WO2021192927A1 - Intake device of internal combustion engine for saddle-type vehicle - Google Patents

Intake device of internal combustion engine for saddle-type vehicle Download PDF

Info

Publication number
WO2021192927A1
WO2021192927A1 PCT/JP2021/008730 JP2021008730W WO2021192927A1 WO 2021192927 A1 WO2021192927 A1 WO 2021192927A1 JP 2021008730 W JP2021008730 W JP 2021008730W WO 2021192927 A1 WO2021192927 A1 WO 2021192927A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
section
tumble
cross
intake
Prior art date
Application number
PCT/JP2021/008730
Other languages
French (fr)
Japanese (ja)
Inventor
治 江水
裕高 河津
加代子 武市
博行 夏井
金子 哲也
大地 月原
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to BR112022016369A priority Critical patent/BR112022016369A2/en
Priority to JP2022509492A priority patent/JP7241236B2/en
Publication of WO2021192927A1 publication Critical patent/WO2021192927A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake device for an internal combustion engine mounted on a vehicle, particularly a saddle-mounted vehicle.
  • Patent Document 1 In the intake passage of an internal combustion engine, intake is provided with a tumble control valve that controls the intake supply to one side of the intake passage divided into two on the downstream side of the throttle valve to generate a tumble vortex in the air-fuel mixture in the combustion chamber.
  • Patent Document 1 the intake passage having a circular cross section is divided into two by a flat plate-shaped partition member, and the cross section of the tumble passage for supplying intake air for generating a tumble vortex is half. It was circular and there was room for improvement in order to increase the intake speed.
  • Patent Document 2 below shows a circular cross section of a tumble passage having a low pipeline resistance.
  • the tumble control valve since the tumble control valve is provided around the entrance of the tumble passage, the size of the circular cross section of the entrance of the tumble passage is limited, and the amount of intake air to the tumble passage is restricted. I was afraid.
  • Japanese Patent Application Laid-Open No. 2016-07206 (FIGS. 4, 7, 11 to 13) Japanese Patent No. 6268604 (Fig. 2, Fig. 4, Fig. 6)
  • the present invention has been made in view of such prior art.
  • an intake control valve such as a tumble control valve in addition to a throttle valve and a tumble passage provided in the intake passage
  • an intake device that can secure intake air to the tumble passage and improve the intake speed is provided. The task is to do.
  • a throttle valve provided in the intake passage through which the intake air to the combustion chamber of the internal combustion engine passes and controlled to an arbitrary opening degree to control the intake air amount, and a throttle valve provided on the downstream side of the throttle valve and along the passage direction.
  • An internal combustion engine for a saddle-type vehicle provided with a tumble control valve that opens and closes the passage cross section of the main passage of the intake passage divided into a main passage and a tumble passage to control the intake air supply to the main passage.
  • the intake passage is provided with a partition wall that divides the inside into two in the passage direction, and the tumble passage is defined as a circular cross section by the partition wall whose cross section on the downstream end side is arcuate to the downstream end, and crosses the upstream end.
  • the partition wall having a straight surface is defined as a semicircular shape having a maximum diameter larger than the diameter of the circular cross section, and the cross-sectional area of the cross section of the upstream end is the cross-sectional area of the cross section on the downstream end side.
  • the cross-sectional area of the cross section of the upstream end of the tumble passage is secured without increasing the diameter of the entire cross-sectional shape of the intake passage, the inflow flow rate of the intake air to the tumble passage can be secured, and the tumble passage on the downstream end side is secured. Since the cross section of the cross section is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage can be increased, and the tumble performance is improved.
  • the cross section of the tumble passage is gradually deformed and continuous along the passage direction from the semicircular cross section of the upstream end to the cross section of the circular cross section on the downstream end side. Therefore, in the tumble passage, the cross section is gradually deformed from the semicircular cross section to the circular cross section, and the cross section area is narrowed, so that the flow velocity can be increased while suppressing the increase in intake resistance as much as possible. ..
  • the tumble passage has a circular cross section up to the downstream end in a cross section within a predetermined length range on the downstream end side. Therefore, by providing a tumble passage having a circular cross section with a predetermined length to the downstream end, a rectifying section is provided, and the intake air is rectified and the intake performance is improved.
  • the tumble valve plate of the tumble control valve is formed in a semicircular shape that covers the entire cross section of the main passage. Therefore, since the tumble control valve can surely close the main passage side, the intake flow rate to the tumble passage side can be secured.
  • the tumble passage is curved so that the central extension virtual line at the downstream end points toward the cylinder center. ing. Therefore, the intake air that passes through the tumble passage and flows into the combustion chamber can be guided toward the center of the cylinder, so that a tumble flow can be generated in the center of the combustion chamber, and the tumble performance is improved.
  • the intake device of the internal combustion engine for a saddle-type vehicle of the present invention According to the intake device of the internal combustion engine for a saddle-type vehicle of the present invention.
  • the cross-sectional area of the cross section of the upstream end of the tumble passage is secured without increasing the diameter of the entire cross-sectional shape of the intake passage, the inflow flow rate of the intake air to the tumble passage can be secured, and the tumble passage on the downstream end side is secured. Since the cross section of the cross section is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage can be increased, and the tumble performance is improved.
  • FIG. 1 is a plan sectional view of a central main part of a motorcycle as viewed from the arrow III-III in FIG.
  • FIG. 3 is a right perspective view of the central main part of the motorcycle when the fuel tank, the seat, and the rear side cover are removed, and the periphery of the tumble valve device, the throttle body, and the connecting tube is viewed from diagonally above on the right side, as viewed from the IV arrow in FIG. ..
  • FIG. 2 is a plan sectional view of a throttle body, a tumble valve device, and a cylinder head along an intake passage according to VI-VI arrow view in FIG.
  • FIG. 2 is a cross-sectional perspective view of the throttle body, the tumble valve device, and the cylinder head as viewed from the rear upper part, as viewed from the arrow of VII-VII in FIG.
  • the internal combustion engine is mounted on a saddle-mounted vehicle, and in the present embodiment, the saddle-mounted vehicle is a motorcycle.
  • the orientations of the front, rear, left, right, up and down, etc. in the description of the present specification and the claims shall be in accordance with the orientation of the saddle-type vehicle such as a motorcycle equipped with the internal combustion engine of the present embodiment.
  • the arrow FR indicates the front of the vehicle
  • LH indicates the left side of the vehicle
  • RH indicates the right side of the vehicle
  • UP indicates the upper part of the vehicle.
  • FIG. 1 is a right side view of the motorcycle 1 according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the right side of the internal combustion engine mounted on the motorcycle 1 in FIG.
  • the body frame 2 of the motorcycle (“saddle-mounted vehicle” in the present invention) 1 extends downward from the head pipe 20 constituting the front end and the head pipe 20 and then curves and extends further downward.
  • One main frame 21 having a hanging portion 21a, a pair of left and right seat rails 22 extending rearward from the curved portion of the main frame 21, and one down extending downward from the head pipe 20 in the center of the vehicle width.
  • a front fork 12 that supports the front wheel 11 is rotatably attached to the head pipe 20, and a fuel tank 13 is attached to the main frame 21.
  • a swing arm 14 is supported on the pivot plate 24 so as to be swingable up and down. Further, the seat 15 and a pair of left and right rear side covers 10a are attached to the seat rail 22.
  • a front cowl 10b equipped with a headlight, a front winker, etc. is supported in front of the head pipe 20.
  • a front fender 10c that covers the front wheel 11 from above is supported at the lower part of the front fork 12.
  • the swing arm 14 rotatably supports the rear wheel 16 at the rear end.
  • the lower end of the rear cushion unit 17 is attached to the rear portion of the swing arm 14, and the upper end of the rear cushion unit 17 is attached near the connection portion between the rear frame 25 and the seat rail 22.
  • Seat 15 is formed into a two-person tandem seat that is long before and after the driver and passengers can sit.
  • a side stand 19 for parking the motorcycle 1 and a center stand (not shown) At the bottom of the pivot plate 24, a side stand 19 for parking the motorcycle 1 and a center stand (not shown), a step 18A on which the driver puts his foot, and a step bracket 18C supporting the pillion step 18B on which the passenger puts his foot, etc. Is attached.
  • An engine hanger 26 is fixed to the lower part of the down frame 23, and the engine hanger 26 and a pair of left and right pivot plates 24 support a power unit 4 having an internal combustion engine 3 and a transmission 5 integrally.
  • the internal combustion engine 3 includes a crankcase 30 that houses the crankshaft 31, and a cylinder portion 32 that is fastened to the upper portion of the crankcase 30 with the cylinder axis X slightly tilted forward.
  • the cylinder portion 32 includes a cylinder block 33, a cylinder head 34, and a head cover 35 from the crankcase 30 side.
  • the internal combustion engine 3 is arranged in a region surrounded by the main frame 21 and the down frame 23 in a side view.
  • the cylinder block 33 is attached to the crankcase 30 so as to stand up with a slight forward tilt, the front portion of the crankcase 30 is supported by the engine hanger 26, and the rear portion of the crankcase 30 is supported by the pivot plate 24.
  • a throttle body 8 is connected to the rear surface of the cylinder head 34 via a tumble valve device 7, and an air cleaner 86 is connected to the upstream of the throttle body 8 via a connecting tube 85.
  • An exhaust pipe 39 is connected to the front surface of the cylinder head 34, and a muffler 40 is connected to the downstream side of the exhaust pipe 39.
  • the air cleaner 86 is arranged in a laterally triangular area surrounded by the seat rail 22, the main frame 21, and the rear frame 25. The upper half of the air cleaner 86 is covered on both the left and right sides with a pair of left and right rear side covers 10a made of a resin material.
  • the rear side cover 10a overlaps a part of the rear part of the fuel tank 13 in a side view, extends rearward from the rear part of the fuel tank 13, extends below the seat 15, and extends to the rear lower end of the seat 15. As shown in FIG. 1, the rear side cover 10a covers the rear lower portion of the fuel tank 13 and the lower edge of the seat 15 invisible to the outside, and the appearance is improved. Further, the rear side cover 10a covers the outside of the seat rail 22 in the vehicle width direction, thereby improving the appearance.
  • reference numeral 10d is a rear fender.
  • FIG. 2 is a cross-sectional view of the right side of the power unit 4 taken out from the power unit 4 of FIG. 1 and shown in substantially the same orientation as shown in FIG.
  • the cylinder block 33, the cylinder head 34, and the head cover 35 forming the cylinder portion 32 are crankcases with the cylinder axis X slightly tilted forward so that the cross section of the left half surface is shown in FIG. It is provided on 30.
  • the crankcase 30 is shown with the left case half body 30L facing the mating surface 30a with the right case half body (not shown) toward the front side of the drawing.
  • a transmission 5 having a main shaft 51 and a counter shaft 52 parallel to the crankshaft 31 is provided inside the rear portion of the crankcase 30, a transmission 5 having a main shaft 51 and a counter shaft 52 parallel to the crankshaft 31 is provided inside the rear portion of the crankcase 30, a transmission 5 having a main shaft 51 and a counter shaft 52 parallel to the crankshaft 31 is provided.
  • the rotation of the crankshaft 31 accompanying the operation of the internal combustion engine 3 is transmitted to the main shaft 51 via a speed change clutch (not shown), and is shifted by a speed change gear group (not shown) provided on the main shaft 51 and the counter shaft 52 to counter the counter. It is transmitted to the shaft 52.
  • the counter shaft 52 is an output shaft of the internal combustion engine 3, that is, the power unit 4, and includes a drive sprocket 53 fitted to the left shaft end of the counter shaft 52 and a driven sprocket 54 fitted to the rear wheel shaft 16a.
  • a drive chain 55 is hung between the two, and the rear wheels 16 are driven
  • the piston 36 that reciprocates in the cylinder bore 33a of the cylinder block 33 is connected to the crankpin 31a of the crankshaft 31 by a connecting rod 37.
  • a combustion chamber 38 is formed between the top surface 36a of the piston 36 slidably fitted in the cylinder bore 33a of the cylinder block 33 and the combustion chamber ceiling surface 34a of the cylinder head 34 facing the top surface 36a. Will be done.
  • the internal combustion engine 3 employs a single-cylinder SOHC type two-valve system, and the cylinder head 34 is provided with a valve operating mechanism 9.
  • a head cover 35 is overlapped and covered on the cylinder head 34 so as to cover the valve operating mechanism 9.
  • an endless cam chain (not shown) is provided on one side of the crankcase 30, the cylinder block 33, and the cylinder head 34 in the crankshaft 31 direction (in the present embodiment, the figure). 2 Passing through a cam chain chamber (not shown) provided on the opposite side (not shown), the cam shaft 91 is hung between the cam shaft 91 and the crank shaft 31, and the cam shaft 91 synchronizes with the crank shaft 31 and has a rotation speed of 1/2 of that.
  • the spark plug 88 is inserted from the side opposite to the cam chain chamber (the other side in the direction of the crankshaft 51, the front side shown in FIG. 2 in the present embodiment) toward the inside of the combustion chamber 38 ( (See FIG. 4).
  • the exhaust port 44 and the intake port 43 are separated from each other back and forth from the exhaust valve port 42 and the intake valve port 41 when the cylinder head 34 is opened to the ceiling surface 34a of the combustion chamber. It is formed by extending while curving in the direction.
  • the upstream end of the intake port 43 opens toward the rear of the cylinder head 34, is connected to the tumble valve device 7 with a heat insulating plate member 62 sandwiched between them, and is connected to the tumble valve device 7 on the upstream side of the tumble valve device 7 via an elastic insulator 61.
  • the throttle body 8 is connected.
  • An air cleaner 86 is sequentially connected to the upstream side of the throttle body 8 via a connecting tube 85 (see FIG. 1). That is, the intake air is burned from the air cleaner 86 through the connecting tube 85, the air passage 80 of the throttle body 8, the air passage 60 of the elastic insulator 61, the air passage 70 of the tumble valve device 7, the opening 63 of the heat insulating plate member 62, and the intake port 43.
  • a continuous intake passage 6 that feeds to the chamber 38 is configured.
  • the elastic insulator 61 is formed of a rubber member having heat insulating properties and elasticity as a preferable example shown in the present embodiment.
  • the elastic insulator 61 may be a mixture of metal members and resin members as long as it has a member structure having heat insulating properties and elasticity, and another member is connected to the member having heat insulating properties and elasticity to form a connecting tubular structure. It may be the one that has been done.
  • the downstream end of the exhaust port 44 opens toward the front of the cylinder head 34 and is connected to the exhaust pipe 39.
  • the exhaust pipe 39 wraps around below the power unit 4, and then the muffler 40 on the right side of the rear wheel 16 Connect to (see Figure 1).
  • a cylindrical intake valve guide 45 is integrally fitted to the curved outer wall portion 43a of the intake port 43 in the cylinder head 34, and the intake valve 47 slidably supported by the intake valve guide 45 burns the intake port 43.
  • the intake valve port 41 facing the chamber 38 is opened and closed.
  • the exhaust valve 48 slidably supported by the exhaust valve guide 46 integrally fitted to the curved outer wall portion 44a of the exhaust port 44 in the cylinder head 34 faces the combustion chamber 38 of the exhaust port 44. Open and close the mouth 42.
  • the intake valve 47 and the exhaust valve 48 are urged upward by the valve spring 49 so that the umbrella portions 47a and 48a both close the intake valve port 41 and the exhaust valve port 42 facing the combustion chamber 38.
  • the intake cam of the cam shaft 91, the intake rocker arm 93 that swings in contact with the exhaust cam, and the exhaust rocker arm 94 push down the stem ends 47b and 48b of the intake valve 47 and the exhaust valve 48, and the intake valve 47,
  • the exhaust valve 48 opens, and the intake port 43 and the combustion chamber 38 communicate with each other, and the exhaust port 44 and the combustion chamber 38 communicate with each other to perform intake and exhaust at predetermined timings.
  • a tumble flow T of the fuel / air mixture that is, an intake device for giving vertical rotation in the combustion chamber 38.
  • the throttle body 8 is rotatably supported in the throttle body 8 by a throttle valve shaft 81a oriented substantially horizontally perpendicular to the flow direction F of the air passage 80, that is, the intake passage 6, and is controlled to an arbitrary opening degree. It is provided with a throttle valve 81 that can variably control the passage area of the air passage 80, control the amount of intake air, and open and close the air passage 80.
  • the ventilation passage 70 of the tumble valve device 7 is connected to the downstream side of the throttle valve 81, and is perpendicular to the ventilation passage 70, that is, the flow direction F of the intake passage 6, and substantially horizontal.
  • a tumble control valve 71 that is rotatably supported in the tumble valve device 7 by a tumble valve shaft 71a that is oriented and parallel to the throttle valve shaft 81a and is controlled to an arbitrary opening degree is provided.
  • the intake passage 6 on the downstream side of the tumble control valve 71 is divided into a main passage 6A and a tumble passage 6B by the partition wall 65 along the passage direction, and the tumble control is adjacent to the upstream end portion 65a of the partition wall 65.
  • a tumble valve shaft 71a of the valve 71 is provided.
  • the tumble control valve 71 provided in the ventilation passage 70 having a circular cross section on the downstream side of the throttle valve 81 is a butterfly type, and is bolted and fixed so as to rotate together with the tumble valve shaft 71a and the tumble valve shaft 71a. It has a semicircular tumble valve plate 71b above.
  • the tumble control valve 71 can rotate counterclockwise in the valve opening direction in FIG. 2, and a return spring (not shown) brings the tumble valve plate 71b into the tumble valve closing position where the tumble valve plate 71b contacts the inner surface 70a of the ventilation path 70. It is urged clockwise to be positioned in the valve closing direction.
  • the throttle valve 81 provided in the intake passage 6 of the throttle body 8, that is, the ventilation passage 80 is also a butterfly type, and is a disk fixed by bolting so as to rotate together with the throttle valve shaft 81a and the throttle valve shaft 81a. It has a shaped throttle valve plate 81b.
  • the throttle valve 81 can rotate clockwise in the drawing of FIG. 2 in the valve opening direction, and the throttle valve plate 81b is positioned at a fully closed position in contact with the inner surface 80a of the ventilation path 80 by a return spring (not shown). It is urged counterclockwise in the valve closing direction.
  • the intake passage 6 is mainly divided from the tumble valve device 7 to the intake port 43 by a partition wall 65 up and down, except for the tumble passage 6B defined on the lower side and the tumble passage 6B. It is partitioned into passage 6A.
  • the partition wall 65 is configured such that the tumble valve device side partition wall 65A having the upstream end portion 65a, the heat insulating plate member side partition wall 65B, and the intake port side partition wall 65C are continuously positioned.
  • the cross sections A, D, and F of the tumble passage 6B are changed by the partition wall 65 that runs vertically from the tumble valve device 7 to the intake port 43. That is, at the inlet portion 43b of the intake port 43 near the upstream end portion 65a of the partition wall 65, the intake passage 6 is divided into upper and lower parts, so that the intake passage 6 is defined in a substantially semicircular shape on the lower side as shown in the cross section A. NS.
  • the main passage 6A and the tumble passage 6B are partitioned from the upstream end portion 65a of the partition wall 65 to the inlet portion 43b of the intake port 43 as shown in the cross section A.
  • the cross section of the intake port side partition wall 65C changes in an arc shape as it advances to the downstream side, and as shown in the cross section D, the cross section of the tumble passage 6B is formed so as to form a circular cross section. Will be done. Further, the cross section of the tumble passage 6B is maintained as a circular cross section as shown in the cross section F up to the downstream end portion 65b of the intake port side partition wall 65C.
  • the center line Z in the side view of the tumble passage 6B from the cross section D to the cross section F is between the opening edge 41a of the intake valve port 41 near the exhaust valve port 42 and the umbrella portion 47a of the intake valve 47. It is set to point towards.
  • the throttle body 8 penetrates the intake passage 6 on the downstream side of the throttle valve 81, that is, the ventilation passage 80 from above and outside, and injects and supplies fuel toward the diagonally downstream side (schematically in FIG. 2).
  • a fuel injection valve 87 arranged as shown in the injection line J) is installed.
  • the intake air flowing through the tumble passage 6B is passed above the umbrella portion 47a of the intake valve 47, and then is inside the cylinder bore 32a from between the intake valve port 41 and the opening edge 41a on the side close to the exhaust valve port 42. Since it can be efficiently flowed into the combustion chamber 38, the tumble flow T can be easily generated in the combustion chamber 38. That is, the tumble passage 6B serves as an intake flow path for generating the tumble flow T.
  • the tumble control valve 71 is a pair of upper and lower main passages 6A that divide the intake air flow in the intake passage 6 on the downstream side of the tumble valve plate 71b provided above, and the main passage 6A of the tumble passages 6B.
  • the passage cross section is opened and closed to control the intake air supply to the main passage 6A, and the intake distribution between the main passage 6A and the tumble passage 6B of the intake passage 6 is controlled.
  • the tumble valve plate 71b forming a semicircle on the upper part of the tumble valve shaft 71a abuts on the upper part of the inner surface 70a of the ventilation passage 70 having a circular cross section, so that the tumble valve plate 71b Is located so as to cover the inlet opening 6Aa of the main passage 6A to close or suppress the inflow of the intake air flow, the intake air flow is guided to the tumble passage 6B side, the intake air from the tumble passage 6B, and the fuel from the fuel injection valve 87. As an air-fuel mixture, it flows into the cylinder bore 32a.
  • the throttle valve 81 When the internal combustion engine 3 is in low load operation, the throttle valve 81 is throttled to reduce the amount of intake air, but the tumble control valve 71 allows most of the intake air to pass through the tumble passage 6B, so that the intake air flow velocity flows into the combustion chamber 38. It becomes possible to maintain good fuel combustion in the combustion chamber 38 while strengthening the tumble flow T of the intake air generated in the combustion chamber 38.
  • the tumble flow T shown by the alternate long and short dash line in FIG. 2 schematically shows the tumble flow T in the combustion chamber 38 when the piston 36 descends in the cylinder bore 33a as shown by the alternate long and short dash line. ..
  • the throttle valve 81 opens and the intake air amount increases, but the tumble control valve 71 is rotated in the opening direction to increase the inflow of the intake air flow into the main passage 6A.
  • the throttle valve 81 and the tumble control valve 71 are located parallel to the flow direction F of the intake passage 6 as shown by the two-point chain line in FIG. 2, and the intake flow flowing through the intake passage 6 is tumbled with the throttle valve 81.
  • a sufficient amount of intake air flows to both the main passage 6A and the tumble passage 6B without being disturbed by the control valve 71, and both of them, accompanied by the fuel from the fuel injection valve 87, can be directed to the combustion chamber 38 as an air-fuel mixture. can.
  • the throttle valve 81 is rotated by an engine control unit (ECU) (not shown) that activates the actuator 82 of the throttle valve 81 based on the operation of the driver and the situation of the internal combustion engine 3, and the valve is positioned. , Opening and closing.
  • the actuator 82 is mainly composed of an electric motor, but as shown in FIGS. 2 and 4, the throttle valve shaft 81a and the electric motor shaft, that is, the actuator shaft center 82a are offset, so that between them. Is provided with an appropriate transmission unit 83 such as a gear mechanism (see FIG. 3).
  • the tumble control valve 71 is rotated by an engine control unit (ECU) (not shown) that activates the actuator 72 of the tumble control valve 71 based on the situation of the internal combustion engine 3, and the valve is positioned and opened / closed.
  • the actuator 72 mainly includes an electric motor.
  • FIG. 3 which is a plan sectional view of the central main part of the motorcycle 1 as viewed from the arrow III-III in FIG. 1, in the present embodiment, the intake port 43 opened at the rear portion of the cylinder head 34 is provided with the intake port 43.
  • the tumble valve device 7 is fastened and connected with the heat insulating plate member 62 interposed therebetween.
  • the upstream side of the intake air flow is connected to the throttle body 8 via the elastic insulator 61, and the connecting tube 85 is further connected to the upstream side of the throttle body 8 to be connected to the air cleaner 86.
  • the main body 8a see FIGS.
  • FIG. 3 regarding the throttle body 8, the actuator 82 and the transmission portion 83 to the throttle valve shaft 81a are shown as a cross section, and the main body 8a of the throttle body 8 including the throttle valve 81 is located above the actuator 82. .. Further, regarding the tumble valve device 7, the actuator 72, the air passage 70, and the tumble control valve 71 are shown as cross sections.
  • FIG. 4 the fuel tank 13, the seat 15, and the rear side cover 10a were removed, and the periphery of the tumble valve device 7, the throttle body 8, and the connecting tube 85 was viewed from diagonally above to the right, as viewed from the IV arrow in FIG. It is a right side perspective view of the central main part of a motorcycle 1.
  • the upstream side of the connecting tube 85 connected to the upstream side of the main body 8a of the throttle body 8 provided with the throttle valve 81 is connected to the side surface 86b of the air cleaner 86, that is, the surface facing the vehicle side.
  • the intake passage 6 passing through the tumble valve device 7 and the throttle body 8 becomes long and connecting. If you try to connect the tube 85 to the front side 86a side of the air cleaner 86 as in the past, the distance between the cylinder part 32 and the air cleaner 86 is set too long and the vehicle body becomes large, or the cylinder part 32 and the air cleaner 86 If the connecting tube 85 itself having a pipe portion forming the intake passage 6 between them, or the connection between the tumble valve device 7 and the throttle body 8 is bent and the angle becomes tight, the intake performance may be affected.
  • the connecting tube 85 can be smoothly connected even at a distance between the normal cylinder portion 32 and the air cleaner 86, and the intake air flow becomes smooth and the intake air can be taken. Since it is rectified, the intake performance is improved.
  • the tumble valve device 7 which is fastened and connected to the intake port 43 at the rear of the cylinder head 34 across the heat insulating plate member 62 and the throttle body 8 are connected as a connecting pipe. It is relay-connected by the elastic insulator 61 of. That is, it constitutes at least a part of the intake passage 6 between the throttle body 8 provided with the throttle valve 81 and the tumble valve device 7 provided with the tumble control valve 71, that is, fluidly relays and has heat insulating properties.
  • an elastic insulator 61 as a connecting pipe having elasticity that allows relative displacement between the throttle body 8 and the tumble valve device 7 is provided.
  • FIG. 5 shows the cross section of the space itself of the intake port 43 forming the intake passage 6 partitioned by the main passage 6A and the tumble passage 6B shown in FIG. 2 as if it were an object.
  • the vertical cross section shown in the upper part of the drawing is the intake port 43 forming the intake passage 6 divided into the main passage 6A and the tumble passage 6B by the intake port side partition wall 65C in FIG.
  • the cross section A of the intake passage 6 is a cross section at the inlet portion 43b of the intake port 43, similarly to the cross section A in FIG. 2, and is a cross section of the intake passage 6 at the upstream end portion 65C of the partition wall 65C on the intake port side. It is a face.
  • the intake passage 6 is a partition wall 65C on the intake port side of the upstream end portion 65Ca having a straight cross section, and the tumble passage 6B is defined in a substantially semicircular shape below the entire cross section of the intake passage 6.
  • the tumble valve device side partition wall 65A and the heat insulating plate member side partition wall 65B form the main passage 6A as shown in the cross section A. It is separated from the tumble passage 6B.
  • the cross section of the partition wall 65C on the intake port side is gradually deformed into an arc shape
  • the tumble passage 6B is gradually deformed into a horizontally long oval cross section, and further deformed into a circular cross section.
  • It is a cross section. Similar to the cross section D in FIG. 2, the cross section D is a cross section of the intake port 43 in which the tumble passage 6B on the downstream end 6Bb side is defined as a circular cross section by the arc-shaped intake port side partition wall 65C. ..
  • the cross section E indicates that the tumble passage 6B is maintained in a circular cross section by the intake port side partition wall 65C having an arcuate cross section even on the downstream side of the cross section D.
  • the tumble passage 6B has a downstream end 6Bb so that the cross section F of the intake port 43 at the downstream end 6Bb of the tumble passage 6B at the downstream end 65b of the intake port side partition wall 65C is shown by a chain double-dashed line in FIG.
  • the cross section on the side is defined as a circular cross section by the intake port side partition wall 65C having an arc shape up to the downstream end portion 65b of the intake port side partition wall 65C.
  • the intake passage 6 after the tumble passage 6B merges with the main passage 6A, that is, the intake port 43 has a substantially circular cross section and faces the intake valve port 41.
  • the cross section of the upstream end 6Ba (see FIG. 2) of the tumble passage 6B is the tumble valve device side partition wall 65A having a linear cross section as in the cross section A, and the downstream end 6Bb (see FIG. 5) side.
  • the maximum diameter is larger than the diameter of the circular cross section (see cross section D to F) in a semicircular shape, and the cross section area of the cross section of the upstream end 6Ba of the tumble passage 6B is the downstream end. It is formed larger than the cross-sectional area of the circular cross section on the 6Bb side.
  • the cross-sectional area of the upstream end 6Ba of the tumble passage 6B has the same cross-sectional area as the cross-sectional area A without increasing the diameter of the entire cross-sectional shape of the intake passage 6 and the inflow of intake air into the tumble passage 6B. Since the cross section of the tumble passage 6B on the downstream end 6Bb side (see cross section D to cross section F) is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage 6B can be increased. It can be done, and the tumble performance is improved.
  • the cross section of the tumble passage 6B from the semicircular cross section (see cross section A) of the upstream end 6Ba (see FIG. 2) to the circular cross section on the downstream end 6Bb (see FIG. 5) side (see cross section D). Up to, it is gradually deformed and continuous along the passage direction (see cross section B and cross section C). As described above, the tumble passage 6B is gradually deformed from the semicircular cross section (see cross section A) to the circular cross section (see cross section D), and the cross section area is narrowed. It is possible to increase the flow velocity of the intake air in the tumble passage 6B while suppressing the increase in the intake air resistance as much as possible.
  • the tumble passage 6B has a circular cross section (see cross section D to cross section F) in a predetermined length range on the downstream end 6Bb side up to the downstream end 6Bb.
  • the rectifying section is provided by providing the tumble passage 6B having a circular cross section with a predetermined length up to the downstream end 6Bb, so that the intake air is rectified and the intake performance is improved.
  • the tumble valve plate 71b of the tumble control valve 71 is formed in a semicircular shape, and the rotating end corresponds to the inner surface 70a of the ventilation passage 70 having a circular cross section of the tumble valve device 7. In contact with each other, the entire cross section of the main passage 6A (see cross section A) can be closed. Therefore, since the tumble control valve 71 can surely close the main passage 6A side, the intake flow rate to the tumble passage 6B side is secured during the low load operation of the internal combustion engine 3.
  • FIG. 6 is a plan sectional view of the throttle body 8, the tumble valve device 7, and the cylinder head 34 along the intake passage 6 as viewed by VI-VI in FIG.
  • FIG. 7 is a cross-sectional perspective view of the throttle body 8, the tumble valve device 7, and the cylinder head 34 as viewed from the rear upper part, as viewed from the arrow of VII-VII in FIG.
  • the air passage 80 of the throttle body 8, the air passage 60 of the elastic insulator 61, the air passage 70 of the tumble valve device 7, and the intake port 43 of the cylinder head 34 are viewed from above.
  • a linearly continuous intake passage 6 is formed, and the downstream end 43c of the intake port 43 reaches the intake valve port 41.
  • the virtual line M between the valve openings that connects the center of the intake valve port 41 and the center of the exhaust valve port 42 intersects the cylinder axis X in the direction of the cylinder axis X.
  • the intake port 43 is provided so as to be inclined with respect to the virtual line M between the center of the valve openings in the direction of the cylinder axis X, and the downstream end 6b of the intake passage 6 leading to the intake valve port 41.
  • the center extension virtual line I of the downstream end 43c of the intake port 43 has an inclination angle ⁇ with respect to the valve port center-to-center virtual line M and points to the left and right centers of the intake valve port 41, but points to the cylinder center O. do not.
  • the tumble passage 6B for sending the intake air for improving the fuel combustion in the combustion chamber 38 is on the left and right of the intake valve port 41.
  • the tumble passage 6B of the present embodiment is curved with respect to the direction of the intake port 43, and is formed so that the center extension virtual line U of the downstream end 6Bb points toward the cylinder center O in the direction of the cylinder axis X. Has been done. Therefore, since the intake air that has passed through the tumble passage 6B and flows into the combustion chamber 38 can be guided toward the cylinder center O, a tumble flow T can be generated in the center of the combustion chamber 38, and the tumble performance is improved.
  • the present invention is not limited to the above-described embodiment, and various design changes can be made without departing from the gist thereof, and the scope of the gist of the present invention. It goes without saying that saddle-type vehicles, internal combustion engines, and the like are implemented in various modes. For convenience of explanation, the left-right arrangement of the illustrated embodiment has been described, but even if the left-right arrangement is different, it is included in the present invention as long as it is within the scope of the gist of the invention.
  • 1 motorcycle ("saddle-type vehicle" in the present invention)
  • 2 ... body frame, 3 ... internal combustion engine, 4 ... power unit, 5 ... transmission, 6 ... intake passage, 6A ... main passage, 6Aa ... entrance opening, 6B ... tumble passage, 6Ba ... upstream end, 6Bb ... downstream end, 7 ... tumble valve device, 8 ... throttle body, 8a ... body, 20 ... head pipe, 21 ... main frame, 21a ... hanging, 23 ... down frame, 24 ... Pivot plate, 26 ... Engine hanger, 30 ... Crank case, 31 ... Crank shaft, 32 ... Cylinder part, 33 ... Cylinder block, 33a ... Cylinder bore, 34 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

The present invention ensures air intake to a tumble passage and improves intake speed in an internal combustion engine for a saddle-type vehicle, the engine comprising a throttle valve and a tumble control valve, and a tumble passage being provided to an intake passage An intake device of an internal combustion engine for a saddle-type vehicle comprises a throttle valve 81 that is provided to an intake passage 6 of an internal combustion engine 3 and is controlled to a discretionary opening degree to control the amount of air taken in, and a tumble control valve 71 that is provided downstream of the throttle valve and controls the supply of intake air to a main passage 6A of the intake passage, which is divided into the main passage and a tumble passage 6B, wherein: the intake passage is provided with a partition wall 65 that divides the interior of the intake passage in two in the passage direction; and the tumble passage is configured such that a transverse cross-section on a downstream-end 6Bb side is formed into a circular cross-section by an arcuate partition wall up to the downstream end 6Bb, a transverse cross-section of an upstream end 6Ba is formed by a linear partition wall into a semicircular shape having a maximum diameter greater than the diameter of the circular cross-section, and the cross-sectional area of the transverse cross-section of the upstream end is greater than the cross-sectional area of the transverse cross-section on the downstream-end side. 

Description

鞍乗型車両用内燃機関の吸気装置Intake device for internal combustion engine for saddle-type vehicles
 本発明は、車両、特に鞍乗型車両に搭載された内燃機関の吸気装置に関する。 The present invention relates to an intake device for an internal combustion engine mounted on a vehicle, particularly a saddle-mounted vehicle.
 内燃機関の吸気通路において、スロットル弁の下流側に、2分割された吸気通路の一方側への吸気供給をコントロールして、燃焼室内の混合気にタンブル渦を発生させるタンブルコントロール弁を加えた吸気装置が、例えば下記特許文献1に示されている。
 しかし、下記特許文献1においては、横断面が円形断面をなす吸気通路を平板状の仕切部材で2分割しており、タンブル渦を発生させるための吸気を送給するタンブル通路の横断面が半円形であり、吸気速度を上げるためには改良の余地があった。
 また、タンブル通路の横断面を管路抵抗の少ない円形断面としたものが、例えば下記特許文献2に示されている。
 しかし、下記特許文献2のものは、タンブル通路の入口の周囲にタンブルコントロール弁が設けられるためタンブル通路の入口の円形の横断面の大きさが限られ、タンブル通路への吸気量に制約が生じる恐れがあった。
In the intake passage of an internal combustion engine, intake is provided with a tumble control valve that controls the intake supply to one side of the intake passage divided into two on the downstream side of the throttle valve to generate a tumble vortex in the air-fuel mixture in the combustion chamber. The device is shown, for example, in Patent Document 1 below.
However, in Patent Document 1 below, the intake passage having a circular cross section is divided into two by a flat plate-shaped partition member, and the cross section of the tumble passage for supplying intake air for generating a tumble vortex is half. It was circular and there was room for improvement in order to increase the intake speed.
Further, for example, Patent Document 2 below shows a circular cross section of a tumble passage having a low pipeline resistance.
However, in the following Patent Document 2, since the tumble control valve is provided around the entrance of the tumble passage, the size of the circular cross section of the entrance of the tumble passage is limited, and the amount of intake air to the tumble passage is restricted. I was afraid.
日本国特開2016-07206号公報(図4、図7、図11~図13)Japanese Patent Application Laid-Open No. 2016-07206 (FIGS. 4, 7, 11 to 13) 日本国特許6268604号公報(図2、図4、図6)Japanese Patent No. 6268604 (Fig. 2, Fig. 4, Fig. 6)
 本発明は、かかる従来技術に鑑み成されたものであって、
スロットル弁に加えタンブルコントロール弁等の吸気制御弁を備え、吸気通路にタンブル通路を設けた鞍乗型車両用内燃機関において、タンブル通路への吸気の確保と吸気速度の向上が図れる吸気装置を提供することを課題とする。
The present invention has been made in view of such prior art.
In an internal combustion engine for saddle-type vehicles equipped with an intake control valve such as a tumble control valve in addition to a throttle valve and a tumble passage provided in the intake passage, an intake device that can secure intake air to the tumble passage and improve the intake speed is provided. The task is to do.
 上記の課題を解決するために、本発明は、
 内燃機関の燃焼室への吸入空気が通過する吸気通路に設けられ、任意の開度に制御されて吸入空気量を制御するスロットル弁と、同スロットル弁より下流側に設けられ、通路方向に沿って主通路とタンブル通路とに分割された前記吸気通路の前記主通路の通路断面を開閉して、前記主通路への吸気供給を制御するタンブルコントロール弁とを備えた鞍乗型車両用内燃機関の吸気装置において、
前記吸気通路は、内部を通路方向に二分する仕切壁を備え、前記タンブル通路は、下流端側の横断面が下流端まで円弧状の前記仕切壁によって円形断面に画成され、上流端の横断面が直線状の前記仕切壁で前記円形断面の径よりも最大径が大径の半円形状に画成され、前記上流端の横断面の断面面積が、下流端側の横断面の断面面積よりも大きいことを特徴とする鞍乗型車両用内燃機関の吸気装置である。
In order to solve the above problems, the present invention
A throttle valve provided in the intake passage through which the intake air to the combustion chamber of the internal combustion engine passes and controlled to an arbitrary opening degree to control the intake air amount, and a throttle valve provided on the downstream side of the throttle valve and along the passage direction. An internal combustion engine for a saddle-type vehicle provided with a tumble control valve that opens and closes the passage cross section of the main passage of the intake passage divided into a main passage and a tumble passage to control the intake air supply to the main passage. In the intake system of
The intake passage is provided with a partition wall that divides the inside into two in the passage direction, and the tumble passage is defined as a circular cross section by the partition wall whose cross section on the downstream end side is arcuate to the downstream end, and crosses the upstream end. The partition wall having a straight surface is defined as a semicircular shape having a maximum diameter larger than the diameter of the circular cross section, and the cross-sectional area of the cross section of the upstream end is the cross-sectional area of the cross section on the downstream end side. It is an intake device of an internal combustion engine for a saddle-type vehicle, which is characterized by being larger than.
 上記構成によれば、
吸気通路全体の横断面形状を大径化することなく、タンブル通路の上流端の横断面の断面面積が確保されて、タンブル通路への吸気の流入流量を確保できるとともに、下流端側のタンブル通路の横断面が管路抵抗の少ない円形断面なので、タンブル通路を流れる吸気の流速を増加させることができ、タンブル性能が向上する。
According to the above configuration
The cross-sectional area of the cross section of the upstream end of the tumble passage is secured without increasing the diameter of the entire cross-sectional shape of the intake passage, the inflow flow rate of the intake air to the tumble passage can be secured, and the tumble passage on the downstream end side is secured. Since the cross section of the cross section is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage can be increased, and the tumble performance is improved.
 本発明の好適な実施形態によれば、
前記タンブル通路の横断面は、前記上流端の半円形状の横断面から前記下流端側の円形断面の横断面まで通路方向に沿って徐々に変形して連続している。
 そのため、タンブル通路において、半円形状の横断面から円形断面の横断面まで徐々に横断面が変形して、断面面積が絞られることで、吸気抵抗増加を極力抑えながら流速を増加させることができる。
According to a preferred embodiment of the present invention
The cross section of the tumble passage is gradually deformed and continuous along the passage direction from the semicircular cross section of the upstream end to the cross section of the circular cross section on the downstream end side.
Therefore, in the tumble passage, the cross section is gradually deformed from the semicircular cross section to the circular cross section, and the cross section area is narrowed, so that the flow velocity can be increased while suppressing the increase in intake resistance as much as possible. ..
 本発明の好適な実施形態によれば、
前記タンブル通路は、前記下流端側の所定長さの範囲の横断面が下流端まで円形断面である。
 そのため、円形断面のタンブル通路を下流端までの所定長さ設けることで、整流区間を設けたこととなり、吸気が整流され吸気性能が向上する。
According to a preferred embodiment of the present invention
The tumble passage has a circular cross section up to the downstream end in a cross section within a predetermined length range on the downstream end side.
Therefore, by providing a tumble passage having a circular cross section with a predetermined length to the downstream end, a rectifying section is provided, and the intake air is rectified and the intake performance is improved.
 本発明の好適な実施形態によれば、
前記タンブルコントロール弁のタンブル弁板は、前記主通路の横断面を全て塞ぐ半円形状に構成される。
 そのため、タンブルコントロール弁が、主通路側を確実に閉じることができるため、タンブル通路側への吸気流量を確保できる。
According to a preferred embodiment of the present invention
The tumble valve plate of the tumble control valve is formed in a semicircular shape that covers the entire cross section of the main passage.
Therefore, since the tumble control valve can surely close the main passage side, the intake flow rate to the tumble passage side can be secured.
 本発明の好適な実施形態によれば、
シリンダ軸線方向視で、前記吸気通路の下流端の中心延長仮想線が、シリンダ中心を指向しないものにおいて、前記タンブル通路は、下流端の中心延長仮想線がシリンダ中心に指向するように、湾曲している。
 そのため、タンブル通路を通過して燃焼室に流入する吸気を、シリンダ中心に向けて導けるので、燃焼室の中央にタンブル流を起こすことができ、タンブル性能が向上する。
According to a preferred embodiment of the present invention
When the central extension virtual line at the downstream end of the intake passage does not point toward the cylinder center in the direction of the cylinder axis, the tumble passage is curved so that the central extension virtual line at the downstream end points toward the cylinder center. ing.
Therefore, the intake air that passes through the tumble passage and flows into the combustion chamber can be guided toward the center of the cylinder, so that a tumble flow can be generated in the center of the combustion chamber, and the tumble performance is improved.
 本発明の鞍乗型車両用内燃機関の吸気装置によれば、
吸気通路全体の横断面形状を大径化することなく、タンブル通路の上流端の横断面の断面面積が確保されて、タンブル通路への吸気の流入流量を確保できるとともに、下流端側のタンブル通路の横断面が管路抵抗の少ない円形断面なので、タンブル通路を流れる吸気の流速を増加させることができ、タンブル性能が向上する。
According to the intake device of the internal combustion engine for a saddle-type vehicle of the present invention.
The cross-sectional area of the cross section of the upstream end of the tumble passage is secured without increasing the diameter of the entire cross-sectional shape of the intake passage, the inflow flow rate of the intake air to the tumble passage can be secured, and the tumble passage on the downstream end side is secured. Since the cross section of the cross section is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage can be increased, and the tumble performance is improved.
本発明の一実施形態に係る自動二輪車の右側面図である。It is a right side view of the motorcycle which concerns on one Embodiment of this invention. 図1中の自動二輪車に搭載された内燃機関の右側面断面図である。It is a right side sectional view of the internal combustion engine mounted on the motorcycle in FIG. 1. 図1中III-III矢視による自動二輪車の中央要部の平面断面図である。FIG. 1 is a plan sectional view of a central main part of a motorcycle as viewed from the arrow III-III in FIG. 図3中IV矢視による、燃料タンク、シート、リヤサイドカバーを外し、タンブル弁装置、スロットルボディ、コネクティングチューブの周辺を、右側方斜め上方から見た自動二輪車の中央要部の右側斜視図である。FIG. 3 is a right perspective view of the central main part of the motorcycle when the fuel tank, the seat, and the rear side cover are removed, and the periphery of the tumble valve device, the throttle body, and the connecting tube is viewed from diagonally above on the right side, as viewed from the IV arrow in FIG. .. 図2に示される主通路6Aとタンブル通路6Bとに仕切られた吸気通路6をなす吸気ポート43の空間自体を、物体のごとく表現した、その断面図である。It is a cross-sectional view which represented the space itself of the intake port 43 forming the intake passage 6 partitioned by the main passage 6A and the tumble passage 6B shown in FIG. 2 like an object. 図2中VI-VI矢視による、吸気通路に沿う、スロットルボディ、タンブル弁装置およびシリンダヘッドの平面断面図である。FIG. 2 is a plan sectional view of a throttle body, a tumble valve device, and a cylinder head along an intake passage according to VI-VI arrow view in FIG. 図2中VII-VII矢視による、スロットルボディ、タンブル弁装置およびシリンダヘッドを後方上部から見た断面斜視図である。FIG. 2 is a cross-sectional perspective view of the throttle body, the tumble valve device, and the cylinder head as viewed from the rear upper part, as viewed from the arrow of VII-VII in FIG.
 図1から図7に基づき、本発明の一実施形態に係る鞍乗型車両用内燃機関の吸気装置につき説明する。
 本実施形態において内燃機関は鞍乗型車両に搭載されており、本実施形態において鞍乗型車両は自動二輪車である。
 なお、本明細書および請求の範囲の記載における前後左右上下等の向きは、本実施形態の内燃機関を搭載した自動二輪車等鞍乗型車両の、車両の向きに従うものとする。また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。
An intake device for an internal combustion engine for a saddle-type vehicle according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7.
In the present embodiment, the internal combustion engine is mounted on a saddle-mounted vehicle, and in the present embodiment, the saddle-mounted vehicle is a motorcycle.
The orientations of the front, rear, left, right, up and down, etc. in the description of the present specification and the claims shall be in accordance with the orientation of the saddle-type vehicle such as a motorcycle equipped with the internal combustion engine of the present embodiment. In the figure, the arrow FR indicates the front of the vehicle, LH indicates the left side of the vehicle, RH indicates the right side of the vehicle, and UP indicates the upper part of the vehicle.
 図1は本発明の実施形態に係る自動二輪車1の右側面図である。
 図2は、図1中の自動二輪車1に搭載された内燃機関の右側面断面図である。
 自動二輪車(本発明における「鞍乗型車両」)1の車体フレーム2は、前端を構成するヘッドパイプ20と、ヘッドパイプ20から後下がりに延出した後、湾曲して更に下方へ延出する垂下部21aを有する一本のメインフレーム21と、メインフレーム21の湾曲部から後方へ延出する左右一対のシートレール22と、ヘッドパイプ20から車幅中央を下方に延出する一本のダウンフレーム23と、メインフレーム21の垂下部21aの下部に取り付けられた左右一対のピボットプレート24と、ピボットプレート24から後上がりに延出しシートレール22の車両前後方向略中央部に接続する左右一対のリヤフレーム25とを備えている。
FIG. 1 is a right side view of the motorcycle 1 according to the embodiment of the present invention.
FIG. 2 is a cross-sectional view of the right side of the internal combustion engine mounted on the motorcycle 1 in FIG.
The body frame 2 of the motorcycle (“saddle-mounted vehicle” in the present invention) 1 extends downward from the head pipe 20 constituting the front end and the head pipe 20 and then curves and extends further downward. One main frame 21 having a hanging portion 21a, a pair of left and right seat rails 22 extending rearward from the curved portion of the main frame 21, and one down extending downward from the head pipe 20 in the center of the vehicle width. The frame 23, the pair of left and right pivot plates 24 attached to the lower part of the hanging portion 21a of the main frame 21, and the pair of left and right pivot plates 24 extending rearward from the pivot plate 24 and connecting to the substantially central portion of the seat rail 22 in the vehicle front-rear direction. It is equipped with a rear frame 25.
 ヘッドパイプ20には、下部に前輪11を支持するフロントフォーク12が回動自在に取り付けられ、メインフレーム21には、燃料タンク13が取り付けられる。ピボットプレート24には、スイングアーム14が上下に揺動自在に支持される。また、シートレール22には、シート15や左右一対のリヤサイドカバー10aが取り付けられる。 A front fork 12 that supports the front wheel 11 is rotatably attached to the head pipe 20, and a fuel tank 13 is attached to the main frame 21. A swing arm 14 is supported on the pivot plate 24 so as to be swingable up and down. Further, the seat 15 and a pair of left and right rear side covers 10a are attached to the seat rail 22.
 ヘッドパイプ20の前方には、ヘッドライトやフロントウインカ等を一体に備えたフロントカウル10bが支持される。フロントフォーク12の下部には、前輪11を上方から覆うフロントフェンダ10cが支持される。スイングアーム14は、後端部に後輪16を回転可能に支持する。スイングアーム14の後部には、リヤクッションユニット17の下端が取り付けられ、リヤクッションユニット17の上端は、リヤフレーム25とシートレール22との接続部近傍に取り付けられる。 In front of the head pipe 20, a front cowl 10b equipped with a headlight, a front winker, etc. is supported. A front fender 10c that covers the front wheel 11 from above is supported at the lower part of the front fork 12. The swing arm 14 rotatably supports the rear wheel 16 at the rear end. The lower end of the rear cushion unit 17 is attached to the rear portion of the swing arm 14, and the upper end of the rear cushion unit 17 is attached near the connection portion between the rear frame 25 and the seat rail 22.
 シート15は、運転者と同乗者が着座可能な前後に長い二人用タンデムシートに形成されている。ピボットプレート24の下部には、自動二輪車1を駐車するためのサイドスタンド19と図示しないセンタースタンド、運転者が足を置くステップ18A、および同乗者が足を置くピリオンステップ18Bを支持するステップブラケット18C等が取り付けられる。 Seat 15 is formed into a two-person tandem seat that is long before and after the driver and passengers can sit. At the bottom of the pivot plate 24, a side stand 19 for parking the motorcycle 1 and a center stand (not shown), a step 18A on which the driver puts his foot, and a step bracket 18C supporting the pillion step 18B on which the passenger puts his foot, etc. Is attached.
 ダウンフレーム23の下部にはエンジンハンガ26が固着され、エンジンハンガ26と、左右一対のピボットプレート24とによって、内燃機関3と変速機5とを一体に備えたパワーユニット4が支持される。
 内燃機関3は、クランク軸31を収容するクランクケース30と、クランクケース30の上部にシリンダ軸線Xをやや前傾して締結されるシリンダ部32を備える。
 シリンダ部32は、クランクケース30側から、シリンダブロック33、シリンダヘッド34、ヘッドカバー35を備えて構成される。
 内燃機関3は、側面視でメインフレーム21とダウンフレーム23とによって囲まれる領域内に配置される。
An engine hanger 26 is fixed to the lower part of the down frame 23, and the engine hanger 26 and a pair of left and right pivot plates 24 support a power unit 4 having an internal combustion engine 3 and a transmission 5 integrally.
The internal combustion engine 3 includes a crankcase 30 that houses the crankshaft 31, and a cylinder portion 32 that is fastened to the upper portion of the crankcase 30 with the cylinder axis X slightly tilted forward.
The cylinder portion 32 includes a cylinder block 33, a cylinder head 34, and a head cover 35 from the crankcase 30 side.
The internal combustion engine 3 is arranged in a region surrounded by the main frame 21 and the down frame 23 in a side view.
 シリンダブロック33は、やや前傾して立ち上がるようにしてクランクケース30に取り付けられ、クランクケース30の前部がエンジンハンガ26に支持され、クランクケース30の後部がピボットプレート24に支持される。
 シリンダヘッド34の後面には、タンブル弁装置7を介してスロットルボディ8が接続され、スロットルボディ8の上流にコネクティングチューブ85を介してエアクリーナ86が接続される。
The cylinder block 33 is attached to the crankcase 30 so as to stand up with a slight forward tilt, the front portion of the crankcase 30 is supported by the engine hanger 26, and the rear portion of the crankcase 30 is supported by the pivot plate 24.
A throttle body 8 is connected to the rear surface of the cylinder head 34 via a tumble valve device 7, and an air cleaner 86 is connected to the upstream of the throttle body 8 via a connecting tube 85.
 また、シリンダヘッド34の前面には排気管39が接続され、排気管39の下流にマフラー40が接続される。エアクリーナ86は、シートレール22、メインフレーム21、およびリヤフレーム25で囲まれる側面視で三角形状の領域内に配置される。
エアクリーナ86の上半部は左右両側を、樹脂材料からなる左右一対のリヤサイドカバー10aで覆われる。
An exhaust pipe 39 is connected to the front surface of the cylinder head 34, and a muffler 40 is connected to the downstream side of the exhaust pipe 39. The air cleaner 86 is arranged in a laterally triangular area surrounded by the seat rail 22, the main frame 21, and the rear frame 25.
The upper half of the air cleaner 86 is covered on both the left and right sides with a pair of left and right rear side covers 10a made of a resin material.
 リヤサイドカバー10aは、燃料タンク13の後部の一部に側面視で重なり、燃料タンク13の後部から後方に延びてシート15の下方に延出し、シート15の後下端まで延びる。図1に示すように、リヤサイドカバー10aによって、燃料タンク13の後下部とシート15の下縁が外観視不能に覆われ、外観性が向上している。また、リヤサイドカバー10aによってシートレール22の車幅方向外側を覆い、これによって外観性が向上している。
 なお、図1中、符号10dは、リヤフェンダである。
The rear side cover 10a overlaps a part of the rear part of the fuel tank 13 in a side view, extends rearward from the rear part of the fuel tank 13, extends below the seat 15, and extends to the rear lower end of the seat 15. As shown in FIG. 1, the rear side cover 10a covers the rear lower portion of the fuel tank 13 and the lower edge of the seat 15 invisible to the outside, and the appearance is improved. Further, the rear side cover 10a covers the outside of the seat rail 22 in the vehicle width direction, thereby improving the appearance.
In FIG. 1, reference numeral 10d is a rear fender.
 図2は、図1のパワーユニット4を取出して、図1に示すと略同じ配向により示す、パワーユニット4の右側面断面図である。
 パワーユニット4における内燃機関3は、シリンダ部32をなすシリンダブロック33、シリンダヘッド34およびヘッドカバー35が、図2に左半面の断面が示されるように、シリンダ軸線Xをやや前傾させて、クランクケース30上に設けられている。
 クランクケース30は、左ケース半体30Lが、図示しない右ケース半体との合わせ面30aを図示手前に向けて示される。
FIG. 2 is a cross-sectional view of the right side of the power unit 4 taken out from the power unit 4 of FIG. 1 and shown in substantially the same orientation as shown in FIG.
In the internal combustion engine 3 of the power unit 4, the cylinder block 33, the cylinder head 34, and the head cover 35 forming the cylinder portion 32 are crankcases with the cylinder axis X slightly tilted forward so that the cross section of the left half surface is shown in FIG. It is provided on 30.
The crankcase 30 is shown with the left case half body 30L facing the mating surface 30a with the right case half body (not shown) toward the front side of the drawing.
 クランクケース30の後部の内部には、クランク軸31と平行なメイン軸51、カウンタ軸52を有する変速機5が備えられている。
 内燃機関3の運転に伴うクランク軸31の回転は、図示しない変速クラッチを介してメイン軸51に伝達され、メイン軸51とカウンタ軸52とに設けられた図示しない変速ギヤ群によって変速されてカウンタ軸52に伝達される。
 カウンタ軸52は内燃機関3の、すなわちパワーユニット4の、出力軸となっており、カウンタ軸52の左軸端に嵌装された駆動スプロケット53と、後輪軸16aに嵌装された従動スプロケット54との間には、駆動チェーン55が掛け渡され、後輪16が走行駆動される。
Inside the rear portion of the crankcase 30, a transmission 5 having a main shaft 51 and a counter shaft 52 parallel to the crankshaft 31 is provided.
The rotation of the crankshaft 31 accompanying the operation of the internal combustion engine 3 is transmitted to the main shaft 51 via a speed change clutch (not shown), and is shifted by a speed change gear group (not shown) provided on the main shaft 51 and the counter shaft 52 to counter the counter. It is transmitted to the shaft 52.
The counter shaft 52 is an output shaft of the internal combustion engine 3, that is, the power unit 4, and includes a drive sprocket 53 fitted to the left shaft end of the counter shaft 52 and a driven sprocket 54 fitted to the rear wheel shaft 16a. A drive chain 55 is hung between the two, and the rear wheels 16 are driven to travel.
 シリンダブロック33のシリンダボア33a内を往復動するピストン36は、コネクティングロッド37により、クランク軸31のクランクピン31aと連結されている。
 シリンダブロック33のシリンダボア33a内に摺動自在に嵌合されるピストン36の頂面36aと、頂面36aが対向するシリンダヘッド34の燃焼室天井面34aとの間には、燃焼室38が構成される。
The piston 36 that reciprocates in the cylinder bore 33a of the cylinder block 33 is connected to the crankpin 31a of the crankshaft 31 by a connecting rod 37.
A combustion chamber 38 is formed between the top surface 36a of the piston 36 slidably fitted in the cylinder bore 33a of the cylinder block 33 and the combustion chamber ceiling surface 34a of the cylinder head 34 facing the top surface 36a. Will be done.
 本実施形態において内燃機関3は、単気筒でSOHC型式の2バルブシステムを採用しており、シリンダヘッド34に動弁機構9が設けられている。
 動弁機構9を覆うように、シリンダヘッド34にはヘッドカバー35が重ねられて被せられる。
 動弁機構9に動弁のための動力伝達を行うため、図示しない無端状のカムチェーンが、クランクケース30、シリンダブロック33、シリンダヘッド34のクランク軸31方向の一方側(本実施形態において図2図示向う側)に設けられた図示しないカムチェーン室を通って、カム軸91とクランク軸31との間に掛け回され、カム軸91はクランク軸31に同期してその1/2の回転速度で回転する。
 なお、シリンダヘッド34において前記カムチェーン室と反対側(クランク軸51方向の他方側、本実施形態において図2図示手前側)から燃焼室38内に向かって点火プラグ88が嵌挿されている(図4参照)。
In the present embodiment, the internal combustion engine 3 employs a single-cylinder SOHC type two-valve system, and the cylinder head 34 is provided with a valve operating mechanism 9.
A head cover 35 is overlapped and covered on the cylinder head 34 so as to cover the valve operating mechanism 9.
In order to transmit power for the valve to the valve operating mechanism 9, an endless cam chain (not shown) is provided on one side of the crankcase 30, the cylinder block 33, and the cylinder head 34 in the crankshaft 31 direction (in the present embodiment, the figure). 2 Passing through a cam chain chamber (not shown) provided on the opposite side (not shown), the cam shaft 91 is hung between the cam shaft 91 and the crank shaft 31, and the cam shaft 91 synchronizes with the crank shaft 31 and has a rotation speed of 1/2 of that. Rotate with.
In the cylinder head 34, the spark plug 88 is inserted from the side opposite to the cam chain chamber (the other side in the direction of the crankshaft 51, the front side shown in FIG. 2 in the present embodiment) toward the inside of the combustion chamber 38 ( (See FIG. 4).
 シリンダ軸線Xをやや前傾したシリンダ部32のシリンダヘッド34において、燃焼室天井面34aに開口したと排気弁口42吸気弁口41からは、各々排気ポート44と吸気ポート43が互いに前後に離れる方向に湾曲しながら延出して形成される。
 吸気ポート43の上流端は、シリンダヘッド34の後方に向けて開口し、断熱板部材62を挟んでタンブル弁装置7と接続して、タンブル弁装置7の上流側に、弾性インシュレータ61を介してスロットルボディ8が接続される。スロットルボディ8の上流側にはコネクティングチューブ85を介してエアクリーナ86が順次接続される(図1参照)。
 すなわち、コネクティングチューブ85、スロットルボディ8の通気路80、弾性インシュレータ61の通気路60、タンブル弁装置7の通気路70、断熱板部材62の開口63、吸気ポート43を通して、エアクリーナ86から吸気を燃焼室38まで送る連続した吸気通路6が構成されている。
In the cylinder head 34 of the cylinder portion 32 in which the cylinder axis X is slightly tilted forward, the exhaust port 44 and the intake port 43 are separated from each other back and forth from the exhaust valve port 42 and the intake valve port 41 when the cylinder head 34 is opened to the ceiling surface 34a of the combustion chamber. It is formed by extending while curving in the direction.
The upstream end of the intake port 43 opens toward the rear of the cylinder head 34, is connected to the tumble valve device 7 with a heat insulating plate member 62 sandwiched between them, and is connected to the tumble valve device 7 on the upstream side of the tumble valve device 7 via an elastic insulator 61. The throttle body 8 is connected. An air cleaner 86 is sequentially connected to the upstream side of the throttle body 8 via a connecting tube 85 (see FIG. 1).
That is, the intake air is burned from the air cleaner 86 through the connecting tube 85, the air passage 80 of the throttle body 8, the air passage 60 of the elastic insulator 61, the air passage 70 of the tumble valve device 7, the opening 63 of the heat insulating plate member 62, and the intake port 43. A continuous intake passage 6 that feeds to the chamber 38 is configured.
 なお、弾性インシュレータ61は、本実施形態に示す好ましい例として、断熱性と弾性を有するゴム部材で形成される。
 しかし、弾性インシュレータ61は、断熱性と弾性を有する部材構成であれば、金属部材や樹脂部材が混在したものでもよく、断熱性と弾性を有する部材に他の部材が接続して接続管状に構成されたものであってもよい。
The elastic insulator 61 is formed of a rubber member having heat insulating properties and elasticity as a preferable example shown in the present embodiment.
However, the elastic insulator 61 may be a mixture of metal members and resin members as long as it has a member structure having heat insulating properties and elasticity, and another member is connected to the member having heat insulating properties and elasticity to form a connecting tubular structure. It may be the one that has been done.
 排気ポート44の下流端は、シリンダヘッド34の前方に向けて開口し、排気管39に連結され、排気管39は、パワーユニット4の下方に回り込んだのち、後輪16の右側方のマフラー40に接続する(図1参照)。 The downstream end of the exhaust port 44 opens toward the front of the cylinder head 34 and is connected to the exhaust pipe 39. The exhaust pipe 39 wraps around below the power unit 4, and then the muffler 40 on the right side of the rear wheel 16 Connect to (see Figure 1).
 シリンダヘッド34内における吸気ポート43の湾曲外壁部43aに一体に円筒状の吸気弁ガイド45が嵌着され、吸気弁ガイド45に摺動可能に支持された吸気弁47が、吸気ポート43の燃焼室38に臨む吸気弁口41を開閉する。
 また、シリンダヘッド34内における排気ポート44の湾曲外壁部44aに一体に嵌着された排気弁ガイド46に摺動可能に支持された排気弁48が、排気ポート44の燃焼室38に臨む排気弁口42を開閉する。
A cylindrical intake valve guide 45 is integrally fitted to the curved outer wall portion 43a of the intake port 43 in the cylinder head 34, and the intake valve 47 slidably supported by the intake valve guide 45 burns the intake port 43. The intake valve port 41 facing the chamber 38 is opened and closed.
Further, the exhaust valve 48 slidably supported by the exhaust valve guide 46 integrally fitted to the curved outer wall portion 44a of the exhaust port 44 in the cylinder head 34 faces the combustion chamber 38 of the exhaust port 44. Open and close the mouth 42.
 吸気弁47および排気弁48はその傘部47a、48aが、いずれも燃焼室38に臨む吸気弁口41、排気弁口42を閉じるように、弁ばね49により上方に付勢されているが、カム軸91の吸気カム、排気カムに当接揺動する吸気ロッカアーム93、排気ロッカアーム94によって、吸気弁47、排気弁48のステムエンド47b、48bが押し下げられて、所定のタイミングで吸気弁47、排気弁48が開弁し、吸気ポート43と燃焼室38、また、排気ポート44と燃焼室38が連通し、所定のタイミングの吸気、排気がなされる。 The intake valve 47 and the exhaust valve 48 are urged upward by the valve spring 49 so that the umbrella portions 47a and 48a both close the intake valve port 41 and the exhaust valve port 42 facing the combustion chamber 38. The intake cam of the cam shaft 91, the intake rocker arm 93 that swings in contact with the exhaust cam, and the exhaust rocker arm 94 push down the stem ends 47b and 48b of the intake valve 47 and the exhaust valve 48, and the intake valve 47, The exhaust valve 48 opens, and the intake port 43 and the combustion chamber 38 communicate with each other, and the exhaust port 44 and the combustion chamber 38 communicate with each other to perform intake and exhaust at predetermined timings.
 以上のような本実施形態の内燃機関3においては、燃焼室38でのより好ましい燃焼を得るために、燃焼室38において燃料・空気混合気のタンブル流T、すなわち縦回転を与えるための吸気装置が構成されている。
 スロットルボディ8は、その通気路80、すなわち吸気通路6の流れ方向Fと垂直で略水平に配向するスロットル弁軸81aによってスロットルボディ8内に回転自在に軸支されて任意の開度に制御されて通気路80の通路面積を可変制御し、吸入空気量を制御し、また、通気路80を開閉し得るスロットル弁81を備えている。
In the internal combustion engine 3 of the present embodiment as described above, in order to obtain more preferable combustion in the combustion chamber 38, a tumble flow T of the fuel / air mixture, that is, an intake device for giving vertical rotation in the combustion chamber 38. Is configured.
The throttle body 8 is rotatably supported in the throttle body 8 by a throttle valve shaft 81a oriented substantially horizontally perpendicular to the flow direction F of the air passage 80, that is, the intake passage 6, and is controlled to an arbitrary opening degree. It is provided with a throttle valve 81 that can variably control the passage area of the air passage 80, control the amount of intake air, and open and close the air passage 80.
 また、吸気通路6の流れ方向Fにおいてスロットル弁81の下流側には、タンブル弁装置7の通気路70が接続し、通気路70、すなわち吸気通路6の流れ方向Fと垂直で、略水平に配向しスロットル弁軸81aと平行なタンブル弁軸71aによってタンブル弁装置7内に回転自在に軸支され、任意の開度に制御されるタンブルコントロール弁71を備えている。 Further, in the flow direction F of the intake passage 6, the ventilation passage 70 of the tumble valve device 7 is connected to the downstream side of the throttle valve 81, and is perpendicular to the ventilation passage 70, that is, the flow direction F of the intake passage 6, and substantially horizontal. A tumble control valve 71 that is rotatably supported in the tumble valve device 7 by a tumble valve shaft 71a that is oriented and parallel to the throttle valve shaft 81a and is controlled to an arbitrary opening degree is provided.
 そして、タンブルコントロール弁71より下流側の吸気通路6は、通路方向に沿って仕切壁65によって主通路6Aとタンブル通路6Bとに二分され、仕切壁65の上流端部65aに隣接してタンブルコントロール弁71のタンブル弁軸71aが設けられている。
 スロットル弁81より下流側の、円形横断面の通気路70に設けられたタンブルコントロール弁71は、バタフライ式のもので、タンブル弁軸71aと、タンブル弁軸71aに共に回転するようボルト締め固定され上方に半円状をなすタンブル弁板71bを有している。
 タンブルコントロール弁71は、図2図示において反時計回りに開弁方向に回転可能となっているとともに、図示しない復帰ばねにより、タンブル弁板71bが通気路70の内面70aに接するタンブル弁閉止位置に位置するように時計回りに閉弁方向に付勢されている。
The intake passage 6 on the downstream side of the tumble control valve 71 is divided into a main passage 6A and a tumble passage 6B by the partition wall 65 along the passage direction, and the tumble control is adjacent to the upstream end portion 65a of the partition wall 65. A tumble valve shaft 71a of the valve 71 is provided.
The tumble control valve 71 provided in the ventilation passage 70 having a circular cross section on the downstream side of the throttle valve 81 is a butterfly type, and is bolted and fixed so as to rotate together with the tumble valve shaft 71a and the tumble valve shaft 71a. It has a semicircular tumble valve plate 71b above.
The tumble control valve 71 can rotate counterclockwise in the valve opening direction in FIG. 2, and a return spring (not shown) brings the tumble valve plate 71b into the tumble valve closing position where the tumble valve plate 71b contacts the inner surface 70a of the ventilation path 70. It is urged clockwise to be positioned in the valve closing direction.
 また、スロットルボディ8の吸気通路6、すなわち通気路80に設けられたスロットル弁81もバタフライ式のもので、スロットル弁軸81aと、スロットル弁軸81aに共に回転するようボルト締め固定された円板状のスロットル弁板81bとを有する。
 スロットル弁81は、図2図示において時計回りに開弁方向に回転可能となっているとともに、図示しない復帰ばねにより、スロットル弁板81bが通気路80の内面80aに接する全閉位置に位置するように閉弁方向に反時計回りに付勢されている。
Further, the throttle valve 81 provided in the intake passage 6 of the throttle body 8, that is, the ventilation passage 80 is also a butterfly type, and is a disk fixed by bolting so as to rotate together with the throttle valve shaft 81a and the throttle valve shaft 81a. It has a shaped throttle valve plate 81b.
The throttle valve 81 can rotate clockwise in the drawing of FIG. 2 in the valve opening direction, and the throttle valve plate 81b is positioned at a fully closed position in contact with the inner surface 80a of the ventilation path 80 by a return spring (not shown). It is urged counterclockwise in the valve closing direction.
 本実施形態において、吸気通路6は、タンブル弁装置7から吸気ポート43へと続けて仕切壁65によって、上下に仕切られ、下側に画成されたタンブル通路6Bと、タンブル通路6Bを除く主通路6Aとに仕切られている。
 仕切壁65は、上流端部65aを有するタンブル弁装置側仕切壁65Aと、断熱板部材側仕切壁65Bと、吸気ポート側仕切壁65Cが連続して位置して構成される。
In the present embodiment, the intake passage 6 is mainly divided from the tumble valve device 7 to the intake port 43 by a partition wall 65 up and down, except for the tumble passage 6B defined on the lower side and the tumble passage 6B. It is partitioned into passage 6A.
The partition wall 65 is configured such that the tumble valve device side partition wall 65A having the upstream end portion 65a, the heat insulating plate member side partition wall 65B, and the intake port side partition wall 65C are continuously positioned.
 図2中に2点鎖線で横断面A、D、Fを示すように、タンブル通路6Bは、タンブル弁装置7から吸気ポート43へ縦通する仕切壁65により横断面が変化する。
 すなわち、仕切壁65の上流端部65a近傍の吸気ポート43の入口部43bでは、吸気通路6を上下に区画することで、横断面Aに示すように下側の略半円形状に画成される。
 なお、仕切壁65の上流端部65aから吸気ポート43の入口部43bまでは、横断面Aに示すと同様に主通路6Aとタンブル通路6Bとが仕切られている。
As shown by the alternate long and short dash lines in FIG. 2, the cross sections A, D, and F of the tumble passage 6B are changed by the partition wall 65 that runs vertically from the tumble valve device 7 to the intake port 43.
That is, at the inlet portion 43b of the intake port 43 near the upstream end portion 65a of the partition wall 65, the intake passage 6 is divided into upper and lower parts, so that the intake passage 6 is defined in a substantially semicircular shape on the lower side as shown in the cross section A. NS.
The main passage 6A and the tumble passage 6B are partitioned from the upstream end portion 65a of the partition wall 65 to the inlet portion 43b of the intake port 43 as shown in the cross section A.
 吸気ポート43内を進むと、下流側に進むに従って吸気ポート側仕切壁65Cの横断面が円弧状に変化し、横断面Dに示すようにタンブル通路6Bの横断面が円形断面をなすように形成される。
 また、吸気ポート側仕切壁65Cの下流端部65bまでタンブル通路6Bの横断面は横断面Fに示すように円形断面を維持される。
When traveling through the intake port 43, the cross section of the intake port side partition wall 65C changes in an arc shape as it advances to the downstream side, and as shown in the cross section D, the cross section of the tumble passage 6B is formed so as to form a circular cross section. Will be done.
Further, the cross section of the tumble passage 6B is maintained as a circular cross section as shown in the cross section F up to the downstream end portion 65b of the intake port side partition wall 65C.
 そして、横断面Dから横断面Fまでのタンブル通路6Bの側面視における中心線Zは、吸気弁口41の排気弁口42に近い側の開口縁41aと吸気弁47の傘部47aとの間に向けて指向するように設定されている。
 なお、スロットルボディ8には、スロットル弁81より下流側の吸気通路6、すなわち通気路80に上方外部から貫通して、斜め下流側に向けて燃料を噴射供給する(2図中、模式的に示す噴射線J参照)ように配置された燃料噴射弁87が取り付けられる。
The center line Z in the side view of the tumble passage 6B from the cross section D to the cross section F is between the opening edge 41a of the intake valve port 41 near the exhaust valve port 42 and the umbrella portion 47a of the intake valve 47. It is set to point towards.
It should be noted that the throttle body 8 penetrates the intake passage 6 on the downstream side of the throttle valve 81, that is, the ventilation passage 80 from above and outside, and injects and supplies fuel toward the diagonally downstream side (schematically in FIG. 2). A fuel injection valve 87 arranged as shown in the injection line J) is installed.
 そのため、タンブル通路6Bを流れる吸入空気を、吸気弁47の傘部47aの上方を通過させたうえで、吸気弁口41の排気弁口42に近い側の開口縁41aとの間からシリンダボア32a内に効率的に流入させることができるため、燃焼室38内においてタンブル流Tが発生しやすくすることができる。すなわち、タンブル通路6Bは、タンブル流Tを発生させるための吸気の流路となる。 Therefore, the intake air flowing through the tumble passage 6B is passed above the umbrella portion 47a of the intake valve 47, and then is inside the cylinder bore 32a from between the intake valve port 41 and the opening edge 41a on the side close to the exhaust valve port 42. Since it can be efficiently flowed into the combustion chamber 38, the tumble flow T can be easily generated in the combustion chamber 38. That is, the tumble passage 6B serves as an intake flow path for generating the tumble flow T.
 タンブルコントロール弁71は、上方に設けられたタンブル弁板71bによって、それよりも下流側の吸気通路6で、吸気流を分割する上下一対の主通路6A、タンブル通路6Bのうちの主通路6Aの通路断面を開閉し、主通路6Aへ吸気供給を制御するものであり、吸気通路6の主通路6Aとタンブル通路6Bとの吸気配分が制御される。
 すなわち、タンブルコントロール弁71の閉止位置では、タンブル弁軸71aの上部に半円状をなすタンブル弁板71bが円形横断面の通気路70の内面70aの上部に当接することで、タンブル弁板71bが主通路6Aの入口開口6Aaを覆うように位置して吸気流の流入を閉止ないし抑制し、吸気流はタンブル通路6B側に導かれ、タンブル通路6Bから吸気が、燃料噴射弁87からの燃料を伴って混合気としてシリンダボア32a内に流入する。
The tumble control valve 71 is a pair of upper and lower main passages 6A that divide the intake air flow in the intake passage 6 on the downstream side of the tumble valve plate 71b provided above, and the main passage 6A of the tumble passages 6B. The passage cross section is opened and closed to control the intake air supply to the main passage 6A, and the intake distribution between the main passage 6A and the tumble passage 6B of the intake passage 6 is controlled.
That is, at the closed position of the tumble control valve 71, the tumble valve plate 71b forming a semicircle on the upper part of the tumble valve shaft 71a abuts on the upper part of the inner surface 70a of the ventilation passage 70 having a circular cross section, so that the tumble valve plate 71b Is located so as to cover the inlet opening 6Aa of the main passage 6A to close or suppress the inflow of the intake air flow, the intake air flow is guided to the tumble passage 6B side, the intake air from the tumble passage 6B, and the fuel from the fuel injection valve 87. As an air-fuel mixture, it flows into the cylinder bore 32a.
 内燃機関3が低負荷運転の場合、スロットル弁81が絞られて、吸気量が低減するが、タンブルコントロール弁71により吸気を殆どタンブル通路6Bに通すことで、燃焼室38内に流入する吸気流速を高めることができて、燃焼室38で発生する吸気のタンブル流Tを強化しつつ燃焼室38内の燃料燃焼を良好に維持できるものとなる。
 図2において2点鎖線で示されるタンブル流Tは、ピストン36が2点鎖線で示されるようにシリンダボア33a内を下降したときの燃焼室38内のタンブル流Tを、模式的に示すものである。
When the internal combustion engine 3 is in low load operation, the throttle valve 81 is throttled to reduce the amount of intake air, but the tumble control valve 71 allows most of the intake air to pass through the tumble passage 6B, so that the intake air flow velocity flows into the combustion chamber 38. It becomes possible to maintain good fuel combustion in the combustion chamber 38 while strengthening the tumble flow T of the intake air generated in the combustion chamber 38.
The tumble flow T shown by the alternate long and short dash line in FIG. 2 schematically shows the tumble flow T in the combustion chamber 38 when the piston 36 descends in the cylinder bore 33a as shown by the alternate long and short dash line. ..
 また、内燃機関3が高負荷運転となるにつれ、スロットル弁81が開き、吸気量が増大するが、タンブルコントロール弁71を開方向に回転して主通路6Aへの吸気流の流入を増加させる。
 そして、スロットル弁81とタンブルコントロール弁71が、図2中2点鎖線で示すように、吸気通路6の流れ方向Fに平行に位置し、吸気通路6を流れる吸気流は、スロットル弁81とタンブルコントロール弁71に邪魔されることなく、十分な吸気量が主通路6Aにもタンブル通路6Bにも流れて、ともに燃料噴射弁87からの燃料を伴って混合気として、燃焼室38に向かうことができる。
Further, as the internal combustion engine 3 becomes a high load operation, the throttle valve 81 opens and the intake air amount increases, but the tumble control valve 71 is rotated in the opening direction to increase the inflow of the intake air flow into the main passage 6A.
The throttle valve 81 and the tumble control valve 71 are located parallel to the flow direction F of the intake passage 6 as shown by the two-point chain line in FIG. 2, and the intake flow flowing through the intake passage 6 is tumbled with the throttle valve 81. A sufficient amount of intake air flows to both the main passage 6A and the tumble passage 6B without being disturbed by the control valve 71, and both of them, accompanied by the fuel from the fuel injection valve 87, can be directed to the combustion chamber 38 as an air-fuel mixture. can.
 本実施形態では、スロットル弁81は、運転者の操作と内燃機関3の状況に基づいて図示しないエンジンコントロールユニット(ECU)がスロットル弁81のアクチュエータ82を起動することで回動され、弁の位置決め、開閉がなされる。
 本実施形態では、アクチュエータ82は電動モータを主に構成されるが、図2、図4に示されるようにスロットル弁軸81aと電動モータ軸、すなわちアクチュエータ軸心82aはオフセットしているので、その間に歯車機構等の適宜な伝動部83を備えている(図3参照)。
In the present embodiment, the throttle valve 81 is rotated by an engine control unit (ECU) (not shown) that activates the actuator 82 of the throttle valve 81 based on the operation of the driver and the situation of the internal combustion engine 3, and the valve is positioned. , Opening and closing.
In the present embodiment, the actuator 82 is mainly composed of an electric motor, but as shown in FIGS. 2 and 4, the throttle valve shaft 81a and the electric motor shaft, that is, the actuator shaft center 82a are offset, so that between them. Is provided with an appropriate transmission unit 83 such as a gear mechanism (see FIG. 3).
 また、タンブルコントロール弁71は、内燃機関3の状況に基づいて図示しないエンジンコントロールユニット(ECU)がタンブルコントロール弁71のアクチュエータ72を起動することで回動され、弁の位置決め、開閉がなされる。本実施形態において、アクチュエータ72は、電動モータを主に構成される。 Further, the tumble control valve 71 is rotated by an engine control unit (ECU) (not shown) that activates the actuator 72 of the tumble control valve 71 based on the situation of the internal combustion engine 3, and the valve is positioned and opened / closed. In the present embodiment, the actuator 72 mainly includes an electric motor.
 図1中III-III矢視による自動二輪車1の中央要部の平面断面図である図3に示されるように、本実施形態においては、シリンダヘッド34の後部に開口する吸気ポート43には、断熱板部材62を挟んでタンブル弁装置7が締結接続されている。
 タンブル弁装置7は、吸気流上流側が弾性インシュレータ61を介してスロットルボディ8と接続し、スロットルボディ8にはさらに上流側がコネクティングチューブ85が接続してエアクリーナ86に接続しているが、図3においては、スロットルボディ8の通気路80とスロットル弁81を備える本体8a(図1、図2参照)とコネクティングチューブ85は、図1中III-III矢視断面より上方、すなわち図3図示手前側に位置するので、図3上に、2点鎖線で示されている。
As shown in FIG. 3, which is a plan sectional view of the central main part of the motorcycle 1 as viewed from the arrow III-III in FIG. 1, in the present embodiment, the intake port 43 opened at the rear portion of the cylinder head 34 is provided with the intake port 43. The tumble valve device 7 is fastened and connected with the heat insulating plate member 62 interposed therebetween.
In the tumble valve device 7, the upstream side of the intake air flow is connected to the throttle body 8 via the elastic insulator 61, and the connecting tube 85 is further connected to the upstream side of the throttle body 8 to be connected to the air cleaner 86. The main body 8a (see FIGS. 1 and 2) including the air passage 80 of the throttle body 8 and the throttle valve 81 and the connecting tube 85 are located above the cross section taken along the line III-III in FIG. 1, that is, on the front side shown in FIG. Since it is located, it is shown by a two-dot chain line on FIG.
 したがって図3において、スロットルボディ8に関しては、アクチュエータ82と、スロットル弁軸81aへの伝動部83が断面として示され、スロットル弁81を備えるスロットルボディ8の本体8aは、アクチュエータ82の上方に位置する。
 また、タンブル弁装置7に関しては、アクチュエータ72と、通気路70およびタンブルコントロール弁71が断面として示される。
Therefore, in FIG. 3, regarding the throttle body 8, the actuator 82 and the transmission portion 83 to the throttle valve shaft 81a are shown as a cross section, and the main body 8a of the throttle body 8 including the throttle valve 81 is located above the actuator 82. ..
Further, regarding the tumble valve device 7, the actuator 72, the air passage 70, and the tumble control valve 71 are shown as cross sections.
 また、図4は、図3中IV矢視による、燃料タンク13、シート15、リヤサイドカバー10aを外し、タンブル弁装置7、スロットルボディ8、コネクティングチューブ85の周辺を、右側方斜め上方から見た自動二輪車1の中央要部の右側斜視図である。
 本実施形態では、スロットル弁81を備えたスロットルボディ8の本体8aの上流側に接続するコネクティングチューブ85の上流側は、エアクリーナ86の側面86b、すなわち車両側方を向く面に接続している。
Further, in FIG. 4, the fuel tank 13, the seat 15, and the rear side cover 10a were removed, and the periphery of the tumble valve device 7, the throttle body 8, and the connecting tube 85 was viewed from diagonally above to the right, as viewed from the IV arrow in FIG. It is a right side perspective view of the central main part of a motorcycle 1.
In the present embodiment, the upstream side of the connecting tube 85 connected to the upstream side of the main body 8a of the throttle body 8 provided with the throttle valve 81 is connected to the side surface 86b of the air cleaner 86, that is, the surface facing the vehicle side.
 本実施形態のように、シリンダ部32とエアクリーナ86の間に、タンブルコントロール弁71とスロットル弁81が直列に備えられる場合、タンブル弁装置7やスロットルボディ8を通る吸気通路6が長くなり、コネクティングチューブ85を従来のようにエアクリーナ86の前面86a側に接続しようとすると、シリンダ部32とエアクリーナ86の間の距離を過度に長く設定して車体が大型化するか、シリンダ部32とエアクリーナ86の間に吸気通路6を形成する管部を備えるコネクティングチューブ85自体や、タンブル弁装置7やスロットルボディ8の接続が折れ曲がり、その角度がきつくなった場合、吸気性能に影響を生じる恐れがある。
 しかし、コネクティングチューブ85の上流側をエアクリーナ86の側面86bに接続したので、通常のシリンダ部32とエアクリーナ86の距離においても、コネクティングチューブ85を滑らかに接続でき、吸気の流れがスムーズになり吸気が整流されるため、吸気性能が向上する。
When the tumble control valve 71 and the throttle valve 81 are provided in series between the cylinder portion 32 and the air cleaner 86 as in the present embodiment, the intake passage 6 passing through the tumble valve device 7 and the throttle body 8 becomes long and connecting. If you try to connect the tube 85 to the front side 86a side of the air cleaner 86 as in the past, the distance between the cylinder part 32 and the air cleaner 86 is set too long and the vehicle body becomes large, or the cylinder part 32 and the air cleaner 86 If the connecting tube 85 itself having a pipe portion forming the intake passage 6 between them, or the connection between the tumble valve device 7 and the throttle body 8 is bent and the angle becomes tight, the intake performance may be affected.
However, since the upstream side of the connecting tube 85 is connected to the side surface 86b of the air cleaner 86, the connecting tube 85 can be smoothly connected even at a distance between the normal cylinder portion 32 and the air cleaner 86, and the intake air flow becomes smooth and the intake air can be taken. Since it is rectified, the intake performance is improved.
 また本実施形態では、図4に示されるように、断熱板部材62を挟んでシリンダヘッド34の後部の吸気ポート43に締結接続されたタンブル弁装置7と、スロットルボディ8とは、接続管としての弾性インシュレータ61によって中継接続されている。
 すなわち、スロットル弁81を備えたスロットルボディ8と、タンブルコントロール弁71を備えたタンブル弁装置7との間の吸気通路6の少なくとも一部分を構成し、すなわち流体的に中継し、且つ断熱性を有すとともに、スロットルボディ8とタンブル弁装置7との相対的な変位を許容する弾性を有する接続管としての弾性インシュレータ61を備えている。
Further, in the present embodiment, as shown in FIG. 4, the tumble valve device 7 which is fastened and connected to the intake port 43 at the rear of the cylinder head 34 across the heat insulating plate member 62 and the throttle body 8 are connected as a connecting pipe. It is relay-connected by the elastic insulator 61 of.
That is, it constitutes at least a part of the intake passage 6 between the throttle body 8 provided with the throttle valve 81 and the tumble valve device 7 provided with the tumble control valve 71, that is, fluidly relays and has heat insulating properties. In addition, an elastic insulator 61 as a connecting pipe having elasticity that allows relative displacement between the throttle body 8 and the tumble valve device 7 is provided.
 本実施形態においては、タンブル流Tを効果的に発生させるためのタンブル通路6Bの形状を備えている。
 図5は、図2に示される主通路6Aとタンブル通路6Bとに仕切られた吸気通路6をなす吸気ポート43の空間自体を、物体のごとく表現して、その断面を示すものである。
 図中上部に示される縦断面は、図2中の、吸気ポート側仕切壁65Cで主通路6Aとタンブル通路6Bとに仕切られた吸気通路6をなす吸気ポート43である。
In the present embodiment, the shape of the tumble passage 6B for effectively generating the tumble flow T is provided.
FIG. 5 shows the cross section of the space itself of the intake port 43 forming the intake passage 6 partitioned by the main passage 6A and the tumble passage 6B shown in FIG. 2 as if it were an object.
The vertical cross section shown in the upper part of the drawing is the intake port 43 forming the intake passage 6 divided into the main passage 6A and the tumble passage 6B by the intake port side partition wall 65C in FIG.
 吸気通路6の横断面Aは、図2中の横断面Aと同じく、吸気ポート43の入口部43bにおける横断面であり、吸気ポート側仕切壁65Cの上流端部65Caでの吸気通路6の横断面である。吸気通路6は、横断面が直線状の上流端部65Caの吸気ポート側仕切壁65Cで、タンブル通路6Bが吸気通路6の全断面の下側の略半円形状に画成される。
 なお、仕切壁65の上流端部65aから吸気ポート43の入口部43bまでは、タンブル弁装置側仕切壁65Aと断熱板部材側仕切壁65Bによって、横断面Aに示すと同様に主通路6Aとタンブル通路6Bとが仕切られている。
The cross section A of the intake passage 6 is a cross section at the inlet portion 43b of the intake port 43, similarly to the cross section A in FIG. 2, and is a cross section of the intake passage 6 at the upstream end portion 65C of the partition wall 65C on the intake port side. It is a face. The intake passage 6 is a partition wall 65C on the intake port side of the upstream end portion 65Ca having a straight cross section, and the tumble passage 6B is defined in a substantially semicircular shape below the entire cross section of the intake passage 6.
From the upstream end portion 65a of the partition wall 65 to the inlet portion 43b of the intake port 43, the tumble valve device side partition wall 65A and the heat insulating plate member side partition wall 65B form the main passage 6A as shown in the cross section A. It is separated from the tumble passage 6B.
 横断面Bと横断面Cは、吸気ポート側仕切壁65Cの横断面が徐々に円弧状に変形し、タンブル通路6Bが徐々に横長の長円形断面に変形し、さらに円形断面に変形する途中の横断面である。
 横断面Dは、図2中の横断面Dと同じく、下流端6Bb側のタンブル通路6Bが、円弧状の吸気ポート側仕切壁65Cによって円形断面に画成された吸気ポート43の横断面である。
 横断面Eは、横断面Dの下流側においても断面円弧状の吸気ポート側仕切壁65Cによってタンブル通路6Bは円形断面に維持されていることを示す。
 吸気ポート側仕切壁65Cの下流端部65bにおけるタンブル通路6Bの下流端6Bbにおける吸気ポート43の横断面Fが、図2中に2点鎖線で示されるように、タンブル通路6Bは、下流端6Bb側の横断面が吸気ポート側仕切壁65Cの下流端部65bまで円弧状の吸気ポート側仕切壁65Cによって円形断面に画成されている。
 横断面Gに示されるように、タンブル通路6Bが主通路6Aと合流した後の吸気通路6、すなわち吸気ポート43は、ほぼ円形断面の横断面となり吸気弁口41に臨んでいる。
In the cross section B and the cross section C, the cross section of the partition wall 65C on the intake port side is gradually deformed into an arc shape, the tumble passage 6B is gradually deformed into a horizontally long oval cross section, and further deformed into a circular cross section. It is a cross section.
Similar to the cross section D in FIG. 2, the cross section D is a cross section of the intake port 43 in which the tumble passage 6B on the downstream end 6Bb side is defined as a circular cross section by the arc-shaped intake port side partition wall 65C. ..
The cross section E indicates that the tumble passage 6B is maintained in a circular cross section by the intake port side partition wall 65C having an arcuate cross section even on the downstream side of the cross section D.
The tumble passage 6B has a downstream end 6Bb so that the cross section F of the intake port 43 at the downstream end 6Bb of the tumble passage 6B at the downstream end 65b of the intake port side partition wall 65C is shown by a chain double-dashed line in FIG. The cross section on the side is defined as a circular cross section by the intake port side partition wall 65C having an arc shape up to the downstream end portion 65b of the intake port side partition wall 65C.
As shown in the cross section G, the intake passage 6 after the tumble passage 6B merges with the main passage 6A, that is, the intake port 43 has a substantially circular cross section and faces the intake valve port 41.
 そして、タンブル通路6Bの上流端6Ba(図2参照)の横断面は、横断面Aと同様に、横断面が直線状のタンブル弁装置側仕切壁65Aで、下流端6Bb(図5参照)側の円形断面(横断面D~横断面F参照)の径よりも最大径が大径の半円形状に画成されており、タンブル通路6Bの上流端6Baの横断面の断面面積は、下流端6Bb側の円形断面の断面面積より大きく形成される。 The cross section of the upstream end 6Ba (see FIG. 2) of the tumble passage 6B is the tumble valve device side partition wall 65A having a linear cross section as in the cross section A, and the downstream end 6Bb (see FIG. 5) side. The maximum diameter is larger than the diameter of the circular cross section (see cross section D to F) in a semicircular shape, and the cross section area of the cross section of the upstream end 6Ba of the tumble passage 6B is the downstream end. It is formed larger than the cross-sectional area of the circular cross section on the 6Bb side.
 そのため、吸気通路6全体の横断面形状を大径化することなく、タンブル通路6Bの上流端6Baの横断面は横断面Aと同様の断面面積が確保されて、タンブル通路6Bへの吸気の流入流量を確保できるとともに、下流端6Bb側のタンブル通路6Bの横断面(横断面D~横断面F参照)が管路抵抗の少ない円形断面なので、タンブル通路6Bを流れる吸気の流速を増加させることができ、タンブル性能が向上している。 Therefore, the cross-sectional area of the upstream end 6Ba of the tumble passage 6B has the same cross-sectional area as the cross-sectional area A without increasing the diameter of the entire cross-sectional shape of the intake passage 6 and the inflow of intake air into the tumble passage 6B. Since the cross section of the tumble passage 6B on the downstream end 6Bb side (see cross section D to cross section F) is a circular cross section with low pipeline resistance, the flow velocity of the intake air flowing through the tumble passage 6B can be increased. It can be done, and the tumble performance is improved.
 また、タンブル通路6Bの、上流端6Ba(図2参照)の半円形状の横断面(横断面A参照)から下流端6Bb(図5参照)側の円形断面の横断面(横断面D参照)までは、通路方向に沿って徐々に変形して連続している(横断面B、横断面C参照)。
 そのように、タンブル通路6Bが、半円形状の横断面(横断面A参照)から円形断面の横断面(横断面D参照)まで徐々に横断面が変形して、断面面積が絞られることで、吸気抵抗増加を極力抑えながらタンブル通路6Bの吸気の流速を増加させることができるようになっている。
Further, the cross section of the tumble passage 6B from the semicircular cross section (see cross section A) of the upstream end 6Ba (see FIG. 2) to the circular cross section on the downstream end 6Bb (see FIG. 5) side (see cross section D). Up to, it is gradually deformed and continuous along the passage direction (see cross section B and cross section C).
As described above, the tumble passage 6B is gradually deformed from the semicircular cross section (see cross section A) to the circular cross section (see cross section D), and the cross section area is narrowed. It is possible to increase the flow velocity of the intake air in the tumble passage 6B while suppressing the increase in the intake air resistance as much as possible.
 そして、タンブル通路6Bは、下流端6Bb側の所定長さの範囲の横断面(横断面D~横断面F参照)が下流端6Bbまで円形断面をなしている。
 そのように、横断面が円形断面のタンブル通路6Bを下流端6Bbまでの所定長さ設けることで整流区間を設けたこととなり、吸気が整流され吸気性能が向上している。
The tumble passage 6B has a circular cross section (see cross section D to cross section F) in a predetermined length range on the downstream end 6Bb side up to the downstream end 6Bb.
As described above, the rectifying section is provided by providing the tumble passage 6B having a circular cross section with a predetermined length up to the downstream end 6Bb, so that the intake air is rectified and the intake performance is improved.
 また、図2で説明したように、タンブルコントロール弁71のタンブル弁板71bは半円形状に構成されており、回動端がタンブル弁装置7の円形横断面の通気路70の内面70aに当接して、主通路6Aの横断面(横断面A参照)を全て塞ぐことができる。
 そのため、タンブルコントロール弁71が、主通路6A側を確実に閉じることができるため、内燃機関3の低負荷運転時にタンブル通路6B側への吸気流量が確保される。
Further, as described with reference to FIG. 2, the tumble valve plate 71b of the tumble control valve 71 is formed in a semicircular shape, and the rotating end corresponds to the inner surface 70a of the ventilation passage 70 having a circular cross section of the tumble valve device 7. In contact with each other, the entire cross section of the main passage 6A (see cross section A) can be closed.
Therefore, since the tumble control valve 71 can surely close the main passage 6A side, the intake flow rate to the tumble passage 6B side is secured during the low load operation of the internal combustion engine 3.
 図6は、図2中VI-VI矢視による、吸気通路6に沿う、スロットルボディ8、タンブル弁装置7およびシリンダヘッド34の平面断面図である。
 図7は、図2中VII-VII矢視による、スロットルボディ8、タンブル弁装置7およびシリンダヘッド34を後方上部から見た断面斜視図である。
 図6、図7に示されるように、スロットルボディ8の通気路80、弾性インシュレータ61の通気路60、タンブル弁装置7の通気路70、およびシリンダヘッド34の吸気ポート43は、上方から見て直線状に連続する吸気通路6を形成しており、吸気ポート43の下流端43cは吸気弁口41に至っている。
FIG. 6 is a plan sectional view of the throttle body 8, the tumble valve device 7, and the cylinder head 34 along the intake passage 6 as viewed by VI-VI in FIG.
FIG. 7 is a cross-sectional perspective view of the throttle body 8, the tumble valve device 7, and the cylinder head 34 as viewed from the rear upper part, as viewed from the arrow of VII-VII in FIG.
As shown in FIGS. 6 and 7, the air passage 80 of the throttle body 8, the air passage 60 of the elastic insulator 61, the air passage 70 of the tumble valve device 7, and the intake port 43 of the cylinder head 34 are viewed from above. A linearly continuous intake passage 6 is formed, and the downstream end 43c of the intake port 43 reaches the intake valve port 41.
 一般に単気筒2バルブ内燃機関では、シリンダ軸線X方向視で、吸気弁口41の中心と排気弁口42の中心とを結ぶ弁口中心間仮想線Mは、シリンダ軸線Xと交差する。
 本実施形態においては、シリンダ軸線X方向視で、吸気ポート43は弁口中心間仮想線Mに対して傾斜して設けられており、吸気弁口41に至る吸気通路6の下流端6bの、すなわち吸気ポート43の下流端43cの中心延長仮想線Iは、弁口中心間仮想線Mに対して傾斜角θを有し、吸気弁口41の左右中央を指向するが、シリンダ中心Oを指向しない。
Generally, in a single-cylinder two-valve internal combustion engine, the virtual line M between the valve openings that connects the center of the intake valve port 41 and the center of the exhaust valve port 42 intersects the cylinder axis X in the direction of the cylinder axis X.
In the present embodiment, the intake port 43 is provided so as to be inclined with respect to the virtual line M between the center of the valve openings in the direction of the cylinder axis X, and the downstream end 6b of the intake passage 6 leading to the intake valve port 41. That is, the center extension virtual line I of the downstream end 43c of the intake port 43 has an inclination angle θ with respect to the valve port center-to-center virtual line M and points to the left and right centers of the intake valve port 41, but points to the cylinder center O. do not.
 その一方、内燃機関3の低負荷時に燃焼室38内でのタンブル流Tを強化し、燃焼室38内の燃料燃焼を良好にするための吸気を送り込むタンブル通路6Bは、吸気弁口41の左右中央ではなく、燃焼室38の左右中央、すなわちシリンダボア33aの左右中央を指向させたほうが燃焼室38の左右中央に吸気を送り込むことができ、タンブル流Tをより効果的に強化できる。
 したがって、本実施形態のタンブル通路6Bは、吸気ポート43の方向に対して湾曲しており、シリンダ軸線X方向視で、下流端6Bbの中心延長仮想線Uがシリンダ中心Oを指向するように形成されている。
 そのため、タンブル通路6Bを通過して燃焼室38に流入する吸気を、シリンダ中心Oに向けて導けるので、燃焼室38の中央にタンブル流Tを起こすことができ、タンブル性能が向上している。
On the other hand, when the load of the internal combustion engine 3 is low, the tumble flow T in the combustion chamber 38 is strengthened, and the tumble passage 6B for sending the intake air for improving the fuel combustion in the combustion chamber 38 is on the left and right of the intake valve port 41. If the left and right centers of the combustion chamber 38, that is, the left and right centers of the cylinder bore 33a are directed instead of the center, the intake air can be sent to the left and right centers of the combustion chamber 38, and the tumble flow T can be strengthened more effectively.
Therefore, the tumble passage 6B of the present embodiment is curved with respect to the direction of the intake port 43, and is formed so that the center extension virtual line U of the downstream end 6Bb points toward the cylinder center O in the direction of the cylinder axis X. Has been done.
Therefore, since the intake air that has passed through the tumble passage 6B and flows into the combustion chamber 38 can be guided toward the cylinder center O, a tumble flow T can be generated in the center of the combustion chamber 38, and the tumble performance is improved.
 以上、本発明の一実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能であり、本発明の要旨の範囲で、鞍乗型車両、内燃機関等が、多様な態様で実施されるものを含むことは勿論である。
 なお、説明の便宜上、図示の実施形態の左右配置のものについて説明したが、左右配置の異なるものであっても、発明の要旨の範囲であれば本発明に含まれる。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various design changes can be made without departing from the gist thereof, and the scope of the gist of the present invention. It goes without saying that saddle-type vehicles, internal combustion engines, and the like are implemented in various modes.
For convenience of explanation, the left-right arrangement of the illustrated embodiment has been described, but even if the left-right arrangement is different, it is included in the present invention as long as it is within the scope of the gist of the invention.
 1…自動二輪車(本発明における「鞍乗型車両」)、2…車体フレーム、3…内燃機関、4…パワーユニット、5…変速機、6…吸気通路、6A…主通路、6Aa…入口開口、6B…タンブル通路、6Ba…上流端、6Bb…下流端、7…タンブル弁装置、8…スロットルボディ、8a…本体、20…ヘッドパイプ、21…メインフレーム、21a…垂下部、23…ダウンフレーム、24…ピボットプレート、26…エンジンハンガ、30…クランクケース、31…クランク軸、32…シリンダ部、33…シリンダブロック、33a…シリンダボア、34…シリンダヘッド、34a…燃焼室天井面、36…ピストン、36a…頂面、38…燃焼室、41…吸気弁口、41a…開口縁、42…排気弁口、43…吸気ポート、43a…湾曲外壁部、43b…入口部、43c…下流端、45…吸気弁ガイド、47…吸気弁、47a…傘部、60…通気路、61…弾性インシュレータ、65…仕切壁、65a…上流端部、65b…下流端部、65A…タンブル弁装置側仕切壁、65B…断熱板部材側仕切壁、65C…吸気ポート側仕切壁、70…通気路、70a…内面、71…タンブルコントロール弁、71a…タンブル弁軸、71b…タンブル弁板、72…(タンブルコントロール弁71の)アクチュエータ、80…通気路、80a…内面、81…スロットル弁、81a…スロットル弁軸、81b…スロットル弁板、82…(スロットル弁81の)アクチュエータ、82a…アクチュエータ軸心、85…コネクティングチューブ、86…エアクリーナ、86b…側面(本発明における「車両側方に向く面」)、87…燃料噴射弁、X…シリンダ軸線、O…シリンダ中心、Y…車両左右中心線、Z…(横断面Dから横断面Fまでのタンブル通路6Bの)中心線、T…タンブル流、F…(吸気通路6の)流れ方向、J…噴射線、A~G…(吸気通路6の)横断面、M…弁口中心間仮想線、I…(吸気通路6の下流端6bの)中心延長仮想線、U…(タンブル通路6Bの下流端6Bbの)中心延長仮想線 1 ... motorcycle ("saddle-type vehicle" in the present invention), 2 ... body frame, 3 ... internal combustion engine, 4 ... power unit, 5 ... transmission, 6 ... intake passage, 6A ... main passage, 6Aa ... entrance opening, 6B ... tumble passage, 6Ba ... upstream end, 6Bb ... downstream end, 7 ... tumble valve device, 8 ... throttle body, 8a ... body, 20 ... head pipe, 21 ... main frame, 21a ... hanging, 23 ... down frame, 24 ... Pivot plate, 26 ... Engine hanger, 30 ... Crank case, 31 ... Crank shaft, 32 ... Cylinder part, 33 ... Cylinder block, 33a ... Cylinder bore, 34 ... Cylinder head, 34a ... Combustion chamber ceiling surface, 36 ... Piston, 36a ... top surface, 38 ... combustion chamber, 41 ... intake valve port, 41a ... opening edge, 42 ... exhaust valve port, 43 ... intake port, 43a ... curved outer wall part, 43b ... inlet part, 43c ... downstream end, 45 ... Intake valve guide, 47 ... Intake valve, 47a ... Umbrella, 60 ... Ventilation path, 61 ... Elastic insulator, 65 ... Partition wall, 65a ... Upstream end, 65b ... Downstream end, 65A ... Tumble valve device side partition wall, 65B ... Insulation plate member side partition wall, 65C ... Intake port side partition wall, 70 ... Ventilation path, 70a ... Inner surface, 71 ... Tumble control valve, 71a ... Tumble valve shaft, 71b ... Tumble valve plate, 72 ... (Tumble control valve) 71) Actuator, 80 ... Ventilation path, 80a ... Inner surface, 81 ... Throttle valve, 81a ... Throttle valve shaft, 81b ... Throttle valve plate, 82 ... Actuator (of throttle valve 81), 82a ... Actuator axis, 85 ... Connecting Tube, 86 ... air cleaner, 86b ... side surface ("plane facing the vehicle side" in the present invention), 87 ... fuel injection valve, X ... cylinder axis, O ... cylinder center, Y ... vehicle left and right center line, Z ... (crossing) Center line (of tumble passage 6B) from surface D to cross section F, T ... tumble flow, F ... flow direction (of intake passage 6), J ... injection line, AG ... cross section (of intake passage 6), M ... Virtual line between the centers of the valve openings, I ... Central extension virtual line (at the downstream end 6b of the intake passage 6), U ... Central extension virtual line (at the downstream end 6Bb of the tumble passage 6B)

Claims (5)

  1.  内燃機関(3)の燃焼室(38)への吸入空気が通過する吸気通路(6)に設けられ、任意の開度に制御されて吸入空気量を制御するスロットル弁(81)と、
     同スロットル弁(81)より下流側に設けられ、通路方向に沿って主通路(6A)とタンブル通路(6B)とに分割された前記吸気通路(6)の前記主通路(6A)の通路断面を開閉して、前記主通路(6A)への吸気供給を制御するタンブルコントロール弁(71)とを備えた鞍乗型車両用内燃機関の吸気装置において、
     前記吸気通路(6)は、内部を通路方向に二分する仕切壁(65)を備え、
     前記タンブル通路(6B)は、下流端(6Bb)側の横断面が下流端(6Bb)まで円弧状の前記仕切壁(65)によって円形断面に画成され、上流端(6Ba)の横断面が直線状の前記仕切壁(65)で前記円形断面の径よりも最大径が大径の半円形状に画成され、
     前記上流端(6Ba)の横断面の断面面積が、下流端(6Bb)側の横断面の断面面積よりも大きいことを特徴とする鞍乗型車両用内燃機関の吸気装置。
    A throttle valve (81) provided in the intake passage (6) through which the intake air to the combustion chamber (38) of the internal combustion engine (3) passes and controlled to an arbitrary opening degree to control the intake air amount.
    A passage cross section of the main passage (6A) of the intake passage (6) provided on the downstream side of the throttle valve (81) and divided into a main passage (6A) and a tumble passage (6B) along the passage direction. In the intake device of an internal combustion engine for a saddle-type vehicle equipped with a tumble control valve (71) that opens and closes the main passage (6A) to control the intake air supply to the main passage (6A).
    The intake passage (6) includes a partition wall (65) that divides the inside into two in the passage direction.
    The tumble passage (6B) has a cross section on the downstream end (6Bb) side defined as a circular cross section by the partition wall (65) having an arc shape up to the downstream end (6Bb), and the cross section of the upstream end (6Ba) is defined as a circular cross section. The linear partition wall (65) is defined as a semicircular shape having a maximum diameter larger than the diameter of the circular cross section.
    An intake device for an internal combustion engine for a saddle-type vehicle, wherein the cross-sectional area of the cross section of the upstream end (6Ba) is larger than the cross-sectional area of the cross section of the downstream end (6Bb) side.
  2.  前記タンブル通路(6B)の横断面は、前記上流端(6Ba)の半円形状の横断面から前記下流端(6Bb)側の円形断面の横断面まで通路方向に沿って徐々に変形して連続していることを特徴とする請求項1に記載の鞍乗型車両用内燃機関の吸気装置。 The cross section of the tumble passage (6B) is continuously deformed along the passage direction from the semicircular cross section of the upstream end (6Ba) to the cross section of the circular cross section on the downstream end (6Bb) side. The intake device for an internal combustion engine for a saddle-type vehicle according to claim 1, wherein the intake device is characterized by the above.
  3.  前記タンブル通路(6B)は、前記下流端(6Bb)側の所定長さの範囲の横断面が下流端まで円形断面であることを特徴とする請求項1または請求項2に記載の鞍乗型車両用内燃機関の吸気装置。 The saddle-mounted type according to claim 1 or 2, wherein the tumble passage (6B) has a circular cross section up to the downstream end in a cross section in a predetermined length range on the downstream end (6Bb) side. Intake device for internal combustion engine for vehicles.
  4.  前記タンブルコントロール弁(71)のタンブル弁板(71b)は、前記主通路(6A)の横断面を全て塞ぐ半円形状に構成されたことを特徴とする請求項1ないし請求項3のいずれか一項に記載の鞍乗型車両用内燃機関の吸気装置。 Any one of claims 1 to 3, wherein the tumble valve plate (71b) of the tumble control valve (71) is formed in a semicircular shape that completely closes the cross section of the main passage (6A). The intake device for an internal combustion engine for a saddle-type vehicle according to claim 1.
  5.  シリンダ軸線(X)方向視で、前記吸気通路(6)の下流端(6b)の中心延長仮想線(I)が、シリンダ中心(O)を指向しないものにおいて、前記タンブル通路(6B)は、下流端(6Bb)の中心延長仮想線(U)がシリンダ中心(O)に指向するように、湾曲していることを特徴とする請求項1ないし請求項4のいずれか一項に記載の鞍乗型車両用内燃機関の吸気装置。 In the direction of the cylinder axis (X), the central extension virtual line (I) of the downstream end (6b) of the intake passage (6) does not point to the cylinder center (O), and the tumble passage (6B) is The saddle according to any one of claims 1 to 4, wherein the central extension virtual line (U) at the downstream end (6Bb) is curved so as to be directed toward the cylinder center (O). Intake device for internal combustion engine for riding vehicles.
PCT/JP2021/008730 2020-03-26 2021-03-05 Intake device of internal combustion engine for saddle-type vehicle WO2021192927A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112022016369A BR112022016369A2 (en) 2020-03-26 2021-03-05 INTERNAL COMBUSTION ENGINE INLET DEVICE FOR SADDLE MOUNTED DRIVING TYPE VEHICLE
JP2022509492A JP7241236B2 (en) 2020-03-26 2021-03-05 Intake device for internal combustion engine for straddle-type vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056645 2020-03-26
JP2020-056645 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021192927A1 true WO2021192927A1 (en) 2021-09-30

Family

ID=77890064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008730 WO2021192927A1 (en) 2020-03-26 2021-03-05 Intake device of internal combustion engine for saddle-type vehicle

Country Status (3)

Country Link
JP (1) JP7241236B2 (en)
BR (1) BR112022016369A2 (en)
WO (1) WO2021192927A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128327A (en) * 1994-11-04 1996-05-21 Isuzu Motors Ltd Low load time swirl generator of internal combustion engine
JPH11210478A (en) * 1998-01-30 1999-08-03 Yamaha Motor Co Ltd Intake device for engine
JP2005248727A (en) * 2004-03-01 2005-09-15 Toyota Motor Corp Intake system for internal combustion engine
WO2018158698A1 (en) * 2017-03-02 2018-09-07 Tvs Motor Company Limited An air induction system for a two wheeled vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128327A (en) * 1994-11-04 1996-05-21 Isuzu Motors Ltd Low load time swirl generator of internal combustion engine
JPH11210478A (en) * 1998-01-30 1999-08-03 Yamaha Motor Co Ltd Intake device for engine
JP2005248727A (en) * 2004-03-01 2005-09-15 Toyota Motor Corp Intake system for internal combustion engine
WO2018158698A1 (en) * 2017-03-02 2018-09-07 Tvs Motor Company Limited An air induction system for a two wheeled vehicle

Also Published As

Publication number Publication date
JPWO2021192927A1 (en) 2021-09-30
BR112022016369A2 (en) 2022-10-04
JP7241236B2 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP6714764B2 (en) Intake structure of internal combustion engine
TWI242069B (en) Fuel injection system for engine in small-sized vehicle
US20200032691A1 (en) Exhaust pipe device of saddle-riding vehicle
JP6574543B2 (en) Intake structure of internal combustion engine
EP1555431A1 (en) Two-wheeled motor vehicle
WO2021176720A1 (en) Intake control device for saddle-type vehicle internal combustion engine
WO2021181547A1 (en) Intake device of internal combustion engine for saddle-type vehicle
JP6149705B2 (en) Motorcycle exhaust system
WO2021192927A1 (en) Intake device of internal combustion engine for saddle-type vehicle
JP6691564B2 (en) Intake passage of internal combustion engine
JP6748782B2 (en) Intake structure of internal combustion engine
WO2018163909A1 (en) Air intake device for internal combustion engine
JP2018150817A (en) Suction structure for internal combustion engine
US7565897B2 (en) Internal combustion engine
JP7336587B2 (en) Intake structure of internal combustion engine
WO2021199224A1 (en) Control device for four-stroke internal combustion engines
JP6851409B2 (en) Internal combustion engine for saddle-type vehicles
WO2022209880A1 (en) Air suction device for internal combustion engine
JP2020148184A (en) Funnel structure in air cleaner
WO2023053308A1 (en) Air intake device for internal combustion engine
JP4670996B1 (en) Engine intake system passage structure
JP5554672B2 (en) Intake device for internal combustion engine
JP6680822B2 (en) Intake structure of internal combustion engine for saddle type vehicle
JP5568427B2 (en) Intake device for internal combustion engine
JP6564523B2 (en) Intake device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774216

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022509492

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016369

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022016369

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220817

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774216

Country of ref document: EP

Kind code of ref document: A1