 is open on the other side in the axial direction.
  • a positive pressure chamber 601 and a back pressure chamber 602 are partitioned by the piston 61.
  • a positive pressure fluid path 74 is always open in the positive pressure chamber 601
  • a back pressure fluid path 77 is always open in the back pressure chamber 602.
  • the opening of the back pressure fluid passage 77 on the outer surface of the housing 7 functions as a connection port.
  • the back pressure pipe 10X is connected to this connection port.
  • the first spring unit 62 includes a first spring 620, a first retainer 621, a second retainer 622, a stopper 623, and a first elastic member 624.
  • the first spring 620 is a compression coil spring.
  • the retainers 621 and 622 are cylindrical with a bottom.
  • the first elastic member 624 is formed in a cylindrical shape using rubber (resin) as a material.
  • the x-axis negative direction side of the first spring 620 is held by the first retainer 621.
  • the x-axis positive direction side of the first spring 620 is held by the second retainer 622.
  • the x-axis positive direction end of the stopper 623 is fixed to the second retainer 622.
  • the x-axis negative direction end of the stopper 623 is on the inner peripheral side of the first retainer 621.
  • the engagement of the stopper 623 with the first retainer 621 restricts the extension of the first spring 620.
  • the second spring unit 63 includes a second spring 630, a third retainer 631, a lid member 64, and a second elastic member 634.
  • the second spring 630 is a compression coil spring.
  • the diameter, material diameter, axial dimension, and spring coefficient of the second spring 630 are larger than that of the first spring 620, respectively.
  • the third retainer 631 has a bottomed cylindrical shape.
  • the second elastic member 634 is made of rubber (resin) and is formed in a cylindrical shape in which the axial center of the outer periphery is narrowed.
  • Both spring units 62, 63 are accommodated in the back pressure chamber 602.
  • the x-axis negative direction side of the first spring unit 62 is held by the second recess 612 of the piston 61.
  • the convex portion 613 of the piston 61 is fitted on the inner periphery of the second retainer 622.
  • the first elastic member 624 is accommodated on the inner peripheral side of the second retainer 622.
  • the x-axis negative direction side of the first elastic member 624 is in contact with the protrusion 613.
  • the x-axis positive direction side of the first spring unit 62 is held on the inner peripheral side of the third retainer 631.
  • the x-axis negative direction side of the second spring 630 is held on the outer peripheral side of the third retainer 631.
  • the x-axis positive direction side of the second spring 630 is held by the lid member 64.
  • the second elastic member 634 is accommodated in the lid member 64.
  • the first spring 620 and the second spring 630 are between the piston 61 and the lid member 64 in a compressed state in the x-axis direction. Both springs 620 and 630 always bias the piston 61 in the negative x-axis direction.
  • the set load of the first spring 620 is equal to or less than the set load of the second spring 630.
  • the solenoid valve is a control valve that operates in response to a control signal, and has a solenoid and a valve body.
  • the valve body strokes in response to the energization of the solenoid, and switches the opening and closing of the fluid passage (connects and disconnects the fluid passage).
  • the solenoid valve controls the communication state of the hydraulic pressure circuit and adjusts the flow state of the brake fluid to generate a control hydraulic pressure.
  • the plurality of solenoid valves include a shutoff valve 21, a pressure increasing valve 22, a communication valve 23, a pressure regulating valve 24, a pressure reducing valve 25, a simulator in valve (SS-IN valve) 27, and a simulator out valve (SS-OUT valve) 28. Have.
  • a plurality of fluid passages are a wheel cylinder fluid passage (W / C fluid passage) 11, a suction fluid passage 12, a discharge fluid passage 13, communication fluid passages 13P and 13S, a pressure control fluid passage 14, a pressure reducing fluid passage 15, a back pressure fluid A passage 16, a back pressure supply fluid passage 17 and a back pressure discharge fluid passage 18 are provided.
  • W / C liquid passage 11P is connected to the M / C port 80MP.
  • the W / C fluid passage 11P branches into a fluid passage 11a for the front left wheel and a fluid passage 11d for the rear right wheel.
  • the fluid paths 11a and 11d are connected to the W / C ports 80Wa and 80Wd, respectively.
  • the W / C liquid passage 11S is connected to the M / C port 80MS.
  • the W / C fluid passage 11S branches into a fluid passage 11b for the front right wheel and a fluid passage 11c for the rear left wheel.
  • the fluid paths 11b and 11c are connected to the W / C ports 80Wb and 80Wc, respectively.
  • a shutoff valve 21 is provided on the side of the M / C port 80M in the W / C fluid passage 11 (the fluid passages 11P and 11S before branching).
  • a pressure increase valve 22 is provided on the side of the W / C port 80 W in the W / C liquid path 11 (each of the liquid paths 11 a to 11 d after branching).
  • the pressure increase valve 22 is located between the shutoff valve 21 and the W / C port 80 W in the W / C fluid passage 11.
  • a bypass fluid passage 110 is provided in parallel with each of the W / C fluid passages 11a to 11d by bypassing the pressure increase valve 22.
  • the bypass fluid passage 110 has a check valve 220.
  • the valve 220 only allows the flow of brake fluid from the side of the W / C port 80W to the side of the M / C port 80M.
  • the suction liquid passage 12 connects the liquid storage chamber 120 and the suction port of the pump 201.
  • the reservoir chamber 120 communicates with the suction port 80R.
  • the liquid storage chamber 120 functions as a reservoir capable of storing the brake fluid inside the housing 8.
  • the discharge liquid passage 13 branches into a communication fluid passage 13P and a communication fluid passage 13S.
  • the communication fluid passages 13P and 13S are connected between the shutoff valve 21 and the pressure increasing valve 22 in the W / C fluid passage 11, and connect the W / C fluid passages 11P and 11S to each other.
  • a communication valve 23 is provided in each of the communication fluid passages 13P and 13S.
  • the pressure control liquid passage 14 connects between the communication valves 23P and 23S in the communication liquid passages 13P and 13S (the side of the discharge liquid passage 13 with respect to the communication valve 23) and the liquid storage chamber 120.
  • the pressure control fluid passage 14 has a pressure control valve 24 as a first pressure reducing valve.
  • the pressure reducing fluid passage 15 connects between the pressure increasing valve 22 and the W / C port 80 W in each of the W / C fluid passages 11 a to 11 d and the fluid reservoir chamber 120.
  • Each pressure reducing fluid passage 15a to 15d has a pressure reducing valve 25 as a second pressure reducing valve.
  • pressure regulation liquid path 14 is common with pressure reduction liquid path 15, both liquid paths 14 and 15 may be mutually independent.
  • suction fluid passage 12 may be shared with the pressure control fluid passage 14 or the pressure reduction fluid passage 15.
  • One end of the back pressure fluid path 16 is connected to the back pressure port 80X.
  • the back pressure fluid passage 16 branches into a back pressure supply fluid passage 17 and a back pressure discharge fluid passage 18.
  • the back pressure supply fluid passage 17 is connected between the shutoff valve 21S and the pressure increase valves 22b and 22c in the W / C fluid passage 11S.
  • the back pressure supply fluid passage 17 has an SS-IN valve 27.
  • a bypass fluid passage 170 is provided in parallel with the back pressure supply fluid passage 17 to bypass the SS-IN valve 27.
  • the bypass fluid passage 170 has a check valve 270.
  • the valve 270 allows the flow of the brake fluid from the side of the back pressure fluid path 16 to the side of the W / C fluid path 11S and suppresses the flow in the opposite direction.
  • the back pressure discharge fluid passage 18 is connected to the fluid reservoir chamber 120.
  • the back pressure discharge fluid passage 18 has an SS-OUT valve 28.
  • a bypass fluid passage 180 is provided in parallel with the back pressure discharge fluid passage 18 to bypass the SS-OUT valve 28.
  • the bypass fluid passage 180 has a check valve 280.
  • the valve 280 allows the flow of the brake fluid from the side of the fluid reservoir chamber 120 to the side of the back pressure fluid path 16 and suppresses the flow in the opposite direction.
  • a part of the back pressure discharge liquid path 18 is common to the pressure control liquid path 14 and the pressure reduction liquid path 15, the back pressure discharge liquid path 18 may be independent of both the liquid paths 14 and 15.
  • the first fluid pressure chamber 50P of the master cylinder 5 includes a W / C fluid passage 73P of the housing 7, a fluid passage (W / C fluid passage) in the M / C pipe 10MP, a W / C fluid passage 11P of the housing 8, and It is connected to the wheel cylinders 101a and 101d of the P system via fluid passages (W / C fluid passages) in the W / C pipes 10Wa and 10Wd.
  • the second fluid pressure chamber 50S includes the W / C fluid passage 73S of the housing 7, the fluid passage (W / C fluid passage) in the M / C piping 10MS, the W / C fluid passage 11S of the housing 8, and the W / C piping It connects with the wheel cylinder 101b, 101c of S system
  • the second fluid pressure chamber 50S is connected to the positive pressure chamber 601 of the stroke simulator 6 via the W / C fluid path 73S of the housing 7 and the positive pressure fluid path 74.
  • the back pressure chamber 602 of the stroke simulator 6 includes the back pressure liquid path 77 of the housing 7, the liquid path in the back pressure pipe 10X, the back pressure liquid path 16 of the housing 8, the back pressure supply liquid path 17, and the W / C liquid path. 11 and the W / C pipe 10 W via the fluid path, and is connected to the wheel cylinder 101.
  • the back pressure chamber 602 is connected to the liquid reservoir chamber 120 through the back pressure liquid path 77 of the housing 7, the liquid path in the back pressure pipe 10X, the back pressure liquid path 16 of the housing 8, and the back pressure discharge liquid path 18. Do.
  • An electronic control unit (control unit, hereinafter referred to as an ECU) 90 is installed on one side of the housing 8.
  • the ECU 90 is connected to the stroke sensor 95 via a harness. Further, the ECU 90 is electrically connected to the fluid pressure sensors 91, 92P and 92S, and connected to other control devices and the like on the vehicle side via a vehicle-mounted network such as CAN.
  • the ECU 90 performs the opening / closing operation of the solenoid valve 21 etc. and the rotational speed of the motor 200 based on the detected values of the sensor 91 etc. and the information on the traveling state inputted from the vehicle side and the built-in program (stored in ROM). That is, the discharge amount of the pump 201 is controlled.
  • the ECU 90 includes a receiving unit 901, an arithmetic unit 902, and a driving unit 903.
  • the receiving unit 901 receives detection values of the sensors 91, 92, 95, etc. and information from the in-vehicle network.
  • failure signals from the fluid pressure sensors 92P and 92S are received.
  • the calculating unit 902 calculates the target wheel cylinder hydraulic pressure and the like based on the information input from the receiving unit 901. For example, based on the detection value of the stroke sensor 95, the displacement amount (pedal stroke) of the brake pedal 100 as a brake operation amount is detected.
  • Boost control based on the detected pedal stroke, a predetermined boost ratio, ie an ideal relationship between the pedal stroke and the driver's requested brake fluid pressure (vehicle deceleration requested by the driver), is realized.
  • Target wheel cylinder hydraulic pressure (target W / C hydraulic pressure P *) is set. This P * is common to all the wheels FL to RR.
  • P * is common to all the wheels FL to RR.
  • the sum of the regenerative braking force input from the control unit of the regenerative braking system of the vehicle and the hydraulic braking force corresponding to the target W / C hydraulic pressure P * reduces the vehicle demand by the driver. Calculate P * that satisfies the speed.
  • the target W / C fluid pressure P * of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like).
  • the calculation unit 902 calculates a command for driving the actuators (the respective solenoid valves 21 and the like and the motor 200) so as to realize the target W / C fluid pressure P *, and outputs the command to the drive unit 903.
  • the drive unit 903 supplies power to the actuator in accordance with the command signal from the calculation unit 902.
  • the ECU 90 functions as a control unit in the brake system 1.
  • the arithmetic unit 902 and the reception unit 901 are realized by software in the microcomputer in the embodiment, but may be realized by an electronic circuit.
  • the operation means not only mathematical operation but also general processing on software.
  • the receiving unit 901 may be an interface of a microcomputer or software in the microcomputer.
  • the drive unit 903 includes a PWM duty value calculation unit, an inverter, and the like.
  • the command signal may relate to a current value, or may relate to a force (torque) or a displacement amount.
  • P * for realizing a predetermined boosting ratio at the time of boosting control in the arithmetic unit 902
  • it may be set by computing.
  • the ECU 90 deactivates the pump unit 20 and actuates the shutoff valve 21 in the opening direction.
  • the W / C fluid passages (fluid passages 73, 11 and so on) connecting the fluid pressure chamber 50 of the master cylinder 5 and the wheel cylinder 101 realize a depression brake (non-boost control).
  • the depression force brake generates the wheel cylinder hydraulic pressure by the pressure (master cylinder hydraulic pressure) of the brake fluid generated by using the force with which the driver depresses the brake pedal 100. That is, when the driver depresses the brake pedal 100, the piston 51 of the master cylinder 5 moves (strokes) in the x-axis negative direction.
  • a master cylinder fluid pressure is generated in the fluid pressure chamber 50.
  • the brake fluid that has flowed out of the fluid pressure chamber 50 is supplied to the wheel cylinder 101 via the W / C fluid passage to generate a wheel cylinder fluid pressure.
  • the ECU 90 operates the SS-IN valve 27 and the SS-OUT valve 28 in the closing direction (in the non-energized state). Thereby, the stroke simulator 6 is inactivated. That is, when the SS-OUT valve 28 is closed, the brake fluid is not discharged from the back pressure chamber 602 to the fluid storage chamber 120, so the stroke of the piston 61 of the stroke simulator 6 is suppressed.
  • the ECU 90 controls the hydraulic pressure unit 2 to individually block the hydraulic pressure of each wheel cylinder 101 (independently of the driver's brake operation) while the communication between the master cylinder 5 and the wheel cylinder 101 is cut off. It is controllable. That is, the pump unit 20 can supply the brake fluid to the W / C fluid passage 11 on the side of the wheel cylinder 101 with respect to the shutoff valve 21.
  • the pump 201 sucks the brake fluid in the fluid storage chamber 120 through the suction fluid passage 12 and discharges it to the discharge fluid passage 13, and supplies it to the W / C fluid passage 11 (through the fluid communication passages 13P and 13S). Do.
  • the brake fluid is supplied to the fluid reservoir chamber 120 from the reservoir tank 4 via the pipe 10R.
  • the hydraulic unit 2 supplies the brake fluid pressurized by the pump 201 to the wheel cylinder 101 via the W / C pipe 10W.
  • a fluid passage (a suction fluid passage 12, a discharge fluid passage 13, etc.) connecting the fluid storage chamber 120 and the wheel cylinder 101 is a so-called brake that creates a foil cylinder fluid pressure by the fluid pressure generated using the pump unit 20.
  • the shutoff valve 21 shuts off the communication between the master cylinder 5 and the wheel cylinder 101 by closing the shutoff valve 21.
  • the pressure control valve 24 can adjust the amount of brake fluid flowing out to the fluid storage chamber 120 from the side of the pump 201 via the pressure control fluid passage 14.
  • the pressure increasing valve 22 can adjust the amount of brake fluid flowing into the wheel cylinder 101 via the W / C fluid passage 11.
  • the check valve 220 is opened from the side of the wheel cylinder 101 by opening the valve when the hydraulic pressure on the side of the shutoff valve 21 is lower than the hydraulic pressure of the wheel cylinder 101 with respect to the pressure increasing valve 22 in the W / C fluid passage 11. 22 permits the flow of brake fluid to the side of the shutoff valve 21.
  • the pressure reducing valve 25 is opened to cause the brake fluid to flow out of the wheel cylinder 101 to the fluid storage chamber 120 via the pressure reducing fluid passage 15.
  • the fluid pressure sensor 92 can detect the fluid pressure in the W / C fluid passage 11 on the side of the wheel cylinder 101 with respect to the shutoff valve 21. Therefore, even when the shutoff valve 21 operates in the closing direction, the hydraulic pressure of the wheel cylinder 101 can be detected.
  • the ECU 90 can control the wheel cylinder hydraulic pressure based on the detection value of the hydraulic pressure sensor 92. Since the hydraulic pressure sensor 92 is in the P and S systems, the ECU 90 can control the wheel cylinder hydraulic pressure for each system based on the detection value for each system.
  • the fluid pressure sensor 92 may be located in the communication fluid passages 13P and 13S (on the side of the W / C fluid passage 11 relative to the communication valve 23 thereof).
  • the fluid pressure sensor 92S may be located on the back pressure supply fluid passage 17 (on the W / C fluid passage 11 side of the SS-IN valve 27).
  • the ECU 90 operates the SS-OUT valve 28 in the opening direction.
  • the back pressure chamber 602 communicates with the fluid reservoir chamber 120 and becomes substantially atmospheric pressure, so the stroke simulator 6 operates. That is, when the brake pedal 100 is depressed and the master cylinder fluid pressure is generated in the first fluid pressure chamber 50P, the brake fluid flowing out of the first fluid pressure chamber 50P is transferred to the positive pressure chamber 601 via the positive pressure fluid passage 74. To flow. In the positive pressure chamber 601, a fluid pressure (master cylinder fluid pressure) substantially the same as that of the first fluid pressure chamber 50P is generated.
  • the pedal reaction force generated according to the operation (pedal stroke) of the piston 61 approach a desired characteristic.
  • the characteristics of the pedal reaction force can be made more preferable.
  • the configuration of the stroke simulator 6 is not limited to this. If a power failure occurs during operation of the stroke simulator 6, the SS-OUT valve 28 is closed. The force of the springs 620 and 630 causes the piston 61 to stroke in the x-axis negative direction toward the initial position.
  • the check valve 280 is opened according to the volume expansion of the back pressure chamber 602, and the brake is transferred from the liquid storage chamber 120 to the back pressure chamber 602 through the back pressure discharge liquid passage 18 (bypass liquid passage 180) and the back pressure liquid passage 16. The fluid is replenished.
  • the ECU 90 closes the SS-OUT valve 28 until the pump 201 can generate a sufficiently high wheel cylinder pressure when the wheel cylinder pressure control is performed after the start of the stepping operation of the brake pedal 100. It may be operated (not energized). Thereby, the pressure increase response of the wheel cylinder 101 can be improved. That is, in the state where the SS-OUT valve 28 is closed, the brake fluid flowing out of the back pressure chamber 602 in response to the stepping-on operation of the brake pedal 100 is closer to the fluid pressure of the back pressure chamber 602 than the fluid pressure of the wheel cylinder 101.
  • the brake fluid supplied to the W / C fluid passage 11 is supplied to the wheel cylinder 101.
  • the check valve 270 closes and the supply of the above-mentioned brake fluid to the wheel cylinder 101 is automatically ended.
  • the ECU 90 operates the SS-OUT valve 28 in the opening direction when it is determined that the pump unit 20 is in an operable state capable of generating a sufficiently high wheel cylinder hydraulic pressure.
  • the back pressure supply fluid passage 17 has an SS-IN valve 27 in parallel with the bypass fluid passage 170 (check valve 270).
  • the ECU 90 may operate the SS-IN valve 27 in the opening direction while the SS-OUT valve 28 is operated in the closing direction as described above after the depression operation of the brake pedal 100 is started.
  • the cross-sectional area of the back pressure supply fluid path 17 is increased, and the supply of the brake fluid from the back pressure chamber 602 to the wheel cylinder 101 is facilitated.
  • the ECU 90 operates the SS-IN valve 27 in the opening direction in a state where the fluid pressure of the W / C fluid passage 11 is higher than the fluid pressure on the back pressure chamber 602 side.
  • the brake fluid can be supplied from the W / C fluid passage 11 to the back pressure chamber 602. Therefore, the ECU 90 controls the brake fluid supply to the back pressure chamber 602 by adjusting the opening and closing of the SS-IN valve 27 while executing the antilock brake control with the shutoff valve 21 operated in the closing direction, for example.
  • the driver can be notified of the execution of the antilock brake control as a pedal reaction force, and the operation feeling (pedal feeling) of the brake pedal 100 can be improved.
  • the back pressure supply liquid passage 17 has the same liquid passage as the back pressure discharge liquid passage 18 in the back pressure liquid passage 16, the liquid passages 17 and 18 may be independent of each other.
  • the ECU 90 drives the motor 200 at a predetermined rotational speed, and operates the shutoff valves 21P and 21S in the closing direction and the communication valves 23P and 23S in the opening direction.
  • the pressure increasing valves 22a to 22d are maintained in the open state, and the pressure reducing valves 25a to 25d are maintained in the closed state.
  • the SS-IN valve 27 is maintained in the closed state, and the SS-OUT valve 28 is operated in the opening direction.
  • W / C side fluid pressure the fluid pressure on the side of the wheel cylinder 101 with respect to the shutoff valve 21 in the W / C fluid passage 11 (hereinafter referred to as W / C side fluid pressure) is substantially (if the resistance of the fluid passage etc. is ignored).
  • the fluid pressure (wheel cylinder fluid pressure) of each of the wheel cylinders 101a to 101d is connected to the pressure control fluid passage 14 via the fluid communication passages 13P and 13S.
  • the ECU 90 adjusts the opening and closing of the pressure control valve 24 (such as the amount, time, and frequency of opening the valve) so that the W / C side hydraulic pressure becomes the target W / C hydraulic pressure P *.
  • the pressure control valve 24 has a function of returning the surplus portion of the brake fluid discharged from the pump 201 to the liquid storage chamber 120 via the pressure control liquid passage 14.
  • the wheel cylinder hydraulic pressure of each of the wheels FL to RR is controlled to be P *.
  • the calculation unit 902 of the ECU 90 calculates the W / C side hydraulic pressure using the detection values Pp, Ps of the hydraulic pressure sensors 92P, 92S.
  • the calculated hydraulic pressure is taken as a control detected hydraulic pressure PC.
  • the calculation unit 902 calculates a command for adjusting the opening and closing of the pressure regulating valve 24 such that PC becomes P *.
  • the computing unit 902 uses both the detected value Pp of the fluid pressure sensor 92P and the detected value Ps of the fluid pressure sensor 92S to detect the control detected fluid pressure PC. Calculate The ECU 90 controls the pressure regulating valve 24 such that the PC becomes the target W / C fluid pressure P *.
  • This control mode is referred to as a normal mode, and the module of the ECU 90 that executes the normal mode is referred to as a first control unit.
  • the computing unit 902 sets a PC using the detection value (Pp or Ps) of the normal hydraulic pressure sensor 92.
  • the ECU 90 controls the pressure regulating valve 24 such that this PC becomes P *.
  • This control mode is called a failure mode
  • a module of the ECU 90 that executes the failure mode is called a second control unit.
  • the computing unit 902 sets “the value detected by the fluid pressure sensor 92 of the normal one (Pp or Ps) is used immediately after the failure is detected.
  • P * is corrected according to whether or not PC is higher than P * at the time of detection of the above-mentioned failure.
  • the ECU 90 controls the pressure regulating valve 24 such that the PC becomes P * (target hydraulic pressure for control PC *) after the correction.
  • This control mode is referred to as a switching mode
  • the module of the ECU 90 that executes the switching mode is referred to as a third control unit.
  • the switching mode is executed when switching from the normal mode to the failure mode.
  • FIG. 2 shows a flow in which the calculation unit 902 calculates the control detection hydraulic pressure PC and the control target hydraulic pressure PC * in boost control, and outputs a command to the pressure adjustment valve 24 based on these.
  • This flow is repeatedly executed in a predetermined cycle.
  • the operation unit 902 calculates the target W / C fluid pressure P * in step S1. Thereafter, the process proceeds to step S2.
  • step S2 based on the failure signals from the fluid pressure sensors 92P and 92S, it is determined whether or not the fluid pressure sensors 92P and 92S have a failure. If it is determined that no failure has occurred in any of the sensors 92P and 92S, the process proceeds to step S3.
  • step S5 the process proceeds to step S5.
  • step S3 the arithmetic mean of the detection value Pp of the fluid pressure sensor 92P and the detection value Ps of the fluid pressure sensor 92S is set to PC.
  • the counter is set to 0. The counter indicates the number of executions of this flow after detection of a failure.
  • step S4 P * is set to PC * (the P * is not corrected but is used as it is as PC *). If the flag A is set, the flag A is reset. The flag A indicates that the slow depressurization processing in the switching mode is in progress. Thereafter, the process proceeds to step S11.
  • step S9 it is determined whether the flag A is set. If the flag A is set, the process proceeds to step S10. If the flag A is not set, the process proceeds to step S4. In step S10, a value obtained by subtracting a predetermined value ⁇ from PC * calculated in the previous cycle is set as PC * in the current cycle. Thereafter, the process proceeds to step S11. In step S11, a command for driving the pressure regulating valve 24 is calculated to bring the PC (calculated in the current cycle) close to the PC * (calculated in the current cycle), and the command is output to the drive unit 903. After that, this cycle ends.
  • the flow of steps S 1 ⁇ S 2 ⁇ S 3 ⁇ S 4 ⁇ S 11 corresponds to the normal mode.
  • steps S1 ⁇ S2 ⁇ S5 ⁇ S6 ⁇ S4 ⁇ S11 and steps S1 ⁇ S2 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S9 ⁇ S4 ⁇ S11 corresponds to the failure mode.
  • Steps S1 ⁇ S2 ⁇ S5 ⁇ S6 ⁇ S4 ⁇ S11 and steps S1 ⁇ S2 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S8 ⁇ S11 and steps S1 ⁇ S2 ⁇ S5 ⁇ S6 ⁇ S7 ⁇ S9 ⁇ S10 ⁇ S11 are switched modes. Equivalent to.
  • FIG. 5 shows an example of the operation of each actuator at the time of boost control and the time change of each fluid pressure (when the detected fluid pressure Pp at the time of failure of the fluid pressure sensor 92P is higher than the target fluid pressure P *).
  • the brake pedal Before time t1, the brake pedal is not operated. The pedal stroke is zero, and the target W / C fluid pressure P * is zero (atmospheric pressure).
  • the driver starts stepping on the brake pedal. As the pedal stroke increases, P * rises.
  • P * rises.
  • the increase of the pedal stroke ends, and thereafter, the pedal stroke is held constant until time t4.
  • P * is a constant value.
  • the driver starts to depress the brake pedal.
  • the detected value Ps of the normal hydraulic pressure sensor 92S is set to PC (step S5).
  • FIG. 6 shows another example of the operation of each actuator at the time of boost control and the time change of each fluid pressure (when the detected fluid pressure Pp at the time of failure of the fluid pressure sensor 92P is lower than the target fluid pressure P *).
  • the pedal stroke and the change in the target W / C fluid pressure P * are the same as in FIG. From time t11 to t13, no failure of the fluid pressure sensors 92P and 92S is detected. Therefore, the flow of steps S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ S11 in FIG. 2 (normal mode).
  • the fluid pressure sensor 92S is normal, and the detected value Ps is regarded as being in agreement with the actual W / C side fluid pressure.
  • Ps may be deviated to some extent from the actual W / C side hydraulic pressure.
  • the detected value Pp of the fluid pressure sensor 92P deviates from the actual W / C side fluid pressure and is lower than the W / C side fluid pressure (Ps).
  • the control detected hydraulic pressure PC is an arithmetic mean value of Pp and Ps (step S3). Pp is lower than PC and Ps is higher than PC.
  • P * is set to the control target fluid pressure PC * (step S4).
  • a failure of the hydraulic pressure sensor 92P is detected.
  • step S5 The detected value Ps of the normal hydraulic pressure sensor 92S is set to PC (step S5).
  • PC Ps is set to PC * (step S8).
  • the ECU 90 when the ECU 90 does not detect any failure of the fluid pressure sensors 92P and 92S (until time t3 or time t13), the detected value Pp of the fluid pressure sensor 92P and the detected value Ps of the fluid pressure sensor 92S
  • the W / C side hydraulic pressure (control detection hydraulic pressure PC) is calculated using both.
  • the pressure control valve 24 is controlled so that the calculated PC becomes the target W / C fluid pressure P *. That is, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on both Pp and Ps.
  • the W / C side hydraulic pressure is detected more accurately than when the hydraulic pressure of the wheel cylinder 101 is controlled based on only one of Pp and Ps, and the actual foil is detected based on this accurate value.
  • the cylinder hydraulic pressure (actual W / C hydraulic pressure) can be controlled. Therefore, deviation of the actual W / C fluid pressure from P * can be suppressed, and the control accuracy can be improved.
  • the ECU 90 uses one of Pp and Ps when the deviation between Pp and Ps is small (for example, less than a predetermined threshold), Both Pp and Ps may be used to calculate PC only when the deviation between Pp and Ps is large (eg, when a predetermined threshold is exceeded).
  • the ECU 90 detects one detected value Pp1 and another detected value among the plurality of hydraulic pressure sensors 92P.
  • the wheel cylinder hydraulic pressure may be controllable based on both of Pp2. Also in this case, the deviation of the actual W / C fluid pressure from P * can be suppressed and the control accuracy can be improved, as compared to the case where the wheel cylinder fluid pressure is controlled based on only the detected value Pp of one fluid pressure sensor 92P. . It should be noted that both of Pp1 and Pp2 may be used only when the difference between the two detection values Pp1 and Pp2 is large.
  • there may be a plurality of hydraulic pressure sensors 92S and the ECU 90 may be capable of controlling the wheel cylinder hydraulic pressure based on the detection values of the plurality of hydraulic pressure sensors 92S.
  • the ECU 90 controls the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c to a common target W / C fluid pressure P *. Therefore, it is possible to suppress the dispersion of the controlled actual W / C fluid pressure between the wheel cylinders 101a and 101d and the wheel cylinders 101b and 101c.
  • the control of the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c to a common P * includes not only boost control but also automatic brake control and the like.
  • the W / C fluid passage 11P and the W / C fluid passage 11S communicate with each other via the fluid communication passages 13P and 13S, so the W / C side fluid pressure of the W / C fluid passage 11P (wheel cylinder The fluid pressure 101a, 101d) and the fluid pressure on the W / C side of the W / C fluid path 11S (fluid pressure of the wheel cylinders 101b, 101c) are common.
  • the fluid pressure sensors 92P and 92S detect the common W / C side fluid pressure. By using both Pp and Ps, the common W / C side hydraulic pressure can be detected more accurately.
  • the ECU 90 performs control based on the average of the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S when neither failure of the hydraulic pressure sensors 92P, 92S is detected (until time t3 or time t13).
  • the detected hydraulic pressure PC is calculated.
  • the pressure control valve 24 is controlled so that this PC becomes the target W / C fluid pressure P *. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between Pp and Ps.
  • Pp or Ps deviates from the actual W / C side fluid pressure (due to tolerance or product variation) even when the fluid pressure sensor 92P and the fluid pressure sensor 92S do not determine that a failure has occurred in itself.
  • Pp and Ps deviate from the actual W / C side hydraulic pressure P0, and Pp is larger than Ps, (the value is a value between Pp and Ps.
  • the difference ⁇ P2 between PC and P0 is smaller than the difference ⁇ P1 between Pp and P0.
  • the control detection hydraulic pressure PC may be any value between the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S, and is not limited to the average value of Pp and Ps. Further, even when PC is calculated by the average of Pp and Ps, this average value is not limited to the arithmetic average value of Pp and Ps. For example, it may be a weighted average value of Pp and Ps. That is, the calculating unit 902 (step S3) may calculate the average value by giving different weights to Pp and Ps based on the characteristics of the respective hydraulic pressure sensors 92P and 92S.
  • the computing unit 902 may store or predict the failure frequency of the fluid pressure sensor 92P and the fluid pressure sensor 92S, and may increase the weight of the detection value of the fluid pressure sensor 92, which has a lower frequency.
  • the detection accuracy in the normal output of the fluid pressure sensor 92P and the fluid pressure sensor 92S may be stored or predicted, and the weight of the detection value of the fluid pressure sensor 92 having the higher accuracy may be increased.
  • the ECU 90 controls the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on Pp and Ps having different weights, thereby achieving the target W / C fluid pressure P *.
  • the computing unit 902 sets the arithmetic mean value of Pp and Po to PC. Therefore, whether the difference between the detected value and the actual value is actually large in either of the hydraulic pressure sensors 92P and 92S, the ECU 90 makes the actual W / C hydraulic pressure as P * as possible with equal probability. It is possible to control to a close value.
  • the arithmetic logic of the PC is simplified.
  • the pump 201 can supply (the fluid pressure of) the brake fluid to the W / C fluid passages 11P and 11S connected by the communication fluid passages 13P and 13S. Therefore, the wheel cylinders 101a to 101d of the P and S systems can be pressurized by one pump unit 20. Each system may have a pump unit. When the pump units are common to the P and S systems, the number of pump units can be reduced and the control logic using the pump units can be simplified.
  • the pump 201 is connected to the communication fluid passages 13P and 13S (via the discharge fluid passage 13). Therefore, it can be suppressed that the supply of the brake fluid from the pump 201 becomes biased to either of the P and S systems.
  • the pump 201 when one pump unit 20 is used, when the pump 201 is connected to, for example, the W / C fluid passage 11P, the communication fluid passages 13P, 13S or the like interposed between the pump 201 and the W / C fluid passage 11S
  • the W / C side fluid pressure of the W / C fluid path 11S corresponds to the W / C side fluid pressure of the W / C fluid path 11P by the resistance of the fluid path by the communication valve 23 etc. It becomes lower than (the hydraulic pressure of the wheel cylinders 101a and 101d).
  • the pump 201 when the pump 201 is connected to the communication fluid passages 13P and 13S, the length of the fluid passage between the pump 201 and the W / C fluid passage 11 (wheel cylinder 101) and the number of valves (resistance of the fluid passage Can be suppressed in the P and S systems. Therefore, it is suppressed that a difference arises between the W / C side fluid pressure (wheel cylinder fluid pressure) of both systems.
  • the hydraulic pressure sensor 92 in one system
  • the fluid pressures of the wheel cylinders 101a and 101d and the wheel cylinders 101b and 101c are controlled using only the detected values of
  • the actual W / C side fluid pressure (actual W / C fluid pressure) in the other system may deviate from the target W / C fluid pressure P * by the amount of the fluid pressure difference between the P and S systems.
  • a communication valve 23 is provided in the communication fluid passages 13P and 13S. Since the ECU 90 controls the communication valve 23 in the closing direction, the flow of the brake fluid between the P and S systems is suppressed, so that the hydraulic circuits of the respective systems can be separated from each other as independent circuits.
  • Communication valves 23P and 23S are provided in the communication fluid passages 13P and 13S, respectively.
  • the discharge fluid passage 13 (pump 201) is connected between the communication valves 23P and 23S in the communication fluid passages 13P and 13S. Therefore, it is possible to improve fail-safe performance and the like.
  • the ECU 90 controls the communication valve 23 of the system in which the fluid leak has occurred in the closing direction, so that the pump unit 20 does not generate the fluid leak. It is possible to continue wheel cylinder hydraulic pressure control using.
  • the fluid pressure sensor 92P detects the fluid pressure in the fluid passage between the communication valve 23P and the pressure increasing valves 22a and 22d (more specifically, between the communication valve 23P and the pressure increasing valves 22a and 22d and the shutoff valve 21P) It is possible.
  • the fluid pressure sensor 92S detects the fluid pressure in the fluid passage between the communication valve 23S and the pressure increasing valves 22b and 22c (more specifically, between the communication valve 23S and the pressure increasing valves 22b and 22c and the shutoff valve 21S) It is possible. As described above, the fluid passages in which the fluid pressure sensor 92 can detect the fluid pressure are at functionally equivalent positions (symmetrical with respect to the pump 201, the valve 23, etc. and the wheel cylinder 101) in both systems. For this reason, the difference between the actual fluid pressures to be detected by both fluid pressure sensors 92P and 92S is reduced.
  • control detection hydraulic pressure PC which is a value between the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S, for wheel cylinder hydraulic pressure control of both systems. It is obtained effectively.
  • the operation and effect at the time of switching from the normal mode to the failure mode will be described by taking the failure time of the hydraulic pressure sensor 92P as an example.
  • the ECU 90 third control unit If the detected value Ps of the fluid pressure sensor 92S is lower than the target W / C fluid pressure P * at the time of detection of the failure (from time t3 in FIG. 5), “the above Ps is higher than the above P *”
  • the failure mode can be switched earlier than in the case (from time t13 in FIG. 6).
  • the shortage of the vehicle deceleration can be suppressed, and the driver's discomfort caused by the switching can be reduced. That is, immediately after detection of a failure of the hydraulic pressure sensor 92P, if the detection value Ps of the normal hydraulic pressure sensor 92S is lower than P * at the time of detection of the above-mentioned failure, the actual W / C hydraulic pressure reaches P *. In addition, the vehicle deceleration required by the driver is not satisfied. As described above, when the deceleration is insufficient, the ECU 90 can quickly switch to the failure mode and immediately increase Ps to P * to realize the required deceleration.
  • the ECU 90 (third control unit) sets Ps when the detection value Ps of the (normal) liquid pressure sensor 92S immediately after the detection of the failure of the liquid pressure sensor 92P is higher than P * at the time of the detection of the above failure.
  • PC that is, the value between Pp and Ps
  • Ps may be gradually depressurized toward P * by changing PC, not PC *.
  • the ECU 90 gradually decreases the detected value Ps of the hydraulic pressure sensor 92S (normal one) immediately after the detection of the failure of the hydraulic pressure sensor 92P is lower than P * at the time of the detection of the fault. (Over a certain period of time) may be switched to failure mode, and Ps may be gradually boosted toward P *.
  • the pressure increase gradient ⁇ is larger than the pressure decrease gradient ⁇ in the case where “the Ps is higher than the P *”, or the time for switching to the failure mode “the Ps is higher than the P * Switching to failure mode can be quickened compared to the case where “the Ps is higher than the P *” by shortening or higher than in the case of “high”. As a result, it is possible to quickly realize the required deceleration while reducing the driver's discomfort due to the change in the deceleration.
  • control detection hydraulic pressure PC is controlled to coincide with the target W / C hydraulic pressure P * before detection of a failure of the hydraulic pressure sensor 92P (in the normal mode), the above-mentioned failure is detected.
  • P * can be regarded as PC (ie, a value between Pp and Ps).
  • Ps immediately after the failure detection is lower than the P * (a value between Pp and Ps) means that Pp immediately after the detection of the failure is higher than the P * and the Ps.
  • the fluid pressure sensor 92S is normal, the above Ps can be substantially regarded as the actual W / C fluid pressure. Therefore, the above Pp is higher than the actual W / C fluid pressure.
  • the detection value Ps of the fluid pressure sensor 92S immediately after the detection of the failure of the fluid pressure sensor 92P is lower than P * at the time of the detection of the failure is rephrased as follows.
  • the detected value Pp of the fluid pressure sensor 92P immediately after the detection of a fault in the fluid pressure sensor 92P is P * when the fault is detected or the actual W / C fluid pressure (the actual fluid pressure of the wheel cylinders 101a to 101d) taller than.
  • the discharge fluid passage 13 includes a fluid pressure sensor (discharge pressure sensor) 93 that detects the fluid pressure (pump discharge pressure) Po of the discharge fluid passage 13.
  • the fluid pressure sensor 93 may be located in the communication fluid passages 13P and 13S (on the side of the discharge fluid passage 13 with respect to the communication valve 23 in the communication fluid passage). Similar to the fluid pressure sensor 92, the fluid pressure sensor 93 has a self-diagnosis circuit.
  • the receiving unit 901 of the ECU 90 receives the detection value Po of the fluid pressure sensor 93 and receives a failure signal from the fluid pressure sensor 93.
  • the calculation unit 902 calculates the W / C side hydraulic pressure using the detection values Pp, Ps, Po of the hydraulic pressure sensors 92P, 92S, 93, and sets the calculated hydraulic pressure as a control detection hydraulic pressure PC.
  • the computing unit 902 computes PC using all of Pp, Ps, Po (normal mode; corresponding to step S3 in FIG. 2). Specifically, the arithmetic mean value Pps of the detection value Pp of the fluid pressure sensor 92P and the detection value Ps of the fluid pressure sensor 92S is calculated, and the weighted average value of Pps and the detection value Po of the fluid pressure sensor 93 is PC.
  • the weight of Pps is made larger than Po.
  • the computing unit 902 uses the detection values (any two of Pp, Ps, Po) of the normal fluid pressure sensors 92, 93.
  • the PC is set (failure mode, corresponding to step S5 in FIG. 2). For example, when any failure of the hydraulic pressure sensors 92P and 92S is detected, a weighted average value of the detection value (Pp or Ps) of the normal one of the hydraulic pressure sensors 92P and 92S and Po is set to PC. .
  • one of the normal detected values (Pp or Ps) and Po of the fluid pressure sensors 92P and 92S may be set to PC.
  • the arithmetic mean value of Pp and Ps is set to PC.
  • the weighted average value of Pp and Ps or any one of Pp and Ps may be set as PC.
  • the fluid pressure sensor 93 detects the fluid pressure Po of the discharge fluid passage 13 connecting the pump 201 and the communication fluid passages 13P and 13S or the communication fluid passages 13P and 13S (the side of the discharge fluid passage 13 with respect to the communication valve 23). It is possible.
  • the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on three detection values obtained by adding Po to Pp and Ps. Specifically, for example, when any failure of the fluid pressure sensors 92P, 92S, 93 is not detected during the boost control, for example, the computing unit 902 uses all of Pp, Ps, Po to use the W / C side fluid pressure.
  • Control detected fluid pressure PC is calculated. Therefore, the ECU 90 can control the wheel cylinder hydraulic pressure based on the value PC of the W / C side hydraulic pressure detected more accurately than in the case of controlling the wheel cylinder hydraulic pressure based only on Pp and Ps. Therefore, deviation of the actual W / C hydraulic pressure with respect to P * can be further suppressed, and control accuracy can be further improved. Further, the pressure adjusting liquid passage 14 (pressure adjusting valve 24) is connected between the communication valves 23P and 23S in the communication liquid passages 13P and 13S.
  • the ECU 90 opens and closes the communication valves 23P and 23S in a state in which the pressure regulating valve 24 is operated in the closing direction, and compares the detection values of the hydraulic pressure sensors 92P, 92S and 93 to determine which hydraulic pressure sensor 92P, 92S, It is possible to identify whether an abnormality has occurred in the H.93. Therefore, the self-diagnosis circuit of each of the fluid pressure sensors 92P, 92S, 93 can be omitted, and the fluid pressure sensor 92 and the like can be simplified.
  • the computing unit 902 of the ECU 90 computes the control detected fluid pressure PC based on the average of the detected values Pp, Ps, Po. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between the maximum value and the minimum value of Pp, Ps, and Po. As a result, the actual W / C side hydraulic pressure is controlled to a value closer to the target W / C hydraulic pressure P *, so the control accuracy can be improved.
  • PC may be any value between the maximum value and the minimum value among Pp, Ps, and Po
  • the calculation unit 902 may calculate PC by the arithmetic mean of Pp, Ps, and Po.
  • the ECU 90 determines the hydraulic pressure of the wheel cylinders 101a and 101d and the wheel cylinder based on the detection values (arithmetic mean value Pps of Pp and Ps) and the detection value Po of the hydraulic pressure sensor 93 which are weighted differently.
  • the fluid pressures of 101b and 101c can be controlled.
  • operation unit 902 sets a weighted average value of Pps and Po as control detection hydraulic pressure PC.
  • the weights detected by the sensors 92, 93 are differently weighted based on the mounting positions of the hydraulic sensors 92, 93 in the hydraulic unit 2 (hydraulic circuit), and the actual W for the target W / C hydraulic pressure P * The deviation of the / C fluid pressure is suppressed, and the control accuracy is improved.
  • the calculation unit 902 calculates an average value by multiplying each detected value Pps, Po by a numerical value proportional to the degree of correspondence with the actual W / C fluid pressure. That is, the length of the fluid path between the portion where the fluid pressure sensors 92 and 93 detect the fluid pressure and the wheel cylinder 101 is longer in the fluid pressure sensor 93 than in the fluid pressure sensor 92. Further, the number of valves between the portion where the hydraulic pressure sensors 92 and 93 detect the hydraulic pressure and the wheel cylinder 101 is larger in the hydraulic pressure sensor 93 (only for the communication valve 23) than in the hydraulic pressure sensor 92.
  • the difference between the actual fluid pressure and the wheel cylinder fluid pressure in the portion where the fluid pressure sensors 92 and 93 detect the fluid pressure is larger in the fluid pressure sensor 93 than in the fluid pressure sensor 92.
  • the fluid pressure sensor 92 more accurately reflects the actual W / C fluid pressure than the fluid pressure sensor 93. Therefore, when computing the weighted average of Pps and Po, the weight of Pps is made larger than Po.
  • the calculation unit 902 may weight the detection values Pp, Ps, Po of the fluid pressure sensors 92P, 92S, 93 differently based on the characteristics of the fluid pressure sensors 92P, 92S, 93. The other effects and advantages are the same as in the first embodiment.
  • the fluid pressure sensor 94d there is a fluid pressure sensor 94d in the W / C fluid passage 11d (between the pressure increasing valve 22d and the W / C port 80Wd), and the W / C fluid passages 11b and 11c (in the pressure increasing valves 22b, 22c and W / C
  • the fluid pressure sensor 94 may be located on the pressure reducing fluid passage 15 (on the side of the W / C fluid passage 11 with respect to the pressure reducing valve 25).
  • the fluid pressure sensors 94a to 94d have a self-diagnosis circuit, like the fluid pressure sensor 92 of the first embodiment.
  • the receiving unit 901 of the ECU 90 receives detection values Pa, Pb, Pc, and Pd of the fluid pressure sensors 94a to 94d, and receives failure signals from the fluid pressure sensors 94a to
  • the calculation unit 902 of the ECU 90 calculates the W / C side hydraulic pressure using the detection values Pa, Pb, Pc, and Pd of the hydraulic pressure sensors 94a to 94d, and uses the calculated hydraulic pressure as the control detection hydraulic pressure PC. .
  • the computing unit 902 computes PC using all of Pa, Pb, Pc, and Pd (normal mode, corresponding to step S3 in FIG. 2). Specifically, the arithmetic mean of Pa, Pb, Pc, and Pd is calculated, and this mean value is set to PC.
  • the fluid pressure sensor 94a can detect the fluid pressure in the W / C fluid path 11a between the pressure intensifying valve 22a and the wheel cylinder 101a.
  • the fluid pressure sensors 94b, 94c, 94d can detect the fluid pressure in the W / C fluid passages 11b, 11c, 11d between the pressure increasing valves 22b, 22c, 22d and the wheel cylinders 101b, 101c, 101d, respectively. is there.
  • the ECU 90 calculates the W / C side fluid pressure (control fluid pressure for control PC) using all of Pa, Pb, Pc, and Pd.
  • the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on Pa, Pb, Pc, and Pd. Therefore, the ECU 90 can control the wheel cylinder hydraulic pressure using the detection value of the hydraulic pressure of a portion closer to the wheel cylinder 101 in the W / C fluid path 11. In addition, it is possible to control the wheel cylinder hydraulic pressure using the detected values of the hydraulic pressure corresponding to each of the wheel cylinders 101a to 101d. Therefore, the deviation of the actual W / C fluid pressure from the target W / C fluid pressure P * can be further suppressed, and the control accuracy can be further improved.
  • the computing unit 902 computes the control detected fluid pressure PC based on the average of the detection values Pa, Pb, Pc, and Pd of the fluid pressure sensors 94a to 94d. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between the maximum value and the minimum value among Pa, Pb, Pc, and Pd. As a result, the actual W / C side hydraulic pressure is controlled to a value closer to the target W / C hydraulic pressure P *, so the control accuracy can be improved.
  • PC may be any value between the maximum value and the minimum value among Pa to Pd
  • the calculation unit 902 detects the liquid pressure sensors 94a to 94d based on the characteristics of the liquid pressure sensors 94a to 94d.
  • the values may be given different weights to calculate PC.
  • the number of wheel cylinders connected to the wheel cylinder channel 11 of each system is not limited to two, and may be one or three.
  • the wheel cylinders connected to the W / C fluid paths 11 of each system may be wheel cylinders of only front wheels or only rear wheels. That is, the piping system may be front and rear piping or the like.
  • the specific configurations of the first unit 1A (master cylinder 5 etc.) and the second unit 1B (hydraulic unit 2 and its hydraulic circuit) are not limited to those of the embodiment.
  • the stroke simulator 6 may be separate from the master cylinder 5 or may be integral with the hydraulic unit 2.
  • the hydraulic pressure source for pressurizing the wheel cylinder 101 is not limited to the pump unit 20, and may be an accumulator, a hydraulic piston driven by a motor, or the like.
  • the hydraulic pressure sensor 92 of the second embodiment or the hydraulic pressure sensor 93 of the second embodiment may be combined with the hydraulic pressure sensor 94 of the third embodiment.
  • the brake device of the present technical concept is, in one aspect thereof, A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid; A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid; A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage; A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage; A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage; A control unit capable of controlling the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor And (2) In another aspect, in the above aspect, The controller controls the hydraulic
  • the hydraulic pressure can be controlled.
  • the controller controls the hydraulic pressure of the first wheel cylinder and the second hydraulic pressure based on the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor, which are differently weighted. It is possible to control the fluid pressure of the wheel cylinder of (4)
  • the control unit The hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder can be controlled based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor A first control unit, And a second control unit capable of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the detected value of the second fluid pressure sensor.
  • the brake device detects that the detected value of the first fluid pressure sensor is the fluid pressure of the first wheel cylinder
  • the control of the fluid pressure of the first wheel cylinder and the second wheel cylinder can be switched earlier from the control by the first control unit to the control by the second control unit, as compared with the lower case.
  • the fluid pressure source is connected to the communication fluid passage.
  • the first fluid pressure sensor can detect the fluid pressure in the fluid passage between the first communication valve and the first pressure increasing valve
  • the second fluid pressure sensor can detect fluid pressure in a fluid passage between the second communication valve and the second pressure increasing valve.
  • a third hydraulic pressure sensor capable of detecting a hydraulic pressure of a fluid passage connecting the hydraulic pressure source and the communication fluid passage or a hydraulic pressure of the communication fluid passage;
  • the controller controls the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the first wheel cylinder based on the detection value of the first hydraulic pressure sensor, the detection value of the second hydraulic pressure sensor, and a detection value of the third hydraulic pressure sensor.
  • the fluid pressure of the second wheel cylinder can be controlled.
  • the brake device in one aspect thereof A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid; A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid; A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage; A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage; A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage; The fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder can be controlled based on a value between the value detected by the first fluid pressure sensor and the value detected by the second fluid pressure sensor.
  • the brake control method includes: A first fluid pressure detection step of detecting the fluid pressure of a first wheel cylinder fluid passage connected to a first wheel cylinder that applies a braking force to the first wheel by a brake fluid supplied from a fluid pressure source; A second fluid pressure detection step of detecting the fluid pressure of a second wheel cylinder fluid passage connected to a second wheel cylinder that applies a braking force to the second wheel by the brake fluid supplied from the fluid pressure source; Both the first hydraulic pressure detection value, which is the hydraulic pressure detected in the first hydraulic pressure detection step, and the second hydraulic pressure detection value, which is the hydraulic pressure detected in the second hydraulic pressure detection step And a control step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the above.
  • the control step Calculating an average value of the first hydraulic pressure detection value and the second hydraulic pressure detection value; Controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the average value.
  • the control step Applying a first weight to the first hydraulic pressure detection value; Assigning a second weight to the second hydraulic pressure detection value; The fluid pressure of the first wheel cylinder and the fluid pressure of the first foil cylinder based on the first weighted fluid pressure detection value and the second weighted fluid pressure detection value. Controlling the fluid pressure of the second wheel cylinder.
  • control step A first step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on both the first fluid pressure detection value and the second fluid pressure detection value; And a second step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the second fluid pressure detection value,
  • the first hydraulic pressure detection value is higher than the hydraulic pressure of the first wheel cylinder
  • the first step is compared to when the first hydraulic pressure detection value is lower than the hydraulic pressure of the first wheel cylinder. , It is quickly switched to the second step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Provided is a braking device with which it is possible to increase the precision of hydraulic pressure control. This braking device is provided with: first and second wheel cylinder liquid passages; a hydraulic pressure source; first and second hydraulic pressure sensors; and a control unit. The first wheel cylinder liquid passage is connected to a first wheel cylinder, while the second wheel cylinder liquid passage is connected to a second wheel cylinder. In accordance with the hydraulic pressure of the brake fluid, the first wheel cylinder imparts a braking force to a first wheel, and the second wheel cylinder imparts a braking force to a second wheel. The hydraulic pressure source is capable of supplying the brake fluid to the first wheel cylinder liquid passage and the second wheel cylinder liquid passage. The first hydraulic pressure sensor is capable of detecting the hydraulic pressure in the first wheel cylinder liquid passage, and the second hydraulic pressure sensor is capable of detecting the hydraulic pressure in the second wheel cylinder liquid passage. The control unit is capable of controlling the hydraulic pressure in the first wheel cylinder and the hydraulic pressure in the second wheel cylinder on the basis of detection values of both the first hydraulic pressure sensor and the second hydraulic pressure sensor.

Description

ブレーキ装置及びブレーキ制御方法Brake device and brake control method
 本発明は、ブレーキ装置に関する。 The present invention relates to a brake device.
 従来、ホイルシリンダに接続するホイルシリンダ液路にブレーキ液を供給可能な液圧源と、ホイルシリンダ液路の液圧を検出可能な液圧センサとを備え、液圧センサの検出値に基づきホイルシリンダの液圧を制御可能なブレーキ装置が知られている。例えば、特許文献1に開示されるブレーキ装置は、第1ホイルシリンダに接続する第1ホイルシリンダ液路の液圧を検出可能な第1液圧センサと、第2ホイルシリンダに接続する第2ホイルシリンダ液路の液圧を検出可能な第2液圧センサとを備える。 Conventionally, a fluid pressure source capable of supplying brake fluid to a wheel cylinder fluid passage connected to a wheel cylinder and a fluid pressure sensor capable of detecting the fluid pressure in the wheel cylinder fluid passage are provided. There is known a brake device capable of controlling the hydraulic pressure of a cylinder. For example, the brake device disclosed in Patent Document 1 includes a first hydraulic pressure sensor capable of detecting the hydraulic pressure of a first wheel cylinder hydraulic path connected to the first wheel cylinder, and a second wheel connected to the second wheel cylinder. And a second fluid pressure sensor capable of detecting the fluid pressure in the cylinder fluid passage.
特開2016-144952号JP-A-2016-144952
 従来のブレーキ装置では、液圧センサの検出値と実液圧との間に乖離が生じている場合、液圧制御の精度が低下するおそれがあった。 In the conventional brake device, when there is a deviation between the detection value of the fluid pressure sensor and the actual fluid pressure, the accuracy of the fluid pressure control may be reduced.
 本発明の1つの実施形態に係るブレーキ装置は、第1液圧センサの検出値と第2液圧センサの検出値との両方に基づきホイルシリンダの液圧を制御可能である。 The brake device according to one embodiment of the present invention can control the fluid pressure of the wheel cylinder based on both the detection value of the first fluid pressure sensor and the detection value of the second fluid pressure sensor.
 よって、上記乖離が生じていても、液圧制御の精度を向上できる。 Therefore, even if the said deviation has arisen, the precision of liquid pressure control can be improved.
第1実施形態のブレーキシステムの概略を示す。The outline of the brake system of a 1st embodiment is shown. 第1実施形態における倍力制御の流れの一例を示す。An example of a flow of boost control in a 1st embodiment is shown. 検出液圧と実液圧との乖離を示す。The deviation between the detected fluid pressure and the actual fluid pressure is shown. 目標液圧と実液圧との乖離を示す。The deviation between the target fluid pressure and the actual fluid pressure is shown. 第1実施形態における倍力制御時のタイムチャートの一例を示す。An example of the time chart at the time of boost control in a 1st embodiment is shown. 第1実施形態における倍力制御時のタイムチャートの一例を示す。An example of the time chart at the time of boost control in a 1st embodiment is shown. 第2実施形態のブレーキシステムの概略を示す。The outline of the brake system of a 2nd embodiment is shown. 第3実施形態のブレーキシステムの概略を示す。The outline of the brake system of a 3rd embodiment is shown.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, an embodiment for carrying out the present invention will be described based on the drawings.
 [第1実施形態]
  まず構成を説明する。本実施形態のブレーキシステム1は、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた車両のほか、エンジンに加えて電動式のモータ(ジェネレータ)を備えたハイブリッド車や、電動式のモータのみを備えた電気自動車等に搭載可能な液圧式のブレーキシステムであり、ブレーキペダル100と車輪(左前輪FL、右前輪FR、左後輪RL、及び右後輪RR)のホイルシリンダ101との間に配置される。システム1は、作動液としてのブレーキ液をホイルシリンダ101に供給し、ホイルシリンダ101にブレーキ液の液圧(ブレーキ液圧)を発生させる。ホイルシリンダ101は、ブレーキ液圧に応じてブレーキ・シュー又はキャリパを作動させて車輪に摩擦制動力(液圧制動力)を付与する。ブレーキシステム1は2系統のブレーキ配管を有する。配管形式は対角配管である。以下、プライマリ系統(P系統)の部材とセカンダリ系統(S系統)の部材とを区別する場合は、それぞれの符号の末尾に添字P,Sを付す。各車輪FL~RRに対応する部材には、その符号の末尾にそれぞれ添字a~dを付して適宜区別する。図1に示すように、ブレーキシステム1は、第1ユニット1A及び第2ユニット1Bを有する。第1ユニット1Aは、プッシュロッド3、リザーバタンク4、マスタシリンダ5、ストロークシミュレータ6、及びストロークセンサ95を一体に有する。第2ユニット1Bは、液圧ユニット2、電子制御ユニット90、及び液圧センサ91,92を一体に有する。第1ユニット1Aと第2ユニット1Bは、マスタシリンダ配管(M/C配管)10M、吸入配管10R、及び背圧配管10Xによって互いに接続される。第2ユニット1Bと各車輪FL~RRのホイルシリンダ101とは、ホイルシリンダ配管(W/C配管)10Wによって互いに接続される。
First Embodiment
First, the configuration will be described. The brake system 1 of the present embodiment is a vehicle equipped with only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle equipped with an electric motor (generator) in addition to the engine, and an electric motor Hydraulic brake system that can be mounted on an electric vehicle or the like equipped with only the brake pedal 100 and the wheel cylinder 101 of the wheels (left front wheel FL, right front wheel FR, left rear wheel RL, and right rear wheel RR). Placed in between. The system 1 supplies the brake fluid as the hydraulic fluid to the wheel cylinder 101, and causes the wheel cylinder 101 to generate a fluid pressure of the brake fluid (brake fluid pressure). The wheel cylinder 101 operates a brake shoe or a caliper according to the brake fluid pressure to apply friction braking force (hydraulic braking force) to the wheel. The brake system 1 has two systems of brake piping. The piping type is diagonal piping. Hereinafter, when the member of the primary system (P system) and the member of the secondary system (S system) are distinguished, subscripts P and S are added to the end of each code. The members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals. As shown in FIG. 1, the brake system 1 has a first unit 1A and a second unit 1B. The first unit 1A integrally includes a push rod 3, a reservoir tank 4, a master cylinder 5, a stroke simulator 6, and a stroke sensor 95. The second unit 1B integrally includes the hydraulic pressure unit 2, the electronic control unit 90, and the hydraulic pressure sensors 91 and 92. The first unit 1A and the second unit 1B are connected to each other by a master cylinder pipe (M / C pipe) 10M, a suction pipe 10R, and a back pressure pipe 10X. The second unit 1B and the wheel cylinders 101 of the wheels FL to RR are connected to each other by a wheel cylinder pipe (W / C pipe) 10W.
 まず、第1ユニット1Aについて説明する。第1ユニット1Aはハウジング7を有する。ハウジング7の内部には、シリンダ70,71、補給液路72、ホイルシリンダ液路(W/C液路)73、正圧液路74、排出液路751,752、及び背圧液路77がある。正圧液路74はW/C液路73Sから分岐する。図1は、シリンダ70,71の軸線を通る第1ユニット1Aの断面を示す。リザーバタンク4は、ハウジング7の上側に設置される。リザーバタンク4は、ブレーキ液を貯留するブレーキ液源であり、大気圧に開放される。リザーバタンク4の内部における下側には、第1室41P、第2室41S及び第3室42が画される。第1室41P、第2室41Sにはそれぞれ補給液路72P,72sが接続する。リザーバタンク4の側面には、第3室26に連通するポート420がある。ポート29には吸入配管10Rが接続する。 First, the first unit 1A will be described. The first unit 1A has a housing 7. Inside the housing 7, there are cylinders 70 and 71, a replenishment fluid passage 72, a wheel cylinder fluid passage (W / C fluid passage) 73, a positive pressure fluid passage 74, discharge fluid passages 751 and 752, and a back pressure fluid passage 77. The positive pressure fluid passage 74 branches from the W / C fluid passage 73S. FIG. 1 shows a cross section of the first unit 1A passing the axes of the cylinders 70, 71. As shown in FIG. The reservoir tank 4 is disposed on the upper side of the housing 7. The reservoir tank 4 is a brake fluid source for storing the brake fluid, and is released to the atmospheric pressure. At the lower side inside the reservoir tank 4, a first chamber 41P, a second chamber 41S and a third chamber 42 are defined. Refilling fluid paths 72P and 72s are connected to the first chamber 41P and the second chamber 41S, respectively. The side surface of the reservoir tank 4 has a port 420 communicating with the third chamber 26. The port 29 is connected to a suction pipe 10R.
 マスタシリンダ5は、運転者によるブレーキペダル100の操作に応じて作動し、ホイルシリンダ101に対しブレーキ液圧を供給可能な第1の液圧源である。マスタシリンダ5は、タンデム型であり、ピストン51及びばねユニット52を、P,S系統毎に有する。マスタシリンダ5のシリンダ70は、円筒状であり、補給ポート705をP,S系統毎に有する。補給ポート705は補給液路72に接続する。ピストン51は円筒状である。ピストン51の周壁を補給孔510が貫通する。ピストン51は、シリンダ70の内部に、シリンダ70の軸線方向に移動可能に収容される。ピストン51Pは、プッシュロッド3を介してブレーキペダル100に連結される。説明の便宜上、図1で、ピストン51の移動方向(シリンダ70の軸線方向)にx軸を設ける。ブレーキペダル100の踏込み操作に応じてピストン51が移動する側を負とする。ピストン51Pのx軸正方向端にはプッシュロッド3の端部が接する。プッシュロッド3は回転可能にブレーキペダル100に連結される。プッシュロッド3は鍔部30を有する。ピストン51Sはフリーピストン型であり、ピストン51Pと直列に、ピストン51Pのx軸負方向側に配置される。シリンダ70の内部に、ピストン51P及びピストン51Sによって第1液圧室50Pが仕切られ、ピストン51Sによって第1液圧室50Pのx軸負方向側に第2液圧室50Sが仕切られ、ピストン51Pによって第1液圧室50Pのx軸正方向側にセンサ室500が仕切られる。液圧室50にはW/C液路73が常時開口する。ハウジング7の外表面におけるW/C液路73の開口は接続ポート76として機能する。接続ポート76にはM/C配管10Mが接続する。ばねユニット52は液圧室50に収容される。第1ばねユニット52P(ばね520P)は、ピストン51Pとピストン51Sとの間にある。第2ばねユニット52S(ばね520S)は、ピストン51Sとシリンダ70の内面との間にある。ばね520は、シリンダ70の軸線方向において圧縮された状態で、ピストン51をx軸正方向側に常時付勢する戻しばねとして機能する。ばねユニット52は、ばね520の圧縮量及び伸長量を一定以下に抑制するストッパ機能を有する。 Master cylinder 5 is a first hydraulic pressure source that operates in response to the driver's operation of brake pedal 100 and can supply brake hydraulic pressure to wheel cylinder 101. Master cylinder 5 is a tandem type, and has a piston 51 and a spring unit 52 for each of P and S systems. The cylinder 70 of the master cylinder 5 is cylindrical and has a refill port 705 for each of the P and S systems. The refilling port 705 is connected to the refilling fluid path 72. The piston 51 is cylindrical. The supply hole 510 penetrates the peripheral wall of the piston 51. The piston 51 is accommodated in the cylinder 70 so as to be movable in the axial direction of the cylinder 70. The piston 51 P is connected to the brake pedal 100 via the push rod 3. For convenience of explanation, in FIG. 1, the x axis is provided in the moving direction of the piston 51 (the axial direction of the cylinder 70). The side on which the piston 51 moves in response to the depression operation of the brake pedal 100 is negative. The end of the push rod 3 is in contact with the x-axis positive direction end of the piston 51P. The push rod 3 is rotatably coupled to the brake pedal 100. The push rod 3 has a buttock 30. The piston 51S is a free piston type, and is disposed in series with the piston 51P on the x-axis negative direction side of the piston 51P. The first fluid pressure chamber 50P is partitioned by the piston 51P and the piston 51S inside the cylinder 70, and the second fluid pressure chamber 50S is partitioned by the piston 51S in the negative x-axis direction of the first fluid pressure chamber 50P. Thus, the sensor chamber 500 is partitioned on the x-axis positive direction side of the first fluid pressure chamber 50P. The W / C fluid path 73 is always open in the fluid pressure chamber 50. The opening of the W / C fluid passage 73 on the outer surface of the housing 7 functions as a connection port 76. The M / C pipe 10M is connected to the connection port 76. The spring unit 52 is accommodated in the hydraulic pressure chamber 50. The first spring unit 52P (spring 520P) is between the piston 51P and the piston 51S. The second spring unit 52S (spring 520S) is between the piston 51S and the inner surface of the cylinder 70. The spring 520 functions as a return spring that normally biases the piston 51 in the positive x-axis direction in a state of being compressed in the axial direction of the cylinder 70. The spring unit 52 has a stopper function that suppresses the amount of compression and the amount of extension of the spring 520 to a certain level or less.
 ピストン51Pのx軸正方向側及びプッシュロッド3は、センサ室500に収容される。プッシュロッド3のx軸正方向側への移動は、鍔部30がハウジング7に接することで規制される。この状態、すなわち両ピストン51P,51Sがx軸正方向側に最大変位した初期状態で、リザーバタンク4の第1室41は、補給液路72及び補給孔510を介して、マスタシリンダ5の液圧室50に接続する。ストロークセンサ95は、マグネット950及びセンサ本体951を有する。マグネット950はピストン51Pのx軸正方向側に設置される。センサ本体951はハウジング7に設置される。ブレーキペダル100の揺動はプッシュロッド3及びピストン51P(マグネット950)のx軸方向移動に変換される。センサ本体951は、マグネット950の上記移動に応じて電気的な信号を発生する。これにより、ストロークセンサ95は、ピストン51Pのx軸方向移動量(ブレーキペダル100の変位量ないし操作量)を検出する。 The x-axis positive direction side of the piston 51 P and the push rod 3 are accommodated in the sensor chamber 500. The movement of the push rod 3 in the positive x-axis direction is restricted by the contact of the collar 30 with the housing 7. In this state, that is, in the initial state in which both pistons 51P and 51S are displaced to the positive side in the x-axis direction, the first chamber 41 of the reservoir tank 4 receives the fluid of the master cylinder 5 through the replenishment fluid passage 72 and the replenishment hole 510. Connect to the pressure chamber 50. The stroke sensor 95 has a magnet 950 and a sensor body 951. The magnet 950 is disposed on the x-axis positive direction side of the piston 51P. The sensor main body 951 is installed in the housing 7. The swing of the brake pedal 100 is converted to the movement of the push rod 3 and the piston 51P (magnet 950) in the x-axis direction. The sensor body 951 generates an electrical signal in response to the movement of the magnet 950. Thus, the stroke sensor 95 detects the amount of movement of the piston 51P in the x-axis direction (the amount of displacement or the amount of operation of the brake pedal 100).
 ストロークシミュレータ6は、運転者のブレーキ操作に伴い作動し、ブレーキペダル100の操作量(ペダルストローク)に応じた反力をブレーキペダル100に付与可能である。ストロークシミュレータ6は、ピストン61、第1ばねユニット62、第2ばねユニット63、及びシール部材65,66を有する。ストロークシミュレータ6のシリンダ71の軸線はx軸方向に延びる。シリンダ71は、小径部711及び大径部712を有する。小径部711はシリンダ71のx軸負方向側にあり、第1溝713及び第2溝714を有する。第1溝713には第1シール部材65が設置され、第2溝714には第2シール部材66が設置される。シール部材65,66は、環状であり、断面がU字状のパッキンである。大径部712はシリンダ71のx軸正方向側にある。大径部712のx軸正方向側の開口は蓋部材64により閉塞される。小径部711のx軸負方向側には、正圧液路74及び排出液路751が接続する。大径部712のx軸負方向側には、背圧液路77及び排出液路752が接続する。ピストン61は、シリンダ71(小径部711)の内部にシリンダ71の軸線方向(x軸方向)に移動可能に収容される。ピストン61の外周は円筒状である。ピストン61の外周面にはシール部材65,66のリップが接する。ピストン61の内周側には、ピストン61の軸線方向に延びる有底円筒状の第1凹部611および第2凹部612がある。第1凹部611は上記軸線方向の一方側に開口し、第2凹部612は上記軸線方向の他方側に開口する。両凹部611,612を隔てる壁には、第2凹部612の側に突出する円柱状の凸部613がある。ピストン61における第1凹部611(のx軸負方向側)の周壁には孔614が貫通する。シリンダ71の内部に、ピストン61によって正圧室601と背圧室602が仕切られる。正圧室601には正圧液路74が常時開口し、背圧室602には背圧液路77が常時開口する。ハウジング7の外表面における背圧液路77の開口は接続ポートとして機能する。この接続ポートには、背圧配管10Xが接続される。ハウジング7の外表面における排出液路751,752の開口にはブリーダバルブ651,652がそれぞれ設置される。ブリーダバルブ651は、開くことで正圧室601のブレーキ液やエアを排出可能である。ブリーダバルブ652は、開くことで背圧室602のブレーキ液やエアを排出可能である。ピストン61が小径部711の内周面に沿って移動する際、シール部材65,66(のリップ)がピストン61の外周面に摺接する。第1シール部材65は、ピストン61の外周側において、正圧室601から背圧室602へ向うブレーキ液の流れを抑制する。第2シール部材66は、ピストン61の外周側において、背圧室602から正圧室601へ向うブレーキ液の流れを抑制する。 The stroke simulator 6 operates in response to the driver's brake operation, and can apply a reaction force corresponding to the operation amount (pedal stroke) of the brake pedal 100 to the brake pedal 100. The stroke simulator 6 includes a piston 61, a first spring unit 62, a second spring unit 63, and seal members 65 and 66. The axis of the cylinder 71 of the stroke simulator 6 extends in the x-axis direction. The cylinder 71 has a small diameter portion 711 and a large diameter portion 712. The small diameter portion 711 is on the x-axis negative direction side of the cylinder 71 and has a first groove 713 and a second groove 714. A first seal member 65 is installed in the first groove 713, and a second seal member 66 is installed in the second groove 714. The seal members 65 and 66 are annular and are U-shaped in cross section. The large diameter portion 712 is on the x axis positive direction side of the cylinder 71. The opening on the x-axis positive direction side of the large diameter portion 712 is closed by the lid member 64. The positive pressure fluid passage 74 and the discharge fluid passage 751 are connected to the small diameter portion 711 on the x-axis negative direction side. A back pressure fluid passage 77 and a discharge fluid passage 752 are connected to the x-axis negative direction side of the large diameter portion 712. The piston 61 is accommodated in the cylinder 71 (small diameter portion 711) so as to be movable in the axial direction (x-axis direction) of the cylinder 71. The outer periphery of the piston 61 is cylindrical. The lip of the seal members 65 and 66 is in contact with the outer peripheral surface of the piston 61. On the inner peripheral side of the piston 61, there are a bottomed cylindrical first recess 611 and a second recess 612 extending in the axial direction of the piston 61. The first recess 611 is open on one side in the axial direction, and the second recess 612 is open on the other side in the axial direction. On a wall separating the two concave portions 611 and 612, there is a cylindrical convex portion 613 projecting to the side of the second concave portion 612. A hole 614 penetrates the peripheral wall of the first recess 611 (on the x-axis negative direction side) in the piston 61. Inside the cylinder 71, a positive pressure chamber 601 and a back pressure chamber 602 are partitioned by the piston 61. A positive pressure fluid path 74 is always open in the positive pressure chamber 601, and a back pressure fluid path 77 is always open in the back pressure chamber 602. The opening of the back pressure fluid passage 77 on the outer surface of the housing 7 functions as a connection port. The back pressure pipe 10X is connected to this connection port. Bleeder valves 651 and 652 are installed at the openings of the discharge fluid passages 751 and 752 on the outer surface of the housing 7, respectively. The bleeder valve 651 can discharge the brake fluid and air of the positive pressure chamber 601 by opening it. The bleeder valve 652 can discharge brake fluid and air from the back pressure chamber 602 by opening it. When the piston 61 moves along the inner peripheral surface of the small diameter portion 711, (the lip of) the seal members 65 and 66 slide on the outer peripheral surface of the piston 61. The first seal member 65 suppresses the flow of the brake fluid from the positive pressure chamber 601 toward the back pressure chamber 602 on the outer peripheral side of the piston 61. The second seal member 66 suppresses the flow of the brake fluid from the back pressure chamber 602 toward the positive pressure chamber 601 on the outer peripheral side of the piston 61.
 第1ばねユニット62は、第1ばね620、第1リテーナ621、第2リテーナ622、ストッパ623、及び第1弾性部材624を有する。第1ばね620は圧縮コイルばねである。リテーナ621,622は有底円筒状である。第1弾性部材624は、ゴム(樹脂)を材料として円柱状に形成される。第1ばね620のx軸負方向側は第1リテーナ621に保持される。第1ばね620のx軸正方向側は第2リテーナ622に保持される。ストッパ623のx軸正方向端は第2リテーナ622に固定される。ストッパ623のx軸負方向端部は、第1リテーナ621の内周側にある。ストッパ623が第1リテーナ621に係合することで、第1ばね620の伸長が制限される。第2ばねユニット63は、第2ばね630、第3リテーナ631、蓋部材64、及び第2弾性部材634を有する。第2ばね630は圧縮コイルばねである。第2ばね630の径、材料径、軸線方向寸法、及びばね係数は、それぞれ第1ばね620よりも大きい。第3リテーナ631は、有底円筒状である。第2弾性部材634は、ゴム(樹脂)を材料として、外周の軸線方向中央がくびれた円柱状に形成される。両ばねユニット62,63は背圧室602に収容される。第1ばねユニット62のx軸負方向側はピストン61の第2凹部612に保持される。第2リテーナ622の内周にピストン61の凸部613が嵌まる。第2リテーナ622の内周側に第1弾性部材624が収容される。第1弾性部材624のx軸負方向側が凸部613に接する。第1ばねユニット62のx軸正方向側は第3リテーナ631の内周側に保持される。第2ばね630のx軸負方向側は第3リテーナ631の外周側に保持される。第2ばね630のx軸正方向側は蓋部材64に保持される。第2弾性部材634は蓋部材64に収容される。第1ばね620及び第2ばね630は、x軸方向において圧縮された状態で、ピストン61と蓋部材64との間にある。両ばね620,630は、ピストン61をx軸負方向側に常時付勢する。第1ばね620のセット荷重は第2ばね630のセット荷重以下である。ピストン61がシリンダ71の内面に接することで、ピストン61のx軸負方向側への移動が規制される。この初期状態で、第1弾性部材624とストッパ623との間に所定の隙間があり、第2弾性部材634と第3リテーナ631との間に所定の隙間がある。 The first spring unit 62 includes a first spring 620, a first retainer 621, a second retainer 622, a stopper 623, and a first elastic member 624. The first spring 620 is a compression coil spring. The retainers 621 and 622 are cylindrical with a bottom. The first elastic member 624 is formed in a cylindrical shape using rubber (resin) as a material. The x-axis negative direction side of the first spring 620 is held by the first retainer 621. The x-axis positive direction side of the first spring 620 is held by the second retainer 622. The x-axis positive direction end of the stopper 623 is fixed to the second retainer 622. The x-axis negative direction end of the stopper 623 is on the inner peripheral side of the first retainer 621. The engagement of the stopper 623 with the first retainer 621 restricts the extension of the first spring 620. The second spring unit 63 includes a second spring 630, a third retainer 631, a lid member 64, and a second elastic member 634. The second spring 630 is a compression coil spring. The diameter, material diameter, axial dimension, and spring coefficient of the second spring 630 are larger than that of the first spring 620, respectively. The third retainer 631 has a bottomed cylindrical shape. The second elastic member 634 is made of rubber (resin) and is formed in a cylindrical shape in which the axial center of the outer periphery is narrowed. Both spring units 62, 63 are accommodated in the back pressure chamber 602. The x-axis negative direction side of the first spring unit 62 is held by the second recess 612 of the piston 61. The convex portion 613 of the piston 61 is fitted on the inner periphery of the second retainer 622. The first elastic member 624 is accommodated on the inner peripheral side of the second retainer 622. The x-axis negative direction side of the first elastic member 624 is in contact with the protrusion 613. The x-axis positive direction side of the first spring unit 62 is held on the inner peripheral side of the third retainer 631. The x-axis negative direction side of the second spring 630 is held on the outer peripheral side of the third retainer 631. The x-axis positive direction side of the second spring 630 is held by the lid member 64. The second elastic member 634 is accommodated in the lid member 64. The first spring 620 and the second spring 630 are between the piston 61 and the lid member 64 in a compressed state in the x-axis direction. Both springs 620 and 630 always bias the piston 61 in the negative x-axis direction. The set load of the first spring 620 is equal to or less than the set load of the second spring 630. When the piston 61 contacts the inner surface of the cylinder 71, the movement of the piston 61 in the negative x-axis direction is restricted. In this initial state, there is a predetermined gap between the first elastic member 624 and the stopper 623, and there is a predetermined gap between the second elastic member 634 and the third retainer 631.
 次に、第2ユニット1Bについて説明する。液圧ユニット2は、ハウジング8、ポンプユニット20、及び複数の電磁弁21等を有する。ハウジング8の内部には、ブレーキ液が流通するP,S系統の回路(液圧回路)がある。液圧回路は複数の液路を含む。ハウジング8の外表面には、マスタシリンダポート(M/Cポート)80M、ホイルシリンダポート(W/Cポート)80W、吸入ポート80R、及び背圧ポート80Xが開口する。M/Cポート80MにはM/C配管10Mが接続する。W/Cポート80WにはW/C配管10Wが接続する。吸入ポート80Rには吸入配管10Rが接続する。 Next, the second unit 1B will be described. The hydraulic unit 2 has a housing 8, a pump unit 20, and a plurality of solenoid valves 21 and the like. Inside the housing 8, there is a circuit (hydraulic circuit) of P and S systems through which the brake fluid flows. The hydraulic circuit includes a plurality of fluid paths. A master cylinder port (M / C port) 80M, a wheel cylinder port (W / C port) 80W, a suction port 80R, and a back pressure port 80X are opened on the outer surface of the housing 8. The M / C pipe 10M is connected to the M / C port 80M. W / C piping 10W is connected to W / C port 80W. A suction pipe 10R is connected to the suction port 80R.
 ポンプユニット20は、モータ200及びポンプ201を有する第2の液圧源である。ハウジング8は、その内部にポンプ201や電磁弁21等の弁体を収容する。モータ200は、回転軸を備える電動機であり、ハウジング8の一側面に設置される。モータ200は、ブラシ付きモータでもよいし、回転軸の回転角度ないし回転数を検出するレゾルバを備えるブラシレスモータでもよい。ポンプ201は、モータ200により駆動され、ホイルシリンダ101に対しブレーキ液(ブレーキ液圧)を供給可能である。ポンプ201は、P系統及びS系統で共通に用いられる。ポンプ201は、プランジャポンプであり、複数(例えば5つ)のシリンダ(プランジャ)を備える。なお、ポンプ201はギヤポンプ等であってもよい。 The pump unit 20 is a second hydraulic pressure source having a motor 200 and a pump 201. The housing 8 accommodates therein the valve body such as the pump 201 and the solenoid valve 21. The motor 200 is an electric motor provided with a rotating shaft, and is installed on one side of the housing 8. The motor 200 may be a brushed motor, or may be a brushless motor including a resolver that detects the rotation angle or rotational speed of the rotation shaft. The pump 201 is driven by the motor 200 and can supply brake fluid (brake fluid pressure) to the wheel cylinder 101. The pump 201 is commonly used in the P system and the S system. The pump 201 is a plunger pump, and includes a plurality of (for example, five) cylinders (plungers). The pump 201 may be a gear pump or the like.
 電磁弁は、制御信号に応じて動作する制御弁であり、ソレノイド及び弁体を有する。弁体は、ソレノイドへの通電に応じてストロークし、液路の開閉を切り換える(液路を断接する)。電磁弁は、上記液圧回路の連通状態を制御し、ブレーキ液の流通状態を調整することで、制御液圧を発生する。複数の電磁弁は、遮断弁21、増圧弁22、連通弁23、調圧弁24、減圧弁25、シミュレータ・イン弁(SS-IN弁)27、及びシミュレータ・アウト弁(SS-OUT弁)28を有する。遮断弁21、増圧弁22、及び調圧弁24は、非通電状態で開弁する常開弁である。連通弁23、減圧弁25、SS-IN弁27、及びSS-OUT弁28は、非通電状態で閉弁する常閉弁である。なお、調圧弁24は常閉弁でもよい。遮断弁21、増圧弁22、及び調圧弁24は、ソレノイドに供給される電流に応じて弁の開度が調整される比例制御弁である。連通弁23、減圧弁25、SS-IN弁27、及びSS-OUT弁28は、弁の開閉が二値的に切り替え制御されるオン・オフ弁である。なお、これらの弁は比例制御弁でもよい。 The solenoid valve is a control valve that operates in response to a control signal, and has a solenoid and a valve body. The valve body strokes in response to the energization of the solenoid, and switches the opening and closing of the fluid passage (connects and disconnects the fluid passage). The solenoid valve controls the communication state of the hydraulic pressure circuit and adjusts the flow state of the brake fluid to generate a control hydraulic pressure. The plurality of solenoid valves include a shutoff valve 21, a pressure increasing valve 22, a communication valve 23, a pressure regulating valve 24, a pressure reducing valve 25, a simulator in valve (SS-IN valve) 27, and a simulator out valve (SS-OUT valve) 28. Have. The shutoff valve 21, the pressure increasing valve 22, and the pressure regulating valve 24 are normally open valves that open in a non-energized state. The communication valve 23, the pressure reducing valve 25, the SS-IN valve 27, and the SS-OUT valve 28 are normally closed valves that close in a non-energized state. The pressure regulating valve 24 may be a normally closed valve. The shutoff valve 21, the pressure increasing valve 22, and the pressure regulating valve 24 are proportional control valves in which the opening degree of the valves is adjusted in accordance with the current supplied to the solenoid. The communication valve 23, the pressure reducing valve 25, the SS-IN valve 27, and the SS-OUT valve 28 are on / off valves whose opening and closing of the valves are controlled in a binary manner. Note that these valves may be proportional control valves.
 複数の液路は、ホイルシリンダ液路(W/C液路)11、吸入液路12、吐出液路13、連通液路13P,13S、調圧液路14、減圧液路15、背圧液路16、背圧供給液路17、及び背圧排出液路18を有する。W/C液路11Pの一端はM/Cポート80MPに接続する。W/C液路11Pは、前左輪用の液路11aと後右輪用の液路11dとに分岐する。各液路11a,11dはそれぞれW/Cポート80Wa,80Wdに接続する。W/C液路11Sの一端はM/Cポート80MSに接続する。W/C液路11Sは、前右輪用の液路11bと後左輪用の液路11cとに分岐する。各液路11b,11cはそれぞれW/Cポート80Wb,80Wcに接続する。W/C液路11におけるM/Cポート80Mの側(分岐前の各液路11P,11S)には遮断弁21がある。W/C液路11におけるW/Cポート80Wの側(分岐後の各液路11a~11d)には増圧弁22がある。増圧弁22は、W/C液路11における遮断弁21とW/Cポート80Wとの間にある。増圧弁22をバイパスして各W/C液路11a~11dと並列にバイパス液路110がある。バイパス液路110にはチェック弁220がある。弁220は、W/Cポート80Wの側からM/Cポート80Mの側へ向うブレーキ液の流れのみを許容する。吸入液路12は、液溜め室120とポンプ201の吸入ポートとを接続する。液溜め室120は吸入ポート80Rに連通する。液溜め室120は、ハウジング8の内部でブレーキ液を貯留可能なリザーバとして機能する。吐出液路13の一端はポンプ201の吐出ポートに接続する。吐出液路13は、連通液路13Pと連通液路13Sに分岐する。連通液路13P,13Sは、W/C液路11における遮断弁21と増圧弁22との間に接続し、W/C液路11P,11Sを互いに接続させる。連通液路13P,13Sにはそれぞれ連通弁23がある。調圧液路14は、連通液路13P,13Sにおける連通弁23P,23Sの間(連通弁23に対し吐出液路13の側)と、液溜め室120とを接続する。調圧液路14には第1減圧弁としての調圧弁24がある。減圧液路15は、各W/C液路11a~11dにおける増圧弁22とW/Cポート80Wとの間と、液溜め室120とを接続する。各減圧液路15a~15dには第2減圧弁としての減圧弁25がある。なお、調圧液路14の一部は減圧液路15と共通であるが、両液路14,15が互いに独立であってもよい。また、吸入液路12の一部が調圧液路14又は減圧液路15と共通であってもよい。背圧液路16の一端は背圧ポート80Xに接続する。背圧液路16は、背圧供給液路17と背圧排出液路18に分岐する。背圧供給液路17は、W/C液路11Sにおける遮断弁21Sと増圧弁22b,22cとの間に接続する。背圧供給液路17にはSS-IN弁27がある。SS-IN弁27をバイパスして背圧供給液路17と並列にバイパス液路170がある。バイパス液路170にはチェック弁270がある。弁270は、背圧液路16の側からW/C液路11Sの側へ向うブレーキ液の流れを許容し、反対方向の流れを抑制する。背圧排出液路18は液溜め室120に接続する。背圧排出液路18にはSS-OUT弁28がある。SS-OUT弁28をバイパスして背圧排出液路18と並列にバイパス液路180がある。バイパス液路180にはチェック弁280がある。弁280は、液溜め室120の側から背圧液路16の側へ向うブレーキ液の流れを許容し、反対方向の流れを抑制する。なお、背圧排出液路18の一部は調圧液路14及び減圧液路15と共通であるが、背圧排出液路18が両液路14,15に対し独立であってもよい。 A plurality of fluid passages are a wheel cylinder fluid passage (W / C fluid passage) 11, a suction fluid passage 12, a discharge fluid passage 13, communication fluid passages 13P and 13S, a pressure control fluid passage 14, a pressure reducing fluid passage 15, a back pressure fluid A passage 16, a back pressure supply fluid passage 17 and a back pressure discharge fluid passage 18 are provided. One end of the W / C liquid passage 11P is connected to the M / C port 80MP. The W / C fluid passage 11P branches into a fluid passage 11a for the front left wheel and a fluid passage 11d for the rear right wheel. The fluid paths 11a and 11d are connected to the W / C ports 80Wa and 80Wd, respectively. One end of the W / C liquid passage 11S is connected to the M / C port 80MS. The W / C fluid passage 11S branches into a fluid passage 11b for the front right wheel and a fluid passage 11c for the rear left wheel. The fluid paths 11b and 11c are connected to the W / C ports 80Wb and 80Wc, respectively. A shutoff valve 21 is provided on the side of the M / C port 80M in the W / C fluid passage 11 (the fluid passages 11P and 11S before branching). A pressure increase valve 22 is provided on the side of the W / C port 80 W in the W / C liquid path 11 (each of the liquid paths 11 a to 11 d after branching). The pressure increase valve 22 is located between the shutoff valve 21 and the W / C port 80 W in the W / C fluid passage 11. A bypass fluid passage 110 is provided in parallel with each of the W / C fluid passages 11a to 11d by bypassing the pressure increase valve 22. The bypass fluid passage 110 has a check valve 220. The valve 220 only allows the flow of brake fluid from the side of the W / C port 80W to the side of the M / C port 80M. The suction liquid passage 12 connects the liquid storage chamber 120 and the suction port of the pump 201. The reservoir chamber 120 communicates with the suction port 80R. The liquid storage chamber 120 functions as a reservoir capable of storing the brake fluid inside the housing 8. One end of the discharge liquid passage 13 is connected to the discharge port of the pump 201. The discharge fluid passage 13 branches into a communication fluid passage 13P and a communication fluid passage 13S. The communication fluid passages 13P and 13S are connected between the shutoff valve 21 and the pressure increasing valve 22 in the W / C fluid passage 11, and connect the W / C fluid passages 11P and 11S to each other. A communication valve 23 is provided in each of the communication fluid passages 13P and 13S. The pressure control liquid passage 14 connects between the communication valves 23P and 23S in the communication liquid passages 13P and 13S (the side of the discharge liquid passage 13 with respect to the communication valve 23) and the liquid storage chamber 120. The pressure control fluid passage 14 has a pressure control valve 24 as a first pressure reducing valve. The pressure reducing fluid passage 15 connects between the pressure increasing valve 22 and the W / C port 80 W in each of the W / C fluid passages 11 a to 11 d and the fluid reservoir chamber 120. Each pressure reducing fluid passage 15a to 15d has a pressure reducing valve 25 as a second pressure reducing valve. In addition, although a part of pressure regulation liquid path 14 is common with pressure reduction liquid path 15, both liquid paths 14 and 15 may be mutually independent. In addition, a part of the suction fluid passage 12 may be shared with the pressure control fluid passage 14 or the pressure reduction fluid passage 15. One end of the back pressure fluid path 16 is connected to the back pressure port 80X. The back pressure fluid passage 16 branches into a back pressure supply fluid passage 17 and a back pressure discharge fluid passage 18. The back pressure supply fluid passage 17 is connected between the shutoff valve 21S and the pressure increase valves 22b and 22c in the W / C fluid passage 11S. The back pressure supply fluid passage 17 has an SS-IN valve 27. A bypass fluid passage 170 is provided in parallel with the back pressure supply fluid passage 17 to bypass the SS-IN valve 27. The bypass fluid passage 170 has a check valve 270. The valve 270 allows the flow of the brake fluid from the side of the back pressure fluid path 16 to the side of the W / C fluid path 11S and suppresses the flow in the opposite direction. The back pressure discharge fluid passage 18 is connected to the fluid reservoir chamber 120. The back pressure discharge fluid passage 18 has an SS-OUT valve 28. A bypass fluid passage 180 is provided in parallel with the back pressure discharge fluid passage 18 to bypass the SS-OUT valve 28. The bypass fluid passage 180 has a check valve 280. The valve 280 allows the flow of the brake fluid from the side of the fluid reservoir chamber 120 to the side of the back pressure fluid path 16 and suppresses the flow in the opposite direction. Although a part of the back pressure discharge liquid path 18 is common to the pressure control liquid path 14 and the pressure reduction liquid path 15, the back pressure discharge liquid path 18 may be independent of both the liquid paths 14 and 15.
 W/C液路11SにおけるM/Cポート80MSと遮断弁21Sとの間には、この箇所の液圧(マスタシリンダ液圧に相当)を検出する液圧センサ91がある。W/C液路11Pにおける遮断弁21Pと増圧弁22a,22dとの間には、この箇所の液圧(ホイルシリンダ101a,101dの液圧に相当)を検出する液圧センサ92Pがある。W/C液路11Sにおける遮断弁21Sと増圧弁22b,22cとの間には、この箇所の液圧(ホイルシリンダ101b,101cの液圧に相当)を検出する液圧センサ92Sがある。液圧センサ92は、液圧検出装置であり、自身の故障を検知するための回路(自己診断回路)を有する。例えば、液圧センサ92は、液圧を検出する回路を二重に有する(メイン回路とサブ回路)。正常時は、メイン回路が検出した値を出力する。メイン回路が検出した値とサブ回路が検出した値との間のずれが一定以上になると、液圧センサ92は、自身に故障が発生したと判断し、故障が発生したことを報知する信号(故障信号)を出力する。 Between the M / C port 80MS and the shutoff valve 21S in the W / C fluid path 11S, there is a fluid pressure sensor 91 that detects the fluid pressure (corresponding to the master cylinder fluid pressure) at this point. Between the shutoff valve 21P and the pressure increasing valves 22a and 22d in the W / C fluid path 11P, there is a fluid pressure sensor 92P that detects the fluid pressure at this point (corresponding to the fluid pressure of the wheel cylinders 101a and 101d). Between the shutoff valve 21S and the pressure-increasing valves 22b and 22c in the W / C fluid path 11S, there is a fluid pressure sensor 92S that detects the fluid pressure at this portion (corresponding to the fluid pressure of the wheel cylinders 101b and 101c). The hydraulic pressure sensor 92 is a hydraulic pressure detection device, and has a circuit (self-diagnosis circuit) for detecting its own failure. For example, the hydraulic pressure sensor 92 has a dual circuit for detecting the hydraulic pressure (main circuit and subcircuit). When normal, the main circuit outputs the detected value. When the difference between the value detected by the main circuit and the value detected by the sub circuit exceeds a certain level, the hydraulic pressure sensor 92 determines that a failure has occurred in itself and signals that a failure has occurred ( Output a fault signal).
 マスタシリンダ5の第1液圧室50Pは、ハウジング7のW/C液路73P、M/C配管10MP内の液路(W/C液路)、ハウジング8のW/C液路11P、及びW/C配管10Wa,10Wd内の液路(W/C液路)を介して、P系統のホイルシリンダ101a,101dと接続する。第2液圧室50Sは、ハウジング7のW/C液路73S、M/C配管10MS内の液路(W/C液路)、ハウジング8のW/C液路11S、及びW/C配管10Wb,10Wc内の液路(W/C液路)を介して、S系統のホイルシリンダ101b,101cと接続する。第2液圧室50Sは、ハウジング7のW/C液路73S及び正圧液路74を介して、ストロークシミュレータ6の正圧室601と接続する。ストロークシミュレータ6の背圧室602は、ハウジング7の背圧液路77、背圧配管10X内の液路、ハウジング8の背圧液路16、背圧供給液路17、及びW/C液路11、並びにW/C配管10W内の液路を介して、ホイルシリンダ101と接続する。背圧室602は、ハウジング7の背圧液路77、背圧配管10X内の液路、ハウジング8の背圧液路16、及び背圧排出液路18を介して、液溜め室120と接続する。 The first fluid pressure chamber 50P of the master cylinder 5 includes a W / C fluid passage 73P of the housing 7, a fluid passage (W / C fluid passage) in the M / C pipe 10MP, a W / C fluid passage 11P of the housing 8, and It is connected to the wheel cylinders 101a and 101d of the P system via fluid passages (W / C fluid passages) in the W / C pipes 10Wa and 10Wd. The second fluid pressure chamber 50S includes the W / C fluid passage 73S of the housing 7, the fluid passage (W / C fluid passage) in the M / C piping 10MS, the W / C fluid passage 11S of the housing 8, and the W / C piping It connects with the wheel cylinder 101b, 101c of S system | strain via the liquid path (W / C liquid path) in 10Wb and 10Wc. The second fluid pressure chamber 50S is connected to the positive pressure chamber 601 of the stroke simulator 6 via the W / C fluid path 73S of the housing 7 and the positive pressure fluid path 74. The back pressure chamber 602 of the stroke simulator 6 includes the back pressure liquid path 77 of the housing 7, the liquid path in the back pressure pipe 10X, the back pressure liquid path 16 of the housing 8, the back pressure supply liquid path 17, and the W / C liquid path. 11 and the W / C pipe 10 W via the fluid path, and is connected to the wheel cylinder 101. The back pressure chamber 602 is connected to the liquid reservoir chamber 120 through the back pressure liquid path 77 of the housing 7, the liquid path in the back pressure pipe 10X, the back pressure liquid path 16 of the housing 8, and the back pressure discharge liquid path 18. Do.
 電子制御ユニット(コントロールユニット。以下、ECUという。)90は、ハウジング8の一側面に設置される。ECU90は、ハーネスを介して、ストロークセンサ95と接続する。また、ECU90は、液圧センサ91,92P,92Sと電気的に接続すると共に、CAN等の車載ネットワークを介して、車両側の他の制御機器等と接続する。ECU90は、センサ91等の検出値や車両側から入力された走行状態に関する情報、及び内蔵された(ROMに記憶された)プログラムに基づき、電磁弁21等の開閉動作やモータ200の回転数(すなわちポンプ201の吐出量)を制御する。これにより、各車輪FL~RRのホイルシリンダ101の液圧(ホイルシリンダ液圧)を制御する。ECU90は、ホイルシリンダ液圧(液圧制動力)を制御することで、各種のブレーキ制御を実行可能である。ブレーキ制御は、運転者のブレーキ操作力を低減するための倍力制御、制動による車輪のスリップを抑制するためのアンチロックブレーキ制御(ABS)、車輪の駆動スリップを抑制するためのトラクション制御、車両の運動制御のためのブレーキ制御、先行車追従制御等の自動ブレーキ制御、回生協調ブレーキ制御等を含む。車両の運動制御は、横滑り防止等の車両挙動安定化制御を含む。倍力制御時、ECU90は、ポンプユニット20を液圧源として、マスタシリンダ液圧よりも高いホイルシリンダ液圧を創生する。これにより、運転者のブレーキ操作力では得られない大きな液圧制動力が発生するため、ブレーキ操作力が補助(倍力)される。 An electronic control unit (control unit, hereinafter referred to as an ECU) 90 is installed on one side of the housing 8. The ECU 90 is connected to the stroke sensor 95 via a harness. Further, the ECU 90 is electrically connected to the fluid pressure sensors 91, 92P and 92S, and connected to other control devices and the like on the vehicle side via a vehicle-mounted network such as CAN. The ECU 90 performs the opening / closing operation of the solenoid valve 21 etc. and the rotational speed of the motor 200 based on the detected values of the sensor 91 etc. and the information on the traveling state inputted from the vehicle side and the built-in program (stored in ROM). That is, the discharge amount of the pump 201 is controlled. Thus, the fluid pressure (wheel cylinder fluid pressure) of the wheel cylinder 101 of each of the wheels FL to RR is controlled. The ECU 90 can execute various types of brake control by controlling the wheel cylinder hydraulic pressure (hydraulic braking force). Brake control includes boost control to reduce the driver's brake operation force, antilock brake control (ABS) to suppress wheel slip due to braking, traction control to suppress wheel drive slip, vehicle Brake control for motion control, automatic brake control such as follow-up control of preceding vehicle, regenerative coordinated brake control, and the like. Motion control of the vehicle includes vehicle behavior stabilization control such as side slip prevention. At the time of boost control, the ECU 90 uses the pump unit 20 as a fluid pressure source to create a wheel cylinder fluid pressure higher than the master cylinder fluid pressure. As a result, a large hydraulic pressure braking force that can not be obtained by the driver's brake operation force is generated, so the brake operation force is assisted (boosted).
 ECU90は、受信部901、演算部902、及び駆動部903を有する。受信部901は、センサ91,92,95等の検出値及び車載ネットワークからの情報を受信する。また、液圧センサ92P,92Sからの故障信号を受信する。演算部902は、受信部901から入力される情報に基づき、目標ホイルシリンダ液圧その他の演算を行う。例えば、ストロークセンサ95の検出値に基づき、ブレーキ操作量としてのブレーキペダル100の変位量(ペダルストローク)を検出する。倍力制御時には、検出されたペダルストロークに基づき、所定の倍力比、すなわちペダルストロークと運転者の要求ブレーキ液圧(運転者が要求する車両減速度)との間の理想の関係特性を実現する目標ホイルシリンダ液圧(目標W/C液圧P*)を設定する。このP*は全車輪FL~RRで共通である。回生協調ブレーキ制御時には、例えば、車両の回生制動装置のコントロールユニットから入力される回生制動力と目標W/C液圧P*に相当する液圧制動力との和が、運転者の要求する車両減速度を充足するようなP*を算出する。運動制御時には、例えば検出された車両運動状態量(横加速度等)に基づき、所望の車両運動状態を実現するよう、各車輪FL~RRの目標W/C液圧P*を算出する。演算部902は、上記目標W/C液圧P*を実現するよう、アクチュエータ(各電磁弁21等やモータ200)を駆動するための指令を演算し、これを駆動部903に出力する。駆動部903は、演算部902からの指令信号に応じて上記アクチュエータに電力を供給する。このように、ECU90は、ブレーキシステム1における制御部として機能する。なお、演算部902及び受信部901は、実施形態においてはマイクロコンピュータ内のソフトウェアによって実現されるが、電子回路によって実現してもよい。演算は、数式演算だけでなく、ソフトウェア上での処理全般を意味する。受信部901は、マイクロコンピュータのインターフェイスであってもよいし、マイクロコンピュータ内のソフトウェアであってもよい。駆動部903は、PWMデューティ値演算部やインバータ等を含む。指令信号は、電流値に関するものであってもよいし、力(トルク)や変位量に関するものであってもよい。演算部902について、倍力制御時に所定の倍力比を実現するP*は、マイクロコンピュータ内のマップによって設定する他、演算によって設定してもよい。 The ECU 90 includes a receiving unit 901, an arithmetic unit 902, and a driving unit 903. The receiving unit 901 receives detection values of the sensors 91, 92, 95, etc. and information from the in-vehicle network. In addition, failure signals from the fluid pressure sensors 92P and 92S are received. The calculating unit 902 calculates the target wheel cylinder hydraulic pressure and the like based on the information input from the receiving unit 901. For example, based on the detection value of the stroke sensor 95, the displacement amount (pedal stroke) of the brake pedal 100 as a brake operation amount is detected. During boost control, based on the detected pedal stroke, a predetermined boost ratio, ie an ideal relationship between the pedal stroke and the driver's requested brake fluid pressure (vehicle deceleration requested by the driver), is realized. Target wheel cylinder hydraulic pressure (target W / C hydraulic pressure P *) is set. This P * is common to all the wheels FL to RR. At the time of regenerative coordinated brake control, for example, the sum of the regenerative braking force input from the control unit of the regenerative braking system of the vehicle and the hydraulic braking force corresponding to the target W / C hydraulic pressure P * reduces the vehicle demand by the driver. Calculate P * that satisfies the speed. At the time of motion control, for example, the target W / C fluid pressure P * of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like). The calculation unit 902 calculates a command for driving the actuators (the respective solenoid valves 21 and the like and the motor 200) so as to realize the target W / C fluid pressure P *, and outputs the command to the drive unit 903. The drive unit 903 supplies power to the actuator in accordance with the command signal from the calculation unit 902. Thus, the ECU 90 functions as a control unit in the brake system 1. The arithmetic unit 902 and the reception unit 901 are realized by software in the microcomputer in the embodiment, but may be realized by an electronic circuit. The operation means not only mathematical operation but also general processing on software. The receiving unit 901 may be an interface of a microcomputer or software in the microcomputer. The drive unit 903 includes a PWM duty value calculation unit, an inverter, and the like. The command signal may relate to a current value, or may relate to a force (torque) or a displacement amount. In addition to setting P * for realizing a predetermined boosting ratio at the time of boosting control in the arithmetic unit 902, using a map in the microcomputer, it may be set by computing.
 ECU90は、ポンプユニット20を非作動とし、遮断弁21を開方向に作動させる。この状態で、マスタシリンダ5の液圧室50とホイルシリンダ101とを接続するW/C液路(液路73,11等)は、踏力ブレーキ(非倍力制御)を実現する。踏力ブレーキは、運転者がブレーキペダル100を踏む力を用いて発生させたブレーキ液の圧力(マスタシリンダ液圧)によりホイルシリンダ液圧を創生する。すなわち、運転者によりブレーキペダル100が踏み込まれると、マスタシリンダ5のピストン51がx軸負方向に移動(ストローク)する。液圧室50とリザーバタンク4の第1室41との連通が遮断された状態で、液圧室50にマスタシリンダ液圧が発生する。液圧室50から流出したブレーキ液は、W/C液路を介してホイルシリンダ101に供給され、ホイルシリンダ液圧を発生させる。踏力ブレーキ時、ECU90は、SS-IN弁27及びSS-OUT弁28を閉方向に作動させる(非通電状態とする)。これにより、ストロークシミュレータ6が非作動になる。すなわち、SS-OUT弁28が閉じると、背圧室602からブレーキ液が液溜め室120へ排出されないため、ストロークシミュレータ6のピストン61のストロークが抑制される。 The ECU 90 deactivates the pump unit 20 and actuates the shutoff valve 21 in the opening direction. In this state, the W / C fluid passages (fluid passages 73, 11 and so on) connecting the fluid pressure chamber 50 of the master cylinder 5 and the wheel cylinder 101 realize a depression brake (non-boost control). The depression force brake generates the wheel cylinder hydraulic pressure by the pressure (master cylinder hydraulic pressure) of the brake fluid generated by using the force with which the driver depresses the brake pedal 100. That is, when the driver depresses the brake pedal 100, the piston 51 of the master cylinder 5 moves (strokes) in the x-axis negative direction. With the communication between the fluid pressure chamber 50 and the first chamber 41 of the reservoir tank 4 interrupted, a master cylinder fluid pressure is generated in the fluid pressure chamber 50. The brake fluid that has flowed out of the fluid pressure chamber 50 is supplied to the wheel cylinder 101 via the W / C fluid passage to generate a wheel cylinder fluid pressure. At the time of depression of the pedal force, the ECU 90 operates the SS-IN valve 27 and the SS-OUT valve 28 in the closing direction (in the non-energized state). Thereby, the stroke simulator 6 is inactivated. That is, when the SS-OUT valve 28 is closed, the brake fluid is not discharged from the back pressure chamber 602 to the fluid storage chamber 120, so the stroke of the piston 61 of the stroke simulator 6 is suppressed.
 ECU90は、液圧ユニット2を制御することで、マスタシリンダ5とホイルシリンダ101との連通を遮断した状態で、各ホイルシリンダ101の液圧を(運転者によるブレーキ操作とは独立に)個別に制御可能である。すなわち、ポンプユニット20は、遮断弁21に対してホイルシリンダ101の側のW/C液路11にブレーキ液を供給可能である。ポンプ201は、液溜め室120のブレーキ液を、吸入液路12を介して吸入し、吐出液路13に吐出し、(連通液路13P,13Sを介して)W/C液路11へ供給する。液溜め室120には、配管10Rを介してリザーバタンク4からブレーキ液が補給される。液圧ユニット2は、ポンプ201により昇圧されたブレーキ液を、W/C配管10Wを介してホイルシリンダ101へ供給する。液溜め室120とホイルシリンダ101とを接続する液路(吸入液路12、吐出液路13等)は、ポンプユニット20を用いて発生させた液圧によりホイルシリンダ液圧を創生する所謂ブレーキバイワイヤシステムを実現する。遮断弁21は、閉弁することで、マスタシリンダ5とホイルシリンダ101との連通を遮断する。調圧弁24は、ポンプ201の側から調圧液路14を介して液溜め室120へ流出するブレーキ液の量を調整可能である。増圧弁22は、W/C液路11を介してホイルシリンダ101へ流入するブレーキ液の量を調整可能である。チェック弁220は、W/C液路11における増圧弁22に対し遮断弁21の側の液圧がホイルシリンダ101の液圧より低いとき、開弁することで、ホイルシリンダ101の側から増圧弁22に対し遮断弁21の側へのブレーキ液の流出を許可する。減圧弁25は、開弁することで、ホイルシリンダ101から減圧液路15を介してブレーキ液を液溜め室120へ流出させる。液圧センサ92は、遮断弁21に対してホイルシリンダ101の側のW/C液路11の液圧を検出可能である。よって、遮断弁21が閉方向に作動しているときもホイルシリンダ101の液圧を検出可能である。ECU90は、液圧センサ92の検出値に基づきホイルシリンダ液圧を制御可能である。液圧センサ92はP,S系統にあるため、ECU90は、系統毎の検出値に基づき、系統毎にホイルシリンダ液圧を制御可能である。なお、液圧センサ92は、連通液路13P,13S(における連通弁23よりもW/C液路11の側)にあってもよい。液圧センサ92Sは、背圧供給液路17(におけるSS-IN弁27よりもW/C液路11の側)にあってもよい。 The ECU 90 controls the hydraulic pressure unit 2 to individually block the hydraulic pressure of each wheel cylinder 101 (independently of the driver's brake operation) while the communication between the master cylinder 5 and the wheel cylinder 101 is cut off. It is controllable. That is, the pump unit 20 can supply the brake fluid to the W / C fluid passage 11 on the side of the wheel cylinder 101 with respect to the shutoff valve 21. The pump 201 sucks the brake fluid in the fluid storage chamber 120 through the suction fluid passage 12 and discharges it to the discharge fluid passage 13, and supplies it to the W / C fluid passage 11 (through the fluid communication passages 13P and 13S). Do. The brake fluid is supplied to the fluid reservoir chamber 120 from the reservoir tank 4 via the pipe 10R. The hydraulic unit 2 supplies the brake fluid pressurized by the pump 201 to the wheel cylinder 101 via the W / C pipe 10W. A fluid passage (a suction fluid passage 12, a discharge fluid passage 13, etc.) connecting the fluid storage chamber 120 and the wheel cylinder 101 is a so-called brake that creates a foil cylinder fluid pressure by the fluid pressure generated using the pump unit 20. Implement a by-wire system. The shutoff valve 21 shuts off the communication between the master cylinder 5 and the wheel cylinder 101 by closing the shutoff valve 21. The pressure control valve 24 can adjust the amount of brake fluid flowing out to the fluid storage chamber 120 from the side of the pump 201 via the pressure control fluid passage 14. The pressure increasing valve 22 can adjust the amount of brake fluid flowing into the wheel cylinder 101 via the W / C fluid passage 11. The check valve 220 is opened from the side of the wheel cylinder 101 by opening the valve when the hydraulic pressure on the side of the shutoff valve 21 is lower than the hydraulic pressure of the wheel cylinder 101 with respect to the pressure increasing valve 22 in the W / C fluid passage 11. 22 permits the flow of brake fluid to the side of the shutoff valve 21. The pressure reducing valve 25 is opened to cause the brake fluid to flow out of the wheel cylinder 101 to the fluid storage chamber 120 via the pressure reducing fluid passage 15. The fluid pressure sensor 92 can detect the fluid pressure in the W / C fluid passage 11 on the side of the wheel cylinder 101 with respect to the shutoff valve 21. Therefore, even when the shutoff valve 21 operates in the closing direction, the hydraulic pressure of the wheel cylinder 101 can be detected. The ECU 90 can control the wheel cylinder hydraulic pressure based on the detection value of the hydraulic pressure sensor 92. Since the hydraulic pressure sensor 92 is in the P and S systems, the ECU 90 can control the wheel cylinder hydraulic pressure for each system based on the detection value for each system. The fluid pressure sensor 92 may be located in the communication fluid passages 13P and 13S (on the side of the W / C fluid passage 11 relative to the communication valve 23 thereof). The fluid pressure sensor 92S may be located on the back pressure supply fluid passage 17 (on the W / C fluid passage 11 side of the SS-IN valve 27).
 ブレーキバイワイヤ時、ECU90は、SS-OUT弁28を開方向に作動させる。これにより、背圧室602が液溜め室120と連通して実質的に大気圧となるため、ストロークシミュレータ6が作動する。すなわち、ブレーキペダル100が踏み込まれ、第1液圧室50Pにマスタシリンダ液圧が発生すると、第1液圧室50Pから流出したブレーキ液は、正圧液路74を介して正圧室601に流入する。正圧室601には、第1液圧室50Pと実質的に同じ液圧(マスタシリンダ液圧)が発生する。この正圧室601の液圧と背圧室602の液圧(大気圧)との差による力がピストン61に作用することで、ピストン61がx軸正方向にストロークする。これによりペダルストロークが発生する。また、第1,第2ばね620,630の圧縮量に応じた付勢力が液圧を介してブレーキペダル100に反力を付与する。具体的には、ばね係数が互いに異なるばね620,630が直列に接続されており、これらが順を追って弾性変形することで、両ばね620,630全体としての特性(変形量に対するばね係数の変化)が非線形となる。このため、ピストン61の作動(ペダルストローク)に応じて生成されるペダル反力を、所望の特性に近づけることが容易である。また、弾性部材624,634が順を追って弾性変形することで、ペダル反力の特性をより好ましいものにできる。なお、ストロークシミュレータ6の構成はこれに限られない。ストロークシミュレータ6の作動中に電源失陥が発生すると、SS-OUT弁28が閉弁状態になる。ばね620,630の力により、ピストン61は初期位置に向けてx軸負方向にストロークする。背圧室602の容積拡大に応じてチェック弁280が開弁し、液溜め室120から背圧排出液路18(バイパス液路180)及び背圧液路16を介して背圧室602にブレーキ液が補給される。 At the time of brake-by-wire, the ECU 90 operates the SS-OUT valve 28 in the opening direction. As a result, the back pressure chamber 602 communicates with the fluid reservoir chamber 120 and becomes substantially atmospheric pressure, so the stroke simulator 6 operates. That is, when the brake pedal 100 is depressed and the master cylinder fluid pressure is generated in the first fluid pressure chamber 50P, the brake fluid flowing out of the first fluid pressure chamber 50P is transferred to the positive pressure chamber 601 via the positive pressure fluid passage 74. To flow. In the positive pressure chamber 601, a fluid pressure (master cylinder fluid pressure) substantially the same as that of the first fluid pressure chamber 50P is generated. The force due to the difference between the fluid pressure of the positive pressure chamber 601 and the fluid pressure (atmospheric pressure) of the back pressure chamber 602 acts on the piston 61, whereby the piston 61 strokes in the x-axis positive direction. This generates a pedal stroke. Further, a biasing force according to the amount of compression of the first and second springs 620 and 630 applies a reaction force to the brake pedal 100 via the fluid pressure. Specifically, springs 620 and 630 having different spring coefficients are connected in series, and are elastically deformed in order, and the characteristics (change of the spring coefficient with respect to the amount of deformation) of both springs 620 and 630 as a whole are nonlinear. Become. For this reason, it is easy to make the pedal reaction force generated according to the operation (pedal stroke) of the piston 61 approach a desired characteristic. In addition, by elastically deforming the elastic members 624 and 634 in order, the characteristics of the pedal reaction force can be made more preferable. The configuration of the stroke simulator 6 is not limited to this. If a power failure occurs during operation of the stroke simulator 6, the SS-OUT valve 28 is closed. The force of the springs 620 and 630 causes the piston 61 to stroke in the x-axis negative direction toward the initial position. The check valve 280 is opened according to the volume expansion of the back pressure chamber 602, and the brake is transferred from the liquid storage chamber 120 to the back pressure chamber 602 through the back pressure discharge liquid passage 18 (bypass liquid passage 180) and the back pressure liquid passage 16. The fluid is replenished.
 ECU90は、ブレーキペダル100の踏込み操作開始後、ホイルシリンダ液圧制御を実行する際、ポンプ201が十分に高いホイルシリンダ液圧を発生可能になるまでの間、SS-OUT弁28を閉方向に作動させ(非通電状態とし)てもよい。これにより、ホイルシリンダ101の増圧応答性を向上できる。すなわち、SS-OUT弁28が閉じた状態では、ブレーキペダル100の踏込み操作に応じて背圧室602から流出するブレーキ液は、背圧室602の液圧のほうがホイルシリンダ101の液圧よりも高い間、背圧供給液路17(バイパス液路170及びチェック弁270)を通って、(遮断弁21に対してホイルシリンダ101の側の)W/C液路11に供給される。W/C液路11に供給されたブレーキ液はホイルシリンダ101へ供給される。背圧室602の側の液圧よりもホイルシリンダ101の側の液圧のほうが高くなると、チェック弁270が閉弁し、ホイルシリンダ101への上記ブレーキ液の供給が自動的に終了する。ECU90は、ポンプユニット20が十分に高いホイルシリンダ液圧を発生可能な作動状態になったと判断すると、SS-OUT弁28を開方向に作動させる。これにより、背圧室602からのブレーキ液の流出先が、上記W/C液路11から液溜め室120に切り換えられる。背圧供給液路17には、バイパス液路170(チェック弁270)と並列に、SS-IN弁27がある。ECU90は、ブレーキペダル100の踏込み操作開始後、上記のようにSS-OUT弁28を閉方向に作動させる間、SS-IN弁27を開方向に作動させてもよい。これにより、背圧供給液路17の流路断面積が大きくなり、背圧室602からホイルシリンダ101へのブレーキ液の供給が円滑化される。これとは別に、ECU90は、背圧室602の側の液圧よりも上記W/C液路11の液圧のほうが高い状態で、SS-IN弁27を開方向に作動させることにより、上記W/C液路11から背圧室602へブレーキ液を供給することができる。よって、ECU90は、例えば遮断弁21を閉方向に作動させた状態でアンチロックブレーキ制御を実行中、SS-IN弁27の開閉を調節して背圧室602へのブレーキ液供給を制御することで、アンチロックブレーキ制御の実行をペダル反力として運転者に報知可能であると共に、ブレーキペダル100の操作フィーリング(ペダルフィーリング)を向上できる。なお、背圧供給液路17は、背圧液路16において背圧排出液路18と液路が共通であるが、液路17,18が互いに独立であってもよい。 The ECU 90 closes the SS-OUT valve 28 until the pump 201 can generate a sufficiently high wheel cylinder pressure when the wheel cylinder pressure control is performed after the start of the stepping operation of the brake pedal 100. It may be operated (not energized). Thereby, the pressure increase response of the wheel cylinder 101 can be improved. That is, in the state where the SS-OUT valve 28 is closed, the brake fluid flowing out of the back pressure chamber 602 in response to the stepping-on operation of the brake pedal 100 is closer to the fluid pressure of the back pressure chamber 602 than the fluid pressure of the wheel cylinder 101. While high, it is supplied to the W / C fluid passage 11 (on the side of the wheel cylinder 101 with respect to the shutoff valve 21) through the back pressure supply fluid passage 17 (bypass fluid passage 170 and check valve 270). The brake fluid supplied to the W / C fluid passage 11 is supplied to the wheel cylinder 101. When the fluid pressure on the wheel cylinder 101 side becomes higher than the fluid pressure on the back pressure chamber 602 side, the check valve 270 closes and the supply of the above-mentioned brake fluid to the wheel cylinder 101 is automatically ended. The ECU 90 operates the SS-OUT valve 28 in the opening direction when it is determined that the pump unit 20 is in an operable state capable of generating a sufficiently high wheel cylinder hydraulic pressure. Thus, the destination of the brake fluid from the back pressure chamber 602 is switched from the W / C fluid passage 11 to the fluid reservoir chamber 120. The back pressure supply fluid passage 17 has an SS-IN valve 27 in parallel with the bypass fluid passage 170 (check valve 270). The ECU 90 may operate the SS-IN valve 27 in the opening direction while the SS-OUT valve 28 is operated in the closing direction as described above after the depression operation of the brake pedal 100 is started. As a result, the cross-sectional area of the back pressure supply fluid path 17 is increased, and the supply of the brake fluid from the back pressure chamber 602 to the wheel cylinder 101 is facilitated. Apart from this, the ECU 90 operates the SS-IN valve 27 in the opening direction in a state where the fluid pressure of the W / C fluid passage 11 is higher than the fluid pressure on the back pressure chamber 602 side. The brake fluid can be supplied from the W / C fluid passage 11 to the back pressure chamber 602. Therefore, the ECU 90 controls the brake fluid supply to the back pressure chamber 602 by adjusting the opening and closing of the SS-IN valve 27 while executing the antilock brake control with the shutoff valve 21 operated in the closing direction, for example. Thus, the driver can be notified of the execution of the antilock brake control as a pedal reaction force, and the operation feeling (pedal feeling) of the brake pedal 100 can be improved. Although the back pressure supply liquid passage 17 has the same liquid passage as the back pressure discharge liquid passage 18 in the back pressure liquid passage 16, the liquid passages 17 and 18 may be independent of each other.
 ECU90は、倍力制御時、モータ200を所定回転数で駆動し、遮断弁21P,21Sを閉方向に、連通弁23P,23Sを開方向に作動させる。増圧弁22a~22dを開弁状態に、減圧弁25a~25dを閉弁状態に維持する。SS-IN弁27を閉弁状態に維持し、SS-OUT弁28を開方向に作動させる。このとき、W/C液路11における遮断弁21に対しホイルシリンダ101の側の液圧(以下、W/C側液圧という。)は、実質的に(液路の抵抗等を無視すれば)、各ホイルシリンダ101a~101dの液圧(ホイルシリンダ液圧)に相当する。W/C液路11における遮断弁21に対しホイルシリンダ101の側は、連通液路13P,13Sを介して調圧液路14に接続する。ECU90は、W/C側液圧が目標W/C液圧P*となるように、調圧弁24の開閉(開弁の量や時間や頻度等)を調節する。調圧弁24は、ポンプ201から吐出されたブレーキ液の余剰分を、調圧液路14を介して液溜め室120に戻す機能を有する。これにより、各車輪FL~RRのホイルシリンダ液圧がP*となるように制御される。ECU90の演算部902は、液圧センサ92P,92Sの検出値Pp,Psを用いてW/C側液圧を演算する。この演算される液圧を制御用検出液圧PCとする。演算部902は、PCがP*となるよう、調圧弁24の開閉を調節するための指令を演算する。 During boost control, the ECU 90 drives the motor 200 at a predetermined rotational speed, and operates the shutoff valves 21P and 21S in the closing direction and the communication valves 23P and 23S in the opening direction. The pressure increasing valves 22a to 22d are maintained in the open state, and the pressure reducing valves 25a to 25d are maintained in the closed state. The SS-IN valve 27 is maintained in the closed state, and the SS-OUT valve 28 is operated in the opening direction. At this time, the fluid pressure on the side of the wheel cylinder 101 with respect to the shutoff valve 21 in the W / C fluid passage 11 (hereinafter referred to as W / C side fluid pressure) is substantially (if the resistance of the fluid passage etc. is ignored). And the fluid pressure (wheel cylinder fluid pressure) of each of the wheel cylinders 101a to 101d. The wheel cylinder 101 side of the W / C fluid passage 11 with respect to the shutoff valve 21 is connected to the pressure control fluid passage 14 via the fluid communication passages 13P and 13S. The ECU 90 adjusts the opening and closing of the pressure control valve 24 (such as the amount, time, and frequency of opening the valve) so that the W / C side hydraulic pressure becomes the target W / C hydraulic pressure P *. The pressure control valve 24 has a function of returning the surplus portion of the brake fluid discharged from the pump 201 to the liquid storage chamber 120 via the pressure control liquid passage 14. Thus, the wheel cylinder hydraulic pressure of each of the wheels FL to RR is controlled to be P *. The calculation unit 902 of the ECU 90 calculates the W / C side hydraulic pressure using the detection values Pp, Ps of the hydraulic pressure sensors 92P, 92S. The calculated hydraulic pressure is taken as a control detected hydraulic pressure PC. The calculation unit 902 calculates a command for adjusting the opening and closing of the pressure regulating valve 24 such that PC becomes P *.
 演算部902は、液圧センサ92P,92Sのいずれの故障も検知されないとき、液圧センサ92Pの検出値Pp及び液圧センサ92Sの検出値Psの両方を用いて、制御用検出液圧PCを演算する。このPCが目標W/C液圧P*となるように、ECU90は調圧弁24を制御する。この制御モードを正常モードといい、正常モードを実行するECU90のモジュールを第1制御部という。演算部902は、液圧センサ92P,92Sのいずれかの故障が検知されると、正常なほうの液圧センサ92の検出値(Pp又はPs)を用いて、PCを設定する。このPCがP*となるように、ECU90は調圧弁24を制御する。この制御モードを故障モードといい、故障モードを実行するECU90のモジュールを第2制御部という。演算部902は、液圧センサ92P,92Sのいずれかの故障が検知されると、「上記故障の検知直後に正常なほうの液圧センサ92の検出値(Pp又はPs)を用いて設定したPC」が「上記故障の検知時のP*」より高いか否かに応じて、P*を補正する。PCが、上記補正後のP*(制御用目標液圧PC*)になるように、ECU90は調圧弁24を制御する。この制御モードを切り替えモードといい、切り替えモードを実行するECU90のモジュールを第3制御部という。切り替えモードは、正常モードから故障モードへの切り替えの際に実行される。 When neither failure of the fluid pressure sensors 92P and 92S is detected, the computing unit 902 uses both the detected value Pp of the fluid pressure sensor 92P and the detected value Ps of the fluid pressure sensor 92S to detect the control detected fluid pressure PC. Calculate The ECU 90 controls the pressure regulating valve 24 such that the PC becomes the target W / C fluid pressure P *. This control mode is referred to as a normal mode, and the module of the ECU 90 that executes the normal mode is referred to as a first control unit. When the malfunction of either one of the hydraulic pressure sensors 92P and 92S is detected, the computing unit 902 sets a PC using the detection value (Pp or Ps) of the normal hydraulic pressure sensor 92. The ECU 90 controls the pressure regulating valve 24 such that this PC becomes P *. This control mode is called a failure mode, and a module of the ECU 90 that executes the failure mode is called a second control unit. When any malfunction of the fluid pressure sensors 92P and 92S is detected, the computing unit 902 sets “the value detected by the fluid pressure sensor 92 of the normal one (Pp or Ps) is used immediately after the failure is detected. P * is corrected according to whether or not PC is higher than P * at the time of detection of the above-mentioned failure. The ECU 90 controls the pressure regulating valve 24 such that the PC becomes P * (target hydraulic pressure for control PC *) after the correction. This control mode is referred to as a switching mode, and the module of the ECU 90 that executes the switching mode is referred to as a third control unit. The switching mode is executed when switching from the normal mode to the failure mode.
 図2は、演算部902が、倍力制御において、制御用検出液圧PC及び制御用目標液圧PC*を演算し、これらに基づき調圧弁24に指令を出力する流れを示す。このフローは所定の周期で繰り返し実行される。演算部902は、ステップS1で、目標W/C液圧P*を演算する。その後、ステップS2へ進む。ステップS2で、液圧センサ92P,92Sからの故障信号に基づき、液圧センサ92P,92Sに故障が発生しているか否かを判定する。いずれのセンサ92P,92Sにも故障が発生していないと判定すると、ステップS3へ進む。センサ92P,92Sのいずれかに故障が発生していると判定すると、ステップS5へ進む。ステップS3で、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psの算術平均をPCに設定する。また、カウンタを0とする。カウンタは、故障の検知後における本フローの実行回数を示す。その後、ステップS4へ進む。ステップS4で、P*をPC*に設定する(P*を修正せず、そのままPC*として用いる)。また、フラグAがセットされている場合、フラグAをリセットする。フラグAは、切り替えモードにおける緩減圧処理中であることを示す。その後、ステップS11へ進む。ステップS5で、液圧センサ92P,92Sのうち正常なほう(故障信号を受信しないほう)の検出値をPCに設定する。また、カウンタに1を加算する。その後、ステップS6へ進む。ステップS6で、P*がPC未満であるか否かを判定する。P*がPC未満であれば、ステップS7へ進む。P*がPC以上であれば、ステップS4へ進む。ステップS7で、カウンタが1であるか否かを判定する。カウンタが1であれば、ステップS8へ進む。カウンタが1でなければ、ステップS9へ進む。ステップS8で、PCをPC*に設定する。また、フラグAをセットする。その後、ステップS11へ進む。ステップS9で、フラグAがセットされているか否かを判定する。フラグAがセットされていれば、ステップS10へ進む。フラグAがセットされていなければ、ステップS4へ進む。ステップS10で、前回の周期で演算したPC*から所定値αを減算した値を、今回の周期におけるPC*に設定する。その後、ステップS11へ進む。ステップS11で、(今回の周期で演算された)PCを(今回の周期で演算された)PC*に近づけるために調圧弁24を駆動するための指令を演算し、駆動部903に出力する。その後、今回の周期を終了する。ステップS1→S2→S3→S4→S11の流れは正常モードに相当する。ステップS1→S2→S5→S6→S4→S11及びステップS1→S2→S5→S6→S7→S9→S4→S11の流れは故障モードに相当する。ステップS1→S2→S5→S6→S4→S11並びにステップS1→S2→S5→S6→S7→S8→S11及びステップS1→S2→S5→S6→S7→S9→S10→S11の流れは切り替えモードに相当する。 FIG. 2 shows a flow in which the calculation unit 902 calculates the control detection hydraulic pressure PC and the control target hydraulic pressure PC * in boost control, and outputs a command to the pressure adjustment valve 24 based on these. This flow is repeatedly executed in a predetermined cycle. The operation unit 902 calculates the target W / C fluid pressure P * in step S1. Thereafter, the process proceeds to step S2. In step S2, based on the failure signals from the fluid pressure sensors 92P and 92S, it is determined whether or not the fluid pressure sensors 92P and 92S have a failure. If it is determined that no failure has occurred in any of the sensors 92P and 92S, the process proceeds to step S3. If it is determined that a failure has occurred in one of the sensors 92P and 92S, the process proceeds to step S5. In step S3, the arithmetic mean of the detection value Pp of the fluid pressure sensor 92P and the detection value Ps of the fluid pressure sensor 92S is set to PC. Also, the counter is set to 0. The counter indicates the number of executions of this flow after detection of a failure. Thereafter, the process proceeds to step S4. In step S4, P * is set to PC * (the P * is not corrected but is used as it is as PC *). If the flag A is set, the flag A is reset. The flag A indicates that the slow depressurization processing in the switching mode is in progress. Thereafter, the process proceeds to step S11. In step S5, the detected value of one of the fluid pressure sensors 92P and 92S that is normal (the one that does not receive the failure signal) is set in the PC. Also, add 1 to the counter. Thereafter, the process proceeds to step S6. In step S6, it is determined whether P * is less than PC. If P * is less than PC, the process proceeds to step S7. If P * is equal to or greater than PC, the process proceeds to step S4. In step S7, it is determined whether the counter is one. If the counter is 1, the process proceeds to step S8. If the counter is not 1, the process proceeds to step S9. In step S8, the PC is set to PC *. Also, the flag A is set. Thereafter, the process proceeds to step S11. In step S9, it is determined whether the flag A is set. If the flag A is set, the process proceeds to step S10. If the flag A is not set, the process proceeds to step S4. In step S10, a value obtained by subtracting a predetermined value α from PC * calculated in the previous cycle is set as PC * in the current cycle. Thereafter, the process proceeds to step S11. In step S11, a command for driving the pressure regulating valve 24 is calculated to bring the PC (calculated in the current cycle) close to the PC * (calculated in the current cycle), and the command is output to the drive unit 903. After that, this cycle ends. The flow of steps S 1 → S 2 → S 3 → S 4 → S 11 corresponds to the normal mode. The flow of steps S1 → S2 → S5 → S6 → S4 → S11 and steps S1 → S2 → S5 → S6 → S7 → S9 → S4 → S11 corresponds to the failure mode. Steps S1 → S2 → S5 → S6 → S4 → S11 and steps S1 → S2 → S5 → S6 → S7 → S8 → S11 and steps S1 → S2 → S5 → S6 → S7 → S9 → S10 → S11 are switched modes. Equivalent to.
 次に作用効果を説明する。図5は、倍力制御時における各アクチュエータの作動及び各液圧の時間変化の一例を示す(液圧センサ92Pの故障時の検出液圧Ppが目標液圧P*より高い場合)。時刻t1以前、ブレーキペダルが操作されない。ペダルストロークがゼロであり、目標W/C液圧P*がゼロ(大気圧)である。時刻t1で、運転者がブレーキペダルの踏込み操作を開始する。ペダルストロークの増加に応じて、P*が上昇する。時刻t2で、ペダルストロークの増加が終了し、以後、時刻t4までペダルストロークが一定に保持される。P*は一定値となる。時刻t4で、運転者がブレーキペダルの踏み戻し操作を開始する。ペダルストロークの減少に応じて、P*が低下する。時刻t5で、ペダルストロークの減少が終了し、以後、ブレーキペダルが操作されない。ペダルストロークがゼロであり、P*がゼロである。時刻t1からt3まで、いずれの液圧センサ92P,92Sの故障も検知されない。よって、図2でステップS1→S2→S3→S4→S11の流れとなる(正常モード)。液圧センサ92Sは正常であり、その検出値Psは実際のW/C側液圧に一致しているとみなす。なお、Psは、実際のW/C側液圧からある程度乖離していてもよい。液圧センサ92Pの検出値Ppは、実際のW/C側液圧から乖離しており、W/C側液圧(Ps)よりも高い。制御用検出液圧PCはPpとPsの算術平均値である(ステップS3)。PpはPCより高く、PsはPCより低い。P*が制御用目標液圧PC*に設定される(ステップS4)。PCがPC*=P*と一致するように制御される(ステップS11)。よって、PpはPC*=P*より高く、PsはPC*=P*より低い。時刻t3で、液圧センサ92Pの故障が検知される。よって、図2でステップS1→S2→S5→S6の流れとなる。正常なほうの液圧センサ92Sの検出値PsがPCに設定される(ステップS5)。PCはPC*=P*からPsまで低下する。ここで、故障の検知(時刻t3)直後における正常なほうの液圧センサ92Sの検出値Ps=PCが、上記故障の検知時(時刻t3)のP*より低い。よって、ステップS6→S4→S11の流れとなる(切り替えモード)。時刻t3以前(正常モード)と同じく、P*がPC*に設定される(ステップS4)。以後、ステップS1→S2→S5→S6→S4→S11の流れとなり、PC=PsがPC*=P*と一致するように制御される(故障モード)。よって、時刻t3の直後、調圧弁24が閉方向に作動し、PC=PsがPC*=P*へ向かって急速に上昇した後、PC*=P*と一致する。すなわち、時刻t3の直後、正常モードから直ちに故障モードへ切り替えられる。なお、Ppは、Psからの乖離量を保ったまま、Psと同じような波形を描く。 Next, the function and effect will be described. FIG. 5 shows an example of the operation of each actuator at the time of boost control and the time change of each fluid pressure (when the detected fluid pressure Pp at the time of failure of the fluid pressure sensor 92P is higher than the target fluid pressure P *). Before time t1, the brake pedal is not operated. The pedal stroke is zero, and the target W / C fluid pressure P * is zero (atmospheric pressure). At time t1, the driver starts stepping on the brake pedal. As the pedal stroke increases, P * rises. At time t2, the increase of the pedal stroke ends, and thereafter, the pedal stroke is held constant until time t4. P * is a constant value. At time t4, the driver starts to depress the brake pedal. P * decreases as the pedal stroke decreases. At time t5, the reduction of the pedal stroke ends, and thereafter the brake pedal is not operated. The pedal stroke is zero and P * is zero. From time t1 to t3, neither failure of the fluid pressure sensors 92P and 92S is detected. Therefore, the flow of steps S1 → S2 → S3 → S4 → S11 in FIG. 2 (normal mode). The fluid pressure sensor 92S is normal, and the detected value Ps is regarded as being in agreement with the actual W / C side fluid pressure. Ps may be deviated to some extent from the actual W / C side hydraulic pressure. The detected value Pp of the fluid pressure sensor 92P deviates from the actual W / C side fluid pressure and is higher than the W / C side fluid pressure (Ps). The control detected hydraulic pressure PC is an arithmetic mean value of Pp and Ps (step S3). Pp is higher than PC and Ps is lower than PC. P * is set to the control target fluid pressure PC * (step S4). The PC is controlled to match PC * = P * (step S11). Thus, Pp is higher than PC * = P * and Ps is lower than PC * = P *. At time t3, a failure of the hydraulic pressure sensor 92P is detected. Therefore, the flow of steps S1 → S2 → S5 → S6 in FIG. The detected value Ps of the normal hydraulic pressure sensor 92S is set to PC (step S5). PC drops from PC * = P * to Ps. Here, the detection value Ps = PC of the normal hydraulic pressure sensor 92S immediately after the failure detection (time t3) is lower than P * at the time of the failure detection (time t3). Therefore, it becomes a flow of step S6-> S4-> S11 (switching mode). P * is set to PC * as before time t3 (normal mode) (step S4). Thereafter, in the flow of steps S1 → S2 → S5 → S6 → S4 → S11, control is performed such that PC = Ps matches PC * = P * (failure mode). Therefore, immediately after time t3, the pressure regulating valve 24 operates in the closing direction, and after PC = Ps rises rapidly toward PC * = P *, it matches PC * = P *. That is, immediately after time t3, the normal mode is immediately switched to the failure mode. Pp draws a waveform similar to Ps while maintaining the amount of deviation from Ps.
 図6は、倍力制御時における各アクチュエータの作動及び各液圧の時間変化の別の一例を示す(液圧センサ92Pの故障時の検出液圧Ppが目標液圧P*より低い場合)。ペダルストローク及び目標W/C液圧P*の変化は、図5と同様である。時刻t11からt13まで、いずれの液圧センサ92P,92Sの故障も検知されない。よって、図2でステップS1→S2→S3→S4→S11の流れとなる(正常モード)。液圧センサ92Sは正常であり、その検出値Psは実際のW/C側液圧に一致しているとみなす。なお、Psは、実際のW/C側液圧からある程度乖離していてもよい。液圧センサ92Pの検出値Ppは、実際のW/C側液圧から乖離しており、W/C側液圧(Ps)よりも低い。制御用検出液圧PCはPpとPsの算術平均値である(ステップS3)。PpはPCより低く、PsはPCより高い。P*が制御用目標液圧PC*に設定される(ステップS4)。PCがPC*=P*と一致するように制御される(ステップS11)。よって、PpはPC*=P*より低く、PsはPC*=P*より高い。時刻t13で、液圧センサ92Pの故障が検知される。よって、図2でステップS1→S2→S5→S6の流れとなる。正常なほうの液圧センサ92Sの検出値PsがPCに設定される(ステップS5)。PCはPC*=P*からPsまで上昇する。ここで、故障の検知(時刻t13)直後における正常なほうの液圧センサ92Sの検出値Ps=PCが、上記故障の検知時(時刻t13)のP*より高い。よって、ステップS6→S7→S8→S11の流れとなる(切り替えモード)。PC=PsがPC*に設定される(ステップS8)。以後、ステップS1→S2→S5→S6→S7→S9→S10→S11の流れとなり、PC*が一定の勾配αで低下する(ステップS10)と共に、PC=PsがPC*と一致するように制御される(切り替えモード)。よって、時刻t13以後、調圧弁24が開方向に作動し、PC=Psが勾配αで徐々に低下する。なお、Ppは、Psからの乖離量を保ったまま、Psと同じような波形を描く。時刻t14で、Ps=PCがP*まで低下する。よって、時刻t14以後、ステップS1→S2→S5→S6→S4→S11またはステップS1→S2→S5→S6→S7→S9→S4→S11の流れとなり、P*がPC*に設定されると共に、PC=PsがPC*=P*と一致するように制御される(故障モード)。なお、Ppは、時刻t14の近傍でゼロまで低下し、以後、変化しない。 FIG. 6 shows another example of the operation of each actuator at the time of boost control and the time change of each fluid pressure (when the detected fluid pressure Pp at the time of failure of the fluid pressure sensor 92P is lower than the target fluid pressure P *). The pedal stroke and the change in the target W / C fluid pressure P * are the same as in FIG. From time t11 to t13, no failure of the fluid pressure sensors 92P and 92S is detected. Therefore, the flow of steps S1 → S2 → S3 → S4 → S11 in FIG. 2 (normal mode). The fluid pressure sensor 92S is normal, and the detected value Ps is regarded as being in agreement with the actual W / C side fluid pressure. Ps may be deviated to some extent from the actual W / C side hydraulic pressure. The detected value Pp of the fluid pressure sensor 92P deviates from the actual W / C side fluid pressure and is lower than the W / C side fluid pressure (Ps). The control detected hydraulic pressure PC is an arithmetic mean value of Pp and Ps (step S3). Pp is lower than PC and Ps is higher than PC. P * is set to the control target fluid pressure PC * (step S4). The PC is controlled to match PC * = P * (step S11). Thus, Pp is lower than PC * = P * and Ps is higher than PC * = P *. At time t13, a failure of the hydraulic pressure sensor 92P is detected. Therefore, the flow of steps S1 → S2 → S5 → S6 in FIG. The detected value Ps of the normal hydraulic pressure sensor 92S is set to PC (step S5). PC rises from PC * = P * to Ps. Here, the detected value Ps = PC of the normal hydraulic pressure sensor 92S immediately after the failure detection (time t13) is higher than P * at the time of the failure detection (time t13). Therefore, it becomes the flow of step S6-> S7-> S8-> S11 (switching mode). PC = Ps is set to PC * (step S8). Thereafter, the flow of steps S1 → S2 → S5 → S6 → S7 → S9 → S10 → S11, and PC * decreases with a constant gradient α (step S10), and control is performed such that PC = Ps matches PC *. Be switched (switching mode). Therefore, after time t13, the pressure regulating valve 24 operates in the opening direction, and PC = Ps gradually decreases at the gradient α. Pp draws a waveform similar to Ps while maintaining the amount of deviation from Ps. At time t14, Ps = PC falls to P *. Therefore, after time t14, the flow of steps S1 → S2 → S5 → S6 → S4 → S11 or steps S1 → S2 → S5 → S5 → S7 → S9 → S4 → S11, and P * is set to PC *, Control is made such that PC = Ps matches PC * = P * (failure mode). Pp drops to zero near time t14 and does not change thereafter.
 このように、ECU90は、液圧センサ92P,92Sのいずれの故障も検知されないとき(時刻t3まで、または時刻t13まで)、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psの両方を用いて、W/C側液圧(制御用検出液圧PC)を演算する。この演算されたPCが目標W/C液圧P*となるように、調圧弁24を制御する。すなわち、ECU90は、PpとPsの両方に基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。よって、PpとPsのいずれか1つのみに基づいてホイルシリンダ101の液圧を制御する場合に比べ、W/C側液圧をより正確に検出し、この正確な値に基づいて実際のホイルシリンダ液圧(実W/C液圧)を制御できる。よって、P*に対する実W/C液圧の乖離を抑制し、制御の精度を向上できる。なお、ECU90は、液圧センサ92P,92Sのいずれの故障も検知されない場合、PpとPsの間の乖離が小さいとき(例えば所定の閾値以下のとき)はPpとPsのいずれか一方を用い、PpとPsの間の乖離が大きいとき(例えば所定の閾値を超えたとき)のみPpとPsの両方を用いて、PCを演算してもよい。また、W/C液路11PのW/C側液圧を検出可能な液圧センサ92Pが複数あり、ECU90は、複数の液圧センサ92Pのうち1つの検出値Pp1と他の1つの検出値Pp2の両方に基づき、ホイルシリンダ液圧を制御可能であってもよい。この場合も、1つの液圧センサ92Pの検出値Ppのみに基づいてホイルシリンダ液圧を制御する場合に比べ、P*に対する実W/C液圧の乖離を抑制し、制御の精度を向上できる。なお、両検出値Pp1,Pp2の間の乖離が大きいときのみPp1,Pp2の両方を用いてもよい。同様に、液圧センサ92Sが複数あり、ECU90は、複数の液圧センサ92Sの検出値に基づきホイルシリンダ液圧を制御可能であってもよい。 As described above, when the ECU 90 does not detect any failure of the fluid pressure sensors 92P and 92S (until time t3 or time t13), the detected value Pp of the fluid pressure sensor 92P and the detected value Ps of the fluid pressure sensor 92S The W / C side hydraulic pressure (control detection hydraulic pressure PC) is calculated using both. The pressure control valve 24 is controlled so that the calculated PC becomes the target W / C fluid pressure P *. That is, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on both Pp and Ps. Therefore, the W / C side hydraulic pressure is detected more accurately than when the hydraulic pressure of the wheel cylinder 101 is controlled based on only one of Pp and Ps, and the actual foil is detected based on this accurate value. The cylinder hydraulic pressure (actual W / C hydraulic pressure) can be controlled. Therefore, deviation of the actual W / C fluid pressure from P * can be suppressed, and the control accuracy can be improved. When neither failure of the fluid pressure sensors 92P, 92S is detected, the ECU 90 uses one of Pp and Ps when the deviation between Pp and Ps is small (for example, less than a predetermined threshold), Both Pp and Ps may be used to calculate PC only when the deviation between Pp and Ps is large (eg, when a predetermined threshold is exceeded). Further, there are a plurality of hydraulic pressure sensors 92P capable of detecting the W / C side hydraulic pressure of the W / C fluid path 11P, and the ECU 90 detects one detected value Pp1 and another detected value among the plurality of hydraulic pressure sensors 92P. The wheel cylinder hydraulic pressure may be controllable based on both of Pp2. Also in this case, the deviation of the actual W / C fluid pressure from P * can be suppressed and the control accuracy can be improved, as compared to the case where the wheel cylinder fluid pressure is controlled based on only the detected value Pp of one fluid pressure sensor 92P. . It should be noted that both of Pp1 and Pp2 may be used only when the difference between the two detection values Pp1 and Pp2 is large. Similarly, there may be a plurality of hydraulic pressure sensors 92S, and the ECU 90 may be capable of controlling the wheel cylinder hydraulic pressure based on the detection values of the plurality of hydraulic pressure sensors 92S.
 ECU90は、ホイルシリンダ101a,101dの液圧とホイルシリンダ101b,101cの液圧を共通の目標W/C液圧P*に制御する。よって、ホイルシリンダ101a,101dとホイルシリンダ101b,101cとの間で、制御される実W/C液圧がばらつくことを抑制できる。この「ホイルシリンダ101a,101dの液圧とホイルシリンダ101b,101cの液圧を共通のP*に制御する」ことには、倍力制御だけでなく、自動ブレーキ制御等も含まれる。 The ECU 90 controls the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c to a common target W / C fluid pressure P *. Therefore, it is possible to suppress the dispersion of the controlled actual W / C fluid pressure between the wheel cylinders 101a and 101d and the wheel cylinders 101b and 101c. The control of the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c to a common P * includes not only boost control but also automatic brake control and the like.
 W/C液路11P(における遮断弁21Pに対しホイルシリンダ101a,101dの側)とW/C液路11S(における遮断弁21Sに対しホイルシリンダ101b,101cの側)とを接続する連通液路13P,13Sがある。よって、P系統の液圧回路とS系統の液圧回路が、連通液路13P,13Sを介して互いに接続され、いわば1系統の液圧回路として機能しうるため、ホイルシリンダ液圧の制御がP,S系統のいずれかに偏ったものとなることが抑制される。例えば倍力制御時、W/C液路11PとW/C液路11Sとは連通液路13P,13Sを介して連通するため、W/C液路11PのW/C側液圧(ホイルシリンダ101a,101dの液圧)とW/C液路11SのW/C側液圧(ホイルシリンダ101b,101cの液圧)は共通する。液圧センサ92P,92Sは、上記共通のW/C側液圧を検出する。PpとPsの両方を用いることで、上記共通のW/C側液圧をより正確に検出できる。 A fluid communication passage connecting the W / C fluid passage 11P (in the side of the wheel cylinder 101a, 101d with respect to the shutoff valve 21P) and the W / C fluid passage 11S (the side of the wheel cylinder 101b, 101c with respect to the shutoff valve 21S) There are 13P and 13S. Therefore, since the hydraulic circuit of the P system and the hydraulic circuit of the S system are connected to each other via the communication fluid passages 13P and 13S and can function as a so-called hydraulic circuit of one system, control of the wheel cylinder hydraulic pressure is possible. It is suppressed that it becomes what was biased to either of P and S system. For example, at the time of boost control, the W / C fluid passage 11P and the W / C fluid passage 11S communicate with each other via the fluid communication passages 13P and 13S, so the W / C side fluid pressure of the W / C fluid passage 11P (wheel cylinder The fluid pressure 101a, 101d) and the fluid pressure on the W / C side of the W / C fluid path 11S (fluid pressure of the wheel cylinders 101b, 101c) are common. The fluid pressure sensors 92P and 92S detect the common W / C side fluid pressure. By using both Pp and Ps, the common W / C side hydraulic pressure can be detected more accurately.
 ECU90は、液圧センサ92P,92Sのいずれの故障も検知されないとき(時刻t3まで、または時刻t13まで)、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psとの平均により制御用検出液圧PCを演算する。このPCが目標W/C液圧P*となるように、調圧弁24を制御する。よって、ECU90は、PpとPsとの間の値に基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。すなわち、液圧センサ92Pおよび液圧センサ92Sが自身に故障が発生したと判断していないときでも、PpまたはPsが(公差や製品ばらつきにより)実際のW/C側液圧から乖離している場合がある。例えば、図3に示すように、PpおよびPsが実際のW/C側液圧P0から乖離しており、PpのほうがPsよりも乖離が大きいとき、(PpとPsとの間の値である)PCとP0との差ΔP2は、PpとP0との差ΔP1よりも小さくなる。図4に示すように、このPpがPCに設定され、このPC=PpがP*となるように制御された場合、実際のW/C側液圧(実W/C液圧)P1は、P*からΔP1だけ乖離した値となる。これに対し、PpとPsとの間の液圧がPCに設定され、このPCがP*となるように制御される場合、実際のW/C側液圧(実W/C液圧)P2は、P*からΔP2だけ乖離した値となる。上記のようにΔP2はΔP1よりも小さいため、実W/C液圧が、よりP*に近い値に制御される。このように、液圧センサ92の検出値と実液圧との乖離の影響が低減され、制御の精度が向上する。 The ECU 90 performs control based on the average of the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S when neither failure of the hydraulic pressure sensors 92P, 92S is detected (until time t3 or time t13). The detected hydraulic pressure PC is calculated. The pressure control valve 24 is controlled so that this PC becomes the target W / C fluid pressure P *. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between Pp and Ps. That is, Pp or Ps deviates from the actual W / C side fluid pressure (due to tolerance or product variation) even when the fluid pressure sensor 92P and the fluid pressure sensor 92S do not determine that a failure has occurred in itself. There is a case. For example, as shown in FIG. 3, when Pp and Ps deviate from the actual W / C side hydraulic pressure P0, and Pp is larger than Ps, (the value is a value between Pp and Ps. The difference ΔP2 between PC and P0 is smaller than the difference ΔP1 between Pp and P0. As shown in FIG. 4, when this Pp is set to PC and this PC = Pp is controlled to become P *, the actual W / C side hydraulic pressure (actual W / C hydraulic pressure) P1 is The value deviates from P * by ΔP1. On the other hand, when the fluid pressure between Pp and Ps is set to PC and this PC is controlled to be P *, the actual W / C side fluid pressure (actual W / C fluid pressure) P2 Is a value deviated from P * by ΔP2. As described above, since ΔP2 is smaller than ΔP1, the actual W / C hydraulic pressure is controlled to a value closer to P *. As described above, the influence of the deviation between the detected value of the hydraulic pressure sensor 92 and the actual hydraulic pressure is reduced, and the control accuracy is improved.
 なお、制御用検出液圧PCは、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psとの間の値であればよく、PpとPsとの平均値に限らない。また、PpとPsとの平均によりPCを演算する場合でも、この平均値はPpとPsとの算術平均値に限らない。例えば、PpとPsとの加重平均値であってもよい。すなわち、演算部902(ステップS3)は、各液圧センサ92P,92Sの特性に基づき、Pp,Psに異なる重みをつけて平均値を計算してもよい。例えば、演算部902は、液圧センサ92Pおよび液圧センサ92Sの故障頻度を記憶ないし予測し、この頻度が低いほうの液圧センサ92の検出値の重みを大きくしてもよい。また、液圧センサ92Pおよび液圧センサ92Sの正常出力内における検出精度を記憶ないし予測し、この精度が高いほうの液圧センサ92の検出値の重みを大きくしてもよい。このように、ECU90が、異なる重みがつけられたPp,Psに基づきホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御することで、目標W/C液圧P*に対する実W/C液圧の乖離を抑制し、制御の精度を向上できる。図2の例では、演算部902は、PpとPoとの算術平均値をPCに設定する。よって、検出値と実値との乖離が実際に大きいのが液圧センサ92P,92Sのいずれであっても、ECU90は、等しい確率で、実W/C液圧を可及的にP*に近い値に制御することが可能である。また、PCの演算ロジックが簡素化される。 The control detection hydraulic pressure PC may be any value between the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S, and is not limited to the average value of Pp and Ps. Further, even when PC is calculated by the average of Pp and Ps, this average value is not limited to the arithmetic average value of Pp and Ps. For example, it may be a weighted average value of Pp and Ps. That is, the calculating unit 902 (step S3) may calculate the average value by giving different weights to Pp and Ps based on the characteristics of the respective hydraulic pressure sensors 92P and 92S. For example, the computing unit 902 may store or predict the failure frequency of the fluid pressure sensor 92P and the fluid pressure sensor 92S, and may increase the weight of the detection value of the fluid pressure sensor 92, which has a lower frequency. The detection accuracy in the normal output of the fluid pressure sensor 92P and the fluid pressure sensor 92S may be stored or predicted, and the weight of the detection value of the fluid pressure sensor 92 having the higher accuracy may be increased. As described above, the ECU 90 controls the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on Pp and Ps having different weights, thereby achieving the target W / C fluid pressure P *. The deviation of the actual W / C fluid pressure can be suppressed, and the control accuracy can be improved. In the example of FIG. 2, the computing unit 902 sets the arithmetic mean value of Pp and Po to PC. Therefore, whether the difference between the detected value and the actual value is actually large in either of the hydraulic pressure sensors 92P and 92S, the ECU 90 makes the actual W / C hydraulic pressure as P * as possible with equal probability. It is possible to control to a close value. In addition, the arithmetic logic of the PC is simplified.
 ポンプ201は、連通液路13P,13Sにより接続されたW/C液路11P,11Sにブレーキ液(の液圧)を供給可能である。よって、1つのポンプユニット20でP,S系統のホイルシリンダ101a~101dを加圧可能である。なお、各系統にポンプユニットがあってもよい。ポンプユニットがP,S系統で共通である場合、ポンプユニットの数が削減されると共に、ポンプユニットを用いる制御のロジックが簡素化されうる。ポンプ201は、(吐出液路13を介して、)連通液路13P,13Sに接続される。よって、ポンプ201からのブレーキ液の供給がP,S系統のいずれかに偏ったものとなることを抑制可能である。すなわち、1つのポンプユニット20が用いられる場合、ポンプ201が例えばW/C液路11Pに接続されると、ポンプ201とW/C液路11Sとの間に介在する連通液路13P,13Sや連通弁23等による液路の抵抗分だけ、W/C液路11SのW/C側液圧(ホイルシリンダ101b,101cの液圧)は、W/C液路11PのW/C側液圧(ホイルシリンダ101a,101dの液圧)よりも低くなる。これに対し、ポンプ201が連通液路13P,13Sに接続されると、ポンプ201とW/C液路11(ホイルシリンダ101)との間における液路の長さや弁の数(液路の抵抗)がP,S系統で異なることが抑制される。よって、両系統のW/C側液圧(ホイルシリンダ液圧)の間に差が生じることが抑制される。 The pump 201 can supply (the fluid pressure of) the brake fluid to the W / C fluid passages 11P and 11S connected by the communication fluid passages 13P and 13S. Therefore, the wheel cylinders 101a to 101d of the P and S systems can be pressurized by one pump unit 20. Each system may have a pump unit. When the pump units are common to the P and S systems, the number of pump units can be reduced and the control logic using the pump units can be simplified. The pump 201 is connected to the communication fluid passages 13P and 13S (via the discharge fluid passage 13). Therefore, it can be suppressed that the supply of the brake fluid from the pump 201 becomes biased to either of the P and S systems. That is, when one pump unit 20 is used, when the pump 201 is connected to, for example, the W / C fluid passage 11P, the communication fluid passages 13P, 13S or the like interposed between the pump 201 and the W / C fluid passage 11S The W / C side fluid pressure of the W / C fluid path 11S (the fluid pressure of the wheel cylinders 101b and 101c) corresponds to the W / C side fluid pressure of the W / C fluid path 11P by the resistance of the fluid path by the communication valve 23 etc. It becomes lower than (the hydraulic pressure of the wheel cylinders 101a and 101d). On the other hand, when the pump 201 is connected to the communication fluid passages 13P and 13S, the length of the fluid passage between the pump 201 and the W / C fluid passage 11 (wheel cylinder 101) and the number of valves (resistance of the fluid passage Can be suppressed in the P and S systems. Therefore, it is suppressed that a difference arises between the W / C side fluid pressure (wheel cylinder fluid pressure) of both systems.
 P,S系統のW/C側液圧(ホイルシリンダ101a,101dの液圧とホイルシリンダ101b,101cの液圧)の間に差が生じた状態で、仮に、一方の系統における液圧センサ92の検出値のみを用いてホイルシリンダ101a,101dおよびホイルシリンダ101b,101cの液圧を制御した場合を考える。この場合、他方の系統における実際のW/C側液圧(実W/C液圧)が、P,S系統間の上記液圧差の分だけ、目標W/C液圧P*から乖離するおそれがある。これに対し、両方の系統における液圧センサ92P,92Sの検出値Pp,Psを用いてホイルシリンダ101a,101dおよびホイルシリンダ101b,101cの液圧を制御すれば、両系統において、実際のW/C側液圧(実W/C液圧)がP*から乖離する大きさを、P,S系統間の上記液圧差よりも小さくすることが可能である。 With a difference between the W / C side hydraulic pressure of the P and S systems (the hydraulic pressure of the wheel cylinders 101a and 101d and the hydraulic pressure of the wheel cylinders 101b and 101c), temporarily, the hydraulic pressure sensor 92 in one system Consider the case where the fluid pressures of the wheel cylinders 101a and 101d and the wheel cylinders 101b and 101c are controlled using only the detected values of In this case, the actual W / C side fluid pressure (actual W / C fluid pressure) in the other system may deviate from the target W / C fluid pressure P * by the amount of the fluid pressure difference between the P and S systems. There is. On the other hand, if the fluid pressures of the wheel cylinders 101a and 101d and the wheel cylinders 101b and 101c are controlled using the detection values Pp and Ps of the fluid pressure sensors 92P and 92S in both systems, the actual W / It is possible to make the magnitude at which the C side hydraulic pressure (actual W / C hydraulic pressure) deviates from P * smaller than the above-mentioned hydraulic pressure difference between the P and S systems.
 ポンプ201が連通液路13P,13Sに接続される場合、上記のように、両系統の実際のW/C側液圧の間に差が生じることが抑制される。この場合、両液圧センサ92P,92Sが検出対象とする実際の液圧間の差が小さくなる。よって、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psとの間の値である制御用検出液圧PCを両系統のホイルシリンダ液圧制御に用いることによる上記作用効果(実際のW/C側液圧が両系統で共通であるという前提で図3及び図4を用いて説明した作用効果)がより有効に得られる。すなわち、より有効に、両系統の実際のW/C側液圧がP*に近い値に制御されるため、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧の制御の精度が向上する。 When the pump 201 is connected to the communication fluid passages 13P and 13S, as described above, the occurrence of a difference between the actual W / C hydraulic pressures of both systems is suppressed. In this case, the difference between the actual fluid pressures to be detected by both fluid pressure sensors 92P and 92S is reduced. Therefore, the above-described operation and effect by using the control detection hydraulic pressure PC, which is a value between the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S, for wheel cylinder hydraulic pressure control of both systems On the premise that the W / C-side hydraulic pressure of (1) is common to both systems, the effects and advantages described with reference to FIGS. 3 and 4 can be obtained more effectively. That is, since the actual W / C side hydraulic pressure of both systems is controlled to a value close to P * more effectively, accuracy of control of the hydraulic pressure of the wheel cylinders 101a and 101d and the hydraulic pressure of the wheel cylinders 101b and 101c Improve.
 連通液路13P,13Sには連通弁23がある。ECU90が連通弁23を閉方向に制御することで、P,S系統間のブレーキ液の流通が抑制されるため、各系統の液圧回路を独立の回路として互いに分離可能である。連通液路13P,13Sにそれぞれ連通弁23P,23Sがある。吐出液路13(ポンプ201)は、連通液路13P,13Sにおける連通弁23P,23Sの間に接続する。よって、フェールセーフ性能の向上等を図ることができる。例えば、P,Sいずれかの系統で液漏れが生じても、ECU90が、液漏れが生じた系統の連通弁23を閉方向に制御することで、液漏れが生じていない系統においてポンプユニット20を用いたホイルシリンダ液圧制御を継続可能である。液圧センサ92Pは、連通弁23Pと増圧弁22a,22dとの間(より具体的には、連通弁23Pと増圧弁22a,22dと遮断弁21Pとの間)の液路の液圧を検出可能である。液圧センサ92Sは、連通弁23Sと増圧弁22b,22cとの間(より具体的には、連通弁23Sと増圧弁22b,22cと遮断弁21Sとの間)の液路の液圧を検出可能である。このように、液圧センサ92が液圧を検出可能な液路は、両系統で機能的に等価な(ポンプ201や弁23等やホイルシリンダ101との関係において対称的な)位置にある。このため、両液圧センサ92P,92Sが検出対象とする実際の液圧間の差が小さくなる。よって、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psとの間の値である制御用検出液圧PCを両系統のホイルシリンダ液圧制御に用いることによる上記作用効果がより有効に得られる。 A communication valve 23 is provided in the communication fluid passages 13P and 13S. Since the ECU 90 controls the communication valve 23 in the closing direction, the flow of the brake fluid between the P and S systems is suppressed, so that the hydraulic circuits of the respective systems can be separated from each other as independent circuits. Communication valves 23P and 23S are provided in the communication fluid passages 13P and 13S, respectively. The discharge fluid passage 13 (pump 201) is connected between the communication valves 23P and 23S in the communication fluid passages 13P and 13S. Therefore, it is possible to improve fail-safe performance and the like. For example, even if a fluid leak occurs in either P or S system, the ECU 90 controls the communication valve 23 of the system in which the fluid leak has occurred in the closing direction, so that the pump unit 20 does not generate the fluid leak. It is possible to continue wheel cylinder hydraulic pressure control using. The fluid pressure sensor 92P detects the fluid pressure in the fluid passage between the communication valve 23P and the pressure increasing valves 22a and 22d (more specifically, between the communication valve 23P and the pressure increasing valves 22a and 22d and the shutoff valve 21P) It is possible. The fluid pressure sensor 92S detects the fluid pressure in the fluid passage between the communication valve 23S and the pressure increasing valves 22b and 22c (more specifically, between the communication valve 23S and the pressure increasing valves 22b and 22c and the shutoff valve 21S) It is possible. As described above, the fluid passages in which the fluid pressure sensor 92 can detect the fluid pressure are at functionally equivalent positions (symmetrical with respect to the pump 201, the valve 23, etc. and the wheel cylinder 101) in both systems. For this reason, the difference between the actual fluid pressures to be detected by both fluid pressure sensors 92P and 92S is reduced. Therefore, the above-described operation and effect can be obtained by using the control detection hydraulic pressure PC, which is a value between the detection value Pp of the hydraulic pressure sensor 92P and the detection value Ps of the hydraulic pressure sensor 92S, for wheel cylinder hydraulic pressure control of both systems. It is obtained effectively.
 以下、液圧センサ92Pの故障時を例にとって、正常モードから故障モードへの切り替え時(図5の時刻t3~、図6の時刻t13~)における作用効果を説明する。なお、液圧センサ92Sの故障時も同様である。ECU90(第3制御部)は、正常モード(第1制御部)から故障モード(第2制御部)へ切り替える際(切り替えモード時)、「液圧センサ92Pの故障の検知直後における(正常なほうの)液圧センサ92Sの検出値Psが、上記故障の検知時の目標W/C液圧P*より低い」(図5の時刻t3~)場合は、「上記Psが上記P*より高い」場合(図6の時刻t13~)に比べて早く、故障モードへ切り替えることができる。よって、車両減速度の不足を抑制し、また、切り替えに伴う運転者の違和感を低減可能である。すなわち、液圧センサ92Pの故障の検知直後、正常な液圧センサ92Sの検出値Psが上記故障の検知時のP*より低い場合には、実W/C液圧がP*に達しておらず、運転者の要求する車両減速度が充足されていない。このように減速度が不足している場合は、ECU90が、素早く故障モードへ切り替え、PsをP*へ向けて直ちに増圧することで、要求された減速度を速やかに実現できる。一方、上記故障の検知直後、正常な液圧センサ92Sの検出値Psが上記故障の検知時のP*より高い場合には、実W/C液圧がP*を超えており、運転者の要求する車両減速度に対して過剰な減速度が発生している。このように不要な減速度が発生している場合は、ECU90が、徐々に(一定以上の時間をかけて)故障モードへ切り替え、PsをP*へ向けて徐々に減圧することで、実W/C液圧(減速度)の変化に伴う運転者の違和感を低減することが可能となる。なお、ECU90(第3制御部)は、液圧センサ92Pの故障の検知直後における(正常なほうの)液圧センサ92Sの検出値Psが、上記故障の検知時のP*より高い場合、PsをP*へ向けて徐々に減圧するために、(PC*=P*のままで、)PCを、故障の検知直後におけるPC(すなわちPpとPsの間の値)から徐々に増加させ、PsがP*と一致するとPCの増加を終了させてもよい。すなわち、PC*ではなくPCを変化させることで、PsをP*へ向けて徐々に減圧してもよい。また、ECU90(第3制御部)は、液圧センサ92Pの故障の検知直後における(正常なほうの)液圧センサ92Sの検出値Psが、上記故障の検知時のP*より低い場合、徐々に(一定以上の時間をかけて)故障モードへ切り替え、PsをP*へ向けて徐々に増圧してもよい。この場合にも、上記増圧の勾配βを、「上記Psが上記P*より高い」場合における上記減圧の勾配αよりも大きくしたり、故障モードへ切り替える時間を「上記Psが上記P*より高い」場合におけるよりも短くしたりすることで、「上記Psが上記P*より高い」場合に比べて故障モードへの切り替えを早めることができる。これにより、減速度の変化に伴う運転者の違和感を低減しつつ、要求された減速度を速やかに実現できる。 Hereinafter, the operation and effect at the time of switching from the normal mode to the failure mode (from time t3 in FIG. 5 to time t13 in FIG. 6) will be described by taking the failure time of the hydraulic pressure sensor 92P as an example. The same applies to failure of the fluid pressure sensor 92S. When switching from the normal mode (first control unit) to the failure mode (second control unit) (in the switching mode), the ECU 90 (third control unit) If the detected value Ps of the fluid pressure sensor 92S is lower than the target W / C fluid pressure P * at the time of detection of the failure (from time t3 in FIG. 5), “the above Ps is higher than the above P *” The failure mode can be switched earlier than in the case (from time t13 in FIG. 6). Therefore, the shortage of the vehicle deceleration can be suppressed, and the driver's discomfort caused by the switching can be reduced. That is, immediately after detection of a failure of the hydraulic pressure sensor 92P, if the detection value Ps of the normal hydraulic pressure sensor 92S is lower than P * at the time of detection of the above-mentioned failure, the actual W / C hydraulic pressure reaches P *. In addition, the vehicle deceleration required by the driver is not satisfied. As described above, when the deceleration is insufficient, the ECU 90 can quickly switch to the failure mode and immediately increase Ps to P * to realize the required deceleration. On the other hand, immediately after detection of the failure, if the detected value Ps of the normal hydraulic pressure sensor 92S is higher than P * at the time of detection of the failure, the actual W / C liquid pressure exceeds P * and the driver Excessive deceleration occurs with respect to the required vehicle deceleration. As described above, when unnecessary deceleration occurs, the ECU 90 gradually switches to the failure mode (over a certain period of time) and gradually reduces Ps toward P *. It becomes possible to reduce the driver's sense of incongruity caused by the change in the / C fluid pressure (deceleration). Note that the ECU 90 (third control unit) sets Ps when the detection value Ps of the (normal) liquid pressure sensor 92S immediately after the detection of the failure of the liquid pressure sensor 92P is higher than P * at the time of the detection of the above failure. In order to reduce the pressure gradually toward P *, (with PC * = P *), gradually increase PC from PC (that is, the value between Pp and Ps) immediately after detection of the failure, May end the increase of PC when it matches P *. That is, Ps may be gradually depressurized toward P * by changing PC, not PC *. In addition, the ECU 90 (third control unit) gradually decreases the detected value Ps of the hydraulic pressure sensor 92S (normal one) immediately after the detection of the failure of the hydraulic pressure sensor 92P is lower than P * at the time of the detection of the fault. (Over a certain period of time) may be switched to failure mode, and Ps may be gradually boosted toward P *. Also in this case, the pressure increase gradient β is larger than the pressure decrease gradient α in the case where “the Ps is higher than the P *”, or the time for switching to the failure mode “the Ps is higher than the P * Switching to failure mode can be quickened compared to the case where “the Ps is higher than the P *” by shortening or higher than in the case of “high”. As a result, it is possible to quickly realize the required deceleration while reducing the driver's discomfort due to the change in the deceleration.
 なお、液圧センサ92Pの故障の検知前(正常モード時)、制御用検出液圧PCは目標W/C液圧P*と一致するように制御されていることから、上記故障の検知時のP*はPC(すなわちPpとPsの間の値)とみなせる。上記故障の検知直後のPsが上記P*(PpとPsの間の値)より低いということは、上記故障の検知直後のPpが上記P*及び上記Psより高いということである。ここで、液圧センサ92Sは正常であることから、上記Psは実質的に実W/C液圧とみなせる。よって、上記Ppは実W/C液圧より高い。したがって、上記「液圧センサ92Pの故障の検知直後における液圧センサ92Sの検出値Psが、上記故障の検知時のP*より低い」は、以下のように言換えられる。すなわち、「液圧センサ92Pの故障の検知直後における液圧センサ92Pの検出値Ppが、上記故障の検知時のP*または実W/C液圧(ホイルシリンダ101a~101dの実際の液圧)より高い」。 Since the control detection hydraulic pressure PC is controlled to coincide with the target W / C hydraulic pressure P * before detection of a failure of the hydraulic pressure sensor 92P (in the normal mode), the above-mentioned failure is detected. P * can be regarded as PC (ie, a value between Pp and Ps). The fact that Ps immediately after the failure detection is lower than the P * (a value between Pp and Ps) means that Pp immediately after the detection of the failure is higher than the P * and the Ps. Here, since the fluid pressure sensor 92S is normal, the above Ps can be substantially regarded as the actual W / C fluid pressure. Therefore, the above Pp is higher than the actual W / C fluid pressure. Therefore, the above-mentioned "the detection value Ps of the fluid pressure sensor 92S immediately after the detection of the failure of the fluid pressure sensor 92P is lower than P * at the time of the detection of the failure" is rephrased as follows. In other words, “the detected value Pp of the fluid pressure sensor 92P immediately after the detection of a fault in the fluid pressure sensor 92P is P * when the fault is detected or the actual W / C fluid pressure (the actual fluid pressure of the wheel cylinders 101a to 101d) taller than".
 [第2実施形態]
  まず構成を説明する。第1実施形態と相違する点のみ説明する。図7に示すように、吐出液路13には、吐出液路13の液圧(ポンプ吐出圧)Poを検出する液圧センサ(吐出圧センサ)93がある。なお、液圧センサ93は、連通液路13P,13S(における連通弁23に対し吐出液路13の側)にあってもよい。液圧センサ93は、液圧センサ92と同じく、自己診断回路を有する。ECU90の受信部901は、液圧センサ93の検出値Poを受信すると共に、液圧センサ93からの故障信号を受信する。
Second Embodiment
First, the configuration will be described. Only points different from the first embodiment will be described. As shown in FIG. 7, the discharge fluid passage 13 includes a fluid pressure sensor (discharge pressure sensor) 93 that detects the fluid pressure (pump discharge pressure) Po of the discharge fluid passage 13. The fluid pressure sensor 93 may be located in the communication fluid passages 13P and 13S (on the side of the discharge fluid passage 13 with respect to the communication valve 23 in the communication fluid passage). Similar to the fluid pressure sensor 92, the fluid pressure sensor 93 has a self-diagnosis circuit. The receiving unit 901 of the ECU 90 receives the detection value Po of the fluid pressure sensor 93 and receives a failure signal from the fluid pressure sensor 93.
 演算部902は、液圧センサ92P,92S,93の検出値Pp,Ps,Poを用いてW/C側液圧を演算し、この演算した液圧を制御用検出液圧PCとする。演算部902は、液圧センサ92P,92S,93のいずれの故障も検知されないとき、Pp,Ps,Poの全てを用いてPCを演算する(正常モード。図2のステップS3に相当)。具体的には、液圧センサ92Pの検出値Ppと液圧センサ92Sの検出値Psの算術平均値Ppsを演算し、このPpsと液圧センサ93の検出値Poとの加重平均値をPCに設定する。その際、PoよりもPpsのウェイトを大きくする。演算部902は、液圧センサ92P,92S,93のいずれかの故障が検知されると、正常な液圧センサ92,93の検出値(Pp,Ps,Poのいずれか2つ)を用いてPCを設定する(故障モード。図2のステップS5に相当)。例えば、液圧センサ92P,92Sのいずれかの故障が検知されると、液圧センサ92P,92Sのうち正常なほうの検出値(Pp又はPs)とPoとの加重平均値をPCに設定する。なお、液圧センサ92P,92Sのうち正常なほうの検出値(Pp又はPs)およびPoのいずれか1つをPCに設定してもよい。液圧センサ93の故障が検知されると、Pp,Psの算術平均値をPCに設定する。なお、Pp,Psの加重平均値やPp,Psのいずれか1つをPCに設定してもよい。演算部902は、液圧センサ92P,92S,93のいずれかの故障が検知されると、第1実施形態と同様の切り替えモードを実行する。他の構成は第1実施形態と同じである。 The calculation unit 902 calculates the W / C side hydraulic pressure using the detection values Pp, Ps, Po of the hydraulic pressure sensors 92P, 92S, 93, and sets the calculated hydraulic pressure as a control detection hydraulic pressure PC. When any failure of the fluid pressure sensors 92P, 92S, 93 is not detected, the computing unit 902 computes PC using all of Pp, Ps, Po (normal mode; corresponding to step S3 in FIG. 2). Specifically, the arithmetic mean value Pps of the detection value Pp of the fluid pressure sensor 92P and the detection value Ps of the fluid pressure sensor 92S is calculated, and the weighted average value of Pps and the detection value Po of the fluid pressure sensor 93 is PC. Set At that time, the weight of Pps is made larger than Po. When a malfunction of any of the fluid pressure sensors 92P, 92S, 93 is detected, the computing unit 902 uses the detection values (any two of Pp, Ps, Po) of the normal fluid pressure sensors 92, 93. The PC is set (failure mode, corresponding to step S5 in FIG. 2). For example, when any failure of the hydraulic pressure sensors 92P and 92S is detected, a weighted average value of the detection value (Pp or Ps) of the normal one of the hydraulic pressure sensors 92P and 92S and Po is set to PC. . Note that one of the normal detected values (Pp or Ps) and Po of the fluid pressure sensors 92P and 92S may be set to PC. When a failure of the fluid pressure sensor 93 is detected, the arithmetic mean value of Pp and Ps is set to PC. The weighted average value of Pp and Ps or any one of Pp and Ps may be set as PC. When the malfunction of one of the hydraulic pressure sensors 92P, 92S, 93 is detected, the computing unit 902 executes the switching mode similar to that of the first embodiment. The other configuration is the same as that of the first embodiment.
 次に、作用効果を説明する。液圧センサ93は、ポンプ201と連通液路13P,13Sとを接続する吐出液路13または連通液路13P,13S(における連通弁23に対し吐出液路13の側)の液圧Poを検出可能である。ECU90は、Pp,PsにPoを加えた3つの検出値に基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。具体的には、演算部902は、例えば倍力制御時、液圧センサ92P,92S,93のいずれの故障も検知されないとき、Pp,Ps,Poの全てを用いて、W/C側液圧(制御用検出液圧PC)を演算する。よって、ECU90は、Pp,Psのみに基づいてホイルシリンダ液圧を制御する場合に比べ、より正確に検出されたW/C側液圧の値PCに基づいてホイルシリンダ液圧を制御できる。よって、P*に対する実W/C液圧の乖離をより抑制し、制御の精度をより向上できる。また、連通液路13P,13Sにおける連通弁23P,23Sの間に、調圧液路14(調圧弁24)が接続する。ECU90は、調圧弁24を閉方向に作動させた状態で連通弁23P,23Sを開閉させ、液圧センサ92P,92S,93の検出値を比較することで、いずれの液圧センサ92P,92S,93に異常が生じているかを特定可能である。よって、各液圧センサ92P,92S,93の自己診断回路を省略し、液圧センサ92等を簡素化可能である。 Next, the function and effect will be described. The fluid pressure sensor 93 detects the fluid pressure Po of the discharge fluid passage 13 connecting the pump 201 and the communication fluid passages 13P and 13S or the communication fluid passages 13P and 13S (the side of the discharge fluid passage 13 with respect to the communication valve 23). It is possible. The ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on three detection values obtained by adding Po to Pp and Ps. Specifically, for example, when any failure of the fluid pressure sensors 92P, 92S, 93 is not detected during the boost control, for example, the computing unit 902 uses all of Pp, Ps, Po to use the W / C side fluid pressure. (Control detected fluid pressure PC) is calculated. Therefore, the ECU 90 can control the wheel cylinder hydraulic pressure based on the value PC of the W / C side hydraulic pressure detected more accurately than in the case of controlling the wheel cylinder hydraulic pressure based only on Pp and Ps. Therefore, deviation of the actual W / C hydraulic pressure with respect to P * can be further suppressed, and control accuracy can be further improved. Further, the pressure adjusting liquid passage 14 (pressure adjusting valve 24) is connected between the communication valves 23P and 23S in the communication liquid passages 13P and 13S. The ECU 90 opens and closes the communication valves 23P and 23S in a state in which the pressure regulating valve 24 is operated in the closing direction, and compares the detection values of the hydraulic pressure sensors 92P, 92S and 93 to determine which hydraulic pressure sensor 92P, 92S, It is possible to identify whether an abnormality has occurred in the H.93. Therefore, the self-diagnosis circuit of each of the fluid pressure sensors 92P, 92S, 93 can be omitted, and the fluid pressure sensor 92 and the like can be simplified.
 ECU90の演算部902は、液圧センサ92P,92S,93のいずれの故障も検知されないとき、これらの検出値Pp,Ps,Poの平均により制御用検出液圧PCを演算する。よって、ECU90は、Pp,Ps,Poのうち最大値と最小値との間の値に基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。これにより、実際のW/C側液圧が、より目標W/C液圧P*に近い値に制御されるため、制御の精度を向上できる。なお、PCは、Pp,Ps,Poのうち最大値と最小値との間の値であればよく、演算部902は、Pp,Ps,Poの算術平均によりPCを演算してもよい。 When any failure of the fluid pressure sensors 92P, 92S, 93 is not detected, the computing unit 902 of the ECU 90 computes the control detected fluid pressure PC based on the average of the detected values Pp, Ps, Po. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between the maximum value and the minimum value of Pp, Ps, and Po. As a result, the actual W / C side hydraulic pressure is controlled to a value closer to the target W / C hydraulic pressure P *, so the control accuracy can be improved. Note that PC may be any value between the maximum value and the minimum value among Pp, Ps, and Po, and the calculation unit 902 may calculate PC by the arithmetic mean of Pp, Ps, and Po.
 ECU90は、異なる重みがつけられた液圧センサ92の検出値(Pp,Psの算術平均値Pps)と液圧センサ93の検出値Poとに基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。具体的には、演算部902は、PpsとPoとの加重平均値を制御用検出液圧PCに設定する。液圧ユニット2(液圧回路)における液圧センサ92,93の取り付け位置等に基づき各センサ92,93の検出値に異なる重みがつけられることで、目標W/C液圧P*に対する実W/C液圧の乖離が抑制され、制御の精度が向上する。より具体的には、演算部902は、各検出値Pps,Poに、実W/C液圧との対応度合に比例した数値を掛けて平均値を計算する。すなわち、液圧センサ92,93が液圧を検出する部位とホイルシリンダ101との間の液路の長さは、液圧センサ92よりも液圧センサ93のほうが長い。また、液圧センサ92,93が液圧を検出する部位とホイルシリンダ101との間における弁の数は、液圧センサ92よりも液圧センサ93のほうが(連通弁23の分だけ)多い。このため、液圧センサ92,93が液圧を検出する部位における実際の液圧とホイルシリンダ液圧との乖離は、液圧センサ92よりも液圧センサ93のほうが大きい。言換えると、液圧センサ93よりも液圧センサ92のほうが、実W/C液圧を正確に反映している。よって、PpsとPoの加重平均を演算する際、PoよりもPpsのウェイトを大きくする。なお、演算部902は、各液圧センサ92P,92S,93の特性に基づき、液圧センサ92P,92S,93の検出値Pp,Ps,Poに互いに異なる重みをつけてもよい。他の作用効果は第1実施形態と同じである。 The ECU 90 determines the hydraulic pressure of the wheel cylinders 101a and 101d and the wheel cylinder based on the detection values (arithmetic mean value Pps of Pp and Ps) and the detection value Po of the hydraulic pressure sensor 93 which are weighted differently. The fluid pressures of 101b and 101c can be controlled. Specifically, operation unit 902 sets a weighted average value of Pps and Po as control detection hydraulic pressure PC. The weights detected by the sensors 92, 93 are differently weighted based on the mounting positions of the hydraulic sensors 92, 93 in the hydraulic unit 2 (hydraulic circuit), and the actual W for the target W / C hydraulic pressure P * The deviation of the / C fluid pressure is suppressed, and the control accuracy is improved. More specifically, the calculation unit 902 calculates an average value by multiplying each detected value Pps, Po by a numerical value proportional to the degree of correspondence with the actual W / C fluid pressure. That is, the length of the fluid path between the portion where the fluid pressure sensors 92 and 93 detect the fluid pressure and the wheel cylinder 101 is longer in the fluid pressure sensor 93 than in the fluid pressure sensor 92. Further, the number of valves between the portion where the hydraulic pressure sensors 92 and 93 detect the hydraulic pressure and the wheel cylinder 101 is larger in the hydraulic pressure sensor 93 (only for the communication valve 23) than in the hydraulic pressure sensor 92. For this reason, the difference between the actual fluid pressure and the wheel cylinder fluid pressure in the portion where the fluid pressure sensors 92 and 93 detect the fluid pressure is larger in the fluid pressure sensor 93 than in the fluid pressure sensor 92. In other words, the fluid pressure sensor 92 more accurately reflects the actual W / C fluid pressure than the fluid pressure sensor 93. Therefore, when computing the weighted average of Pps and Po, the weight of Pps is made larger than Po. The calculation unit 902 may weight the detection values Pp, Ps, Po of the fluid pressure sensors 92P, 92S, 93 differently based on the characteristics of the fluid pressure sensors 92P, 92S, 93. The other effects and advantages are the same as in the first embodiment.
 [第3実施形態]
  まず構成を説明する。第1実施形態と相違する点のみ説明する。図8に示すように、W/C液路11aにおける増圧弁22aとW/Cポート80Waとの間に、この箇所の液圧(実質的にホイルシリンダ101aの液圧に相当)を検出する液圧センサ94aがある。同様に、W/C液路11d(における増圧弁22dとW/Cポート80Wdとの間)に液圧センサ94dがあり、W/C液路11b,11c(における増圧弁22b,22cとW/Cポート80Wb,80Wcとの間)にもそれぞれ液圧センサ94b,94cがある。なお、液圧センサ94は減圧液路15(における減圧弁25に対しW/C液路11の側)にあってもよい。第1実施形態の液圧センサ92P,92Sはない。液圧センサ94a~94dは、第1実施形態の液圧センサ92と同じく、自己診断回路を有する。ECU90の受信部901は、液圧センサ94a~94dの検出値Pa,Pb,Pc,Pdを受信すると共に、液圧センサ94a~94dからの故障信号を受信する。
Third Embodiment
First, the configuration will be described. Only points different from the first embodiment will be described. As shown in FIG. 8, a liquid for detecting the hydraulic pressure at this portion (substantially equivalent to the hydraulic pressure of the wheel cylinder 101a) between the pressure-increasing valve 22a and the W / C port 80Wa in the W / C fluid passage 11a. There is a pressure sensor 94a. Similarly, there is a fluid pressure sensor 94d in the W / C fluid passage 11d (between the pressure increasing valve 22d and the W / C port 80Wd), and the W / C fluid passages 11b and 11c (in the pressure increasing valves 22b, 22c and W / C There are hydraulic pressure sensors 94b and 94c at C ports 80Wb and 80Wc, respectively. The fluid pressure sensor 94 may be located on the pressure reducing fluid passage 15 (on the side of the W / C fluid passage 11 with respect to the pressure reducing valve 25). There are no hydraulic pressure sensors 92P, 92S of the first embodiment. The fluid pressure sensors 94a to 94d have a self-diagnosis circuit, like the fluid pressure sensor 92 of the first embodiment. The receiving unit 901 of the ECU 90 receives detection values Pa, Pb, Pc, and Pd of the fluid pressure sensors 94a to 94d, and receives failure signals from the fluid pressure sensors 94a to 94d.
 ECU90の演算部902は、液圧センサ94a~94dの検出値Pa,Pb,Pc,Pdを用いてW/C側液圧を演算し、この演算した液圧を制御用検出液圧PCとする。演算部902は、液圧センサ94a~94dのいずれの故障も検知されないとき、Pa,Pb,Pc,Pdの全てを用いてPCを演算する(正常モード。図2のステップS3に相当)。具体的には、Pa,Pb,Pc,Pdの算術平均を演算し、この平均値をPCに設定する。演算部902は、液圧センサ94a~94dのいずれかの故障が検知されると、正常な液圧センサ94の検出値(Pa,Pb,Pc,Pdのいずれか3つ)を用いて、PCを設定する(故障モード)。例えば、液圧センサ94aの故障が検知されると、Pb,Pc,Pdの算術平均値をPCに設定する。なお、Pb,Pc,Pdのいずれか2つの平均値やPb,Pc,Pdのいずれか1つをPCに設定してもよい。演算部902は、液圧センサ94a~94dのいずれかの故障が検知されると、第1実施形態と同様の切り替えモードを実行する。他の構成は第1実施形態と同じである。 The calculation unit 902 of the ECU 90 calculates the W / C side hydraulic pressure using the detection values Pa, Pb, Pc, and Pd of the hydraulic pressure sensors 94a to 94d, and uses the calculated hydraulic pressure as the control detection hydraulic pressure PC. . When none of the failure in the fluid pressure sensors 94a to 94d is detected, the computing unit 902 computes PC using all of Pa, Pb, Pc, and Pd (normal mode, corresponding to step S3 in FIG. 2). Specifically, the arithmetic mean of Pa, Pb, Pc, and Pd is calculated, and this mean value is set to PC. When a malfunction of any of the fluid pressure sensors 94a to 94d is detected, the computing unit 902 uses a normal detection value of the fluid pressure sensor 94 (any three of Pa, Pb, Pc, and Pd) to generate a PC. Set (fault mode). For example, when a failure of the fluid pressure sensor 94a is detected, the arithmetic mean value of Pb, Pc, and Pd is set to PC. The average value of any two of Pb, Pc and Pd or any one of Pb, Pc and Pd may be set as PC. The calculation unit 902 executes a switching mode similar to that of the first embodiment when a failure of any of the hydraulic pressure sensors 94a to 94d is detected. The other configuration is the same as that of the first embodiment.
 次に、作用効果を説明する。液圧センサ94aは、増圧弁22aとホイルシリンダ101aとの間のW/C液路11aの液圧を検出可能である。同様に、液圧センサ94b,94c,94dは、増圧弁22b,22c,22dとホイルシリンダ101b,101c,101dとの間のW/C液路11b,11c,11dの液圧をそれぞれ検出可能である。ECU90は、液圧センサ94a~94dのいずれの故障も検知されないとき、Pa,Pb,Pc,Pdの全てを用いて、W/C側液圧(制御用検出液圧PC)を演算する。すなわち、ECU90は、Pa,Pb,Pc,Pdに基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。よって、ECU90は、W/C液路11においてホイルシリンダ101により近い部位の液圧の検出値を用いてホイルシリンダ液圧を制御できる。また、各ホイルシリンダ101a~101dに対応する液圧の検出値を用いてホイルシリンダ液圧を制御できる。よって、目標W/C液圧P*に対する実W/C液圧の乖離をより抑制し、制御の精度をより向上できる。 Next, the function and effect will be described. The fluid pressure sensor 94a can detect the fluid pressure in the W / C fluid path 11a between the pressure intensifying valve 22a and the wheel cylinder 101a. Similarly, the fluid pressure sensors 94b, 94c, 94d can detect the fluid pressure in the W / C fluid passages 11b, 11c, 11d between the pressure increasing valves 22b, 22c, 22d and the wheel cylinders 101b, 101c, 101d, respectively. is there. When any failure of the fluid pressure sensors 94a to 94d is not detected, the ECU 90 calculates the W / C side fluid pressure (control fluid pressure for control PC) using all of Pa, Pb, Pc, and Pd. That is, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on Pa, Pb, Pc, and Pd. Therefore, the ECU 90 can control the wheel cylinder hydraulic pressure using the detection value of the hydraulic pressure of a portion closer to the wheel cylinder 101 in the W / C fluid path 11. In addition, it is possible to control the wheel cylinder hydraulic pressure using the detected values of the hydraulic pressure corresponding to each of the wheel cylinders 101a to 101d. Therefore, the deviation of the actual W / C fluid pressure from the target W / C fluid pressure P * can be further suppressed, and the control accuracy can be further improved.
 演算部902は、液圧センサ94a~94dのいずれの故障も検知されないとき、液圧センサ94a~94dの検出値Pa,Pb,Pc,Pdの平均により制御用検出液圧PCを演算する。よって、ECU90は、Pa,Pb,Pc,Pdのうち最大値と最小値との間の値に基づき、ホイルシリンダ101a,101dの液圧およびホイルシリンダ101b,101cの液圧を制御可能である。これにより、実際のW/C側液圧が、より目標W/C液圧P*に近い値に制御されるため、制御の精度を向上できる。なお、PCは、Pa~Pdのうち最大値と最小値との間の値であればよく、演算部902は、各液圧センサ94a~94dの特性に基づき、液圧センサ94a~94dの検出値に互いに異なる重みをつけてPCを演算してもよい。他の作用効果は第1実施形態と同じである。 When any failure of the fluid pressure sensors 94a to 94d is not detected, the computing unit 902 computes the control detected fluid pressure PC based on the average of the detection values Pa, Pb, Pc, and Pd of the fluid pressure sensors 94a to 94d. Therefore, the ECU 90 can control the fluid pressure of the wheel cylinders 101a and 101d and the fluid pressure of the wheel cylinders 101b and 101c based on the value between the maximum value and the minimum value among Pa, Pb, Pc, and Pd. As a result, the actual W / C side hydraulic pressure is controlled to a value closer to the target W / C hydraulic pressure P *, so the control accuracy can be improved. Note that PC may be any value between the maximum value and the minimum value among Pa to Pd, and the calculation unit 902 detects the liquid pressure sensors 94a to 94d based on the characteristics of the liquid pressure sensors 94a to 94d. The values may be given different weights to calculate PC. The other effects and advantages are the same as in the first embodiment.
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。例えば、ブレーキシステム1が搭載される車両の車輪の数は、4つに限らず、2つや3つや6つ等でもよい。各系統のホイルシリンダ液路11に接続されるホイルシリンダの数は、2つに限らず、1つや3つ等でもよい。各系統のW/C液路11に接続されるホイルシリンダは、それぞれ前輪のみ、または後輪のみのホイルシリンダでもよい。すなわち、配管形式は前後配管等でもよい。第1ユニット1A(マスタシリンダ5等)や第2ユニット1B(液圧ユニット2及びその液圧回路)の具体的な構成は実施形態のものに限らない。ストロークシミュレータ6は、マスタシリンダ5と別体であってもよいし、液圧ユニット2と一体であってもよい。ホイルシリンダ101を加圧するための液圧源は、ポンプユニット20に限らず、アキュムレータや、モータにより駆動される油圧ピストン等であってもよい。第2実施形態の液圧センサ92または第2実施形態の液圧センサ93と第3実施形態の液圧センサ94とを組み合わせてもよい。
[Other embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, Design change of the range which does not deviate from the summary of invention etc. The present invention is included in the present invention. In addition, any combination or omission of each component described in the claims and the specification is possible within a range in which at least a part of the above-mentioned problems can be solved, or in a range that exerts at least a part of the effect. It is. For example, the number of wheels of the vehicle on which the brake system 1 is mounted is not limited to four, and may be two, three, six, or the like. The number of wheel cylinders connected to the wheel cylinder channel 11 of each system is not limited to two, and may be one or three. The wheel cylinders connected to the W / C fluid paths 11 of each system may be wheel cylinders of only front wheels or only rear wheels. That is, the piping system may be front and rear piping or the like. The specific configurations of the first unit 1A (master cylinder 5 etc.) and the second unit 1B (hydraulic unit 2 and its hydraulic circuit) are not limited to those of the embodiment. The stroke simulator 6 may be separate from the master cylinder 5 or may be integral with the hydraulic unit 2. The hydraulic pressure source for pressurizing the wheel cylinder 101 is not limited to the pump unit 20, and may be an accumulator, a hydraulic piston driven by a motor, or the like. The hydraulic pressure sensor 92 of the second embodiment or the hydraulic pressure sensor 93 of the second embodiment may be combined with the hydraulic pressure sensor 94 of the third embodiment.
 [実施形態から把握しうる他の態様]
  以上説明した実施形態から把握しうる他の態様について、以下に記載する。
(1) 本技術的思想のブレーキ装置は、その1つの態様において、
  ブレーキ液の液圧に応じて第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路と、
  前記ブレーキ液の液圧に応じて第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路と、
  前記第1ホイルシリンダ液路および前記第2ホイルシリンダ液路に前記ブレーキ液を供給可能な液圧源と、
  前記第1ホイルシリンダ液路の液圧を検出可能な第1液圧センサと、
  前記第2ホイルシリンダ液路の液圧を検出可能な第2液圧センサと、
  前記第1液圧センサの検出値と前記第2液圧センサの検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な制御部とを備える。
(2) 別の態様では、前記態様において、
  前記制御部は、前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値との平均値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能である。
(3) 別の態様では、前記態様のいずれかにおいて、
  前記制御部は、異なる重みがつけられた前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値とに基づき、前記第1のホイルシリンダの前記液圧および前記第2のホイルシリンダの前記液圧を制御可能である。
(4) さらに別の態様では、前記態様のいずれかにおいて、
  前記制御部は、
  前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な第1制御部と、
  前記第2液圧センサの前記検出値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な第2制御部と
 を備え、
  前記ブレーキ装置は、前記第1液圧センサの前記検出値が前記第1ホイルシリンダの前記液圧より高い場合は、前記第1液圧センサの前記検出値が前記第1ホイルシリンダの前記液圧より低い場合に比べ、前記第1ホイルシリンダおよび前記第2ホイルシリンダの前記液圧の制御を前記第1制御部による制御から前記第2制御部による制御へ早く切り替えることが可能である。
(5) さらに別の態様では、前記態様のいずれかにおいて、
  前記第1ホイルシリンダ液路と前記第2ホイルシリンダ液路とを接続する連通液路を備え、
  前記液圧源は前記連通液路に接続されている。
(6) さらに別の態様では、前記態様のいずれかにおいて、
  前記連通液路に配置され、前記第1ホイルシリンダ液路へ向かうブレーキ液の流れを抑制可能な第1連通弁と、
  前記連通液路に配置され、前記第2ホイルシリンダ液路へ向かうブレーキ液の流れを抑制可能な第2連通弁と、
  前記第1ホイルシリンダ液路に配置された第1増圧弁と、
  前記第2ホイルシリンダ液路に配置された第2増圧弁と
 を備え、
  前記第1液圧センサは、前記第1連通弁と前記第1増圧弁との間の液路の液圧を検出可能であり、
  前記第2液圧センサは、前記第2連通弁と前記第2増圧弁との間の液路の液圧を検出可能である。
(7) さらに別の態様では、前記態様のいずれかにおいて、
  前記液圧源と前記連通液路とを接続する液路の液圧、または、前記連通液路の液圧を検出可能な第3液圧センサを備え、
  前記制御部は、前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値と前記第3液圧センサの検出値とに基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能である。
(8) さらに別の態様では、前記態様のいずれかにおいて、
  前記第1ホイルシリンダ液路に配置された第1増圧弁と、
  前記第2ホイルシリンダ液路に配置された第2増圧弁と
 を備え、
  前記第1液圧センサは、前記第1増圧弁と前記第1ホイルシリンダとの間の前記第1ホイルシリンダ液路の液圧を検出可能であり、
  前記第2液圧センサは、前記第2増圧弁と前記第2ホイルシリンダとの間の前記第2ホイルシリンダ液路の液圧を検出可能である。
(9) また、他の観点から、ブレーキ装置は、その1つの態様において、
  ブレーキ液の液圧に応じて第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路と、
  前記ブレーキ液の液圧に応じて第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路と、
  前記第1ホイルシリンダ液路および前記第2ホイルシリンダ液路に前記ブレーキ液を供給可能な液圧源と、
  前記第1ホイルシリンダ液路の液圧を検出可能な第1液圧センサと、
  前記第2ホイルシリンダ液路の液圧を検出可能な第2液圧センサと、
  前記第1液圧センサの検出値と前記第2液圧センサの検出値との間の値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な制御部とを備える。
(10) また、他の観点から、ブレーキ制御方法は、その1つの態様において、
  液圧源から供給されるブレーキ液により第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路の液圧を検出する第1液圧検出工程と、
  前記液圧源から供給される前記ブレーキ液により第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路の液圧を検出する第2液圧検出工程と、
  前記第1液圧検出工程にて検出された液圧である第1液圧検出値と、前記第2液圧検出工程にて検出された液圧である第2液圧検出値と、の両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する制御工程とを備える。
(11) 別の態様では、前記態様において、
  前記制御工程は、
  前記第1液圧検出値と前記第2液圧検出値との平均値を演算する工程と、
  前記平均値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する工程と
 を備える。
(12) 別の態様では、前記態様のいずれかにおいて、
  前記制御工程は、
  前記第1液圧検出値に第1の重みをつける工程と、
  前記第2液圧検出値に第2の重みをつける工程と、
  前記第1の重みがつけられた前記第1液圧検出値と、前記第2の重みがつけられた前記第2液圧検出値と、に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する工程と
 を備える。
(13) さらに別の態様では、前記態様のいずれかにおいて、
  前記制御工程は、
  前記第1液圧検出値と前記第2液圧検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する第1工程と、
  前記第2液圧検出値に基づき、前記第1のホイルシリンダの前記液圧および前記第2のホイルシリンダの前記液圧を制御する第2工程と
 を備え、
  前記第1液圧検出値が前記第1ホイルシリンダの前記液圧より高い場合は、前記第1液圧検出値が前記第1ホイルシリンダの前記液圧より低い場合に比べ、前記第1工程は、前記第2工程へ早く切り替えられる。
[Another aspect that can be grasped from the embodiment]
Other aspects that can be grasped from the embodiment described above will be described below.
(1) The brake device of the present technical concept is, in one aspect thereof,
A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid;
A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid;
A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage;
A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage;
A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage;
A control unit capable of controlling the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor And
(2) In another aspect, in the above aspect,
The controller controls the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on an average value of the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor. The hydraulic pressure can be controlled.
(3) In another aspect, in any of the above aspects,
The controller controls the hydraulic pressure of the first wheel cylinder and the second hydraulic pressure based on the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor, which are differently weighted. It is possible to control the fluid pressure of the wheel cylinder of
(4) In still another aspect, in any of the above aspects,
The control unit
The hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder can be controlled based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor A first control unit,
And a second control unit capable of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the detected value of the second fluid pressure sensor.
When the detected value of the first fluid pressure sensor is higher than the fluid pressure of the first wheel cylinder, the brake device detects that the detected value of the first fluid pressure sensor is the fluid pressure of the first wheel cylinder The control of the fluid pressure of the first wheel cylinder and the second wheel cylinder can be switched earlier from the control by the first control unit to the control by the second control unit, as compared with the lower case.
(5) In still another aspect, in any of the above aspects,
A communication fluid passage connecting the first wheel cylinder fluid passage and the second foil cylinder fluid passage;
The fluid pressure source is connected to the communication fluid passage.
(6) In still another aspect, in any of the above aspects,
A first communication valve disposed in the communication fluid passage and capable of suppressing the flow of the brake fluid toward the first wheel cylinder fluid passage;
A second communication valve disposed in the communication fluid passage and capable of suppressing the flow of the brake fluid directed to the second wheel cylinder fluid passage;
A first pressure increasing valve disposed in the first wheel cylinder fluid passage;
A second pressure increasing valve disposed in the second wheel cylinder fluid passage;
The first fluid pressure sensor can detect the fluid pressure in the fluid passage between the first communication valve and the first pressure increasing valve,
The second fluid pressure sensor can detect fluid pressure in a fluid passage between the second communication valve and the second pressure increasing valve.
(7) In still another aspect, in any of the above aspects,
A third hydraulic pressure sensor capable of detecting a hydraulic pressure of a fluid passage connecting the hydraulic pressure source and the communication fluid passage or a hydraulic pressure of the communication fluid passage;
The controller controls the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the first wheel cylinder based on the detection value of the first hydraulic pressure sensor, the detection value of the second hydraulic pressure sensor, and a detection value of the third hydraulic pressure sensor. The fluid pressure of the second wheel cylinder can be controlled.
(8) In still another aspect, in any of the above aspects,
A first pressure increasing valve disposed in the first wheel cylinder fluid passage;
A second pressure increasing valve disposed in the second wheel cylinder fluid passage;
The first fluid pressure sensor can detect the fluid pressure in the first wheel cylinder fluid passage between the first pressure intensifying valve and the first wheel cylinder,
The second fluid pressure sensor can detect the fluid pressure in the second wheel cylinder fluid passage between the second pressure intensifying valve and the second wheel cylinder.
(9) In another aspect, the brake device in one aspect thereof
A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid;
A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid;
A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage;
A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage;
A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage;
The fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder can be controlled based on a value between the value detected by the first fluid pressure sensor and the value detected by the second fluid pressure sensor. And a control unit.
(10) In another aspect, the brake control method according to one aspect thereof includes:
A first fluid pressure detection step of detecting the fluid pressure of a first wheel cylinder fluid passage connected to a first wheel cylinder that applies a braking force to the first wheel by a brake fluid supplied from a fluid pressure source;
A second fluid pressure detection step of detecting the fluid pressure of a second wheel cylinder fluid passage connected to a second wheel cylinder that applies a braking force to the second wheel by the brake fluid supplied from the fluid pressure source;
Both the first hydraulic pressure detection value, which is the hydraulic pressure detected in the first hydraulic pressure detection step, and the second hydraulic pressure detection value, which is the hydraulic pressure detected in the second hydraulic pressure detection step And a control step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the above.
(11) In another aspect, in the above aspect,
The control step
Calculating an average value of the first hydraulic pressure detection value and the second hydraulic pressure detection value;
Controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the average value.
(12) In another aspect, in any of the above aspects,
The control step
Applying a first weight to the first hydraulic pressure detection value;
Assigning a second weight to the second hydraulic pressure detection value;
The fluid pressure of the first wheel cylinder and the fluid pressure of the first foil cylinder based on the first weighted fluid pressure detection value and the second weighted fluid pressure detection value. Controlling the fluid pressure of the second wheel cylinder.
(13) In still another aspect, in any of the above aspects,
The control step
A first step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on both the first fluid pressure detection value and the second fluid pressure detection value;
And a second step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the second fluid pressure detection value,
When the first hydraulic pressure detection value is higher than the hydraulic pressure of the first wheel cylinder, the first step is compared to when the first hydraulic pressure detection value is lower than the hydraulic pressure of the first wheel cylinder. , It is quickly switched to the second step.
 本願は、2017年7月21日出願の日本特許出願番号2017-141419号に基づく優先権を主張する。2017年7月21日出願の日本特許出願番号2017-141419号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 201-141419 filed on July 21, 2017. The disclosure of Japanese Patent Application No. 201-141419, filed on July 21, 2017, including the disclosure, claims, drawings and abstract, is incorporated herein by reference in its entirety.
11 ホイルシリンダ液路、13P,13S 連通液路、20 ポンプユニット(液圧源)、22 増圧弁、23 連通弁、92 液圧センサ、93 液圧センサ、94 液圧センサ、90 電子制御ユニット(制御部)、101 ホイルシリンダ、FL 左前輪、FR 右前輪、RL 左後輪、RR 右後輪 11 wheel cylinder fluid passage, 13P, 13S communication fluid passage, 20 pump unit (hydraulic pressure source), 22 pressure increase valve, 23 communication valve, 92 fluid pressure sensor, 93 fluid pressure sensor, 94 fluid pressure sensor, 90 electronic control unit ( Control section), 101 wheel cylinder, FL left front wheel, FR right front wheel, RL left rear wheel, RR right rear wheel

Claims (13)

  1.  ブレーキ装置であって、
     ブレーキ液の液圧に応じて第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路と、
     前記ブレーキ液の液圧に応じて第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路と、
     前記第1ホイルシリンダ液路および前記第2ホイルシリンダ液路に前記ブレーキ液を供給可能な液圧源と、
     前記第1ホイルシリンダ液路の液圧を検出可能な第1液圧センサと、
     前記第2ホイルシリンダ液路の液圧を検出可能な第2液圧センサと、
     前記第1液圧センサの検出値と前記第2液圧センサの検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な制御部と
     を備えるブレーキ装置。
    A brake device,
    A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid;
    A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid;
    A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage;
    A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage;
    A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage;
    A control unit capable of controlling the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor And brake equipment.
  2.  請求項1に記載のブレーキ装置において、
     前記制御部は、前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値との平均値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能である、
     ブレーキ装置。
    In the brake device according to claim 1,
    The controller controls the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on an average value of the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor. The hydraulic pressure can be controlled,
    Brake equipment.
  3.  請求項1に記載のブレーキ装置において、
     前記制御部は、異なる重みがつけられた前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値とに基づき、前記第1のホイルシリンダの前記液圧および前記第2のホイルシリンダの前記液圧を制御可能である、
     ブレーキ装置。
    In the brake device according to claim 1,
    The controller controls the hydraulic pressure of the first wheel cylinder and the second hydraulic pressure based on the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor, which are differently weighted. Control the fluid pressure of the wheel cylinder of
    Brake equipment.
  4.  請求項1に記載のブレーキ装置において、
     前記制御部は、
     前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な第1制御部と、
     前記第2液圧センサの前記検出値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な第2制御部と
     を備え、
     前記ブレーキ装置は、前記第1液圧センサの前記検出値が前記第1ホイルシリンダの前記液圧より高い場合は、前記第1液圧センサの前記検出値が前記第1ホイルシリンダの前記液圧より低い場合に比べ、前記第1ホイルシリンダおよび前記第2ホイルシリンダの前記液圧の制御を前記第1制御部による制御から前記第2制御部による制御へ早く切り替えることが可能である、
     ブレーキ装置。
    In the brake device according to claim 1,
    The control unit
    The hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder can be controlled based on both the detection value of the first hydraulic pressure sensor and the detection value of the second hydraulic pressure sensor A first control unit,
    And a second control unit capable of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the detected value of the second fluid pressure sensor.
    When the detected value of the first fluid pressure sensor is higher than the fluid pressure of the first wheel cylinder, the brake device detects that the detected value of the first fluid pressure sensor is the fluid pressure of the first wheel cylinder It is possible to quickly switch control of the fluid pressure of the first wheel cylinder and the second wheel cylinder from control by the first control unit to control by the second control unit, as compared with a lower case.
    Brake equipment.
  5.  請求項1に記載のブレーキ装置において、
     前記第1ホイルシリンダ液路と前記第2ホイルシリンダ液路とを接続する連通液路を備え、
     前記液圧源は前記連通液路に接続されている、
     ブレーキ装置。
    In the brake device according to claim 1,
    A communication fluid passage connecting the first wheel cylinder fluid passage and the second foil cylinder fluid passage;
    The fluid pressure source is connected to the communication fluid passage.
    Brake equipment.
  6.  請求項5に記載のブレーキ装置において、
     前記連通液路に配置され、前記第1ホイルシリンダ液路へ向かう前記ブレーキ液の流れを抑制可能な第1連通弁と、
     前記連通液路に配置され、前記第2ホイルシリンダ液路へ向かう前記ブレーキ液の流れを抑制可能な第2連通弁と、
     前記第1ホイルシリンダ液路に配置された第1増圧弁と、
     前記第2ホイルシリンダ液路に配置された第2増圧弁と
     を備え、
     前記第1液圧センサは、前記第1連通弁と前記第1増圧弁との間の液路の液圧を検出可能であり、
     前記第2液圧センサは、前記第2連通弁と前記第2増圧弁との間の液路の液圧を検出可能である、
     ブレーキ装置。
    In the brake device according to claim 5,
    A first communication valve disposed in the communication fluid passage and capable of suppressing the flow of the brake fluid toward the first wheel cylinder fluid passage;
    A second communication valve disposed in the communication fluid passage and capable of suppressing the flow of the brake fluid toward the second wheel cylinder fluid passage;
    A first pressure increasing valve disposed in the first wheel cylinder fluid passage;
    A second pressure increasing valve disposed in the second wheel cylinder fluid passage;
    The first fluid pressure sensor can detect the fluid pressure in the fluid passage between the first communication valve and the first pressure increasing valve,
    The second fluid pressure sensor can detect the fluid pressure in a fluid passage between the second communication valve and the second pressure increasing valve.
    Brake equipment.
  7.  請求項5に記載のブレーキ装置において、
     前記液圧源と前記連通液路とを接続する液路の液圧、または、前記連通液路の液圧を検出可能な第3液圧センサを備え、
     前記制御部は、前記第1液圧センサの前記検出値と前記第2液圧センサの前記検出値と前記第3液圧センサの検出値とに基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能である、
     ブレーキ装置。
    In the brake device according to claim 5,
    A third hydraulic pressure sensor capable of detecting a hydraulic pressure of a fluid passage connecting the hydraulic pressure source and the communication fluid passage or a hydraulic pressure of the communication fluid passage;
    The controller controls the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the first wheel cylinder based on the detection value of the first hydraulic pressure sensor, the detection value of the second hydraulic pressure sensor, and a detection value of the third hydraulic pressure sensor. The fluid pressure of the second wheel cylinder can be controlled,
    Brake equipment.
  8.  請求項1に記載のブレーキ装置において、
     前記第1ホイルシリンダ液路に配置された第1増圧弁と、
     前記第2ホイルシリンダ液路に配置された第2増圧弁と
     を備え、
     前記第1液圧センサは、前記第1増圧弁と前記第1ホイルシリンダとの間の前記第1ホイルシリンダ液路の液圧を検出可能であり、
     前記第2液圧センサは、前記第2増圧弁と前記第2ホイルシリンダとの間の前記第2ホイルシリンダ液路の液圧を検出可能である、
     ブレーキ装置。
    In the brake device according to claim 1,
    A first pressure increasing valve disposed in the first wheel cylinder fluid passage;
    A second pressure increasing valve disposed in the second wheel cylinder fluid passage;
    The first fluid pressure sensor can detect the fluid pressure in the first wheel cylinder fluid passage between the first pressure intensifying valve and the first wheel cylinder,
    The second fluid pressure sensor can detect the fluid pressure in the second wheel cylinder fluid passage between the second pressure intensifying valve and the second wheel cylinder.
    Brake equipment.
  9.  ブレーキ装置であって、
     ブレーキ液の液圧に応じて第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路と、
     前記ブレーキ液の液圧に応じて第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路と、
     前記第1ホイルシリンダ液路および前記第2ホイルシリンダ液路に前記ブレーキ液を供給可能な液圧源と、
     前記第1ホイルシリンダ液路の液圧を検出可能な第1液圧センサと、
     前記第2ホイルシリンダ液路の液圧を検出可能な第2液圧センサと、
     前記第1液圧センサの検出値と前記第2液圧センサの検出値との間の値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御可能な制御部と
     を備えるブレーキ装置。
    A brake device,
    A first wheel cylinder fluid path connected to a first wheel cylinder that applies a braking force to the first wheel according to the hydraulic pressure of the brake fluid;
    A second wheel cylinder fluid path connected to a second wheel cylinder that applies a braking force to the second wheel according to the fluid pressure of the brake fluid;
    A fluid pressure source capable of supplying the brake fluid to the first wheel cylinder fluid passage and the second wheel cylinder fluid passage;
    A first fluid pressure sensor capable of detecting the fluid pressure in the first wheel cylinder fluid passage;
    A second fluid pressure sensor capable of detecting the fluid pressure in the second wheel cylinder fluid passage;
    The fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder can be controlled based on a value between the value detected by the first fluid pressure sensor and the value detected by the second fluid pressure sensor. And a control unit.
  10.  ブレーキ制御方法であって、
     液圧源から供給されるブレーキ液により第1車輪に制動力を付与する第1ホイルシリンダに接続される第1ホイルシリンダ液路の液圧を検出する第1液圧検出工程と、
     前記液圧源から供給される前記ブレーキ液により第2車輪に制動力を付与する第2ホイルシリンダに接続される第2ホイルシリンダ液路の液圧を検出する第2液圧検出工程と、
     前記第1液圧検出工程にて検出された液圧である第1液圧検出値と、前記第2液圧検出工程にて検出された液圧である第2液圧検出値と、の両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する制御工程と
     を備えるブレーキ制御方法。
    A brake control method,
    A first fluid pressure detection step of detecting the fluid pressure of a first wheel cylinder fluid passage connected to a first wheel cylinder that applies a braking force to the first wheel by a brake fluid supplied from a fluid pressure source;
    A second fluid pressure detection step of detecting the fluid pressure of a second wheel cylinder fluid passage connected to a second wheel cylinder that applies a braking force to the second wheel by the brake fluid supplied from the fluid pressure source;
    Both the first hydraulic pressure detection value, which is the hydraulic pressure detected in the first hydraulic pressure detection step, and the second hydraulic pressure detection value, which is the hydraulic pressure detected in the second hydraulic pressure detection step A control step of controlling the hydraulic pressure of the first wheel cylinder and the hydraulic pressure of the second wheel cylinder based on the above.
  11.  請求項10に記載のブレーキ制御方法において、
     前記制御工程は、
     前記第1液圧検出値と前記第2液圧検出値との平均値を演算する工程と、
     前記平均値に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する工程と
     を備える、
     ブレーキ制御方法。
    In the brake control method according to claim 10,
    The control step
    Calculating an average value of the first hydraulic pressure detection value and the second hydraulic pressure detection value;
    Controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the average value.
    Brake control method.
  12.  請求項10に記載のブレーキ制御方法において、
     前記制御工程は、
     前記第1液圧検出値に第1の重みをつける工程と、
     前記第2液圧検出値に第2の重みをつける工程と、
     前記第1の重みがつけられた前記第1液圧検出値と、前記第2の重みがつけられた前記第2液圧検出値と、に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する工程と
     を備える、
     ブレーキ制御方法。
    In the brake control method according to claim 10,
    The control step
    Applying a first weight to the first hydraulic pressure detection value;
    Assigning a second weight to the second hydraulic pressure detection value;
    The fluid pressure of the first wheel cylinder and the fluid pressure of the first foil cylinder based on the first weighted fluid pressure detection value and the second weighted fluid pressure detection value. Controlling the fluid pressure of the second wheel cylinder.
    Brake control method.
  13.  請求項10に記載のブレーキ制御方法において、
     前記制御工程は、
     前記第1液圧検出値と前記第2液圧検出値との両方に基づき、前記第1ホイルシリンダの前記液圧および前記第2ホイルシリンダの前記液圧を制御する第1工程と、
     前記第2液圧検出値に基づき、前記第1のホイルシリンダの前記液圧および前記第2のホイルシリンダの前記液圧を制御する第2工程と
     を備え、
     前記第1液圧検出値が前記第1ホイルシリンダの前記液圧より高い場合は、前記第1液圧検出値が前記第1ホイルシリンダの前記液圧より低い場合に比べ、前記第1工程は、前記第2工程へ早く切り替えられる、
     ブレーキ制御方法。
    In the brake control method according to claim 10,
    The control step
    A first step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on both the first fluid pressure detection value and the second fluid pressure detection value;
    And a second step of controlling the fluid pressure of the first wheel cylinder and the fluid pressure of the second wheel cylinder based on the second fluid pressure detection value,
    When the first hydraulic pressure detection value is higher than the hydraulic pressure of the first wheel cylinder, the first step is compared to when the first hydraulic pressure detection value is lower than the hydraulic pressure of the first wheel cylinder. , Can be quickly switched to the second step,
    Brake control method.
PCT/JP2018/025311 2017-07-21 2018-07-04 Braking device and brake control method WO2019017203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-141419 2017-07-21
JP2017141419A JP2019018814A (en) 2017-07-21 2017-07-21 Braking device and brake control method

Publications (1)

Publication Number Publication Date
WO2019017203A1 true WO2019017203A1 (en) 2019-01-24

Family

ID=65015474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025311 WO2019017203A1 (en) 2017-07-21 2018-07-04 Braking device and brake control method

Country Status (2)

Country Link
JP (1) JP2019018814A (en)
WO (1) WO2019017203A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016043783A (en) * 2014-08-22 2016-04-04 日立オートモティブシステムズ株式会社 Brake control device
JP5969933B2 (en) * 2013-02-12 2016-08-17 日立オートモティブシステムズ株式会社 Brake device
JP6007296B2 (en) * 2015-08-25 2016-10-12 日立オートモティブシステムズ株式会社 Brake device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969933B2 (en) * 2013-02-12 2016-08-17 日立オートモティブシステムズ株式会社 Brake device
JP2016043783A (en) * 2014-08-22 2016-04-04 日立オートモティブシステムズ株式会社 Brake control device
JP6007296B2 (en) * 2015-08-25 2016-10-12 日立オートモティブシステムズ株式会社 Brake device

Also Published As

Publication number Publication date
JP2019018814A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP3461705B1 (en) Electronic brake system and methods for operating the same
US9499149B2 (en) Brake hydraulic pressure generator
EP2420420B1 (en) Bbw brake device
EP3459802B1 (en) Electronic brake system and methods for operating the same
JP6544335B2 (en) Vehicle braking system
US9688151B2 (en) Vehicle brake device
JP6600031B2 (en) Braking control device
KR20170028393A (en) Braking system
US20180290636A1 (en) Brake Control Device
CN110356381B (en) Vehicle brake system
WO2017150360A1 (en) Brake device and brake control method
KR102099815B1 (en) Brake control apparatus
JP5566873B2 (en) Brake device for vehicle
WO2018116794A1 (en) Hydraulic control apparatus and brake system
JP7093276B2 (en) Brake control device
WO2018096978A1 (en) Brake device and brake device control method
WO2019017203A1 (en) Braking device and brake control method
JP6299035B2 (en) Brake device drive circuit
WO2021193715A1 (en) Vehicular braking device
JP6973065B2 (en) Vehicle braking device
JP7121677B2 (en) brake controller
JP2019018637A (en) Brake device, brake control method, and brake system
JP2022099362A (en) Vehicular braking device
CN117580740A (en) Brake system for a motor vehicle
JP2018144673A (en) Brake device, method for controlling brake device and brake system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835847

Country of ref document: EP

Kind code of ref document: A1