WO2021192361A1 - 家電機器用の電動機制御装置 - Google Patents

家電機器用の電動機制御装置 Download PDF

Info

Publication number
WO2021192361A1
WO2021192361A1 PCT/JP2020/035437 JP2020035437W WO2021192361A1 WO 2021192361 A1 WO2021192361 A1 WO 2021192361A1 JP 2020035437 W JP2020035437 W JP 2020035437W WO 2021192361 A1 WO2021192361 A1 WO 2021192361A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier wave
control device
electric motor
command
electric
Prior art date
Application number
PCT/JP2020/035437
Other languages
English (en)
French (fr)
Inventor
知也 永石
彬夫 丹羽
功記 加藤
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021192361A1 publication Critical patent/WO2021192361A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to an electric motor control device for home electric appliances.
  • Patent Document 1 discloses that synchronous PWM control is performed and a voltage command is corrected using a carrier synchronization correction map stored in advance.
  • Patent Document 2 discloses that synchronous PWM control is performed to correct a phase shift from the voltage phase according to the number of pulses of the carrier wave.
  • Patent Document 1 does not have a carrier synchronization correction map for each carrier wave, and depending on the load condition of the motor, the carrier synchronization correction map determined in advance may not be sufficiently corrected and the performance may be deteriorated, or all of them. If many carrier synchronization correction maps corresponding to the load are stored in advance, the capacity of the memory will be increased.
  • Patent Document 2 it is possible to suppress an increase in memory capacity and suppress performance deterioration under any load condition, but there is a risk that driving will be difficult depending on the rotation speed range.
  • An object of the present invention is to provide an electric motor control device for home electric appliances that can be driven in any rotation speed range and can reduce loss.
  • the present invention is an electric motor control device for home appliances that performs synchronous PWM control, and uses a carrier wave generator that generates a carrier wave, and an electric motor based on an input voltage command and a carrier wave.
  • a PWM control command generation unit that generates a PWM control command to be controlled, a control unit that controls an electric motor based on the PWM control command, and a deviation detection unit that detects a voltage phase shift between a voltage command and a predetermined reference voltage command.
  • the carrier wave generation unit has a configuration in which the carrier wave is generated based on the voltage phase shift and the frequency command, and the number of pulses of the carrier wave can be set to 1.
  • the present invention it is possible to suppress an increase in the capacity of a memory, suppress performance deterioration under any load condition, and further control an electric motor for a low-noise home appliance that can be driven in any rotation speed range.
  • Equipment can be provided.
  • the present invention relates to an electric motor control device for home electric appliances that controls an electric motor 105 having a plurality of phases of windings.
  • the electric motor control device of the vacuum cleaner 10 will be described in detail below.
  • the electric motor will be described below as a permanent magnet synchronous motor.
  • FIG. 2 is an appearance of the vacuum cleaner 10 according to the present invention.
  • FIG. 1 is a basic configuration diagram of an electric motor control device according to the present invention.
  • the shift detection unit 101 detects the voltage phase shift ⁇ v based on the input voltage command and the predetermined ideal voltage command during synchronous PWM control. Specifically, the "current voltage phase” is calculated from the input voltage command by a predetermined calculation. The deviation (deviation) between the calculated “current voltage phase ⁇ v” and the “reference voltage phase ⁇ v base during synchronous PWM” is output as the voltage phase deviation ⁇ v.
  • the carrier period Tc is calculated from the voltage phase shift ⁇ v output from the shift detection unit 101 and the carrier pulse number Np set based on the input frequency command ⁇ * and frequency command ⁇ *. Determine and generate carrier waves.
  • the number of pulses Np indicates how many times the carrier frequency is the frequency command ⁇ *. If the frequency command increases and Np ⁇ 3, high-speed processing performance is required, which may make driving difficult. Therefore, by setting Np to 1, it is possible to drive even in the high speed range, and the switching loss of the inverter can be reduced. That is, there is a carrier wave having the same period as the frequency command.
  • the carrier frequency Fc can be calculated by 2 ⁇ ⁇ Np ⁇ ⁇ ( ⁇ v ⁇ Kv) + ⁇ * ⁇ .
  • Kv is the PLL gain.
  • the carrier cycle Tc is 1 / Fc.
  • the control (PLL control) is performed to correct the shift in a fixed time regardless of the magnitude of the voltage phase shift.
  • the PWM control command generation unit 103 generates an inverter drive signal based on the carrier wave generated by the carrier wave generation unit and the input voltage command v, and causes the inverter circuit 104, which is the control unit, to generate an inverter drive signal. Outputs the inverter drive signal. Based on this inverter drive signal, the inverter circuit 104 generates a control command for controlling the electric motor 105 to which the fan 106 as a load is attached.
  • the deviation detection unit 101, the carrier wave generation unit 102, and the PWM control command generation unit 103 are described as processing in the microcomputer 100 which is a processing unit, processing outside the microcomputer is also possible.
  • the voltage command determines the duty to be output to each phase of the motor 105, and the carrier wave or carrier cycle Tc determines the duty cycle.
  • PLL phase locked loop
  • the error (deviation) between the voltage phase ⁇ v and the carrier wave is calculated in advance with the voltage phase ⁇ v at the peak period (calculated by the peak and reflected by the valley). Calculated from the determined ideal reference voltage phase ⁇ vbase.
  • the load of the mounted motor of the vacuum cleaner fluctuates finely by turning the power on / off and sucking dust when it is turned on. Specifically, the voltage phase fluctuation occurs due to this load fluctuation, and the voltage phase shift ⁇ v occurs along with the voltage phase fluctuation as shown in FIG.
  • the voltage phase shift detection point 406 specifically, the voltage phase shift ⁇ v between the current voltage phase waveform 403 and the reference voltage phase waveform 402 is detected at the current voltage phase waveform point at the peak or valley of the carrier wave, and the voltage phase shift is detected.
  • PLL control is started for ⁇ v.
  • the reference voltage phase waveform 404 at the time of PLL control becomes Cos ⁇ * + (Kv ⁇ ⁇ v) ⁇ t, and the carrier wave 401 is corrected by the response time of the set PLL gain Kv. Further, the relationship between the reference voltage phase waveform 402, the reference voltage phase waveform 404 during PLL control, and the carrier wave 401 is the same.
  • the voltage phase shift ⁇ v can be corrected in the same fixed time by the shift detection unit 101 and the carrier wave generation unit 102 of the present invention. That is, according to the present invention, the interval from the time when the voltage phase shift ⁇ v is detected by the shift detection unit 101 to the time when the voltage phase shift ⁇ v is not detected is constant regardless of the load of the motor 105, and is accurate. Can be corrected. As a result, it is possible to provide an electric motor control device for low-noise home appliances that can suppress an increase in memory capacity and suppress performance deterioration under any load condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

メモリの大容量化を抑止し、且つあらゆる負荷状態であっても性能低下を抑止可能でさらに、あらゆる回転数域で駆動が可能となる低騒音の家電機器用の電動機制御装置が開示される。この電動機制御装置は、同期PWM制御する家電機器用の電動機制御装置であって、キャリア波を生成するキャリア波生成部と、入力された電圧指令とキャリア波に基づいて電動機を制御するPWM制御指令を生成するPWM制御指令生成部と、電力指令と予め定めた基準電力指令とのズレを検出するズレ検出部と、を有し、キャリア波生成部は、前記電圧位相ズレと周波数指令に基づいてキャリア波を生成し、キャリア波のパルス数を1と設定できる構成とする。

Description

家電機器用の電動機制御装置
 本発明は、家電機器用の電動機制御装置に関するものである。
 従来、掃除機や洗濯機などの家電用機器は、非同期PWM制御を行っていた。
 しかし、駆動周波数が高くなった場合、電動機であるモータ騒音が発生する可能性があった。低騒音化を図る為に、特許文献1では同期PWM制御を行い、予め記憶されたキャリア同期補正マップを用いて電圧指令を補正することが開示されている。特許文献2では、同期PWM制御を行い、キャリア波のパルス数に応じた電圧位相との位相ズレを補正することが開示されている。
特開2013-223308号公報 特開2020-010481号公報
 しかし、特許文献1では、キャリア波毎のキャリア同期補正マップをもっておらず、モータの負荷状況によっては、予め定めたキャリア同期補正マップでは十分に補正されず性能低下となる恐れがある、又は、あらゆる負荷に対応した多くのキャリア同期補正マップを予め記憶した場合、メモリの大容量化につながる。
 特許文献2でメモリの大容量化を抑止し、且つあらゆる負荷状態であっても性能低下を抑止可能であるが、回転数域によっては駆動が困難となる恐れがある。
 本発明は、あらゆる回転数域で駆動でき、且つ損失低減が可能となる家電機器用の電動機制御装置を提供することを目的とする。
 本発明は上記課題を解決するために、同期PWM制御する家電機器用の電動機制御装置であって、キャリア波を生成するキャリア波生成部と、入力された電圧指令とキャリア波に基づいて電動機を制御するPWM制御指令を生成するPWM制御指令生成部と、PWM制御指令に基づいて電動機を制御する制御部と、電圧指令と予め定めた基準電圧指令との電圧位相ズレを検出するズレ検出部と、を有し、キャリア波生成部は、前記電圧位相ズレと周波数指令に基づいてキャリア波を生成し、キャリア波のパルス数を1と設定できる構成とする。
 本発明によれば、メモリの大容量化を抑止し、且つあらゆる負荷状態であっても性能低下を抑止可能でさらに、あらゆる回転数域で駆動が可能となる低騒音の家電機器用の電動機制御装置を提供できる。
本発明に係る家電機器用の電動機制御装置の制御ブロックを示す図である。 電気掃除機の外観を示す図である。 本発明の電動機制御装置の負荷変動が発生した際に生じる電圧位相ずれを補正するPLL制御を示す図である。
 本発明は、複数相の巻線を有する電動機105を制御する家電機器用の電動機制御装置に関し、本発明の実施例として、電気掃除機10の電動機制御装置を例として以下詳細に説明する。なお、電動機は永久磁石同期モータとして以下説明する。
 図2は、本発明に関わる電気掃除機10の外観である。図1は、本発明に関わる電動機制御装置の基本構成図である。
 図1において、ズレ検出部101は、入力された電圧指令と予め定めた同期PWM制御時の理想電圧指令に基づいて、電圧位相ズレΔθvを検出する。具体的には、入力された電圧指令から所定の演算により「現在の電圧位相」を算出する。算出された「現在の電圧位相θv」と「同期PWM時の基準電圧位相θvbase」との偏差(ズレ)を電圧位相ズレΔθvとして出力する。
 次に、キャリア波生成部102で、ズレ検出部101から出力された電圧位相ズレΔθvと入力された周波数指令ω*および周波数指令ω*に基づき設定されたキャリアのパルス数Npからキャリア周期Tcを決定し、キャリア波を生成する。パルス数Npはキャリア周波数が周波数指令ω*の何倍であるかを示すものである。周波数指令が増加するとNp≧3だと高速処理性能が必要となり、駆動が困難となる可能性がある。そこで、Npを1と設定することで高速域でも駆動が可能となり、インバータのスイッチングロスも低減できる。つまり、周波数指令と同周期のキャリア波が存在することとなる。
 具体的には、キャリア周波数Fcは、2π×Np×{(Δθv×Kv)+ω*}で算出できる。ここで、KvはPLLゲインである。キャリア周期Tcは1/Fcとなる。
 例えば、PLLゲインKvを1で設定すると、周波数指令ω*[rad/s]に(Δθv×1)[rad/s]を加算することとなり、Δθv[rad]のズレを1秒間で補正する制御となる。
 同様にPLLゲインKvが100の場合は1秒間にΔθv[rad]の100倍のズレを補正する制御となり、10[ms]でΔθv[rad]のズレを補正する制御となる。
 これにより発生した電圧位相ズレに対し、電圧位相ズレの大きさに依らず、一定時間でズレを補正する制御(PLL制御)となる。
 次に、PWM制御指令生成部103は、キャリア波生成部で生成されたキャリア波と、入力された電圧指令vと、に基づいて、インバータ駆動信号を生成し、制御部であるインバータ回路104にインバータ駆動信号を出力する。このインバータ駆動信号に基づいて、インバータ回路104で、負荷としてのファン106が取り付けられた電動機105を制御する制御指令を生成する。これら、ズレ検出部101、キャリア波生成部102、PWM制御指令生成部103は、処理部であるマイコン100内の処理として記載したが、マイコン外での処理でも可能である。
 なお、電圧指令は電動機105の各相に出力するDutyを決定し、キャリア波、又はキャリア周期TcはDutyの周期を決定するものである。
 次に、図3に1パルス時(Np=1)の負荷変動により電圧位相変動が生じた場合の電圧位相ズレ補正時の電圧位相波形とキャリア波の関係を示し電圧位相ズレを補正する制御(PLL(phase locked loop:位相同期回路)制御)について説明する。PLL制御では、電圧位相ズレΔθvを小さくなるようにキャリア周期Tcを決定する。
 本処理は、キャリア波と電圧指令から求めた電圧位相θvを同期させるため、電圧位相θvとキャリア波との誤差(ズレ)を山周期(山で演算、谷で反映)で電圧位相θvと予め定めた理想となる基準電圧位相θvbaseから算出する。
 電気掃除機は電源のON/OFFや、ON時に塵などを吸引することで搭載された電動機の負荷が細かく変動する。具体的には、この負荷変動により電圧位相変動が生じ、その電圧位相変動に伴い、図3のように、電圧位相ズレΔθvが生じる。
 電圧位相変動発生前405では、電圧位相ズレΔθv=0であるため基準電圧位相波形402はCosω*tとなる。電圧位相ズレ検出点406、具体的にはキャリア波の山もしくは谷における現在の電圧位相波形点で現在の電圧位相波形403と基準電圧位相波形402との電圧位相ズレΔθv検出し、その電圧位相ズレΔθvに対しPLL制御を開始する。PLL制御時の基準電圧位相波形404はCos{ω*+(Kv×Δθv)}tとなり、設定したPLLゲインKvの応答時間でキャリア波401を補正する。また、基準電圧位相波形402、PLL制御時の基準電圧位相波形404とキャリア波401の関係性は同じである。
 図3のように電圧位相波形の周期が短くなる場合(図3(2)モータの回転数があがるつまり負荷が軽い場合)と長くなる場合(図3(1)モータの回転数がさがるつまり負荷が重い場合)の2パターンがあり、その変動がどのような大きさであっても、図3に示すようにズレ補正開始時から補正終了までの時間がPLLゲインKvで設定した応答時間で補正出来る。例えば、掃除機の運転モード(強運転、標準運転など)によらず電圧位相ズレが検出された時間から電圧位相ズレが検出されなくなる時間までの間隔が一定となる。
 つまり、本発明のズレ検出部101とキャリア波生成部102により、同じ一定時間で電圧位相ズレΔθvを補正することが出来る。つまり、本発明によれば、ズレ検出部101で電圧位相ズレΔθvが検出された時間から電圧位相ズレΔθvが検出されなくなる時間までの間隔が電動機105の負荷によらず一定となると共に、正確に補正出来る。これによりメモリの大容量化を抑止し、且つあらゆる負荷状態であっても性能低下を抑止可能な低騒音の家電機器用の電動機制御装置を提供できる。
 なお、上記実施例では、電動機を含む電気掃除機の例で説明したが、電気洗濯機などの他の家電製品に適用しても良い。
10 電気掃除機、100 マイコン、101 ズレ検出部、102 キャリア波生成部、103 PWM制御指令生成部、104 インバータ回路、105 電動機、106 ファン、401 キャリア波、402 基準電圧位相波形、403 現在の電圧位相波形、404 PLL制御時の基準電圧位相波形、405 電圧位相変動発生前、406 電圧位相ズレ検出点

Claims (5)

  1.  同期PWM制御する家電機器用の電動機制御装置であって
     キャリア波Tcを生成するキャリア波生成部と、
     入力された電圧指令vと前記キャリア波Tcに基づいて電動機を制御するPWM制御指令を生成するPWM制御指令生成部と、
     前記PWM制御指令に基づいて電動機を制御する制御部と、
     前記電圧指令vと予め定めた基準電圧指令との電圧位相ズレΔθvを検出するズレ検出部と、を有し、
     前記キャリア波生成部は、周波数指令と同じ周波数の前記キャリア波を生成し、前記キャリア波のパルス数を1と設定できる構成であることを特徴とする、家電機器用の電動機制御装置。
  2.  請求項1記載の家電機器用の電動機制御装置であって、
     前記電動機は、永久磁石同期モータである、家電機器用の電動機制御装置。
  3.  請求項1記載の家電機器用の電動機制御装置であって、
     前記ズレ検出部は、前記電圧指令から現在の電圧位相θvを算出し、算出された前記電圧位相と前記基準電圧指令θvbaseとの偏差を電圧位相ズレΔθvとして出力する、家電機器用の電動機制御装置。
  4.  請求項1乃至3のいずれか1項に記載の家電機器用の電動機制御装置であって、
     前記電動機は電気掃除機の電動機である家電機器用の電動機制御装置。
  5.  請求項1乃至3のいずれか1項に記載の家電機器用の電動機制御装置であって、
     前記電動機は電気洗濯機の電動機である家電機器用の電動機制御装置。
PCT/JP2020/035437 2020-03-24 2020-09-18 家電機器用の電動機制御装置 WO2021192361A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-052057 2020-03-24
JP2020052057A JP2021151171A (ja) 2020-03-24 2020-03-24 家電機器用の電動機制御装置

Publications (1)

Publication Number Publication Date
WO2021192361A1 true WO2021192361A1 (ja) 2021-09-30

Family

ID=77849758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035437 WO2021192361A1 (ja) 2020-03-24 2020-09-18 家電機器用の電動機制御装置

Country Status (2)

Country Link
JP (1) JP2021151171A (ja)
WO (1) WO2021192361A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152203A1 (ja) * 2015-03-23 2016-09-29 三菱電機株式会社 モータ制御装置、圧縮装置、および空調機
JP2020010481A (ja) * 2018-07-06 2020-01-16 日立グローバルライフソリューションズ株式会社 家電機器用の電動機制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152203A1 (ja) * 2015-03-23 2016-09-29 三菱電機株式会社 モータ制御装置、圧縮装置、および空調機
JP2020010481A (ja) * 2018-07-06 2020-01-16 日立グローバルライフソリューションズ株式会社 家電機器用の電動機制御装置

Also Published As

Publication number Publication date
JP2021151171A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
KR100702913B1 (ko) 브러시리스 dc 모터의 구동 방법 및 그 장치
US6828752B2 (en) Driving equipment and semiconductor equipment for alternating-current motor
JP3787729B2 (ja) センサレスブラシレスモータの駆動装置
KR100800901B1 (ko) 모터 제어 장치
JP2018064322A (ja) 車両用インバータ駆動装置及び車両用流体機械
US20060290303A1 (en) Three phase BLDC motor controller and control method thereof
WO2021192361A1 (ja) 家電機器用の電動機制御装置
JP2006149097A (ja) モータ制御装置
JP2000201494A (ja) モ―タ駆動装置
JP2020010481A (ja) 家電機器用の電動機制御装置
KR20140076039A (ko) 전동기 구동 모듈, 그것의 동작 방법, 및 브러쉬리스 전동기 시스템
JP6961096B2 (ja) インバータ装置
JP4622435B2 (ja) インバータ制御装置および密閉型電動圧縮機
JP2001119977A (ja) モータ駆動装置
JP3908431B2 (ja) 永久磁石同期モータの回転制御方法
WO2019021745A1 (ja) モータ制御装置及びモータ制御方法
JP2015023710A (ja) インバータ装置
US20240154563A1 (en) Motor driving method
US5852356A (en) DC/AC inverter for power supply to an electrical motor for the traction of a vehicle
US20010035731A1 (en) Single-phase powered drive system
JP2004015902A (ja) モータの制御装置、モータ、電気機器及びモータの制御方法
JP4389746B2 (ja) インバータ制御装置
JP2001224198A (ja) 永久磁石同期モータの起動方法
JP2024040616A (ja) 制御装置
JP2550517B2 (ja) 誘導機駆動用インバ−タ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927788

Country of ref document: EP

Kind code of ref document: A1