WO2021192374A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2021192374A1
WO2021192374A1 PCT/JP2020/039070 JP2020039070W WO2021192374A1 WO 2021192374 A1 WO2021192374 A1 WO 2021192374A1 JP 2020039070 W JP2020039070 W JP 2020039070W WO 2021192374 A1 WO2021192374 A1 WO 2021192374A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
indoor
vehicle
detection result
Prior art date
Application number
PCT/JP2020/039070
Other languages
French (fr)
Japanese (ja)
Inventor
克洋 藤木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022509230A priority Critical patent/JPWO2021192374A1/ja
Publication of WO2021192374A1 publication Critical patent/WO2021192374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a vehicle air conditioner that is mounted on a vehicle and air-conditions the interior of the vehicle.
  • a vehicle air conditioner that air-conditions a vehicle interior by a refrigeration cycle that uses a carbon dioxide refrigerant.
  • This vehicle air conditioner has a first room equipped with an indoor heat exchanger constituting a refrigeration cycle, a carbon dioxide concentration sensor, and a ventilation damper, and the carbon dioxide concentration is a preset reference value.
  • the ventilation damper is opened to take in outside air and reduce the concentration of carbon dioxide.
  • An object of the present disclosure is to provide an air conditioner for a vehicle capable of suppressing the outflow of the leaked refrigerant into the passenger compartment.
  • the vehicle air conditioner according to the present disclosure is formed by partitioning the inside of a housing mounted on a vehicle, and includes a suction port and an air outlet leading to the passenger compartment of the vehicle, and a ventilation port leading to the outside of the vehicle. It is possible to switch between forward rotation and reverse rotation between the indoor unit room and the indoor heat exchanger that is located in the indoor unit room and exchanges heat between the refrigerant and air. Detects the state of the refrigerant and the indoor blower that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment heads for the indoor heat exchanger and the air that has passed through the indoor heat exchanger flows out from the air outlet to the passenger compartment.
  • the air outlet and the ventilation port are opened and the suction port is closed. It is characterized by being provided with a control unit that controls and switches the indoor blower to reverse rotation to form an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment from the air outlet flows out from the ventilation port to the outside of the vehicle. do.
  • FIG. It is a conceptual diagram which shows a part of the structure of the air conditioner for a vehicle which concerns on Embodiment 1.
  • FIG. It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 1.
  • FIG. It is a figure which shows the airflow formed in the housing of the vehicle air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the airflow formed in the housing of the vehicle air conditioner which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 1.
  • FIG. 1 It is a flowchart which shows the process flow of the emergency control of the control part of the air conditioner for a vehicle which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the modification of the refrigerant leakage monitoring processing of the air conditioner for a vehicle which concerns on Embodiment 1.
  • FIG. It is a top view which shows the modification of the air conditioner for a vehicle which concerns on Embodiment 1.
  • FIG. It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows the refrigerant leakage monitoring process of the control part of the air conditioner for a vehicle which concerns on Embodiment 2.
  • FIG. 1 It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 3.
  • FIG. It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 4.
  • FIG. 1 is a conceptual diagram showing a part of the configuration of the vehicle air conditioner 800 according to the present embodiment.
  • the vehicle air conditioner 800 shown in FIG. 1 is mounted on a vehicle 900 and air-conditions a vehicle compartment (cabin) 910, which is a space partitioned for a person to ride in the vehicle 900.
  • a vehicle compartment (cabin) 910 which is a space partitioned for a person to ride in the vehicle 900.
  • FIG. 1 is a concept in which some of the components are omitted and the position and the extending direction are different from the actual ones in order to facilitate the understanding of the function of the vehicle air conditioner 800. It is a figure. Details will be described later with reference to another figure.
  • the vehicle air conditioner 800 includes a housing 700, an indoor heat exchanger 130, an indoor blower 310, a detector 500, a suction port damper 410, and a ventilation port damper 430.
  • the control unit 600 is provided.
  • the detector 500 detects the state of the refrigerant such as the concentration of the refrigerant or the flow rate of the refrigerant, and the detection result of the detector 500 is used to determine whether or not the refrigerant has leaked from the refrigeration cycle. Be done.
  • the case where the detector 500 is the first refrigerant sensor 510 that detects the concentration of the refrigerant will be described.
  • the housing 700 includes an indoor unit room 710, which is a space mounted on a vehicle and formed by partitioning the inside with a partition plate.
  • an indoor heat exchanger 130, an indoor blower 310, and a first refrigerant sensor 510 are installed in the indoor unit room 710.
  • the indoor unit room 710 includes a suction port 411 leading to the passenger compartment 910, an air outlet 421, and a ventilation port 431 leading to the outside of the vehicle 900.
  • the “outside of the vehicle (outside the vehicle)" refers to the outside of the vehicle 900 and the housing 700.
  • the suction port 411 and the outlet 421 are connected to the suction duct 920 and the outlet duct 930, which are ducts communicating with the passenger compartment 910, respectively.
  • the indoor unit 710 communicates with the passenger compartment 910. Further, during normal operation in which the vehicle air conditioner 800 air-conditions the passenger compartment 910, the air in the passenger compartment 910 is sucked into the indoor unit 710 through the suction port 411, and the air conditioned in the indoor unit 710 is discharged. It is blown out to the passenger compartment 910 through the air outlet 421.
  • the indoor heat exchanger 130 is a part of the refrigeration cycle device 100 that constitutes a refrigeration cycle using a refrigerant, and heat exchange is performed between the refrigerant flowing inside the refrigeration cycle and air.
  • the refrigerant may be, for example, carbon dioxide gas, chlorofluorocarbon gas (R407C or the like), or any other refrigerant.
  • the indoor blower 310 promotes heat exchange between the air in the passenger compartment 910 and the refrigerant flowing inside the indoor heat exchanger 130. Specifically, in the indoor blower 310, during the normal operation of the vehicle air conditioner 800, the air in the passenger compartment 910 that has flowed into the indoor unit compartment 710 from the suction port 411 heads toward the indoor heat exchanger 130, and the indoor heat exchanger The air that has passed through 130 forms an airflow AC that flows out from the outlet 421 to the passenger compartment 910 again. Further, the indoor blower 310 has a configuration capable of switching the rotation direction of the blades (not shown) to forward rotation or reverse rotation.
  • the indoor blower 310 has a motor (not shown) capable of switching between forward rotation and reverse rotation, and the blades are driven by this motor. Further, the indoor blower 310 has wings having a shape such that the airflow AC is formed by rotating forward and the airflow is formed in the direction opposite to the direction of the airflow formed during the forward rotation by rotating in the reverse direction.
  • the rotation of the indoor blower 310 is controlled by the control unit 600. During normal operation, the control unit 600 controls the indoor blower 310 so that the rotation is forward.
  • the indoor blower 310 is realized by, for example, a sirocco fan.
  • suction air RA the air flowing from the passenger compartment 910 into the indoor unit compartment 710 and heading toward the indoor heat exchanger 130
  • blowout air SA the air that flows out from the indoor unit room 710 to the passenger compartment 910 after passing through the indoor heat exchanger 130
  • the suction air RA flows from the passenger compartment 910 into the indoor unit compartment 710 through the suction duct 920 and the suction port 411.
  • the blown air SA flows out from the indoor unit 710 to the passenger compartment 910 through the blowout port 421 and the blowout duct 930.
  • the first refrigerant sensor 510 detects the concentration of the refrigerant in the indoor unit room 710 and outputs the detected result to the control unit 600.
  • the first refrigerant sensor 510 has a sensitive portion (not shown) that causes a reaction according to the refrigerant concentration, and outputs a detection result of the refrigerant concentration based on the reaction at the sensitive portion.
  • the suction port damper 410 is a damper provided in the suction port 411, and is the air forming the airflow AC from the passenger compartment 910 to the indoor unit room 710 through the suction port 411, that is, the interior of the suction air RA. It is possible to switch between an open state that allows inflow to the cabin 710 and a closed state that prevents the inflow. Further, the suction port damper 410 can adjust the flow rate of the suction air RA in the open state. The opening and closing of the suction port damper 410 is controlled by the control unit 600. Switching the open / closed state of the suction port damper 410 is equivalent to switching the open / closed state of the suction port 411.
  • the ventilation port damper 430 is a damper provided in the ventilation port 431, and the air outflow (exhaust) of the indoor unit room 710 to the outside of the vehicle and the inflow of the outside air into the indoor unit room 710 (exhaust) through the ventilation port 431 (exhaust). It is possible to switch between an open state that allows inspiration) and a closed state that prevents this outflow and inflow. Further, the ventilation port damper 430 can adjust the flow rate of air passing through the ventilation port 431 in the open state. The opening and closing of the ventilation port damper 430 is controlled by the control unit 600. Switching the open / closed state of the ventilation port damper 430 is equivalent to switching the open / closed state of the ventilation port 431. Further, whether the air is discharged or taken in from the ventilation port 431 is determined by whether the pressure inside the indoor unit 710 is a negative pressure or a positive pressure.
  • the control unit 600 controls the operations of the indoor blower 310, the first refrigerant sensor 510, the suction port damper 410, the ventilation port damper 430, and the refrigeration cycle device 100, and during normal operation, the suction port damper 410 and ventilation.
  • the mouth damper 430 is opened, and the indoor blower 310 is controlled to rotate in the forward direction. Further, during normal operation, a refrigerant leak monitoring process for monitoring whether or not a refrigerant has leaked is performed, and when it is determined that the refrigerant has leaked, emergency control is performed.
  • the refrigerant leak monitoring process is a process of repeatedly executing a refrigerant leak determination for determining whether or not a refrigerant has leaked from the refrigeration cycle device 100 based on the refrigerant concentration detected by the first refrigerant sensor 510.
  • the emergency control is a process of controlling the operation of the indoor blower 310, the suction port damper 410, and the ventilation port damper 430 to suppress the outflow of the refrigerant into the vehicle interior 910. Details of the refrigerant leak monitoring process and emergency control will be described later.
  • the control unit 600 is arranged inside the housing 700 or behind the ceiling of the vehicle interior 910.
  • the control unit 600 that realizes the refrigerant leakage monitoring process and the emergency control may be composed of, for example, a microcomputer that reads and executes a program, or a CPU (Central Processing Unit), or an ASIC (Application Specific Integrated Circuit). Alternatively, it may be configured with dedicated hardware such as FPGA (Field Programmable Gate Array).
  • FIG. 2 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment. Further, FIG. 2 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation.
  • the refrigeration cycle device 100 housed in the housing 700 constitutes a refrigeration cycle independently of the first refrigeration cycle device 100a constituting the refrigeration cycle and the first refrigeration cycle device 100a. It has two refrigeration cycle devices 100b.
  • the first refrigeration cycle device 100a includes a first compressor 110a for compressing the refrigerant, a first outdoor heat exchanger 120a for condensing the compressed refrigerant, and a first expander for expanding the condensed refrigerant (not shown). ),
  • the first chamber heat exchanger 130a that evaporates the expanded refrigerant, and the first accumulator 140a that separates the liquid from the refrigerant that has passed through the first chamber heat exchanger 130a and returns the gas to the first compressor 110a. include.
  • the first refrigerating cycle device 100a includes a first refrigerant pipe 150a through which a refrigerant flows.
  • the first refrigerant pipe 150a is a closed circuit through which the refrigerant flows by connecting the first compressor 110a, the first outdoor heat exchanger 120a, the first expander, the first indoor heat exchanger 130a, and the first accumulator 140a. To configure.
  • the second refrigeration cycle device 100b includes a second compressor 110b that compresses the refrigerant, a second outdoor heat exchanger 120b that condenses the compressed refrigerant, and a second expander that expands the condensed refrigerant (not shown). ), A second chamber heat exchanger 130b that evaporates the expanded refrigerant, and a second accumulator 140b that separates the liquid from the refrigerant that has passed through the second chamber heat exchanger 130b and returns the gas to the second compressor 110b. include. Further, the second refrigeration cycle device 100b includes a second refrigerant pipe 150b in which a refrigerant flows inside.
  • the second refrigerant pipe 150b is a closed circuit through which the refrigerant flows by connecting the second compressor 110b, the second outdoor heat exchanger 120b, the second expander, the second indoor heat exchanger 130b, and the second accumulator 140b. To configure.
  • the housing 700 also includes an outdoor unit room 720, which is a space formed by partitioning the inside with a partition plate. Since the indoor unit room 710 and the outdoor unit room 720 are airtightly configured with each other, no gas flow occurs between the indoor unit room 710 and the outdoor unit room 720.
  • the first indoor unit room 711 in which the first indoor heat exchanger 130a and the first heater 200a are arranged, and the second indoor unit room 711 in which the second indoor heat exchanger 130b and the second heater 200b are arranged are arranged. It is divided into an indoor unit room 712 and a third indoor unit room 713 in which the first indoor blower 310a, the second indoor blower 310b, and the first refrigerant sensor 510 are arranged.
  • the first indoor unit room 711 and the second indoor unit room 712 are provided at positions opposite to each other with the third indoor unit room 713 in between.
  • the first indoor unit room 711 and the third indoor unit room 713 communicate with each other through the first indoor unit blower 310a.
  • the second indoor unit 712 and the third indoor unit 713 communicate with each other through the second indoor blower 310b.
  • the first indoor unit room 711 includes a first suction port 411a and a first ventilation port 431a.
  • the second indoor unit 712 includes a second suction port 411b and a second ventilation port 431b.
  • the third indoor unit room 713 includes a first outlet 421a and a second outlet 421b.
  • the indoor heat exchanger 130 shown in FIG. 1 is configured by the first indoor heat exchanger 130a and the second indoor heat exchanger 130b. Further, the first suction port 411a and the second suction port 411b constitute the suction port 411 shown in FIG. Further, the first outlet 421a and the second outlet 421b constitute the outlet 421 shown in FIG.
  • the first ventilation port 431a is arranged at a position where the airflow AC passes in the first indoor unit room 711.
  • the second ventilation port 431b is arranged at a position in the second indoor unit room 712 where the airflow AC passes. Further, the first ventilation port 431a is arranged at a position facing the first indoor blower 310a, and the first indoor heat exchanger 130a is arranged between the first ventilation port 431a and the first indoor blower 310a.
  • the second ventilation port 431b is arranged at a position facing the second indoor blower 310b, and the second indoor heat exchanger 130b is arranged between the second ventilation port 431b and the second indoor blower 310b.
  • the first ventilation port 431a and the second ventilation port 431b constitute the ventilation port 431 shown in FIG.
  • the "position through which the airflow AC passes" is preferably near the path of the airflow AC, but may be any position as long as it is the indoor unit room 710 through which the airflow AC passes.
  • the first indoor blower 310a promotes heat exchange between the first indoor heat exchanger 130a and the air in the passenger compartment 910 shown in FIG. Specifically, in the first chamber blower 310a, the suction air RA that has flowed into the first chamber unit 711 from the first suction port 411a passes through the first chamber heat exchanger 130a, and then is first blown as blown air SA. An airflow AC is formed from the exit 421a to the passenger compartment 910 shown in FIG.
  • the first chamber blower 310a is arranged at a position downstream of the first chamber heat exchanger 130a with respect to the direction of the flow of the airflow AC formed by itself.
  • the second indoor blower 310b promotes heat exchange between the second indoor heat exchanger 130b and the air in the passenger compartment 910 shown in FIG. Specifically, in the second chamber blower 310b, the suction air RA that has flowed into the second chamber unit 712 from the second suction port 411b passes through the second chamber heat exchanger 130b, and then is second blown as blown air SA. An airflow AC is formed from the exit 421b back to the passenger compartment 910 shown in FIG.
  • the second chamber blower 310b is arranged at a position downstream of the second chamber heat exchanger 130b with respect to the direction of the flow of the airflow AC formed by itself.
  • FIG. 1 is configured by the first indoor blower 310a and the second indoor blower 310b. Further, in FIG. 1, for easy understanding, the airflow AC formed by the first indoor blower 310a and the airflow AC formed by the second indoor blower 310b are shown as one airflow AC.
  • the first heater 200a is arranged on the path of the airflow AC formed by the first indoor blower 310a. Specifically, the first heater 200a is arranged between the first chamber heat exchanger 130a and the first chamber blower 310a. The first heater 200a heats the air passing through itself.
  • the second heater 200b is arranged on the path of the airflow AC formed by the second indoor blower 310b. Specifically, the second heater 200b is arranged between the second chamber heat exchanger 130b and the second chamber blower 310b. The second heater 200b heats the air passing through itself.
  • the first suction port damper 410a is a damper provided in the first suction port 411a, and has an open state that allows the suction air RA to flow into the first indoor unit room 711 and a closed state that prevents the inflow. It is possible to switch to. Further, the first suction port damper 410a can adjust the air flow rate in the open state.
  • the second suction port damper 410b is a damper provided in the second suction port 411b, and has an open state that allows the suction air RA to flow into the second indoor unit room 712 and a closed state that prevents the inflow. It is possible to switch to. Further, the second suction port damper 410b can adjust the air flow rate in the open state.
  • the suction port damper 410 shown in FIG. 1 is configured by the first suction port damper 410a and the second suction port damper 410b.
  • the first ventilation port damper 430a is a damper provided in the first ventilation port 431a, and allows the outflow of air from the first indoor unit room 711 to the outside of the vehicle and the inflow of outside air into the first indoor unit room 711. It is possible to switch between an open state where the air is open and a closed state where the outflow and the inflow are blocked. Further, the first ventilation port damper 430a can adjust the flow rate of air in the open state.
  • the second ventilation port damper 430b is a damper provided in the second ventilation port 431b, and allows the outflow of air from the second indoor unit 712 to the outside of the vehicle and the inflow of outside air into the second indoor unit 712. It is possible to switch between an open state where the air is open and a closed state where the outflow and the inflow are blocked. Further, the second ventilation port damper 430b can adjust the flow rate of air in the open state.
  • the ventilation port damper 430 shown in FIG. 1 is configured by the first ventilation port damper 430a and the second ventilation port damper 430b. Further, in the following, the air flowing in from the outside of the vehicle through the ventilation port 431 is referred to as an outside air FA.
  • the ventilation port damper 430 is arranged at a position facing the indoor blower 310. Outside air flows into the cabin 710. Further, when the rotation is switched to the reverse rotation, the outside air flows out from the indoor unit room 710 to the outside of the vehicle through the ventilation port 431.
  • the first refrigerant sensor 510 is arranged at a position downstream of the first chamber heat exchanger 130a on the path of the airflow AC formed when the first chamber blower 310a is rotated in the forward direction.
  • the first refrigerant sensor 510 detects the concentration of the refrigerant at the arranged position and outputs the detection result to the control unit 600 shown in FIG.
  • the arrangement position of the first refrigerant sensor 510 is not limited to this, and may be the first indoor unit room 711 or the second indoor unit room 712 as long as the refrigerant concentration in the indoor unit room 710 can be detected. However, it may be located at another position in the third indoor unit room 713.
  • the outdoor unit room 720 includes an outdoor blower 320, a first compressor 110a, a second compressor 110b, a first outdoor heat exchanger 120a, a second outdoor heat exchanger 120b, a first accumulator 140a, and a second accumulator 140b. Be placed.
  • the outdoor blower 320 promotes heat exchange between the first outdoor heat exchanger 120a and the second outdoor heat exchanger 120b and the air outside the vehicle. Specifically, the outdoor blower 320 forms an air flow (not shown) in which the outside air passes through the first outdoor heat exchanger 120a and the second outdoor heat exchanger 120b and returns to the outside of the vehicle again.
  • FIG. 3 and 4 are views showing an air flow formed when the first indoor blower 310a and the second indoor blower 310b are switched to reverse rotation.
  • FIG. 3 shows a case where the first suction port damper 410a, the second suction port damper 410b, the first ventilation port damper 430a, and the second ventilation port damper 430b are controlled in the open state.
  • FIG. 4 shows a case where the first suction port damper 410a and the second suction port damper 410b are controlled to be in the closed state, and the first ventilation port damper 430a and the second ventilation port damper 430b are controlled to be in the open state.
  • the airflow AC_R flowing in the direction opposite to the direction of the airflow AC formed at the time of the forward rotation is formed.
  • the control unit 600 controls the damper 410a for the first suction port to the open state and the damper 430a for the first ventilation port to the open state and switches the first indoor blower 310a to the reverse rotation
  • the first air outlet After the air in the passenger compartment 910 that has flowed from the 421a into the third indoor unit chamber 713 passes through the first indoor heat exchanger 130a, an air flow AC_R that flows out from the first suction port 411a to the passenger compartment 910 again is formed.
  • the air in the first indoor unit room 711 flows out of the vehicle from the first ventilation port 431a.
  • the air that flows from the passenger compartment 910 into the third indoor unit room 713 and heads for the first indoor heat exchanger 130a is sucked in and passes through the first indoor heat exchanger 130a.
  • the air that flows out from the first indoor unit room 711 to the passenger compartment 910 is called blowout air SA_R, and the air that flows out from the first ventilation port 431a is called exhaust air EA. Since the second indoor blower 310b is controlled in the same manner as the first indoor blower 310a to form the same air flow, the description thereof is omitted here.
  • FIG. 3 and 4 is the open / closed state of the first suction port damper 410a.
  • the air flow from the first indoor unit 711 to the passenger compartment 910 is not formed. Therefore, in FIG. 4, the blown air SA_R and the exhaust air EA shown in FIG. 3 become the exhaust air EA2 and flow out to the outside of the vehicle.
  • control unit 600 controls the open / closed state of the first suction port damper 410a and the first ventilation port damper 430a and the rotation direction of the first indoor blower 310a, thereby forming the inside of the housing 700.
  • the airflow can be changed. Further, by forming the airflow AC2 shown in FIG. 4, an airflow from the passenger compartment 910 to the first indoor unit 711 is formed at the first outlet 421a without a damper, so that the airflow from the third indoor unit 713 is formed. The outflow of air to the passenger compartment 910 can be suppressed.
  • the refrigerant existing in the first indoor unit 710a and the third indoor unit 713 is discharged to the outside of the vehicle as exhaust air EA2, the refrigerant concentrations in the first indoor unit 711 and the third indoor unit 713 are increased. The rise can be suppressed.
  • FIG. 5 is a flowchart showing a processing flow of the refrigerant leakage monitoring process.
  • FIG. 6 is a flowchart showing a processing flow of emergency control.
  • the control unit 600 causes the first refrigerant sensor 510 to start detecting the concentration of the refrigerant (step S11). After that, the first refrigerant sensor 510 repeatedly detects the concentration of the refrigerant in real time at the installed position.
  • the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 (step S12), and determines the rate of increase of the detection result Cs and a predetermined value indicating that the refrigerant has leaked from the refrigeration cycle device 100. Compare with the threshold Th (step S13).
  • the threshold Th is 10000 [ppm / h], but the threshold Th is not particularly limited.
  • the "rate of increase in detection result Cs" refers to the difference between the value of the current detection result and the value of the previous detection result, or a physical quantity proportional to the difference.
  • the "value of the current detection result” is the value of the detection result Cs (t) at time t
  • the “value of the previous detection result” is the detection result Cs (t-) at time t-1 one sampling cycle before. It means the value of 1).
  • the initial value of the detection result Cs is set to zero.
  • step S13 NO
  • the control unit 600 determines that the refrigerant has not leaked from the refrigeration cycle device 100. Then, the control unit 600 returns to step S12 again in order to continue monitoring whether or not the refrigerant has leaked.
  • the loop of step S12 and step S13 is repeated every sampling cycle of detection by the first refrigerant sensor 510.
  • the detection sampling period of the first refrigerant sensor 510 is preferably 15 seconds or less, more preferably 10 seconds or less, and even more preferably 3 seconds or less.
  • step S13 when the rate of increase in the detection result Cs exceeds the threshold value Th (step S13: YES), the control unit 600 determines that the refrigerant has leaked from the refrigeration cycle device 100. Then, the control unit 600 starts emergency control for suppressing an increase in the concentration of the refrigerant in the vehicle interior 910 (step S14).
  • the process of step S13 corresponds to the above-mentioned refrigerant leakage determination.
  • the emergency control will be specifically described.
  • the control unit 600 first stops the air conditioning (step S21). Specifically, the control unit 600 stops the first compressor 110a and the second compressor 110b shown in FIG. As a result, the circulation of the refrigerant in the refrigeration cycle device 100 is stopped, so that the deterioration of the refrigerant leakage is suppressed.
  • the control unit 600 also stops the outdoor blower 320 shown in FIG.
  • the control unit 600 switches the first suction port damper 410a and the second suction port damper 410b shown in FIG. 2 to the closed state, and the first ventilation port damper 430a and the second suction port damper 410b shown in FIG.
  • the ventilation port damper 430b switched to the open state
  • the first indoor blower 310a and the second indoor blower 310b shown in FIG. 2 are switched to reverse rotation (step S22).
  • the exhaust air EA2 is discharged to the outside of the vehicle through the first ventilation port 431a and the second ventilation port 431sb.
  • the refrigerant leaking from the refrigerating cycle device 100 and existing in the indoor unit room 710 is discharged to the outside of the vehicle as exhaust air EA2 without flowing out to the cabin 910, so that the concentration of the refrigerant in the indoor unit room 710 increases. It is suppressed.
  • the airflow from the passenger compartment 910 to the indoor unit 710 is formed at the first outlet 421a and the second outlet 421b without dampers, the outflow of the refrigerant from the indoor unit 710 to the passenger compartment 910 is suppressed. Will be done.
  • carbon dioxide gas is used as the refrigerant when the housing 700 is installed on the roof of the vehicle 900, since carbon dioxide is heavier than air, there is a high possibility that the refrigerant will flow out from the indoor unit 710 to the vehicle compartment 910. ..
  • the first suction port damper 410a and the second suction port damper 410b are switched to the closed state, and the first chamber blower 310a and the second chamber are replaced.
  • the blower 310b By rotating the blower 310b in the reverse direction, the outflow of the refrigerant to the passenger compartment 910 is suppressed.
  • the first indoor blower 310a and the second indoor blower 310b also play a role of drawing outside air into the passenger compartment 910 by rotating in the reverse direction. Specifically, the air pressure in the passenger compartment 910 decreases as the exhaust air EA2 is discharged. As the air pressure drops, outside air flows into the passenger compartment 910 through a ventilation port (not shown) provided in the passenger compartment 910 or a gap such as a door or a window of the passenger compartment 910. As a result, even if the refrigerant flows out to the passenger compartment 910, an increase in the concentration of the refrigerant in the passenger compartment 910 can be suppressed.
  • step S14 the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 again (step S15), and whether the rate of increase of the detection result Cs is equal to or less than the threshold value Th. It is determined whether or not (step S16).
  • the threshold value Th is a value so small that it can be considered that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed. That is, step S16 represents a determination as to whether or not to terminate the emergency control (hereinafter, referred to as an termination determination).
  • the threshold values Th used in step S13 and step S16 may be the same value or different values.
  • step S15 may be started after a predetermined time has elapsed from the completion of step S14.
  • emergency control is started, the environment in the indoor unit room changes drastically. Therefore, the operation of the refrigerant leakage monitoring process may become unstable. Therefore, the time required from the start of the emergency control to the stabilization of the operation of the refrigerant leakage monitoring process is set as a predetermined time. As a result, the refrigerant leakage monitoring process operates normally.
  • step S16 NO
  • the control unit 600 returns to step S15 and returns to the emergency because the leakage of the refrigerant from the refrigeration cycle device 100 has not been completed yet.
  • the loop of steps S15 and S16 is repeated every sampling cycle of detection by the first refrigerant sensor 510.
  • step S16 when the rate of increase in the detection result Cs is equal to or less than the threshold value Th (step S16: YES), the control unit 600 can consider that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed, so that the emergency control can be performed. It ends (step S17). Specifically, the control unit 600 controls the first suction port damper 410a and the second suction port damper 410b shown in FIG. 2 in the closed state, and the first indoor blower 310a and the first chamber blower 310a shown in FIG. 2 Stop the indoor blower 310b. Further, it is preferable to keep controlling the first ventilation port damper 430a and the second ventilation port damper 430b shown in FIG.
  • control unit 600 may end the emergency control after a predetermined time has elapsed after determining that the leakage of the refrigerant has been completed.
  • the predetermined time may be the time required to exhaust the air in the indoor unit 710 to the outside of the vehicle.
  • the configuration for determining the start and end of refrigerant leakage using the rate of increase in the detection result Cs has been described, but the detection result Cs is used instead of the rate of increase in the detection result Cs for refrigerant leakage. It may be configured to determine the start and end.
  • the threshold value for determining the start of the refrigerant leakage is a value large enough to be regarded as the refrigerant leaking. Further, the threshold value for determining the end of the refrigerant leakage is a value small enough to be considered that the refrigerant has not leaked.
  • control unit 600 completes the refrigerant leakage monitoring process.
  • the control unit 600 does not restart the air conditioning operation until the repair of the refrigeration cycle device 100 is completed.
  • the vehicle air conditioner 800 is formed by partitioning the inside of a housing mounted on the vehicle, and has a suction port and an air outlet leading to the passenger compartment of the vehicle, and ventilation leading to the outside of the vehicle.
  • An indoor unit room equipped with a mouth and an indoor heat exchanger that is arranged in the indoor unit room and exchanges heat between the refrigerant and air can be switched between forward rotation and reverse rotation.
  • the state of the refrigerant and the indoor blower that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit from the suction port heads for the indoor heat exchanger and the air that has passed through the indoor heat exchanger flows out from the air outlet to the passenger compartment.
  • the control unit that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment from the air outlet flows out to the outside of the vehicle through the ventilation port by controlling the closed state and switching the indoor blower to the reverse rotation.
  • the suction port 411 and the air outlet 421, which are openings that communicate the indoor unit 710 and the passenger compartment 910 the suction port 411 is controlled to be closed, and the airflow from the passenger compartment 910 to the indoor unit 710 flows.
  • the refrigerant can be positively exhausted to the outside of the vehicle without providing a blower dedicated to exhaust. can. Further, even if the outlet 421 is not provided with the outlet damper, it is possible to suppress the leakage of the refrigerant to the vehicle interior 910.
  • the configuration in which the end determination of the emergency control is performed based on the detection result Cs of the first refrigerant sensor 510 after the start of the emergency control has been described, but the configuration in which the end determination of the emergency control is not performed may be performed. ..
  • a processing flow in which the end determination of the emergency control is not performed will be described with reference to FIG. 7.
  • the control unit 600 does not perform the processes of steps S15 to S17 of FIG. 5, and the refrigerant leakage monitoring process continues in the state where the emergency control is continued. To finish. In this case, the control unit 600 continues the emergency control until the end operation is performed by the repair person or the like. As a result, even when there is a refrigerant that is not discharged to the outside of the vehicle and remains in the indoor unit, the outflow of the refrigerant to the vehicle compartment 910 can be suppressed.
  • first outlet 421a and the second outlet 421b are not provided with dampers, and the first outlet 421a and the second outlet 421b are always maintained in an open state.
  • first outlet 421a may be provided with the first outlet damper 420a
  • second outlet 421b may be provided with the second outlet damper 420b.
  • a configuration including the first air outlet damper 420a and the second air outlet damper 420b will be described with reference to FIG.
  • FIG. 8 is a plan view showing the housing 700 of the vehicle air conditioner 800 including the first air outlet damper 420a and the second air outlet damper 420b. All the dampers are in the open state, and the first indoor blower. The airflow AC formed when the 310a and the second chamber blower 310b are controlled to rotate in the forward direction is shown. Further, FIG. 8 is the same as the housing 700 shown in FIG. 2 except that the damper 420a for the first outlet and the damper 420b for the second outlet are provided.
  • the points different from the configuration shown in FIG. 2 will be mainly described.
  • the first air outlet damper 420a is a damper provided at the first air outlet 421a, and is the air forming the airflow AC from the first indoor unit 711 to the passenger compartment 910 via the first air outlet 421a, that is. It is possible to switch between an open state that allows the outflow of the blown air SA to the cabin 910 and a closed state that prevents the outflow. Further, the first air outlet damper 420a can adjust the flow rate of air in the open state. The opening and closing of the first air outlet damper 420a is controlled by the control unit 600. Switching the open / closed state of the first air outlet damper 420a is equivalent to switching the open / closed state of the first air outlet 421a.
  • the second air outlet damper 420b is a damper provided at the second air outlet 421b, and is the air forming the airflow AC from the first indoor unit 711 to the passenger compartment 910 via the second air outlet 421b, that is. It is possible to switch between an open state that allows the outflow of the blown air SA to the cabin 910 and a closed state that prevents the outflow. Further, the second air outlet damper 420b can adjust the air flow rate in the open state. The opening and closing of the second outlet damper 420b is controlled by the control unit 600. Switching the open / closed state of the second outlet damper 420b is equivalent to switching the open / closed state of the second outlet 421b. Further, the first outlet damper 420a and the second outlet damper 420b constitute the outlet damper 420 shown in FIG. 1.
  • control unit 600 controls all the dampers in the open state, and controls the first chamber blower 310a and the second chamber blower 310b to rotate in the forward direction.
  • the airflow AC as shown in the figure is formed, and the same actions and effects as those of the present embodiment can be obtained.
  • the control unit 600 closes the first suction port damper 410a and the second suction port damper 410b, the first ventilation port damper 430a, the second ventilation port damper 430b, and the first blow.
  • the outlet damper 420a and the second outlet damper 420b controlled in the open state, the first chamber blower 310a and the second chamber blower 310b are controlled to rotate in the reverse direction.
  • the same actions and effects as those of the present embodiment can be obtained.
  • the control unit 600 controls the first suction port damper 410a, the second suction port damper 410b, the first outlet damper 420a, and the second outlet damper 420b in a closed state.
  • the first chamber blower 310a and the second chamber blower 310b are stopped.
  • the damper may be switched to the closed state.
  • the indoor unit 710 and the passenger compartment 910 can be disconnected.
  • the outflow of the refrigerant to the vehicle interior 910 can be suppressed.
  • a configuration is described in which a first refrigerant sensor 510 is provided as the detector 500, and the detection result of the first refrigerant sensor 510 is used to determine whether or not the refrigerant has leaked.
  • the present embodiment is different from the first embodiment in that the detector 500 is further provided with the second refrigerant sensor 520. Specifically, the detection of the first refrigerant sensor arranged at a position downstream of the indoor heat exchanger 130 and the second refrigerant sensor arranged at a position upstream of the indoor heat exchanger 130 with respect to the flow direction of the airflow AC. The difference is that the result is used to determine whether or not the refrigerant has leaked.
  • a configuration different from that of the first embodiment will be mainly described.
  • FIG. 9 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment.
  • FIG. 9 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation.
  • the vehicle air conditioner 800 further includes a second refrigerant sensor 520 arranged in the first indoor unit room 711 in addition to the first refrigerant sensor 510.
  • the second refrigerant sensor 520 detects the concentration of the refrigerant at a position upstream of the first chamber heat exchanger 130a on the path of the airflow AC formed by the first chamber blower 310a.
  • the second refrigerant sensor 520 has the same configuration as the first refrigerant sensor 510.
  • control unit 600 shown in FIG. 1 uses the detection result of the first refrigerant sensor 510 and the detection result of the second refrigerant sensor 520 to repeat the above-mentioned refrigerant leakage determination in real time. Perform monitoring processing.
  • the control unit 600 shown in FIG. 1 uses the detection result of the first refrigerant sensor 510 and the detection result of the second refrigerant sensor 520 to repeat the above-mentioned refrigerant leakage determination in real time. Perform monitoring processing.
  • FIG. 10 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the second embodiment.
  • the control unit 600 causes the first refrigerant sensor 510 and the second refrigerant sensor 520 to start detecting the concentration of the refrigerant (step S31). After that, the first refrigerant sensor 510 and the second refrigerant sensor 520 repeatedly detect the concentration of the refrigerant in real time at each position.
  • the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 and the detection result Cr from the second refrigerant sensor 520 (step S32). Then, the control unit 600 subtracts the detection result Cr of the second refrigerant sensor 520 from the detection result Cs of the first refrigerant sensor 510, and the value (Cs—Cr) of the result and the predetermined first threshold Th1 By comparison with the above, it is determined whether or not the refrigerant has leaked from the refrigeration cycle device 100 (step S33). The control unit 600 acquires the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 in real time, and the detection result Cs (t) detected at the same time t. The difference from Cr (t) (Cs (t) -Cr (t)) is calculated.
  • the refrigerant when the refrigerant does not leak from the refrigeration cycle device 100, the refrigerant is formed between the second refrigerant sensor 520 and the first refrigerant sensor 510 on the path of the airflow AC formed by the first chamber blower 310a. There is no factor that increases the concentration of. Therefore, the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 show the same or close values. Therefore, the difference (Cs—Cr) is zero or a small value.
  • the detection result Cs of the first refrigerant sensor 510 when the refrigerant does not leak. The concentration of the leaked refrigerant is added.
  • the detection result Cr of the second refrigerant sensor 520 located upstream of the first chamber heat exchanger 130a and the first refrigerant pipe 150a shows the concentration derived from the leaked refrigerant. Has not been reflected yet. Therefore, the difference (Cs—Cr) becomes a large value.
  • control unit 600 compares the value of the difference (Cs—Cr) with the first threshold value Th1 representing the increment of the concentration of the refrigerant in the air constituting the airflow AC due to the leakage of the refrigerant. Can detect leaks.
  • step S33 NO
  • the control unit 600 has the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520. Is the same as or close to, so it is determined that the refrigerant has not leaked from the refrigeration cycle device 100. Then, the control unit 600 returns to step S32 again in order to continue monitoring whether or not the refrigerant has leaked.
  • the loop of steps S32 and S33 is repeated every sampling cycle of detection by the first refrigerant sensor 510 and the second refrigerant sensor 520.
  • step S33 when the difference (Cs—Cr) value exceeds the first threshold value Th1 (step S33: YES), the control unit 600 adds the concentration of the leaked refrigerant to the detection result Cs of the first refrigerant sensor 510. Therefore, it is determined that the refrigerant has leaked from the refrigeration cycle device 100. Therefore, the control unit 600 starts emergency control for suppressing an increase in the concentration of the refrigerant in the vehicle interior 910 (step S34).
  • the specific contents of the emergency control are as shown in FIG.
  • the control unit 600 again acquires the detection result Cs from the first refrigerant sensor 510 (step S35), and compares the detection result Cs of the first refrigerant sensor 510 with the predetermined second threshold value Th2 (step S35).
  • the second threshold value Th2 is a value so small that it can be considered that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed.
  • the control unit 600 may determine the end of the refrigerant leakage by using the detection result Cr of the second refrigerant sensor 520 instead of the detection result Cs of the first refrigerant sensor 510.
  • step S36 NO
  • the control unit 600 has not completed the leakage of the refrigerant from the refrigeration cycle device 100, so that the emergency The process returns to step S35 in order to continue the control.
  • the loop of steps S35 and S36 is repeated every sampling cycle of detection by the first refrigerant sensor 510.
  • step S36 when the detection result Cs of the first refrigerant sensor 510 is equal to or less than the second threshold value Th2 (step S36: YES), the control unit 600 can consider that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed. Therefore, the emergency control is terminated (step S37).
  • the end determination of the emergency control may be performed based on the detection result Cr of the second refrigerant sensor 520.
  • the control unit 600 can detect the leakage of the refrigerant at an early stage and with high accuracy based on the value of the difference (Cs—Cr).
  • the control unit 600 subtracts the detection result Cr of the second refrigerant sensor 520 from the detection result Cs of the first refrigerant sensor 510 in step S33, so that the first refrigerant sensor 510 From the detection result Cs of, the concentration of carbon dioxide derived from the exhaled breath of the person in the passenger compartment 910 can be canceled. That is, even if the concentration of carbon dioxide derived from the exhaled breath of a person fluctuates due to the fluctuation of the occupancy rate in the passenger cabin 910, the influence of the fluctuation is the detection result Cs of the first refrigerant sensor 510 and the second refrigerant sensor 520.
  • FIG. 11 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the third embodiment. Steps S31, S32, S34, and S37 in the figure perform the same processing as the steps having the same number as described above.
  • the control unit 600 freezes by comparing the rate of increase of the difference (Cs—Cr) with the predetermined third threshold value Th3. It is determined whether or not the refrigerant has leaked from the cycle device 100 (step S41).
  • the "difference (Cs-Cr) increase rate" is the value of the difference (Cs (t) -Cr (t)) at time t and the difference (Cs (t-1)) at time t-1 one sampling cycle before.
  • the difference (Cs—Cr) value hardly changes with time, so that the increase rate of the difference (Cs—Cr) becomes zero or a value close to zero. ..
  • the rate of increase of the difference (Cs—Cr) is a large value because it represents the severity of the leakage of the refrigerant. Therefore, when the rate of increase in the difference (Cs—Cr) is equal to or greater than the third threshold value Th3 indicating that the refrigerant is leaking from the refrigeration cycle device 100 (step S41: YES), the control unit 600 has step S34. Proceed to.
  • step S41: NO when the rate of increase of the difference (Cs—Cr) is less than the third threshold value Th3 (step S41: NO), the control unit 600 cannot say that the refrigerant has leaked from the refrigeration cycle device 100. Return to S32.
  • the control unit 600 compares the rate of increase in the detection result Cs of the first refrigerant sensor 510 with the predetermined fourth threshold value Th4 to obtain the refrigerant. It is determined whether or not the leakage is completed (step S42).
  • the “rate of increase in Cs” is the difference (Cs) between the value of the detection result Cs (t) at the time t and the value of the detection result Cs (t-1) at the time t-1 one sampling cycle before. (T) -Cs (t-1)), or a physical quantity proportional to the difference thereof.
  • step S42 When the leakage of the refrigerant is ending, the rate of increase in the amount of leakage of the refrigerant shows a negative value. Therefore, when the rate of increase in Cs is equal to or less than the negative fourth threshold value Th4 indicating that the leakage of the refrigerant is ending (step S42: YES), the control unit 600 proceeds to step S37 to increase Cs. If the rate is greater than the fourth threshold Th4 (step S42: NO), the process returns to step S35.
  • Other configurations and effects are the same as in the second embodiment.
  • the control unit 600 of the vehicle air conditioner 800 of the present embodiment determines whether or not the refrigerant has leaked based on the rate of increase in the difference between the detection result of the first refrigerant sensor and the detection result of the second refrigerant sensor. do. Thereby, it is possible to detect that the refrigerant is leaking from the refrigeration cycle device 100.
  • FIG. 12 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment.
  • FIG. 12 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation.
  • the vehicle air conditioner 800 is a current sensor that detects a current value supplied to a first compressor 110a that compresses the refrigerant instead of the first refrigerant sensor 510 and the second refrigerant sensor 520.
  • 530 is provided.
  • the current sensor 530 detects the current value supplied to the first compressor 110a and outputs the detected result to the control unit 600.
  • the current sensor 530 is arranged in the outdoor unit room 720, but may be arranged outside the outdoor unit room 720 as long as it can detect the current value supplied to the first compressor 110a.
  • control unit 600 shown in FIG. 1 performs the above-mentioned refrigerant leakage monitoring process using the detection result Ic of the current sensor 530.
  • the control unit 600 controls the first compressor 110a so that the rotation speed becomes constant. Further, when the flow rate of the refrigerant flowing inside the first refrigeration cycle device 100a decreases, the resistance of the refrigerant decreases, and as a result, the current value required to drive the first compressor 110a decreases. Therefore, by monitoring the change in the current value supplied to the first compressor 110a, it is possible to detect the leakage of the refrigerant in the first refrigeration cycle device 100a. The same applies to the leakage of the refrigerant in the second refrigeration cycle device 100b.
  • FIG. 13 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the fourth embodiment.
  • the control unit 600 causes the current sensor 530 to start detecting the current value supplied to the first compressor 110a (step S51). After that, the current sensor 530 repeatedly detects the current value supplied to the first compressor 110a in real time.
  • the control unit 600 acquires the detection result Ic from the current sensor 530 (step S52), and determines the rate of decrease of the detection result Ic and a predetermined value indicating that the refrigerant has leaked from the first refrigeration cycle device 100a. Compare with the fifth threshold Th5 (step S53).
  • the "decrease rate of the detection result Ic” refers to the difference between the value of the previous detection result and the value of the current detection result, or a physical quantity proportional to the difference.
  • the "value of the current detection result” is the value of the detection result Ic (t) at time t
  • the "value of the previous detection result” is the detection result Ic (t-) at time t-1 one sampling cycle before. It means the value of 1).
  • the initial value of the detection result Ic is set to zero.
  • step S53 NO
  • the control unit 600 determines that the refrigerant has not leaked from the first refrigeration cycle device 100a. Then, the control unit 600 returns to step S52 again in order to continue monitoring whether or not the refrigerant has leaked.
  • the loop of step S52 and step S53 is repeated every sampling cycle of detection by the current sensor 530.
  • step S53 determines that the refrigerant has leaked from the first refrigeration cycle device 100a. Therefore, the control unit 600 starts the emergency control for suppressing the increase in the concentration of the refrigerant in the vehicle interior 910 (step S54).
  • the specific contents of the emergency control are as shown in FIG.
  • the control unit 600 After starting the emergency control as described above (step S54), the control unit 600 acquires the detection result Ic from the current sensor 530 again (step S55), and whether the rate of decrease of the detection result Ic is the fifth threshold value Th5 or less. Whether or not it is determined (step S56).
  • the fifth threshold value Th5 is a value so small that it can be considered that the leakage of the refrigerant from the first refrigeration cycle device 100a has been completed.
  • the fifth threshold value Th5 used in step S53 and step S56 may have the same value or different values.
  • step S56 NO
  • the control unit 600 has not yet completed the leakage of the refrigerant from the first refrigeration cycle device 100a, so that step S55 Return to and continue emergency control.
  • the loop of step S55 and step S56 is repeated every sampling cycle of detection by the current sensor 530.
  • step S56 when the rate of decrease of the detection result Ic is equal to or less than the fifth threshold value Th5 (step S56: YES), the control unit 600 can consider that the leakage of the refrigerant from the first refrigeration cycle device 100a has been completed. , The emergency control is terminated (step S57).
  • control unit 600 completes the refrigerant leakage monitoring process.
  • the configuration in which the current sensor 530 detects the current value of the first compressor 110a has been described, but the current sensor 530 may be configured to detect the current value of the second compressor 110b.
  • the configuration may be such that the current values of the 1 compressor 110a and the 2nd compressor 110b are detected.
  • the leakage of the refrigerant is detected based on the decrease in the flow rate of the refrigerant in the refrigeration cycle.
  • the leakage of the refrigerant can be detected with high accuracy regardless of the position where the leakage of the refrigerant has occurred and the position of the detector that detects the state of the refrigerant.
  • the leakage of the refrigerant is detected based on the decrease of the refrigerant flowing in the refrigeration cycle device 100.
  • the leakage of the refrigerant can be detected with high accuracy regardless of the position where the refrigerant has leaked and the position of the detector that detects the state of the refrigerant.
  • the vehicle air conditioner 800 according to the first to third embodiments can be modified as described below.
  • the second embodiment it is determined whether or not the refrigerant has leaked based on the value of the difference (Cs—Cr), and in the third embodiment, whether or not the refrigerant has leaked based on the rate of increase of the difference (Cs—Cr).
  • the physical quantity used for determining whether or not the refrigerant has leaked is not limited to this.
  • the detection result Cs or the value of Cr itself, or any physical quantity depending on Cs or Cr can be used to determine whether or not the refrigerant has leaked.
  • the vehicle on which the housing 700 is installed is not limited to trains, bullet trains, monorails, and other railway vehicles including vehicles traveling along the track, but is not limited to trains, buses, and other automobiles. May be good.
  • the housing 700 may be arranged on the roof of the vehicle 900 or may be arranged under the floor of the vehicle 900.
  • 100 refrigeration cycle device 100a first refrigeration cycle device, 100b second refrigeration cycle device, 110a first compressor, 110b second compressor, 120a first outdoor heat exchanger, 120b second outdoor heat exchanger, 130 indoor heat Exchanger, 130a 1st room heat exchanger, 130b 2nd room heat exchanger, 140a 1st accumulator, 140b 2nd accumulator, 150a 1st refrigerant pipe, 150b 2nd refrigerant pipe, 200a 1st heater, 200b 2nd heater , 310 Indoor Blower, 310a 1st Indoor Blower, 310b 2nd Indoor Blower, 320 Outdoor Blower, 410 Suction Port Damper, 410a 1st Suction Port Damper, 410b 2nd Suction Port Damper, 420 Air Outlet Damper, 420a 1st outlet damper, 420b 2nd outlet damper, 430 ventilation port damper, 430a 1st ventilation port damper, 430b 2nd ventilation port damper, 500 detector, 510 1st refrigerant sensor, 520 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This vehicle air conditioner comprises: an indoor unit chamber (710) provided with an intake port (411), a discharge port (421), and a ventilation port (431); an indoor heat exchanger (130) positioned in the indoor unit chamber (710); an indoor air blower (310) that can switch between forward rotation and reverse rotation, and that upon switching to forward rotation, forms an air flow in which air in the passenger cabin, having flowed into the indoor unit chamber (710) from the intake port (411), passes through the indoor heat exchanger (130) and flows out to the passenger cabin from the discharge port (421); a detector (500) that detects the state of a refrigerant; and a control unit (600) that determines refrigerant leakage on the basis of the detection result of the detector (500), and when refrigerant has leaked, controls the discharge port (421) and the ventilation port (431) to an open state, the intake port (411) to a closed state, and the indoor air blower (310) to reverse rotation, thereby forming an air flow in which air in the passenger cabin, having flowed into the indoor unit chamber (710) from the discharge port (421), flows out of the vehicle from the ventilation port (431). Leaked refrigerant is thereby prevented from flowing out to the passenger cabin.

Description

車両用空気調和装置Vehicle air conditioner
 本開示は、車両に搭載され、車室内の空調を行う車両用空調装置に関するものである。 The present disclosure relates to a vehicle air conditioner that is mounted on a vehicle and air-conditions the interior of the vehicle.
 特許文献1に開示されているように、二酸化炭素冷媒を採用した冷凍サイクルによって車室を空調する車両用空調装置が知られている。この車両用空調装置は、冷凍サイクルを構成する室内用熱交換器と、二酸化炭素濃度センサと、換気用ダンパとを備えた第1の部屋を有し、二酸化炭素濃度が予め設定された基準値を上回ると、換気用ダンパを開放して外気を取り込み、二酸化炭素の濃度を低下させる。 As disclosed in Patent Document 1, a vehicle air conditioner that air-conditions a vehicle interior by a refrigeration cycle that uses a carbon dioxide refrigerant is known. This vehicle air conditioner has a first room equipped with an indoor heat exchanger constituting a refrigeration cycle, a carbon dioxide concentration sensor, and a ventilation damper, and the carbon dioxide concentration is a preset reference value. Above, the ventilation damper is opened to take in outside air and reduce the concentration of carbon dioxide.
特開2012-136159JP 2012-136159
 従来の車両用空調装置においては、基準値を上回る二酸化炭素濃度が検出された後も、第1の部屋の空気が車室へ流出することから、空調装置から漏出した二酸化炭素が車室へ流出する。そのため、外気の取り込みが不十分な場合には、人体が支障なく避難行動が行える限界濃度を超えた二酸化炭素が車室に流出する可能性がある。 In the conventional vehicle air conditioner, even after the carbon dioxide concentration exceeding the standard value is detected, the air in the first room flows out to the passenger compartment, so that the carbon dioxide leaked from the air conditioner leaks into the passenger compartment. do. Therefore, if the intake of outside air is insufficient, carbon dioxide exceeding the limit concentration at which the human body can evacuate without any trouble may flow out to the passenger compartment.
 本開示は、漏出した冷媒の車室への流出を抑制することができる車両用空気調和装置を提供することを目的とする。 An object of the present disclosure is to provide an air conditioner for a vehicle capable of suppressing the outflow of the leaked refrigerant into the passenger compartment.
 本開示に係る車両用空気調和装置は、車両に搭載される筐体の内部を区画して形成され、車両の車室に通じる吸込口、及び吹出口、並びに車両の外部に通じる換気口を備える室内機室と、室内機室に配置され、冷媒と空気との間で熱交換を行う室内熱交換器と、正回転、又は逆回転の切り替えが可能で、正回転に切り替えると、吸込口から室内機室に流入した車室の空気が室内熱交換器に向かうとともに、室内熱交換器を通過した空気が吹出口から車室に流出する気流を形成する室内送風機と、冷媒の状態を検出する検出器と、検出器の検出結果に基づいて冷媒が漏出したか否かを判定し、冷媒が漏出したと判定した場合には、吹出口、及び換気口を開状態、吸込口を閉状態に制御し、室内送風機を逆回転に切り替えることにより、吹出口から室内機室に流入した車室の空気が換気口から車両の外部に流出する気流を形成させる制御部と、を備えることを特徴とする。 The vehicle air conditioner according to the present disclosure is formed by partitioning the inside of a housing mounted on a vehicle, and includes a suction port and an air outlet leading to the passenger compartment of the vehicle, and a ventilation port leading to the outside of the vehicle. It is possible to switch between forward rotation and reverse rotation between the indoor unit room and the indoor heat exchanger that is located in the indoor unit room and exchanges heat between the refrigerant and air. Detects the state of the refrigerant and the indoor blower that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment heads for the indoor heat exchanger and the air that has passed through the indoor heat exchanger flows out from the air outlet to the passenger compartment. Based on the detector and the detection result of the detector, it is determined whether or not the refrigerant has leaked, and if it is determined that the refrigerant has leaked, the air outlet and the ventilation port are opened and the suction port is closed. It is characterized by being provided with a control unit that controls and switches the indoor blower to reverse rotation to form an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment from the air outlet flows out from the ventilation port to the outside of the vehicle. do.
 本開示に係る車両用空気調和装置は、上記のように構成したことにより、冷凍サイクルから漏出した冷媒の車室内への流出を抑制することができる。 By configuring the air conditioner for vehicles according to the present disclosure as described above, it is possible to suppress the outflow of the refrigerant leaked from the refrigeration cycle into the vehicle interior.
実施の形態1に係る車両用空気調和装置の構成の一部を示す概念図である。It is a conceptual diagram which shows a part of the structure of the air conditioner for a vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の筐体内部を示す平面図である。It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の筐体内部に形成される気流を示す図である。It is a figure which shows the airflow formed in the housing of the vehicle air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の筐体内部に形成される気流を示す図である。It is a figure which shows the airflow formed in the housing of the vehicle air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の制御部の冷媒漏出監視処理を示すフローチャートである。It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の制御部のエマージェンシー制御の処理フローを示すフローチャートである。It is a flowchart which shows the process flow of the emergency control of the control part of the air conditioner for a vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の冷媒漏出監視処理の変形例を示すフローチャートである。It is a flowchart which shows the modification of the refrigerant leakage monitoring processing of the air conditioner for a vehicle which concerns on Embodiment 1. FIG. 実施の形態1に係る車両用空気調和装置の変形例を示す平面図である。It is a top view which shows the modification of the air conditioner for a vehicle which concerns on Embodiment 1. FIG. 実施の形態2に係る車両用空気調和装置の筐体内部を示す平面図である。It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 2. FIG. 実施の形態2に係る車両用空気調和装置の制御部の冷媒漏出監視処理を示すフローチャートである。It is a flowchart which shows the refrigerant leakage monitoring process of the control part of the air conditioner for a vehicle which concerns on Embodiment 2. FIG. 実施の形態3に係る車両用空気調和装置の制御部の冷媒漏出監視処理を示すフローチャートである。It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 3. FIG. 実施の形態4に係る車両用空気調和装置の筐体内部を示す平面図である。It is a top view which shows the inside of the housing of the air conditioner for vehicles which concerns on Embodiment 4. FIG. 実施の形態4に係る車両用空気調和装置の制御部の冷媒漏出監視処理を示すフローチャートである。It is a flowchart which shows the refrigerant leakage monitoring processing of the control part of the air conditioner for a vehicle which concerns on Embodiment 4. FIG.
 以下、車両が鉄道車両である場合を例に挙げて、実施の形態1から4に係る車両用空気調和装置について、図面を参照して説明する。図中、同一又は対応する部分に同一の符号を付す。 Hereinafter, the case where the vehicle is a railroad vehicle will be taken as an example, and the vehicle air conditioner according to the first to fourth embodiments will be described with reference to the drawings. In the figure, the same or corresponding parts are designated by the same reference numerals.
 <実施の形態1>
 図1は、本実施の形態に係る車両用空気調和装置800の構成の一部を示す概念図である。図1に示す車両用空気調和装置800は、車両900に搭載され、車両900において人が乗るために区画された空間である車室(客室)910を空調するものである。なお、図1は、車両用空気調和装置800の機能の理解を容易にするために、構成要素の一部を省略するとともに、位置及び延在方向を実際のものとは異ならせて示した概念図である。詳細は、別の図を参照して後述する。
<Embodiment 1>
FIG. 1 is a conceptual diagram showing a part of the configuration of the vehicle air conditioner 800 according to the present embodiment. The vehicle air conditioner 800 shown in FIG. 1 is mounted on a vehicle 900 and air-conditions a vehicle compartment (cabin) 910, which is a space partitioned for a person to ride in the vehicle 900. It should be noted that FIG. 1 is a concept in which some of the components are omitted and the position and the extending direction are different from the actual ones in order to facilitate the understanding of the function of the vehicle air conditioner 800. It is a figure. Details will be described later with reference to another figure.
 図1に示すように、車両用空気調和装置800は、筐体700と、室内熱交換器130と、室内送風機310と、検出器500と、吸込口用ダンパ410と、換気口用ダンパ430と、制御部600とを備える。なお、検出器500とは、冷媒の濃度、又は冷媒の流量等の冷媒の状態を検出するものであり、検出器500の検出結果は、冷凍サイクルから冷媒が漏出したか否かの判断に用いられる。本実施の形態では、検出器500が冷媒の濃度を検出する第1冷媒センサ510である場合について説明する。 As shown in FIG. 1, the vehicle air conditioner 800 includes a housing 700, an indoor heat exchanger 130, an indoor blower 310, a detector 500, a suction port damper 410, and a ventilation port damper 430. , The control unit 600 is provided. The detector 500 detects the state of the refrigerant such as the concentration of the refrigerant or the flow rate of the refrigerant, and the detection result of the detector 500 is used to determine whether or not the refrigerant has leaked from the refrigeration cycle. Be done. In the present embodiment, the case where the detector 500 is the first refrigerant sensor 510 that detects the concentration of the refrigerant will be described.
 筐体700は、車両に搭載され、内部を仕切板で区画して形成された空間である室内機室710を備える。室内機室710には、室内熱交換器130と、室内送風機310と、第1冷媒センサ510とが設置される。室内機室710は、車室910に通じる吸込口411、及び吹出口421と、車両900の外部に通じる換気口431とを備える。なお、「車両の外部(車外)」とは、車両900、及び筐体700の外部を指す。
 吸込口411、及び吹出口421は、車室910と連通するダクト(duct)である吸込ダクト920、及び吹出ダクト930にそれぞれ接続される。これにより、室内機室710は、車室910と連通する。また、車両用空気調和装置800が車室910の空調を行う通常運転時に、車室910の空気が吸込口411を介して室内機室710に吸い込まれ、室内機室710で空調された空気が吹出口421を介して車室910に吹き出される。
The housing 700 includes an indoor unit room 710, which is a space mounted on a vehicle and formed by partitioning the inside with a partition plate. In the indoor unit room 710, an indoor heat exchanger 130, an indoor blower 310, and a first refrigerant sensor 510 are installed. The indoor unit room 710 includes a suction port 411 leading to the passenger compartment 910, an air outlet 421, and a ventilation port 431 leading to the outside of the vehicle 900. The "outside of the vehicle (outside the vehicle)" refers to the outside of the vehicle 900 and the housing 700.
The suction port 411 and the outlet 421 are connected to the suction duct 920 and the outlet duct 930, which are ducts communicating with the passenger compartment 910, respectively. As a result, the indoor unit 710 communicates with the passenger compartment 910. Further, during normal operation in which the vehicle air conditioner 800 air-conditions the passenger compartment 910, the air in the passenger compartment 910 is sucked into the indoor unit 710 through the suction port 411, and the air conditioned in the indoor unit 710 is discharged. It is blown out to the passenger compartment 910 through the air outlet 421.
 室内熱交換器130は、冷媒を用いて冷凍サイクルを構成する冷凍サイクル装置100の一部であり、冷凍サイクルの内部を流れる冷媒と空気との間で熱交換が行われる。冷媒は、例えば、二酸化炭素ガス、又はフロンガス(R407C等)でも良いし、その他のものでも良い。 The indoor heat exchanger 130 is a part of the refrigeration cycle device 100 that constitutes a refrigeration cycle using a refrigerant, and heat exchange is performed between the refrigerant flowing inside the refrigeration cycle and air. The refrigerant may be, for example, carbon dioxide gas, chlorofluorocarbon gas (R407C or the like), or any other refrigerant.
 室内送風機310は、車室910の空気と、室内熱交換器130の内部を流れる冷媒との間の熱交換を促進する。具体的には、室内送風機310は、車両用空気調和装置800の通常運転時に、吸込口411から室内機室710に流入した車室910の空気が室内熱交換器130に向かい、室内熱交換器130を通過した空気が吹出口421から再び車室910に流出する気流ACを形成する。また、室内送風機310は、羽(図示せず)の回転方向を正回転、又は逆回転に切り替えることが可能な構成である。具体的には、室内送風機310は、正回転、又は逆回転の切り替えが可能なモータ(図示せず)を有し、このモータにより羽が駆動される。さらに、室内送風機310は、正回転することにより気流ACを形成し、かつ逆回転することにより、正回転時に形成する気流の方向と逆方向の気流を形成するような形状の羽を有する。室内送風機310の回転は、制御部600により制御される。通常運転時には、制御部600は、正回転となるように室内送風機310を制御する。室内送風機310は、例えば、シロッコファンにより実現される。 The indoor blower 310 promotes heat exchange between the air in the passenger compartment 910 and the refrigerant flowing inside the indoor heat exchanger 130. Specifically, in the indoor blower 310, during the normal operation of the vehicle air conditioner 800, the air in the passenger compartment 910 that has flowed into the indoor unit compartment 710 from the suction port 411 heads toward the indoor heat exchanger 130, and the indoor heat exchanger The air that has passed through 130 forms an airflow AC that flows out from the outlet 421 to the passenger compartment 910 again. Further, the indoor blower 310 has a configuration capable of switching the rotation direction of the blades (not shown) to forward rotation or reverse rotation. Specifically, the indoor blower 310 has a motor (not shown) capable of switching between forward rotation and reverse rotation, and the blades are driven by this motor. Further, the indoor blower 310 has wings having a shape such that the airflow AC is formed by rotating forward and the airflow is formed in the direction opposite to the direction of the airflow formed during the forward rotation by rotating in the reverse direction. The rotation of the indoor blower 310 is controlled by the control unit 600. During normal operation, the control unit 600 controls the indoor blower 310 so that the rotation is forward. The indoor blower 310 is realized by, for example, a sirocco fan.
 以下では、気流ACを構成する空気のうち、車室910から室内機室710に流入し、室内熱交換器130に向かう空気を吸込空気RAと呼ぶ。また、室内熱交換器130を通過した後に室内機室710から車室910に流出する空気を吹出空気SAと呼ぶ。吸込空気RAは、吸込ダクト920及び吸込口411を通って、車室910から室内機室710に流入する。吹出空気SAは、吹出口421及び吹出ダクト930を通って、室内機室710から車室910へ流出する。 In the following, among the air constituting the airflow AC, the air flowing from the passenger compartment 910 into the indoor unit compartment 710 and heading toward the indoor heat exchanger 130 is referred to as suction air RA. Further, the air that flows out from the indoor unit room 710 to the passenger compartment 910 after passing through the indoor heat exchanger 130 is called blowout air SA. The suction air RA flows from the passenger compartment 910 into the indoor unit compartment 710 through the suction duct 920 and the suction port 411. The blown air SA flows out from the indoor unit 710 to the passenger compartment 910 through the blowout port 421 and the blowout duct 930.
 第1冷媒センサ510は、室内機室710における冷媒の濃度を検出し、検出した結果を制御部600へ出力する。第1冷媒センサ510は、冷媒濃度に応じた反応を生じる感応部(図示せず)を有し、感応部での反応に基づいて冷媒濃度の検出結果を出力する。 The first refrigerant sensor 510 detects the concentration of the refrigerant in the indoor unit room 710 and outputs the detected result to the control unit 600. The first refrigerant sensor 510 has a sensitive portion (not shown) that causes a reaction according to the refrigerant concentration, and outputs a detection result of the refrigerant concentration based on the reaction at the sensitive portion.
 吸込口用ダンパ410は、吸込口411に設けられたダンパ(damper)であり、吸込口411を介して車室910から室内機室710へ向かう気流ACを形成する空気、即ち吸込空気RAの室内機室710への流入を許容する開状態と、その流入を阻止する閉状態とに切り替え可能である。また、吸込口用ダンパ410は、開状態においては、吸込空気RAの流量を調整することができる。吸込口用ダンパ410の開閉は、制御部600により制御される。なお、吸込口用ダンパ410の開閉状態を切り替えることは、吸込口411の開閉状態を切り替えることに等しい。 The suction port damper 410 is a damper provided in the suction port 411, and is the air forming the airflow AC from the passenger compartment 910 to the indoor unit room 710 through the suction port 411, that is, the interior of the suction air RA. It is possible to switch between an open state that allows inflow to the cabin 710 and a closed state that prevents the inflow. Further, the suction port damper 410 can adjust the flow rate of the suction air RA in the open state. The opening and closing of the suction port damper 410 is controlled by the control unit 600. Switching the open / closed state of the suction port damper 410 is equivalent to switching the open / closed state of the suction port 411.
 換気口用ダンパ430は、換気口431に設けられたダンパであり、換気口431を介した室内機室710の空気の車外への流出(排気)、及び外気の室内機室710への流入(吸気)を許容する開状態と、この流出、及び流入を阻止する閉状態とに切り替え可能である。また、換気口用ダンパ430は、開状態においては、換気口431を通過する空気の流量を調整することができる。換気口用ダンパ430の開閉は、制御部600により制御される。なお、換気口用ダンパ430の開閉状態を切り替えることは、換気口431の開閉状態を切り替えることに等しい。さらに、換気口431から空気が排出されるか吸気されるかは、室内機室710の内部における圧力が負圧か正圧かにより決定される。 The ventilation port damper 430 is a damper provided in the ventilation port 431, and the air outflow (exhaust) of the indoor unit room 710 to the outside of the vehicle and the inflow of the outside air into the indoor unit room 710 (exhaust) through the ventilation port 431 (exhaust). It is possible to switch between an open state that allows inspiration) and a closed state that prevents this outflow and inflow. Further, the ventilation port damper 430 can adjust the flow rate of air passing through the ventilation port 431 in the open state. The opening and closing of the ventilation port damper 430 is controlled by the control unit 600. Switching the open / closed state of the ventilation port damper 430 is equivalent to switching the open / closed state of the ventilation port 431. Further, whether the air is discharged or taken in from the ventilation port 431 is determined by whether the pressure inside the indoor unit 710 is a negative pressure or a positive pressure.
 制御部600は、室内送風機310、第1冷媒センサ510、吸込口用ダンパ410、換気口用ダンパ430、及び冷凍サイクル装置100の動作を制御し、通常動作時には、吸込口用ダンパ410、及び換気口用ダンパ430を開状態、室内送風機310を正回転に制御する。また、通常動作時には、冷媒が漏れ出たかどうかを監視する冷媒漏出監視処理を行い、冷媒が漏れ出たと判定した場合にはエマージェンシー制御を行う。冷媒漏出監視処理は、第1冷媒センサ510が検出した冷媒濃度に基づいて、冷凍サイクル装置100から冷媒が漏れ出たか否かを判定する冷媒漏出判定を繰り返し実行する処理である。エマージェンシー制御は、室内送風機310、吸込口用ダンパ410、及び換気口用ダンパ430の動作を制御して車室910への冷媒の流出を抑制する処理である。冷媒漏出監視処理、及びエマージェンシー制御の詳細は、後述する。制御部600は、筐体700の内部、又は車室910の天井裏に配置される。なお、冷媒漏出監視処理、及びエマージェンシー制御を実現する制御部600は、例えば、プログラムを読み込んで実行するマイコン、もしくはCPU(Central Processing Unit)で構成されても良いし、ASIC(Application Specific Integrated Circuit)、もしくはFPGA(Field Programmable Gate Array)等の専用のハードウェアで構成されてもよい。 The control unit 600 controls the operations of the indoor blower 310, the first refrigerant sensor 510, the suction port damper 410, the ventilation port damper 430, and the refrigeration cycle device 100, and during normal operation, the suction port damper 410 and ventilation. The mouth damper 430 is opened, and the indoor blower 310 is controlled to rotate in the forward direction. Further, during normal operation, a refrigerant leak monitoring process for monitoring whether or not a refrigerant has leaked is performed, and when it is determined that the refrigerant has leaked, emergency control is performed. The refrigerant leak monitoring process is a process of repeatedly executing a refrigerant leak determination for determining whether or not a refrigerant has leaked from the refrigeration cycle device 100 based on the refrigerant concentration detected by the first refrigerant sensor 510. The emergency control is a process of controlling the operation of the indoor blower 310, the suction port damper 410, and the ventilation port damper 430 to suppress the outflow of the refrigerant into the vehicle interior 910. Details of the refrigerant leak monitoring process and emergency control will be described later. The control unit 600 is arranged inside the housing 700 or behind the ceiling of the vehicle interior 910. The control unit 600 that realizes the refrigerant leakage monitoring process and the emergency control may be composed of, for example, a microcomputer that reads and executes a program, or a CPU (Central Processing Unit), or an ASIC (Application Specific Integrated Circuit). Alternatively, it may be configured with dedicated hardware such as FPGA (Field Programmable Gate Array).
 ここで、図2を参照し、上述した各構成要素の筐体700内における配置を具体的に説明する。図2は、本実施の形態に係る車両用空気調和装置800の筐体700の内部を示す平面図である。また、図2は、吸込口用ダンパ410、及び換気口用ダンパ430を開状態、室内送風機310を正回転に切り替えたときに形成される気流ACを示す。 Here, with reference to FIG. 2, the arrangement of each of the above-mentioned components in the housing 700 will be specifically described. FIG. 2 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment. Further, FIG. 2 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation.
 図2に示すように、筐体700に収容される冷凍サイクル装置100は、冷凍サイクルを構成する第1冷凍サイクル装置100aと、第1冷凍サイクル装置100aとは独立して冷凍サイクルを構成する第2冷凍サイクル装置100bとを有する。 As shown in FIG. 2, the refrigeration cycle device 100 housed in the housing 700 constitutes a refrigeration cycle independently of the first refrigeration cycle device 100a constituting the refrigeration cycle and the first refrigeration cycle device 100a. It has two refrigeration cycle devices 100b.
 第1冷凍サイクル装置100aは、冷媒を圧縮する第1圧縮機110aと、圧縮された冷媒を凝縮させる第1室外熱交換器120aと、凝縮された冷媒を膨張させる第1膨張器(図示せず)と、膨張された冷媒を蒸発させる第1室内熱交換器130aと、第1室内熱交換器130aを経た冷媒から液体を分離させて気体を第1圧縮機110aに戻す第1アキュムレータ140aとを含む。また、第1冷凍サイクル装置100aは、内部を冷媒が流れる第1冷媒配管150aを含む。第1冷媒配管150aは、第1圧縮機110a、第1室外熱交換器120a、第1膨張器、第1室内熱交換器130a、及び第1アキュムレータ140aを接続することにより、冷媒が流れる閉回路を構成する。 The first refrigeration cycle device 100a includes a first compressor 110a for compressing the refrigerant, a first outdoor heat exchanger 120a for condensing the compressed refrigerant, and a first expander for expanding the condensed refrigerant (not shown). ), The first chamber heat exchanger 130a that evaporates the expanded refrigerant, and the first accumulator 140a that separates the liquid from the refrigerant that has passed through the first chamber heat exchanger 130a and returns the gas to the first compressor 110a. include. Further, the first refrigerating cycle device 100a includes a first refrigerant pipe 150a through which a refrigerant flows. The first refrigerant pipe 150a is a closed circuit through which the refrigerant flows by connecting the first compressor 110a, the first outdoor heat exchanger 120a, the first expander, the first indoor heat exchanger 130a, and the first accumulator 140a. To configure.
 第2冷凍サイクル装置100bは、冷媒を圧縮する第2圧縮機110bと、圧縮された冷媒を凝縮させる第2室外熱交換器120bと、凝縮された冷媒を膨張させる第2膨張器(図示せず)と、膨張された冷媒を蒸発させる第2室内熱交換器130bと、第2室内熱交換器130bを経た冷媒から液体を分離させて気体を第2圧縮機110bに戻す第2アキュムレータ140bとを含む。また、第2冷凍サイクル装置100bは、内部を冷媒が流れる第2冷媒配管150bを含む。第2冷媒配管150bは、第2圧縮機110b、第2室外熱交換器120b、第2膨張器、第2室内熱交換器130b、及び第2アキュムレータ140bを接続することにより、冷媒が流れる閉回路を構成する。 The second refrigeration cycle device 100b includes a second compressor 110b that compresses the refrigerant, a second outdoor heat exchanger 120b that condenses the compressed refrigerant, and a second expander that expands the condensed refrigerant (not shown). ), A second chamber heat exchanger 130b that evaporates the expanded refrigerant, and a second accumulator 140b that separates the liquid from the refrigerant that has passed through the second chamber heat exchanger 130b and returns the gas to the second compressor 110b. include. Further, the second refrigeration cycle device 100b includes a second refrigerant pipe 150b in which a refrigerant flows inside. The second refrigerant pipe 150b is a closed circuit through which the refrigerant flows by connecting the second compressor 110b, the second outdoor heat exchanger 120b, the second expander, the second indoor heat exchanger 130b, and the second accumulator 140b. To configure.
 筐体700は、図1にも示した室内機室710の他に、内部を仕切板で区画して形成された空間である室外機室720も備える。室内機室710と室外機室720とは、互いに気密に構成されていることから、室内機室710と室外機室720との間における気体の流動は発生しない。 In addition to the indoor unit room 710 shown in FIG. 1, the housing 700 also includes an outdoor unit room 720, which is a space formed by partitioning the inside with a partition plate. Since the indoor unit room 710 and the outdoor unit room 720 are airtightly configured with each other, no gas flow occurs between the indoor unit room 710 and the outdoor unit room 720.
 室内機室710は、第1室内熱交換器130a、及び第1ヒータ200aが配置される第1室内機室711と、第2室内熱交換器130b、及び第2ヒータ200bが配置される第2室内機室712と、第1室内送風機310a、第2室内送風機310b、及び第1冷媒センサ510が配置される第3室内機室713とに区分される。第1室内機室711、及び第2室内機室712は、第3室内機室713を挟んで反対側の位置に設けられる。第1室内機室711と第3室内機室713とは、第1室内送風機310aを通じて連通する。第2室内機室712と第3室内機室713とは、第2室内送風機310bを通じて連通する。 In the indoor unit room 710, the first indoor unit room 711 in which the first indoor heat exchanger 130a and the first heater 200a are arranged, and the second indoor unit room 711 in which the second indoor heat exchanger 130b and the second heater 200b are arranged are arranged. It is divided into an indoor unit room 712 and a third indoor unit room 713 in which the first indoor blower 310a, the second indoor blower 310b, and the first refrigerant sensor 510 are arranged. The first indoor unit room 711 and the second indoor unit room 712 are provided at positions opposite to each other with the third indoor unit room 713 in between. The first indoor unit room 711 and the third indoor unit room 713 communicate with each other through the first indoor unit blower 310a. The second indoor unit 712 and the third indoor unit 713 communicate with each other through the second indoor blower 310b.
 第1室内機室711は、第1吸込口411a、及び第1換気口431aを備える。第2室内機室712は、第2吸込口411b、及び第2換気口431bを備える。第3室内機室713は、第1吹出口421a、及び第2吹出口421bを備える。なお、第1室内熱交換器130aと第2室内熱交換器130bとによって、図1に示した室内熱交換器130が構成される。また、第1吸込口411aと第2吸込口411bとによって、図1に示した吸込口411が構成される。さらに、第1吹出口421aと第2吹出口421bとによって、図1に示した吹出口421が構成される。 The first indoor unit room 711 includes a first suction port 411a and a first ventilation port 431a. The second indoor unit 712 includes a second suction port 411b and a second ventilation port 431b. The third indoor unit room 713 includes a first outlet 421a and a second outlet 421b. The indoor heat exchanger 130 shown in FIG. 1 is configured by the first indoor heat exchanger 130a and the second indoor heat exchanger 130b. Further, the first suction port 411a and the second suction port 411b constitute the suction port 411 shown in FIG. Further, the first outlet 421a and the second outlet 421b constitute the outlet 421 shown in FIG.
 第1換気口431aは、第1室内機室711において、気流ACが通過する位置に配置される。第2換気口431bは、第2室内機室712において、気流ACが通過する位置に配置される。また、第1換気口431aは、第1室内送風機310aと対向する位置に配置され、第1換気口431aと第1室内送風機310aとの間に第1室内熱交換器130aが配置される。第2換気口431bは、第2室内送風機310bと対向する位置に配置され、第2換気口431bと第2室内送風機310bとの間に第2室内熱交換器130bが配置される。なお、第1換気口431aと第2換気口431bとによって、図1に示した換気口431が構成される。また、「気流ACが通過する位置」は、気流ACの経路の近傍が好ましいが、気流ACが通過する室内機室710であればどの位置でも良い。 The first ventilation port 431a is arranged at a position where the airflow AC passes in the first indoor unit room 711. The second ventilation port 431b is arranged at a position in the second indoor unit room 712 where the airflow AC passes. Further, the first ventilation port 431a is arranged at a position facing the first indoor blower 310a, and the first indoor heat exchanger 130a is arranged between the first ventilation port 431a and the first indoor blower 310a. The second ventilation port 431b is arranged at a position facing the second indoor blower 310b, and the second indoor heat exchanger 130b is arranged between the second ventilation port 431b and the second indoor blower 310b. The first ventilation port 431a and the second ventilation port 431b constitute the ventilation port 431 shown in FIG. The "position through which the airflow AC passes" is preferably near the path of the airflow AC, but may be any position as long as it is the indoor unit room 710 through which the airflow AC passes.
 第1室内送風機310aは、第1室内熱交換器130aと、図1に示した車室910の空気との熱交換を促進する。具体的には、第1室内送風機310aは、第1吸込口411aから第1室内機室711に流入した吸込空気RAが第1室内熱交換器130aを通過した後、吹出空気SAとして第1吹出口421aから図1に示す車室910に戻る気流ACを形成する。第1室内送風機310aは、自己が形成する気流ACの流れの方向に関して、第1室内熱交換器130aよりも下流の位置に配置されている。 The first indoor blower 310a promotes heat exchange between the first indoor heat exchanger 130a and the air in the passenger compartment 910 shown in FIG. Specifically, in the first chamber blower 310a, the suction air RA that has flowed into the first chamber unit 711 from the first suction port 411a passes through the first chamber heat exchanger 130a, and then is first blown as blown air SA. An airflow AC is formed from the exit 421a to the passenger compartment 910 shown in FIG. The first chamber blower 310a is arranged at a position downstream of the first chamber heat exchanger 130a with respect to the direction of the flow of the airflow AC formed by itself.
 第2室内送風機310bは、第2室内熱交換器130bと、図1に示した車室910の空気との熱交換を促進する。具体的には、第2室内送風機310bは、第2吸込口411bから第2室内機室712に流入した吸込空気RAが第2室内熱交換器130bを通過した後、吹出空気SAとして第2吹出口421bから図1に示す車室910に戻る気流ACを形成する。第2室内送風機310bは、自己が形成する気流ACの流れの方向に関して、第2室内熱交換器130bよりも下流の位置に配置されている。なお、第1室内送風機310aと第2室内送風機310bとによって、図1に示した室内送風機310が構成される。また、図1においては、理解を容易にするために、第1室内送風機310aが形成する気流ACと、第2室内送風機310bが形成する気流ACとを、1つの気流ACとして示した。 The second indoor blower 310b promotes heat exchange between the second indoor heat exchanger 130b and the air in the passenger compartment 910 shown in FIG. Specifically, in the second chamber blower 310b, the suction air RA that has flowed into the second chamber unit 712 from the second suction port 411b passes through the second chamber heat exchanger 130b, and then is second blown as blown air SA. An airflow AC is formed from the exit 421b back to the passenger compartment 910 shown in FIG. The second chamber blower 310b is arranged at a position downstream of the second chamber heat exchanger 130b with respect to the direction of the flow of the airflow AC formed by itself. The indoor blower 310 shown in FIG. 1 is configured by the first indoor blower 310a and the second indoor blower 310b. Further, in FIG. 1, for easy understanding, the airflow AC formed by the first indoor blower 310a and the airflow AC formed by the second indoor blower 310b are shown as one airflow AC.
 第1ヒータ200aは、第1室内送風機310aが形成する気流ACの経路上に配置される。具体的には、第1ヒータ200aは、第1室内熱交換器130aと第1室内送風機310aとの間に配置される。第1ヒータ200aは、自己を通過する空気を加温する。 The first heater 200a is arranged on the path of the airflow AC formed by the first indoor blower 310a. Specifically, the first heater 200a is arranged between the first chamber heat exchanger 130a and the first chamber blower 310a. The first heater 200a heats the air passing through itself.
 第2ヒータ200bは、第2室内送風機310bが形成する気流ACの経路上に配置される。具体的には、第2ヒータ200bは、第2室内熱交換器130bと第2室内送風機310bとの間に配置される。第2ヒータ200bは、自己を通過する空気を加温する。 The second heater 200b is arranged on the path of the airflow AC formed by the second indoor blower 310b. Specifically, the second heater 200b is arranged between the second chamber heat exchanger 130b and the second chamber blower 310b. The second heater 200b heats the air passing through itself.
 第1吸込口用ダンパ410aは、第1吸込口411aに設けられたダンパであり、吸込空気RAの第1室内機室711への流入を許容する開状態と、その流入を阻止する閉状態とに切り替え可能である。また、第1吸込口用ダンパ410aは、開状態においては、空気の流量を調整することができる。 The first suction port damper 410a is a damper provided in the first suction port 411a, and has an open state that allows the suction air RA to flow into the first indoor unit room 711 and a closed state that prevents the inflow. It is possible to switch to. Further, the first suction port damper 410a can adjust the air flow rate in the open state.
 第2吸込口用ダンパ410bは、第2吸込口411bに設けられたダンパであり、吸込空気RAの第2室内機室712への流入を許容する開状態と、その流入を阻止する閉状態とに切り替え可能である。また、第2吸込口用ダンパ410bは、開状態においては、空気の流量を調整することができる。なお、第1吸込口用ダンパ410aと第2吸込口用ダンパ410bとによって、図1に示した吸込口用ダンパ410が構成される。 The second suction port damper 410b is a damper provided in the second suction port 411b, and has an open state that allows the suction air RA to flow into the second indoor unit room 712 and a closed state that prevents the inflow. It is possible to switch to. Further, the second suction port damper 410b can adjust the air flow rate in the open state. The suction port damper 410 shown in FIG. 1 is configured by the first suction port damper 410a and the second suction port damper 410b.
 第1換気口用ダンパ430aは、第1換気口431aに設けられたダンパであり、第1室内機室711の空気の車外への流出、及び外気の第1室内機室711への流入を許容する開状態と、この流出、及び流入を阻止する閉状態とに切り替え可能である。また、第1換気口用ダンパ430aは、開状態においては、空気の流量を調整することができる。 The first ventilation port damper 430a is a damper provided in the first ventilation port 431a, and allows the outflow of air from the first indoor unit room 711 to the outside of the vehicle and the inflow of outside air into the first indoor unit room 711. It is possible to switch between an open state where the air is open and a closed state where the outflow and the inflow are blocked. Further, the first ventilation port damper 430a can adjust the flow rate of air in the open state.
 第2換気口用ダンパ430bは、第2換気口431bに設けられたダンパであり、第2室内機室712の空気の車外への流出、及び外気の第2室内機室712への流入を許容する開状態と、この流出、及び流入を阻止する閉状態とに切り替え可能である。また、第2換気口用ダンパ430bは、開状態においては、空気の流量を調整することができる。なお、第1換気口用ダンパ430aと第2換気口用ダンパ430bとによって、図1に示した換気口用ダンパ430が構成される。また、以下では、換気口431を通じて車外から流入する空気を車外空気FAと呼ぶ。図に示した車両用空気調和装置800は、室内送風機310と対向する位置に換気口用ダンパ430が配置されるので、室内送風機310を正回転に切り替えると、換気口431を介して車外から室内機室710に外気が流入する。また、逆回転に切り替えると、換気口431を介して室内機室710から車外に外気が流出する。 The second ventilation port damper 430b is a damper provided in the second ventilation port 431b, and allows the outflow of air from the second indoor unit 712 to the outside of the vehicle and the inflow of outside air into the second indoor unit 712. It is possible to switch between an open state where the air is open and a closed state where the outflow and the inflow are blocked. Further, the second ventilation port damper 430b can adjust the flow rate of air in the open state. The ventilation port damper 430 shown in FIG. 1 is configured by the first ventilation port damper 430a and the second ventilation port damper 430b. Further, in the following, the air flowing in from the outside of the vehicle through the ventilation port 431 is referred to as an outside air FA. In the vehicle air conditioner 800 shown in the figure, the ventilation port damper 430 is arranged at a position facing the indoor blower 310. Outside air flows into the cabin 710. Further, when the rotation is switched to the reverse rotation, the outside air flows out from the indoor unit room 710 to the outside of the vehicle through the ventilation port 431.
 第1冷媒センサ510は、第1室内送風機310aを正回転させた場合に形成される気流ACの経路上における、第1室内熱交換器130aよりも下流の位置に配置される。第1冷媒センサ510は、配置された位置において冷媒の濃度を検出し、図1に示す制御部600へ検出結果を出力する。なお、第1冷媒センサ510の配置位置はこれに限定されず、室内機室710の冷媒濃度を検出することが可能であれば、第1室内機室711、又は第2室内機室712でも良いし、第3室内機室713の別の位置でも良い。 The first refrigerant sensor 510 is arranged at a position downstream of the first chamber heat exchanger 130a on the path of the airflow AC formed when the first chamber blower 310a is rotated in the forward direction. The first refrigerant sensor 510 detects the concentration of the refrigerant at the arranged position and outputs the detection result to the control unit 600 shown in FIG. The arrangement position of the first refrigerant sensor 510 is not limited to this, and may be the first indoor unit room 711 or the second indoor unit room 712 as long as the refrigerant concentration in the indoor unit room 710 can be detected. However, it may be located at another position in the third indoor unit room 713.
 室外機室720には、室外送風機320、第1圧縮機110a、第2圧縮機110b、第1室外熱交換器120a、第2室外熱交換器120b、第1アキュムレータ140a、及び第2アキュムレータ140bが配置される。 The outdoor unit room 720 includes an outdoor blower 320, a first compressor 110a, a second compressor 110b, a first outdoor heat exchanger 120a, a second outdoor heat exchanger 120b, a first accumulator 140a, and a second accumulator 140b. Be placed.
 室外送風機320は、第1室外熱交換器120a、及び第2室外熱交換器120bと、車外の空気との熱交換を促進する。具体的には、室外送風機320は、外気が第1室外熱交換器120a、及び第2室外熱交換器120bを通過して再び車外に戻る気流(図示せず)を形成する。 The outdoor blower 320 promotes heat exchange between the first outdoor heat exchanger 120a and the second outdoor heat exchanger 120b and the air outside the vehicle. Specifically, the outdoor blower 320 forms an air flow (not shown) in which the outside air passes through the first outdoor heat exchanger 120a and the second outdoor heat exchanger 120b and returns to the outside of the vehicle again.
 次に、室内送風機310を逆回転させたときに形成される気流について、図を参照して説明する。図3、及び図4は、第1室内送風機310a、第2室内送風機310bを逆回転に切り替えたときに形成される気流を示す図である。図3は、第1吸込口用ダンパ410a、第2吸込口用ダンパ410b、第1換気口用ダンパ430a、及び第2換気口用ダンパ430bを開状態に制御した場合を示す。図4は、第1吸込口用ダンパ410a、及び第2吸込口用ダンパ410bを閉状態、第1換気口用ダンパ430a、及び第2換気口用ダンパ430bを開状態に制御した場合を示す。 Next, the airflow formed when the indoor blower 310 is rotated in the reverse direction will be described with reference to the figure. 3 and 4 are views showing an air flow formed when the first indoor blower 310a and the second indoor blower 310b are switched to reverse rotation. FIG. 3 shows a case where the first suction port damper 410a, the second suction port damper 410b, the first ventilation port damper 430a, and the second ventilation port damper 430b are controlled in the open state. FIG. 4 shows a case where the first suction port damper 410a and the second suction port damper 410b are controlled to be in the closed state, and the first ventilation port damper 430a and the second ventilation port damper 430b are controlled to be in the open state.
 図3に示すように、制御部600が第1室内送風機310aを逆回転に切り替えると、正回転のときに形成される気流ACの方向と逆方向に流れる気流AC_Rが形成される。具体的には、制御部600が第1吸込口用ダンパ410aを開状態、第1換気口用ダンパ430aを開状態に制御し、第1室内送風機310aを逆回転に切り替えると、第1吹出口421aから第3室内機室713に流入した車室910の空気が第1室内熱交換器130aを通過した後、第1吸込口411aから再び車室910に流出する気流AC_Rが形成される。また、第1室内機室711の空気の一部が第1換気口431aから車外に流出する。以下では、気流AC_Rを構成する空気のうち、車室910から第3室内機室713に流入して第1室内熱交換器130aに向かう空気を吸込空気RA_R、第1室内熱交換器130aを通過した後に第1室内機室711から車室910に流出する空気を吹出空気SA_R、第1換気口431aから車外に流出する空気を排出空気EAと呼ぶ。なお、第2室内送風機310bは、第1室内送風機310aと同様に制御されて同様の気流を形成するため、ここでは説明を省略する。 As shown in FIG. 3, when the control unit 600 switches the first chamber blower 310a to the reverse rotation, the airflow AC_R flowing in the direction opposite to the direction of the airflow AC formed at the time of the forward rotation is formed. Specifically, when the control unit 600 controls the damper 410a for the first suction port to the open state and the damper 430a for the first ventilation port to the open state and switches the first indoor blower 310a to the reverse rotation, the first air outlet After the air in the passenger compartment 910 that has flowed from the 421a into the third indoor unit chamber 713 passes through the first indoor heat exchanger 130a, an air flow AC_R that flows out from the first suction port 411a to the passenger compartment 910 again is formed. In addition, a part of the air in the first indoor unit room 711 flows out of the vehicle from the first ventilation port 431a. In the following, among the air constituting the airflow AC_R, the air that flows from the passenger compartment 910 into the third indoor unit room 713 and heads for the first indoor heat exchanger 130a is sucked in and passes through the first indoor heat exchanger 130a. The air that flows out from the first indoor unit room 711 to the passenger compartment 910 is called blowout air SA_R, and the air that flows out from the first ventilation port 431a is called exhaust air EA. Since the second indoor blower 310b is controlled in the same manner as the first indoor blower 310a to form the same air flow, the description thereof is omitted here.
 次に、図3において第1吸込口用ダンパ410aが開状態から閉状態に切り替えられると、図4に示すように、第1吹出口421aから第3室内機室713に流入した車室910の空気が第1室内熱交換器130aを通過した後、第1換気口431aから車外に流出する気流AC2が形成される。以下では、気流AC2を構成する空気のうち、車室910から第3室内機室713に流入して第1室内熱交換器130aに向かう空気を吸込空気RA2、第1換気口431aから車外に流出する空気を排出空気EA2と呼ぶ。図3と図4との違いは、第1吸込口用ダンパ410aの開閉状態のみである。図4においては、第1室内機室711から車室910へ向かう空気の流れは形成されない。したがって、図4においては、図3に示した吹出空気SA_Rと排出空気EAとが、排出空気EA2となり車外へ流出する。 Next, when the first suction port damper 410a is switched from the open state to the closed state in FIG. 3, as shown in FIG. 4, the passenger compartment 910 that has flowed into the third indoor unit 713 from the first outlet 421a. After the air has passed through the first indoor heat exchanger 130a, the airflow AC2 flowing out of the vehicle from the first ventilation port 431a is formed. In the following, among the air constituting the airflow AC2, the air that flows from the passenger compartment 910 into the third indoor unit chamber 713 and heads for the first indoor heat exchanger 130a is sucked in and flows out of the vehicle through the air RA2 and the first ventilation port 431a. The air to be exhausted is called exhaust air EA2. The only difference between FIGS. 3 and 4 is the open / closed state of the first suction port damper 410a. In FIG. 4, the air flow from the first indoor unit 711 to the passenger compartment 910 is not formed. Therefore, in FIG. 4, the blown air SA_R and the exhaust air EA shown in FIG. 3 become the exhaust air EA2 and flow out to the outside of the vehicle.
 このように、制御部600が第1吸込口用ダンパ410a、及び第1換気口用ダンパ430aの開閉状態と、第1室内送風機310aの回転方向とを制御することにより、筐体700の内部の気流を変化させることができる。
 また、図4に示す気流AC2を形成することにより、ダンパのない第1吹出口421aに、車室910から第1室内機室711へ向かう気流が形成されるので、第3室内機室713から車室910への空気の流出を抑制することができる。さらに、第1室内機室710a、及び第3室内機室713に存在する冷媒が排出空気EA2として車外に排出されるので、第1室内機室711、及び第3室内機室713の冷媒濃度の上昇を抑制することができる。
In this way, the control unit 600 controls the open / closed state of the first suction port damper 410a and the first ventilation port damper 430a and the rotation direction of the first indoor blower 310a, thereby forming the inside of the housing 700. The airflow can be changed.
Further, by forming the airflow AC2 shown in FIG. 4, an airflow from the passenger compartment 910 to the first indoor unit 711 is formed at the first outlet 421a without a damper, so that the airflow from the third indoor unit 713 is formed. The outflow of air to the passenger compartment 910 can be suppressed. Further, since the refrigerant existing in the first indoor unit 710a and the third indoor unit 713 is discharged to the outside of the vehicle as exhaust air EA2, the refrigerant concentrations in the first indoor unit 711 and the third indoor unit 713 are increased. The rise can be suppressed.
 以下、図5、及び図6を参照し、車両用空気調和装置800の制御部600の動作を説明する。制御部600は、上述したとおり、冷媒漏出判定がリアルタイムに繰り返される冷媒漏出監視処理、及びエマージェンシー制御を行う。図5は、冷媒漏出監視処理の処理フローを示すフローチャートである。図6は、エマージェンシー制御の処理フローを示すフローチャートである。 Hereinafter, the operation of the control unit 600 of the vehicle air conditioner 800 will be described with reference to FIGS. 5 and 6. As described above, the control unit 600 performs the refrigerant leakage monitoring process in which the refrigerant leakage determination is repeated in real time, and the emergency control. FIG. 5 is a flowchart showing a processing flow of the refrigerant leakage monitoring process. FIG. 6 is a flowchart showing a processing flow of emergency control.
 図5に示すように、まず、制御部600は、第1冷媒センサ510に冷媒の濃度の検出を開始させる(ステップS11)。以降、第1冷媒センサ510は、設置された位置において、冷媒の濃度をリアルタイムに繰り返し検出する。 As shown in FIG. 5, first, the control unit 600 causes the first refrigerant sensor 510 to start detecting the concentration of the refrigerant (step S11). After that, the first refrigerant sensor 510 repeatedly detects the concentration of the refrigerant in real time at the installed position.
 次に、制御部600は、第1冷媒センサ510から検出結果Csを取得し(ステップS12)、検出結果Csの上昇率と、冷凍サイクル装置100から冷媒が漏れ出たことを表す予め定められた閾値Thとを比較する(ステップS13)。本実施の形態では、閾値Thは10000[ppm/h]であるが、閾値Thは特に限定されない。ここで、「検出結果Csの上昇率」とは、今回の検出結果の値と、前回の検出結果の値との差分、又はその差分に比例する物理量を指す。「今回の検出結果の値」とは、時刻tにおける検出結果Cs(t)の値、「前回の検出結果の値」とは、1サンプリング周期前の時刻t-1における検出結果Cs(t-1)の値を意味する。但し、検出結果Csの初期値はゼロとする。 Next, the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 (step S12), and determines the rate of increase of the detection result Cs and a predetermined value indicating that the refrigerant has leaked from the refrigeration cycle device 100. Compare with the threshold Th (step S13). In the present embodiment, the threshold Th is 10000 [ppm / h], but the threshold Th is not particularly limited. Here, the "rate of increase in detection result Cs" refers to the difference between the value of the current detection result and the value of the previous detection result, or a physical quantity proportional to the difference. The "value of the current detection result" is the value of the detection result Cs (t) at time t, and the "value of the previous detection result" is the detection result Cs (t-) at time t-1 one sampling cycle before. It means the value of 1). However, the initial value of the detection result Cs is set to zero.
 制御部600は、検出結果Csの上昇率が閾値Th以下である場合は(ステップS13:NO)、冷凍サイクル装置100から冷媒が漏れ出ていないと判定する。そして、制御部600は、冷媒が漏れたか否かの監視を継続するため、再びステップS12に戻る。なお、ステップS12とステップS13とのループは、第1冷媒センサ510の検出のサンプリング周期毎に繰り返される。また、第1冷媒センサ510の検出のサンプリング周期は、15秒以下であることが好ましく、10秒以下であることがより好ましく、3秒以下であることがより好ましい。 When the rate of increase in the detection result Cs is equal to or less than the threshold value Th (step S13: NO), the control unit 600 determines that the refrigerant has not leaked from the refrigeration cycle device 100. Then, the control unit 600 returns to step S12 again in order to continue monitoring whether or not the refrigerant has leaked. The loop of step S12 and step S13 is repeated every sampling cycle of detection by the first refrigerant sensor 510. The detection sampling period of the first refrigerant sensor 510 is preferably 15 seconds or less, more preferably 10 seconds or less, and even more preferably 3 seconds or less.
 一方、制御部600は、検出結果Csの上昇率が閾値Thを超える場合は(ステップS13:YES)、冷凍サイクル装置100から冷媒が漏れ出たと判定する。そして、制御部600は、車室910における冷媒の濃度の上昇を抑制するエマージェンシー制御を開始する(ステップS14)。なお、ステップS13の処理が上述した冷媒漏出判定に該当する。 On the other hand, when the rate of increase in the detection result Cs exceeds the threshold value Th (step S13: YES), the control unit 600 determines that the refrigerant has leaked from the refrigeration cycle device 100. Then, the control unit 600 starts emergency control for suppressing an increase in the concentration of the refrigerant in the vehicle interior 910 (step S14). The process of step S13 corresponds to the above-mentioned refrigerant leakage determination.
 ここで、図6を参照し、エマージェンシー制御について具体的に説明する。図に示すように、制御部600は、現在、車室910の空調が行われている場合には、まず空調を停止する(ステップS21)。具体的には、制御部600は、図2に示した第1圧縮機110a及び第2圧縮機110bを停止させる。これにより、冷凍サイクル装置100における冷媒の循環が停止するので、冷媒漏出の悪化が抑制される。また、制御部600は、図2に示した室外送風機320も停止させる。 Here, with reference to FIG. 6, the emergency control will be specifically described. As shown in the figure, when the air conditioning of the vehicle interior 910 is currently being performed, the control unit 600 first stops the air conditioning (step S21). Specifically, the control unit 600 stops the first compressor 110a and the second compressor 110b shown in FIG. As a result, the circulation of the refrigerant in the refrigeration cycle device 100 is stopped, so that the deterioration of the refrigerant leakage is suppressed. The control unit 600 also stops the outdoor blower 320 shown in FIG.
 次に、制御部600は、図2に示す第1吸込口用ダンパ410a、及び第2吸込口用ダンパ410bを閉状態に切り替え、かつ図2に示す第1換気口用ダンパ430a、及び第2換気口用ダンパ430bを開状態に切り替えた状態で、図2に示す第1室内送風機310a、及び第2室内送風機310bを逆回転に切り替える(ステップS22)。このとき、図4に示すように、排出空気EA2が第1換気口431a、及び第2換気口431sbを通じて車外に排出される。これにより、冷凍サイクル装置100から漏れ出して室内機室710に存在する冷媒が、客室910へ流出することなく排出空気EA2として車外へ排出されるので、室内機室710における冷媒の濃度の上昇が抑制される。 Next, the control unit 600 switches the first suction port damper 410a and the second suction port damper 410b shown in FIG. 2 to the closed state, and the first ventilation port damper 430a and the second suction port damper 410b shown in FIG. With the ventilation port damper 430b switched to the open state, the first indoor blower 310a and the second indoor blower 310b shown in FIG. 2 are switched to reverse rotation (step S22). At this time, as shown in FIG. 4, the exhaust air EA2 is discharged to the outside of the vehicle through the first ventilation port 431a and the second ventilation port 431sb. As a result, the refrigerant leaking from the refrigerating cycle device 100 and existing in the indoor unit room 710 is discharged to the outside of the vehicle as exhaust air EA2 without flowing out to the cabin 910, so that the concentration of the refrigerant in the indoor unit room 710 increases. It is suppressed.
 また、ダンパのない第1吹出口421a、及び第2吹出口421bに車室910から室内機室710へ向かう気流が形成されるので、室内機室710から車室910への冷媒の流出が抑制される。特に、筐体700を車両900の屋根に設置した場合に冷媒として二酸化炭素ガスを採用すると、二酸化炭素は空気よりも重いため、室内機室710から車室910に冷媒が流出する可能性が高い。しかしながら、本実施の形態に係る車両用空気調和装置800のように、第1吸込口用ダンパ410a、及び第2吸込口用ダンパ410bを閉状態に切り替え、第1室内送風機310a、及び第2室内送風機310bを逆回転させることで、車室910への冷媒の流出が抑制される。 Further, since the airflow from the passenger compartment 910 to the indoor unit 710 is formed at the first outlet 421a and the second outlet 421b without dampers, the outflow of the refrigerant from the indoor unit 710 to the passenger compartment 910 is suppressed. Will be done. In particular, when carbon dioxide gas is used as the refrigerant when the housing 700 is installed on the roof of the vehicle 900, since carbon dioxide is heavier than air, there is a high possibility that the refrigerant will flow out from the indoor unit 710 to the vehicle compartment 910. .. However, like the vehicle air conditioner 800 according to the present embodiment, the first suction port damper 410a and the second suction port damper 410b are switched to the closed state, and the first chamber blower 310a and the second chamber are replaced. By rotating the blower 310b in the reverse direction, the outflow of the refrigerant to the passenger compartment 910 is suppressed.
 さらに、第1室内送風機310a、及び第2室内送風機310bは、逆回転させることにより、外気を車室910に引き込む役割も果たす。具体的には、排出空気EA2の排出に伴って、車室910の気圧が低下する。その気圧の低下に伴い、車室910に設けられた図示しない換気口、又は車室910の扉や窓等の隙間を通じて外気が車室910に流入する。これにより、冷媒が車室910に流出したとしても、車室910における冷媒の濃度の上昇が抑えられる。 Further, the first indoor blower 310a and the second indoor blower 310b also play a role of drawing outside air into the passenger compartment 910 by rotating in the reverse direction. Specifically, the air pressure in the passenger compartment 910 decreases as the exhaust air EA2 is discharged. As the air pressure drops, outside air flows into the passenger compartment 910 through a ventilation port (not shown) provided in the passenger compartment 910 or a gap such as a door or a window of the passenger compartment 910. As a result, even if the refrigerant flows out to the passenger compartment 910, an increase in the concentration of the refrigerant in the passenger compartment 910 can be suppressed.
 再び図5に戻り、冷媒漏出監視処理の説明を続ける。制御部600は、以上のようにしてエマージェンシー制御を開始(ステップS14)した後、再び第1冷媒センサ510から検出結果Csを取得し(ステップS15)、検出結果Csの上昇率が閾値Th以下か否かを判定する(ステップS16)。閾値Thは、冷凍サイクル装置100からの冷媒の漏出が終了したとみなすことができる程度に小さい値である。つまり、ステップS16は、エマージェンシー制御を終了させるか否かの判定(以下、終了判定と記す。)を表す。なお、ステップS13とステップS16で使用する閾値Thは、同じ値でも良いし、異なる値でも良い。また、ステップS14が完了してから所定時間経過後にステップS15を開始してもよい。エマージェンシー制御を開始すると、室内機室の環境が大きく変化する。そのため、冷媒漏出監視処理の動作が不安定になる場合がある。そこで、エマージェンシー制御を開始してから、冷媒漏出監視処理の動作が安定するまでに必要な時間を所定時間として設定する。これにより、冷媒漏出監視処理が正常に動作する。 Returning to FIG. 5, the explanation of the refrigerant leakage monitoring process will be continued. After starting the emergency control as described above (step S14), the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 again (step S15), and whether the rate of increase of the detection result Cs is equal to or less than the threshold value Th. It is determined whether or not (step S16). The threshold value Th is a value so small that it can be considered that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed. That is, step S16 represents a determination as to whether or not to terminate the emergency control (hereinafter, referred to as an termination determination). The threshold values Th used in step S13 and step S16 may be the same value or different values. Further, step S15 may be started after a predetermined time has elapsed from the completion of step S14. When emergency control is started, the environment in the indoor unit room changes drastically. Therefore, the operation of the refrigerant leakage monitoring process may become unstable. Therefore, the time required from the start of the emergency control to the stabilization of the operation of the refrigerant leakage monitoring process is set as a predetermined time. As a result, the refrigerant leakage monitoring process operates normally.
 制御部600は、検出結果Csの上昇率が閾値Thを超えている場合は(ステップS16:NO)、冷凍サイクル装置100からの冷媒の漏出がまだ終了していないので、ステップS15に戻り、エマージェンシー制御を継続する。なお、ステップS15とステップS16とのループは、第1冷媒センサ510の検出のサンプリング周期毎に繰り返される。 When the rate of increase in the detection result Cs exceeds the threshold value Th (step S16: NO), the control unit 600 returns to step S15 and returns to the emergency because the leakage of the refrigerant from the refrigeration cycle device 100 has not been completed yet. Continue control. The loop of steps S15 and S16 is repeated every sampling cycle of detection by the first refrigerant sensor 510.
 一方、制御部600は、検出結果Csの上昇率が閾値Th以下である場合は(ステップS16:YES)、冷凍サイクル装置100からの冷媒の漏出が終了したとみなすことができるので、エマージェンシー制御を終了する(ステップS17)。具体的には、制御部600は、図2に示す第1吸込口用ダンパ410a、及び第2吸込口用ダンパ410bを閉状態に制御したまま、図2に示す第1室内送風機310a、及び第2室内送風機310bを停止させる。また、図2に示す第1換気口用ダンパ430a、及び第2換気口用ダンパ430bを開状態に制御し続けることが好ましいが、閉状態に切り替えてもよい。さらに、制御部600は、冷媒の漏出が終了したとみなす判断を行ってから所定時間経過後に、エマージェンシー制御を終了しても良い。所定時間は、室内機室710の空気を車外に排出するために必要な時間としても良い。なお、本実施の形態では、検出結果Csの上昇率を用いて冷媒漏出の開始と終了を判定する構成について説明したが、検出結果Csの上昇率の代わりに検出結果Csを用いて冷媒漏出の開始と終了を判定する構成としても良い。この場合、冷媒漏出の開始を判定する閾値は、冷媒が漏出しているとみなすことができる程度に大きい値である。また、冷媒漏出の終了を判定する閾値は、冷媒が漏出していないとみなすことができる程度に小さい値である。 On the other hand, when the rate of increase in the detection result Cs is equal to or less than the threshold value Th (step S16: YES), the control unit 600 can consider that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed, so that the emergency control can be performed. It ends (step S17). Specifically, the control unit 600 controls the first suction port damper 410a and the second suction port damper 410b shown in FIG. 2 in the closed state, and the first indoor blower 310a and the first chamber blower 310a shown in FIG. 2 Stop the indoor blower 310b. Further, it is preferable to keep controlling the first ventilation port damper 430a and the second ventilation port damper 430b shown in FIG. 2 in the open state, but the damper may be switched to the closed state. Further, the control unit 600 may end the emergency control after a predetermined time has elapsed after determining that the leakage of the refrigerant has been completed. The predetermined time may be the time required to exhaust the air in the indoor unit 710 to the outside of the vehicle. In the present embodiment, the configuration for determining the start and end of refrigerant leakage using the rate of increase in the detection result Cs has been described, but the detection result Cs is used instead of the rate of increase in the detection result Cs for refrigerant leakage. It may be configured to determine the start and end. In this case, the threshold value for determining the start of the refrigerant leakage is a value large enough to be regarded as the refrigerant leaking. Further, the threshold value for determining the end of the refrigerant leakage is a value small enough to be considered that the refrigerant has not leaked.
 以上で、制御部600は、冷媒漏出監視処理を終える。なお、制御部600は、冷凍サイクル装置100の修理が完了するまでは、空調の運転を再開しない。 With the above, the control unit 600 completes the refrigerant leakage monitoring process. The control unit 600 does not restart the air conditioning operation until the repair of the refrigeration cycle device 100 is completed.
 以上説明した実施の形態によれば、次の効果が得られる。
 本実施の形態に係る車両用空気調和装置800は、車両に搭載される筐体の内部を区画して形成され、車両の車室に通じる吸込口、及び吹出口、並びに車両の外部に通じる換気口を備える室内機室と、室内機室に配置され、冷媒と空気との間で熱交換を行う室内熱交換器と、正回転、又は逆回転の切り替えが可能で、正回転に切り替えると、吸込口から室内機室に流入した車室の空気が室内熱交換器に向かうとともに、室内熱交換器を通過した空気が吹出口から車室に流出する気流を形成する室内送風機と、冷媒の状態を検出する検出器と、検出器の検出結果に基づいて冷媒が漏出したか否かを判定し、冷媒が漏出したと判定した場合には、吹出口、及び換気口を開状態、吸込口を閉状態に制御し、室内送風機を逆回転に切り替えることにより、吹出口から室内機室に流入した車室の空気が換気口から車両の外部に流出する気流を形成させる制御部と、を備える。
 これにより、室内機室710と車室910とを連通する開口である吸込口411と吹出口421のうち、吸込口411が閉状態に制御され、車室910から室内機室710へ向かう気流が吹出口421に形成されるので、室内機室710から車室910へ向かう気流が形成されにくくなり、室内機室710から車室910への冷媒漏出を抑制することができる。また、室内機室710に存在する冷媒が排出空気EA2として車外に排出されるので、冷媒濃度の上昇が抑制される。
According to the embodiment described above, the following effects can be obtained.
The vehicle air conditioner 800 according to the present embodiment is formed by partitioning the inside of a housing mounted on the vehicle, and has a suction port and an air outlet leading to the passenger compartment of the vehicle, and ventilation leading to the outside of the vehicle. An indoor unit room equipped with a mouth and an indoor heat exchanger that is arranged in the indoor unit room and exchanges heat between the refrigerant and air can be switched between forward rotation and reverse rotation. The state of the refrigerant and the indoor blower that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit from the suction port heads for the indoor heat exchanger and the air that has passed through the indoor heat exchanger flows out from the air outlet to the passenger compartment. Based on the detector that detects the above and the detection result of the detector, it is determined whether or not the refrigerant has leaked. It is provided with a control unit that forms an air flow in which the air in the passenger compartment that has flowed into the indoor unit compartment from the air outlet flows out to the outside of the vehicle through the ventilation port by controlling the closed state and switching the indoor blower to the reverse rotation.
As a result, of the suction port 411 and the air outlet 421, which are openings that communicate the indoor unit 710 and the passenger compartment 910, the suction port 411 is controlled to be closed, and the airflow from the passenger compartment 910 to the indoor unit 710 flows. Since it is formed at the air outlet 421, it becomes difficult to form an air flow from the indoor unit 710 to the passenger compartment 910, and it is possible to suppress the leakage of the refrigerant from the indoor unit compartment 710 to the passenger compartment 910. Further, since the refrigerant existing in the indoor unit room 710 is discharged to the outside of the vehicle as exhaust air EA2, an increase in the refrigerant concentration is suppressed.
 本実施の形態に係る車両用空気調和装置800は、室内送風機310を逆回転させて排出空気EA2を形成することから、排気専用の送風機を設けることなく冷媒を車外へ積極的に排気することができる。また、吹出口421に吹出口用ダンパを備えない構成であっても、車室910への冷媒漏出を抑制することができる。 In the vehicle air conditioner 800 according to the present embodiment, since the indoor blower 310 is rotated in the reverse direction to form the exhaust air EA2, the refrigerant can be positively exhausted to the outside of the vehicle without providing a blower dedicated to exhaust. can. Further, even if the outlet 421 is not provided with the outlet damper, it is possible to suppress the leakage of the refrigerant to the vehicle interior 910.
 なお、本実施の形態では、エマージェンシー制御の開始後、第1冷媒センサ510の検出結果Csに基づいてエマージェンシー制御の終了判定を行う構成について説明したが、エマージェンシー制御の終了判定を行わない構成でも良い。ここで、エマージェンシー制御の終了判定を行わない処理フローについて、図7を参照して説明する。 In the present embodiment, the configuration in which the end determination of the emergency control is performed based on the detection result Cs of the first refrigerant sensor 510 after the start of the emergency control has been described, but the configuration in which the end determination of the emergency control is not performed may be performed. .. Here, a processing flow in which the end determination of the emergency control is not performed will be described with reference to FIG. 7.
 図7のフローチャートに示すように、制御部600は、エマージェンシー制御を開始(ステップS14)した後、図5のステップS15からステップS17の処理を行わず、エマージェンシー制御を継続した状態で冷媒漏出監視処理を終了する。この場合、制御部600は、修理担当者等による終了操作が行われるまで、エマージェンシー制御を続ける。これにより、車外に排出されず室内機室に残留した冷媒がある場合にも、車室910への冷媒の流出を抑制することができる。 As shown in the flowchart of FIG. 7, after starting the emergency control (step S14), the control unit 600 does not perform the processes of steps S15 to S17 of FIG. 5, and the refrigerant leakage monitoring process continues in the state where the emergency control is continued. To finish. In this case, the control unit 600 continues the emergency control until the end operation is performed by the repair person or the like. As a result, even when there is a refrigerant that is not discharged to the outside of the vehicle and remains in the indoor unit, the outflow of the refrigerant to the vehicle compartment 910 can be suppressed.
 また、本実施の形態では、第1吹出口421a、及び第2吹出口421bにダンパを備えず、第1吹出口421a、及び第2吹出口421bが常に開状態に維持される構成について説明したが、第1吹出口421aに第1吹出口用ダンパ420aを備え、第2吹出口421bに第2吹出口用ダンパ420bを備える構成でも良い。ここで、第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを備える構成について、図8を参照して説明する。 Further, in the present embodiment, a configuration has been described in which the first outlet 421a and the second outlet 421b are not provided with dampers, and the first outlet 421a and the second outlet 421b are always maintained in an open state. However, the first outlet 421a may be provided with the first outlet damper 420a, and the second outlet 421b may be provided with the second outlet damper 420b. Here, a configuration including the first air outlet damper 420a and the second air outlet damper 420b will be described with reference to FIG.
 図8は、第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを備える車両用空気調和装置800の筐体700を示す平面図であり、全てのダンパが開状態、第1室内送風機310a、及び第2室内送風機310bが正回転に制御されたときに形成される気流ACを示す。また、図8は、第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを備える点以外は図2に示す筐体700と同様である。以下では、図2に示す構成と異なる点を中心に説明する。 FIG. 8 is a plan view showing the housing 700 of the vehicle air conditioner 800 including the first air outlet damper 420a and the second air outlet damper 420b. All the dampers are in the open state, and the first indoor blower. The airflow AC formed when the 310a and the second chamber blower 310b are controlled to rotate in the forward direction is shown. Further, FIG. 8 is the same as the housing 700 shown in FIG. 2 except that the damper 420a for the first outlet and the damper 420b for the second outlet are provided. Hereinafter, the points different from the configuration shown in FIG. 2 will be mainly described.
 第1吹出口用ダンパ420aは、第1吹出口421aに設けられたダンパであり、第1吹出口421aを介して第1室内機室711から車室910へ向かう気流ACを形成する空気、即ち吹出空気SAの客室910への流出を許容する開状態と、その流出を阻止する閉状態とに切り替え可能である。また、第1吹出口用ダンパ420aは、開状態においては、空気の流量を調整することができる。第1吹出口用ダンパ420aの開閉は、制御部600により制御される。なお、第1吹出口用ダンパ420aの開閉状態を切り替えることは、第1吹出口421aの開閉状態を切り替えることに等しい。 The first air outlet damper 420a is a damper provided at the first air outlet 421a, and is the air forming the airflow AC from the first indoor unit 711 to the passenger compartment 910 via the first air outlet 421a, that is. It is possible to switch between an open state that allows the outflow of the blown air SA to the cabin 910 and a closed state that prevents the outflow. Further, the first air outlet damper 420a can adjust the flow rate of air in the open state. The opening and closing of the first air outlet damper 420a is controlled by the control unit 600. Switching the open / closed state of the first air outlet damper 420a is equivalent to switching the open / closed state of the first air outlet 421a.
 第2吹出口用ダンパ420bは、第2吹出口421bに設けられたダンパであり、第2吹出口421bを介して第1室内機室711から車室910へ向かう気流ACを形成する空気、即ち吹出空気SAの客室910への流出を許容する開状態と、その流出を阻止する閉状態とに切り替え可能である。また、第2吹出口用ダンパ420bは、開状態においては、空気の流量を調整することができる。第2吹出口用ダンパ420bの開閉は、制御部600により制御される。なお、第2吹出口用ダンパ420bの開閉状態を切り替えることは、第2吹出口421bの開閉状態を切り替えることに等しい。さらに、第1吹出口用ダンパ420aと第2吹出口用ダンパ420bとによって、図1に示した吹出口用ダンパ420が構成される。 The second air outlet damper 420b is a damper provided at the second air outlet 421b, and is the air forming the airflow AC from the first indoor unit 711 to the passenger compartment 910 via the second air outlet 421b, that is. It is possible to switch between an open state that allows the outflow of the blown air SA to the cabin 910 and a closed state that prevents the outflow. Further, the second air outlet damper 420b can adjust the air flow rate in the open state. The opening and closing of the second outlet damper 420b is controlled by the control unit 600. Switching the open / closed state of the second outlet damper 420b is equivalent to switching the open / closed state of the second outlet 421b. Further, the first outlet damper 420a and the second outlet damper 420b constitute the outlet damper 420 shown in FIG. 1.
 通常動作時には、制御部600は、全てのダンパを開状態、第1室内送風機310a、及び第2室内送風機310bを正回転に制御する。これにより、図に示すような気流ACが形成され、本実施の形態と同様の作用、効果が得られる。 During normal operation, the control unit 600 controls all the dampers in the open state, and controls the first chamber blower 310a and the second chamber blower 310b to rotate in the forward direction. As a result, the airflow AC as shown in the figure is formed, and the same actions and effects as those of the present embodiment can be obtained.
 エマージェンシー制御の開始時には、制御部600は、第1吸込口用ダンパ410a、及び第2吸込口用ダンパ410bを閉状態、第1換気口用ダンパ430a、第2換気口用ダンパ430b、第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを開状態に制御した状態で、第1室内送風機310a、及び第2室内送風機310bを逆回転に制御する。これにより、本実施の形態と同様の作用、効果が得られる。 At the start of emergency control, the control unit 600 closes the first suction port damper 410a and the second suction port damper 410b, the first ventilation port damper 430a, the second ventilation port damper 430b, and the first blow. With the outlet damper 420a and the second outlet damper 420b controlled in the open state, the first chamber blower 310a and the second chamber blower 310b are controlled to rotate in the reverse direction. As a result, the same actions and effects as those of the present embodiment can be obtained.
 また、エマージェンシー制御の終了時には、制御部600は、第1吸込口用ダンパ410a、第2吸込口用ダンパ410b、第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを閉状態に制御した状態で、第1室内送風機310a、及び第2室内送風機310bを停止させる。第1換気口用ダンパ430a、及び第2換気口用ダンパ430bを開状態に制御し続けることが好ましいが、閉状態に切り替えてもよい。第1吹出口用ダンパ420a、及び第2吹出口用ダンパ420bを閉状態に切り替えることにより、室内機室710と車室910とを断絶することができる。これにより、排出しきれずに残留した冷媒が室内機室710にあったとしても、車室910への冷媒の流出を抑制することができる。 Further, at the end of the emergency control, the control unit 600 controls the first suction port damper 410a, the second suction port damper 410b, the first outlet damper 420a, and the second outlet damper 420b in a closed state. In this state, the first chamber blower 310a and the second chamber blower 310b are stopped. It is preferable to keep controlling the damper 430a for the first ventilation port and the damper 430b for the second ventilation port in the open state, but the damper may be switched to the closed state. By switching the first air outlet damper 420a and the second air outlet damper 420b to the closed state, the indoor unit 710 and the passenger compartment 910 can be disconnected. As a result, even if the refrigerant that cannot be completely discharged and remains in the indoor unit 710 is present, the outflow of the refrigerant to the vehicle interior 910 can be suppressed.
 <実施の形態2>
 実施の形態1では、検出器500として第1冷媒センサ510を備え、第1冷媒センサ510の検出結果を用いて、冷媒が漏れ出たか否かの判定を行う構成について説明した。本実施の形態は、実施の形態1と比較して、検出器500として第2冷媒センサ520を更に備える点が異なる。具体的には、気流ACの流れの方向に関して室内熱交換器130よりも下流の位置に配置した第1冷媒センサ、及び室内熱交換器130よりも上流の位置に配置した第2冷媒センサの検出結果を用いて冷媒が漏れ出たか否かの判定を行う点が異なる。以下、実施の形態1と異なる構成を中心に説明する。
<Embodiment 2>
In the first embodiment, a configuration is described in which a first refrigerant sensor 510 is provided as the detector 500, and the detection result of the first refrigerant sensor 510 is used to determine whether or not the refrigerant has leaked. The present embodiment is different from the first embodiment in that the detector 500 is further provided with the second refrigerant sensor 520. Specifically, the detection of the first refrigerant sensor arranged at a position downstream of the indoor heat exchanger 130 and the second refrigerant sensor arranged at a position upstream of the indoor heat exchanger 130 with respect to the flow direction of the airflow AC. The difference is that the result is used to determine whether or not the refrigerant has leaked. Hereinafter, a configuration different from that of the first embodiment will be mainly described.
 まず、本実施の形態に係る車両用空気調和装置800の構成について説明する。 First, the configuration of the vehicle air conditioner 800 according to the present embodiment will be described.
 図9は、本実施の形態に係る車両用空気調和装置800の筐体700の内部を示す平面図である。図9は、吸込口用ダンパ410、及び換気口用ダンパ430を開状態、室内送風機310を正回転に切り替えたときに形成される気流ACを示す。また、図に示すように、車両用空気調和装置800は、第1冷媒センサ510とは別に、第1室内機室711に配置された第2冷媒センサ520をさらに備える。第2冷媒センサ520は、第1室内送風機310aが形成する気流ACの経路上における、第1室内熱交換器130aよりも上流の位置において、冷媒の濃度を検出する。第2冷媒センサ520は、第1冷媒センサ510と同じ構成を備える。 FIG. 9 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment. FIG. 9 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation. Further, as shown in the figure, the vehicle air conditioner 800 further includes a second refrigerant sensor 520 arranged in the first indoor unit room 711 in addition to the first refrigerant sensor 510. The second refrigerant sensor 520 detects the concentration of the refrigerant at a position upstream of the first chamber heat exchanger 130a on the path of the airflow AC formed by the first chamber blower 310a. The second refrigerant sensor 520 has the same configuration as the first refrigerant sensor 510.
 本実施の形態では、図1に示した制御部600が、第1冷媒センサ510の検出結果、及び第2冷媒センサ520の検出結果を用いて、上述した冷媒漏出判定がリアルタイムに繰り返される冷媒漏出監視処理を行う。以下、図を参照し、具体的に説明する。 In the present embodiment, the control unit 600 shown in FIG. 1 uses the detection result of the first refrigerant sensor 510 and the detection result of the second refrigerant sensor 520 to repeat the above-mentioned refrigerant leakage determination in real time. Perform monitoring processing. Hereinafter, a specific description will be given with reference to the drawings.
 図10は、実施の形態2に係る車両用空気調和装置800の制御部600の処理フローを示すフローチャートである。 FIG. 10 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the second embodiment.
 図に示すように、まず、制御部600は、第1冷媒センサ510、及び第2冷媒センサ520に、冷媒の濃度の検出を開始させる(ステップS31)。以降、第1冷媒センサ510、及び第2冷媒センサ520は、各々の位置において、冷媒の濃度をリアルタイムに繰り返し検出する。 As shown in the figure, first, the control unit 600 causes the first refrigerant sensor 510 and the second refrigerant sensor 520 to start detecting the concentration of the refrigerant (step S31). After that, the first refrigerant sensor 510 and the second refrigerant sensor 520 repeatedly detect the concentration of the refrigerant in real time at each position.
 次に、制御部600は、第1冷媒センサ510から検出結果Csを取得し、かつ第2冷媒センサ520から検出結果Crを取得する(ステップS32)。そして、制御部600は、第1冷媒センサ510の検出結果Csから、第2冷媒センサ520の検出結果Crを減算し、その結果の値(Cs-Cr)と、予め定められた第1閾値Th1との比較によって、冷凍サイクル装置100から冷媒が漏れ出たか否かを判定する(ステップS33)。なお、制御部600は、第1冷媒センサ510の検出結果Csと、第2冷媒センサ520の検出結果Crとをそれぞれリアルタイムに取得し、かつ同じ時刻tに検出された検出結果Cs(t)とCr(t)との差分(Cs(t)-Cr(t))を算出する。 Next, the control unit 600 acquires the detection result Cs from the first refrigerant sensor 510 and the detection result Cr from the second refrigerant sensor 520 (step S32). Then, the control unit 600 subtracts the detection result Cr of the second refrigerant sensor 520 from the detection result Cs of the first refrigerant sensor 510, and the value (Cs—Cr) of the result and the predetermined first threshold Th1 By comparison with the above, it is determined whether or not the refrigerant has leaked from the refrigeration cycle device 100 (step S33). The control unit 600 acquires the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 in real time, and the detection result Cs (t) detected at the same time t. The difference from Cr (t) (Cs (t) -Cr (t)) is calculated.
 ここで、第1冷媒センサ510の検出結果Csと、第2冷媒センサ520の検出結果Crとの差分(Cs-Cr)の値によって冷媒の漏れを検知できる理由を説明する。 Here, the reason why the leakage of the refrigerant can be detected by the value of the difference (Cs—Cr) between the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 will be described.
 図9において、冷凍サイクル装置100から冷媒が漏れ出ていない場合は、第1室内送風機310aが形成する気流ACの経路上における、第2冷媒センサ520から第1冷媒センサ510までの間に、冷媒の濃度を上昇させる要因が存在しない。このため、第1冷媒センサ510の検出結果Csと、第2冷媒センサ520の検出結果Crとは同じ、又は近い値を示す。従って、差分(Cs-Cr)は、ゼロ又は小さい値となる。 In FIG. 9, when the refrigerant does not leak from the refrigeration cycle device 100, the refrigerant is formed between the second refrigerant sensor 520 and the first refrigerant sensor 510 on the path of the airflow AC formed by the first chamber blower 310a. There is no factor that increases the concentration of. Therefore, the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 show the same or close values. Therefore, the difference (Cs—Cr) is zero or a small value.
 これに対し、冷凍サイクル装置100、特に、第1室内熱交換器130a、又は第1冷媒配管150aから冷媒が漏出した場合、冷媒が漏出していないときの第1冷媒センサ510の検出結果Csに、漏出した冷媒の濃度が上乗せされる。一方、その漏出の直後の時点では、第1室内熱交換器130a、及び第1冷媒配管150aよりも上流に位置する第2冷媒センサ520の検出結果Crには、その漏出した冷媒に由来する濃度が未だ反映されていない。従って、差分(Cs-Cr)は、大きい値となる。 On the other hand, when the refrigerant leaks from the refrigeration cycle device 100, particularly the first indoor heat exchanger 130a or the first refrigerant pipe 150a, the detection result Cs of the first refrigerant sensor 510 when the refrigerant does not leak. , The concentration of the leaked refrigerant is added. On the other hand, immediately after the leak, the detection result Cr of the second refrigerant sensor 520 located upstream of the first chamber heat exchanger 130a and the first refrigerant pipe 150a shows the concentration derived from the leaked refrigerant. Has not been reflected yet. Therefore, the difference (Cs—Cr) becomes a large value.
 そこで、制御部600は、差分(Cs-Cr)の値を、気流ACを構成する空気中における冷媒の濃度の、冷媒の漏れに起因する増分を表す第1閾値Th1と比較することで、冷媒の漏れを検知できる。 Therefore, the control unit 600 compares the value of the difference (Cs—Cr) with the first threshold value Th1 representing the increment of the concentration of the refrigerant in the air constituting the airflow AC due to the leakage of the refrigerant. Can detect leaks.
 図10に戻り、冷媒漏出監視処理の説明を続ける。制御部600は、差分(Cs-Cr)の値が第1閾値Th1以下である場合は(ステップS33:NO)、第1冷媒センサ510の検出結果Csと、第2冷媒センサ520の検出結果Crとが同じ又は近い値を示すので、冷凍サイクル装置100から冷媒が漏れ出ていないと判定する。そして、制御部600は、冷媒が漏れたか否かの監視を継続するため、再びステップS32に戻る。なお、ステップS32とステップS33とのループは、第1冷媒センサ510、及び第2冷媒センサ520の検出のサンプリング周期毎に繰り返される。 Returning to FIG. 10, the explanation of the refrigerant leakage monitoring process is continued. When the value of the difference (Cs—Cr) is equal to or less than the first threshold value Th1 (step S33: NO), the control unit 600 has the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520. Is the same as or close to, so it is determined that the refrigerant has not leaked from the refrigeration cycle device 100. Then, the control unit 600 returns to step S32 again in order to continue monitoring whether or not the refrigerant has leaked. The loop of steps S32 and S33 is repeated every sampling cycle of detection by the first refrigerant sensor 510 and the second refrigerant sensor 520.
 一方、制御部600は、差分(Cs-Cr)の値が第1閾値Th1を超える場合は(ステップS33:YES)、第1冷媒センサ510の検出結果Csに、漏出した冷媒の濃度が上乗せされていることを表すので、冷凍サイクル装置100から冷媒が漏れ出たと判定する。そこで、制御部600は、車室910における冷媒の濃度の上昇を抑制するエマージェンシー制御を開始する(ステップS34)。なお、エマージェンシー制御の具体的な内容は、図6に示したとおりである。 On the other hand, when the difference (Cs—Cr) value exceeds the first threshold value Th1 (step S33: YES), the control unit 600 adds the concentration of the leaked refrigerant to the detection result Cs of the first refrigerant sensor 510. Therefore, it is determined that the refrigerant has leaked from the refrigeration cycle device 100. Therefore, the control unit 600 starts emergency control for suppressing an increase in the concentration of the refrigerant in the vehicle interior 910 (step S34). The specific contents of the emergency control are as shown in FIG.
 次に、制御部600は、再び第1冷媒センサ510から検出結果Csを取得し(ステップS35)、第1冷媒センサ510の検出結果Csと、予め定められた第2閾値Th2とを比較する(ステップS36)。第2閾値Th2は、冷凍サイクル装置100からの冷媒の漏出が終了したとみなすことができる程度に小さい値である。なお、制御部600は、第1冷媒センサ510の検出結果Csの代わりに、第2冷媒センサ520の検出結果Crを用いて冷媒漏出の終了を判断しても良い。 Next, the control unit 600 again acquires the detection result Cs from the first refrigerant sensor 510 (step S35), and compares the detection result Cs of the first refrigerant sensor 510 with the predetermined second threshold value Th2 (step S35). Step S36). The second threshold value Th2 is a value so small that it can be considered that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed. The control unit 600 may determine the end of the refrigerant leakage by using the detection result Cr of the second refrigerant sensor 520 instead of the detection result Cs of the first refrigerant sensor 510.
 制御部600は、第1冷媒センサ510の検出結果Csが第2閾値Th2を超えている場合は(ステップS36:NO)、冷凍サイクル装置100からの冷媒の漏出がまだ終了していないので、エマージェンシー制御を継続すべく、ステップS35に戻る。なお、ステップS35とステップS36とのループは、第1冷媒センサ510の検出のサンプリング周期毎に繰り返される。 When the detection result Cs of the first refrigerant sensor 510 exceeds the second threshold value Th2 (step S36: NO), the control unit 600 has not completed the leakage of the refrigerant from the refrigeration cycle device 100, so that the emergency The process returns to step S35 in order to continue the control. The loop of steps S35 and S36 is repeated every sampling cycle of detection by the first refrigerant sensor 510.
 一方、制御部600は、第1冷媒センサ510の検出結果Csが第2閾値Th2以下である場合は(ステップS36:YES)、冷凍サイクル装置100からの冷媒の漏出が終了したとみなすことができるので、エマージェンシー制御を終了する(ステップS37)。なお、エマージェンシー制御の終了判定は、第2冷媒センサ520の検出結果Crに基づいて行われても良い。 On the other hand, when the detection result Cs of the first refrigerant sensor 510 is equal to or less than the second threshold value Th2 (step S36: YES), the control unit 600 can consider that the leakage of the refrigerant from the refrigeration cycle device 100 has been completed. Therefore, the emergency control is terminated (step S37). The end determination of the emergency control may be performed based on the detection result Cr of the second refrigerant sensor 520.
 以上説明した実施の形態によれば、次の効果が得られる。
 冷凍サイクル装置100から冷媒が漏れ出ていない場合は、第1冷媒センサ510の検出結果Csと第2冷媒センサ520の検出結果Crとが同じ、又は近い値を示す一方で、仮に冷凍サイクル装置100から冷媒が漏れ出た場合、その時点では、第1冷媒センサ510の検出結果Csと第2冷媒センサ520の検出結果Crとの差が大きくなる。このため、制御部600は、上記差分(Cs-Cr)の値によって、冷媒の漏れを早期に精度良く検知できる。
According to the embodiment described above, the following effects can be obtained.
When no refrigerant leaks from the refrigeration cycle device 100, the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 show the same or close values, while the refrigeration cycle device 100 is tentatively When the refrigerant leaks from the refrigerant, the difference between the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520 becomes large at that time. Therefore, the control unit 600 can detect the leakage of the refrigerant at an early stage and with high accuracy based on the value of the difference (Cs—Cr).
 また、冷媒が二酸化炭素ガスの場合には、制御部600は、ステップS33において第1冷媒センサ510の検出結果Csから第2冷媒センサ520の検出結果Crを減算することで、第1冷媒センサ510の検出結果Csから、車室910に居る人の呼気に由来する二酸化炭素の濃度をキャンセルすることができる。つまり、客室910における乗車率の変動に伴って、人の呼気に由来する二酸化炭素の濃度が変動しても、その変動の影響が、第1冷媒センサ510の検出結果Csと第2冷媒センサ520の検出結果Crとの差分(Cs-Cr)に表れにくい。したがって、冷凍サイクル装置100から二酸化炭素が漏れ出たか否かの判定の厳しさを、人の呼気に由来する二酸化炭素の濃度の変動に応じて切り替える必要がない。このため、二酸化炭素の漏れを簡単に検出することができる。 When the refrigerant is carbon dioxide gas, the control unit 600 subtracts the detection result Cr of the second refrigerant sensor 520 from the detection result Cs of the first refrigerant sensor 510 in step S33, so that the first refrigerant sensor 510 From the detection result Cs of, the concentration of carbon dioxide derived from the exhaled breath of the person in the passenger compartment 910 can be canceled. That is, even if the concentration of carbon dioxide derived from the exhaled breath of a person fluctuates due to the fluctuation of the occupancy rate in the passenger cabin 910, the influence of the fluctuation is the detection result Cs of the first refrigerant sensor 510 and the second refrigerant sensor 520. It is unlikely to appear in the difference (Cs-Cr) from the detection result Cr. Therefore, it is not necessary to switch the strictness of determining whether or not carbon dioxide has leaked from the refrigeration cycle device 100 according to the fluctuation of the concentration of carbon dioxide derived from the exhaled breath of a person. Therefore, the leakage of carbon dioxide can be easily detected.
 <実施の形態3>
 実施の形態2では、第1冷媒センサ510の検出結果Csと第2冷媒センサ520の検出結果Crとの差分Cs-Crを用いて、冷媒が漏れ出たか否かの判定を行う構成について説明した。本実施の形態は、実施の形態2と比較して、差分(Cs-Cr)の上昇率を用いて冷媒が漏れ出たか否かの判定を行う点が異なる。その他の構成は実施の形態2と共通なので、以下では、本実施の形態に特有の処理フローを中心に説明する。
<Embodiment 3>
In the second embodiment, a configuration for determining whether or not the refrigerant has leaked has been described using the difference Cs—Cr between the detection result Cs of the first refrigerant sensor 510 and the detection result Cr of the second refrigerant sensor 520. .. The present embodiment is different from the second embodiment in that it is determined whether or not the refrigerant has leaked by using the rate of increase of the difference (Cs—Cr). Since the other configurations are the same as those of the second embodiment, the processing flow peculiar to the present embodiment will be mainly described below.
 図11は、実施の形態3に係る車両用空気調和装置800の制御部600の処理フローを示すフローチャートである。図中のステップS31,S32,S34,S37は、既述の同一番号のステップと同じ処理を行う。 FIG. 11 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the third embodiment. Steps S31, S32, S34, and S37 in the figure perform the same processing as the steps having the same number as described above.
 図に示すように、本実施の形態では、制御部600は、既述のステップS32の後、差分(Cs-Cr)の上昇率と、予め定められた第3閾値Th3との比較によって、冷凍サイクル装置100から冷媒が漏れ出たか否かを判定する(ステップS41)。ここで、
「差分(Cs-Cr)の上昇率」とは、時刻tにおける差分(Cs(t)-Cr(t))の値と、1サンプリング周期前の時刻t-1における差分(Cs(t-1)-Cr(t-1))の値との差分{(Cs(t)-Cr(t))-(Cs(t-1)-Cr(t-1))}、又はその差分に比例する物理量を指す。
As shown in the figure, in the present embodiment, after step S32 described above, the control unit 600 freezes by comparing the rate of increase of the difference (Cs—Cr) with the predetermined third threshold value Th3. It is determined whether or not the refrigerant has leaked from the cycle device 100 (step S41). here,
The "difference (Cs-Cr) increase rate" is the value of the difference (Cs (t) -Cr (t)) at time t and the difference (Cs (t-1)) at time t-1 one sampling cycle before. )-Difference from the value of Cr (t-1)) {(Cs (t) -Cr (t))-(Cs (t-1) -Cr (t-1))}, or proportional to the difference. Refers to a physical quantity.
 冷凍サイクル装置100から冷媒が漏れ出ていない場合は、差分(Cs-Cr)の値が時間的に殆ど変化しないので、差分(Cs-Cr)の上昇率は、ゼロ又はゼロに近い値となる。一方、冷凍サイクル装置100から冷媒が漏れ出ている場合、差分(Cs-Cr)の上昇率は、冷媒の漏出の激しさを表すため、大きな値となる。そこで、制御部600は、差分(Cs-Cr)の上昇率が、冷凍サイクル装置100から冷媒が漏れ出ていることを表す第3閾値Th3以上である場合は(ステップS41:YES)、ステップS34に進む。 When the refrigerant does not leak from the refrigeration cycle apparatus 100, the difference (Cs—Cr) value hardly changes with time, so that the increase rate of the difference (Cs—Cr) becomes zero or a value close to zero. .. On the other hand, when the refrigerant leaks from the refrigeration cycle device 100, the rate of increase of the difference (Cs—Cr) is a large value because it represents the severity of the leakage of the refrigerant. Therefore, when the rate of increase in the difference (Cs—Cr) is equal to or greater than the third threshold value Th3 indicating that the refrigerant is leaking from the refrigeration cycle device 100 (step S41: YES), the control unit 600 has step S34. Proceed to.
 一方、制御部600は、差分(Cs-Cr)の上昇率が、第3閾値Th3未満である場合は(ステップS41:NO)、冷凍サイクル装置100から冷媒が漏れ出たとは言えないので、ステップS32に戻る。 On the other hand, when the rate of increase of the difference (Cs—Cr) is less than the third threshold value Th3 (step S41: NO), the control unit 600 cannot say that the refrigerant has leaked from the refrigeration cycle device 100. Return to S32.
 また、本実施の形態では、制御部600は、既述のステップS35の後、第1冷媒センサ510の検出結果Csの上昇率と、予め定められた第4閾値Th4との比較によって、冷媒の漏出が終了したか否かを判定する(ステップS42)。ここで、「Csの上昇率」とは、時刻tにおける検出結果Cs(t)の値と、1サンプリング周期前の時刻t-1における検出結果Cs(t-1)の値との差分(Cs(t)-Cs(t-1))、又はその差分に比例する物理量を指す。 Further, in the present embodiment, after step S35 described above, the control unit 600 compares the rate of increase in the detection result Cs of the first refrigerant sensor 510 with the predetermined fourth threshold value Th4 to obtain the refrigerant. It is determined whether or not the leakage is completed (step S42). Here, the “rate of increase in Cs” is the difference (Cs) between the value of the detection result Cs (t) at the time t and the value of the detection result Cs (t-1) at the time t-1 one sampling cycle before. (T) -Cs (t-1)), or a physical quantity proportional to the difference thereof.
 冷媒の漏出が終了しつつあるときは、冷媒の漏出量の上昇率が負の値を示す。そこで、制御部600は、Csの上昇率が、冷媒の漏出が終了しつつあることを表す負の第4閾値Th4以下である場合は(ステップS42:YES)、ステップS37に進み、Csの上昇率が第4閾値Th4より大きい場合は(ステップS42:NO)、ステップS35に戻る。他の構成及び作用効果は、実施の形態2と同様である。 When the leakage of the refrigerant is ending, the rate of increase in the amount of leakage of the refrigerant shows a negative value. Therefore, when the rate of increase in Cs is equal to or less than the negative fourth threshold value Th4 indicating that the leakage of the refrigerant is ending (step S42: YES), the control unit 600 proceeds to step S37 to increase Cs. If the rate is greater than the fourth threshold Th4 (step S42: NO), the process returns to step S35. Other configurations and effects are the same as in the second embodiment.
 以上説明した実施の形態によれば、次の効果が得られる。
 本実施の形態の車両用空気調和装置800の制御部600は、第1冷媒センサの検出結果と第2冷媒センサの検出結果との差分の上昇率に基づいて冷媒が漏れ出たか否かを判定する。これにより、冷凍サイクル装置100から冷媒が漏出していることを検知することができる。
According to the embodiment described above, the following effects can be obtained.
The control unit 600 of the vehicle air conditioner 800 of the present embodiment determines whether or not the refrigerant has leaked based on the rate of increase in the difference between the detection result of the first refrigerant sensor and the detection result of the second refrigerant sensor. do. Thereby, it is possible to detect that the refrigerant is leaking from the refrigeration cycle device 100.
 <実施の形態4>
 実施の形態1から3では、検出器500が冷媒濃度を検出するセンサである構成について説明したが、本実施の形態では、検出器500が電流センサ530である構成について説明する。以下、実施の形態1から3と異なる点を中心に説明する。
<Embodiment 4>
In the first to third embodiments, the configuration in which the detector 500 is a sensor for detecting the refrigerant concentration has been described, but in the present embodiment, the configuration in which the detector 500 is a current sensor 530 will be described. Hereinafter, the points different from the first to third embodiments will be mainly described.
 まず、本実施の形態に係る車両用空気調和装置800の構成について説明する。 First, the configuration of the vehicle air conditioner 800 according to the present embodiment will be described.
 図12は、本実施の形態に係る車両用空気調和装置800の筐体700の内部を示す平面図である。図12は、吸込口用ダンパ410、及び換気口用ダンパ430を開状態、室内送風機310を正回転に切り替えたときに形成される気流ACを示す。 FIG. 12 is a plan view showing the inside of the housing 700 of the vehicle air conditioner 800 according to the present embodiment. FIG. 12 shows an airflow AC formed when the suction port damper 410 and the ventilation port damper 430 are opened and the indoor blower 310 is switched to forward rotation.
 図に示すように、車両用空気調和装置800は、第1冷媒センサ510、及び第2冷媒センサ520の代わりに、冷媒を圧縮する第1圧縮機110aに供給される電流値を検出する電流センサ530を備える。電流センサ530は、第1圧縮機110aに供給される電流値を検出し、検出した結果を制御部600へ出力する。電流センサ530は、室外機室720に配置されるが、第1圧縮機110aに供給される電流値を検出することが可能であれば、室外機室720の外部に配置されても良い。 As shown in the figure, the vehicle air conditioner 800 is a current sensor that detects a current value supplied to a first compressor 110a that compresses the refrigerant instead of the first refrigerant sensor 510 and the second refrigerant sensor 520. 530 is provided. The current sensor 530 detects the current value supplied to the first compressor 110a and outputs the detected result to the control unit 600. The current sensor 530 is arranged in the outdoor unit room 720, but may be arranged outside the outdoor unit room 720 as long as it can detect the current value supplied to the first compressor 110a.
 本実施の形態では、図1に示した制御部600は、電流センサ530の検出結果Icを用いて、上述した冷媒漏出監視処理を行う。 In the present embodiment, the control unit 600 shown in FIG. 1 performs the above-mentioned refrigerant leakage monitoring process using the detection result Ic of the current sensor 530.
 ここで、第1圧縮機110aに供給される電流値から冷媒の漏出が検出できる理由を説明する。制御部600は、回転数が一定となるように第1圧縮機110aを制御する。また、第1冷凍サイクル装置100aの内部を流れる冷媒の流量が減少すると、冷媒の抵抗が小さくなり、その結果、第1圧縮機110aを駆動するために必要な電流値が小さくなる。そこで、第1圧縮機110aに供給される電流値の変化を監視することにより、第1冷凍サイクル装置100aにおける冷媒の漏れを検知することができる。第2冷凍サイクル装置100bにおける冷媒の漏れについても同様である。 Here, the reason why the leakage of the refrigerant can be detected from the current value supplied to the first compressor 110a will be described. The control unit 600 controls the first compressor 110a so that the rotation speed becomes constant. Further, when the flow rate of the refrigerant flowing inside the first refrigeration cycle device 100a decreases, the resistance of the refrigerant decreases, and as a result, the current value required to drive the first compressor 110a decreases. Therefore, by monitoring the change in the current value supplied to the first compressor 110a, it is possible to detect the leakage of the refrigerant in the first refrigeration cycle device 100a. The same applies to the leakage of the refrigerant in the second refrigeration cycle device 100b.
 図13は、実施の形態4に係る車両用空気調和装置800の制御部600の処理フローを示すフローチャートである。 FIG. 13 is a flowchart showing a processing flow of the control unit 600 of the vehicle air conditioner 800 according to the fourth embodiment.
 図に示すように、まず、制御部600は、電流センサ530に、第1圧縮機110aに供給される電流値の検出を開始させる(ステップS51)。以降、電流センサ530は、第1圧縮機110aに供給される電流値をリアルタイムに繰り返し検出する。 As shown in the figure, first, the control unit 600 causes the current sensor 530 to start detecting the current value supplied to the first compressor 110a (step S51). After that, the current sensor 530 repeatedly detects the current value supplied to the first compressor 110a in real time.
 次に、制御部600は、電流センサ530から検出結果Icを取得し(ステップS52)、検出結果Icの下降率と、第1冷凍サイクル装置100aから冷媒が漏れ出たことを表す予め定められた第5閾値Th5とを比較する(ステップS53)。ここで、「検出結果Icの下降率」とは、前回の検出結果の値と、今回の検出結果の値との差分、又はその差分に比例する物理量を指す。「今回の検出結果の値」とは、時刻tにおける検出結果Ic(t)の値、「前回の検出結果の値」とは、1サンプリング周期前の時刻t-1における検出結果Ic(t-1)の値を意味する。但し、検出結果Icの初期値はゼロとする。 Next, the control unit 600 acquires the detection result Ic from the current sensor 530 (step S52), and determines the rate of decrease of the detection result Ic and a predetermined value indicating that the refrigerant has leaked from the first refrigeration cycle device 100a. Compare with the fifth threshold Th5 (step S53). Here, the "decrease rate of the detection result Ic" refers to the difference between the value of the previous detection result and the value of the current detection result, or a physical quantity proportional to the difference. The "value of the current detection result" is the value of the detection result Ic (t) at time t, and the "value of the previous detection result" is the detection result Ic (t-) at time t-1 one sampling cycle before. It means the value of 1). However, the initial value of the detection result Ic is set to zero.
 制御部600は、検出結果Icの下降率が第5閾値Th5以下である場合は(ステップS53:NO)、第1冷凍サイクル装置100aから冷媒が漏れ出ていないと判定する。そして、制御部600は、冷媒が漏れたか否かの監視を継続するため、再びステップS52に戻る。なお、ステップS52とステップS53とのループは、電流センサ530の検出のサンプリング周期毎に繰り返される。 When the rate of decrease of the detection result Ic is equal to or less than the fifth threshold value Th5 (step S53: NO), the control unit 600 determines that the refrigerant has not leaked from the first refrigeration cycle device 100a. Then, the control unit 600 returns to step S52 again in order to continue monitoring whether or not the refrigerant has leaked. The loop of step S52 and step S53 is repeated every sampling cycle of detection by the current sensor 530.
 一方、制御部600は、検出結果Icの下降率が第5閾値Th5を超える場合は(ステップS53:YES)、第1冷凍サイクル装置100aから冷媒が漏れ出たと判定する。そこで、制御部600は、車室910における冷媒の濃度の上昇を抑制するエマージェンシー制御を開始する(ステップS54)。なお、エマージェンシー制御の具体的な内容は、図6に示したとおりである。 On the other hand, when the rate of decrease of the detection result Ic exceeds the fifth threshold value Th5 (step S53: YES), the control unit 600 determines that the refrigerant has leaked from the first refrigeration cycle device 100a. Therefore, the control unit 600 starts the emergency control for suppressing the increase in the concentration of the refrigerant in the vehicle interior 910 (step S54). The specific contents of the emergency control are as shown in FIG.
 制御部600は、以上のようにしてエマージェンシー制御を開始(ステップS54)した後、再び電流センサ530から検出結果Icを取得し(ステップS55)、検出結果Icの下降率が第5閾値Th5以下か否かを判定する(ステップS56)。第5閾値Th5は、第1冷凍サイクル装置100aからの冷媒の漏出が終了したとみなすことができる程度に小さい値である。なお、ステップS53とステップS56で使用する第5閾値Th5は、同じ値でも良いし、異なる値でも良い。 After starting the emergency control as described above (step S54), the control unit 600 acquires the detection result Ic from the current sensor 530 again (step S55), and whether the rate of decrease of the detection result Ic is the fifth threshold value Th5 or less. Whether or not it is determined (step S56). The fifth threshold value Th5 is a value so small that it can be considered that the leakage of the refrigerant from the first refrigeration cycle device 100a has been completed. The fifth threshold value Th5 used in step S53 and step S56 may have the same value or different values.
 制御部600は、検出結果Icの下降率が第5閾値Th5を超えている場合は(ステップS56:NO)、第1冷凍サイクル装置100aからの冷媒の漏出がまだ終了していないので、ステップS55に戻り、エマージェンシー制御を継続する。なお、ステップS55とステップS56とのループは、電流センサ530の検出のサンプリング周期毎に繰り返される。 When the rate of decrease of the detection result Ic exceeds the fifth threshold value Th5 (step S56: NO), the control unit 600 has not yet completed the leakage of the refrigerant from the first refrigeration cycle device 100a, so that step S55 Return to and continue emergency control. The loop of step S55 and step S56 is repeated every sampling cycle of detection by the current sensor 530.
 一方、制御部600は、検出結果Icの下降率が第5閾値Th5以下である場合は(ステップS56:YES)、第1冷凍サイクル装置100aからの冷媒の漏出が終了したとみなすことができるので、エマージェンシー制御を終了する(ステップS57)。 On the other hand, when the rate of decrease of the detection result Ic is equal to or less than the fifth threshold value Th5 (step S56: YES), the control unit 600 can consider that the leakage of the refrigerant from the first refrigeration cycle device 100a has been completed. , The emergency control is terminated (step S57).
 以上で、制御部600は、冷媒漏出監視処理を終える。なお、本実施の形態では、電流センサ530が第1圧縮機110aの電流値を検出する構成について説明したが、電流センサ530が第2圧縮機110bの電流値を検知する構成でも良いし、第1圧縮機110a、及び第2圧縮機110bの電流値を検出する構成でも良い。 With the above, the control unit 600 completes the refrigerant leakage monitoring process. In the present embodiment, the configuration in which the current sensor 530 detects the current value of the first compressor 110a has been described, but the current sensor 530 may be configured to detect the current value of the second compressor 110b. The configuration may be such that the current values of the 1 compressor 110a and the 2nd compressor 110b are detected.
 以上説明した実施の形態によれば、冷凍サイクル内における冷媒の流量の減少に基づいて、冷媒の漏出を検出する。これにより、冷媒の漏出が発生した位置、及び冷媒の状態を検出する検出器の位置に因らず、冷媒の漏出を精度良く検知することができる。 According to the embodiment described above, the leakage of the refrigerant is detected based on the decrease in the flow rate of the refrigerant in the refrigeration cycle. As a result, the leakage of the refrigerant can be detected with high accuracy regardless of the position where the leakage of the refrigerant has occurred and the position of the detector that detects the state of the refrigerant.
 以上説明した実施の形態によれば、冷凍サイクル装置100内を流れる冷媒の減少に基づいて、冷媒の漏出を検出する。これにより、冷媒が漏出した位置、及び冷媒の状態を検出する検出器の位置に因らず、冷媒の漏出を精度良く検知することができる。 According to the embodiment described above, the leakage of the refrigerant is detected based on the decrease of the refrigerant flowing in the refrigeration cycle device 100. As a result, the leakage of the refrigerant can be detected with high accuracy regardless of the position where the refrigerant has leaked and the position of the detector that detects the state of the refrigerant.
 以上のとおり、実施の形態1から4について説明した。なお、実施の形態1から3に係る車両用空気調和装置800においては、以下に述べる変形も可能である。 As described above, the first to fourth embodiments have been described. The vehicle air conditioner 800 according to the first to third embodiments can be modified as described below.
 実施の形態2では、差分(Cs-Cr)の値によって、冷媒が漏れ出たか否かの判定を行い、実施の形態3では、差分(Cs-Cr)の上昇率によって、冷媒が漏れ出たか否かの判定を行ったが、冷媒が漏れ出たか否かの判定に用いる物理量はこれに限定されない。検出結果Cs、又はCrの値そのもの、あるいはCs,又はCrに依存するあらゆる物理量を、冷媒が漏れ出たか否かの判定に用いることができる。 In the second embodiment, it is determined whether or not the refrigerant has leaked based on the value of the difference (Cs—Cr), and in the third embodiment, whether or not the refrigerant has leaked based on the rate of increase of the difference (Cs—Cr). Although it has been determined whether or not the refrigerant has leaked, the physical quantity used for determining whether or not the refrigerant has leaked is not limited to this. The detection result Cs or the value of Cr itself, or any physical quantity depending on Cs or Cr can be used to determine whether or not the refrigerant has leaked.
 また、本明細書において、筐体700が設置される車両は、電車、新幹線、モノレール、その他の、軌道に沿って進行する車両を含む鉄道車両に限定されず、バス、その他の自動車であってもよい。 Further, in the present specification, the vehicle on which the housing 700 is installed is not limited to trains, bullet trains, monorails, and other railway vehicles including vehicles traveling along the track, but is not limited to trains, buses, and other automobiles. May be good.
 さらに、本明細書において、筐体700は、車両900の屋根に配置されていてもよいし、車両900の床下に配置されていてもよい。 Further, in the present specification, the housing 700 may be arranged on the roof of the vehicle 900 or may be arranged under the floor of the vehicle 900.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態、及び変形が可能とされる。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure allows various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining the present disclosure, and does not limit the scope of the present disclosure. The scope of the present disclosure is indicated by the claims, not the embodiments. Various modifications made within the scope of the claims and within the equivalent meaning of the disclosure are deemed to be within the scope of the present disclosure.
 100 冷凍サイクル装置、100a 第1冷凍サイクル装置、100b 第2冷凍サイクル装置、110a 第1圧縮機、110b 第2圧縮機、120a 第1室外熱交換器、120b 第2室外熱交換器、130 室内熱交換器、130a 第1室内熱交換器、130b 第2室内熱交換器、140a 第1アキュムレータ、140b 第2アキュムレータ、150a 第1冷媒配管、150b 第2冷媒配管、200a 第1ヒータ、200b 第2ヒータ、310 室内送風機、310a 第1室内送風機、310b 第2室内送風機、320 室外送風機、410 吸込口用ダンパ、410a 第1吸込口用ダンパ、410b 第2吸込口用ダンパ、420 吹出口用ダンパ、420a 第1吹出口用ダンパ、420b 第2吹出口用ダンパ、430 換気口用ダンパ、430a 第1換気口用ダンパ、430b 第2換気口用ダンパ、500 検出器、510 第1冷媒センサ、520 第2冷媒センサ、530 電流センサ、600 制御部、700 筐体、710 室内機室、711 第1室内機室、712 第2室内機室、713 第3室内機室、720 室外機室、800 車両用空気調和装置、900 車両、910 車室、920 吸込ダクト、930 吹出ダクト、AC 気流、EA 排出空気、FA 車外空気、RA 吸込空気、SA 吹出空気。 100 refrigeration cycle device, 100a first refrigeration cycle device, 100b second refrigeration cycle device, 110a first compressor, 110b second compressor, 120a first outdoor heat exchanger, 120b second outdoor heat exchanger, 130 indoor heat Exchanger, 130a 1st room heat exchanger, 130b 2nd room heat exchanger, 140a 1st accumulator, 140b 2nd accumulator, 150a 1st refrigerant pipe, 150b 2nd refrigerant pipe, 200a 1st heater, 200b 2nd heater , 310 Indoor Blower, 310a 1st Indoor Blower, 310b 2nd Indoor Blower, 320 Outdoor Blower, 410 Suction Port Damper, 410a 1st Suction Port Damper, 410b 2nd Suction Port Damper, 420 Air Outlet Damper, 420a 1st outlet damper, 420b 2nd outlet damper, 430 ventilation port damper, 430a 1st ventilation port damper, 430b 2nd ventilation port damper, 500 detector, 510 1st refrigerant sensor, 520 2nd Refrigerant sensor, 530 current sensor, 600 control unit, 700 housing, 710 indoor unit room, 711 first indoor unit room, 712 second indoor unit room, 713 third indoor unit room, 720 outdoor unit room, 800 vehicle air Harmonizer, 900 vehicle, 910 cabin, 920 suction duct, 930 blowout duct, AC airflow, EA exhaust air, FA outside air, RA suction air, SA blowout air.

Claims (11)

  1.  車両に搭載される筐体の内部を区画して形成され、前記車両の車室に通じる吸込口、及び吹出口、並びに前記車両の外部に通じる換気口を備える室内機室と、
     前記室内機室に配置され、冷媒と空気との間で熱交換を行う室内熱交換器と、
     正回転、又は逆回転の切り替えが可能で、正回転に切り替えると、前記吸込口から前記室内機室に流入した前記車室の空気が前記室内熱交換器に向かうとともに、前記室内熱交換器を通過した空気が前記吹出口から前記車室に流出する気流を形成する室内送風機と、
     前記冷媒の状態を検出する検出器と、
     前記検出器の検出結果に基づいて前記冷媒が漏出したか否かを判定し、前記冷媒が漏出したと判定した場合には、前記吹出口、及び前記換気口を開状態、前記吸込口を閉状態に制御し、前記室内送風機を逆回転に切り替えることにより、前記吹出口から前記室内機室に流入した前記車室の空気が前記換気口から前記車両の外部に流出する気流を形成させる制御部と、
     を備えた車両用空気調和装置。
    An indoor unit compartment formed by partitioning the inside of a housing mounted on a vehicle and having a suction port and an air outlet leading to the passenger compartment of the vehicle, and a ventilation port leading to the outside of the vehicle.
    An indoor heat exchanger that is arranged in the indoor unit room and exchanges heat between the refrigerant and air.
    It is possible to switch between forward rotation and reverse rotation, and when switching to forward rotation, the air in the passenger compartment that has flowed into the indoor unit room from the suction port heads for the indoor heat exchanger, and at the same time, the indoor heat exchanger is turned on. An indoor blower that forms an air flow in which the passing air flows out from the air outlet to the passenger compartment.
    A detector that detects the state of the refrigerant and
    Based on the detection result of the detector, it is determined whether or not the refrigerant has leaked, and if it is determined that the refrigerant has leaked, the air outlet and the ventilation port are opened, and the suction port is closed. A control unit that controls the state and switches the indoor blower to reverse rotation so that the air in the passenger compartment that has flowed into the indoor unit chamber from the air outlet forms an air flow that flows out from the ventilation port to the outside of the vehicle. When,
    Air conditioner for vehicles equipped with.
  2.  前記検出器は、前記室内機室の冷媒濃度を検出する第1冷媒センサであることを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the detector is a first refrigerant sensor that detects a refrigerant concentration in the indoor unit.
  3.  前記制御部は、前記第1冷媒センサの検出結果の上昇率に基づいて前記冷媒が漏出したか否かを判定することを特徴とする請求項2に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 2, wherein the control unit determines whether or not the refrigerant has leaked based on the rate of increase in the detection result of the first refrigerant sensor.
  4.  前記第1冷媒センサは、前記室内送風機を正回転に切り替えた場合に形成される気流の経路上における前記室内熱交換器よりも下流の位置に配置されることを特徴とする請求項2、又は請求項3に記載の車両用空気調和装置。 2. The first refrigerant sensor is arranged at a position downstream of the indoor heat exchanger on the path of the air flow formed when the indoor blower is switched to forward rotation, or The vehicle air conditioner according to claim 3.
  5.  前記検出器は、前記室内送風機を正回転に切り替えた場合に形成される気流の経路上における前記室内熱交換器よりも上流の位置に配置され、前記室内機室の前記冷媒濃度を検出する第2冷媒センサをさらに備え、
     前記制御部は、前記第1冷媒センサの検出結果、及び前記第2冷媒センサの検出結果に基づいて前記冷媒が漏出したか否かを判定することを特徴とする請求項4に記載の車両用空気調和装置。
    The detector is arranged at a position upstream of the indoor heat exchanger on the path of the air flow formed when the indoor blower is switched to forward rotation, and detects the refrigerant concentration in the indoor unit room. Equipped with 2 refrigerant sensors
    The vehicle use according to claim 4, wherein the control unit determines whether or not the refrigerant has leaked based on the detection result of the first refrigerant sensor and the detection result of the second refrigerant sensor. Air conditioner.
  6.  前記制御部は、前記第1冷媒センサの検出結果と前記第2冷媒センサの検出結果との差分に基づいて前記冷媒が漏出したか否かを判定することを特徴とする請求項5に記載の車両用空気調和装置。 The fifth aspect of claim 5, wherein the control unit determines whether or not the refrigerant has leaked based on the difference between the detection result of the first refrigerant sensor and the detection result of the second refrigerant sensor. Air conditioner for vehicles.
  7.  前記制御部は、前記第1冷媒センサの検出結果と前記第2冷媒センサの検出結果との差分の上昇率に基づいて前記冷媒が漏出したか否かを判定することを特徴とする請求項5に記載の車両用空気調和装置。 5. The control unit is characterized in that it determines whether or not the refrigerant has leaked based on the rate of increase in the difference between the detection result of the first refrigerant sensor and the detection result of the second refrigerant sensor. Vehicle air conditioner as described in.
  8.  前記検出器は、前記冷媒を圧縮する圧縮機に供給される電流値を検出する電流センサであることを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the detector is a current sensor that detects a current value supplied to a compressor that compresses the refrigerant.
  9.  前記換気口は、前記室内送風機が形成する気流が通過する位置に設けられることを特徴とする請求項1から請求項4のいずれか1項に記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 4, wherein the ventilation port is provided at a position through which an air flow formed by the indoor blower passes.
  10.  前記制御部は、前記冷媒の漏出が終了したと判定した場合には、前記吸込口、及び前記吹出口を閉状態に制御し、前記室内送風機を停止することを特徴とする請求項1から請求項9のいずれか1項に記載の車両用空気調和装置。 The first aspect of the present invention is characterized in that, when the control unit determines that the leakage of the refrigerant has been completed, the suction port and the air outlet are controlled to be closed and the indoor blower is stopped. Item 9. The vehicle air conditioner according to any one of items 9.
  11.  前記冷媒は、フロンガス、又は二酸化炭素であることを特徴とする請求項1から請求項10のいずれか1項に記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 10, wherein the refrigerant is chlorofluorocarbon gas or carbon dioxide.
PCT/JP2020/039070 2020-03-27 2020-10-16 Vehicle air conditioner WO2021192374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509230A JPWO2021192374A1 (en) 2020-03-27 2020-10-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057276 2020-03-27
JP2020057276 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021192374A1 true WO2021192374A1 (en) 2021-09-30

Family

ID=77891694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039070 WO2021192374A1 (en) 2020-03-27 2020-10-16 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JPWO2021192374A1 (en)
WO (1) WO2021192374A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854904U (en) * 1981-10-12 1983-04-14 三菱重工業株式会社 Automotive air conditioner
JPS62138654A (en) * 1985-12-12 1987-06-22 Isuzu Motors Ltd Gas leakage detector of combustion type heater for vehicle
WO2000059748A1 (en) * 1999-04-02 2000-10-12 Bosch Automotive Systems Corporation Safety device for vehicle air conditioning system
JP2004196063A (en) * 2002-12-17 2004-07-15 Japan Climate Systems Corp Air conditioner for vehicle
JP2005178428A (en) * 2003-12-16 2005-07-07 Calsonic Kansei Corp Air conditioner for vehicle
JP2009241892A (en) * 2008-03-31 2009-10-22 Toyota Boshoku Corp Cabin air control device
JP2009298274A (en) * 2008-06-12 2009-12-24 Mitsubishi Electric Corp Vehicular ventilating and air-conditioning device
JP2012136159A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Air conditioner for rolling stock and rolling stock

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006800A (en) * 1998-06-19 2000-01-11 Hitachi Ltd Ventilator for vehicle
JP5744195B2 (en) * 2011-06-01 2015-07-01 三菱電機株式会社 Air conditioner for vehicles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854904U (en) * 1981-10-12 1983-04-14 三菱重工業株式会社 Automotive air conditioner
JPS62138654A (en) * 1985-12-12 1987-06-22 Isuzu Motors Ltd Gas leakage detector of combustion type heater for vehicle
WO2000059748A1 (en) * 1999-04-02 2000-10-12 Bosch Automotive Systems Corporation Safety device for vehicle air conditioning system
JP2004196063A (en) * 2002-12-17 2004-07-15 Japan Climate Systems Corp Air conditioner for vehicle
JP2005178428A (en) * 2003-12-16 2005-07-07 Calsonic Kansei Corp Air conditioner for vehicle
JP2009241892A (en) * 2008-03-31 2009-10-22 Toyota Boshoku Corp Cabin air control device
JP2009298274A (en) * 2008-06-12 2009-12-24 Mitsubishi Electric Corp Vehicular ventilating and air-conditioning device
JP2012136159A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Air conditioner for rolling stock and rolling stock

Also Published As

Publication number Publication date
JPWO2021192374A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5127922B2 (en) Vehicle air conditioning system
CN103974841A (en) Air-conditioning system for vehicle
CN110214092A (en) Air conditioner for motor vehicle
JP2013159228A (en) Vehicle air conditioner
JP4184777B2 (en) Air conditioner for vehicles
JP2000296710A (en) Air conditioning unit and air-conditioning apparatus for vehicle
JP6708170B2 (en) Vehicle air conditioner
WO2000022355A1 (en) Air conditioner
WO2018163765A1 (en) Air-conditioning control apparatus for vehicle
JP2009241892A (en) Cabin air control device
WO2021192374A1 (en) Vehicle air conditioner
JPH10288429A (en) Alarming device for air-conditioning refrigerant carbon dioxide gas
JP2008094340A (en) Air conditioner for vehicle
JP2018099937A (en) Air conditioner for vehicle
JP2000289455A (en) Air conditioner for vehicle
WO2021144907A1 (en) Air conditioning device for vehicle
JPH09104221A (en) Air-conditioner for vehicle
JP3980189B2 (en) Air conditioner for automobile
JP3351098B2 (en) Electric vehicle air conditioner
KR100600559B1 (en) Apparatus for elimination of air pollutant and control method thereof
JP2013193610A (en) Air conditioner for vehicle
JP4042556B2 (en) Air conditioner
JP2000016232A (en) Safety device for vehicle
JPH0820227A (en) Air conditoner for electric vehicle
JP2008281317A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928005

Country of ref document: EP

Kind code of ref document: A1