WO2021193676A1 - 被覆工具 - Google Patents

被覆工具 Download PDF

Info

Publication number
WO2021193676A1
WO2021193676A1 PCT/JP2021/012104 JP2021012104W WO2021193676A1 WO 2021193676 A1 WO2021193676 A1 WO 2021193676A1 JP 2021012104 W JP2021012104 W JP 2021012104W WO 2021193676 A1 WO2021193676 A1 WO 2021193676A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
amount
coating layer
substrate
Prior art date
Application number
PCT/JP2021/012104
Other languages
English (en)
French (fr)
Inventor
優作 洲河
隼人 久保
健二 熊井
洋之 金城
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2022510576A priority Critical patent/JP7431945B2/ja
Priority to DE112021001964.3T priority patent/DE112021001964T5/de
Priority to CN202180022495.6A priority patent/CN115315330A/zh
Priority to US17/914,741 priority patent/US20230126815A1/en
Priority to KR1020227030486A priority patent/KR20220136411A/ko
Publication of WO2021193676A1 publication Critical patent/WO2021193676A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/04Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/32Titanium carbide nitride (TiCN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • This disclosure relates to covering tools.
  • Patent Document 1 As a covering tool, for example, a surface coating cutting tool described in Japanese Patent Application Laid-Open No. 2017-221992 (Patent Document 1) is known.
  • the surface-coated cutting tool described in Patent Document 1 includes a coating film including an inner layer and an outer layer on a base material.
  • the inner layer contains an aluminum oxide layer as a layer in contact with the outer layer.
  • the outer layer includes a multi-layer structure in which three or more layers are laminated, and each layer constituting the multi-layer structure contains titanium.
  • An example of a covering tool of the present disclosure which is not limited to the present disclosure, has a substrate and a coating layer located on the substrate.
  • the covering tool includes a first surface, a second surface adjacent to the first surface, and a cutting edge located at least a part of the ridgeline portion of the first surface and the second surface.
  • the coating layer has a first coating layer containing Al 2 O 3 particles and a second layer located on the first layer.
  • the second layer has a first film, a second film in contact with the first film, and a third film in contact with the second film, in this order from the side of the substrate.
  • the first film, the second film, and the third film each contain Ti.
  • the first film, the second film, and the third film contain at least one selected from C and N, respectively.
  • the N content contained in the first film is the first N amount
  • the N content contained in the second film is the second N amount
  • the N content contained in the third film is the third N amount.
  • the relationship of 1st N amount> 3rd N amount> 2nd N amount is satisfied.
  • FIG. 1 It is a perspective view which shows the covering tool of embodiment which is not limited in this disclosure. It is sectional drawing of the II-II cross section in the covering tool shown in FIG. It is an enlarged view which expanded the region A1 shown in FIG. It is an enlarged view which expanded the region A2 shown in FIG. It is a perspective view which shows the cutting tool of embodiment which is not limited in this disclosure.
  • the covering tool 1 of the embodiment not limited to the present disclosure will be described in detail with reference to the drawings.
  • the covering tool 1 may include any component not shown in each of the referenced figures.
  • the dimensions of the members in each drawing do not faithfully represent the dimensions of the actual constituent members and the dimensional ratio of each member.
  • the covering tool 1 As an example of the covering tool 1, a cutting insert applicable to a cutting tool used when cutting a work material is shown.
  • the covering tool 1 can be applied to, for example, wear-resistant parts such as sliding parts and dies, tools such as excavation tools and blades, and impact-resistant parts.
  • the application of the covering tool 1 is not limited to the illustrated one.
  • the coating tool 1 may have a substrate 2 and a coating layer 3 located on the substrate 2.
  • the material of the substrate 2 examples include hard alloys, ceramics and metals.
  • the cemented carbide includes, for example, WC (tungsten carbide) and, if desired, at least one selected from the group of carbides, nitrides, and carbonitrides of the metals of Groups 4, 5 and 6 of the Periodic Table other than WC.
  • Cemented carbide in which the hard phase is bonded by a bonded phase made of an iron metal such as Co (cobalt) or Ni (nickel) can be mentioned.
  • Ti-based cermet and the like may be mentioned.
  • Ceramics examples include Si 3 N 4 (silicon nitride), Al 2 O 3 (aluminum oxide), diamond and cBN (cubic boron nitride).
  • metal examples include carbon steel, high speed steel, alloy steel and the like.
  • the material of the substrate 2 is not limited to the illustrated material.
  • the coating layer 3 may cover the entire surface 4 of the substrate 2, or may cover only a part of the surface 4. When the coating layer 3 covers only a part of the surface 4 of the substrate 2, it can be said that the coating layer 3 is located at least a part on the substrate 2.
  • the coating layer 3 may be formed by a chemical vapor deposition (CVD) method.
  • the coating layer 3 may be a CVD film.
  • the coating layer 3 is not limited to a specific thickness.
  • the thickness of the coating layer 3 may be set to 1 to 30 ⁇ m.
  • the thickness and structure of the coating layer 3, the shape of the crystals constituting the coating layer 3, and the like may be measured by, for example, cross-sectional observation using an electron microscope. Examples of the electron microscope include a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • the first surface 5 may be a rake surface.
  • the entire surface of the first surface 5 may be a rake surface, or a part thereof may be a rake surface.
  • the region of the first surface 5 along the cutting edge 7 may be a rake surface.
  • the second surface 6 may be an escape surface.
  • the entire surface of the second surface 6 may be a flank, or a part thereof may be a flank.
  • the region of the second surface 6 along the cutting edge 7 may be the flank.
  • the cutting edge 7 may be located in a part of the ridgeline portion, or may be located in the entire ridgeline portion.
  • the cutting edge 7 can be used for cutting a work material.
  • the covering tool 1 may have a square plate shape as in the non-limiting example shown in FIG.
  • the shape of the covering tool 1 is not limited to the square plate shape.
  • the first surface 5 may be triangular, pentagonal, hexagonal or circular.
  • the covering tool 1 may have a pillar shape.
  • the coating layer 3 may have the first coating layer 8 as in the non-limiting example shown in FIG.
  • the first coating layer 8 may have a first layer 9 and a second layer 10 located on the first layer 9.
  • the first layer 9 may contain Al 2 O 3 particles.
  • the first layer 9 may be an Al 2 O 3 layer.
  • the Al 2 O 3 layer may mean a layer containing Al 2 O 3 as a main component.
  • the "main component” may mean the component having the largest mass% value as compared with other components.
  • the first film 11, the second film 12, and the third film 13 may each contain Ti (titanium). Further, the first film 11, the second film 12, and the third film 13 may contain at least one selected from C (carbon) and N (nitrogen), respectively.
  • first film 11, the second film 12, and the third film 13 may each contain a titanium compound.
  • the first film 11, the second film 12, and the third film 13 may each contain a titanium compound as a main component.
  • examples of the titanium compound may include carbides of titanium, nitrides, oxides, carbonitrides, coal oxides, carbon dioxide oxides and the like.
  • the N content contained in the first film 11 is the first N amount
  • the N content contained in the second film 12 is the second N amount
  • the N content contained in the third film 13 is the third N amount.
  • the relationship of 1st N amount> 3rd N amount> 2nd N amount may be satisfied.
  • the first film 11 is the most easily peelable film among the first film 11, the second film 12, and the third film 13.
  • the first film 11 has the lowest adhesion among the first film 11, the second film 12, and the third film 13.
  • the first film 11 has the highest welding resistance among the first film 11, the second film 12, and the third film 13.
  • the hardness, peeling resistance and welding resistance of the third film 13 are located between the first film 11 and the second film 12, respectively.
  • the covering tool 1 having each film having such a structure as in the above-mentioned covering structure is excellent in wear resistance and welding resistance.
  • the second film 12 may contain TiC particles
  • the third film 13 may contain TiCN particles.
  • the second film 12 may be a TiC film
  • the third film 13 may be a TiCN film.
  • the second film 12 and the third film 13 may each contain TiCN particles.
  • the second film 12 and the third film 13 may be TiCN films, respectively.
  • the second film 12 and the third film 13 each contain TiCN particles, X2> X3 may be satisfied. That is, the C content contained in the second film 12 may be higher than the C content contained in the third film 13.
  • the thicknesses of the first film 11, the second film 12, and the third film 13 may be the same or different.
  • the thickness of the second film 12 may be thicker than the thickness of the first film 11 and the thickness of the third film 13. In this case, the wear resistance is high.
  • each of the first film 11, the second film 12, and the third film 13 is not limited to a specific value.
  • the thickness of the first film 11 may be set to 0.1 to 0.5 ⁇ m.
  • the thickness of the second film 12 may be set to 0.5 to 1.0 ⁇ m.
  • the thickness of the third film 13 may be set to 0.3 to 0.7 ⁇ m.
  • the thickness of the second film 12 may be 40% or more of the total thickness of the second layer 10.
  • the second layer 10 may or may not be in contact with the first layer 9.
  • the first layer 9 may or may not be in contact with the substrate 2.
  • the first coating layer 8 may have another layer located between the first layer 9 and the second layer 10, and may be located between the substrate 2 and the first layer 9. It may have other layers.
  • the other layer may contain TiN particles, TiC particles or TiCN particles.
  • the other layer may be a TiN film, a TiC film or a TiCN film.
  • the first coating layer 8 may be located on the first surface 5 (rake surface). In this case, the wear resistance and welding resistance of the first surface 5 are high.
  • the first coating layer 8 may be located on the second surface 6 (relief surface). In this case, the wear resistance and welding resistance of the second surface 6 are high.
  • the coating layer 3 may have a second coating layer 14, as in the non-limiting example shown in FIG.
  • the second coating layer 14 may have a third layer 15.
  • the third layer 15 may contain Al 2 O 3 particles.
  • the third layer 15 may be an Al 2 O 3 layer.
  • the third layer 15 may be the outermost layer.
  • the second coating layer 14 may be located on the second surface 6 (relief surface). In this case, the welding resistance of the second surface 6 is high.
  • the second coating layer 14 may be located on the first surface 5 (rake surface). In this case, the welding resistance of the first surface 5 is high.
  • the first coating layer 8 may be located on the first surface 5 (rake surface), and the second coating layer 14 may be located on the second surface 6 (escape surface).
  • the first surface 5 has high wear resistance and welding resistance
  • the second surface 6 has high welding resistance.
  • the first coating layer 8 may be located on the second surface 6 (relief surface), and the second coating layer 14 may be located on the first surface 5 (rake surface).
  • the first surface 5 has high welding resistance
  • the second surface 6 has high wear resistance and welding resistance.
  • the substrate 2 may be prepared first. A case where a substrate 2 made of a hard alloy is produced as the substrate 2 will be described as an example. First, metal powder, carbon powder and the like may be appropriately added and mixed with inorganic powders such as metal carbides, nitrides, carbonitrides and oxides capable of forming the substrate 2 by firing to obtain a mixed powder. Next, this mixed powder may be molded into a predetermined tool shape by a known molding method such as press molding, casting molding, extrusion molding, or cold hydrostatic press molding to obtain a molded product. Then, the obtained molded product may be fired in a vacuum or in a non-oxidizing atmosphere to obtain a substrate 2. The surface 4 of the substrate 2 may be polished or honed.
  • the coating layer 3 may be formed on the surface 4 of the obtained substrate 2 by the CVD method to obtain the coating tool 1.
  • the first layer 9 When the first layer 9 is in contact with the substrate 2, as in the non-limiting example shown in FIG. 3, the first layer 9 (Al 2 O 3 layer) may be formed first.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • CO 2 carbon dioxide
  • a mixed gas consisting of 5 to 5% by volume, 0.5% by volume or less of hydrogen sulfide (H 2 S) gas, and the balance of hydrogen (H 2 ) gas may be adjusted.
  • this mixed gas may be introduced into the chamber, the temperature may be set to 930 to 1010 ° C., the pressure may be set to 5 to 10 kPa, and the time may be set to 30 to 300 minutes to form the first layer 9.
  • This film forming condition can also be applied to the third layer 15.
  • the first film 11, the second film 12, and the third film 13 in the second layer 10 may be formed in this order.
  • TiN film is formed as the first film 11
  • a mixed gas consisting of titanium tetrachloride (TiCl 4 ) gas in an amount of 0.1 to 10% by volume, nitrogen (N 2 ) gas in an amount of 10 to 60% by volume, and the rest being hydrogen (H 2 ) gas is used. You may adjust. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1010 ° C., the pressure may be set to 10 to 85 kPa, and the time may be set to 10 to 60 minutes to form the first film 11 which is a TiN film. ..
  • reaction gas composition a mixture consisting of titanium tetrachloride (TiCl 4 ) gas of 0.1 to 30% by volume, methane (CH 4 ) gas of 0.1 to 20% by volume, and the rest of hydrogen (H 2) gas.
  • TiCl 4 titanium tetrachloride
  • CH 4 methane
  • H 2 hydrogen
  • this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1100 ° C., the pressure may be set to 10 to 85 kPa, and the time may be set to 10 to 120 minutes to form the second film 12 which is a TiC film. ..
  • the reaction gas composition is 0.1 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and 0.1 to 15 % by volume of methane (CH 4) gas. %, A mixed gas consisting of hydrogen (H 2) gas as the rest may be adjusted. Then, this mixed gas may be introduced into the chamber, the temperature may be set to 800 to 1100 ° C., the pressure may be set to 5 to 30 kPa, and the time may be set to 20 to 100 minutes to form the third film 13 which is a TiCN film. ..
  • This film forming condition can also be applied when the second film 12 is a TiCN film. Further, for example, in the above reaction gas composition, when the ratio of the N 2 component is large, N / (C + N) is large. On the contrary, when the ratio of the N 2 component is small, N / (C + N) is small.
  • the reaction gas composition is adjusted to contain N in the first film 11, the second film 12, and the third film 13.
  • the amount can be 1N> 3N> 2N.
  • the region including the cutting edge 7 may be polished. As a result, the region including the cutting edge 7 becomes smooth, and as a result, welding of the work material is suppressed, and the fracture resistance of the cutting edge 7 is improved.
  • the above manufacturing method is an example of a method for manufacturing the covering tool 1. Therefore, it goes without saying that the covering tool 1 is not limited to the one manufactured by the above manufacturing method.
  • the cutting tool 101 of the non-limiting embodiment of the present disclosure has a length extending from the first end 102a to the second end 102b, and is a pocket located on the first end 102a side. It may have a holder 102 having 103 and a covering tool 1 located in pocket 103. Note that FIG. 5 illustrates a case where the covering tool 1 has a through hole, and the covering tool 1 is fixed to the pocket 103 with a screw 104 through the through hole.
  • a substrate was prepared. Specifically, with respect to the average particle diameter 1.2 ⁇ m of WC powder, average particle metal Co powder of diameter 1.5 [mu] m 6 wt%, 2.0 wt% of TiC (titanium carbide) powder, Cr 3 C 2 (Chromium carbide) powder was added at a ratio of 0.2% by mass, mixed, and formed into a cutting tool shape (CNMG120408) by press molding to obtain a molded product. The obtained molded product was subjected to a binder removal treatment and fired in a vacuum of 0.5 to 100 Pa at 1400 ° C. for 1 hour to prepare a substrate made of cemented carbide. The rake face (first surface) of the produced substrate was brushed to perform cutting edge treatment (R honing).
  • a coating layer (second layer) was formed on the obtained substrate by the CVD method under the film formation conditions shown in Table 1 to obtain a coating tool (cutting insert) shown in Table 2.
  • Al 2 O 3 layer (first layer) is formed on the substrate.
  • the film formation conditions and thickness of the Al 2 O 3 layer are as follows.
  • Welding resistance evaluation Processing method Turning work material: S45C Round bar Cutting speed: 100 m / min Feed: 0.1 mm / rev Notch: 1.0 mm Machining condition: Wet evaluation item: Check the state of welding to the cutting edge when the cutting time is 5 minutes
  • Table 2 shows the flank wear amount (Vb) when the cutting time is 20 minutes and the state of welding to the cutting edge when the cutting time is 5 minutes.
  • the two parameters of cutting edge welding and chipping are shown according to the following criteria.
  • the notation of " ⁇ ” regarding the state of welding to the cutting edge means that there was no welding and no chipping.
  • the notation of " ⁇ ” means that no chipping occurred, but a small amount of welding was confirmed.
  • the notation of " ⁇ ” means that chipping did not occur, but the amount of welding was larger than that of " ⁇ ”.
  • the notation of "x” means that welding has occurred and chipping due to welding has occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本開示の限定されない一例の被覆工具は、基体と、基体の上に位置する被覆層とを有する。被覆層は、Al23粒子を含有する第1層と、第1層の上に位置する第2層とを有する第1被覆層を有する。第2層は、基体の側から順に、第1膜と、第1膜に接する第2膜と、第2膜に接する第3膜とを有する。第1膜、第2膜および第3膜は、それぞれTiを含有する。第1膜、第2膜および第3膜は、それぞれCおよびNから選ばれる少なくとも1種を含有する。第1膜に含まれるN含有量を第1N量とし、第2膜に含まれるN含有量を第2N量とし、第3膜に含まれるN含有量を第3N量とした場合、第1N量>第3N量>第2N量の関係を充足する。

Description

被覆工具 関連出願の相互参照
 本出願は、2020年3月27日に出願された日本国特許出願2020-057684号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本開示は、被覆工具に関する。
 被覆工具として、例えば、特開2017-221992号公報(特許文献1)に記載の表面被覆切削工具が知られている。特許文献1に記載の表面被覆切削工具は、内層および外層を含む被膜を基材の上に備える。内層は、外層と接する層として酸化アルミニウム層を含む。外層は、3層以上積層された多層構造を含み、多層構造を構成する各層は、チタンを含む。
 本開示の限定されない一例の被覆工具は、基体と、該基体の上に位置する被覆層とを有する。前記被覆工具は、第1面と、該第1面と隣り合う第2面と、前記第1面と前記第2面の稜線部の少なくとも一部に位置する切刃とを備える。前記被覆層は、Al23粒子を含有する第1層と、該第1層の上に位置する第2層とを有する第1被覆層を有する。前記第2層は、前記基体の側から順に、第1膜と、該第1膜に接する第2膜と、該第2膜に接する第3膜とを有する。前記第1膜、前記第2膜および前記第3膜は、それぞれTiを含有する。前記第1膜、前記第2膜および前記第3膜は、それぞれCおよびNから選ばれる少なくとも1種を含有する。前記第1膜に含まれるN含有量を第1N量とし、前記第2膜に含まれるN含有量を第2N量とし、前記第3膜に含まれるN含有量を第3N量とした場合、第1N量>第3N量>第2N量の関係を充足する。
本開示の限定されない実施形態の被覆工具を示す斜視図である。 図1に示す被覆工具におけるII-II断面の断面図である。 図2に示す領域A1を拡大した拡大図である。 図2に示す領域A2を拡大した拡大図である。 本開示の限定されない実施形態の切削工具を示す斜視図である。
 <被覆工具>
 以下、本開示の限定されない実施形態の被覆工具1について、図面を用いて詳細に説明する。但し、以下で参照する各図では、説明の便宜上、実施形態を説明する上で必要な主要部材のみが簡略化して示される。したがって、被覆工具1は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率などを忠実に表したものではない。
 図1~図4においては、被覆工具1の一例として、被削材を切削加工するときに使用される切削工具に適用可能な切削インサートを示している。被覆工具1は、切削工具の他、例えば、摺動部品や金型などの耐摩部品、掘削工具、刃物などの工具、および、耐衝撃部品などにも適用できる。なお、被覆工具1の用途は、例示したものに限定されない。
 被覆工具1は、基体2と、基体2の上に位置する被覆層3とを有していてもよい。
 基体2の材質としては、例えば、硬質合金、セラミックスおよび金属などが挙げられ得る。硬質合金としては、例えば、WC(炭化タングステン)と、所望により、WC以外の周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種とからなる硬質相を、Co(コバルト)やNi(ニッケル)などの鉄属金属からなる結合相で結合させた超硬合金などが挙げられ得る。また、他の硬質合金として、Ti基サーメットなども挙げられ得る。セラミックスとしては、例えば、Si34(窒化珪素)、Al23(酸化アルミニウム)、ダイヤモンドおよびcBN(立方晶窒化ホウ素)などが挙げられ得る。金属としては、例えば、炭素鋼、高速度鋼および合金鋼などが挙げられ得る。なお、基体2の材質は、例示したものに限定されない。
 被覆層3は、基体2の表面4の全面を覆ってもよく、また、一部のみを覆ってもよい。被覆層3が基体2の表面4の一部のみを被覆しているときは、被覆層3は、基体2の上の少なくとも一部に位置する、と言ってもよい。
 被覆層3は、化学蒸着(CVD)法で成膜されていてもよい。言い換えれば、被覆層3は、CVD膜であってもよい。
 被覆層3は、特定の厚みに限定されない。例えば、被覆層3の厚みは、1~30μmに設定されてもよい。なお、被覆層3の厚み、構造、被覆層3を構成する結晶の形状などの測定は、例えば、電子顕微鏡を用いた断面観察で行ってもよい。電子顕微鏡としては、例えば、走査型電子顕微鏡(SEM)、および、透過電子顕微鏡(TEM)などが挙げられ得る。
 被覆工具1は、図1および図2に示す限定されない一例のように、第1面5(上面)と、第1面5と隣り合う第2面6(側面)と、第1面5と第2面6の稜線部の少なくとも一部に位置する切刃7とを備えていてもよい。
 第1面5は、すくい面であってもよい。第1面5は、その全面がすくい面であってもよく、また、その一部がすくい面であってもよい。例えば、第1面5のうち切刃7に沿った領域が、すくい面であってもよい。
 第2面6は、逃げ面であってもよい。第2面6は、その全面が逃げ面であってもよく、また、その一部が逃げ面であってもよい。例えば、第2面6のうち切刃7に沿った領域が、逃げ面であってもよい。
 切刃7は、稜線部の一部に位置していてもよく、また、稜線部の全部に位置していてもよい。切刃7は、被削材の切削に用いることが可能である。
 被覆工具1は、図1に示す限定されない一例のように、四角板形状であってもよい。なお、被覆工具1の形状は、四角板形状に限定されない。例えば、第1面5は、三角形、五角形、六角形または円形であってもよい。また、被覆工具1は、柱形状であってもよい。
 被覆工具1は、特定の大きさに限定されない。例えば、第1面5の一辺の長さは、3~20mm程度に設定されてもよい。また、第1面5から第1面5の反対側に位置する面(下面)までの高さは、5~20mm程度に設定されてもよい。
 ここで、被覆層3は、図3に示す限定されない一例のように、第1被覆層8を有していてもよい。第1被覆層8は、第1層9と、第1層9の上に位置する第2層10とを有していてもよい。
 第1層9は、Al23粒子を含有していてもよい。第1層9は、Al23層であってもよい。Al23層とは、Al23を主成分として含有する層のことを意味してもよい。「主成分」とは、他の成分と比較して質量%の値が最も大きい成分のことを意味してもよい。
 第2層10は、基体2の側から順に、第1膜11と、第1膜11に接する第2膜12と、第2膜12に接する第3膜13とを有していてもよい。
 第1膜11、第2膜12および第3膜13は、それぞれTi(チタン)を含有していてもよい。また、第1膜11、第2膜12および第3膜13は、それぞれC(炭素)およびN(窒素)から選ばれる少なくとも1種を含有していてもよい。
 より具体的には、第1膜11、第2膜12および第3膜13は、それぞれチタン化合物を含有していてもよい。第1膜11、第2膜12および第3膜13は、それぞれチタン化合物を主成分として含有していてもよい。チタン化合物としては、例えば、チタンの炭化物、窒化物、酸化物、炭窒化物、炭酸化物および炭窒酸化物などが挙げられ得る。
 第1膜11に含まれるN含有量を第1N量とし、第2膜12に含まれるN含有量を第2N量とし、第3膜13に含まれるN含有量を第3N量とした場合、第1N量>第3N量>第2N量の関係を充足していてもよい。
 上記の関係を充足する場合、第1膜11は、第1膜11、第2膜12および第3膜13のうち、最も剥離しやすい膜である。言い換えると、第1膜11は、第1膜11、第2膜12および第3膜13のうち、最も密着性が低い。また、第1膜11は、第1膜11、第2膜12および第3膜13のうち、最も耐溶着性に優れる。
 上記の関係を充足する場合、第2膜12は、第1膜11、第2膜12および第3膜13のうち、最も硬度が高い膜である。その一方で、第2膜12は、第1膜11、第2膜12および第3膜13のうち、最も耐溶着性が低い。
 上記の関係を充足する場合、第3膜13の硬度、耐剥離性および耐溶着性は、それぞれ第1膜11と第2膜12との間に位置する。
 このような構成を有する各膜を、上記の被覆構成のように有する被覆工具1は、耐摩耗性および耐溶着性に優れる。
 第1N量、第2N量および第3N量は、特定の値に限定されない。例えば、第1N量は、45~55原子%に設定されてもよい。第2N量は、0~25原子%に設定されてもよい。第3N量は、25~45原子%に設定されてもよい。N含有量は、例えば、エネルギー分散型X線分析(EDS)分析法で測定された値であってもよい。
 第1膜11は、Ti(Cx1y1z1)(0≦x1≦1、0≦y1≦1、0≦z1<1、x1+y1+z1=1)からなる粒子を含有していてもよい。第2膜12は、Ti(Cx2y2z2)(0≦x2≦1、0≦y2≦1、0≦z2<1、x2+y2+z2=1)からなる粒子を含有していてもよい。第3膜13は、Ti(Cx3y3z3)(0≦x3≦1、0≦y3≦1、0≦z3<1、x3+y3+z3=1)からなる粒子を含有していてもよい。
 y1=1であってもよい。すなわち、第1膜11は、TiN粒子を含有していてもよい。また、第1膜11は、TiN膜であってもよい。TiN膜とは、TiNを主成分として含有する膜のことを意味してもよい。この点は、他の膜においても同様に定義してもよい。
 x2=1であってもよい。また、0<x3<1、0<y3<1、z3=0であってもよい。すなわち、第2膜12は、TiC粒子を含有していてもよく、また、第3膜13は、TiCN粒子を含有していてもよい。第2膜12は、TiC膜であってもよく、また、第3膜13は、TiCN膜であってもよい。
 0<x2<1、0<y2<1、z2=0であってもよい。また、0<x3<1、0<y3<1、z3=0であってもよい。すなわち、第2膜12および第3膜13は、それぞれTiCN粒子を含有していてもよい。第2膜12および第3膜13は、それぞれTiCN膜であってもよい。
 第2膜12および第3膜13が、それぞれTiCN粒子を含有する場合には、X2>X3であってもよい。すなわち、第2膜12に含まれるC含有量が、第3膜13に含まれるC含有量よりも多くてもよい。
 第3膜13は、CおよびNを含有していてもよい。第3膜13におけるN/(C+N)は、0.7以上であってもよい。また、第3膜13におけるN/(C+N)は、0.9以下であってもよい。N/(C+N)は、CおよびNの総和に対するNの原子比での含有比率であってもよい。N/(C+N)は、例えば、エネルギー分散型X線分析(EDS)分析法で測定してもよい。なお、N/(C+N)は原子比率を示している。
 第1膜11、第2膜12および第3膜13のそれぞれの厚みは、同じであってもよく、また、異なっていてもよい。例えば、第2膜12の厚みは、第1膜11の厚みおよび第3膜13の厚みよりも厚くてもよい。この場合には、耐摩耗性が高い。
 第1膜11、第2膜12および第3膜13のそれぞれの厚みは、特定の値に限定されない。例えば、第1膜11の厚みは、0.1~0.5μmに設定されてもよい。第2膜12の厚みは、0.5~1.0μmに設定されてもよい。第3膜13の厚みは、0.3~0.7μmに設定されてもよい。第2膜12の厚みは、第2層10の全体の厚みのうち、40%以上であってもよい。
 なお、第2層10の厚みは、第1層9の厚みと同じであってもよく、また、異なっていてもよい。例えば、第2層10の厚みは、第1層9の厚みよりも厚くてもよい。
 第2層10は、第1層9に接していてもよく、また、第1層9に接していなくてもよい。同様に、第1層9は、基体2に接していてもよく、また、基体2に接していなくてもよい。例えば、第1被覆層8は、第1層9と第2層10との間に位置する他の層を有していてもよく、また、基体2と第1層9との間に位置する他の層を有していてもよい。他の層は、TiN粒子、TiC粒子またはTiCN粒子を含有していてもよい。他の層は、TiN膜、TiC膜またはTiCN膜であってもよい。
 第1被覆層8は、第1面5(すくい面)に位置していてもよい。この場合には、第1面5の耐摩耗性および耐溶着性が高い。
 第1被覆層8は、第2面6(逃げ面)に位置していてもよい。この場合には、第2面6の耐摩耗性および耐溶着性が高い。
 被覆層3は、図4に示す限定されない一例のように、第2被覆層14を有していてもよい。第2被覆層14は、第3層15を有していてもよい。第3層15は、Al23粒子を含有していてもよい。第3層15は、Al23層であってもよい。第3層15は、最表層であってもよい。
 第2被覆層14は、第2面6(逃げ面)に位置していてもよい。この場合には、第2面6の耐溶着性が高い。
 第2被覆層14は、第1面5(すくい面)に位置していてもよい。この場合には、第1面5の耐溶着性が高い。
 第1被覆層8が、第1面5(すくい面)に位置し、第2被覆層14が、第2面6(逃げ面)に位置していてもよい。この場合には、第1面5の耐摩耗性および耐溶着性が高く、第2面6の耐溶着性が高い。
 第1被覆層8が、第2面6(逃げ面)に位置し、第2被覆層14が、第1面5(すくい面)に位置していてもよい。この場合には、第1面5の耐溶着性が高く、第2面6の耐摩耗性および耐溶着性が高い。
 <被覆工具の製造方法>
 次に、本開示の限定されない実施形態の被覆工具の製造方法について、被覆工具1を製造する場合を例に挙げて説明する。
 最初に基体2を作製してもよい。基体2として、硬質合金からなる基体2を作製する場合を例に挙げて説明する。まず、焼成によって基体2を形成できる金属炭化物、窒化物、炭窒化物、酸化物などの無機物粉末に、金属粉末、カーボン粉末などを適宜添加して混合し、混合粉末を得てもよい。次に、この混合粉末を、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形などの公知の成形方法によって所定の工具形状に成形し、成形体を得てもよい。そして、得られた成形体を真空中または非酸化性雰囲気中で焼成し、基体2を得てもよい。基体2の表面4には、研磨加工やホーニング加工を施してもよい。
 次に、得られた基体2の表面4にCVD法によって被覆層3を成膜し、被覆工具1を得てもよい。
 図3に示す限定されない一例のように、第1層9が基体2に接する場合には、最初に第1層9(Al23層)を成膜してもよい。まず、反応ガス組成として、三塩化アルミニウム(AlCl3)ガスを0.5~5体積%、塩化水素(HCl)ガスを0.5~3.5体積%、二酸化炭素(CO2)ガスを0.5~5体積%、硫化水素(H2S)ガスを0.5体積%以下、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を930~1010℃、圧力を5~10kPa、時間を30~300分に設定し、第1層9を成膜してもよい。なお、この成膜条件は、第3層15にも適用可能である。
 次に、第2層10における第1膜11、第2膜12および第3膜13を順に成膜してもよい。
 第1膜11としてTiN膜を成膜する場合を例に挙げて説明する。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、窒素(N2)ガスを10~60体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1010℃、圧力を10~85kPa、時間を10~60分に設定し、TiN膜である第1膜11を成膜してもよい。
 次に、第2膜12としてTiC膜を成膜する場合を例に挙げて説明する。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~30体積%、メタン(CH4)ガスを0.1~20体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1100℃、圧力を10~85kPa、時間を10~120分に設定し、TiC膜である第2膜12を成膜してもよい。
 次に、第3膜13としてTiCN膜を成膜する場合を例に挙げて説明する。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、窒素(N2)ガスを10~60体積%、メタン(CH4)ガスを0.1~15体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1100℃、圧力を5~30kPa、時間を20~100分に設定し、TiCN膜である第3膜13を成膜してもよい。なお、この成膜条件は、第2膜12がTiCN膜である場合にも適用可能である。また、例えば、上記の反応ガス組成において、N2成分の割合が多いと、N/(C+N)が大きい。逆に、N2成分の割合が少ないと、N/(C+N)が小さい。
 ここで、第1膜11、第2膜12および第3膜13を成膜する際に、反応ガス組成を調整することによって、第1膜11、第2膜12および第3膜13におけるN含有量を第1N量>第3N量>第2N量にすることが可能である。
 得られた被覆工具1において、切刃7を含む領域に研磨加工を施してもよい。これにより、切刃7を含む領域が平滑になり、その結果、被削材の溶着が抑制され、切刃7の耐欠損性が向上する。
 なお、上記の製造方法は、被覆工具1を製造する方法の一例である。したがって、被覆工具1が、上記の製造方法によって作製されたものに限定されないことは言うまでもない。
 <切削工具>
 図5に示す限定されない一例のように、本開示の限定されない実施形態の切削工具101は、第1端102aから第2端102bに亘る長さを有し、第1端102a側に位置するポケット103を有するホルダ102と、ポケット103に位置する被覆工具1と、を有していてもよい。なお、図5では、被覆工具1が貫通孔を有し、この貫通孔を介して被覆工具1をポケット103にネジ104で固定した場合を例示している。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示は以下の実施例に限定されない。
 [試料No.1~8]
 <被覆工具の作製>
 まず、基体を作製した。具体的には、平均粒径1.2μmのWC粉末に対して、平均粒径1.5μmの金属Co粉末を6質量%、TiC(炭化チタン)粉末を2.0質量%、Cr32(炭化クロム)粉末を0.2質量%の比率で添加して混合し、プレス成形により切削工具形状(CNMG120408)に成形し、成形体を得た。得られた成形体に脱バインダ処理を施し、0.5~100Paの真空中、1400℃で1時間焼成し、超硬合金からなる基体を作製した。作製した基体のすくい面(第1面)の側に、ブラシ加工で刃先処理(Rホーニング)を施した。
 次に、得られた基体の上にCVD法により表1に示す成膜条件で被覆層(第2層)を成膜し、表2に示す被覆工具(切削インサート)を得た。
 なお、表2に示す被覆工具はいずれも、基体の上にAl23層(第1層)が成膜されている。Al23層の成膜条件および厚みは、以下のとおりである。
 AlCl3ガス:4.0体積%
 HClガス:1.0体積%
 CO2ガス:4.5体積%
 H2Sガス:0.3体積%
 H2ガス:残部
 温度:1000℃
 圧力:10kPa
 時間:300分
 厚み:5.0μm
 表1および表2において、各化合物は化学記号で表記した。表1に示す被覆層の厚みと、上記のAl23層の厚みは、SEMを用いた断面観察により得た値である。なお、表1において、TiNと表記した膜は、実質的にCを含んでおらず、N/(C+N)は、おおよそ1、TiCと表記した膜は、実質的にNを含んでおらず、N/(C+N)は、おおよそ0である。また、表1において、試料No.1におけるTiCN膜のN/(C+N)は、0.8、試料No.2~7におけるTiCN膜のN/(C+N)は、0.7、試料No.8におけるTiCN膜のN/(C+N)は、0.5である。
 <評価>
 得られた被覆工具について、外観色を目視にて評価した。結果を表1に示す。また、耐摩耗性と刃先への溶着の有無を評価した。測定方法を以下に示すとともに、結果を表2に示す。
 <切削評価条件>
耐摩耗性評価
加工方法:旋削加工
被削材 :SCM435丸棒
切削速度:300m/min
送り  :0.3mm/rev
切り込み:1.5mm
加工状態:湿式
評価項目:切削時間20分時の逃げ面の摩耗量を確認
耐溶着性評価
加工方法:旋削加工
被削材 :S45C丸棒
切削速度:100m/min
送り  :0.1mm/rev
切り込み:1.0mm
加工状態:湿式
評価項目:切削時間5分時の刃先への溶着の状態を確認
 表2においては、切削時間20分時の逃げ面摩耗量(Vb)、および切削時間5分時の刃先への溶着の状態を記載している。表2における刃先溶着の欄は、刃先溶着と、チッピングの二つのパラメータを以下の判断基準で表記した。刃先への溶着の状態に関して「◎」の表記は、溶着が無く、チッピングも無かったことを意味する。「〇」の表記は、チッピングは生じなかったが、若干量の溶着が確認されたことを意味する。「△」の表記は、チッピングは生じなかったが、「〇」よりも溶着量が多かったことを意味する。「×」の表記は、溶着が生じ、溶着起因のチッピングが生じたことを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例に該当する試料No.3~8は、いずれも比較例に該当する試料No.1~2に比べて優れた切削性能が得られた。
  1・・・被覆工具(切削インサート)
  2・・・基体
  3・・・被覆層
  4・・・表面
  5・・・第1面
  6・・・第2面
  7・・・切刃
  8・・・第1被覆層
  9・・・第1層
 10・・・第2層
 11・・・第1膜
 12・・・第2膜
 13・・・第3膜
 14・・・第2被覆層
 15・・・第3層
101・・・切削工具
102・・・ホルダ
102a・・第1端
102b・・第2端
103・・・ポケット
104・・・ネジ

Claims (5)

  1.  基体と、該基体の上に位置する被覆層とを有する被覆工具であって、
     前記被覆工具は、第1面と、該第1面と隣り合う第2面と、前記第1面と前記第2面の稜線部の少なくとも一部に位置する切刃とを備え、
     前記被覆層は、
      Al23粒子を含有する第1層と、
      該第1層の上に位置する第2層とを有する第1被覆層を有し、
     前記第2層は、前記基体の側から順に、
      第1膜と、
      該第1膜に接する第2膜と、
      該第2膜に接する第3膜とを有し、
     前記第1膜、前記第2膜および前記第3膜は、それぞれTiを含有し、
     前記第1膜、前記第2膜および前記第3膜は、それぞれCおよびNから選ばれる少なくとも1種を含有し、
     前記第1膜に含まれるN含有量を第1N量とし、
     前記第2膜に含まれるN含有量を第2N量とし、
     前記第3膜に含まれるN含有量を第3N量とした場合、
     第1N量>第3N量>第2N量の関係を充足する、被覆工具。
  2.  前記第2膜の厚みは、前記第1膜の厚みおよび前記第3膜の厚みよりも厚い、請求項1に記載の被覆工具。
  3.  前記第3膜は、CおよびNを含有しており、
     前記第3膜におけるN/(C+N)は、0.7以上である、請求項1または2に記載の被覆工具。
  4.  前記第2膜の厚みは、0.5μm以上、1.0μm以下である、請求項1~3のいずれかに記載の被覆工具。
  5.  第1端から第2端に亘る長さを有し、前記第1端側に位置するポケットを有するホルダと、
     前記ポケットに位置する請求項1~4のいずれかに記載の被覆工具と、を有する切削工具。
PCT/JP2021/012104 2020-03-27 2021-03-24 被覆工具 WO2021193676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022510576A JP7431945B2 (ja) 2020-03-27 2021-03-24 被覆工具
DE112021001964.3T DE112021001964T5 (de) 2020-03-27 2021-03-24 Beschichtetes werkzeug
CN202180022495.6A CN115315330A (zh) 2020-03-27 2021-03-24 涂层刀具
US17/914,741 US20230126815A1 (en) 2020-03-27 2021-03-24 Coated tool
KR1020227030486A KR20220136411A (ko) 2020-03-27 2021-03-24 피복 공구

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057684 2020-03-27
JP2020-057684 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193676A1 true WO2021193676A1 (ja) 2021-09-30

Family

ID=77890681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012104 WO2021193676A1 (ja) 2020-03-27 2021-03-24 被覆工具

Country Status (6)

Country Link
US (1) US20230126815A1 (ja)
JP (1) JP7431945B2 (ja)
KR (1) KR20220136411A (ja)
CN (1) CN115315330A (ja)
DE (1) DE112021001964T5 (ja)
WO (1) WO2021193676A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079022A1 (fr) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Alliage dur enrobé
JP2006021316A (ja) * 2004-06-24 2006-01-26 Sandvik Intellectual Property Hb 被覆超硬合金切削工具インサート
JP2009078309A (ja) * 2007-09-25 2009-04-16 Mitsubishi Materials Corp 表面被覆切削工具
JP2009255234A (ja) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp 表面被覆切削工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69025521T2 (de) * 1989-09-11 1996-10-24 Praxair Technology Inc Mehrlagiger Überzug von einem nitridhaltigen Werkstoff und seine Herstellung
EP3075475A4 (en) * 2013-11-29 2017-06-21 Kyocera Corporation Cutting tool
JP6699056B2 (ja) 2016-06-14 2020-05-27 住友電工ハードメタル株式会社 表面被覆切削工具
US20190344356A1 (en) * 2016-11-16 2019-11-14 Kyocera Corporation Cutting insert and cutting tool
JP7128073B2 (ja) 2018-10-01 2022-08-30 株式会社ディスコ 加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079022A1 (fr) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Alliage dur enrobé
JP2006021316A (ja) * 2004-06-24 2006-01-26 Sandvik Intellectual Property Hb 被覆超硬合金切削工具インサート
JP2009078309A (ja) * 2007-09-25 2009-04-16 Mitsubishi Materials Corp 表面被覆切削工具
JP2009255234A (ja) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp 表面被覆切削工具

Also Published As

Publication number Publication date
DE112021001964T5 (de) 2023-01-12
JPWO2021193676A1 (ja) 2021-09-30
CN115315330A (zh) 2022-11-08
JP7431945B2 (ja) 2024-02-15
KR20220136411A (ko) 2022-10-07
US20230126815A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
US10717135B2 (en) Coated tool
WO2019146785A1 (ja) 被覆工具およびそれを備えた切削工具
KR20190119088A (ko) 금속, 초경합금, 도성합금 또는 세라믹으로 이루어지고 경질 재료로 코팅된 물품 및 이러한 물품의 제조 방법
WO2017217012A1 (ja) 表面被覆切削工具
JP2012196726A (ja) 切削工具
US10744568B2 (en) Coated tool
CN111886093B (zh) 表面被覆切削工具及其制造方法
JPWO2019004018A1 (ja) 被覆工具、切削工具及び切削加工物の製造方法
WO2017057456A1 (ja) 被覆工具
WO2021069492A1 (en) A coated cutting tool
CN111565873B (zh) 表面被覆切削工具
WO2021193676A1 (ja) 被覆工具
JP7370543B2 (ja) 被覆工具
WO2021193677A1 (ja) 被覆工具
WO2024018889A1 (ja) 被覆工具および切削工具
US11839923B2 (en) Coated tool, cutting tool, and method for manufacturing machined product
JP7457336B2 (ja) 被覆工具
WO2023228688A1 (ja) 被覆工具および切削工具
JP7213888B2 (ja) 被覆工具およびそれを備えた切削工具
JP7037580B2 (ja) 被覆工具およびこれを備えた切削工具
WO2022244243A1 (ja) 切削工具
WO2020111122A1 (ja) 被覆工具およびそれを備えた切削工具
WO2019181794A1 (ja) インサート及びこれを備えた切削工具
WO2019181792A1 (ja) インサート及びこれを備えた切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510576

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030486

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21776450

Country of ref document: EP

Kind code of ref document: A1