WO2021192473A1 - Container - Google Patents

Container Download PDF

Info

Publication number
WO2021192473A1
WO2021192473A1 PCT/JP2020/048818 JP2020048818W WO2021192473A1 WO 2021192473 A1 WO2021192473 A1 WO 2021192473A1 JP 2020048818 W JP2020048818 W JP 2020048818W WO 2021192473 A1 WO2021192473 A1 WO 2021192473A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
curable resin
layer
composite film
recesses
Prior art date
Application number
PCT/JP2020/048818
Other languages
French (fr)
Japanese (ja)
Inventor
昭広 小山
田中 裕彦
Original Assignee
株式会社スリーボンド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スリーボンド filed Critical 株式会社スリーボンド
Publication of WO2021192473A1 publication Critical patent/WO2021192473A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D29/00Sacks or like containers made of fabrics; Flexible containers of open-work, e.g. net-like construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/26Articles or materials wholly enclosed in laminated sheets or wrapper blanks

Definitions

  • the present invention relates to a container.
  • high-viscosity viscous materials such as reactive silicone, urethane resin, and epoxy resin have been used as sealants and adhesives. Such materials are transported and stored in containers.
  • a moisture-curable composition may be used as the viscous material accommodated in the storage space of the container.
  • Patent Document 1 discloses a laminated film (composite film) and a container having corrosion resistance to a moisture-curable composition containing aminosilane.
  • Moisture-curable resins cure by reacting with water vapor (humidity) in the air, so they are generally sold and stored in a container that blocks water vapor so that they do not come into contact with water vapor by the time of use. You need to be.
  • the container often forms a seal portion by fusing or welding the above-mentioned composite film so as to provide a space for accommodating contents such as a moisture-curable resin.
  • contents such as a moisture-curable resin.
  • the present inventors may cause appearance abnormalities such as delamination in the container over time, or the moisture-curable resin may be easily cured near the seal portion. Focusing on the point of becoming, we are diligently studying.
  • the present invention has been made to solve the above-mentioned problems, and to provide a container that suppresses appearance abnormality after storing a moisture-curable resin and suppresses curing of the moisture-curable resin.
  • the purpose is to provide a container that suppresses appearance abnormality after storing a moisture-curable resin and suppresses curing of the moisture-curable resin.
  • the composite film having a heat-sealing layer is laminated so that the heat-sealing layers face each other to form a storage space for accommodating a moisture-curable resin.
  • the moisture-curable resin is a deoxime-type condensation-curable resin having a viscosity (25 ° C.) range of 120 to 500 Pa ⁇ s, and a viscosity (25 ° C.) range.
  • the composite film is selected from the group consisting of a deacetone type condensation curable resin having a viscosity of 30 to 500 Pa ⁇ s and a dealcohol type condensation curable resin having a viscosity (25 ° C.) of 30 to 500 Pa ⁇ s.
  • An aluminum foil layer is arranged, and the sealing portion includes a plurality of recesses in which the thickness of the heat-sealing layer is thinner than the periphery, and the recesses are arranged in a row and the nth row is formed.
  • the constituent one recess is arranged between the adjacent recess and the other recess in the n + 1th row adjacent to the nth row when viewed from a direction orthogonal to the row.
  • FIG. 5 is a cross-sectional perspective view showing a state in which the container is installed in a can when taking out the moisture-curable resin contained in the storage space of the container according to the present embodiment.
  • FIG. 5 is a partial cross-sectional perspective view showing a state in which the container is installed in a can when taking out the moisture-curable resin contained in the storage space of the container according to the present embodiment.
  • 1 to 6 are diagrams used for explaining the container 100 according to the embodiment.
  • 7 and 8A to 8D are views for explaining how to use the container 100.
  • 9 and 10 are views provided for explaining the heat seal bar 400 used for forming the seal portion 13 according to the embodiment.
  • X which constitutes the Cartesian coordinate system attached to each figure, indicates the longitudinal direction of the container 100, Y indicates the width direction of the container 100, and Z indicates the thickness direction of the container 100.
  • FIG. 1 is a diagram used for explaining the container 100 according to the present embodiment.
  • the container 100 according to the present embodiment is a container for a moisture-curable resin used when accommodating a moisture-curable resin.
  • the container 100 is formed in a substantially rectangular shape, and includes a storage space 11, an opening 12, and a sealing portion 13 as shown in FIG.
  • two composite films 20 are bonded to each other mainly at the outer peripheral edge portion except for the opening 12 so as to form an accommodation space 11 for accommodating the moisture-curable resin inside. It is composed of.
  • the composite film 20 will be described later.
  • the edge of the container 100 is formed by a sealing portion 13 formed by sealing a portion other than the opening 12.
  • the seal portion 13 is formed in a polygonal shape when viewed in a plan view from the thickness direction Z of the container 100 (or the thickness direction of the composite film 20 described later).
  • the storage space 11 is a space formed inside the container 100.
  • the moisture-curable resin is stored via the nozzle 60 (see FIG. 2) or the like, or the moisture-curable resin is stored in the storage space 11 via the pumping means 300 (see FIGS. 8A to 8D) or the like. It is sent out from 11.
  • a pipe (not shown) or a pump (not shown) may be connected to the nozzle 60 or the pumping means 300 described later.
  • the opening 12 is provided on one end side of the portion where the two composite films 20 are superposed in the present embodiment.
  • the opening 12 means a portion that leads to the accommodation space 11 and seals (closes) the accommodation space 11 after filling the accommodation space 11.
  • the sealing portion 13 is formed by stacking two composite films 20 having a heat-sealing layer 24 so that the heat-sealing layers 24 face each other to form a storage space 11 for accommodating a moisture-curable resin.
  • the composite film 20 is laminated to form the composite film 20.
  • the seal portion 13 is a portion where a predetermined number of composite films 20 as materials are laminated and joined in order to form the accommodation space 11 in the container 100.
  • the seal portion 13 includes seal portions 131 to 133 formed at the end portion of the composite film 20.
  • the seal portion 132 forms one end of the container 100 (the end extending in the width direction Y of the container 100) provided at a position facing the opening 12, and the seal portion 131 and the seal portion 133 form the container 100.
  • Each of the side ends (ends extending in the longitudinal direction X of the container 100) is formed.
  • the seal portion 13 is formed at the edge or end of the composite film 20 constituting the container 100 in the above, it is not necessarily composite if it is possible to prevent the intrusion of fluid such as air from the outside of the container 100. It does not have to be formed on the edge or edge of the film 20.
  • the seal portion 13 includes seal portions 134A and 134B extending from the center side of the seal portion 132 toward the center side of each of the seal portions 131 and 133.
  • the seal portion 134A and the seal portion 134B are provided so as to be inclined symmetrically with respect to the axial direction (longitudinal direction X of the container 100) of the accommodation space 11 when the container 100 is viewed in a plan view.
  • the seal portion 134A is configured to intersect the seal portion 131 and the seal portion 132
  • the seal portion 134B is configured to intersect the seal portion 132 and the seal portion 133.
  • the seal portions 131 to 133 are divided into the seal portions 131A to 131B, the seal portions 132A to 132C, and the seal portions 133A to 133B, respectively.
  • the ratio of the seal portion 131B to the seal portion 131 or the ratio of the seal portion 133B to the seal portion 133 is preferably about 0.15, and the ratio of the seal portion 132B to the seal portion 132 is about 0.45.
  • the seal portions 134A and 134B according to the present embodiment are formed so as to be separated from the outer peripheral edge portion of the container 100.
  • the seal portion 134A extends from one end of the seal portion 132B (the end on the left side of the drawing) to the other end of the seal portion 131A (the end on the lower side of the drawing).
  • the seal portion 134B extends from the other end of the seal 132B (the end on the right side of the drawing) to the other end of the seal 131A (the end on the lower side of the drawing).
  • the seal portion 134A and the seal portion 134B are provided so that the angle ⁇ formed with each of the seal portions 131 to 133 is, for example, about 45 degrees.
  • the size of the angle ⁇ is not limited to 45 degrees as long as it can contribute to making it difficult to form an air pool in the reduction portion P described later when the moisture-curable resin is injected into the accommodation space 11.
  • the seal portions 134A and 134B are configured as a linear shape in FIG. 1, but if it can contribute to making it difficult to form an air pool in the accommodation space 11, the shape of the seal portion is configured as an R shape in addition to the linear shape. You may.
  • the storage space 11 of the container 100 is formed by the sealing portions 131A, 134A, 132B, 134B, and 133A. Further, the seal portion 13 forms a reduction portion (ship bottom portion) P that reduces the distance (width, cross-sectional area) between the opposite sides of the polygon in the accommodation space 11 (see FIGS. 1 and 3).
  • the reduction portion P is formed in the accommodation space 11 and is formed by the seal portions 134A, 132B, and 134B.
  • the reduction portion P is a portion where the cross-sectional area of the accommodation space 11 decreases from the opening 12 toward the longitudinal direction X of the container 100.
  • the positions of both ends (side ends) of the accommodation space 11 when the container 100 is viewed in a plan view (from the thickness direction Z of the composite film 20) are provided at positions facing the opening 12 in the width direction Y of the container 100. It approaches (taperes) toward one end (seal portion 132) of the container 100.
  • the angle formed by the seal portion 134A forming the reduction portion P with each of the seal portion 132B and the seal portion 131A is an obtuse angle. Further, the angle formed by the seal portion 134B with each of the seal portions 132B and 133A is also an obtuse angle. Therefore, the container 100 according to the present embodiment can suppress the formation of voids at the corners of the reduction portion P when the moisture-curable resin is accommodated in the accommodation space 11.
  • the moisture-curable resin is a viscous material, so that the moisture-curable resin extends to the tip end side of the corner. It may be difficult to flow.
  • the void means a portion where such a moisture-curable resin is difficult to flow in and an air pool is likely to be formed.
  • the reduced portion P according to the present embodiment has an obtuse angle at the bottom corner of the container 100 so that the moisture-curable resin can be accommodated up to the tip end side of the corner, and the moisture contained in the reduced portion P can be accommodated. It is possible to prevent the curable resin from being cured by the air left at the corners of the reduced portion P.
  • the seal portions 134A and 134B forming the reduction portion P are configured to be separated from the corner portions of the bottom of the container 100 (the corner portions formed by the seal portion 131B and the seal portion 132A, the seal portion 132C and the seal portion 133B, respectively). There is. Therefore, the moisture-curable resin contained in the vicinity of the seal portions 134A and 134B forming the reduction portion P is not easily affected by the gas permeating from the end face of the container 100, and permeates from the outside to the inside of the container 100. The possibility of being cured by moisture can be further reduced.
  • the outer shape of the container 100 has a rectangular shape as shown in FIG. 1, but may be formed in a shape that tapers toward the bottom of the container 100 in the same manner as the shape of the storage space 11.
  • the printing layer 21, the aluminum foil layer 22, the barrier sealant layer 23, and the heat-sealing layer 24 are arranged adjacent to each other from the outside to the internal space of the container 100 (see FIG. 4).
  • the films are bonded to each other.
  • Each layer constituting the composite film 20 is adhered via, for example, an adhesive or a molten resin, and the airtightness of the composite film 20 can be improved.
  • each layer For bonding each layer, a method known in the art can be appropriately selected and used. For example, it can be laminated by using two-component reaction type polyester type, polyurethane type, dry lamination using polyester / polyurethane type adhesive, wet lamination, extrusion lamination, thermal lamination and the like.
  • an adhesive known in the technical field can be appropriately selected and used.
  • a polyurethane adhesive can be preferably used.
  • the print layer 21 is formed of biaxially stretched polyethylene terephthalate, polybutylene terephthalate, or biaxially stretched nylon.
  • biaxially stretched polyethylene terephthalate and biaxially stretched nylon used for the printing layer 21 types known in the art can be appropriately selected and used.
  • the polyethylene terephthalate is generally obtained by dehydration condensation of ethylene glycol and terephthalic acid, but it is also possible to use an improved polyethylene terephthalate to which a further copolymerization component or the like is added.
  • the nylon (polyamide) is appropriately selected from aliphatic polyamides such as nylon 6, nylon 6,6, nylon 4,6, PA11, PA12, PA610, aromatic polyamides, and further modified polyamides. Can be used. Of these, polyethylene terephthalate and nylon are preferable because they can be printed without surface treatment.
  • the aluminum foil layer 22 functions as a gas barrier layer for blocking the permeation of gases such as water vapor gas and oxygen gas.
  • the aluminum foil layer 22 has high durability. Therefore, the durability of the container 100 can be ensured by using the aluminum foil layer 22 for the composite film 20. Therefore, the container 100 can prevent the appearance abnormality from occurring on the outer surface and the inner surface of the container 100 after the moisture-curable resin is stored. According to such a container 100, the sealing property can be maintained for a long period of time, and the curing of the moisture-curable resin contained in the storage space 11 can be suppressed.
  • the thickness of the aluminum foil layer 22 is at least 5 ⁇ m or more, more preferably 7 ⁇ m or more, and more preferably 9 ⁇ m or more from the viewpoint of exhibiting sufficient gas barrier properties.
  • the aluminum foil layer 22 has a gas barrier property
  • various aluminum foils known in the art can be appropriately selected and used.
  • a soft aluminum foil may be used from the viewpoint of improving the flexibility of the composite film 20 as a whole.
  • the aluminum foil not only pure aluminum type but also Al—Mn type, Al—Mg type and Al—Fe type may be used.
  • the barrier sealant layer 23 includes a sealant layer and a coextruded layer.
  • the sealant layer is made of a thermoplastic resin.
  • various thermoplastic resins known in the art can be appropriately selected and used as long as the effects of the present invention such as corrosion resistance, gas barrier property, and flexibility are not impaired.
  • the sealant layer includes polyethylene, polyethylene terephthalate, polyamide, polyvinyl alcohol, ethylene-vinyl acetate copolymer, polyethylene naphthalate, polybutylene naphthalate, polybutylene terephthalate, polypropylene, polyacrylonitrile, polyvinyl chloride, and poly. It may be a single layer or two or more layers selected from the group consisting of vinylidene chloride, cellophane, polystyrene, polyimide, fluororesin and copolymers thereof.
  • the coextruded layer includes an ethylene-vinyl alcohol copolymer layer and a thermoplastic resin layer.
  • the thermoplastic resin constituting the coextruded layer for example, those exemplified as the thermoplastic resin constituting the sealant layer can be used.
  • the structure of the coextruded layer is not particularly limited as long as it includes the ethylene-vinyl alcohol copolymer layer and the thermoplastic resin layer, but preferably a structure in which the ethylene-vinyl alcohol copolymer layer is sandwiched between the thermoplastic resin layers.
  • the two or more thermoplastic resin layers sandwiching the ethylene-vinyl alcohol copolymer (EVOH) may be a layer made of the same thermoplastic resin or different thermoplastic resin layers.
  • the structure of the coextrusion layer is, for example, polyethylene / EVOH / polyethylene, polypropylene / EVOH / polypropylene, polyethylene / EVOH / nylon / polyethylene, polyethylene / nylon / EVOH / nylon / polyethylene, polypropylene / EVOH / nylon, polyethylene / EVOH /.
  • Polyethylene, polyethylene / EVOH / nylon / MXD nylon 6 / polyethylene and the like can be mentioned.
  • the coextruded layer preferably has a three-layer structure in which EVOH is sandwiched between thermoplastic resins and a multilayer structure in which a thermoplastic resin layer is further combined, and EVOH is preferably sandwiched between the same type of thermoplastic resin.
  • thermoplastic resin for forming the coextruded layer
  • LLDPE linear low density polyethylene
  • LLDPE linear low density polyethylene
  • a coextruded layer having a structure of LLDPE / EVOH / LLDPE or LLDPE / nylon / EVOH / nylon / LLDPE is preferable, and LLDPE / EVOH / LLDPE is particularly preferable.
  • the composite film 20 according to the present embodiment is superior to the case where the EVOH layer and the thermoplastic resin are simply laminated by adopting the coextruded layer of the EVOH layer and the thermoplastic resin as the barrier layer as described above. Plays corrosion resistance.
  • the thickness of the EVOH layer constituting the coextruded layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, from the viewpoint of imparting excellent corrosion resistance.
  • the upper limit of the thickness is not particularly limited, but is preferably 40 ⁇ m or less.
  • the thickness of the entire coextruded layer is not particularly limited, but it is preferably adjusted to 20 to 100 ⁇ m depending on the thickness of the EVOH layer.
  • the coextrusion layer can be formed by using a general coextrusion method.
  • the coextruded layer may be stretched or unstretched, but the non-stretched film is more flexible and is preferable from the viewpoint of handleability when the container 100 is formed.
  • the heat-sealing layer 24 may be any resin film having heat-sealing properties that melts by heating and adheres to each other.
  • a linear low-density polyethylene film LLDPE film
  • CPP film polypropylene film
  • These resin films may be unstretched or well stretched.
  • the thickness of the composite film 20 is not particularly limited as long as it has excellent corrosion resistance, flexibility, and gas barrier property, but is preferably 40 to 150 ⁇ m. ..
  • the composite film 20 according to the present embodiment may include a layer other than the layer described above, as long as the above-mentioned properties are not impaired.
  • the heat-sealing layer 24 may be provided on the outermost layer and the innermost layer of the composite film 20.
  • a seal bar (not shown) is used to open the container 100. It can be formed by heat-sealing the end portion of the composite film 20 excluding the end portion on the 12 side.
  • the container 100 formed by the composite film 20 causes delamination of the composite film 20 and generation of air bubbles on the outer surface of the container 100, which is generated by storing the moisture-curable resin shown below in the container 100 for a long period of time. It can be suppressed. Further, it is possible to suppress the occurrence of delamination of the composite film 20 at the boundary portion between the accommodation space 11 and the sealing portion 13 inside the container 100.
  • a moisture-curable resin is a resin that is liquid before curing, but the crosslinkable silyl group is hydrolyzed by moisture in the air, and the polymers crosslink and cure by forming a siloxane bond with each other via silanol.
  • examples thereof include resins that are crosslinked and cured by reacting silanol groups with each other to form a siloxane bond.
  • the moisture-curable resin include silicone resins, polyoxyalkylene-based polymers such as polyoxypropylene, (meth) acrylic acid ester-based polymers, vinyl-based polymers such as polyisobutylene, polyisoprene, and polybutanediene.
  • silicone resins polyoxyalkylene polymers such as polyoxypropylene, and (meth) acrylic acid ester-based polymers are preferable from the viewpoint of excellent cured product properties, and among them, cured products. Silicone is preferable because of its excellent long-term reliability.
  • the moisture-curable resin is a deoxime-type condensation-curable resin having a viscosity of 120 to 500 Pa ⁇ s, a de-acetone-type condensation-curable resin having a viscosity of 30 to 500 Pa ⁇ s, and a viscosity of 30 to 500 Pa ⁇ s.
  • a deoxime type condensation curable resin having a viscosity of 140 to 450 Pa ⁇ s a deacetone type condensation curable resin having a viscosity of 50 to 450 Pa ⁇ s, and a dealcohol type having a viscosity of 50 to 450 Pa ⁇ s. It can be selected from the group consisting of condensation-curable resins, and particularly preferably, a deoxime-type condensation-curable resin having a viscosity of 150 to 400 Pa ⁇ s, a deacetone-type condensation-curable resin having a viscosity of 70 to 400 Pa ⁇ s, and a viscosity. It can be selected from the group consisting of dealcohol type condensation curable resins having a value of 70 to 400 Pa ⁇ s.
  • the container 100 cures the moisture-curable resin contained in the container while suppressing the occurrence of abnormal appearance of the container after storage. Has the effect of being able to suppress.
  • the viscosity is a value measured according to JIS K 2220 using an SOD (Standard Oil Development) viscometer in an environment of 25 ° C.
  • the deoxime-type condensation-curable resin is preferably a de-oxime-type condensation-curable silicone
  • the de-acetone-type condensation-curable resin is preferably a de-acetone-type condensation-curable silicone, which is a de-alcohol-type condensation-curable silicone.
  • the sex resin is preferably a dealcohol-type condensation-curable silicone.
  • the above-mentioned deoxime type condensation curable silicone, deacetone type condensation curable silicone, and dealcohol type condensation curable silicone are tin compounds, titanate compounds, carboxylic acid metal salts, metal acetylacetonate complexes, amine salts, and the like. Moisture curability can be improved by including a condensation catalyst such as an organic phosphoric acid compound.
  • the sealing portion 13 is a portion in which two composite films 20 are superposed so that the heat-sealing layers 24 face each other and then heat-sealed using the heat-sealing bar 400 shown in FIGS. 9 and 10. .. Drying by heating at atmospheric pressure in a vacuum chamber, then under reduced pressure (preferably 1.0 ⁇ 10 -2 to 1.0 ⁇ 10 -4 Pa, more preferably 1.0 ⁇ 10 -3 to 1.0). After drying by heating at ⁇ 10 -4 Pa), the container 100 can be sealed by heat-sealing the opening 12 with the heat seal bar 400 shown in FIGS. 9 and 10 while maintaining the reduced pressure. can. As shown in FIG. 5, a plurality of concave portions 26 and non-recessed portions 27 (also referred to as flat portions) are formed in the seal portion 13 according to the present embodiment.
  • the recesses 26 are intermittently arranged at intervals along the length direction of the seal portion 13, and form recesses along the thickness direction Z of the composite film 20.
  • a plurality of recesses 26 are arranged so as to form a row in a direction intersecting the length direction of the seal portion 13.
  • the shape of the recess 26 is formed in a quadrangular frustum shape in which the outer shape gradually decreases toward the bottom surface 26A side (inward side in the thickness direction of the composite film 20, see FIG. 6).
  • a non-recessed portion 27 is formed around the recessed portion 26 as shown in FIG. Since the recess 26 according to the present embodiment is strongly pressurized at the time of heat sealing, the recess 26 is thinner than the non-recess 27. Therefore, in the seal portion 13, thick regions (non-recessed portions 27) and thin-walled regions (recessed portions 26) are alternately arranged along the length direction of the seal portion 13.
  • the rows 28 of the recesses (see FIG. 5) in which the plurality of recesses 26 are arranged as described above are arranged in at least two rows at intervals along the width direction Y of the seal portion 13. There is.
  • the number of rows 28 of the recesses arranged in the seal portion 13 is preferably 3 or more, and 4 rows are provided in this embodiment.
  • one recess 26 constituting the row 28 of one recess is a row of other recesses adjacent to each other in the width direction Y of the seal portion 13 orthogonal to the length direction of the seal portion 13. 28 is arranged so as to be located between each of the two adjacent recesses 26. That is, the one recess 26 constituting the nth row (for example, the row P1 of the recesses) is the n + 1th row (row P2 of the recesses) adjacent to the nth row when viewed from the direction orthogonal to the row 28 of the recesses. ), It is arranged between one adjacent recess 26 and the other recess 26.
  • the one recess 26 constituting the nth row is arranged between the adjacent one recess 26 and the other recess 26 in the n + 1th row adjacent to the nth row, for example.
  • one recess 26 constituting the first row is viewed from a direction orthogonal to the row 28 of the recess with respect to each of the adjacent recess 26 and the other recess 26 in the second row, it is partial. It means that it may have a portion that overlaps with.
  • the arrangement of the recesses 26 does not have to be arranged as described above for all the rows of recesses 28.
  • n is in the range of 2 to 500, preferably in the range of 3 to 100 and the like.
  • the recesses 26 forming the rows 28 of the recesses are partially overlapped with the recesses 26 forming the rows 28 of the recesses adjacent to the width direction Y of the seal portion 13 in the longitudinal direction X of the seal portions 13. However, they are arranged so as to be displaced in the longitudinal direction X of the seal portion 13 with almost no overlap. In this way, the non-recessed portion 27 and the concave portion 26 are alternately arranged in the seal portion 13 along the width direction Y of the seal portion 13 or the longitudinal direction X of the seal portion 13, and the plurality of recesses 26 are provided in the seal portion 13. Are arranged in a staggered pattern as a whole.
  • the recess 26 constituting the seal portion 13 has a heat-sealing layer 24 of the composite film 20 thinner than the periphery (smaller cross-sectional area) than the non-recess 27. Therefore, the permeation resistance to the gas that invades the inside of the container 100 from the end surface of the outer peripheral portion of the container 100 through the seal portion 13 increases, and the permeation rate of the gas decreases. Therefore, the seal portion 13 provided with the plurality of recesses 26 can suppress the amount of gas invading the inside of the container 100 over time.
  • the gas entering from the end face of the container 100 is a recess when penetrating the seal portion 13 in the width direction. They are arranged so as to abut against the recesses 26 that form any of the rows 28. Therefore, the sealing portion 13 according to the present embodiment can suppress the amount of gas entering from the end face of the container 100, and can maintain the sealing property of the container 100 for a long period of time.
  • a plurality of recesses 26 are intermittently provided in the width direction Y or the longitudinal direction X of the seal portion 13, and the low-strength portions are not continuous. Therefore, the seal portion 13 of the container 100 according to the present embodiment is unlikely to break. Therefore, according to the configuration of the sealing portion 13, the durability of the container 100 can be ensured. Therefore, the container 100 can maintain the sealing property of the container 100 for a long period of time, and can suppress the curing of the moisture-curable resin contained in the vicinity of the sealing portion 13.
  • the distance P1 between the recesses 26 forming the row 28 of the recesses is not particularly limited.
  • the distance P1 of the recesses 26 needs to be the same as the length L1 of the recesses 26 or less than or equal to the length L1, and is preferably less than or equal to the length L1 of the recesses 26.
  • the spacing P2 between the rows 28 of the recesses is not particularly limited, and may be appropriately set according to the size of the recesses 26, the width of the seal portion 13, the number of rows 28 of the recesses provided in the seal portion 13, and the like. Can be done.
  • the shape of the recess 26 is not particularly limited. For example, it may have a rectangular shape such as a square shape or a rectangular shape, a polygonal shape, a circular shape, or an elliptical shape in a plan view.
  • the cross-sectional shape of the recess 26 is not particularly limited.
  • it may be a rectangular shape such as a square shape or a rectangular shape, a trapezoidal shape, a semicircular shape, or a semi-elliptical shape.
  • the size of the recess 26, that is, the length L1 and the width W1 (see FIG. 5) and the depth D1 (see FIG. 6) is not particularly limited.
  • the size of the recess 26 is appropriately set according to the width and length of the seal portion 13, the number of recesses 26 provided in the seal portion 13, and the like. Further, the shapes of the recesses 26 may be the same or different from each other.
  • the recess 26 is formed by pressing the edge of the container 100 in a state of being heated by the metal heat seal bar 400.
  • the heat seal bar 400 has a flat plate portion 410 and a protruding portion 420 projecting from the flat plate portion 410.
  • the resin of the heat-sealing layer 24 of the composite film 20 forming the container 100 melts when pressed by the protrusion 420 and flows to the surroundings. Therefore, when heat-sealed by the heat-sealing bar 400, a recess 26 having a thickness of the heat-sealing layer 24 thinner than the periphery is formed at the edge of the container 100 (see FIG. 6).
  • the quadrangular frustum-shaped recess 26 can be formed by making the protrusion 420 of the heat seal bar 400 into a quadrangular frustum shape. ..
  • the corner portion between the top surface 421 and the side surface 422 of the protrusion 420 is chamfered so as to be rounded.
  • the heat seal bar 400 can facilitate the flow of the resin of the heat fusion layer 24 melted at the time of heat sealing, and can relieve the stress on the print layer 21 or the aluminum foil layer 22.
  • the heat seal bar 400 if the corners of the protrusion 420 are rounded, the print layer 21 of the composite film 20 is damaged when the protrusion 420 is strongly pressed against the composite film 20 during heat sealing. It is possible to prevent the aluminum foil layer 22 from being damaged (pinholes, cracks, etc.).
  • the sealing portion 13 is improved in sealing property due to the uneven shape formed by the heat seal bar 400.
  • the performance of the composite film 20 itself forming the seal portion 13 may be deteriorated, but in the present embodiment, this problem can be satisfactorily solved.
  • the shape of the protrusion 420 is a prism such as a square pillar, the same effect can be obtained by chamfering the corners in the same manner.
  • the angle ⁇ 2 (see FIG. 10) formed by the top surface 421 and each of the side surfaces 422 is not particularly limited, but may be set to, for example, 45 degrees. can.
  • the two rectangular composite films 20 are stacked and arranged so that the heat-sealing layers 24 face each other, and are laminated by using a BH60 type bag making machine (manufactured by Totani Giken Kogyo Co., Ltd.).
  • Heat seal bars 400 having a width of 20 mm are arranged one above the other on the three edges (also referred to as side edges) of the composite film 20, and the upper and lower heat seal bars 400 are used while applying heat of about 180 ° C.
  • the heat-sealing layers 24 are heat-sealed together by sandwiching the three side edges of the composite film 20. This makes it possible to manufacture a container 100 having three side edges of 280 mm ⁇ 350 mm that are heat-sealed.
  • the heat-sealed container 100 was placed in a vacuum drying furnace and dried at 80 ° C. for 72 hours, and then glass wool manufactured by Asahi Fiber Glass Co., Ltd. was formed into a plate of 200 mm ⁇ 200 mm ⁇ 32 mm. (Fiber diameter 4 ⁇ m) was added, and after further drying at 169 ° C. for 36 minutes, the pressure was reduced to 1.0 ⁇ 10 -3 Pa. 12) is heat-sealed by applying heat of 180 ° C. with a heat seal bar 400 having a width of 20 mm.
  • FIG. 7 is a flowchart showing each procedure of the usage method using the container 100.
  • the container 100 is used by accommodating the moisture-curable resin in the accommodating space 11 of the container 100 (S11), sealing the opening 12 of the container 100 (S12), and opening the container 100 in the accommodating space 11. It includes taking out the contained moisture-curable resin to the outside (S13).
  • the user installs the container 100 in the can 200 with the opening 12 side facing upward and the opening 12 widened.
  • the moisture-curable resin is stored in the storage space 11 of the container 100 via the nozzle 60 or the like (S11).
  • the user seals the opening 12 of the container 100 (S12).
  • the opening 12 is sealed by a heat seal as an example in the present embodiment (see FIG. 3).
  • the present invention is not limited to this, and the seal portion may be sealed by another method as shown in FIG.
  • the user takes out the container 100 from the can 200, stores the container 100, or transports the container 100 by means of transportation.
  • the user installs the container 100 inside the can 201 in which the spacer 202 is installed on the bottom wall portion 201a as shown in FIGS. 8A to 8C.
  • the can 201 the can 200 may be used.
  • the user opens the container 100 from the seal portion 132B side, and takes out the moisture-curable resin contained in the storage space 11 to the outside of the container 100 by using the pumping means 300 (S13).
  • the user installs the container 100 so that the seal portion 132B side is on the upper side.
  • the user installs the container 100 in the can 201 so that the state of FIG. 2 and the top and bottom are opposite to each other.
  • the user creates a new opening 121A by cutting out the side of the seal portion 132 (one end of the container 100 provided at a position facing the opening 12), and the moisture contained in the storage space 11
  • the curable resin is taken out from the seal portion 132B side.
  • the pumping means 300 is provided on the main body cylinder 310 having a substantially cylindrical shape and on the lower end side of the outer circumference of the main body cylinder 310, and is a flange outward in the radial direction having a diameter smaller than that of the pressing member 330.
  • a portion 320 is provided so as to be able to ascend and descend via an elevating device (not shown).
  • a passage 311 penetrating in the vertical direction is formed inside the main body cylinder 310, and the suction port 312 at the lower end of the passage 311 communicates with the opening 121A of the container 100 on substantially the same axis.
  • An O-ring (not shown) is provided on the outside of the suction port 312 to prevent the moisture-curable resin from leaking to the outside from the connecting portion between the through hole 331 of the pressing member 330 and the passage 311 of the main body cylinder 310. ..
  • the projecting member 350 is fixed in a state of being inserted into the suction port 312 side of the passage 311.
  • the projecting member 350 is provided so as to project downward from the suction port 312 of the main body cylinder 310 and further downward from the through hole 331 of the pressing member 330 by a predetermined length.
  • the user puts the spacer 202 on the bottom wall portion 201a of the can 201, and then installs the container 100 on the spacer 202 of the can 201.
  • the seal portion 13 on the upper end side of the container 100 is positioned so as to wrap around the peripheral wall portion 201b side of the can 201, the upper surface of the container 100 (the opening 121A side in the material distribution direction in the container 100) is not wrinkled. Adjust so that.
  • the pressing member 330 is placed so that the receiving space 332 of the pressing member 330 covers the upper region (reduced portion P) of the container 100.
  • a blade such as a cutter is moved along the inner circumference of the through hole 331 of the pressing member 330, and the container 100 is cut out so as to have substantially the same shape as the through hole 331 to form the opening 121A. do.
  • the pumping means 300 is placed on the plate 330a (referred to as a horizontal portion) of the pressing member 330 so that the protruding member 350 provided on the suction port 312 side is inserted into the through hole 331 of the pressing member 330 and the opening 121A of the container 100. Is placed.
  • the container 100 containing the moisture-curable resin is pressed, the volume of the container 100 is reduced, and the container 100 is housed in the container 100.
  • the internal pressure of the moisture-curable resin is increased.
  • the moisture-curable resin passes through the opening 121A, is sucked from the suction port 312, and is pressure-fed to the coating nozzle (not shown) through the passage 311.
  • the pumping means 300 approaches the bottom wall portion 201a of the can 201, the spacer 202 is received in the receiving space 332 of the pressing member 330, and the moisture-curable resin inside the receiving space 332 is also sucked from the suction port 312. .
  • the lower side of the protruding member 350 is received in the recess 202R of the spacer 202 while being in contact with the container 100. Due to the suction force of the suction port 312, the bottom portion 12A of the container 100 (the side opposite to the opening 121A side in the material distribution direction in the container 100) is partially engaged with the projecting member 350, and the opening formed in the projecting member 350. The moisture-curable resin is sucked and pumped through the portion 350A.
  • the container 100 containing the moisture-curable resin When the container 100 containing the moisture-curable resin is pressed by the pressing member 330 and the volume of the container 100 is reduced, the container 100 is formed with a wrinkled portion 100S as shown in FIG. 8D. That is, as the pressing member 330 descends, the cylindrical body 330b of the pressing member 330 (also referred to as a rising portion rising from the horizontal portion) enters between the inner surface of the peripheral wall portion 201b of the can 201 and the outer surface of the container 100. The upper side (reduced portion P) of the lateral region (region along the inner surface of the peripheral wall portion 201b) of the container 100 is received in the receiving space 332 along the inner surface of the tubular body 330b.
  • the receiving space 332 means a semi-closed space formed by the plate 330a and the tubular body 330b. Then, as the pressing member 330 further lowers, the lateral upper region of the container 100 is folded at a position along the inner surface of the tubular body 330b in the receiving space 332 to form the wrinkled portion 100S. After that, when the spacer 202 is received in the receiving space 332, the tubular body 330b and the wrinkled portion 100S are housed in the inner surface of the peripheral wall portion 201b of the can 201 and the space of the spacer 202, and the lower surface of the plate 330a and the spacer 202. The upper surface of the container 100 and the upper surface of the container 100 are brought close to each other so as to sandwich the container 100. Therefore, according to such a suction method, it is possible to use as much moisture-curable resin contained in the container 100 as possible.
  • the composite film 20 having the heat-sealing layer 24 is laminated so that the heat-sealing layers 24 face each other to form a storage space 11 for accommodating the moisture-curable resin.
  • It is a container provided with a seal portion 13 to which 20 is bonded.
  • the moisture-curable resin contained in the container 100 is a deoxidized condensation-curable resin having a viscosity (25 ° C.) range of 120 to 500 Pa ⁇ s, and a viscosity (25 ° C.) range of 30 to 500 Pa ⁇ s.
  • the seal portion 13 includes a plurality of recesses 26 in which the thickness of the heat-sealing layer 24 is thinner than the periphery thereof. When viewed from the direction orthogonal to the row, it is arranged between one recess 26 adjacent to each other and the other recess 26 in the n + 1th row adjacent to the nth row.
  • the container 100 is formed of a composite film 20 having an aluminum foil layer 22. Therefore, the durability of the container 100 can be ensured. Therefore, the container 100 can prevent the appearance abnormality from occurring after storing the moisture-curable resin. Further, the container 100 is formed with the sealing portion 13 by sealing the heat-sealing layer of at least a part of the composite film 20 (the outer peripheral portion excluding the opening 12 side of the container 100). In the seal portion 13, the positions of each of the plurality of recesses 26 forming the nth row and each of the plurality of recesses 26 forming the n + 1th row adjacent to each other are displaced from each other when viewed from the direction orthogonal to the row. It is arranged like this.
  • the container 100 can prevent the gas that invades from the end surface of the outer peripheral portion of the container 100 from permeating through the seal portion 13 in the width direction, and can secure the durability. As a result, the container 100 can maintain its sealing property for a long period of time, and the curing of the moisture-curable resin contained in the vicinity of the sealing portion 13 can be suppressed. Therefore, the performance of the moisture-curable resin container is improved.
  • the seal portion 13 is formed into a polygon when viewed in a plan view from the thickness direction of the composite film 20.
  • the seal portion 13 further includes a reduction portion P that reduces the distance between the opposing sides of the polygon in the accommodation space 11.
  • the seal portion 134A forming the reduction portion P forms an obtuse angle with each of the seal portion 132B and the seal portion 131A, and the seal portion 134B also forms an obtuse angle with each of the seal portions 132B and 133A. Therefore, it is possible to prevent the formation of voids at the corners of the reduced portion P when the moisture-curable resin is stored in the storage space 11.
  • the reduction portion P suppresses the moisture-curable resin contained in the vicinity of the sealing portions 134A, 132B, and 134B forming the reduction portion P from being cured by the moisture in the air left at the corners of the reduction portion P. can do.
  • the deoxime-type condensation-curable resin contains a de-oxime-type condensation-curable silicone
  • the de-acetone-type condensation-curable resin contains a deacetone-type condensation-curable silicone
  • the de-alcohol-type condensation-curable resin is de-alcohol-type. Contains alcohol-type condensation-curable silicone.
  • the printing layer 21, the aluminum foil layer 22, and the barrier sealant layer 23 are arranged adjacent to each other from the outside to the internal space.
  • delamination of the composite film 20 and generation of air bubbles on the outer surface of the container 100 can be suppressed.
  • the number of composite films 20 used to make the container 100 is not particularly limited.
  • the container 100 may be created by folding back one composite film 20 and sticking the two side edges together.
  • the container 100 may be created by laminating one composite film 20 and another composite film 20 in a state where there is a member interposed between one composite film 20 and another composite film 20. .. Further, the container 100 is in a state where one composite film 20 and another composite film 20 are overlapped and the outer surfaces of the two composite films 20 are covered (wrapped) with another member, and the container 100 is combined with the one composite film 20. It may be created by laminating another composite film 20.
  • the samples (1) to (8) used in the examples are as shown in Table 1.
  • the viscosities of the samples (1) to (8) were measured according to JIS K 2220 using an SOD (Standard Oil Development) viscometer in an environment of 25 ° C.
  • the composite film of the bag body A has a thickness of 84 ⁇ m.
  • the composite film of the bag A has a printing layer made of biaxially stretched nylon having a thickness of 25 ⁇ m, an aluminum foil layer having a thickness of 9 ⁇ m, and an LLDPE / EVOH / LLDPE (coextruded layer) having a thickness of 50 ⁇ m in order from the outer surface of the container. ), And a heat-sealing layer.
  • adjacent layers were bonded to each other with a laminate adhesive.
  • the two composite films are arranged so as to face each other so that the heat-sealing layers face each other, and the edges (seal portions 131, 132, 133 of the laminated composite films are described in FIG. 1) of the laminated composite films.
  • Heat seal bars capable of forming block seals having a width of 10 mm each were arranged one above the other (also referred to as side edges). Then, while applying heat, the three edges of the composite film were sandwiched between the heat seal bars, and the heat-sealing layers were heat-sealed to each other. Further, in the seal portion 134A and the seal portion 134B of FIG.
  • heat seal bars capable of forming a block seal having a width of 10 mm are arranged vertically so that the angle ⁇ formed with each of the seal portions 131 to 133 is about 45 degrees. It was provided. As a result, a bag body A (width 140 mm ⁇ length 200 mm) having heat-sealed edges on three sides was obtained.
  • -Preparation of Examples 1 to 6 and Comparative Examples 1 and 2 After filling 300 ml of the samples (1) to (8) shown in Table 1 into the bag body A, the opening of the remaining one edge of the bag body A ( (See opening 12 shown in FIG. 1) was heat-sealed by a heat seal bar capable of forming a block seal having a width of 10 mm.
  • the block seal means a seal portion (see FIG. 5) in which a plurality of recesses are arranged in a staggered pattern (also referred to as staggered or zigzag) in the length direction and the width direction of the seal portion.
  • the composite film of the bag body B has a thickness of 87 ⁇ m. However, the seal of the bag body B is different from the composite film used in the bag body A and the bag body C described later.
  • the composite film of the bag body B is composed of a printing layer made of biaxially stretched nylon having a thickness of 25 ⁇ m, a layer made of a glass-deposited barrier film having a thickness of 12 ⁇ m, and an ethylene vinyl alcohol copolymer having a thickness of 50 ⁇ m in order from the outside. It was composed of a barrier sealant layer and a heat-sealing layer. Of the layers constituting the composite film, adjacent layers were bonded to each other with a laminate adhesive.
  • Examples 1 to 6 and Comparative Examples 1 to 5 shown in Table 2 were placed in a constant temperature bath at 40 ° C. for 1 month and left to stand. Then, the bag body was opened, the sample was removed, and it was visually confirmed whether there was any abnormality in appearance on the (1) outer surface and (2) inside of the bag body. In addition, (3) it was confirmed whether or not the sample was cured after the storage test.
  • the table below shows (1) appearance evaluation of the outer surface of the bag body, (2) appearance evaluation of the inside of the bag body, and (3) curing of the sample after the storage test of Examples 1 to 6 and Comparative Examples 1 to 5. It is a figure which shows the experimental result of presence / absence evaluation.
  • Comparative Examples 1 and 2 are bags using samples (7) and (8), which are condensation-curable resins outside the predetermined viscosity range of the present invention, but outside the bag after the storage test. The result was inferior in surface appearance.
  • Comparative Examples 3 and 4 were bags formed of a film other than the composite film of the present invention, but the surface of the sample after the storage test was cured, resulting in inferior results.
  • Comparative Example 5 is a bag body sealed by a general heat seal instead of the block seal of the present invention, but the result was inferior in the appearance evaluation of the inside of the bag body.
  • the bag when the bag is formed by the composite film according to the present embodiment and is formed by block sealing and contains the moisture-curable resin in the above-mentioned viscosity range, the bag has an appearance. It was confirmed that no abnormality was observed and that the curing of the sample could be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Packages (AREA)

Abstract

The present invention is a container (100) comprising a seal part (13) in which a composite film (20) is affixed so as to form an accommodating space (11) that accommodates a humidity-curable resin. The humidity-curable resin is selected from a de-oximated condensation-curable resin at 120-500 Pa·s, a de-acetonated condensation-curable resin at 30-500 Pa·s, and de-alcoholized condensation-curable resin at 30-500 Pa·s. At least an aluminum foil layer (22) is positioned in the composite film (20). The seal part (13) comprises a plurality of recesses (26) in which the thickness of a heat-fusible layer (24) is less than at a peripheral edge. A plurality of the recesses (26) are positioned to form rows. A set of recesses constituting an nth row is positioned between an adjacent set of recesses in an n+1th row adjacent to the nth row and other recesses, as seen from a direction orthogonal to the rows. In the container (100), after the humidity-curable resin is preserved, curing of the humidity-curable resin is suppressed and the occurrence of abnormalities in external appearance is also suppressed.

Description

容器container
 本発明は、容器に関する。 The present invention relates to a container.
 従来からシール剤、接着剤として、反応性シリコーン、ウレタン樹脂、エポキシ樹脂等の高粘度の粘性材料が利用されている。このような材料は、容器に収容された状態で輸送され、保存される。 Conventionally, high-viscosity viscous materials such as reactive silicone, urethane resin, and epoxy resin have been used as sealants and adhesives. Such materials are transported and stored in containers.
 容器の収容空間に収容される粘性材料には湿気硬化性組成物(湿気硬化性樹脂)が用いられる場合がある。例えば、下記特許文献1には、アミノシランを含有する湿気硬化性組成物に対する耐食性を備えた積層フィルム(複合フィルム)および容器が開示されている。 A moisture-curable composition (moisture-curable resin) may be used as the viscous material accommodated in the storage space of the container. For example, Patent Document 1 below discloses a laminated film (composite film) and a container having corrosion resistance to a moisture-curable composition containing aminosilane.
 湿気硬化性樹脂は、空気中の水蒸気(湿気)と反応することで硬化するため、一般に使用時までに水蒸気と接触しないように水蒸気を遮断する容器に収容された状態で販売され、保管されている必要がある。 Moisture-curable resins cure by reacting with water vapor (humidity) in the air, so they are generally sold and stored in a container that blocks water vapor so that they do not come into contact with water vapor by the time of use. You need to be.
特許第5995430号明細書Japanese Patent No. 5995430
 容器は、湿気硬化性樹脂等の内容物を収容する空間を設けるように上述した複合フィルムを融着又は溶着してシール部を形成することが多い。本発明者らは、湿気硬化性樹脂を収容した容器を長時間保存しておくと、経時で、容器に層間剥離などの外観異常が生じたり、シール部付近で湿気硬化性樹脂が硬化しやすくなったりする点に着目し、鋭意検討を行っている。 The container often forms a seal portion by fusing or welding the above-mentioned composite film so as to provide a space for accommodating contents such as a moisture-curable resin. When the container containing the moisture-curable resin is stored for a long time, the present inventors may cause appearance abnormalities such as delamination in the container over time, or the moisture-curable resin may be easily cured near the seal portion. Focusing on the point of becoming, we are diligently studying.
 本発明は、上述した課題を解決するためになされたものであり、湿気硬化性樹脂を保存した後に外観異常が生じることを抑制し、湿気硬化性樹脂の硬化を抑制する容器を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and to provide a container that suppresses appearance abnormality after storing a moisture-curable resin and suppresses curing of the moisture-curable resin. The purpose.
 上記目的を達成する本発明に係る容器は、熱融着層を有する複合フィルムを前記熱融着層が対向するように重ねて、湿気硬化性樹脂を収容する収容空間を形成するように前記複合フィルムを貼り合わせたシール部を備える容器であり、前記湿気硬化性樹脂は、粘度(25℃)の範囲が120~500Pa・sである脱オキシム型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アセトン型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択され、前記複合フィルムは少なくともアルミニウム箔層が配置されており、前記シール部は、前記熱融着層の厚さが周辺よりも薄い複数の凹部を備え、前記凹部は、列をなして複数配置され、第n列目を構成する一の凹部は、前記列に直交する方向から視て、前記第n列に隣接する第n+1列目において隣り合う一の凹部と他の凹部との間に配置される。 In the container according to the present invention that achieves the above object, the composite film having a heat-sealing layer is laminated so that the heat-sealing layers face each other to form a storage space for accommodating a moisture-curable resin. It is a container provided with a sealing portion to which a film is bonded, and the moisture-curable resin is a deoxime-type condensation-curable resin having a viscosity (25 ° C.) range of 120 to 500 Pa · s, and a viscosity (25 ° C.) range. The composite film is selected from the group consisting of a deacetone type condensation curable resin having a viscosity of 30 to 500 Pa · s and a dealcohol type condensation curable resin having a viscosity (25 ° C.) of 30 to 500 Pa · s. An aluminum foil layer is arranged, and the sealing portion includes a plurality of recesses in which the thickness of the heat-sealing layer is thinner than the periphery, and the recesses are arranged in a row and the nth row is formed. The constituent one recess is arranged between the adjacent recess and the other recess in the n + 1th row adjacent to the nth row when viewed from a direction orthogonal to the row.
本実施形態に係る容器の平面図である。It is a top view of the container which concerns on this embodiment. 本実施形態に係る容器の収容空間に湿気硬化性樹脂を収容する際に容器を缶に設置した状態を示す概略図である。It is a schematic diagram which shows the state which put the container in the can when accommodating the moisture-curable resin in the accommodating space of the container which concerns on this embodiment. 本実施形態に係る容器の収容空間に湿気硬化性樹脂を収容した後に開口部を封止した状態を示す断面図である。It is sectional drawing which shows the state which sealed the opening after accommodating the moisture-curable resin in the accommodating space of the container which concerns on this embodiment. 本実施形態に係る複合フィルムを示す断面図である。It is sectional drawing which shows the composite film which concerns on this embodiment. 本実施形態に係るシール部の概略拡大図である。It is a schematic enlarged view of the seal part which concerns on this embodiment. 本実施形態に係るシール部の断面図である。It is sectional drawing of the seal part which concerns on this embodiment. 本実施形態に係る容器の使用方法を示すフローチャートである。It is a flowchart which shows the use method of the container which concerns on this embodiment. 本実施形態に係る容器の収容空間に収容された湿気硬化性樹脂を取り出す際に容器を缶に設置する状態を示す分解図である。It is an exploded view which shows the state which puts the container in the can when taking out the moisture-curable resin stored in the accommodation space of the container which concerns on this embodiment. 本実施形態に係る容器の収容空間に収容された湿気硬化性樹脂を取り出す際に容器を缶に設置する状態を示す概略図である。It is a schematic diagram which shows the state which puts the container in the can when taking out the moisture-curable resin stored in the accommodation space of the container which concerns on this embodiment. 本実施形態に係る容器の収容空間に収容された湿気硬化性樹脂を取り出す際に容器を缶に設置する状態を示す断面斜視図である。FIG. 5 is a cross-sectional perspective view showing a state in which the container is installed in a can when taking out the moisture-curable resin contained in the storage space of the container according to the present embodiment. 本実施形態に係る容器の収容空間に収容された湿気硬化性樹脂を取り出す際に容器を缶に設置する状態を示す部分断面斜視図である。FIG. 5 is a partial cross-sectional perspective view showing a state in which the container is installed in a can when taking out the moisture-curable resin contained in the storage space of the container according to the present embodiment. 本実施形態に係るシール部を形成するために使用するヒートシールバーを示す概略図である。It is the schematic which shows the heat seal bar used for forming the seal part which concerns on this embodiment. ヒートシールバーを示す断面図である。It is sectional drawing which shows the heat seal bar.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. The following description does not limit the technical scope and meaning of terms described in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 図1~図6は、実施形態に係る容器100の説明に供する図である。図7、図8A~図8Dは、容器100の使用方法の説明に供する図である。図9、図10は、実施形態に係るシール部13を形成するために使用するヒートシールバー400の説明に供する図である。各図に付した直交座標系を構成するXは、容器100の長手方向を示し、Yは容器100の幅方向を示し、Zは容器100の厚さ方向を示す。 1 to 6 are diagrams used for explaining the container 100 according to the embodiment. 7 and 8A to 8D are views for explaining how to use the container 100. 9 and 10 are views provided for explaining the heat seal bar 400 used for forming the seal portion 13 according to the embodiment. X, which constitutes the Cartesian coordinate system attached to each figure, indicates the longitudinal direction of the container 100, Y indicates the width direction of the container 100, and Z indicates the thickness direction of the container 100.
 図1は、本実施形態に係る容器100の説明に供する図である。本実施形態に係る容器100は、湿気硬化性樹脂を収容する際に使用される湿気硬化性樹脂用容器である。 FIG. 1 is a diagram used for explaining the container 100 according to the present embodiment. The container 100 according to the present embodiment is a container for a moisture-curable resin used when accommodating a moisture-curable resin.
 容器100は、略矩形形状に構成し、図1に示すように、収容空間11と、開口部12と、シール部13と、を備える。 The container 100 is formed in a substantially rectangular shape, and includes a storage space 11, an opening 12, and a sealing portion 13 as shown in FIG.
 容器100は、図1に示すように湿気硬化性樹脂を収容する収容空間11を内部に形成するように2枚の複合フィルム20を、開口部12を除いて主に外周縁部で貼り合わせることによって構成している。複合フィルム20については後述する。 In the container 100, as shown in FIG. 1, two composite films 20 are bonded to each other mainly at the outer peripheral edge portion except for the opening 12 so as to form an accommodation space 11 for accommodating the moisture-curable resin inside. It is composed of. The composite film 20 will be described later.
 容器100の縁部は、開口部12以外の部位を封止して形成したシール部13によって形成される。シール部13は、容器100の厚さ方向Z(または後述する複合フィルム20の厚さ方向)から平面視した際に多角形形状に形成されている。 The edge of the container 100 is formed by a sealing portion 13 formed by sealing a portion other than the opening 12. The seal portion 13 is formed in a polygonal shape when viewed in a plan view from the thickness direction Z of the container 100 (or the thickness direction of the composite film 20 described later).
 (収容空間)
 収容空間11は、容器100の内部に形成された空間である。収容空間11には、ノズル60(図2を参照)等を介して湿気硬化性樹脂が収容されたり、圧送手段300(図8A~図8Dを参照)等を介して湿気硬化性樹脂が収容空間11から送り出されたりする。ノズル60や後述する圧送手段300には、例えば、配管(図示省略)やポンプ(図示省略)が接続されていてもよい。
(Accommodation space)
The storage space 11 is a space formed inside the container 100. In the storage space 11, the moisture-curable resin is stored via the nozzle 60 (see FIG. 2) or the like, or the moisture-curable resin is stored in the storage space 11 via the pumping means 300 (see FIGS. 8A to 8D) or the like. It is sent out from 11. For example, a pipe (not shown) or a pump (not shown) may be connected to the nozzle 60 or the pumping means 300 described later.
 (開口部)
 開口部12は、本実施形態において2枚の複合フィルム20を重ね合わせた箇所の一端部側に設けられている。開口部12は、収容空間11に通じ、湿気硬化性樹脂を収容空間11に充填した後にシールする(閉じる)箇所を意味する。
(Aperture)
The opening 12 is provided on one end side of the portion where the two composite films 20 are superposed in the present embodiment. The opening 12 means a portion that leads to the accommodation space 11 and seals (closes) the accommodation space 11 after filling the accommodation space 11.
 (シール部)
 シール部13は、熱融着層24を有する2枚の複合フィルム20を熱融着層24が対向するように重ねて、湿気硬化性樹脂を収容する収容空間11を形成するように2枚の複合フィルム20を貼り合わせて形成している。シール部13は、容器100において収容空間11を形成するために、材料となる所定枚数の複合フィルム20を重ねて接合した部位である。
(Seal part)
The sealing portion 13 is formed by stacking two composite films 20 having a heat-sealing layer 24 so that the heat-sealing layers 24 face each other to form a storage space 11 for accommodating a moisture-curable resin. The composite film 20 is laminated to form the composite film 20. The seal portion 13 is a portion where a predetermined number of composite films 20 as materials are laminated and joined in order to form the accommodation space 11 in the container 100.
 シール部13は、図1に示すように、複合フィルム20の端部に形成されているシール部131~133を備える。シール部132は、開口部12と対向する位置に設けられた容器100の一端部(容器100の幅方向Yに延在する端部)を形成し、シール部131およびシール部133は、容器100の側端部(容器100の長手方向Xに延在する端部)の各々を形成する。なお、シール部13は、上記において容器100を構成する複合フィルム20の縁部又は端部に形成しているが、容器100の外部からの空気等の流体の侵入を防止することできれば、必ずしも複合フィルム20の縁部又は端部に形成していなくてもよい。 As shown in FIG. 1, the seal portion 13 includes seal portions 131 to 133 formed at the end portion of the composite film 20. The seal portion 132 forms one end of the container 100 (the end extending in the width direction Y of the container 100) provided at a position facing the opening 12, and the seal portion 131 and the seal portion 133 form the container 100. Each of the side ends (ends extending in the longitudinal direction X of the container 100) is formed. Although the seal portion 13 is formed at the edge or end of the composite film 20 constituting the container 100 in the above, it is not necessarily composite if it is possible to prevent the intrusion of fluid such as air from the outside of the container 100. It does not have to be formed on the edge or edge of the film 20.
 また、シール部13は、図1に示すように、シール部132の中央側からシール部131、133の各々の中央側に向かって延在するシール部134A、134Bを備える。 Further, as shown in FIG. 1, the seal portion 13 includes seal portions 134A and 134B extending from the center side of the seal portion 132 toward the center side of each of the seal portions 131 and 133.
 シール部134Aおよびシール部134Bは、図1に示すように、容器100を平面視した際の収容空間11の軸方向(容器100の長手方向X)に対して左右対称に傾斜するように設けている。シール部134Aはシール部131およびシール部132と交差し、シール部134Bはシール部132およびシール部133と交差するように構成している。このように、シール部134Aおよびシール部134Bは、シール部131~133をそれぞれシール部131A~131B、シール部132A~132C、シール部133A~133Bに区分している。シール部131に対するシール部131B、またはシール部133に対するシール部133Bの比率は、好ましくは0.15程度であり、シール部132に対するシール部132Bの比率は、0.45程度である。なお、本実施形態に係るシール部134A、134Bは、容器100の外周縁部から離間して形成している。 As shown in FIG. 1, the seal portion 134A and the seal portion 134B are provided so as to be inclined symmetrically with respect to the axial direction (longitudinal direction X of the container 100) of the accommodation space 11 when the container 100 is viewed in a plan view. There is. The seal portion 134A is configured to intersect the seal portion 131 and the seal portion 132, and the seal portion 134B is configured to intersect the seal portion 132 and the seal portion 133. As described above, in the seal portion 134A and the seal portion 134B, the seal portions 131 to 133 are divided into the seal portions 131A to 131B, the seal portions 132A to 132C, and the seal portions 133A to 133B, respectively. The ratio of the seal portion 131B to the seal portion 131 or the ratio of the seal portion 133B to the seal portion 133 is preferably about 0.15, and the ratio of the seal portion 132B to the seal portion 132 is about 0.45. The seal portions 134A and 134B according to the present embodiment are formed so as to be separated from the outer peripheral edge portion of the container 100.
 シール部134Aは、図1に示すように、シール部132Bの一端部(図面左側の端部)からシール部131Aの他端部(図面下側の端部)まで延在する。シール部134Bは、シール部132Bの他端部(図面右側の端部)からシール部131Aの他端部(図面下側の端部)まで延在する。本実施形態において、シール部134Aおよびシール部134Bは、シール部131~133の各々と成す角度θが一例として45度程度になるように設けられている。ただし、収容空間11に湿気硬化性樹脂を注入する際に、後述する減少部Pにおいて空気だまりを形成しにくくすることに寄与できれば、角度θの大きさは45度に限定されない。また、シール部134A、134Bは図1において直線形状として構成しているが、収容空間11における空気だまりを形成しにくくすることに寄与できれば、シール部の形状は直線形状以外にR形状によって構成してもよい。 As shown in FIG. 1, the seal portion 134A extends from one end of the seal portion 132B (the end on the left side of the drawing) to the other end of the seal portion 131A (the end on the lower side of the drawing). The seal portion 134B extends from the other end of the seal 132B (the end on the right side of the drawing) to the other end of the seal 131A (the end on the lower side of the drawing). In the present embodiment, the seal portion 134A and the seal portion 134B are provided so that the angle θ formed with each of the seal portions 131 to 133 is, for example, about 45 degrees. However, the size of the angle θ is not limited to 45 degrees as long as it can contribute to making it difficult to form an air pool in the reduction portion P described later when the moisture-curable resin is injected into the accommodation space 11. Further, the seal portions 134A and 134B are configured as a linear shape in FIG. 1, but if it can contribute to making it difficult to form an air pool in the accommodation space 11, the shape of the seal portion is configured as an R shape in addition to the linear shape. You may.
 なお、本実施形態に係る容器100の収容空間11は、シール部131A、134A、132B、134B、133Aによって形成される。また、シール部13は、収容空間11において多角形の対向する辺同士の間隔(幅、断面積)を減少させる減少部(船底部)Pを形成する(図1、図3を参照)。 The storage space 11 of the container 100 according to the present embodiment is formed by the sealing portions 131A, 134A, 132B, 134B, and 133A. Further, the seal portion 13 forms a reduction portion (ship bottom portion) P that reduces the distance (width, cross-sectional area) between the opposite sides of the polygon in the accommodation space 11 (see FIGS. 1 and 3).
 減少部Pは、収容空間11に形成され、シール部134A、132B、134Bによって形成されている。 The reduction portion P is formed in the accommodation space 11 and is formed by the seal portions 134A, 132B, and 134B.
 減少部Pは、開口部12から容器100の長手方向Xに向かって収容空間11の断面積が減少する部位である。容器100を(複合フィルム20の厚さ方向Zから)平面視した際の収容空間11の両端部(側端部)の位置は容器100の幅方向Yにおいて開口部12と対向する位置に設けられた容器100の一端部(シール部132)に向かうにつれて接近する(先細りする)。 The reduction portion P is a portion where the cross-sectional area of the accommodation space 11 decreases from the opening 12 toward the longitudinal direction X of the container 100. The positions of both ends (side ends) of the accommodation space 11 when the container 100 is viewed in a plan view (from the thickness direction Z of the composite film 20) are provided at positions facing the opening 12 in the width direction Y of the container 100. It approaches (taperes) toward one end (seal portion 132) of the container 100.
 減少部Pを形成するシール部134Aがシール部132B、シール部131Aの各々と成す角度は、鈍角である。また、シール部134Bがシール部132B、133Aの各々と成す角度も鈍角である。そのため、本実施形態に係る容器100は、湿気硬化性樹脂が収容空間11に収容される際に、減少部Pの角部に空隙が形成されることを抑制することができる。 The angle formed by the seal portion 134A forming the reduction portion P with each of the seal portion 132B and the seal portion 131A is an obtuse angle. Further, the angle formed by the seal portion 134B with each of the seal portions 132B and 133A is also an obtuse angle. Therefore, the container 100 according to the present embodiment can suppress the formation of voids at the corners of the reduction portion P when the moisture-curable resin is accommodated in the accommodation space 11.
 容器100を平面視した際の減少部P(容器100の底部)における角部が鋭角であった場合、湿気硬化性樹脂は粘性材料であるため、該角部の先端側まで湿気硬化性樹脂が流れ込みにくくなる可能性がある。空隙は、このような湿気硬化性樹脂が流入しにくく、空気だまりが形成されやすい部位を意味する。本実施形態に係る減少部Pは、容器100の底部側の角部を鈍角に構成することによって、該角部の先端側まで湿気硬化性樹脂を収容可能とし、減少部Pに収容された湿気硬化性樹脂が減少部Pの角部に残された空気によって硬化することを抑制できる。 When the corner of the reduced portion P (bottom of the container 100) when the container 100 is viewed in a plan view is an acute angle, the moisture-curable resin is a viscous material, so that the moisture-curable resin extends to the tip end side of the corner. It may be difficult to flow. The void means a portion where such a moisture-curable resin is difficult to flow in and an air pool is likely to be formed. The reduced portion P according to the present embodiment has an obtuse angle at the bottom corner of the container 100 so that the moisture-curable resin can be accommodated up to the tip end side of the corner, and the moisture contained in the reduced portion P can be accommodated. It is possible to prevent the curable resin from being cured by the air left at the corners of the reduced portion P.
 減少部Pを形成するシール部134A、134Bは、容器100の底部の角部(シール部131B及びシール部132A、シール部132C及びシール部133Bがそれぞれ形成する角部)から離れるように構成している。そのため、減少部Pを形成するシール部134A、134B付近に収容された湿気硬化性樹脂は、容器100の端面から透過する気体(ガス)の影響を受けにくく、容器100の外部から内部へ透過した水分によって硬化する可能性をさらに低くすることができる。 The seal portions 134A and 134B forming the reduction portion P are configured to be separated from the corner portions of the bottom of the container 100 (the corner portions formed by the seal portion 131B and the seal portion 132A, the seal portion 132C and the seal portion 133B, respectively). There is. Therefore, the moisture-curable resin contained in the vicinity of the seal portions 134A and 134B forming the reduction portion P is not easily affected by the gas permeating from the end face of the container 100, and permeates from the outside to the inside of the container 100. The possibility of being cured by moisture can be further reduced.
 以上、容器100を構成する各要素について説明したが、上述した内容に限定されず、種々変更することができる。 Although each element constituting the container 100 has been described above, the contents are not limited to those described above, and various changes can be made.
 例えば、本実施形態に係る容器100の外形は、図1に示すように矩形形状であるが、収容空間11の形状と同様に容器100の底部に向かって先細りする形状によって構成してもよい。 For example, the outer shape of the container 100 according to the present embodiment has a rectangular shape as shown in FIG. 1, but may be formed in a shape that tapers toward the bottom of the container 100 in the same manner as the shape of the storage space 11.
 (複合フィルム)
 次に、複合フィルム20の構成について詳述する。
(Composite film)
Next, the configuration of the composite film 20 will be described in detail.
 本発明に係る複合フィルム20は、容器100の外部から内部空間にかけて印刷層21、アルミニウム箔層22、バリアシーラント層23、および熱融着層24が隣接して配置され(図4を参照)、互いに接着されているフィルムである。 In the composite film 20 according to the present invention, the printing layer 21, the aluminum foil layer 22, the barrier sealant layer 23, and the heat-sealing layer 24 are arranged adjacent to each other from the outside to the internal space of the container 100 (see FIG. 4). The films are bonded to each other.
 複合フィルム20を構成する各層は、例えば、接着剤や溶融樹脂を介して接着され、複合フィルム20の気密性を向上させることができる。 Each layer constituting the composite film 20 is adhered via, for example, an adhesive or a molten resin, and the airtightness of the composite film 20 can be improved.
 各層の接着には、当該技術分野において公知である手法を適宜選択して使用することができる。例えば、二液反応型ポリエステル系、ポリウレタン系、ポリエステル・ポリウレタン系接着剤を用いたドライラミネーション、ウェットラミネーション、押出ラミネーション、サーマルラミネーション等を利用して積層することができる。 For bonding each layer, a method known in the art can be appropriately selected and used. For example, it can be laminated by using two-component reaction type polyester type, polyurethane type, dry lamination using polyester / polyurethane type adhesive, wet lamination, extrusion lamination, thermal lamination and the like.
 各層を接着させるための接着剤としては、当該技術分野に公知である接着剤を適宜選択して使用することができる。例えば、ポリウレタン系接着剤を好適に使用することができる。 As the adhesive for adhering each layer, an adhesive known in the technical field can be appropriately selected and used. For example, a polyurethane adhesive can be preferably used.
 印刷層21は、二軸延伸ポリエチレンテレフタレート、ポリブチレンテレフタラート、又は二軸延伸ナイロンで形成される。印刷層21に用いられる二軸延伸ポリエチレンテレフタレート及び二軸延伸ナイロンとしては、当該技術分野において公知である種類を適宜選択して使用することができる。ポリエチレンテレフタレートとしては、一般的に、エチレングリコールとテレフタル酸の脱水縮合によって得られるが、更なる共重合成分等が加えられた改良型のポリエチレンテレフタレートを使用することも可能である。ナイロン(ポリアミド)としては、ナイロン6、ナイロン6,6、ナイロン4,6、PA11、PA12、PA610等の脂肪族ポリアミドや、芳香族ポリアミドに加え、更に改質されたポリアミド等から適宜選択して使用することができる。中でもポリエチレンテレフタレートやナイロンは、表面処理を施すことなく印刷可能であるため好ましい。 The print layer 21 is formed of biaxially stretched polyethylene terephthalate, polybutylene terephthalate, or biaxially stretched nylon. As the biaxially stretched polyethylene terephthalate and biaxially stretched nylon used for the printing layer 21, types known in the art can be appropriately selected and used. The polyethylene terephthalate is generally obtained by dehydration condensation of ethylene glycol and terephthalic acid, but it is also possible to use an improved polyethylene terephthalate to which a further copolymerization component or the like is added. The nylon (polyamide) is appropriately selected from aliphatic polyamides such as nylon 6, nylon 6,6, nylon 4,6, PA11, PA12, PA610, aromatic polyamides, and further modified polyamides. Can be used. Of these, polyethylene terephthalate and nylon are preferable because they can be printed without surface treatment.
 アルミニウム箔層22は、水蒸気ガスや酸素ガス等の気体の透過を遮断するためのガスバリア層として機能する。アルミニウム箔層22は高い耐久性を有している。そのため、アルミニウム箔層22が複合フィルム20に用いられることによって、容器100は耐久性を確保することができる。したがって、容器100は、湿気硬化性樹脂を保存した後に、容器100の外表面や内表面において外観異常が生じることを抑制することができる。このような容器100によれば、長期にわたって密封性を保つことができ、収容空間11に収容された湿気硬化性樹脂の硬化を抑制することができる。アルミニウム箔層22は、十分なガスバリア性を発揮させるという観点から、その厚みは少なくとも5μm以上であり、より好ましくは7μm以上、より好ましくは9μm以上である。 The aluminum foil layer 22 functions as a gas barrier layer for blocking the permeation of gases such as water vapor gas and oxygen gas. The aluminum foil layer 22 has high durability. Therefore, the durability of the container 100 can be ensured by using the aluminum foil layer 22 for the composite film 20. Therefore, the container 100 can prevent the appearance abnormality from occurring on the outer surface and the inner surface of the container 100 after the moisture-curable resin is stored. According to such a container 100, the sealing property can be maintained for a long period of time, and the curing of the moisture-curable resin contained in the storage space 11 can be suppressed. The thickness of the aluminum foil layer 22 is at least 5 μm or more, more preferably 7 μm or more, and more preferably 9 μm or more from the viewpoint of exhibiting sufficient gas barrier properties.
 アルミニウム箔層22は、ガスバリア性を有する限り、当該技術分野において公知である各種のアルミニウム箔を適宜選択して使用することができる。例えば、複合フィルム20全体の柔軟性を向上させるという観点から軟質アルミニウム箔を使用してもよい。また、アルミニウム箔は、純アルミニウム系のものだけでなくAl-Mn系、Al-Mg系、Al-Fe系のものを使用してもよい。 As long as the aluminum foil layer 22 has a gas barrier property, various aluminum foils known in the art can be appropriately selected and used. For example, a soft aluminum foil may be used from the viewpoint of improving the flexibility of the composite film 20 as a whole. Further, as the aluminum foil, not only pure aluminum type but also Al—Mn type, Al—Mg type and Al—Fe type may be used.
 バリアシーラント層23は、シーラント層と共押出層を含む。 The barrier sealant layer 23 includes a sealant layer and a coextruded layer.
 シーラント層は、熱可塑性樹脂で形成されている。シーラント層は、耐食性、ガスバリア性、柔軟性といった本発明の効果を阻害しない限り、当該技術分野において公知である各種の熱可塑性樹脂を適宜選択して使用することができる。シーラント層は、具体的には、ポリエチレン、ポリエチレンテレフタレート、ポリアミド、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、セロハン、ポリスチレン、ポリイミド、フッ素樹脂及びこれらの共重合体等から成る群より選択される一種以上からなる単層又は二層以上の層であってもよい。 The sealant layer is made of a thermoplastic resin. As the sealant layer, various thermoplastic resins known in the art can be appropriately selected and used as long as the effects of the present invention such as corrosion resistance, gas barrier property, and flexibility are not impaired. Specifically, the sealant layer includes polyethylene, polyethylene terephthalate, polyamide, polyvinyl alcohol, ethylene-vinyl acetate copolymer, polyethylene naphthalate, polybutylene naphthalate, polybutylene terephthalate, polypropylene, polyacrylonitrile, polyvinyl chloride, and poly. It may be a single layer or two or more layers selected from the group consisting of vinylidene chloride, cellophane, polystyrene, polyimide, fluororesin and copolymers thereof.
 共押出層は、エチレン-ビニルアルコール共重合体層、及び熱可塑性樹脂層を含んでいる。共押出層を構成する熱可塑性樹脂としては、例えば、シーラント層を構成する熱可塑性樹脂として例示したものを使用することができる。共押出層の構造は、エチレン-ビニルアルコール共重合体層と熱可塑性樹脂層とを含む限り特に制限されないが、好ましくは熱可塑性樹脂層でエチレン-ビニルアルコール共重合体層が挟まれた構造を有する。なお、エチレン-ビニルアルコール共重合体(EVOH)を挟む2つ以上の熱可塑性樹脂層は、同一の熱可塑性樹脂から成る層であってもよく、異なる熱可塑性樹脂層であってもよい。 The coextruded layer includes an ethylene-vinyl alcohol copolymer layer and a thermoplastic resin layer. As the thermoplastic resin constituting the coextruded layer, for example, those exemplified as the thermoplastic resin constituting the sealant layer can be used. The structure of the coextruded layer is not particularly limited as long as it includes the ethylene-vinyl alcohol copolymer layer and the thermoplastic resin layer, but preferably a structure in which the ethylene-vinyl alcohol copolymer layer is sandwiched between the thermoplastic resin layers. Have. The two or more thermoplastic resin layers sandwiching the ethylene-vinyl alcohol copolymer (EVOH) may be a layer made of the same thermoplastic resin or different thermoplastic resin layers.
 共押出層の構造としては、例えば、ポリエチレン/EVOH/ポリエチレン、ポリプロピレン/EVOH/ポリプロピレン、ポリエチレン/EVOH/ナイロン/ポリエチレン、ポリエチレン/ナイロン/EVOH/ナイロン/ポリエチレン、ポリプロピレン/EVOH/ナイロン、ポリエチレン/EVOH/ポリプロピレン、ポリエチレン/EVOH/ナイロン/MXDナイロン6/ポリエチレン等を挙げることができる。共押出層は、EVOHを熱可塑性樹脂で挟んだ3層構造から更に熱可塑性樹脂層を組み合わせた多層構造であることが好ましく、EVOHは同種の熱可塑性樹脂で挟まれていることが好ましい。 The structure of the coextrusion layer is, for example, polyethylene / EVOH / polyethylene, polypropylene / EVOH / polypropylene, polyethylene / EVOH / nylon / polyethylene, polyethylene / nylon / EVOH / nylon / polyethylene, polypropylene / EVOH / nylon, polyethylene / EVOH /. Polyethylene, polyethylene / EVOH / nylon / MXD nylon 6 / polyethylene and the like can be mentioned. The coextruded layer preferably has a three-layer structure in which EVOH is sandwiched between thermoplastic resins and a multilayer structure in which a thermoplastic resin layer is further combined, and EVOH is preferably sandwiched between the same type of thermoplastic resin.
 共押出層を形成する熱可塑性樹脂としてポリエチレンを用いる場合は、低密度ポリエチレン(LDPE)又は直鎖状低密度ポリエチレン(LLDPE)を用いることが好ましく、LLDPEがより好ましい。特に、優れた耐食性を発揮するという観点から、LLDPE/EVOH/LLDPE又はLLDPE/ナイロン/EVOH/ナイロン/LLDPEという構造を有する共押出層が好ましく、LLDPE/EVOH/LLDPEが特に好ましい。 When polyethylene is used as the thermoplastic resin for forming the coextruded layer, it is preferable to use low density polyethylene (LDPE) or linear low density polyethylene (LLDPE), and LLDPE is more preferable. In particular, from the viewpoint of exhibiting excellent corrosion resistance, a coextruded layer having a structure of LLDPE / EVOH / LLDPE or LLDPE / nylon / EVOH / nylon / LLDPE is preferable, and LLDPE / EVOH / LLDPE is particularly preferable.
 本実施形態に係る複合フィルム20は、上述したようにEVOH層と熱可塑性樹脂との共押出層をバリア層として採用することにより、単にEVOH層と熱可塑性樹脂とを積層した場合よりも優れた耐食性を奏する。 The composite film 20 according to the present embodiment is superior to the case where the EVOH layer and the thermoplastic resin are simply laminated by adopting the coextruded layer of the EVOH layer and the thermoplastic resin as the barrier layer as described above. Plays corrosion resistance.
 共押出層を構成するEVOH層の厚みは、優れた耐食性を付与するという観点から、その厚みは2μm以上であることが好ましく、より好ましくは3μm以上である。厚みの上限は、特に制限されないが、好ましくは40μm以下である。 The thickness of the EVOH layer constituting the coextruded layer is preferably 2 μm or more, more preferably 3 μm or more, from the viewpoint of imparting excellent corrosion resistance. The upper limit of the thickness is not particularly limited, but is preferably 40 μm or less.
 共押出層全体の厚みは、特に制限されないが、EVOH層の厚みに応じて、20~100μmに調整することが好ましい。 The thickness of the entire coextruded layer is not particularly limited, but it is preferably adjusted to 20 to 100 μm depending on the thickness of the EVOH layer.
 共押出層は、一般的な共押出法を用いて形成することができる。共押出層は、延伸されていてもよく無延伸であってもよいが、無延伸フィルムの方が、より柔軟性に優れるため、容器100を形成した際の取り扱い性の観点から好ましい。 The coextrusion layer can be formed by using a general coextrusion method. The coextruded layer may be stretched or unstretched, but the non-stretched film is more flexible and is preferable from the viewpoint of handleability when the container 100 is formed.
 熱融着層24は、加熱によって溶融して相互に接着する熱融着性を有する樹脂フィルムであればよく、例えば、直鎖状低密度ポリエチレンフィルム(LLDPEフィルム)やポリプロピレンフィルム(CPPフィルム)などを好適に使用することができる。これらの樹脂フィルムは、未延伸でもよく延伸されていてもよい。 The heat-sealing layer 24 may be any resin film having heat-sealing properties that melts by heating and adheres to each other. For example, a linear low-density polyethylene film (LLDPE film), a polypropylene film (CPP film), or the like. Can be preferably used. These resin films may be unstretched or well stretched.
 以上、複合フィルム20を構成する各層について説明したが、複合フィルム20の厚みは、全体として、優れた耐食性、柔軟性、ガスバリア性を備える限り、特に制限はないが、好ましくは40~150μmである。また、本実施形態に係る複合フィルム20は、上述した性質が阻害されないことを限度として、上記に説明した層以外の層を含んでいてもよい。例えば、熱融着層24は、複合フィルム20の最外層および最内層に設けられていてもよい。 Although each layer constituting the composite film 20 has been described above, the thickness of the composite film 20 is not particularly limited as long as it has excellent corrosion resistance, flexibility, and gas barrier property, but is preferably 40 to 150 μm. .. Further, the composite film 20 according to the present embodiment may include a layer other than the layer described above, as long as the above-mentioned properties are not impaired. For example, the heat-sealing layer 24 may be provided on the outermost layer and the innermost layer of the composite film 20.
 また、本実施形態に係る容器100は、上記構成からなる2枚の複合フィルム20を熱融着層24が対向するように重ね合わせた後、例えば、シールバー(図示省略)を用いて開口部12側の端部を除く複合フィルム20の端部を熱シールすることで形成できる。 Further, in the container 100 according to the present embodiment, after stacking two composite films 20 having the above structure so that the heat fusion layers 24 face each other, for example, a seal bar (not shown) is used to open the container 100. It can be formed by heat-sealing the end portion of the composite film 20 excluding the end portion on the 12 side.
 また、複合フィルム20によって形成される容器100は、以下に示す湿気硬化性樹脂を容器100に長期間保存することによって発生する、容器100の外表面における複合フィルム20の層間剥離や気泡の発生を抑制することができる。また、容器100の内部における収容空間11とシール部13の境界部分において、複合フィルム20の層間剥離の発生を抑制することができる。 Further, the container 100 formed by the composite film 20 causes delamination of the composite film 20 and generation of air bubbles on the outer surface of the container 100, which is generated by storing the moisture-curable resin shown below in the container 100 for a long period of time. It can be suppressed. Further, it is possible to suppress the occurrence of delamination of the composite film 20 at the boundary portion between the accommodation space 11 and the sealing portion 13 inside the container 100.
 湿気硬化性樹脂とは、硬化前は液状であるが、空気中の水分により架橋性シリル基が加水分解し、シラノールを経て、重合体同士がシロキサン結合を形成することにより架橋し硬化する樹脂あるいはシラノール基同士が反応しシロキサン結合を形成することにより架橋し硬化する樹脂などが挙げられる。なお、湿気硬化性樹脂としては、シリコーン樹脂、ポリオキシプロピレン等のポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体、ポリイソブチレン等のビニル系重合体、ポリイソプレン、ポリブタンジエン等のジエン系重合体などが挙げられ、中でも、硬化物特性が優れるという観点からシリコーン樹脂、ポリオキシプロピレン等のポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体が好ましく、中でも硬化物の長期信頼性が優れることからシリコーンが好ましい。 A moisture-curable resin is a resin that is liquid before curing, but the crosslinkable silyl group is hydrolyzed by moisture in the air, and the polymers crosslink and cure by forming a siloxane bond with each other via silanol. Examples thereof include resins that are crosslinked and cured by reacting silanol groups with each other to form a siloxane bond. Examples of the moisture-curable resin include silicone resins, polyoxyalkylene-based polymers such as polyoxypropylene, (meth) acrylic acid ester-based polymers, vinyl-based polymers such as polyisobutylene, polyisoprene, and polybutanediene. Among them, silicone resins, polyoxyalkylene polymers such as polyoxypropylene, and (meth) acrylic acid ester-based polymers are preferable from the viewpoint of excellent cured product properties, and among them, cured products. Silicone is preferable because of its excellent long-term reliability.
 湿気硬化性樹脂は、より具体的には粘度が120~500Pa・sである脱オキシム型縮合硬化性樹脂、粘度が30~500Pa・sである脱アセトン型縮合硬化性樹脂、粘度が30~500Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択でき、
より好ましくは、粘度が140~450Pa・sである脱オキシム型縮合硬化性樹脂、粘度が50~450Pa・sである脱アセトン型縮合硬化性樹脂、粘度が50~450Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択でき、特に好ましくは、粘度が150~400Pa・sである脱オキシム型縮合硬化性樹脂、粘度が70~400Pa・sである脱アセトン型縮合硬化性樹脂、粘度が70~400Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択できる。
More specifically, the moisture-curable resin is a deoxime-type condensation-curable resin having a viscosity of 120 to 500 Pa · s, a de-acetone-type condensation-curable resin having a viscosity of 30 to 500 Pa · s, and a viscosity of 30 to 500 Pa · s. -Can be selected from the group consisting of dealcohol type condensation curable resin which is s.
More preferably, a deoxime type condensation curable resin having a viscosity of 140 to 450 Pa · s, a deacetone type condensation curable resin having a viscosity of 50 to 450 Pa · s, and a dealcohol type having a viscosity of 50 to 450 Pa · s. It can be selected from the group consisting of condensation-curable resins, and particularly preferably, a deoxime-type condensation-curable resin having a viscosity of 150 to 400 Pa · s, a deacetone-type condensation-curable resin having a viscosity of 70 to 400 Pa · s, and a viscosity. It can be selected from the group consisting of dealcohol type condensation curable resins having a value of 70 to 400 Pa · s.
 本実施形態に係る容器100は、上記の規定の粘度範囲の縮合硬化性樹脂を用いることによって、保存後の容器の外観異常の発生を抑制しつつ、容器に収容された湿気硬化性樹脂の硬化を抑制することができるという効果を有する。なお、本発明において、粘度とは、25℃環境下でSOD(Standard Oil Development)粘度計を用いてJIS K 2220に準じて測定した値である。 By using the condensation curable resin in the viscosity range specified above, the container 100 according to the present embodiment cures the moisture-curable resin contained in the container while suppressing the occurrence of abnormal appearance of the container after storage. Has the effect of being able to suppress. In the present invention, the viscosity is a value measured according to JIS K 2220 using an SOD (Standard Oil Development) viscometer in an environment of 25 ° C.
 また、脱オキシム型縮合硬化性樹脂は好ましくは、脱オキシム型縮合硬化性シリコーンであり、脱アセトン型縮合硬化性樹脂は、好ましくは、脱アセトン型縮合硬化性シリコーンであり、脱アルコール型縮合硬化性樹脂は、好ましくは、脱アルコール型縮合硬化性シリコーンである。なお、上述した脱オキシム型縮合硬化性シリコーン、脱アセトン型縮合硬化性シリコーン、脱アルコール型縮合硬化性シリコーンは、錫化合物、チタネート系化合物、カルボン酸金属塩、金属アセチルアセトナート錯体、アミン塩、有機燐酸化合物などの縮合触媒を含むことで、湿気硬化性を向上させることができる。 The deoxime-type condensation-curable resin is preferably a de-oxime-type condensation-curable silicone, and the de-acetone-type condensation-curable resin is preferably a de-acetone-type condensation-curable silicone, which is a de-alcohol-type condensation-curable silicone. The sex resin is preferably a dealcohol-type condensation-curable silicone. The above-mentioned deoxime type condensation curable silicone, deacetone type condensation curable silicone, and dealcohol type condensation curable silicone are tin compounds, titanate compounds, carboxylic acid metal salts, metal acetylacetonate complexes, amine salts, and the like. Moisture curability can be improved by including a condensation catalyst such as an organic phosphoric acid compound.
 次に、シール部13の構成について詳述する。 Next, the configuration of the seal portion 13 will be described in detail.
 シール部13は、2枚の複合フィルム20を熱融着層24が相互に対向するようにして重ね合わせた後に、図9及び図10に示すヒートシールバー400を用いて熱シールした部分である。真空チャンバー内で、大気圧での加熱による乾燥、次いで減圧下(好ましくは1.0×10-2~1.0×10-4Pa、より好ましくは1.0×10-3~1.0×10-4Pa)での加熱による乾燥の後、減圧を維持したまま開口部12を図9及び図10に示すヒートシールバー400を用いて熱シールすることによって、容器100を密封することができる。本実施形態に係るシール部13には、図5に示すように、複数の凹部26および非凹部27(平坦部とも称する)が形成されている。 The sealing portion 13 is a portion in which two composite films 20 are superposed so that the heat-sealing layers 24 face each other and then heat-sealed using the heat-sealing bar 400 shown in FIGS. 9 and 10. .. Drying by heating at atmospheric pressure in a vacuum chamber, then under reduced pressure (preferably 1.0 × 10 -2 to 1.0 × 10 -4 Pa, more preferably 1.0 × 10 -3 to 1.0). After drying by heating at × 10 -4 Pa), the container 100 can be sealed by heat-sealing the opening 12 with the heat seal bar 400 shown in FIGS. 9 and 10 while maintaining the reduced pressure. can. As shown in FIG. 5, a plurality of concave portions 26 and non-recessed portions 27 (also referred to as flat portions) are formed in the seal portion 13 according to the present embodiment.
 (凹部)
 凹部26は、シール部13の長さ方向に沿って間隔をあけて断続的に配置され、複合フィルム20の厚さ方向Zに沿って凹部を形成している。凹部26はシール部13の長さ方向と交差する方向において列をなすように複数配置している。凹部26の形状は、底面26A側(複合フィルム20の厚さ方向における内方側、図6を参照)に向かうにしたがって漸次外形が小さくなる四角錐台状に形成されている。
(Recess)
The recesses 26 are intermittently arranged at intervals along the length direction of the seal portion 13, and form recesses along the thickness direction Z of the composite film 20. A plurality of recesses 26 are arranged so as to form a row in a direction intersecting the length direction of the seal portion 13. The shape of the recess 26 is formed in a quadrangular frustum shape in which the outer shape gradually decreases toward the bottom surface 26A side (inward side in the thickness direction of the composite film 20, see FIG. 6).
 凹部26の周辺には、図5に示すように非凹部27が形成されている。本実施形態に係る凹部26は、熱シール時に強く加圧されるため、非凹部27よりも厚みが薄くなる。そのため、シール部13には、シール部13の長さ方向に沿って、肉厚の領域(非凹部27)と肉薄の領域(凹部26)とが交互に配置される。 A non-recessed portion 27 is formed around the recessed portion 26 as shown in FIG. Since the recess 26 according to the present embodiment is strongly pressurized at the time of heat sealing, the recess 26 is thinner than the non-recess 27. Therefore, in the seal portion 13, thick regions (non-recessed portions 27) and thin-walled regions (recessed portions 26) are alternately arranged along the length direction of the seal portion 13.
 本実施形態では、上述したように複数の凹部26が配置された凹部の列28(図5を参照)が、シール部13の幅方向Yに沿って間隔をあけて少なくとも2列以上配置されている。なお、シール部13に配置される凹部の列28の数は、3列以上が好ましく、本実施形態では4列設けられている。 In the present embodiment, the rows 28 of the recesses (see FIG. 5) in which the plurality of recesses 26 are arranged as described above are arranged in at least two rows at intervals along the width direction Y of the seal portion 13. There is. The number of rows 28 of the recesses arranged in the seal portion 13 is preferably 3 or more, and 4 rows are provided in this embodiment.
 また、一の凹部の列28を構成する一の凹部26は、図5に示すように、シール部13の長さ方向に直交するシール部13の幅方向Yにおいて、隣接する他の凹部の列28において隣り合う2つの凹部26の各々の間に位置するように配置されている。すなわち、第n列目(例えば、凹部の列P1)を構成する一の凹部26は、凹部の列28に直交する方向から視て、第n列に隣接する第n+1列目(凹部の列P2)において隣り合う一の凹部26と他の凹部26との間に配置される。ここで、列の数え方は、本実施形態において袋体の内側から外側に向かって昇順に数が増えるものとする。また、「第n列目を構成する一の凹部26が、第n列に隣接する第n+1列目において隣り合う一の凹部26と他の凹部26との間に配置される」とは、例えば第一列目を構成する一の凹部26が、第二列目において隣り合う一の凹部26と他の凹部26のそれぞれに対して、凹部の列28に直交する方向から視た場合に部分的に重なる部分を有していてもよいことを意味する。凹部26の配列は全ての凹部の列28に対して上記のように配列されていなくてもよい。なお、本発明においてnは、2~500の範囲であり、好ましくは3~100の範囲などが挙げられる。 Further, as shown in FIG. 5, one recess 26 constituting the row 28 of one recess is a row of other recesses adjacent to each other in the width direction Y of the seal portion 13 orthogonal to the length direction of the seal portion 13. 28 is arranged so as to be located between each of the two adjacent recesses 26. That is, the one recess 26 constituting the nth row (for example, the row P1 of the recesses) is the n + 1th row (row P2 of the recesses) adjacent to the nth row when viewed from the direction orthogonal to the row 28 of the recesses. ), It is arranged between one adjacent recess 26 and the other recess 26. Here, in the method of counting the rows, it is assumed that the number increases in ascending order from the inside to the outside of the bag body in the present embodiment. Further, "the one recess 26 constituting the nth row is arranged between the adjacent one recess 26 and the other recess 26 in the n + 1th row adjacent to the nth row", for example. When one recess 26 constituting the first row is viewed from a direction orthogonal to the row 28 of the recess with respect to each of the adjacent recess 26 and the other recess 26 in the second row, it is partial. It means that it may have a portion that overlaps with. The arrangement of the recesses 26 does not have to be arranged as described above for all the rows of recesses 28. In the present invention, n is in the range of 2 to 500, preferably in the range of 3 to 100 and the like.
 図5において各凹部の列28を構成する凹部26は、シール部13の幅方向Yに隣接する凹部の列28を構成する凹部26とシール部13の長手方向Xにおいて一部のみが重なっているが、ほとんど重ならずにシール部13の長手方向Xにずれるよう配置している。このように、シール部13には、シール部13の幅方向Yまたはシール部13の長手方向Xに沿って、非凹部27と凹部26とが交互に配置され、複数の凹部26がシール部13の全体として千鳥状に配列される。 In FIG. 5, the recesses 26 forming the rows 28 of the recesses are partially overlapped with the recesses 26 forming the rows 28 of the recesses adjacent to the width direction Y of the seal portion 13 in the longitudinal direction X of the seal portions 13. However, they are arranged so as to be displaced in the longitudinal direction X of the seal portion 13 with almost no overlap. In this way, the non-recessed portion 27 and the concave portion 26 are alternately arranged in the seal portion 13 along the width direction Y of the seal portion 13 or the longitudinal direction X of the seal portion 13, and the plurality of recesses 26 are provided in the seal portion 13. Are arranged in a staggered pattern as a whole.
 シール部13を構成する凹部26は、図6に示すように、非凹部27に比べて複合フィルム20の熱融着層24の厚さが周辺よりも薄い(断面積が小さい)。そのため、容器100の外周部の端面からシール部13を介して容器100の内部へ侵入する気体に対する透過抵抗が増大し、気体の透過速度が低減する。そのため、複数の凹部26が設けられたシール部13は、容器100の内部に経時的に侵入する気体の侵入量を抑制することができる。非凹部27の幅方向の側方には隣接する凹部の列28の凹部26が配置されているため、容器100の端面から侵入する気体は、シール部13を幅方向に透過する際に凹部の列28のいずれかを構成する凹部26に突き当たるように配置されている。そのため、本実施形態に係るシール部13は、容器100の端面から侵入する気体の侵入量を抑制でき、長期にわたって容器100の密封性を保つことができる。 As shown in FIG. 6, the recess 26 constituting the seal portion 13 has a heat-sealing layer 24 of the composite film 20 thinner than the periphery (smaller cross-sectional area) than the non-recess 27. Therefore, the permeation resistance to the gas that invades the inside of the container 100 from the end surface of the outer peripheral portion of the container 100 through the seal portion 13 increases, and the permeation rate of the gas decreases. Therefore, the seal portion 13 provided with the plurality of recesses 26 can suppress the amount of gas invading the inside of the container 100 over time. Since the recess 26 of the row 28 of the adjacent recesses is arranged on the side of the non-recess 27 in the width direction, the gas entering from the end face of the container 100 is a recess when penetrating the seal portion 13 in the width direction. They are arranged so as to abut against the recesses 26 that form any of the rows 28. Therefore, the sealing portion 13 according to the present embodiment can suppress the amount of gas entering from the end face of the container 100, and can maintain the sealing property of the container 100 for a long period of time.
 本実施形態に係るシール部13は、複数の凹部26がシール部13の幅方向Yまたは長手方向Xに断続的に設けられており、強度の低い部分が連続していない。そのため、本実施形態に係る容器100のシール部13は破断が生じにくい。そのため、このようなシール部13の構成によれば、容器100の耐久性を確保することができる。したがって、容器100は、長期にわたって容器100の密封性を保つことができ、シール部13付近に収容された湿気硬化性樹脂の硬化を抑制することができる。 In the seal portion 13 according to the present embodiment, a plurality of recesses 26 are intermittently provided in the width direction Y or the longitudinal direction X of the seal portion 13, and the low-strength portions are not continuous. Therefore, the seal portion 13 of the container 100 according to the present embodiment is unlikely to break. Therefore, according to the configuration of the sealing portion 13, the durability of the container 100 can be ensured. Therefore, the container 100 can maintain the sealing property of the container 100 for a long period of time, and can suppress the curing of the moisture-curable resin contained in the vicinity of the sealing portion 13.
 なお、凹部の列28を構成する凹部26の間隔P1は、特に限定されない。凹部26の間隔P1は、凹部26の長さL1と同じあるいは長さL1以下である必要があり、凹部26の長さL1以下であることが好ましい。 The distance P1 between the recesses 26 forming the row 28 of the recesses is not particularly limited. The distance P1 of the recesses 26 needs to be the same as the length L1 of the recesses 26 or less than or equal to the length L1, and is preferably less than or equal to the length L1 of the recesses 26.
 また、凹部の列28の間隔P2は、特に限定されるものではなく、凹部26の大きさ、シール部13の幅、シール部13に設ける凹部の列28の数などに応じて適宜設定することができる。 The spacing P2 between the rows 28 of the recesses is not particularly limited, and may be appropriately set according to the size of the recesses 26, the width of the seal portion 13, the number of rows 28 of the recesses provided in the seal portion 13, and the like. Can be done.
 また、凹部26の形状は、特に限定されない。例えば、平面視において正方形状や長方形状などの矩形状、多角形状、円形状、楕円形状であってもよい。 The shape of the recess 26 is not particularly limited. For example, it may have a rectangular shape such as a square shape or a rectangular shape, a polygonal shape, a circular shape, or an elliptical shape in a plan view.
 また、凹部26の断面形状は、特に限定されない。例えば、三角形状のような先の尖った形状でなければ、正方形状や長方形状などの矩形状、台形状、半円形状、半楕円形状であってもよい。 Further, the cross-sectional shape of the recess 26 is not particularly limited. For example, if it is not a pointed shape such as a triangle shape, it may be a rectangular shape such as a square shape or a rectangular shape, a trapezoidal shape, a semicircular shape, or a semi-elliptical shape.
 なお、凹部26の大きさ、つまり、長さL1および幅W1(図5を参照)、深さD1(図6を参照)は、特に限定されない。凹部26の大きさは、シール部13の幅や長さ、シール部13に設ける凹部26の数などに応じて適宜設定される。また、凹部26の各々の形状は、互いに同じ形状であってもよく、異なる形状であってもよい。 The size of the recess 26, that is, the length L1 and the width W1 (see FIG. 5) and the depth D1 (see FIG. 6) is not particularly limited. The size of the recess 26 is appropriately set according to the width and length of the seal portion 13, the number of recesses 26 provided in the seal portion 13, and the like. Further, the shapes of the recesses 26 may be the same or different from each other.
 次に、凹部26の作成方法について説明する。 Next, a method of creating the recess 26 will be described.
 凹部26は、容器100の縁部が金属製のヒートシールバー400で加熱した状態で押圧されることによって形成される。ヒートシールバー400は、図9、図10に示すように、平板部410と、平板部410に突設された突起部420と、を有している。容器100を形成する複合フィルム20の熱融着層24の樹脂は、突起部420によって押圧されると溶融し、周囲に流動する。そのため、容器100の縁部には、ヒートシールバー400によって熱シールされると、熱融着層24の厚みが周辺よりも薄い凹部26が形成される(図6を参照)。 The recess 26 is formed by pressing the edge of the container 100 in a state of being heated by the metal heat seal bar 400. As shown in FIGS. 9 and 10, the heat seal bar 400 has a flat plate portion 410 and a protruding portion 420 projecting from the flat plate portion 410. The resin of the heat-sealing layer 24 of the composite film 20 forming the container 100 melts when pressed by the protrusion 420 and flows to the surroundings. Therefore, when heat-sealed by the heat-sealing bar 400, a recess 26 having a thickness of the heat-sealing layer 24 thinner than the periphery is formed at the edge of the container 100 (see FIG. 6).
 凹部26は、突起部420の形状に沿って形成されるため、ヒートシールバー400の突起部420の形状を四角錐台状とすることで、四角錐台状の凹部26を形成することができる。 Since the recess 26 is formed along the shape of the protrusion 420, the quadrangular frustum-shaped recess 26 can be formed by making the protrusion 420 of the heat seal bar 400 into a quadrangular frustum shape. ..
 突起部420の天面421と側面422との間の角部は、丸みを帯びるように面取りされていることが好ましい。これにより、ヒートシールバー400は、熱シール時に溶融させた熱融着層24の樹脂を流動させやすくすることができ、印刷層21もしくはアルミニウム箔層22に対するストレスを緩和させることができる。また、ヒートシールバー400は、突起部420の角部が丸みを帯びていると、熱シール時に突起部420が複合フィルム20に強く押し当てられた場合に、複合フィルム20の印刷層21を損傷させたり、アルミニウム箔層22を損傷(ピンホール、割れなど)させたりすることを防止することができる。 It is preferable that the corner portion between the top surface 421 and the side surface 422 of the protrusion 420 is chamfered so as to be rounded. As a result, the heat seal bar 400 can facilitate the flow of the resin of the heat fusion layer 24 melted at the time of heat sealing, and can relieve the stress on the print layer 21 or the aluminum foil layer 22. Further, in the heat seal bar 400, if the corners of the protrusion 420 are rounded, the print layer 21 of the composite film 20 is damaged when the protrusion 420 is strongly pressed against the composite film 20 during heat sealing. It is possible to prevent the aluminum foil layer 22 from being damaged (pinholes, cracks, etc.).
 ヒートシールバー400が熱シール時に複合フィルム20の印刷層21やアルミニウム箔層22を損傷させてしまうと、シール部13は、ヒートシールバー400によって形成された凹凸形状によって密封性が高められる一方で、シール部13を形成する複合フィルム20そのものの性能を低下させてしまう可能性があるが、本実施形態では、この問題を良好に解消できる。なお、突起部420の形状を四角柱などの角柱状とした場合にも、同様に角を面取りすることで、同様の効果を奏する。 If the heat seal bar 400 damages the print layer 21 and the aluminum foil layer 22 of the composite film 20 during heat sealing, the sealing portion 13 is improved in sealing property due to the uneven shape formed by the heat seal bar 400. , The performance of the composite film 20 itself forming the seal portion 13 may be deteriorated, but in the present embodiment, this problem can be satisfactorily solved. Even when the shape of the protrusion 420 is a prism such as a square pillar, the same effect can be obtained by chamfering the corners in the same manner.
 なお、突起部420の形状を四角錐台状とする場合において、天面421が側面422の各々と成す角度θ2(図10を参照)は、特に限定されないが、例えば45度に設定することができる。 When the shape of the protrusion 420 is a quadrangular pyramid, the angle θ2 (see FIG. 10) formed by the top surface 421 and each of the side surfaces 422 is not particularly limited, but may be set to, for example, 45 degrees. can.
 本実施形態においては、矩形状の2枚の複合フィルム20を、熱融着層24同士が対向するように重ねて配置し、BH60形製袋機(トタニ技研工業社製)を用いて、重ね合わされた複合フィルム20の3方の縁部(側縁部ともいう)に対して各20mm巾のヒートシールバー400を上下に配置し、約180℃の熱をかけながら上下のヒートシールバー400で複合フィルム20の3方の側縁部を挟み込んで、熱融着層24同士を熱融着させる。これにより、280mm×350mmの3方の側縁部が熱シールされた容器100を製造することができる。また、熱シールされた容器100を真空乾燥炉内に置き、80℃、72時間の乾燥処理を行った後、これに、200mm×200mm×32mmの板状に形成した旭ファイバーグラス社製のグラスウール(繊維径4μm)を入れ、更に169℃で36分間乾燥させた後に1.0×10-3Paに減圧し、減圧を維持したまま、容器100の残り一方の側縁部の開口(開口部12)を20mm巾のヒートシールバー400により180℃の熱をかけて熱融着させる。 In the present embodiment, the two rectangular composite films 20 are stacked and arranged so that the heat-sealing layers 24 face each other, and are laminated by using a BH60 type bag making machine (manufactured by Totani Giken Kogyo Co., Ltd.). Heat seal bars 400 having a width of 20 mm are arranged one above the other on the three edges (also referred to as side edges) of the composite film 20, and the upper and lower heat seal bars 400 are used while applying heat of about 180 ° C. The heat-sealing layers 24 are heat-sealed together by sandwiching the three side edges of the composite film 20. This makes it possible to manufacture a container 100 having three side edges of 280 mm × 350 mm that are heat-sealed. Further, the heat-sealed container 100 was placed in a vacuum drying furnace and dried at 80 ° C. for 72 hours, and then glass wool manufactured by Asahi Fiber Glass Co., Ltd. was formed into a plate of 200 mm × 200 mm × 32 mm. (Fiber diameter 4 μm) was added, and after further drying at 169 ° C. for 36 minutes, the pressure was reduced to 1.0 × 10 -3 Pa. 12) is heat-sealed by applying heat of 180 ° C. with a heat seal bar 400 having a width of 20 mm.
 (使用方法)
 次に、容器100の使用方法について説明する。図7は、容器100を用いた使用方法の各手順を示すフローチャートである。
(how to use)
Next, how to use the container 100 will be described. FIG. 7 is a flowchart showing each procedure of the usage method using the container 100.
 容器100の使用方法は、容器100の収容空間11に湿気硬化性樹脂を収容すること(S11)、容器100の開口部12を封止すること(S12)、容器100を開封し収容空間11に収容された湿気硬化性樹脂を外部へ取り出すこと(S13)、を含む。 The container 100 is used by accommodating the moisture-curable resin in the accommodating space 11 of the container 100 (S11), sealing the opening 12 of the container 100 (S12), and opening the container 100 in the accommodating space 11. It includes taking out the contained moisture-curable resin to the outside (S13).
 まず、使用者は、図2に示すように、容器100の開口部12側を上方に向け、開口部12を広げた状態で缶200内に設置する。このとき、湿気硬化性樹脂は、ノズル60等を介して容器100の収容空間11に収容される(S11)。 First, as shown in FIG. 2, the user installs the container 100 in the can 200 with the opening 12 side facing upward and the opening 12 widened. At this time, the moisture-curable resin is stored in the storage space 11 of the container 100 via the nozzle 60 or the like (S11).
 次に、使用者は、容器100の開口部12を封止する(S12)。開口部12は、本実施形態において一例としてヒートシールによって封止している(図3を参照)。ただし、これに限定されず、図5に示すシール部のようにその他の方法によって封止してもよい。そして、使用者は、缶200から容器100を取り出し、容器100を保存したり、移動手段によって輸送したりする。 Next, the user seals the opening 12 of the container 100 (S12). The opening 12 is sealed by a heat seal as an example in the present embodiment (see FIG. 3). However, the present invention is not limited to this, and the seal portion may be sealed by another method as shown in FIG. Then, the user takes out the container 100 from the can 200, stores the container 100, or transports the container 100 by means of transportation.
 次に、使用者は、図8A~図8Cに示すように底壁部201aにスペーサ202を設置した缶201の内部に容器100を設置する。缶201は缶200を使用してもよい。そして、使用者は容器100をシール部132B側から開封し、収容空間11に収容された湿気硬化性樹脂を、圧送手段300を用いて容器100の外部へ取り出す(S13)。このとき、使用者は、図2と異なり、容器100をシール部132B側が上側になるように設置する。言い換えれば、使用者は図2の状態と天地が反対になるように容器100を缶201に設置する。そして、使用者は、シール部132(開口部12と対向する位置に設けられた容器100の一端部)側を切り欠くことによって新たな開口部121Aを作成し、収容空間11に収容された湿気硬化性樹脂をシール部132B側から取り出す。 Next, the user installs the container 100 inside the can 201 in which the spacer 202 is installed on the bottom wall portion 201a as shown in FIGS. 8A to 8C. As the can 201, the can 200 may be used. Then, the user opens the container 100 from the seal portion 132B side, and takes out the moisture-curable resin contained in the storage space 11 to the outside of the container 100 by using the pumping means 300 (S13). At this time, unlike FIG. 2, the user installs the container 100 so that the seal portion 132B side is on the upper side. In other words, the user installs the container 100 in the can 201 so that the state of FIG. 2 and the top and bottom are opposite to each other. Then, the user creates a new opening 121A by cutting out the side of the seal portion 132 (one end of the container 100 provided at a position facing the opening 12), and the moisture contained in the storage space 11 The curable resin is taken out from the seal portion 132B side.
 以下、圧送手段300によって容器100に収容された湿気硬化性樹脂の吸引、圧送手順について詳しく説明する。 Hereinafter, the procedure for sucking and pumping the moisture-curable resin contained in the container 100 by the pumping means 300 will be described in detail.
 圧送手段300は、図8A~図8Dに示すように、略円筒状をなす本体筒310と、本体筒310の外周下端側に設けられるとともに、押圧部材330より小径となる径方向外向きのフランジ部320と、を備え、昇降装置(図示省略)を介して上昇及び降下可能に設けられている。本体筒310の内部には、上下方向に貫通する通路311が形成されており、通路311の下端の吸引口312が容器100の開口部121Aと略同一軸線上で連通するようになっている。吸引口312の外側にはOリング(図示省略)が設けられており、押圧部材330の貫通穴331と本体筒310の通路311との連結部位から外側への湿気硬化性樹脂の漏れを防止する。本使用方法では、突出部材350は、通路311の吸引口312側に挿入された状態で固定されている。突出部材350は、本体筒310の吸引口312から下方に向かって突出し、押圧部材330の貫通穴331より更に下方に向かって所定長さ突き出るように設けられている。 As shown in FIGS. 8A to 8D, the pumping means 300 is provided on the main body cylinder 310 having a substantially cylindrical shape and on the lower end side of the outer circumference of the main body cylinder 310, and is a flange outward in the radial direction having a diameter smaller than that of the pressing member 330. A portion 320 is provided so as to be able to ascend and descend via an elevating device (not shown). A passage 311 penetrating in the vertical direction is formed inside the main body cylinder 310, and the suction port 312 at the lower end of the passage 311 communicates with the opening 121A of the container 100 on substantially the same axis. An O-ring (not shown) is provided on the outside of the suction port 312 to prevent the moisture-curable resin from leaking to the outside from the connecting portion between the through hole 331 of the pressing member 330 and the passage 311 of the main body cylinder 310. .. In this usage method, the projecting member 350 is fixed in a state of being inserted into the suction port 312 side of the passage 311. The projecting member 350 is provided so as to project downward from the suction port 312 of the main body cylinder 310 and further downward from the through hole 331 of the pressing member 330 by a predetermined length.
 使用者は、先ず、湿気硬化性樹脂の吸引を行う準備作業として、缶201の底壁部201a上にスペーサ202を載せた後、容器100を缶201のスペーサ202の上に設置する。このとき、容器100の上端側のシール部13を缶201の周壁部201b側に回り込ませて位置させつつ、容器100の上面(容器100において材料の流通方向における開口部121A側)にしわが生じないように調整する。その後、押圧部材330の受容空間332が容器100の上部領域(減少部P)を覆うように押圧部材330を載せる。そして、押圧部材330の貫通穴331の内周に沿ってカッター等の刃(図示省略)を移動し、貫通穴331と略同一形状となるように容器100を切り抜き加工して開口部121Aを形成する。そして、吸引口312側に設けられた突出部材350を押圧部材330の貫通穴331及び容器100の開口部121Aに挿入するように、押圧部材330のプレート330a(水平部という)上に圧送手段300を載置する。 First, as a preparatory work for sucking the moisture-curable resin, the user puts the spacer 202 on the bottom wall portion 201a of the can 201, and then installs the container 100 on the spacer 202 of the can 201. At this time, while the seal portion 13 on the upper end side of the container 100 is positioned so as to wrap around the peripheral wall portion 201b side of the can 201, the upper surface of the container 100 (the opening 121A side in the material distribution direction in the container 100) is not wrinkled. Adjust so that. After that, the pressing member 330 is placed so that the receiving space 332 of the pressing member 330 covers the upper region (reduced portion P) of the container 100. Then, a blade (not shown) such as a cutter is moved along the inner circumference of the through hole 331 of the pressing member 330, and the container 100 is cut out so as to have substantially the same shape as the through hole 331 to form the opening 121A. do. Then, the pumping means 300 is placed on the plate 330a (referred to as a horizontal portion) of the pressing member 330 so that the protruding member 350 provided on the suction port 312 side is inserted into the through hole 331 of the pressing member 330 and the opening 121A of the container 100. Is placed.
 昇降装置(図示省略)を作動することにより、圧送手段300を介して押圧部材330が降下すると、湿気硬化性樹脂を収容する容器100が押圧されて容器100の容積が縮小し、容器100に収容されている湿気硬化性樹脂の内圧が高まる。そして、湿気硬化性樹脂は、開口部121Aを通過して吸引口312より吸引され、通路311を通じて塗布ノズル(図示省略)へ圧送される。圧送手段300が缶201の底壁部201aに近付くと、押圧部材330の受容空間332内にスペーサ202が受容され、受容空間332の内側にあった湿気硬化性樹脂も吸引口312から吸引される。また、突出部材350の下部側は、図8Dに示すように、容器100に接触しつつスペーサ202の凹部202R内に受容される。吸引口312の吸引力により容器100の底部12A(容器100において材料の流通方向における開口部121A側の反対側)は突出部材350に部分的に係着し、突出部材350に形成されている開口部350Aを通って湿気硬化性樹脂が吸引されて圧送される。 When the pressing member 330 is lowered via the pumping means 300 by operating the elevating device (not shown), the container 100 containing the moisture-curable resin is pressed, the volume of the container 100 is reduced, and the container 100 is housed in the container 100. The internal pressure of the moisture-curable resin is increased. Then, the moisture-curable resin passes through the opening 121A, is sucked from the suction port 312, and is pressure-fed to the coating nozzle (not shown) through the passage 311. When the pumping means 300 approaches the bottom wall portion 201a of the can 201, the spacer 202 is received in the receiving space 332 of the pressing member 330, and the moisture-curable resin inside the receiving space 332 is also sucked from the suction port 312. .. Further, as shown in FIG. 8D, the lower side of the protruding member 350 is received in the recess 202R of the spacer 202 while being in contact with the container 100. Due to the suction force of the suction port 312, the bottom portion 12A of the container 100 (the side opposite to the opening 121A side in the material distribution direction in the container 100) is partially engaged with the projecting member 350, and the opening formed in the projecting member 350. The moisture-curable resin is sucked and pumped through the portion 350A.
 湿気硬化性樹脂を収容する容器100が押圧部材330に押圧されて容器100の容積が縮小すると、容器100には図8Dに示すように、しわ状部100Sが形成される。すなわち、押圧部材330が降下することにより、押圧部材330の筒状体330b(水平部から立ち上がる立ち上がり部ともいう)が缶201の周壁部201bの内面と容器100の外面との間に入り込んでいき、容器100の側方領域(周壁部201b内面に沿う領域)の上部側(減少部P)が筒状体330bの内面に沿って受容空間332内に受容される。ここで、受容空間332とは、プレート330aと、筒状体330bによって形成される半閉空間を意味する。そして、更に押圧部材330が降下することにより、容器100の側方上部領域が受容空間332内における筒状体330b内面に沿う位置で折り畳まれて、しわ状部100Sを形成する。その後、受容空間332内にスペーサ202が受容されると、缶201の周壁部201bの内面とスペーサ202のスペース内に筒状体330b及びしわ状部100Sが収容され、プレート330aの下面とスペーサ202の上面とが容器100を挟み込むように接近することとなる。したかって、このような吸引方法によれば、容器100に収容された湿気硬化性樹脂をできるだけ多く使うことが可能となる。 When the container 100 containing the moisture-curable resin is pressed by the pressing member 330 and the volume of the container 100 is reduced, the container 100 is formed with a wrinkled portion 100S as shown in FIG. 8D. That is, as the pressing member 330 descends, the cylindrical body 330b of the pressing member 330 (also referred to as a rising portion rising from the horizontal portion) enters between the inner surface of the peripheral wall portion 201b of the can 201 and the outer surface of the container 100. The upper side (reduced portion P) of the lateral region (region along the inner surface of the peripheral wall portion 201b) of the container 100 is received in the receiving space 332 along the inner surface of the tubular body 330b. Here, the receiving space 332 means a semi-closed space formed by the plate 330a and the tubular body 330b. Then, as the pressing member 330 further lowers, the lateral upper region of the container 100 is folded at a position along the inner surface of the tubular body 330b in the receiving space 332 to form the wrinkled portion 100S. After that, when the spacer 202 is received in the receiving space 332, the tubular body 330b and the wrinkled portion 100S are housed in the inner surface of the peripheral wall portion 201b of the can 201 and the space of the spacer 202, and the lower surface of the plate 330a and the spacer 202. The upper surface of the container 100 and the upper surface of the container 100 are brought close to each other so as to sandwich the container 100. Therefore, according to such a suction method, it is possible to use as much moisture-curable resin contained in the container 100 as possible.
 以上説明したように容器100は、熱融着層24を有する複合フィルム20を熱融着層24が対向するように重ねて、湿気硬化性樹脂を収容する収容空間11を形成するように複合フィルム20を貼り合わせたシール部13を備える容器である。容器100に収容される湿気硬化性樹脂は、粘度(25℃)の範囲が120~500Pa・sである脱オキシム型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アセトン型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択される。複合フィルム20は、少なくともアルミニウム箔層22が配置される。シール部13は、熱融着層24の厚さが周辺よりも薄い複数の凹部26を備え、凹部26は、列をなして複数配置され、第n列目を構成する一の凹部26は、列に直交する方向から視て、第n列に隣接する第n+1列目において隣り合う一の凹部26と他の凹部26との間に配置される。 As described above, in the container 100, the composite film 20 having the heat-sealing layer 24 is laminated so that the heat-sealing layers 24 face each other to form a storage space 11 for accommodating the moisture-curable resin. It is a container provided with a seal portion 13 to which 20 is bonded. The moisture-curable resin contained in the container 100 is a deoxidized condensation-curable resin having a viscosity (25 ° C.) range of 120 to 500 Pa · s, and a viscosity (25 ° C.) range of 30 to 500 Pa · s. It is selected from the group consisting of a deacetone type condensation curable resin and a dealcohol type condensation curable resin having a viscosity (25 ° C.) of 30 to 500 Pa · s. At least the aluminum foil layer 22 is arranged on the composite film 20. The seal portion 13 includes a plurality of recesses 26 in which the thickness of the heat-sealing layer 24 is thinner than the periphery thereof. When viewed from the direction orthogonal to the row, it is arranged between one recess 26 adjacent to each other and the other recess 26 in the n + 1th row adjacent to the nth row.
 このように構成することによって、容器100は、アルミニウム箔層22を有する複合フィルム20によって形成される。そのため、容器100は耐久性を確保することができる。したがって、容器100は、湿気硬化性樹脂を保存した後に外観異常が生じることを抑制することができる。また、容器100には、複合フィルム20の少なくとも一部(容器100の開口部12側を除く外周部)の熱融着層がシールされることによってシール部13が形成される。シール部13には、第n列目を構成する複数の凹部26の各々と隣り合う第n+1列目を構成する複数の凹部26の各々とが、列に直交する方向から視た位置が互いにずれるように配置されている。そのため、容器100は、容器100の外周部の端面から侵入する気体(ガス)がシール部13を幅方向に透過することを抑制するとともに、耐久性を確保することができる。これにより、容器100は、長期にわたって密封性を保つことができ、シール部13付近に収容された湿気硬化性樹脂の硬化を抑制することができる。したがって、湿気硬化性樹脂用容器の性能が向上する。 With this configuration, the container 100 is formed of a composite film 20 having an aluminum foil layer 22. Therefore, the durability of the container 100 can be ensured. Therefore, the container 100 can prevent the appearance abnormality from occurring after storing the moisture-curable resin. Further, the container 100 is formed with the sealing portion 13 by sealing the heat-sealing layer of at least a part of the composite film 20 (the outer peripheral portion excluding the opening 12 side of the container 100). In the seal portion 13, the positions of each of the plurality of recesses 26 forming the nth row and each of the plurality of recesses 26 forming the n + 1th row adjacent to each other are displaced from each other when viewed from the direction orthogonal to the row. It is arranged like this. Therefore, the container 100 can prevent the gas that invades from the end surface of the outer peripheral portion of the container 100 from permeating through the seal portion 13 in the width direction, and can secure the durability. As a result, the container 100 can maintain its sealing property for a long period of time, and the curing of the moisture-curable resin contained in the vicinity of the sealing portion 13 can be suppressed. Therefore, the performance of the moisture-curable resin container is improved.
 また、シール部13は、複合フィルム20の厚さ方向から平面視した際に多角形に形成される。シール部13は、収容空間11において多角形の対向する辺同士の間隔を減少させる減少部Pをさらに備える。減少部Pを形成するシール部134Aは、シール部132B、シール部131Aの各々と鈍角を形成し、シール部134Bも同様に、シール部132B、133Aの各々と鈍角を形成する。そのため、湿気硬化性樹脂が収容空間11に収容される際の減少部Pの角部に空隙が形成されることを抑制することができる。したがって、減少部Pは、減少部Pを形成するシール部134A、132B、134B付近に収容された湿気硬化性樹脂が減少部Pの角部に残された空気中の水分によって硬化することを抑制することができる。 Further, the seal portion 13 is formed into a polygon when viewed in a plan view from the thickness direction of the composite film 20. The seal portion 13 further includes a reduction portion P that reduces the distance between the opposing sides of the polygon in the accommodation space 11. The seal portion 134A forming the reduction portion P forms an obtuse angle with each of the seal portion 132B and the seal portion 131A, and the seal portion 134B also forms an obtuse angle with each of the seal portions 132B and 133A. Therefore, it is possible to prevent the formation of voids at the corners of the reduced portion P when the moisture-curable resin is stored in the storage space 11. Therefore, the reduction portion P suppresses the moisture-curable resin contained in the vicinity of the sealing portions 134A, 132B, and 134B forming the reduction portion P from being cured by the moisture in the air left at the corners of the reduction portion P. can do.
 また、脱オキシム型縮合硬化性樹脂は、脱オキシム型縮合硬化性シリコーンを含み、脱アセトン型縮合硬化性樹脂は、脱アセトン型縮合硬化性シリコーンを含み、脱アルコール型縮合硬化性樹脂は、脱アルコール型縮合硬化性シリコーンを含む。 The deoxime-type condensation-curable resin contains a de-oxime-type condensation-curable silicone, the de-acetone-type condensation-curable resin contains a deacetone-type condensation-curable silicone, and the de-alcohol-type condensation-curable resin is de-alcohol-type. Contains alcohol-type condensation-curable silicone.
 また、複合フィルム20は、外部から内部空間にかけて印刷層21、アルミニウム箔層22及びバリアシーラント層23が隣接して配置されている。これにより、容器100の外表面における複合フィルム20の層間剥離や気泡の発生を抑制することができる。また、容器100の内部における収容空間11とシール部13の境界部分において、複合フィルム20の層間剥離の発生を抑制することができる。そのため、容器100は、収容空間11の保存される湿気硬化性樹脂の保存性を高めることができる。 Further, in the composite film 20, the printing layer 21, the aluminum foil layer 22, and the barrier sealant layer 23 are arranged adjacent to each other from the outside to the internal space. As a result, delamination of the composite film 20 and generation of air bubbles on the outer surface of the container 100 can be suppressed. Further, it is possible to suppress the occurrence of delamination of the composite film 20 at the boundary portion between the accommodation space 11 and the sealing portion 13 inside the container 100. Therefore, the container 100 can improve the storage stability of the moisture-curable resin stored in the storage space 11.
 本発明は上述した実施形態に限定されず、特許請求の範囲において種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of claims.
 上記では、2枚の複合フィルム20を貼り合わせて容器100を作成する場合について説明した。ただし、容器100を作成するために使用する複合フィルム20の枚数は、特に限定されない。例えば、容器100は、1枚の複合フィルム20を折り返して2方の側縁部を貼り合わせることによって作成されてもよい。 In the above, the case where two composite films 20 are laminated to form a container 100 has been described. However, the number of composite films 20 used to make the container 100 is not particularly limited. For example, the container 100 may be created by folding back one composite film 20 and sticking the two side edges together.
 また、容器100は、一の複合フィルム20と他の複合フィルム20との間に介在する部材がある状態で、一の複合フィルム20と他の複合フィルム20を貼り合わせることによって作成されてもよい。また、容器100は、一の複合フィルム20と他の複合フィルム20を重ね合わせて2枚の複合フィルム20の外表面を別の部材で覆った(包んだ)状態で、一の複合フィルム20と他の複合フィルム20を貼り合わせることによって作成されてもよい。 Further, the container 100 may be created by laminating one composite film 20 and another composite film 20 in a state where there is a member interposed between one composite film 20 and another composite film 20. .. Further, the container 100 is in a state where one composite film 20 and another composite film 20 are overlapped and the outer surfaces of the two composite films 20 are covered (wrapped) with another member, and the container 100 is combined with the one composite film 20. It may be created by laminating another composite film 20.
 (実施例)
 以下、容器100(以下、袋体と称する。)における外観について実験を行ったので、説明する。
(Example)
Hereinafter, an experiment has been conducted on the appearance of the container 100 (hereinafter referred to as a bag), which will be described below.
 (試料の準備)
 実施例で使用する試料(1)~(8)は、表1の通りである。なお、試料(1)~(8)の粘度は、25℃環境下でSOD(Standard Oil Development)粘度計を用いてJIS K 2220に準じて測定した。
(Preparation of sample)
The samples (1) to (8) used in the examples are as shown in Table 1. The viscosities of the samples (1) to (8) were measured according to JIS K 2220 using an SOD (Standard Oil Development) viscometer in an environment of 25 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (袋体Aの準備)
 袋体Aの複合フィルムは、厚み84μmである。袋体Aの複合フィルムは、容器の外表面から順に、厚さ25μmの二軸延伸ナイロンで構成した印刷層、厚さ9μmのアルミニウム箔層、厚さ50μmのLLDPE/EVOH/LLDPE(共押出層)で構成されたバリアシーラント層、熱融着層で構成した。なお、複合フィルムを構成する層のうち隣接する層同士は、ラミネート接着剤にて貼り合わせた。そして、2枚の複合フィルムを熱融着層同士が対向するように重ねて配置し、重ね合わされた複合フィルムの3方(図1で説明すると、シール部131、132、133)の縁部(側縁部ともいう)に対して各10mm幅のブロックシールが形成できるヒートシールバーを上下に配置した。そして、熱をかけながら該ヒートシールバーで複合フィルムの3方の縁部を挟み込んで、熱融着層同士を熱融着させた。さらに、図1のシール部134Aおよびシール部134Bは、シール部131~133の各々と成す角度θが45度程度になるように、10mm幅のブロックシールが形成できるヒートシールバーを上下に配置して設けた。これにより、3方の縁部がヒートシールされた袋体A(幅140mm×長さ200mm)を得た。
・実施例1~6および比較例1、2の準備
 袋体Aに、表1に記載の試料(1)~(8)を300ml充填した後に、袋体Aの残り一方の縁部の開口(図1に示す開口部12を参照)を10mm幅のブロックシールが形成できるヒートシールバーにより熱融着させた。これにより、4方の縁部がシール部を有する袋体である実施例1~6および比較例1、2を得た。なお、ブロックシールとは、複数の凹部がシール部の長さ方向および幅方向において千鳥状(互い違い、ジグザグともいう)に配列されたシール部(図5参照)を意味する。
(Preparation of bag body A)
The composite film of the bag body A has a thickness of 84 μm. The composite film of the bag A has a printing layer made of biaxially stretched nylon having a thickness of 25 μm, an aluminum foil layer having a thickness of 9 μm, and an LLDPE / EVOH / LLDPE (coextruded layer) having a thickness of 50 μm in order from the outer surface of the container. ), And a heat-sealing layer. Of the layers constituting the composite film, adjacent layers were bonded to each other with a laminate adhesive. Then, the two composite films are arranged so as to face each other so that the heat-sealing layers face each other, and the edges (seal portions 131, 132, 133 of the laminated composite films are described in FIG. 1) of the laminated composite films. Heat seal bars capable of forming block seals having a width of 10 mm each were arranged one above the other (also referred to as side edges). Then, while applying heat, the three edges of the composite film were sandwiched between the heat seal bars, and the heat-sealing layers were heat-sealed to each other. Further, in the seal portion 134A and the seal portion 134B of FIG. 1, heat seal bars capable of forming a block seal having a width of 10 mm are arranged vertically so that the angle θ formed with each of the seal portions 131 to 133 is about 45 degrees. It was provided. As a result, a bag body A (width 140 mm × length 200 mm) having heat-sealed edges on three sides was obtained.
-Preparation of Examples 1 to 6 and Comparative Examples 1 and 2 After filling 300 ml of the samples (1) to (8) shown in Table 1 into the bag body A, the opening of the remaining one edge of the bag body A ( (See opening 12 shown in FIG. 1) was heat-sealed by a heat seal bar capable of forming a block seal having a width of 10 mm. As a result, Examples 1 to 6 and Comparative Examples 1 and 2 in which the four edges are bag bodies having a sealing portion were obtained. The block seal means a seal portion (see FIG. 5) in which a plurality of recesses are arranged in a staggered pattern (also referred to as staggered or zigzag) in the length direction and the width direction of the seal portion.
 (袋体Bの準備)
 袋体Bの複合フィルムは、厚み87μmである。ただし、袋体Bのシールは、袋体A、後述する袋体Cで用いた複合フィルムとは異なる。袋体Bの複合フィルムは、外側から順に厚さ25μmの二軸延伸ナイロンで構成した印刷層、厚さ12μmのガラス蒸着バリアフィルムで構成した層、厚さ50μmのエチレンビニルアルコール共重合体で構成されたバリアシーラント層、熱融着層で構成した。なお、複合フィルムを構成する層のうち隣接する層同士は、ラミネート接着剤にて貼り合わせた。そして、重ね合わせて配置した複合フィルムの少なくとも一部をブロックシールが形成できるヒートシールバーにより熱融着させた。これにより、3方の縁部がヒートシールされた袋体B(幅140mm×長さ200mm)を得た。
・比較例3、4の準備
 袋体Bに、表1に記載の試料(2)、(4)を300ml充填した後に、袋体Bの残り一方の縁部の開口を10mm幅のヒートシールバーにより熱融着させた。これにより、4方の縁部がシール部を有する袋体である比較例3、4を得た。
(Preparation of bag body B)
The composite film of the bag body B has a thickness of 87 μm. However, the seal of the bag body B is different from the composite film used in the bag body A and the bag body C described later. The composite film of the bag body B is composed of a printing layer made of biaxially stretched nylon having a thickness of 25 μm, a layer made of a glass-deposited barrier film having a thickness of 12 μm, and an ethylene vinyl alcohol copolymer having a thickness of 50 μm in order from the outside. It was composed of a barrier sealant layer and a heat-sealing layer. Of the layers constituting the composite film, adjacent layers were bonded to each other with a laminate adhesive. Then, at least a part of the composite films arranged on top of each other was heat-sealed by a heat seal bar capable of forming a block seal. As a result, a bag body B (width 140 mm × length 200 mm) having heat-sealed edges on three sides was obtained.
-Preparation of Comparative Examples 3 and 4 After filling 300 ml of the samples (2) and (4) shown in Table 1 in the bag body B, the opening of the remaining one edge of the bag body B was opened with a heat seal bar having a width of 10 mm. Was heat-sealed. As a result, Comparative Examples 3 and 4 were obtained, in which the four edges were bags having a sealing portion.
 (袋体Cの準備)
袋体Aにおいて、袋体Aで用いたブロックシールとは異なる一般的なヒートシールを用いて得られた以外は、袋体Aと同様にして得られた袋体C(幅140mm×長さ200mm)を得た。ただし、一般的なヒートシールとは、複数の凹部がシール部の幅方向に整列して配置されたシール部を意味する。
・比較例5の準備
 袋体Cに、表1に記載の試料(4)を300ml充填した後に、袋体Cの残り一方の縁部の開口を10mm幅のヒートシールバーにより熱融着させた。これにより、4方の縁部がシール部を有する袋体である比較例5を得た。
(Preparation of bag body C)
In the bag body A, the bag body C (width 140 mm × length 200 mm) obtained in the same manner as the bag body A except that the bag body A was obtained by using a general heat seal different from the block seal used in the bag body A. ) Was obtained. However, a general heat seal means a seal portion in which a plurality of recesses are arranged so as to be aligned in the width direction of the seal portion.
Preparation of Comparative Example 5 After filling 300 ml of the sample (4) shown in Table 1 into the bag body C, the opening of the other edge of the bag body C was heat-sealed with a heat seal bar having a width of 10 mm. .. As a result, Comparative Example 5 in which the four edges were a bag having a sealing portion was obtained.
 保存試験(外観異常確認)では、表2に示す実施例1~6、比較例1~5を40℃の恒温槽に1ヶ月間入れて放置した。そして、袋体を開封し、試料を除去して、目視により袋体の(1)外表面と(2)内部に外観異常がないかを確認した。また、(3)保存試験後の試料の硬化の有無を確認した。
[(1)袋体の外表面の評価基準]
○:外観に特に異常なし
×:外観に異常あり(袋体の外表面に気泡によるぶつぶつ(粒のような形状)あり、層間剥離あり)
[(2)袋体の内部の評価基準]
○:外観に特に異常なし
×:外観に異常あり(縁部の内側(収容空間とシール部の境界部分)にて層間剥離あり)
[(3)保存試験後の試料の硬化有無評価]
○:硬化していないことが確認された。
×:硬化していることが確認された。
In the storage test (confirmation of abnormal appearance), Examples 1 to 6 and Comparative Examples 1 to 5 shown in Table 2 were placed in a constant temperature bath at 40 ° C. for 1 month and left to stand. Then, the bag body was opened, the sample was removed, and it was visually confirmed whether there was any abnormality in appearance on the (1) outer surface and (2) inside of the bag body. In addition, (3) it was confirmed whether or not the sample was cured after the storage test.
[(1) Evaluation criteria for the outer surface of the bag]
◯: No particular abnormality in appearance ×: There is an abnormality in appearance (the outer surface of the bag has lumps (shape like grains) due to air bubbles, and delamination occurs)
[(2) Evaluation criteria inside the bag]
◯: No particular abnormality in appearance ×: There is an abnormality in appearance (delamination occurs inside the edge (the boundary between the accommodation space and the seal))
[(3) Evaluation of hardening of sample after storage test]
◯: It was confirmed that it was not cured.
X: It was confirmed that it was cured.
 以下の表は、実施例1~6及び比較例1~5の(1)袋体の外表面の外観評価、(2)袋体の内側の外観評価、(3)保存試験後の試料の硬化有無評価の実験結果を示す図である。 The table below shows (1) appearance evaluation of the outer surface of the bag body, (2) appearance evaluation of the inside of the bag body, and (3) curing of the sample after the storage test of Examples 1 to 6 and Comparative Examples 1 to 5. It is a figure which shows the experimental result of presence / absence evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例1~6の袋体は、保存試験後の袋体の外表面の外観、保存試験後の袋体の内側の外観、保存試験後の試料の状態が、すべて良好な結果であった。一方で、比較例1、2は、本発明の所定の粘度範囲外の縮合硬化性樹脂である試料(7)、(8)を用いた袋体であるが、保存試験後の袋体の外表面の外観において劣る結果であった。比較例3、4は、本発明の複合フィルムではないフィルムで形成された袋体であるが、保存試験後の試料の表面が硬化しており劣る結果であった。比較例5は、本発明のブロックシールではなく一般的なヒートシールによってシールした袋体であるが、袋体の内側の外観評価にて劣る結果であった。 As can be seen from Table 2, in the bag bodies of Examples 1 to 6, the appearance of the outer surface of the bag body after the storage test, the appearance of the inside of the bag body after the storage test, and the state of the sample after the storage test are all. It was a good result. On the other hand, Comparative Examples 1 and 2 are bags using samples (7) and (8), which are condensation-curable resins outside the predetermined viscosity range of the present invention, but outside the bag after the storage test. The result was inferior in surface appearance. Comparative Examples 3 and 4 were bags formed of a film other than the composite film of the present invention, but the surface of the sample after the storage test was cured, resulting in inferior results. Comparative Example 5 is a bag body sealed by a general heat seal instead of the block seal of the present invention, but the result was inferior in the appearance evaluation of the inside of the bag body.
 以上のことから、本実施形態に係る複合フィルムによって形成され、ブロックシールすることによって形成される袋体であって、上述した粘度の範囲の湿気硬化性樹脂を収容する場合は、袋体に外観異常が見られないことと、試料の硬化を抑制できていることが確認できた。 From the above, when the bag is formed by the composite film according to the present embodiment and is formed by block sealing and contains the moisture-curable resin in the above-mentioned viscosity range, the bag has an appearance. It was confirmed that no abnormality was observed and that the curing of the sample could be suppressed.
 本出願は、2020年3月24日に出願された日本国特許出願2020-52954号に基づいており、その開示内容は全体として引用されている。 This application is based on Japanese Patent Application No. 2020-52954 filed on March 24, 2020, and the disclosure contents are cited as a whole.
100 容器、
11  収容空間、
12  開口部、
13  シール部、
20  複合フィルム、
21  印刷層、
22  アルミニウム箔層、
23  バリアシーラント層、
24  熱融着層、
26  凹部、
27  非凹部、
P   減少部。
100 containers,
11 Containment space,
12 openings,
13 Seal part,
20 composite film,
21 print layer,
22 Aluminum foil layer,
23 Barrier sealant layer,
24 heat fusion layer,
26 recess,
27 non-concave,
P reduction part.

Claims (4)

  1.  熱融着層を有する複合フィルムを前記熱融着層が対向するように重ねて、湿気硬化性樹脂を収容する収容空間を形成するように前記複合フィルムを貼り合わせたシール部を備える容器であり、
     前記湿気硬化性樹脂は、粘度(25℃)の範囲が120~500Pa・sである脱オキシム型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アセトン型縮合硬化性樹脂、粘度(25℃)の範囲が30~500Pa・sである脱アルコール型縮合硬化性樹脂からなる群から選択され、
     前記複合フィルムは、少なくともアルミニウム箔層が配置されており、
     前記シール部は、前記熱融着層の厚さが周辺よりも薄い複数の凹部を備え、
     前記凹部は、列をなして複数配置され、
     第n列目を構成する一の凹部は、前記列に直交する方向から視て、前記第n列に隣接する第n+1列目において隣り合う一の凹部と他の凹部との間に配置される容器。
    A container provided with a sealing portion in which composite films having a heat-sealing layer are laminated so that the heat-sealing layers face each other and the composite films are bonded so as to form a storage space for accommodating a moisture-curable resin. ,
    The moisture-curable resin is a deoxime-type condensation-curable resin having a viscosity (25 ° C.) range of 120 to 500 Pa · s, and a deacetone-type condensation-curing resin having a viscosity (25 ° C.) range of 30 to 500 Pa · s. Selected from the group consisting of sex resins and dealcohol-type condensation-curable resins having a viscosity (25 ° C.) of 30 to 500 Pa · s.
    The composite film has at least an aluminum foil layer arranged therein.
    The seal portion includes a plurality of recesses in which the thickness of the heat-sealing layer is thinner than that of the periphery.
    A plurality of the recesses are arranged in a row, and the recesses are arranged in a row.
    The one recess forming the nth row is arranged between the adjacent one recess and the other recess in the n + 1th row adjacent to the nth row when viewed from the direction orthogonal to the row. container.
  2.  前記シール部は、前記複合フィルムの厚さ方向から平面視した際に多角形に形成され、
     前記シール部によって前記収容空間において前記多角形の対向する辺同士の間隔を減少させる減少部が形成される請求項1に記載の容器。
    The sealing portion is formed into a polygon when viewed in a plan view from the thickness direction of the composite film.
    The container according to claim 1, wherein the sealing portion forms a reducing portion that reduces the distance between the opposite sides of the polygon in the accommodating space.
  3.  前記脱オキシム型縮合硬化性樹脂は、脱オキシム型縮合硬化性シリコーンを含み、前記脱アセトン型縮合硬化性樹脂は、脱アセトン型縮合硬化性シリコーンを含み、前記脱アルコール型縮合硬化性樹脂は、脱アルコール型縮合硬化性シリコーンを含む請求項1または2に記載の容器。 The deoxime-type condensation-curable resin contains a de-oxime-type condensation-curable silicone, the deacetone-type condensation-curable resin contains a deacetone-type condensation-curable silicone, and the de-alcohol-type condensation-curable resin contains. The container according to claim 1 or 2, which comprises a de-alcohol type condensation curable silicone.
  4.  前記複合フィルムは、外部から内部空間にかけて印刷層、前記アルミニウム箔層及びバリアシーラント層が隣接して配置されている請求項1~3のいずれか1項に記載の容器。 The container according to any one of claims 1 to 3, wherein the composite film is a container in which a printing layer, an aluminum foil layer, and a barrier sealant layer are arranged adjacent to each other from the outside to an internal space.
PCT/JP2020/048818 2020-03-24 2020-12-25 Container WO2021192473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-052954 2020-03-24
JP2020052954 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192473A1 true WO2021192473A1 (en) 2021-09-30

Family

ID=77889958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048818 WO2021192473A1 (en) 2020-03-24 2020-12-25 Container

Country Status (1)

Country Link
WO (1) WO2021192473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051229A (en) * 2002-05-31 2004-02-19 Dow Corning Toray Silicone Co Ltd Cartridge for moisture curing sealing material, storage cartridge of moisture curing sealing material, and method of manufacturing the former cartridge
US20060032866A1 (en) * 2004-08-13 2006-02-16 Pechiney Plastic Packaging, Inc. Plastic dispensing container having reduced moisture penetration and method for same
JP2006306423A (en) * 2005-04-27 2006-11-09 Yokohama Rubber Co Ltd:The Filling and packaging method of moisture curing type sealing material
JP2013111961A (en) * 2011-12-01 2013-06-10 Konishi Co Ltd Laminated film
JP2016064845A (en) * 2014-09-24 2016-04-28 積水フィルム株式会社 Bag body and vacuum heat insulation material using the bag body
JP2017007744A (en) * 2015-06-25 2017-01-12 シャープ化学工業株式会社 Manufacturing method of curable resin composition-containing package container, curable resin composition-containing package container and construction method of curable resin composition
JP2019001486A (en) * 2017-06-13 2019-01-10 株式会社スリーボンド Bag assembly, material supply device and cap

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051229A (en) * 2002-05-31 2004-02-19 Dow Corning Toray Silicone Co Ltd Cartridge for moisture curing sealing material, storage cartridge of moisture curing sealing material, and method of manufacturing the former cartridge
US20060032866A1 (en) * 2004-08-13 2006-02-16 Pechiney Plastic Packaging, Inc. Plastic dispensing container having reduced moisture penetration and method for same
JP2006306423A (en) * 2005-04-27 2006-11-09 Yokohama Rubber Co Ltd:The Filling and packaging method of moisture curing type sealing material
JP2013111961A (en) * 2011-12-01 2013-06-10 Konishi Co Ltd Laminated film
JP2016064845A (en) * 2014-09-24 2016-04-28 積水フィルム株式会社 Bag body and vacuum heat insulation material using the bag body
JP2017007744A (en) * 2015-06-25 2017-01-12 シャープ化学工業株式会社 Manufacturing method of curable resin composition-containing package container, curable resin composition-containing package container and construction method of curable resin composition
JP2019001486A (en) * 2017-06-13 2019-01-10 株式会社スリーボンド Bag assembly, material supply device and cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same

Similar Documents

Publication Publication Date Title
RU2321496C1 (en) Contour strip, packing container with such and method of forming contour strip
US11713172B2 (en) Sheet material container
WO2021192473A1 (en) Container
US20230382600A1 (en) Tubular container and method for producing same
KR100926887B1 (en) Method to manufacture flexible tube sheet
JP5151463B2 (en) Composite sheet material for paper container and paper container molded using the composite sheet material
JP5995430B2 (en) Laminated film
JP5622179B2 (en) Laminated resin film
WO2015151299A1 (en) Cap, pouring container comprising said cap, and production method for said cap
CN109952254B (en) Self-supporting bag and method for manufacturing same
EP2647499A1 (en) Paperboard assembly with co-extruded microlayered polymer barrier film
CN113056365A (en) Peeling-resistant sheet for packaging hose and method for producing same
JP4723872B2 (en) Flexible packaging container and package comprising the same
JP7166749B2 (en) packaging bag
WO2014098121A1 (en) Check valve unit and structure provided with check valve unit
JP2019112093A (en) Paper container for liquid and manufacturing method of the same
US20080095476A1 (en) Packaging pouch
WO2015146205A1 (en) Package material for pouch container and pouch container manufacturing method
JP7229320B2 (en) freestanding bag
JP2021011018A (en) Laminate for packaging material
JP2020117233A (en) Package
KR100808889B1 (en) flexible tube
WO2024089974A1 (en) Sealing tape, and paper container for liquid
JP3442456B2 (en) Packaging film
JP2008132100A (en) Packaging bag for liquid bag and liquid bag package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP