WO2021192209A1 - Position detection device for elevator and elevator control system using same - Google Patents

Position detection device for elevator and elevator control system using same Download PDF

Info

Publication number
WO2021192209A1
WO2021192209A1 PCT/JP2020/013943 JP2020013943W WO2021192209A1 WO 2021192209 A1 WO2021192209 A1 WO 2021192209A1 JP 2020013943 W JP2020013943 W JP 2020013943W WO 2021192209 A1 WO2021192209 A1 WO 2021192209A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
cable
sensor
curved portion
elevator
Prior art date
Application number
PCT/JP2020/013943
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/013943 priority Critical patent/WO2021192209A1/en
Priority to CN202080097386.6A priority patent/CN115279680B/en
Priority to JP2022510313A priority patent/JP7226647B2/en
Publication of WO2021192209A1 publication Critical patent/WO2021192209A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables

Definitions

  • the present disclosure relates to an elevator position detection device that detects the position of an elevator car and an elevator control system using the device.
  • the present invention relates to an elevator position detecting device that can be used to detect the position of a car near the terminal floor of the elevator.
  • a position detection switch provided in the car in advance is provided near the terminal floor of the hoistway. It is configured to engage with the cam. Further, the position detection switch engaged with the cam is configured to operate at each of a plurality of operating points provided in advance on the cam.
  • the positions of the plurality of operating points and the value of the overspeed level at each operating point at this time are obtained when the overspeed state is detected by the corresponding overspeed level at each operating point position and the brake is activated. It is determined by designing the car to collide with, for example, a shock absorber arranged on the floor of the hoistway at a collision speed equal to or lower than the allowable collision speed of the shock absorber (see, for example, Patent Document 1).
  • the conventional elevator position detecting device disclosed in Patent Document 1 has the following problems. That is, in this conventional elevator position detection device, for example, it is necessary to appropriately adjust the relative positions of the switch and the cam according to the rated speed of the elevator, but there is a problem that this position adjustment work takes time. there were. This is because, in order to sufficiently decelerate the car at the end of the hoistway, the higher the rated speed of the elevator, the more it is necessary to check the speed of the car at a position farther from the end. This increases the overall length of the cam required by conventional elevator position detectors to set the operating point for detecting the position of the car far from the end, resulting in even a small amount of cam. Since the position of the operating point changes significantly when tilted, it was not easy to adjust the relative position between the switch and the cam.
  • any of the vertical directions is used to start the subsequent ascending / descending motion.
  • Adopt a structure that can keep the switch and cam engaged so as not to lose the car position information, which is necessary to determine whether the car should be driven in the direction or whether the car can be driven. I needed it. Therefore, it is necessary for the elevator position detection device, etc. according to the present disclosure to be able to cope with the problem of loss of car position information in order to realize a safe ascending / descending motion of the car.
  • An object of the present invention is to provide an elevator position detection device that does not place much burden on the installation adjustment work of the position detection device according to the rated speed of the elevator. In addition, it is to provide an elevator position detection device that can deal with the problem of loss of car position information due to power cutoff or power failure. Furthermore, it is to provide an elevator control system using the position detection device of these elevators.
  • the position detection device for an elevator has one end fixed to a device provided in the hoistway and the other end fixed to a car that moves up and down in the hoistway, and the lower end is suspended in a U shape.
  • a belt-shaped cable having a curved portion formed at a position and a cable covering portion of the cable provided at least at the curved portion, and a change in physical quantity due to bending deformation along the cable at the provided portion. Obtained from measurement results by a sensor that can be measured and a sensor that has been measured in advance when sensors are provided at multiple locations along the cable at the curved portion when the car is in a predetermined car position.
  • the position of the curved part of the cable at the present time is estimated based on the measurement result by the sensor when the car is at the current position of the car, and it corresponds to the estimated position of the curved part of the cable at the present time. It is characterized in that it is provided with a car position calculation unit for calculating the current position of the car, which is determined by the above.
  • the elevator control system includes an elevator position detection device according to the present disclosure and a control unit that controls the ascending / descending motion of the car, and the control unit is calculated by the car position calculation unit at the present time. It is characterized in that the ascending / descending motion of the car is controlled by using the position of the car.
  • the elevator control system includes an elevator position detection device according to the present disclosure and an elevator control unit that controls the elevating motion of the car, and the control unit is a rotation angle of a motor that drives the car up and down.
  • one end is fixed to the equipment provided in the hoistway, and the other end is fixed to the car that moves up and down in the hoistway.
  • a belt-shaped cable in which a curved portion is formed at the lower end position in a state of being suspended in a shape, and a cable provided at least at the curved portion of the cable covering portion of the cable, and the cable at the provided portion.
  • the car position calculation unit determines the position of the curved part in the cable at the present time with respect to the measurement result by the sensor when the car is in the current car position. Can be estimated, and the current position of the car, which is determined according to the estimated position of the curved portion of the cable at the present time, can be calculated.
  • the position detection device in which the car is particularly effective at or near the end of the hoistway is less burdened with the appropriate installation adjustment work according to the rated speed of the elevator. It plays.
  • the ascending / descending motion is started after the latest car position information cannot be specified due to a power failure state or interruption of power supply by the power supply device.
  • the car position information which is the calculation result of the car position calculation unit in the elevator position detection device according to the present disclosure, can be used by the control unit in the elevator control system as information instead of the latest car position information. Therefore, for example, even if the elevator stops in the vicinity of the terminal floor due to a power failure or the power supply is cut off by the power supply device and the car position information is lost, the elevator can be promptly started to move up and down. It is possible to determine in which direction the car 4 should be driven in the vertical direction, or whether the car can be driven. As a result, it is possible to realize a safe ascending / descending motion of the car at the start of the ascending / descending motion.
  • FIG. 5 is an image diagram of the entire elevator system for explaining an elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment. It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the position spacing on a cable about the sensor which constitutes the position detection device of an elevator which concerns on Embodiment 1 of this disclosure. It is a figure for demonstrating the basic idea about the calculation principle of the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1.
  • FIG. It is a figure which shows the measurement result by the sensor handled by the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1.
  • FIG. 1 It is a figure for demonstrating the pattern matching using the one-dimensional data string obtained from the measurement result by a sensor, which is executed by the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 3.
  • the content represented by the "department” is not limited to physical means, but also includes the case where the function of the "department” is realized by software. Further, the function of one "part” may be realized by two or more physical means or devices. Further, the functions of two or more “parts” may be realized by one physical means or device.
  • FIG. 1 is an image diagram of the entire elevator system for explaining an elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment. Further, FIG. 2 is a diagram for explaining an outline of the configuration of the elevator position detecting device according to the first embodiment.
  • the pulse encoder 8, the encoder pulse counter 9, the power supply device 20, and the control unit 21 shown in FIG. 2 do not necessarily have to be included in the configuration of the elevator position detection device according to the first embodiment.
  • the configuration of the elevator control system according to the first embodiment of the present disclosure is such that the control unit 21 shown in FIG. 2 is added to the configuration of the elevator position detection device according to the first embodiment.
  • a balance weight 3 is connected to one end of a rope 2 wound around a sheave 1, and a car 4 is connected to the other end.
  • a hoist (not shown) connected to the sheave 1 is used to move the car 4 up and down.
  • the hoisting machine is rotationally driven by a motor (not shown).
  • the balance weight 3 moves up and down in the direction opposite to the direction of the up and down movement of the car 4.
  • the car 4, the balance weight 3, the sheave 1 and the rope 2 described here are the basic configurations of the mechanical system of the elevator.
  • a control cable 7 and a hoistway device 6, which will be described later, may be further included as a configuration of an elevator mechanical system.
  • the mechanical systems of these elevators are installed in the hoistway 31 as shown in FIG.
  • An elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment are applied to the elevator mechanical system.
  • FIG. 1 shows a case where the other end of the cable 7 is particularly fixed to the lower part of the car 4.
  • the belt-shaped cable 7 is suspended in a U-shape. Further, a curved portion is formed at the lower end position of the belt-shaped cable 7.
  • a sensor 10 capable of measuring a change is provided at least in this curved portion.
  • the sensor 10 is shown as a black circle on the cable.
  • the sensor 10 may be further provided in the cable covering portion other than the curved portion of the cable 7.
  • a pressure-sensitive conductive rubber having a characteristic that the resistance value changes with respect to bending deformation can be used.
  • This type of pressure-sensitive conductive rubber is disclosed in, for example, International Publication WO2011 / 065100.
  • a strain gauge having a characteristic that the resistance value changes with respect to bending deformation can be similarly used.
  • the lower end position of the belt-shaped cable 7 when the car 4 is near the terminal floor It is effective to provide a plurality of sensors 10 on the inner or outer covering surface of the cable 7 at the portion corresponding to the curved portion to be formed.
  • the hoistway device 6 described above is an electric device including a power supply device 20 that supplies power to the sensor 10.
  • FIG. 1 shows a case where a belt-shaped cable 7 is used for detecting the position of the car.
  • the hoistway device 6 and the car 4 (electrical device in the car) shown in FIG. 1 are used for power supply and communication by transmitting and receiving signals.
  • the control cable 75 may be used.
  • FIG. 2 is a diagram for explaining the outline of the configuration of the elevator position detecting device according to the first embodiment.
  • the pulse encoder 8 is supplied with power by the power supply device 20 and outputs a pulse indicating the rotation angle of the motor for realizing the ascending / descending motion of the car 4.
  • the encoder counter 9 is similarly supplied with power by the power supply device 20, and outputs a value obtained by counting the pulses output from the pulse encoder 8 as information necessary for obtaining the position of the car 4 that moves up and down in the hoistway. do.
  • an encoder indicating the rotation angle of the motor for realizing the ascending / descending motion of the car 4 in addition to the pulse encoder 8, there is also an absolute encoder whose absolute position can be detected.
  • the encoder that is commonly used as an elevator system is the pulse encoder 8.
  • the information obtained by using the pulse encoder 8 and the encoder counter 9 will be simply referred to as the output information of the pulse encoder 8 without giving a misunderstanding.
  • the control unit 21 shown in FIG. 2 can obtain the latest car position information stored based on the output information of the pulse encoder 8 and the current car position information at the present time.
  • the absolute position of the car 4 can be obtained, and the ascending / descending motion control of the car 4 is realized.
  • the car position information is not lost when the elevator is emergency stopped near the terminal floor due to a power supply cutoff or a power failure. , It was necessary to adopt a structure that can maintain the engaged state of the switch and the cam. If the car position information is lost, it becomes unclear in which direction the car 4 should be driven in the vertical direction or whether the car 4 can be driven when the subsequent restoration operation is started.
  • the position detection device of the elevator has adopted the above-mentioned structure in order to realize a safe up-and-down movement of the car 4.
  • the sensor 10 is, in particular, a pressure-sensitive conductive rubber having a characteristic that the electric resistance value changes with respect to bending deformation. Further, here, the electric resistance value of the sensor 10 shows a large value when the bending deformation of the cable is large. As described above, the electrical resistance value of the sensor 10 changes with respect to bending deformation. Specifically, the electrical resistance value of the sensor 10 shows a large value as a result because the distortion due to bending increases as the curvature of bending increases. On the other hand, the electric resistance value of the sensor 10 shows a small value as a result because the distortion due to bending becomes smaller as the curvature of bending becomes smaller.
  • the reading unit 11 is located in the hoistway device 6 provided in the hoistway 31, and reads the current value flowing through each of the plurality of sensors 10.
  • the car position estimation unit 12 performs signal processing using the electrical resistance value converted from the current value read by the reading unit 11 as a parameter.
  • This electric resistance value is specifically converted from the current value read by the reading unit 11, for example, as follows.
  • the current value flowing through the series circuit and the electrical resistance value of the sensor 10 are calculated. can.
  • the current value flowing in this series circuit becomes the current value flowing in each of the plurality of sensors 10.
  • FIG. 3 is a diagram showing an example of the position spacing on the cable for the sensors constituting the position detection device of the elevator according to the first embodiment.
  • the position spacing of the sensors 10 on the cable 7 as shown in FIG. 3 can be determined from the viewpoint of the car position detection accuracy required by the elevator system.
  • the required car position detection accuracy changes according to each function such as landing control of the car 4 and deceleration control of the terminal floor, which should be realized. Therefore, the position spacing of the sensors 10 on the cable 7 is preferably, for example, about 20 mm to 500 mm.
  • the positions of the sensors 10 on the cable 7 do not necessarily have to be evenly spaced, but are preferably evenly spaced from the viewpoint of convenience.
  • the car position estimation unit 12 includes an initial setting unit 15, a database 13, and a car position calculation unit 14.
  • the initial setting unit 15 determines a change in physical quantity with respect to bending deformation of the sensor 10 when the sensors 10 are provided at a plurality of curved portions when the car 4 is located at a predetermined car position.
  • the software realizes the function of executing the processing required for measurement.
  • the initial setting unit 15 determines whether or not there is a car 4 at a predetermined car position by using the output result of the encoder counter 9, and measures by the sensor 10 at that time according to the determination result. A process of whether or not to obtain the result via the reading unit 11 is performed. Specifically, the measurement result by the sensor 10 at the curved portion of the cable 7 when the car 4 is located at a predetermined position is stored in the database 13.
  • the database 13 is the measurement result by the sensor 10 measured in advance at the curved portion of the cable 7 when the car 4 is in the predetermined position as the information related to the predetermined position. And a predetermined position are memorized.
  • the car position calculation unit 14 is based on the measurement results of the sensors measured in advance when the sensors 10 are provided at a plurality of locations along the cable of the curved portion when the car 4 is located at a predetermined car position. Based on the obtained database 13, the position of the curved portion in the cable 7 at the present time is estimated with respect to the measurement result by the sensor 10 when the car 4 is in the car position at the present time, and the estimated position of the curved portion in the cable 7 at the present time is used. The position of the car 4 at the present time, which is determined according to the position of the curved portion, is calculated.
  • the predetermined position which is the determination condition for storing in the database 13, is assumed to be the case where the car 4 is on the terminal floor or near the terminal floor.
  • the first car position is used as a reference position and the car 4 is on the terminal floor or near the terminal floor.
  • the database 13 has the one-dimensional data string as the measurement result by the sensor 10 when the car 4 is in the first position, and the first position as a predetermined position. And shall be memorized.
  • the shape of the curved portion formed at the lower end position of the cable 7 in the suspended state is a property that does not depend on the car position. It can be seen that the predetermined car position does not have to be limited to the case where the car 4 is on the terminal floor or near the terminal floor as described here. That is, it can be seen that the predetermined car position may be any car position of the car 4.
  • FIG. 4 is a diagram for explaining a basic concept regarding the calculation principle of the car position calculation unit 14 in the elevator position detection device according to the first embodiment.
  • the left figure simultaneously shows the curved portion of the cable 7 when the car 4 is in the first position and the second position, respectively.
  • the position of the car 4 shown by the solid line above is the second position.
  • the position of the car 4 shown by the broken line at the bottom is the first position.
  • the senor 10 is provided at least at a position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7 in the cable covering portion of the curved portion, and the sensor 10 is subjected to bending deformation at each location. It can measure changes in physical quantities.
  • the position of the sensor 10 is indicated by a black circle and a white circle in the left figure in FIG. It should be noted that the position of the sensor 10 is more accurately assumed to be, for example, inside the cable covering portion. In addition, it may be on the outside of the cable sheath.
  • the black circle in the left figure in FIG. 4 indicates the position of the sensor 10 when the position of the car 4 is in the second position shown by the solid line.
  • the white circle in the left figure in FIG. 4 indicates the position of the sensor 10 when the position of the car 4 is in the first position indicated by the broken line.
  • the black circle indicating that the car 4 is in the second position is also the car 4.
  • the white circle indicating that is in the first position is also shown in FIG. 4 in the form of an excerpt of the position of the Nth to N + 5th sensors 10 among them.
  • the right figure shows a case where the curved portions of the cable 7 are overlapped when the car 4 is in the first position and the second position, respectively.
  • the curved portion formed at the lower end position of the cable 7 in the suspended state is the case where the car 4 is in the first position and the second position, respectively. However, it has the same shape. It has been confirmed in each of the numerical analysis by experiment and simulation that the shape of the curved portion has a property that does not depend on the position of the car.
  • the contents of (1) and (2) are the basic parts of the calculation principle.
  • the car position calculation unit 14 is realized based on the calculation principle described here.
  • the position of the N + 1th sensor 10 in the black circle and the position of the N + 2nd sensor 10 in the white circle are close to each other on the cable 5.
  • the position of the N + 2nd sensor 10 of the black circle and the position of the N + 3rd sensor 10 of the white circle are the positions of the N + 3rd sensor 10 of the black circle and the position of the N + 4th sensor 10 of the white circle. It can be seen that the position of the N + 4th sensor 10 of the above and the position of the N + 5th sensor 10 of the white circle are close to each other.
  • FIG. 5 is a diagram showing the measurement result by the sensor 10 handled by the car position calculation unit 14 in the position detection device of the elevator according to the first embodiment.
  • FIG. 5 shows the electrical resistance values, which are the measurement results by the sensor 10 shown on the vertical axis, in the horizontal axis direction in order corresponding to the positions where the sensors 10 are provided at a plurality of predetermined locations along the cable 7. They are arranged at equal intervals. That is, the horizontal axis of FIG. 5 corresponds to the position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7, and the unit of the horizontal axis is dimensionless.
  • the vertical axis of FIG. 5 indicates the electric resistance value of the sensor 10 corresponding to the horizontal axis, and the unit of the vertical axis is ohm.
  • the electrical resistance value of the sensor 10 is indicated by a black circle.
  • FIG. 3 is an excerpt of each sensor 10 in the vicinity of the curved portion of the cable 7 for the N + 1st to N + 4th sensors 10 provided on the cable covering portion. As shown in FIG. 3, the sensors 10 are provided at a plurality of positions with predetermined position intervals along the cable 4.
  • a curve as shown in FIG. 5 can be fitted by using the electric resistance value of each sensor 10 at the curved portion of the cable 7, which is indicated by a black circle.
  • the curve obtained from this electric resistance value corresponds to the shape of the curved portion of the cable 7. It should be noted that the fact that the curve obtained from the electric resistance value corresponds to the shape of the curved portion of the cable 7 means that the curve obtained from the electric resistance value and the shape of the curved portion of the cable 7 have a similar shape. It does not necessarily mean that it is in.
  • FIG. 6 is a diagram for explaining pattern matching using a one-dimensional data string obtained from the measurement result by the sensor 10 executed by the car position calculation unit 14 in the elevator position detection device according to the first embodiment. be.
  • FIG. 6 first shows an example of data handled by the car position calculation unit 14.
  • the data handled by the car position calculation unit 14 shown in FIG. 6 can be obtained by arranging the electric resistance values as the measurement results by the sensor 10 in order corresponding to a plurality of predetermined positions along the cable 7. It is a one-dimensional data string.
  • FIG. 6 is a diagram related to FIG. 3 described above.
  • the positions of the sensor 10 when the car 4 is in the first position and the second position are indicated by white circles and black circles.
  • FIG. 6 is an image in which the data of the electric resistance value, which is the measurement result by each sensor 10, is contained in the square frame.
  • the sensors 10 are provided at a plurality of predetermined locations along the cable 7 for the electric resistance value which is the measurement result by the sensor 10 when the car 4 is in the first position. It is a one-dimensional data string obtained by arranging them in order according to their positions.
  • the positions of the Nth to N + 5th sensors 10 are shown by using white circles, especially when they are in the first position.
  • the lower figure of FIG. 6 shows the electric resistance value which is the measurement result by the sensor 10 when the car 4 is in the second position, and the positions where the sensors 10 are provided at a plurality of predetermined positions along the cable 7. It is a one-dimensional data string obtained by arranging them in order corresponding to.
  • the positions of the Nth to N + 5th sensors 10 are shown by using black circles, especially when they are in the second position.
  • the electrical resistance value which is the measurement result by the sensor 10 (sensors 10 from the first to the N-1) provided on the cable 7 on the hoistway device 6 side leading to the curved portion, shown in the upper and lower views of FIG. , Will show a relatively small value.
  • the electric resistance value which is the measurement result by the sensor 10 (sensor 10 from N + 6th to Mth) provided on the cable 7 on the side of the car 4 leading to the curved portion, also shows a relatively small value. become.
  • the reason why the electric resistance value, which is the measurement result by these sensors 10, shows a small value is as follows.
  • the shape of the cable 7 at the location corresponding to the position where the sensor 10 is provided is substantially linear, that is, in the cable 7 at the location corresponding to the position where the sensor 10 is provided. Since the bending curvature is small and the bending deformation is received, it can be seen that the electric resistance value, which is the measurement result by these sensors 10, shows a small value.
  • the electric resistance value which is the measurement result by the sensor 10 (the Nth to N + 5th sensors 10) corresponding to the curved portion, shows a relatively large value due to the bending deformation of the cable 7.
  • the electric resistance value which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and N + 2 shown in the upper figure (white circle) of FIG. 5 are used by using the broken line arrow. It shows that the electrical resistance values, which are the measurement results of the second sensor 10, are in a corresponding relationship. More precisely, the electric resistance value of the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and the electric resistance value which is the measurement result by the N + 2nd sensor 10 shown in the upper figure (white circle) of FIG. 5 are It shows that the values are almost the same. This is related to the content described above, as it can be seen that the position of the N + 1th sensor 10 in the black circle and the position of the N + 2nd sensor 10 in the white circle are close to each other in the right figure in FIG. It is a thing.
  • FIG. 6 is: That is, the position of the black circle N + 2nd sensor 10 and the position of the white circle N + 3rd sensor 10 shown in the right figure of FIG. 3 are the position of the black circle N + 3rd sensor 10 and the position of the white circle N + 4th sensor 10.
  • FIG. 6 shows that the position of the black circle N + 4th sensor 10 and the position of the white circle N + 5th sensor 10 are closer to each other.
  • the electrical resistance value which is the measurement result by the sensor 10 when the car 4 is in the first position, is set at a plurality of predetermined locations along the cable 7. It shows a one-dimensional data string obtained by arranging in order corresponding to the position where is provided.
  • the database 13 already described stores this one-dimensional data string and the first position as a predetermined position as the measurement result by the sensor 10 when the car 4 is in the first position. It shall be.
  • the detection algorithm of the car position calculation unit 14 uses a pattern matching method. Therefore, the procedure for the operation of the car position calculation unit 14 will be described below.
  • FIG. 6 using the broken line arrows, for example, the electric resistance value which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and the N + second value shown in the upper figure (white circle) of FIG. It was shown that the electrical resistance values, which are the measurement results by the sensor 10, have a corresponding relationship. As shown in FIG. 6, all the correspondences indicated by the broken line arrows indicate the pattern matching result in which the best similarity is obtained here. In other words, FIG. 6 is obtained by shifting the one-dimensional data string (shown in the lower figure of FIG. 6) obtained from the measurement result by the sensor 10 corresponding to the position of the car 4 at the present time by one by a square frame.
  • the electrical resistance which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. It is shown that the value and the electric resistance value which is the measurement result by the N + second sensor 10 shown in the upper figure (white circle) of FIG. 6 are substantially the same value.
  • the position spacing of the sensors 10 on the cable 7 is preferably about 20 mm to 500 mm, and further, it is not always necessary to be evenly spaced, but it is evenly spaced from the viewpoint of convenience. Is preferable.
  • shifting by one in a square frame means shifting one of the positional intervals of the sensors 10 on the cable 7 as physical distance information.
  • the position spacing of the sensors 10 on the cable 7 is, for example, 50 mm.
  • the position of the curved portion of the cable 7 at the present time is traced back by 50 mm with respect to the position of the curved portion of the cable 7 in the template stored in the database 13.
  • the amount of vertical displacement of the car 4 can be obtained as a value that is half of the amount of movement of the position of the curved portion, as in the reference information described later, and thus the following can be understood.
  • the position of the car 4 at the present time is raised by 25 mm, which is half of the 50 mm of the retroactive portion at the position of the curved portion in the cable 7. ..
  • the data as the template stored in the database 13 is the one-dimensional data string shown in the upper figure of FIG. 6 and the first position as the car position at that time. Information. Then, assuming that the position when the car is in the second position is the reference position and the first position is, for example, the position where the car 4 is landing on the lowest floor, the position of the car 4 at the present time is It can be seen that it is located 25 mm above the bottom floor.
  • the amount of movement of the position of the curved portion is known, it can be seen that the amount of vertical displacement of the car 4 at that time is obtained as a value half of the amount of movement of the position of the curved portion.
  • the position detection device for the elevator has one end fixed to the device provided in the hoistway 31 and the other end fixed to the car 4 that moves up and down in the hoistway, and is suspended in a U shape.
  • the belt-shaped cable 7 having a curved portion formed at the lower end position in the lowered state and the cable 7 provided at least at the curved portion of the cable covering portion of the cable 7 are provided.
  • the sensor 10 is capable of measuring the change in physical quantity due to bending deformation along the line, and the sensor 10 is provided at a plurality of locations along the cable 7 at the curved portion when the car 4 is located at a predetermined car position.
  • the curved portion of the cable 7 at the present time is compared with the measurement result by the sensor 10 when the car 4 is at the current car position. It is characterized by including a car position calculation unit 14 that estimates the position and calculates the position of the car 4 at the present time, which is determined according to the position of the curved portion in the cable 7 at the present time. be.
  • the car position calculation unit 14 in the elevator position detection device corresponds the measurement result by the sensor 10 to the position where the sensor 10 is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order, and the one-dimensional data string obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position.
  • the database 13 stored as a template
  • the position of the curved part in the cable at the present time is estimated based on the pattern matching result in which the best similarity is obtained, and the position of the curved part in the cable 7 at the present time is estimated corresponding to the position of the curved part in the cable 7 at the present time. It is characterized by calculating the position of the car 4 at the present time, which is determined.
  • FIG. 7 is a diagram for explaining an outline of the configuration of the elevator position detection device according to the second embodiment.
  • the elevator position detection device according to the second embodiment replaces the car position calculation unit 14 in the elevator position detection device according to the first embodiment with a car position calculation unit 14a having a modified configuration.
  • the car position calculation unit 14a in the elevator position detection device corresponds the measurement result by the sensor 10 to the position where the sensor is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order, and the one-dimensional data string obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position.
  • the sensor 10 corresponding to the one-dimensional data string obtained by referring to the database stored as a template and interpolating based on the one-dimensional data string as a template stored in the database 13 and the position of the car 4 at the present time.
  • the position of the curved part in the cable 7 was estimated based on the pattern matching result obtained by performing pattern matching with the one-dimensional data string obtained from the measurement result obtained by the above, and the estimated current cable 7 It is characterized in that the position of the car 4 at the present time, which is determined according to the position of the curved portion in the above, is calculated.
  • the accuracy of the position of the car 4 at the present time which is the calculation result of the car position calculation unit 14, depends on the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. It can be seen that there is an effect on. That is, in the first embodiment, the influence of the discretized data (electrical resistance value which is the measurement result by the sensor 10) shown by the black circle in FIG. 5 is the calculation result of the car position calculation unit 14 at the present time. There was a problem that it appeared in the accuracy of the position.
  • the car position calculation unit 14a in the elevator position detection device has the accuracy of the position of the car 4 at the present time, which is the calculation result of the car position calculation unit 14, which is a problem in the first embodiment. It has been improved to improve.
  • the car 4 is measured in advance when it is at or near the end of the hoistway 31.
  • the primary obtained by referring to the database 13 in which the one-dimensional data string obtained from the measurement result by the sensor 10 is stored as a template and interpolating based on the one-dimensional data string of the template stored in the database 13.
  • the point is to perform pattern matching between the original data string and the one-dimensional data string obtained from the measurement result by the sensor 10 corresponding to the current position of the car 4.
  • the difference from the first embodiment is that the one-dimensional data string, which is one of the objects to be pattern-matched, is interpolated based on the one-dimensional data string of the template stored in the database 13. It is a point to make it a one-dimensional data string obtained by It can be said that the one-dimensional data string, which is different from the first embodiment, is obtained by using the points on the curve shown in FIG. 5 if it is explained in an easy-to-understand manner.
  • the car position calculation unit 14a in the elevator position detection device according to the second embodiment shows the points indicated by the black circles in FIG. 5 as described above, instead of using the discretized data.
  • the data interpolated for each of the two adjacent points is used.
  • the curve obtained from the electric resistance value which is the measurement result by the sensor 10 in FIG. 5 is obtained corresponding to the shape of the curved portion of the cable 7.
  • the fact that the curve obtained from the electric resistance value corresponds to the shape of the curved portion of the cable 7 means that the curve obtained from the electric resistance value and the shape of the curved portion of the cable 7 have a similar shape. I explained that it does not necessarily mean that.
  • the horizontal axis of FIG. 5 corresponds to the position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7, and the unit of the horizontal axis may be dimensionless. explained.
  • the length of the curve obtained by interpolating the two adjacent points indicated by the black circles is the physical distance information of the position of the sensor 10 on the cable 7. It solves this problem by assuming that it corresponds to the interval.
  • the current car 4 which is the calculation result of the car position calculation unit 14 which is a problem in the first embodiment. This has the effect that the accuracy of the position can be further improved as compared with the first embodiment.
  • the interpolation method not only the interpolation using the curve shown in FIG. 5, but also the data obtained by linearly interpolating each of the two adjacent points indicated by the black circles may be used.
  • the length of the straight line that interpolates each of the two adjacent points indicated by the black circles in FIG. 5 is the physical distance information
  • the position interval of the sensor 10 on the cable 7 is the physical distance information. It is based on the assumption that it corresponds to.
  • the elevator position detecting device uses the interpolation method using the linearly interpolated data
  • the elevator position detecting device interpolates as compared with the interpolation method using the curve-interpolated data. It has the effect of making calculations easy.
  • FIG. 8 is a diagram for explaining the outline of the configuration of the elevator position detecting device according to the third embodiment.
  • the elevator position detection device according to the third embodiment replaces the car position calculation unit 14 in the elevator position detection device according to the first embodiment with the car position calculation unit 14b having a modified configuration.
  • the car position calculation unit 14b in the position detection device of the elevator measures the measurement result by the sensor 10 when the car 4 is at the current car position at the position where the sensor 10 is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order corresponding to each of the above, and was obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position.
  • the database 13 that stores the information related to the position of the curved portion in the cable 7, and when the information related to the position of the curved portion stored in the database 13 and the car 4 at the current car position are present.
  • the position of the curved portion on the cable 7 at the present time is estimated using the one-dimensional data string obtained from the measurement result by the sensor 10, and is determined corresponding to the estimated position of the curved portion on the cable 7 at the present time. It is characterized in that the position of the car 4 is calculated.
  • the database 13 stores information related to the position of the curved portion in the cable 7. There is a certain point.
  • the database 13 contains the one-dimensional data obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. He said that he remembered the columns as a template.
  • the difference between the first embodiment and the second embodiment in the third embodiment is that the database 13 stores information related to the position of the curved portion in the cable 7. ..
  • the car position calculation unit 14b in the position detection device of the elevator estimates the position of the curved portion in the cable 7 at the present time by using the database 13.
  • the purpose is that the calculation load in the above can be reduced as compared with the first embodiment and the second embodiment.
  • the information related to the position of the curved portion in the cable 7 is defined as a representative value obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. ..
  • This representative value is literally a typical value, and a value indicating the characteristic is determined from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. It is obtained by doing.
  • the representative value for example, an extreme value or a moving average result can be considered.
  • the feature of the information related to the position of the curved portion in the cable 7 is that it is point information.
  • the data as a template stored in the database 13 is measured in advance when the car 4 is at or near the end of the hoistway 31.
  • the data had the structure of a one-dimensional data string obtained from the measurement results of the sensor 10.
  • the extreme value is used as the information related to the position of the curved portion in the cable 7, in the one-dimensional data string obtained from the measurement result by the sensor 10 when the position of the car 4 is at the present time
  • the position of the curved portion in the cable 7 at the present time is estimated depending on the number of the sensor 10 that substantially matches the extreme value.
  • the position of the car 4 at the present time is calculated and calculated by using the estimation result about the position of the curved portion in the cable 7 at the present time.
  • the position of the curved portion in the cable 7 at the present time is estimated by two one-dimensional operations.
  • a pattern matching operation is performed using a data string.
  • the position of the curved portion in the cable 7 at the present time is estimated by using the point information and the one-dimensional data string. , The calculation for finding the correspondence with the information related to the position of the curved portion in the cable 7 is performed.
  • the calculation load for estimating the position of the curved portion in the cable 7 at the present time using the database 13 is the same as that of the first embodiment and the embodiment. It is clear that the effect of mitigation can be achieved as compared with Form 2.
  • the following configuration is further proposed as an elevator control system using the elevator position detection device according to any one of the first to third embodiments described above. It is a thing.
  • the configuration of the elevator control system according to the first embodiment of the present disclosure as described above with reference to FIG. 2, the configuration of the elevator position detection device according to the first embodiment of the present disclosure , The control unit 21 is added.
  • the elevator control system includes the elevator position detection device according to the present disclosure and the control unit 21 that controls the ascending / descending motion of the car, and the control unit 21 is calculated by the car position calculation unit 14 at present. It is characterized in that the ascending / descending motion of the car 4 is controlled by using the position of the car 4. With this configuration, it is possible to control the ascending / descending motion of the car 4 by using the current position of the car 4 calculated by the car position calculation unit instead of the pulse encoder 8. This has the effect of backing up the position detection of the pulse encoder.
  • the control unit 21 further raises and lowers the car 4, and the latest car stored based on the output information of the pulse encoder 8 for detecting the rotation angle of the motor.
  • the position information is used to control the ascending / descending motion of the car 4 in a normal state, and when the control unit 21 starts the ascending / descending motion after the latest car position information cannot be specified, the present disclosure It may be characterized in that the current position of the car 4 calculated by the car position calculation of the elevator position detection device in the above is used as information instead of the latest car position information.
  • the car position is the calculation result of the car position calculation unit in the elevator position detection device.
  • the information can be used by the control unit in the elevator control system as an alternative to the latest car location information. Therefore, even if the elevator stops in the vicinity of the terminal floor due to a power outage or the power supply is cut off by the power supply device and the car position information is lost, the elevator can be swiftly moved up and down to start the subsequent ascending / descending motion. It is possible to determine in which direction the car 4 should be driven or whether the car can be driven. As a result, it is possible to realize a safe ascending / descending motion of the car at the start of the ascending / descending motion.

Landscapes

  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

The present invention pertains to a position detection device for an elevator. The present invention comprises: a belt-shaped cable with a curved portion formed at the lower end position when the cable is suspended in a U-shape with one end fixed to a hoistway and the other end fixed to a car; a sensor that is provided on at least the curved portion of a cable covering and that can measure changes in physical quantities due to bending deformation along the cable at the portion where the sensor is provided; and a car position calculation unit that calculates the position of the car at the present time, which is determined according to the position of the curved portion, after estimating the position of the curved portion in the cable on the basis of a database obtained from the measurement results of the sensors measured in advance in cases where the car is at a predetermined car position and the sensors are provided at a plurality of locations along the cable of the curved portion. This facilitates installation and adjustment work that should be performed appropriately according to the rated speed of the elevator, and also makes it possible to cope with the problem of loss of car position information due to a power supply interruption or power failure.

Description

エレベーターの位置検出装置とそれを用いたエレベーターの制御システムElevator position detector and elevator control system using it
本開示は、エレベーターのかご位置を検出するエレベーターの位置検出装置とそれを用いたエレベーターの制御システムに関する。例えば、エレベーターの終端階付近のかご位置検出に利用できるエレベーターの位置検出装置に関する。 The present disclosure relates to an elevator position detection device that detects the position of an elevator car and an elevator control system using the device. For example, the present invention relates to an elevator position detecting device that can be used to detect the position of a car near the terminal floor of the elevator.
従来のエレベーターの位置検出装置は、例えば、かごの昇降運動に伴ってかごが昇降路の端部に接近した場合に、事前にかごに設けられた位置検出スイッチが昇降路の終端階付近に設けられたカムと係合するように構成されている。さらに、カムに係合した位置検出スイッチが、あらかじめカムに設けた複数の動作点のそれぞれで動作するように構成されている。これらの構成により、かごが昇降路の端部から所定の位置に達したことを随時検出し、それぞれの検出時点におけるかごの過速度状態の確認を行う。そして、かごの過速度状態が過速度レベルと呼ばれる所定のレベル以上であった場合には、例えば、かごをブレーキにより強制的に減速させる。このときの複数の動作点の位置とそれぞれの動作点における過速度レベルの値は、それぞれの動作点の位置において対応する過速度レベルにより過速度状態が検出されてブレーキを作動させた場合に、かごが、例えば昇降路床面に配置された緩衝器に対して緩衝器の許容衝突速度以下で衝突するように設計することで決定している(例えば、特許文献1参照)。 In the conventional elevator position detection device, for example, when the car approaches the end of the hoistway due to the elevating movement of the car, a position detection switch provided in the car in advance is provided near the terminal floor of the hoistway. It is configured to engage with the cam. Further, the position detection switch engaged with the cam is configured to operate at each of a plurality of operating points provided in advance on the cam. With these configurations, it is detected at any time that the car has reached a predetermined position from the end of the hoistway, and the overspeed state of the car at each detection time is confirmed. Then, when the overspeed state of the car is equal to or higher than a predetermined level called an overspeed level, for example, the car is forcibly decelerated by a brake. The positions of the plurality of operating points and the value of the overspeed level at each operating point at this time are obtained when the overspeed state is detected by the corresponding overspeed level at each operating point position and the brake is activated. It is determined by designing the car to collide with, for example, a shock absorber arranged on the floor of the hoistway at a collision speed equal to or lower than the allowable collision speed of the shock absorber (see, for example, Patent Document 1).
日本特開平11-246141号公報Japanese Patent Application Laid-Open No. 11-246141
しかしながら、特許文献1に開示されている従来のエレベーターの位置検出装置には、以下に示す問題点があった。すなわち、この従来のエレベーターの位置検出装置では、例えば、エレベーターの定格速度に応じて、スイッチとカムの相対位置を適切に調整する必要があったが、この位置調整作業に時間がかかるという問題があった。なぜならば、昇降路の端部でかごを十分に減速させるためには、エレベーターの定格速度が高くなるほど、より端部から遠い位置でかごの速度を確認する必要が出てくるためである。これにより、従来のエレベーターの位置検出装置では、端部から遠い位置でかごの位置を検出するための動作点を設定するために、必要なカムの全長が長くなり、その結果、カムが少しでも傾くと動作点の位置が大きく変化してしまうことから、スイッチとカムの相対位置の調整作業は容易ではなかった。 However, the conventional elevator position detecting device disclosed in Patent Document 1 has the following problems. That is, in this conventional elevator position detection device, for example, it is necessary to appropriately adjust the relative positions of the switch and the cam according to the rated speed of the elevator, but there is a problem that this position adjustment work takes time. there were. This is because, in order to sufficiently decelerate the car at the end of the hoistway, the higher the rated speed of the elevator, the more it is necessary to check the speed of the car at a position farther from the end. This increases the overall length of the cam required by conventional elevator position detectors to set the operating point for detecting the position of the car far from the end, resulting in even a small amount of cam. Since the position of the operating point changes significantly when tilted, it was not easy to adjust the relative position between the switch and the cam.
また、従来のエレベーターの位置検出装置では、例えば、停電状態や、電源装置による給電の遮断によってエレベーターが終端階付近で非常停止した場合に、その後の昇降運動を開始するにあたって、上下方向のいずれの方向にかごを走行させるべきか、あるいはかごが走行可能なのかを判断するために必要となる、かご位置情報を失うことがないように、スイッチとカムの係合状態を保持できる構造を採用する必要があった。したがい、本開示に係るエレベーターの位置検出装置、等についても、かごの安全な昇降運動を実現する上で、このかご位置情報の喪失問題に対応できるようにする必要がある。 Further, in the conventional elevator position detection device, for example, when the elevator is in an emergency stop near the terminal floor due to a power failure state or the power supply is cut off by the power supply device, any of the vertical directions is used to start the subsequent ascending / descending motion. Adopt a structure that can keep the switch and cam engaged so as not to lose the car position information, which is necessary to determine whether the car should be driven in the direction or whether the car can be driven. I needed it. Therefore, it is necessary for the elevator position detection device, etc. according to the present disclosure to be able to cope with the problem of loss of car position information in order to realize a safe ascending / descending motion of the car.
本開示は、このような課題を解決するためになされたものである。その目的は、エレベーターの定格速度に応じた位置検出装置の据付調整作業にあまり負担がかからないエレベーターの位置検出装置を提供することである。また、供給電源の遮断や停電状態によるかご位置情報の喪失問題に対応可能なエレベーターの位置検出装置を提供することである。さらに、これらのエレベーターの位置検出装置を用いたエレベーターの制御システムを提供することである。 This disclosure is made to solve such a problem. An object of the present invention is to provide an elevator position detection device that does not place much burden on the installation adjustment work of the position detection device according to the rated speed of the elevator. In addition, it is to provide an elevator position detection device that can deal with the problem of loss of car position information due to power cutoff or power failure. Furthermore, it is to provide an elevator control system using the position detection device of these elevators.
本開示に係るエレベーターの位置検出装置は、昇降路に設けられた機器に一端が、昇降路の中を昇降運動するかごに他端が固定され、U字状に吊り下げられた状態での下端位置に湾曲部が形成されているベルト状のケーブルと、ケーブルのケーブル被覆部のうち少なくとも湾曲部の箇所には設けられ、その設けられた箇所のケーブルに沿った曲げ変形に伴う物理量の変化を計測可能なセンサと、あらかじめ決められたかご位置にかごがあるときの湾曲部の前記ケーブルに沿った複数箇所にセンサが設けられている場合においてあらかじめ計測しておいたセンサによる計測結果から得られたデータベースに基づいて、現時点でのかご位置にかごがあるときのセンサによる計測結果に対して現時点でのケーブルにおける湾曲部の位置を推定し、推定した現時点でのケーブルにおける湾曲部の位置に対応して定まる、現時点でのかごの位置を算出するかご位置算出部と、を備えたことを特徴とするものである。 The position detection device for an elevator according to the present disclosure has one end fixed to a device provided in the hoistway and the other end fixed to a car that moves up and down in the hoistway, and the lower end is suspended in a U shape. A belt-shaped cable having a curved portion formed at a position and a cable covering portion of the cable provided at least at the curved portion, and a change in physical quantity due to bending deformation along the cable at the provided portion. Obtained from measurement results by a sensor that can be measured and a sensor that has been measured in advance when sensors are provided at multiple locations along the cable at the curved portion when the car is in a predetermined car position. Based on the database, the position of the curved part of the cable at the present time is estimated based on the measurement result by the sensor when the car is at the current position of the car, and it corresponds to the estimated position of the curved part of the cable at the present time. It is characterized in that it is provided with a car position calculation unit for calculating the current position of the car, which is determined by the above.
本開示に係るエレベーターの制御システムは、本開示に係るエレベーターの位置検出装置と、かごの昇降運動を制御する制御部と、を備え、制御部は、かご位置算出部が算出した、現時点での前記かごの位置を利用してかごの昇降運動を制御する、ことを特徴とするものである。 The elevator control system according to the present disclosure includes an elevator position detection device according to the present disclosure and a control unit that controls the ascending / descending motion of the car, and the control unit is calculated by the car position calculation unit at the present time. It is characterized in that the ascending / descending motion of the car is controlled by using the position of the car.
本開示に係るエレベーターの制御システムは、本開示に係るエレベーターの位置検出装置と、かごの昇降運動を制御するエレベーターの制御部と、を備え、制御部は、かごを昇降駆動するモータの回転角を検出するためのパルスエンコーダの出力情報を基に記憶された最新のかご位置情報を利用してかごの通常時における昇降運動を制御するものであり、制御部は、最新のかご位置情報が特定できなくなった後の昇降運動を開始する場合には、かご位置算出部が算出した、現時点でのかごの位置を、最新のかご位置情報の代わりの情報として利用する、ことを特徴とするものである。 The elevator control system according to the present disclosure includes an elevator position detection device according to the present disclosure and an elevator control unit that controls the elevating motion of the car, and the control unit is a rotation angle of a motor that drives the car up and down. The latest car position information stored based on the output information of the pulse encoder for detecting When starting the ascending / descending motion after it becomes impossible, the current car position calculated by the car position calculation unit is used as information instead of the latest car position information. be.
本開示に係るエレベーターの位置検出装置および本開示に係るエレベーターの制御システムによれば、昇降路に設けられた機器に一端が、昇降路の中を昇降運動するかごに他端が固定され、U字状に吊り下げられた状態での下端位置に湾曲部が形成されているベルト状のケーブルと、ケーブルのケーブル被覆部のうち少なくとも湾曲部の箇所には設けられ、その設けられた箇所のケーブルに沿った曲げ変形に伴う物理量の変化を計測可能なセンサと、あらかじめ決められたかご位置にかごがあるときの湾曲部の前記ケーブルに沿った複数箇所にセンサが設けられている場合においてあらかじめ計測しておいたセンサによる計測結果から得られたデータベースに基づいて、かご位置算出部が、現時点でのかご位置にかごがあるときのセンサによる計測結果に対して現時点でのケーブルにおける湾曲部の位置を推定し、推定した現時点でのケーブルにおける湾曲部の位置に対応して定まる、現時点でのかごの位置を算出することができる。その結果、従来と比べて、かごが昇降路の端部または端部付近で特に有効となる位置検出装置の、エレベーターの定格速度に応じた適切な据付調整作業にあまり負担がかからない、という効果を奏するものである。 According to the position detection device of the elevator according to the present disclosure and the control system of the elevator according to the present disclosure, one end is fixed to the equipment provided in the hoistway, and the other end is fixed to the car that moves up and down in the hoistway. A belt-shaped cable in which a curved portion is formed at the lower end position in a state of being suspended in a shape, and a cable provided at least at the curved portion of the cable covering portion of the cable, and the cable at the provided portion. A sensor that can measure changes in physical quantities due to bending deformation along the cable, and a sensor that can measure in advance when sensors are provided at multiple locations along the cable at the curved portion when the car is in a predetermined car position. Based on the database obtained from the measurement result by the sensor, the car position calculation unit determines the position of the curved part in the cable at the present time with respect to the measurement result by the sensor when the car is in the current car position. Can be estimated, and the current position of the car, which is determined according to the estimated position of the curved portion of the cable at the present time, can be calculated. As a result, compared to the conventional method, the position detection device in which the car is particularly effective at or near the end of the hoistway is less burdened with the appropriate installation adjustment work according to the rated speed of the elevator. It plays.
また、本開示に係るエレベーターの位置検出装置および本開示に係るエレベーターの制御システムによれば、停電状態や電源装置による給電の遮断により最新のかご位置情報が特定できなくなった後の昇降運動を開始する場合に、本開示に係るエレベーターの位置検出装置におけるかご位置算出部の算出結果であるかご位置情報を、エレベーターの制御システムにおける制御部が最新のかご位置情報の代わりの情報として利用可能であることから、例えば、停電状態や電源装置による給電の遮断によってエレベーターが終端階付近で非常停止し、さらにかご位置情報を失った場合であっても、その後の昇降運動を開始するにあたって、速やかに、上下方向のいずれの方向にかご4を走行させるべきか、あるいはかごが走行可能なのかを判断することができる。その結果、昇降運動開始時においてかごの安全な昇降運動を実現できるという効果を奏するものである。 In addition, according to the elevator position detection device according to the present disclosure and the elevator control system according to the present disclosure, the ascending / descending motion is started after the latest car position information cannot be specified due to a power failure state or interruption of power supply by the power supply device. In this case, the car position information, which is the calculation result of the car position calculation unit in the elevator position detection device according to the present disclosure, can be used by the control unit in the elevator control system as information instead of the latest car position information. Therefore, for example, even if the elevator stops in the vicinity of the terminal floor due to a power failure or the power supply is cut off by the power supply device and the car position information is lost, the elevator can be promptly started to move up and down. It is possible to determine in which direction the car 4 should be driven in the vertical direction, or whether the car can be driven. As a result, it is possible to realize a safe ascending / descending motion of the car at the start of the ascending / descending motion.
実施の形態1に係る、エレベーターの位置検出装置とそれを用いたエレベーターの制御システムを説明するためのエレベーターシステム全体のイメージ図である。FIG. 5 is an image diagram of the entire elevator system for explaining an elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment. 実施の形態1に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 1. FIG. 本開示の実施の形態1に係る、エレベーターの位置検出装置を構成するうちのセンサについて、ケーブル上の位置間隔の一例を示す図である。It is a figure which shows an example of the position spacing on a cable about the sensor which constitutes the position detection device of an elevator which concerns on Embodiment 1 of this disclosure. 実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部の算出原理に関する基本的な考え方を説明するための図である。It is a figure for demonstrating the basic idea about the calculation principle of the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1. FIG. 実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部が取り扱う、センサによる計測結果を示す図である。It is a figure which shows the measurement result by the sensor handled by the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1. FIG. 実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部が実行する、センサによる計測結果から得られる一次元データ列を用いたパターンマッチングを説明するための図である。It is a figure for demonstrating the pattern matching using the one-dimensional data string obtained from the measurement result by a sensor, which is executed by the car position calculation part in the position detection device of an elevator which concerns on Embodiment 1. FIG. 実施の形態2に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 2. FIG. 実施の形態3に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。It is a figure for demonstrating the outline of the structure of the position detection device of an elevator which concerns on Embodiment 3. FIG.
以下では、本開示に係る、エレベーターの位置検出装置とそれを用いたエレベーターの制御システムについて、各実施の形態にしたがい、必要に応じて添付の図面を参照しながら説明する。ただし、各実施の形態および各図において、同一の部分または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。その他、各実施の形態および各図において、対応する部分には、誤解が生じない範囲で同一の符号を用いながら、必要に応じて、さらに適当な添字を付することで適宜説明する。 Hereinafter, the elevator position detection device and the elevator control system using the elevator position detection device according to the present disclosure will be described according to each embodiment with reference to the attached drawings as necessary. However, in each embodiment and each figure, the same parts or corresponding parts are designated by the same reference numerals, and duplicate description will be appropriately simplified or omitted. In addition, in each embodiment and each figure, the corresponding parts will be appropriately described by using the same reference numerals within a range that does not cause misunderstanding, and adding appropriate subscripts as necessary.
なお、本開示は、以下に示す、実施の形態1ないし実施の形態3のいずれかの実施の形態に限定されることなく、本開示における技術思想を逸脱しない範囲で種々変形したり、省略したりすることが可能である。 The present disclosure is not limited to any of the first to third embodiments shown below, and various modifications or omissions are made without departing from the technical concept of the present disclosure. It is possible to do it.
なお、本開示において、「部」が表す内容とは、物理的な手段に限るものではなく、その「部」が有する機能をソフトウェアによって実現する場合も含んでいる。また、1つの「部」が有する機能を2つ以上の物理的な手段や装置によって実現しても良い。また、2つ以上の「部」の機能が1つの物理的な手段や装置によって実現しても良い。 In the present disclosure, the content represented by the "department" is not limited to physical means, but also includes the case where the function of the "department" is realized by software. Further, the function of one "part" may be realized by two or more physical means or devices. Further, the functions of two or more "parts" may be realized by one physical means or device.
実施の形態1.
図1は、実施の形態1に係る、エレベーターの位置検出装置とそれを用いたエレベーターの制御システムを説明するためのエレベーターシステム全体のイメージ図である。また、図2は、実施の形態1に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。
Embodiment 1.
FIG. 1 is an image diagram of the entire elevator system for explaining an elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment. Further, FIG. 2 is a diagram for explaining an outline of the configuration of the elevator position detecting device according to the first embodiment.
なお、例えば、図2に示す、パルスエンコーダ8、エンコーダパルスカウンタ9、電源装置20および制御部21は、実施の形態1に係る、エレベーターの位置検出装置の構成には必ずしも含まれる必要がないものとする。また、本開示の実施の形態1に係る、エレベーターの制御システムの構成は、実施の形態1に係るエレベーターの位置検出装置の構成に、図2に示す制御部21を加えたものとする。 For example, the pulse encoder 8, the encoder pulse counter 9, the power supply device 20, and the control unit 21 shown in FIG. 2 do not necessarily have to be included in the configuration of the elevator position detection device according to the first embodiment. And. Further, the configuration of the elevator control system according to the first embodiment of the present disclosure is such that the control unit 21 shown in FIG. 2 is added to the configuration of the elevator position detection device according to the first embodiment.
図1に示すように、シーブ1に巻きかけられたロープ2の一端に釣合錘3が、他端にかご4が接続されている。この結果、釣合錘3とかご4は、シーブ1に対してつるべ状の構成をとっている。シーブ1に接続されている巻上機(図示せず)を用いて、かご4を昇降運動させる。巻上機は、モータ(図示せず)により回転駆動される。そして、釣合錘3は、かご4の昇降運動の方向とは反対の方向に昇降運動する。ここで述べた、かご4、釣合錘3、シーブ1およびロープ2が、エレベーターの機械システムの基本的な構成である。なお、例えば、後述する、制御ケーブル7や昇降路機器6を、エレベーターの機械システムの構成としてさらに含める場合もある。これらのエレベーターの機械システムは、図1に示すように、昇降路31の中に設置されるものである。 As shown in FIG. 1, a balance weight 3 is connected to one end of a rope 2 wound around a sheave 1, and a car 4 is connected to the other end. As a result, the balance weight 3 and the basket 4 have a slip-like structure with respect to the sheave 1. A hoist (not shown) connected to the sheave 1 is used to move the car 4 up and down. The hoisting machine is rotationally driven by a motor (not shown). Then, the balance weight 3 moves up and down in the direction opposite to the direction of the up and down movement of the car 4. The car 4, the balance weight 3, the sheave 1 and the rope 2 described here are the basic configurations of the mechanical system of the elevator. In addition, for example, a control cable 7 and a hoistway device 6, which will be described later, may be further included as a configuration of an elevator mechanical system. The mechanical systems of these elevators are installed in the hoistway 31 as shown in FIG.
このエレベーターの機械システムに対し、実施の形態1に係る、エレベーターの位置検出装置とそれを用いたエレベーターの制御システムが適用される。 An elevator position detection device and an elevator control system using the elevator position detection device according to the first embodiment are applied to the elevator mechanical system.
引き続き、図1および図2を用いながら、エレベーターの位置検出装置、および、それを用いたエレベーターの制御システムの構成を説明する上で必要となる基本的な情報を示す。 Subsequently, with reference to FIGS. 1 and 2, the basic information necessary for explaining the configuration of the elevator position detection device and the elevator control system using the device will be shown.
図1に示すように、ベルト状のケーブル7の一端が昇降路内にある昇降路機器6に、その他端が昇降運動するかご4に固定されている。図1では、ケーブル7の他端が、特にかご4の下部に固定されている場合を示している。その結果、ベルト状のケーブル7は、U字状に吊り下げられている。さらに、ベルト状のケーブル7の下端位置では、湾曲部が形成されている。 As shown in FIG. 1, one end of the belt-shaped cable 7 is fixed to the hoistway device 6 in the hoistway, and the other end is fixed to the car 4 that moves up and down. FIG. 1 shows a case where the other end of the cable 7 is particularly fixed to the lower part of the car 4. As a result, the belt-shaped cable 7 is suspended in a U-shape. Further, a curved portion is formed at the lower end position of the belt-shaped cable 7.
そして、ケーブル7の内側または外側のケーブル被覆部表面の、ケーブル7に沿ってあらかじめ決められた複数箇所の位置に、かご4の昇降運動に伴う各箇所のケーブル7に沿った曲げ変形に対する物理量の変化を計測可能なセンサ10が、この湾曲部に少なくとも設けられている。図1に、参考イメージとして、センサ10を、ケーブル上に黒丸として示した。もちろんながら、さらにケーブル7の湾曲部以外の部分のケーブル被覆部にもセンサ10を設けてよい。 Then, at a plurality of predetermined positions along the cable 7 on the inner or outer surface of the cable covering portion of the cable 7, the physical quantity for bending deformation along the cable 7 at each location due to the ascending / descending motion of the car 4 is performed. A sensor 10 capable of measuring a change is provided at least in this curved portion. In FIG. 1, as a reference image, the sensor 10 is shown as a black circle on the cable. Of course, the sensor 10 may be further provided in the cable covering portion other than the curved portion of the cable 7.
このセンサ10としては、例えば、曲げ変形に対して抵抗値が変化する特性を持っている感圧導電性ゴムが利用できる。この種の感圧導電性ゴムは、例えば、国際公開WO2011/065100号公報に開示されている。その他のセンサ10としては、同様に曲げ変形に対して抵抗値が変化する特性を持っている歪みゲージが利用できる。 As the sensor 10, for example, a pressure-sensitive conductive rubber having a characteristic that the resistance value changes with respect to bending deformation can be used. This type of pressure-sensitive conductive rubber is disclosed in, for example, International Publication WO2011 / 065100. As the other sensor 10, a strain gauge having a characteristic that the resistance value changes with respect to bending deformation can be similarly used.
ここで、例えば、背景技術のところで述べたような、終端階付近でのかご位置検出に関する課題を取り扱う場合には、かご4が終端階付近にあるときの、ベルト状のケーブル7の下端位置に形成される湾曲部に当たる部分のケーブル7の内側または外側の被覆部表面に、複数のセンサ10を設けることが有効である。 Here, for example, when dealing with a problem related to car position detection near the terminal floor as described in the background technology, the lower end position of the belt-shaped cable 7 when the car 4 is near the terminal floor It is effective to provide a plurality of sensors 10 on the inner or outer covering surface of the cable 7 at the portion corresponding to the curved portion to be formed.
なお、ここで上述した昇降路機器6とは、センサ10に電源供給する電源装置20を含む電気機器のことである。 The hoistway device 6 described above is an electric device including a power supply device 20 that supplies power to the sensor 10.
なお、図1では、かご位置検出用として、ベルト状のケーブル7を用いた場合を示している。このかご位置検出用のベルト状のケーブル7の代わりに、図1に示す、昇降路機器6とかご4(かご内電気機器)との間での電力供給および信号の送受信による通信を行うための、制御ケーブル75を利用してもよい。 Note that FIG. 1 shows a case where a belt-shaped cable 7 is used for detecting the position of the car. Instead of the belt-shaped cable 7 for detecting the car position, the hoistway device 6 and the car 4 (electrical device in the car) shown in FIG. 1 are used for power supply and communication by transmitting and receiving signals. , The control cable 75 may be used.
ここまでで、エレベーターの位置検出装置、および、それを用いたエレベーターの制御システムの構成を説明する上で必要となる基本的な情報を示した。 So far, the basic information necessary for explaining the configuration of the elevator position detection device and the elevator control system using the device has been shown.
次に、エレベーターの位置検出装置の構成について、図2を用いながら説明する。先に述べたように、図2は、実施の形態1に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。 Next, the configuration of the elevator position detection device will be described with reference to FIG. As described above, FIG. 2 is a diagram for explaining the outline of the configuration of the elevator position detecting device according to the first embodiment.
パルスエンコーダ8は、電源装置20により電源供給されて、かご4の昇降運動を実現するためのモータの回転角を示すパルスを出力する。エンコーダカウンタ9は、電源装置20により同様に電源供給されて、昇降路内を昇降運動するかご4の位置を求めるために必要な情報として、パルスエンコーダ8から出力されるパルスを計数した値を出力する。 The pulse encoder 8 is supplied with power by the power supply device 20 and outputs a pulse indicating the rotation angle of the motor for realizing the ascending / descending motion of the car 4. The encoder counter 9 is similarly supplied with power by the power supply device 20, and outputs a value obtained by counting the pulses output from the pulse encoder 8 as information necessary for obtaining the position of the car 4 that moves up and down in the hoistway. do.
ここで、かご4の昇降運動を実現するためのモータの回転角を示すエンコーダとしては、パルスエンコーダ8の他に、絶対位置が検出可能なアブソリュートエンコーダもある。
しかしながら、エレベーターシステムとして一般的によく利用されているエンコーダは、パルスエンコーダ8のほうである。
Here, as an encoder indicating the rotation angle of the motor for realizing the ascending / descending motion of the car 4, in addition to the pulse encoder 8, there is also an absolute encoder whose absolute position can be detected.
However, the encoder that is commonly used as an elevator system is the pulse encoder 8.
なお、本開示においては、パルスエンコーダ8とエンコーダカウンタ9を用いることで得られる情報を、誤解を与えない範囲で、簡単に、パルスエンコーダ8の出力情報と呼ぶことにする。 In the present disclosure, the information obtained by using the pulse encoder 8 and the encoder counter 9 will be simply referred to as the output information of the pulse encoder 8 without giving a misunderstanding.
ここで、パルスエンコーダ8は相対位置を検出するものであるため、図2に示す制御部21は、このパルスエンコーダ8の出力情報を基に記憶された最新のかご位置情報と、現時点で得られるパルスエンコーダ8の出力情報とを用いることで、かご4の絶対位置を入手することができ、かご4の昇降運動制御を実現する。 Here, since the pulse encoder 8 detects the relative position, the control unit 21 shown in FIG. 2 can obtain the latest car position information stored based on the output information of the pulse encoder 8 and the current car position information at the present time. By using the output information of the pulse encoder 8, the absolute position of the car 4 can be obtained, and the ascending / descending motion control of the car 4 is realized.
先の背景技術において説明したように、従来のエレベーターの位置検出装置では、例えば、エレベーターが供給電源の遮断や停電状態により終端階付近で非常停止した場合にかご位置情報を失うことがないように、スイッチとカムの係合状態を保持できる構造を採用する必要があった。かご位置情報を失うと、その後の復旧運転を開始する場合には、上下方向のいずれの方向にかご4を走行させるべきか、あるいはかご4が走行可能なのかが不明になることから、従来のエレベーターの位置検出装置では、かご4の安全な昇降運動を実現するために、上述したような構造を採用していた。 As explained in the background technology above, in the conventional elevator position detection device, for example, the car position information is not lost when the elevator is emergency stopped near the terminal floor due to a power supply cutoff or a power failure. , It was necessary to adopt a structure that can maintain the engaged state of the switch and the cam. If the car position information is lost, it becomes unclear in which direction the car 4 should be driven in the vertical direction or whether the car 4 can be driven when the subsequent restoration operation is started. The position detection device of the elevator has adopted the above-mentioned structure in order to realize a safe up-and-down movement of the car 4.
続いて、複数のセンサ10は、電源装置20により電源供給されている。センサ10は、特に、ここでは、曲げ変形に対して電気抵抗値が変化する特性を持つ感圧導電性ゴムとする。さらに、ここでは、センサ10の電気抵抗値は、ケーブルの曲げ変形が大きい場合には大きい値を示すものとなる。センサ10の電気抵抗値は、前述したように、曲げ変形に対して抵抗値が変化するものである。具体的には、センサ10の電気抵抗値は、曲げの曲率が大きいほど曲げによる歪みが大きくなるために、結果的には大きい値を示す。一方、センサ10の電気抵抗値は、曲げの曲率が小さいほど曲げによる歪みが小さくなるために、結果的には小さい値を示す。 Subsequently, the plurality of sensors 10 are supplied with power by the power supply device 20. The sensor 10 is, in particular, a pressure-sensitive conductive rubber having a characteristic that the electric resistance value changes with respect to bending deformation. Further, here, the electric resistance value of the sensor 10 shows a large value when the bending deformation of the cable is large. As described above, the electrical resistance value of the sensor 10 changes with respect to bending deformation. Specifically, the electrical resistance value of the sensor 10 shows a large value as a result because the distortion due to bending increases as the curvature of bending increases. On the other hand, the electric resistance value of the sensor 10 shows a small value as a result because the distortion due to bending becomes smaller as the curvature of bending becomes smaller.
そして、センサ10の電気抵抗値は、昇降路内を昇降運動するかご4の位置に対応して変化する。読取部11は、昇降路31に設けられた昇降路機器6内にあり、複数のセンサ10のそれぞれに流れる電流値を読み取る。 Then, the electric resistance value of the sensor 10 changes according to the position of the car 4 that moves up and down in the hoistway. The reading unit 11 is located in the hoistway device 6 provided in the hoistway 31, and reads the current value flowing through each of the plurality of sensors 10.
そして、かご位置推定部12において、読取部11で読み取られた電流値から変換された電気抵抗値をパラメータとして信号処理される。この電気抵抗値は、例えば、読取部11で読み取られた電流値から次のように具体的に変換される。センサ10と固定抵抗との直列回路の両端に電源装置20により定電圧を印加した状態で、固定抵抗の両端電圧を測定することで、直列回路に流れる電流値およびセンサ10の電気抵抗値を算出できる。この直列回路に流れる電流値が、複数のセンサ10のそれぞれに流れる電流値になる。 Then, the car position estimation unit 12 performs signal processing using the electrical resistance value converted from the current value read by the reading unit 11 as a parameter. This electric resistance value is specifically converted from the current value read by the reading unit 11, for example, as follows. By measuring the voltage across the fixed resistance while a constant voltage is applied to both ends of the series circuit of the sensor 10 and the fixed resistance by the power supply device 20, the current value flowing through the series circuit and the electrical resistance value of the sensor 10 are calculated. can. The current value flowing in this series circuit becomes the current value flowing in each of the plurality of sensors 10.
ここで、図3は、実施の形態1に係る、エレベーターの位置検出装置を構成するうちのセンサについて、ケーブル上の位置間隔の一例を示す図である。 Here, FIG. 3 is a diagram showing an example of the position spacing on the cable for the sensors constituting the position detection device of the elevator according to the first embodiment.
なお、図3で示したような、ケーブル7上のセンサ10の位置間隔は、エレベーターシステムで要求されるかご位置検出精度の観点から決めることができるものである。ただし、実現すべき、かご4の着床制御や終端階減速制御などのそれぞれの機能に対応して、要求されるかご位置検出精度が変わる。そのため、ケーブル7上のセンサ10の位置間隔は、例えば、20mmから500mm程度であることが好ましい。さらに、ケーブル7上のセンサ10の位置間隔は、必ずしも等間隔である必要はないが、利便性の観点からは等間隔であることが好ましい。 The position spacing of the sensors 10 on the cable 7 as shown in FIG. 3 can be determined from the viewpoint of the car position detection accuracy required by the elevator system. However, the required car position detection accuracy changes according to each function such as landing control of the car 4 and deceleration control of the terminal floor, which should be realized. Therefore, the position spacing of the sensors 10 on the cable 7 is preferably, for example, about 20 mm to 500 mm. Further, the positions of the sensors 10 on the cable 7 do not necessarily have to be evenly spaced, but are preferably evenly spaced from the viewpoint of convenience.
ここで、かご位置推定部12は、初期設定部15、データベース13、および、かご位置算出部14を備える。 Here, the car position estimation unit 12 includes an initial setting unit 15, a database 13, and a car position calculation unit 14.
初期設定部15は、初期設定動作として、あらかじめ決められたかご位置にかご4があるときの、湾曲部の複数箇所にセンサ10が設けられている場合においてセンサ10の曲げ変形に対する物理量の変化を計測するために必要な処理を実行する、という機能をソフトウェアによって実現している。
初期設定部15は、エンコーダカウンタ9の出力結果を利用することで、あらかじめ決められたかご位置にかご4があるか否かを判定し、その判定結果に応じて、そのときのセンサ10による計測結果を、読取部11を介して入手するか否かの処理を行う。具体的には、あらかじめ決められた位置にかご4があるときの、ケーブル7の湾曲部におけるセンサ10による計測結果を、データベース13に記憶する。
As an initial setting operation, the initial setting unit 15 determines a change in physical quantity with respect to bending deformation of the sensor 10 when the sensors 10 are provided at a plurality of curved portions when the car 4 is located at a predetermined car position. The software realizes the function of executing the processing required for measurement.
The initial setting unit 15 determines whether or not there is a car 4 at a predetermined car position by using the output result of the encoder counter 9, and measures by the sensor 10 at that time according to the determination result. A process of whether or not to obtain the result via the reading unit 11 is performed. Specifically, the measurement result by the sensor 10 at the curved portion of the cable 7 when the car 4 is located at a predetermined position is stored in the database 13.
データベース13は、より正確には、あらかじめ決められた位置に関連する情報として、あらかじめ決められた位置にかご4があるときの、ケーブル7の湾曲部においてあらかじめ計測しておいたセンサ10による計測結果と、あらかじめ決められた位置とを記憶するものである。 More accurately, the database 13 is the measurement result by the sensor 10 measured in advance at the curved portion of the cable 7 when the car 4 is in the predetermined position as the information related to the predetermined position. And a predetermined position are memorized.
 かご位置算出部14は、あらかじめ決められたかご位置にかご4があるときの湾曲部のケーブルに沿った複数箇所にセンサ10が設けられている場合においてあらかじめ計測しておいたセンサによる計測結果から得られたデータベース13に基づいて、現時点でのかご位置にかご4があるときのセンサ10による計測結果に対して現時点でのケーブル7における湾曲部の位置を推定し、推定した現時点でのケーブルにおける湾曲部の位置に対応して定まる、現時点でのかご4の位置を算出するものである。 The car position calculation unit 14 is based on the measurement results of the sensors measured in advance when the sensors 10 are provided at a plurality of locations along the cable of the curved portion when the car 4 is located at a predetermined car position. Based on the obtained database 13, the position of the curved portion in the cable 7 at the present time is estimated with respect to the measurement result by the sensor 10 when the car 4 is in the car position at the present time, and the estimated position of the curved portion in the cable 7 at the present time is used. The position of the car 4 at the present time, which is determined according to the position of the curved portion, is calculated.
ここで、このあらかじめ決められたかご位置について、説明する。 Here, this predetermined car position will be described.
エレベーターシステムを実現するに場合には、かご4の安全な昇降運動を確保することが、重要課題の一つである。エレベーターシステムが、昇降運動を開始するにあたっては、特に、上下方向のいずれの方向にかご4を走行させるべきか、あるいは、かご4が走行可能なのかを確実に判断する必要があることから、かご4が端部に至る途中の終端階または終端階付近にある場合の、かご4の位置検出の実現が重要な意味を持つ。このことから、かご4が、終端階または終端階付近にある場合を基準位置としても良いと考える。そこで、データベース13で記憶するときの判定条件である、あらかじめ決められた位置とは、本開示においては、仮に、かご4が終端階または終端階付近にある場合とする。後述する図6では、この考え方に基づいて、第1のかご位置を基準位置として、かご4が終端階または終端階付近にある場合とすることを前提としている。その結果、基準位置に基づいて、データベース13は、かご4が第1の位置にある場合のセンサ10による計測結果として、この一次元のデータ列と、あらかじめ決められた位置として、第1の位置とを記憶するものとする。 In order to realize an elevator system, ensuring a safe ascending / descending motion of the car 4 is one of the important issues. When the elevator system starts the ascending / descending motion, it is necessary to surely determine in which direction the car 4 should be driven or whether the car 4 can be driven. It is important to realize the position detection of the car 4 when the 4 is on the terminal floor on the way to the end or near the terminal floor. From this, it is considered that the case where the car 4 is on the terminal floor or near the terminal floor may be used as the reference position. Therefore, in the present disclosure, the predetermined position, which is the determination condition for storing in the database 13, is assumed to be the case where the car 4 is on the terminal floor or near the terminal floor. In FIG. 6, which will be described later, based on this idea, it is assumed that the first car position is used as a reference position and the car 4 is on the terminal floor or near the terminal floor. As a result, based on the reference position, the database 13 has the one-dimensional data string as the measurement result by the sensor 10 when the car 4 is in the first position, and the first position as a predetermined position. And shall be memorized.
実際は、この後に図4を用いて説明するように、ケーブル7の吊り下げられた状態での下端位置に形成される湾曲部の形状は、かご位置に依存しない性質であることを参考にすれば、あらかじめ決められたかご位置は、ここで述べたような、かご4が終端階または終端階付近にある場合に限る必要は無いことが分かる。すなわち、あらかじめ決められたかご位置とは、かご4の任意のかご位置として良いことが分かる。 Actually, as will be described later with reference to FIG. 4, the shape of the curved portion formed at the lower end position of the cable 7 in the suspended state is a property that does not depend on the car position. It can be seen that the predetermined car position does not have to be limited to the case where the car 4 is on the terminal floor or near the terminal floor as described here. That is, it can be seen that the predetermined car position may be any car position of the car 4.
以下では、かご位置算出部14の動作について、その算出原理とあわせて、図4から図6を用いて説明する。 Hereinafter, the operation of the car position calculation unit 14 will be described with reference to FIGS. 4 to 6 together with the calculation principle thereof.
まず、かご位置算出部14におけるかご4の位置を算出する算出原理を説明する。 First, the calculation principle for calculating the position of the car 4 in the car position calculation unit 14 will be described.
図4は、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14の算出原理に関する基本的な考え方を説明するための図である。図4において、その左図は、かご4が第1の位置および第2の位置のそれぞれにあるときのケーブル7の湾曲部を同時に示している。上方にある、実線で示したかご4の位置が、第2の位置である。下方にある、破線で示したかご4の位置が、第1の位置である。 FIG. 4 is a diagram for explaining a basic concept regarding the calculation principle of the car position calculation unit 14 in the elevator position detection device according to the first embodiment. In FIG. 4, the left figure simultaneously shows the curved portion of the cable 7 when the car 4 is in the first position and the second position, respectively. The position of the car 4 shown by the solid line above is the second position. The position of the car 4 shown by the broken line at the bottom is the first position.
センサ10は、図4のように、湾曲部のケーブル被覆部の、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に少なくとも設けられて、それぞれの箇所の曲げ変形に対する物理量の変化を計測できるものである。センサ10の位置は、図4における左図では、黒丸および白丸により示している。なお、このセンサ10の位置は、より正確には、例えば、ケーブル被覆部の内側にあるとする。その他、ケーブル被覆部の外側にあっても良い。 As shown in FIG. 4, the sensor 10 is provided at least at a position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7 in the cable covering portion of the curved portion, and the sensor 10 is subjected to bending deformation at each location. It can measure changes in physical quantities. The position of the sensor 10 is indicated by a black circle and a white circle in the left figure in FIG. It should be noted that the position of the sensor 10 is more accurately assumed to be, for example, inside the cable covering portion. In addition, it may be on the outside of the cable sheath.
図4における左図の黒丸は、かご4の位置が、実線で示す第2の位置にある場合のセンサ10の位置を示す。同様に、図4における左図の白丸は、かご4の位置が、破線で示す第1の位置にある場合のセンサ10の位置を示す。 The black circle in the left figure in FIG. 4 indicates the position of the sensor 10 when the position of the car 4 is in the second position shown by the solid line. Similarly, the white circle in the left figure in FIG. 4 indicates the position of the sensor 10 when the position of the car 4 is in the first position indicated by the broken line.
そして、センサ10が、ケーブル7の一端が固定される昇降路機器6側から、1番目、2番目と順に並んでいるとして、かご4が第2の位置にあることを示す黒丸も、かご4が第1の位置にあることを示す白丸についても、そのうちのN番目からN+5番目のセンサ10の位置を抜粋した形で、図4に示している。
そして、図4において、右図は、かご4が第1の位置および第2の位置のそれぞれにあるときのケーブル7の湾曲部を重ねた場合を示している。
Then, assuming that the sensors 10 are arranged in the order of the first and second from the hoistway device 6 side to which one end of the cable 7 is fixed, the black circle indicating that the car 4 is in the second position is also the car 4. The white circle indicating that is in the first position is also shown in FIG. 4 in the form of an excerpt of the position of the Nth to N + 5th sensors 10 among them.
Then, in FIG. 4, the right figure shows a case where the curved portions of the cable 7 are overlapped when the car 4 is in the first position and the second position, respectively.
図4における右図から分かるように、ケーブル7の吊り下げられた状態での下端位置に形成される湾曲部は、かご4が第1の位置および第2の位置のそれぞれにあった場合であっても、同じ形状となっている。なお、このように湾曲部の形状が、かご位置に依存しない性質を持つことを、実験およびシミュレーションによる数値解析のそれぞれにおいて確認できている。 As can be seen from the right figure in FIG. 4, the curved portion formed at the lower end position of the cable 7 in the suspended state is the case where the car 4 is in the first position and the second position, respectively. However, it has the same shape. It has been confirmed in each of the numerical analysis by experiment and simulation that the shape of the curved portion has a property that does not depend on the position of the car.
したがって、ここでの性質を参考にすれば、(1)あらかじめ決められたかご位置にかご4があるときの湾曲部においてあらかじめ計測しておいたセンサ10による計測結果から得られるデータベース13に基づいて、現時点でのかご4の位置に対応するセンサ10による計測結果に対してケーブル7における湾曲部の位置を推定可能であることが分かる。そして、(2)推定した、ケーブル7における湾曲部の位置に対応して定まる、現時点での前記かご4の位置を算出可能であることが分かる。 Therefore, referring to the properties here, (1) based on the database 13 obtained from the measurement result by the sensor 10 measured in advance at the curved portion when the car 4 is in the predetermined car position. It can be seen that the position of the curved portion in the cable 7 can be estimated with respect to the measurement result by the sensor 10 corresponding to the position of the car 4 at the present time. Then, it can be seen that (2) the position of the car 4 at the present time, which is determined according to the estimated position of the curved portion in the cable 7, can be calculated.
この(1)、(2)の内容が、算出原理の基本的部分である。ここで説明した算出原理に基づいてかご位置算出部14は実現されるものである。 The contents of (1) and (2) are the basic parts of the calculation principle. The car position calculation unit 14 is realized based on the calculation principle described here.
さらに、図4における右図からは、ケーブル5上において、例えば、黒丸のN+1番目のセンサ10の位置と、白丸のN+2番目のセンサ10の位置とが接近していることが分かる。同様に、黒丸のN+2番目のセンサ10の位置と白丸のN+3番目のセンサ10の位置とが、黒丸のN+3番目のセンサ10の位置と白丸のN+4番目のセンサ10の位置とが、さらに、黒丸のN+4番目のセンサ10の位置と白丸のN+5番目のセンサ10の位置とが、接近していることが分かる。 Further, from the right figure in FIG. 4, it can be seen that, for example, the position of the N + 1th sensor 10 in the black circle and the position of the N + 2nd sensor 10 in the white circle are close to each other on the cable 5. Similarly, the position of the N + 2nd sensor 10 of the black circle and the position of the N + 3rd sensor 10 of the white circle are the positions of the N + 3rd sensor 10 of the black circle and the position of the N + 4th sensor 10 of the white circle. It can be seen that the position of the N + 4th sensor 10 of the above and the position of the N + 5th sensor 10 of the white circle are close to each other.
そして、この位置が接近しているということは、センサ10による計測結果である電気抵抗値としてはほぼ同じ値になることを意味するものであることは明らかである。この考え方を利用してこれより説明する、本開示における、かご位置算出部14の検出アルゴリズムを実現するものである。この考え方とは、具体的には、パターンマッチングの手法に関連するものである。 And, it is clear that the fact that these positions are close to each other means that the electric resistance value which is the measurement result by the sensor 10 becomes almost the same value. This concept is used to realize the detection algorithm of the car position calculation unit 14 in the present disclosure, which will be described below. Specifically, this idea is related to a pattern matching method.
次に、この算出原理に基づいて実現する、かご位置算出部14の検出アルゴリズムについて、図5と図6を用いて具体的に説明する。 Next, the detection algorithm of the car position calculation unit 14 realized based on this calculation principle will be specifically described with reference to FIGS. 5 and 6.
ここで、図5は、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14が取り扱う、センサ10による計測結果を示す図である。 Here, FIG. 5 is a diagram showing the measurement result by the sensor 10 handled by the car position calculation unit 14 in the position detection device of the elevator according to the first embodiment.
図5は、縦軸に示す、センサ10による計測結果である電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応して順に、横軸方向に等間隔で並べている。つまり、図5の横軸は、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応しているものであり、その横軸の単位は、無次元である。一方、図5の縦軸は、横軸に対応したセンサ10の電気抵抗値を示すものであり、その縦軸の単位は、ohmである。センサ10の電気抵抗値は、黒丸で示している。 FIG. 5 shows the electrical resistance values, which are the measurement results by the sensor 10 shown on the vertical axis, in the horizontal axis direction in order corresponding to the positions where the sensors 10 are provided at a plurality of predetermined locations along the cable 7. They are arranged at equal intervals. That is, the horizontal axis of FIG. 5 corresponds to the position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7, and the unit of the horizontal axis is dimensionless. On the other hand, the vertical axis of FIG. 5 indicates the electric resistance value of the sensor 10 corresponding to the horizontal axis, and the unit of the vertical axis is ohm. The electrical resistance value of the sensor 10 is indicated by a black circle.
ここで、すでに図3で説明したように、ケーブル7の一端が固定される昇降路機器6側から、センサ10が1番目、2番目と順に並んでいるとしている。そして、図3は、ケーブル7の湾曲部付近の各センサ10として、ケーブル被覆部に設けられた、N+1番目からN+4番目のセンサ10を対象に抜粋した図である。図3に示すように、ケーブル4に沿ってあらかじめ決められた位置間隔を持った複数箇所の位置にセンサ10は、設けられているものである。 Here, as already described with reference to FIG. 3, it is assumed that the sensors 10 are arranged in the order of the first and second from the hoistway device 6 side to which one end of the cable 7 is fixed. Then, FIG. 3 is an excerpt of each sensor 10 in the vicinity of the curved portion of the cable 7 for the N + 1st to N + 4th sensors 10 provided on the cable covering portion. As shown in FIG. 3, the sensors 10 are provided at a plurality of positions with predetermined position intervals along the cable 4.
図5において、黒丸で示す、ケーブル7の湾曲部における各センサ10の電気抵抗値を用いて、図5で示すような曲線を当てはめることができる。 In FIG. 5, a curve as shown in FIG. 5 can be fitted by using the electric resistance value of each sensor 10 at the curved portion of the cable 7, which is indicated by a black circle.
この電気抵抗値から得られる曲線は、ケーブル7の湾曲部の形状に対応して得られるものであることは明らかである。なお、ここで言う、電気抵抗値から得られる曲線がケーブル7の湾曲部の形状に対応しているとは、電気抵抗値から得られる曲線とケーブル7の湾曲部の形状とが相似形の関係にあるということを必ずしも意味するものではない。 It is clear that the curve obtained from this electric resistance value corresponds to the shape of the curved portion of the cable 7. It should be noted that the fact that the curve obtained from the electric resistance value corresponds to the shape of the curved portion of the cable 7 means that the curve obtained from the electric resistance value and the shape of the curved portion of the cable 7 have a similar shape. It does not necessarily mean that it is in.
続けて、図6を用いて、かご位置算出部14の検出アルゴリズムの詳細を説明する。 Subsequently, the details of the detection algorithm of the car position calculation unit 14 will be described with reference to FIG.
図6は、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14が実行する、センサ10による計測結果から得られる一次元データ列を用いたパターンマッチングを説明するための図である。 FIG. 6 is a diagram for explaining pattern matching using a one-dimensional data string obtained from the measurement result by the sensor 10 executed by the car position calculation unit 14 in the elevator position detection device according to the first embodiment. be.
図6は、まず、かご位置算出部14で取り扱うデータの一例を示している。図6に示す、かご位置算出部14で取り扱うデータは、センサ10による計測結果としての電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所の位置に対応して順に並べることで得られる一次元のデータ列である。 FIG. 6 first shows an example of data handled by the car position calculation unit 14. The data handled by the car position calculation unit 14 shown in FIG. 6 can be obtained by arranging the electric resistance values as the measurement results by the sensor 10 in order corresponding to a plurality of predetermined positions along the cable 7. It is a one-dimensional data string.
なお、図6は、先に説明した図3に関係する図である。 Note that FIG. 6 is a diagram related to FIG. 3 described above.
図4では、かご4が第1の位置および第2の位置のそれぞれにあった場合のセンサ10の位置を白丸と黒丸で示した。 In FIG. 4, the positions of the sensor 10 when the car 4 is in the first position and the second position are indicated by white circles and black circles.
ここで、図4を基に、さらに、センサ10は、ケーブル7の一端が固定される昇降路機器6側から、1番目、2番目、・・・・M番目と順に並んでいるとして、図6に示す、一次元のデータ列は、かご4が第1の位置および第2の位置のそれぞれにあった場合の、センサ10による計測結果としての電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応して順に並べることで得られたものである。図6は、四角の枠内に、それぞれのセンサ10による計測結果である電気抵抗値のデータが入っているイメージである。 Here, based on FIG. 4, further assuming that the sensors 10 are arranged in the order of the first, second, ... Mth from the hoistway device 6 side to which one end of the cable 7 is fixed. In the one-dimensional data string shown in 6, the electric resistance value as the measurement result by the sensor 10 when the car 4 is in each of the first position and the second position is determined in advance along the cable 7. It was obtained by arranging the sensors 10 in order corresponding to the positions where the sensors 10 were provided at the plurality of locations. FIG. 6 is an image in which the data of the electric resistance value, which is the measurement result by each sensor 10, is contained in the square frame.
そして、図6の上図が、かご4が第1の位置にある場合のセンサ10による計測結果である電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応して順に並べることで得られる一次元のデータ列である。なお、図4では、特に、第1の位置にある場合の、N番目からN+5番目のセンサ10の位置を、白丸を用いて示していた。 Then, in the upper figure of FIG. 6, the sensors 10 are provided at a plurality of predetermined locations along the cable 7 for the electric resistance value which is the measurement result by the sensor 10 when the car 4 is in the first position. It is a one-dimensional data string obtained by arranging them in order according to their positions. In FIG. 4, the positions of the Nth to N + 5th sensors 10 are shown by using white circles, especially when they are in the first position.
一方、図6の下図が、かご4が第2の位置にある場合のセンサ10による計測結果である電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応して順に並べることで得られる一次元のデータ列である。なお、図4では、特に、第2の位置にある場合の、N番目からN+5番目のセンサ10の位置を、黒丸を用いて示していた。 On the other hand, the lower figure of FIG. 6 shows the electric resistance value which is the measurement result by the sensor 10 when the car 4 is in the second position, and the positions where the sensors 10 are provided at a plurality of predetermined positions along the cable 7. It is a one-dimensional data string obtained by arranging them in order corresponding to. In FIG. 4, the positions of the Nth to N + 5th sensors 10 are shown by using black circles, especially when they are in the second position.
図6の上図および下図に示す、湾曲部にいたる昇降路機器6側のケーブル7に設けられたセンサ10(1番目からN-1番目までのセンサ10)による計測結果である電気抵抗値は、比較的に小さい値を示すことになる。また、湾曲部に至るかご4側のケーブル7に設けられたセンサ10(N+6番目からM番目までのセンサ10)による計測結果である電気抵抗値は、同様に、比較的に小さい値を示すことになる。このように、これらのセンサ10による計測結果である電気抵抗値が、小さい値を示す理由は、以下のとおりである。 The electrical resistance value, which is the measurement result by the sensor 10 (sensors 10 from the first to the N-1) provided on the cable 7 on the hoistway device 6 side leading to the curved portion, shown in the upper and lower views of FIG. , Will show a relatively small value. Further, the electric resistance value, which is the measurement result by the sensor 10 (sensor 10 from N + 6th to Mth) provided on the cable 7 on the side of the car 4 leading to the curved portion, also shows a relatively small value. become. As described above, the reason why the electric resistance value, which is the measurement result by these sensors 10, shows a small value is as follows.
これらのセンサ10が設けられた位置が対応している箇所のケーブル7の形状がほぼ直線状になっていることから、すなわち、センサ10が設けられた位置が対応している箇所のケーブル7において曲げの曲率が小さい曲げ変形を受けていることから、これらのセンサ10による計測結果である電気抵抗値は、小さい値を示すことが分かる。 Since the shape of the cable 7 at the location corresponding to the position where the sensor 10 is provided is substantially linear, that is, in the cable 7 at the location corresponding to the position where the sensor 10 is provided. Since the bending curvature is small and the bending deformation is received, it can be seen that the electric resistance value, which is the measurement result by these sensors 10, shows a small value.
一方、湾曲部に対応するセンサ10(N番目からN+5番目までのセンサ10)による計測結果である電気抵抗値は、ケーブル7の曲げ変形により、比較的に大きい値を示すことになる。 On the other hand, the electric resistance value, which is the measurement result by the sensor 10 (the Nth to N + 5th sensors 10) corresponding to the curved portion, shows a relatively large value due to the bending deformation of the cable 7.
なお、図5において、破線の矢印を用いて、例えば、図5の下図(黒丸)で示すN+1番目のセンサ10による計測結果である電気抵抗値と、図5の上図(白丸)で示すN+2番目のセンサ10による計測結果である電気抵抗値が対応関係にあることを示している。より正確には、図5の下図(黒丸)で示すN+1番目のセンサ10の電気抵抗値と、図5の上図(白丸)で示すN+2番目のセンサ10による計測結果である電気抵抗値が、ほぼ同じ値であることを示している。このことは、図4における右図において、黒丸のN+1番目のセンサ10の位置と、白丸のN+2番目のセンサ10の位置とが接近していることが分かるとして、先に説明した内容に関連するものである。 In FIG. 5, for example, the electric resistance value which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and N + 2 shown in the upper figure (white circle) of FIG. 5 are used by using the broken line arrow. It shows that the electrical resistance values, which are the measurement results of the second sensor 10, are in a corresponding relationship. More precisely, the electric resistance value of the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and the electric resistance value which is the measurement result by the N + 2nd sensor 10 shown in the upper figure (white circle) of FIG. 5 are It shows that the values are almost the same. This is related to the content described above, as it can be seen that the position of the N + 1th sensor 10 in the black circle and the position of the N + 2nd sensor 10 in the white circle are close to each other in the right figure in FIG. It is a thing.
同様に、この他の破線の矢印により、図6は、次のことを示している。すなわち、図3の右図に示した、黒丸のN+2番目のセンサ10の位置と白丸のN+3番目のセンサ10の位置とが、黒丸のN+3番目のセンサ10の位置と白丸のN+4番目のセンサ10の位置とが、さらに、黒丸のN+4番目のセンサ10の位置と白丸のN+5番目のセンサ10の位置とが接近していることを、図6は示している。 Similarly, the other dashed arrows indicate that FIG. 6 is: That is, the position of the black circle N + 2nd sensor 10 and the position of the white circle N + 3rd sensor 10 shown in the right figure of FIG. 3 are the position of the black circle N + 3rd sensor 10 and the position of the white circle N + 4th sensor 10. FIG. 6 shows that the position of the black circle N + 4th sensor 10 and the position of the white circle N + 5th sensor 10 are closer to each other.
既に説明したように、図6の上図は、かご4が第1の位置にある場合のセンサ10による計測結果である電気抵抗値を、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応して順に並べることで得られる一次元のデータ列を示している。 As described above, in the upper diagram of FIG. 6, the electrical resistance value, which is the measurement result by the sensor 10 when the car 4 is in the first position, is set at a plurality of predetermined locations along the cable 7. It shows a one-dimensional data string obtained by arranging in order corresponding to the position where is provided.
そして、既に述べたデータベース13は、かご4が第1の位置にある場合のセンサ10による計測結果として、この一次元のデータ列と、あらかじめ決められた位置として、第1の位置とを、記憶するものとする。 Then, the database 13 already described stores this one-dimensional data string and the first position as a predetermined position as the measurement result by the sensor 10 when the car 4 is in the first position. It shall be.
ここで、かご位置算出部14の検出アルゴリズムは、パターンマッチングの手法を利用するものである。
そこで、以下では、かご位置算出部14の動作について、その手順を説明する。
Here, the detection algorithm of the car position calculation unit 14 uses a pattern matching method.
Therefore, the procedure for the operation of the car position calculation unit 14 will be described below.
<手順1>まず、データベース13に記憶されている、先ほどの一次元データ列(図5の上図に示す)をテンプレートとして、現時点でのかご4の位置に対応するセンサ10による計測結果から得られる一次元データ列(図5の下図に示す)とのパターンマッチングを行う。 <Procedure 1> First, using the one-dimensional data string (shown in the upper figure of FIG. 5) stored in the database 13 as a template, it is obtained from the measurement result by the sensor 10 corresponding to the position of the car 4 at the present time. Pattern matching is performed with the one-dimensional data string (shown in the lower figure of FIG. 5).
<手順2>そして、このパターンマッチングにより、最良な類似度が得られたパターンマッチング結果を基にして現時点でのケーブル7における湾曲部の位置を推定する。 <Procedure 2> Then, the position of the curved portion in the cable 7 at the present time is estimated based on the pattern matching result in which the best similarity is obtained by this pattern matching.
ここでの内容について、図6を用いて具体的に説明する。 The contents here will be specifically described with reference to FIG.
図6において、破線の矢印を用いて、例えば、図5の下図(黒丸)で示すN+1番目のセンサ10による計測結果である電気抵抗値と、図6の上図(白丸)で示すN+2番目のセンサ10による計測結果である電気抵抗値が対応関係にあることを示した。図6に示すように、破線の矢印で示したすべての対応関係が、ここでの最良な類似度が得られたパターンマッチング結果を示すものである。言い換えるならば、図6は、現時点でのかご4の位置に対応するセンサ10による計測結果から得られる一次元データ列(図6の下図に示す)を四角の枠で一つシフトすることで、テンプレートである、データベース13に記憶されている一次元データ列(図6の上図に示す)に対し最良な類似度が得られることを示すものである、と言える。実際は、四角の枠で、左方向や右方向に複数個シフトすることで、最良な類似度が得られるパターンマッチング結果を求める。 In FIG. 6, using the broken line arrows, for example, the electric resistance value which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. 5 and the N + second value shown in the upper figure (white circle) of FIG. It was shown that the electrical resistance values, which are the measurement results by the sensor 10, have a corresponding relationship. As shown in FIG. 6, all the correspondences indicated by the broken line arrows indicate the pattern matching result in which the best similarity is obtained here. In other words, FIG. 6 is obtained by shifting the one-dimensional data string (shown in the lower figure of FIG. 6) obtained from the measurement result by the sensor 10 corresponding to the position of the car 4 at the present time by one by a square frame. It can be said that it shows that the best similarity is obtained with respect to the one-dimensional data string (shown in the upper figure of FIG. 6) stored in the database 13 which is a template. Actually, by shifting a plurality of square frames to the left and right, the pattern matching result that gives the best similarity is obtained.
ここで話題を戻すならば、図6の例では、最良な類似度が得られたパターンマッチング結果として、例えば、図6の下図(黒丸)で示すN+1番目のセンサ10による計測結果である電気抵抗値と、図6の上図(白丸)で示すN+2番目のセンサ10による計測結果である電気抵抗値が、ほぼ同じ値となっていることを示している。 Returning to the topic here, in the example of FIG. 6, as the pattern matching result in which the best similarity was obtained, for example, the electrical resistance which is the measurement result by the N + 1th sensor 10 shown in the lower figure (black circle) of FIG. It is shown that the value and the electric resistance value which is the measurement result by the N + second sensor 10 shown in the upper figure (white circle) of FIG. 6 are substantially the same value.
そして、前述したように、ケーブル7上のセンサ10の位置間隔は、20mmから500mm程度であることが好ましく、さらに、必ずしも等間隔である必要はないが、利便性の観点からは等間隔であることが好ましい。 As described above, the position spacing of the sensors 10 on the cable 7 is preferably about 20 mm to 500 mm, and further, it is not always necessary to be evenly spaced, but it is evenly spaced from the viewpoint of convenience. Is preferable.
図6を例としたパターンマッチングにおいて四角の枠で一つシフトすることは、物理的な距離情報としては、ケーブル7上のセンサ10の位置間隔の一つをシフトすることを意味する。このとき、ケーブル7上のセンサ10の位置間隔が、例えば、50mmであるとする。その結果、データベース13に記憶されているテンプレートにおけるケーブル7における湾曲部の位置に対して、現時点でのケーブル7における湾曲部の位置は、50mm分だけ、さかのぼることになる。 In pattern matching using FIG. 6 as an example, shifting by one in a square frame means shifting one of the positional intervals of the sensors 10 on the cable 7 as physical distance information. At this time, it is assumed that the position spacing of the sensors 10 on the cable 7 is, for example, 50 mm. As a result, the position of the curved portion of the cable 7 at the present time is traced back by 50 mm with respect to the position of the curved portion of the cable 7 in the template stored in the database 13.
<手順3>次に、推定した現時点でのケーブル7における湾曲部の位置に対応して定まる、現時点での前記かご4の位置を算出する。 <Procedure 3> Next, the position of the car 4 at the present time, which is determined according to the estimated position of the curved portion in the cable 7 at the present time, is calculated.
ここで、かご4の昇降変位量は、後ほど説明する参考情報のように、湾曲部の位置の移動量の半分の値として得ることができることから、次のことが分かる。 Here, the amount of vertical displacement of the car 4 can be obtained as a value that is half of the amount of movement of the position of the curved portion, as in the reference information described later, and thus the following can be understood.
データベース13に記憶されているテンプレートにおけるかご4の位置に対して、現時点でのかご4の位置は、ケーブル7における湾曲部の位置でのさかのぼり分の50mmの半分である25mmだけ上昇することになる。 With respect to the position of the car 4 in the template stored in the database 13, the position of the car 4 at the present time is raised by 25 mm, which is half of the 50 mm of the retroactive portion at the position of the curved portion in the cable 7. ..
ここでは、データベース13に記憶されているテンプレートとしてのデータは、すでに説明したように、図6の上図に示す一次元データ列と、そのときのかご位置としての第1の位置、の2つの情報である。そして、かご位置が第2の位置にあるときを基準位置として、この第1の位置を、例えば、かご4が最下階に着床している位置とすると、現時点でのかご4の位置は、その最下階から25mmだけ上昇した位置にあることが分かる。 Here, as described above, the data as the template stored in the database 13 is the one-dimensional data string shown in the upper figure of FIG. 6 and the first position as the car position at that time. Information. Then, assuming that the position when the car is in the second position is the reference position and the first position is, for example, the position where the car 4 is landing on the lowest floor, the position of the car 4 at the present time is It can be seen that it is located 25 mm above the bottom floor.
以下、参考情報として、かご4の昇降変位量と湾曲部の位置の移動量との対応関係について説明する。 Hereinafter, as reference information, the correspondence between the amount of vertical displacement of the car 4 and the amount of movement of the position of the curved portion will be described.
ここで、センサ10が設けられるケーブル7は、昇降路31に設けられた昇降路機器6に一端が、前記昇降路内を昇降運動するかご4に他端が固定されているため、当然ながら、ケーブル7の長さは不変である。 Here, since one end of the cable 7 provided with the sensor 10 is fixed to the hoistway device 6 provided in the hoistway 31, and the other end is fixed to the car 4 that moves up and down in the hoistway, it goes without saying. The length of the cable 7 is invariant.
このことから、かご位置とケーブル7における湾曲部の位置の関係については、対応関係があることが容易に理解できる。これは、図4における左図および右図を参照することにより、この対応関係は次のとおりであることが分かる。 From this, it can be easily understood that there is a correspondence relationship between the position of the car and the position of the curved portion in the cable 7. It can be seen that this correspondence is as follows by referring to the left figure and the right figure in FIG.
すなわち、図4によれば、第1の位置と第2の位置との間でかご4が昇降運動することで、この昇降運動に対応して湾曲部の位置がケーブル7上で移動するが、この湾曲部の位置の移動量は、かご4の昇降変位量の2倍となることが分かる。 That is, according to FIG. 4, when the car 4 moves up and down between the first position and the second position, the position of the curved portion moves on the cable 7 in response to this up and down movement. It can be seen that the amount of movement of the position of the curved portion is twice the amount of vertical displacement of the car 4.
したがって、湾曲部の位置の移動量が分かれば、そのときのかご4の昇降変位量は、湾曲部の位置の移動量の半分の値として得ることが分かる。 Therefore, if the amount of movement of the position of the curved portion is known, it can be seen that the amount of vertical displacement of the car 4 at that time is obtained as a value half of the amount of movement of the position of the curved portion.
なお、この対応関係は、先に述べているとおり、ケーブル7の吊り下げられた状態での下端位置に形成される湾曲部の形状がかご位置に依存しない性質を持つことが関連して得られるものである。 As described above, this correspondence can be obtained in relation to the fact that the shape of the curved portion formed at the lower end position of the cable 7 in the suspended state has a property that does not depend on the car position. It is a thing.
以上では、実施の形態1に係る、エレベーターの位置検出装置の構成について、まず説明を行った。 In the above, the configuration of the elevator position detection device according to the first embodiment has been described first.
次に、エレベーターの位置検出装置の構成における、技術的な特徴部分の一つであるかご位置算出部14について、そこでの基本的な算出原理とかご位置算出部14の動作としての手順との説明を行った。具体的には、パターンマッチングの手法を利用するアルゴリズムについて説明を行った。 Next, regarding the car position calculation unit 14, which is one of the technical feature parts in the configuration of the position detection device of the elevator, the basic calculation principle there and the procedure as the operation of the car position calculation unit 14 will be described. Was done. Specifically, we explained an algorithm that uses a pattern matching method.
以上において説明した、エレベーターの位置検出装置について、その構成およびその効果を、以下に示しておく。 The configuration and effect of the elevator position detection device described above are shown below.
すなわち、実施の形態1に係る、エレベーターの位置検出装置は、昇降路31に設けられた機器に一端が、昇降路の中を昇降運動するかご4に他端が固定され、U字状に吊り下げられた状態での下端位置に湾曲部が形成されているベルト状のケーブル7と、ケーブル7のケーブル被覆部のうち少なくとも湾曲部の箇所には設けられ、その設けられた箇所のケーブル7に沿った曲げ変形に伴う物理量の変化を計測可能なセンサ10と、あらかじめ決められたかご位置にかご4があるときの湾曲部のケーブル7に沿った複数箇所にセンサ10が設けられている場合においてあらかじめ計測しておいたセンサ10による計測結果から得られたデータベース13に基づいて、現時点でのかご位置にかご4があるときのセンサ10による計測結果に対して現時点でのケーブル7における湾曲部の位置を推定し、推定した現時点でのケーブル7における湾曲部の位置に対応して定まる、現時点でのかご4の位置を算出するかご位置算出部14と、を備えたことを特徴とするものである。 That is, the position detection device for the elevator according to the first embodiment has one end fixed to the device provided in the hoistway 31 and the other end fixed to the car 4 that moves up and down in the hoistway, and is suspended in a U shape. The belt-shaped cable 7 having a curved portion formed at the lower end position in the lowered state and the cable 7 provided at least at the curved portion of the cable covering portion of the cable 7 are provided. When the sensor 10 is capable of measuring the change in physical quantity due to bending deformation along the line, and the sensor 10 is provided at a plurality of locations along the cable 7 at the curved portion when the car 4 is located at a predetermined car position. Based on the database 13 obtained from the measurement result by the sensor 10 measured in advance, the curved portion of the cable 7 at the present time is compared with the measurement result by the sensor 10 when the car 4 is at the current car position. It is characterized by including a car position calculation unit 14 that estimates the position and calculates the position of the car 4 at the present time, which is determined according to the position of the curved portion in the cable 7 at the present time. be.
さらに、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14は、かご位置算出部は、センサ10による計測結果を、ケーブル7上のセンサ10が設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、あらかじめ決められたかご位置にかご4があるときにあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列をテンプレートとして記憶してあるデータベース13を参照し、データベース13に記憶されているテンプレートとしての一次元データ列と現時点でのかご4の位置に対応するセンサ10による計測結果から得られる一次元データ列とのパターンマッチングを行い、最良な類似度が得られたパターンマッチング結果を基にして現時点でのケーブルにおける湾曲部の位置を推定し、推定した現時点でのケーブル7における湾曲部の位置に対応して定まる、現時点でのかご4の位置を算出する、ことを特徴とするものである。 Further, in the car position calculation unit 14 in the elevator position detection device according to the first embodiment, the car position calculation unit corresponds the measurement result by the sensor 10 to the position where the sensor 10 is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order, and the one-dimensional data string obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position. With reference to the database 13 stored as a template, the one-dimensional data string as a template stored in the database 13 and the one-dimensional data string obtained from the measurement result by the sensor 10 corresponding to the position of the car 4 at the present time. The position of the curved part in the cable at the present time is estimated based on the pattern matching result in which the best similarity is obtained, and the position of the curved part in the cable 7 at the present time is estimated corresponding to the position of the curved part in the cable 7 at the present time. It is characterized by calculating the position of the car 4 at the present time, which is determined.
そして、これらのエレベーターの位置検出装置によれば、かご4が終端階または終端階付近で特に有効となる位置検出装置を実現することができ、従来と比べて、エレベーターの定格速度に応じた適切な据付調整作業にあまり負担がかからない、という効果を奏するものである。 Then, according to the position detection device of these elevators, it is possible to realize a position detection device in which the car 4 is particularly effective in the terminal floor or the vicinity of the terminal floor, and it is appropriate according to the rated speed of the elevator as compared with the conventional case. This has the effect that the installation and adjustment work is not so burdensome.
実施の形態2.
図7は、実施の形態2に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。実施の形態2に係るエレベーターの位置検出装置は、実施の形態1に係るエレベーターの位置検出装置におけるかご位置算出部14を、変形した構成であるかご位置算出部14aに代えるものである。
Embodiment 2.
FIG. 7 is a diagram for explaining an outline of the configuration of the elevator position detection device according to the second embodiment. The elevator position detection device according to the second embodiment replaces the car position calculation unit 14 in the elevator position detection device according to the first embodiment with a car position calculation unit 14a having a modified configuration.
実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14aの一例としては、かご位置算出部は、センサ10による計測結果を、ケーブル7上のセンサが設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、あらかじめ決められたかご位置にかご4があるときにあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列をテンプレートとして記憶してあるデータベースを参照し、データベース13に記憶されているテンプレートとしての一次元データ列を基に補間して得られる一次元データ列と現時点でのかご4の位置に対応するセンサ10による計測結果から得られる一次元データ列とのパターンマッチングを行い、最良な類似度が得られたパターンマッチング結果を基にしてケーブル7における湾曲部の位置を推定し、推定した現時点でのケーブル7における湾曲部の位置に対応して定まる、現時点での前記かご4の位置を算出する、ことを特徴とするものである。 As an example of the car position calculation unit 14a in the elevator position detection device according to the second embodiment, the car position calculation unit corresponds the measurement result by the sensor 10 to the position where the sensor is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order, and the one-dimensional data string obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position. The sensor 10 corresponding to the one-dimensional data string obtained by referring to the database stored as a template and interpolating based on the one-dimensional data string as a template stored in the database 13 and the position of the car 4 at the present time. The position of the curved part in the cable 7 was estimated based on the pattern matching result obtained by performing pattern matching with the one-dimensional data string obtained from the measurement result obtained by the above, and the estimated current cable 7 It is characterized in that the position of the car 4 at the present time, which is determined according to the position of the curved portion in the above, is calculated.
以下、実施の形態2について説明を行う。 Hereinafter, the second embodiment will be described.
先に、図5を用いて、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14が取り扱う、センサ10による計測結果の例を示した。そして、図5において、黒丸で示す、ケーブル7の湾曲部における各センサ10の電気抵抗値を用いて、図5で示すような曲線を当てはめることができることを説明した。 Previously, with reference to FIG. 5, an example of the measurement result by the sensor 10 handled by the car position calculation unit 14 in the position detection device of the elevator according to the first embodiment is shown. Then, in FIG. 5, it was explained that the curve as shown in FIG. 5 can be applied by using the electric resistance value of each sensor 10 in the curved portion of the cable 7 indicated by the black circle.
しかしながら、実施の形態1では、データベース13に記憶されているテンプレートとしては、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列を利用するものであった。そのため、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果に依存して、かご位置算出部14の算出結果である現時点でのかご4の位置の精度に影響が出ることが分かる。すなわち、実施の形態1では、図5における黒丸で示す離散化したデータ(センサ10による計測結果である電気抵抗値)の影響が、かご位置算出部14の算出結果である現時点でのかご4の位置の精度に現れるという問題があった。 However, in the first embodiment, as the template stored in the database 13, a one-dimensional data string obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. Was to be used. Therefore, the accuracy of the position of the car 4 at the present time, which is the calculation result of the car position calculation unit 14, depends on the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. It can be seen that there is an effect on. That is, in the first embodiment, the influence of the discretized data (electrical resistance value which is the measurement result by the sensor 10) shown by the black circle in FIG. 5 is the calculation result of the car position calculation unit 14 at the present time. There was a problem that it appeared in the accuracy of the position.
そこで、実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14aは、実施の形態1で問題となる、かご位置算出部14の算出結果である現時点でのかご4の位置の精度を向上させるために改良されたものである。 Therefore, the car position calculation unit 14a in the elevator position detection device according to the second embodiment has the accuracy of the position of the car 4 at the present time, which is the calculation result of the car position calculation unit 14, which is a problem in the first embodiment. It has been improved to improve.
実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14aの具体的な技術的な特徴点としては、かご4が昇降路31の端部または端部付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列をテンプレートとして記憶してあるデータベース13を参照し、データベース13に記憶されているテンプレートの一次元データ列を基に補間して得られる一次元データ列と現時点でのかご4の位置に対応するセンサ10による計測結果から得られる一次元データ列とのパターンマッチングを行う点にある。 As a specific technical feature of the car position calculation unit 14a in the elevator position detection device according to the second embodiment, the car 4 is measured in advance when it is at or near the end of the hoistway 31. The primary obtained by referring to the database 13 in which the one-dimensional data string obtained from the measurement result by the sensor 10 is stored as a template and interpolating based on the one-dimensional data string of the template stored in the database 13. The point is to perform pattern matching between the original data string and the one-dimensional data string obtained from the measurement result by the sensor 10 corresponding to the current position of the car 4.
そして、実施の形態2において、実施の形態1と異なる点は、パターンマッチングを行う対象の一方である一次元データ列を、データベース13に記憶されているテンプレートの一次元データ列を基に補間して得られる一次元データ列とする点である。この実施の形態1と異なる点である一次元データ列とは、分かりやすく説明するならば、図5で示した、曲線上の点を利用して求めるものである、と言える。 Then, in the second embodiment, the difference from the first embodiment is that the one-dimensional data string, which is one of the objects to be pattern-matched, is interpolated based on the one-dimensional data string of the template stored in the database 13. It is a point to make it a one-dimensional data string obtained by It can be said that the one-dimensional data string, which is different from the first embodiment, is obtained by using the points on the curve shown in FIG. 5 if it is explained in an easy-to-understand manner.
つまり、実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14aでは、先に説明した、図5における黒丸で示す点である、離散化したデータを用いるのではなく、黒丸で示す点の隣り合うそれぞれの2点について補間したデータを用いるというものである。 That is, the car position calculation unit 14a in the elevator position detection device according to the second embodiment shows the points indicated by the black circles in FIG. 5 as described above, instead of using the discretized data. The data interpolated for each of the two adjacent points is used.
ここで注意すべき点は、以下のことである。 The points to be noted here are as follows.
実施の形態1において、図5における、センサ10による計測結果である電気抵抗値から得られる曲線は、ケーブル7の湾曲部の形状に対応して得られるものであることを説明した。加えて、この電気抵抗値から得られる曲線がケーブル7の湾曲部の形状に対応しているとは、電気抵抗値から得られる曲線とケーブル7の湾曲部の形状とが相似形の関係にあるということを必ずしも意味するものではないことを説明した。さらに、図5の横軸は、ケーブル7に沿ってあらかじめ決められた複数箇所にセンサ10が設けられた位置に対応しているものであり、その横軸の単位は、無次元であることも説明した。 In the first embodiment, it has been explained that the curve obtained from the electric resistance value which is the measurement result by the sensor 10 in FIG. 5 is obtained corresponding to the shape of the curved portion of the cable 7. In addition, the fact that the curve obtained from the electric resistance value corresponds to the shape of the curved portion of the cable 7 means that the curve obtained from the electric resistance value and the shape of the curved portion of the cable 7 have a similar shape. I explained that it does not necessarily mean that. Further, the horizontal axis of FIG. 5 corresponds to the position where the sensor 10 is provided at a plurality of predetermined positions along the cable 7, and the unit of the horizontal axis may be dimensionless. explained.
これらのことは、図5には、物理的な距離情報である、ケーブル7上のセンサ10の位置の間隔が、直接的に現れていないという問題があることを示すものである。 These facts show that there is a problem that the distance between the positions of the sensors 10 on the cable 7, which is the physical distance information, does not appear directly in FIG.
しかしながら、本実施の形態2では、図5において、黒丸で示す点の隣り合うそれぞれの2点を補間した曲線の長さが、物理的な距離情報である、ケーブル7上のセンサ10の位置の間隔に対応すると仮定することによって、この問題を解決するものである。 However, in the second embodiment, in FIG. 5, the length of the curve obtained by interpolating the two adjacent points indicated by the black circles is the physical distance information of the position of the sensor 10 on the cable 7. It solves this problem by assuming that it corresponds to the interval.
この仮定によって、パターンマッチング結果として、ケーブル7における湾曲部の位置を推定すること、および、現時点でのかご4の位置を算出することが可能になる。 With this assumption, as a pattern matching result, it is possible to estimate the position of the curved portion in the cable 7 and calculate the position of the car 4 at the present time.
その結果、実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14aによれば、実施の形態1において問題となる、かご位置算出部14の算出結果である現時点でのかご4の位置の精度について、実施の形態1と比較して、より向上させることができるという効果を奏するものである。 As a result, according to the car position calculation unit 14a in the elevator position detection device according to the second embodiment, the current car 4 which is the calculation result of the car position calculation unit 14 which is a problem in the first embodiment. This has the effect that the accuracy of the position can be further improved as compared with the first embodiment.
なお、補間の方法としては、図5で示した、曲線を用いた補間だけでなく、黒丸で示す点の隣り合うそれぞれの2点について直線補間したデータを用いても良い。直線補間したデータを用いる補間方法は、図5における黒丸で示す点の隣り合うそれぞれの2点を補間する直線の長さが、物理的な距離情報である、ケーブル7上のセンサ10の位置間隔に対応するという仮定に基づくものである。本実施の形態2に係るエレベーターの位置検出装置は、かご位置算出部14aにおいて、この直線補間したデータを用いる補間方法を用いた場合は、曲線補間したデータを用いる補間方法と比較して、補間計算が簡単に実行できるという効果がある。 As the interpolation method, not only the interpolation using the curve shown in FIG. 5, but also the data obtained by linearly interpolating each of the two adjacent points indicated by the black circles may be used. In the interpolation method using linearly interpolated data, the length of the straight line that interpolates each of the two adjacent points indicated by the black circles in FIG. 5 is the physical distance information, and the position interval of the sensor 10 on the cable 7 is the physical distance information. It is based on the assumption that it corresponds to. When the car position calculation unit 14a uses the interpolation method using the linearly interpolated data, the elevator position detecting device according to the second embodiment interpolates as compared with the interpolation method using the curve-interpolated data. It has the effect of making calculations easy.
実施の形態3.
図8は、実施の形態3に係る、エレベーターの位置検出装置の構成について、その概要を説明するための図である。実施の形態3に係るエレベーターの位置検出装置は、実施の形態1に係る、エレベーターの位置検出装置におけるかご位置算出部14を、変形した構成であるかご位置算出部14bに代えるものである。
Embodiment 3.
FIG. 8 is a diagram for explaining the outline of the configuration of the elevator position detecting device according to the third embodiment. The elevator position detection device according to the third embodiment replaces the car position calculation unit 14 in the elevator position detection device according to the first embodiment with the car position calculation unit 14b having a modified configuration.
実施の形態3に係る、エレベーターの位置検出装置におけるかご位置算出部14bは、現時点でのかご位置にかご4があるときのセンサ10による計測結果を、ケーブル7上のセンサ10が設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、あらかじめ決められたかご位置にかご4があるときにあらかじめ計測しておいたセンサ10による計測結果から得られたケーブル7における湾曲部の位置に関連する情報を記憶してあるデータベース13を参照し、データベース13に記憶されている湾曲部の位置に関連する情報と現時点でのかご位置にかご4があるときのセンサ10による計測結果から得られる一次元データ列とを用いて、現時点でのケーブル7における湾曲部の位置を推定し、推定した現時点でのケーブル7における湾曲部の位置に対応して定まる、現時点でのかご4の位置を算出する、ことを特徴とするものである。 The car position calculation unit 14b in the position detection device of the elevator according to the third embodiment measures the measurement result by the sensor 10 when the car 4 is at the current car position at the position where the sensor 10 is provided on the cable 7. It is treated as a one-dimensional data string obtained by arranging them in order corresponding to each of the above, and was obtained from the measurement result by the sensor 10 measured in advance when the car 4 is in a predetermined car position. Refer to the database 13 that stores the information related to the position of the curved portion in the cable 7, and when the information related to the position of the curved portion stored in the database 13 and the car 4 at the current car position are present. The position of the curved portion on the cable 7 at the present time is estimated using the one-dimensional data string obtained from the measurement result by the sensor 10, and is determined corresponding to the estimated position of the curved portion on the cable 7 at the present time. It is characterized in that the position of the car 4 is calculated.
以下、実施の形態3について説明を行う。 Hereinafter, the third embodiment will be described.
実施の形態3に係る、エレベーターの位置検出装置におけるかご位置算出部14bの具体的な技術的な特徴点としては、データベース13には、ケーブル7における湾曲部の位置に関連する情報を記憶してある点にある。 As a specific technical feature of the car position calculation unit 14b in the elevator position detection device according to the third embodiment, the database 13 stores information related to the position of the curved portion in the cable 7. There is a certain point.
これに対し、実施の形態1および実施の形態2では、データベース13には、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列をテンプレートとして記憶してある、としていた。 On the other hand, in the first embodiment and the second embodiment, the database 13 contains the one-dimensional data obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. He said that he remembered the columns as a template.
繰り返しになるが、この実施の形態3において、実施の形態1および実施の形態2と異なる点は、データベース13には、ケーブル7における湾曲部の位置に関連する情報を記憶してある点にある。 To reiterate, the difference between the first embodiment and the second embodiment in the third embodiment is that the database 13 stores information related to the position of the curved portion in the cable 7. ..
実施の形態3では、この異なる点による実施の形態3の効果として、エレベーターの位置検出装置におけるかご位置算出部14bにおいて、データベース13を用いて現時点でのケーブル7における湾曲部の位置を推定する上での演算負荷が、実施の形態1および実施の形態2と比較して軽減できるということを狙いとするものである。 In the third embodiment, as an effect of the third embodiment due to this difference, the car position calculation unit 14b in the position detection device of the elevator estimates the position of the curved portion in the cable 7 at the present time by using the database 13. The purpose is that the calculation load in the above can be reduced as compared with the first embodiment and the second embodiment.
以下、具体的に、実施の形態3について説明を行う。 Hereinafter, the third embodiment will be specifically described.
まず、ケーブル7における湾曲部の位置に関連する情報とは何かについて説明する。
ケーブル7における湾曲部の位置に関連する情報とは、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる代表値のことであると定義する。この代表値とは、文字通り、代表的な値のことであり、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から、その特徴を示す値を決定することで得られるものである。
First, what is the information related to the position of the curved portion in the cable 7 will be described.
The information related to the position of the curved portion in the cable 7 is defined as a representative value obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. .. This representative value is literally a typical value, and a value indicating the characteristic is determined from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. It is obtained by doing.
この代表値としては、例えば、極値や移動平均結果が考えられる。 As the representative value, for example, an extreme value or a moving average result can be considered.
このとき、このケーブル7における湾曲部の位置に関連する情報の特徴は、点の情報であるという点にある。一方、実施の形態1および実施の形態2の場合では、データベース13に記憶されているテンプレートとしてのデータは、かご4が昇降路31の端部または端部付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる一次元データ列の構造を持つデータであった。 At this time, the feature of the information related to the position of the curved portion in the cable 7 is that it is point information. On the other hand, in the case of the first embodiment and the second embodiment, the data as a template stored in the database 13 is measured in advance when the car 4 is at or near the end of the hoistway 31. The data had the structure of a one-dimensional data string obtained from the measurement results of the sensor 10.
実施の形態3に係る、エレベーターの位置検出装置におけるかご位置算出部14bでは、かご4が終端階または終端階付近にある場合にあらかじめ計測しておいたセンサ10による計測結果から得られる、ケーブル7における湾曲部の位置に関連する情報をデータベース13にまず記憶しておいた状態で、次の演算を実施する。 In the car position calculation unit 14b in the elevator position detection device according to the third embodiment, the cable 7 obtained from the measurement result by the sensor 10 measured in advance when the car 4 is on the terminal floor or near the terminal floor. The following calculation is performed in a state where the information related to the position of the curved portion in the above is first stored in the database 13.
つまり、このデータベース13に記憶されている、ケーブル7における湾曲部の位置に関連する情報と現時点でのかご4の位置にあるときのセンサ10による計測結果から得られる一次元データ列とを用いて、現時点でのかご4の位置にあるときのセンサ10による計測結果から得られる一次元データ列において、ケーブル7における湾曲部の位置に関連する情報との対応関係を見つけることによって、現時点でのケーブル7における湾曲部の位置を推定演算する。 That is, using the information related to the position of the curved portion in the cable 7 stored in the database 13 and the one-dimensional data string obtained from the measurement result by the sensor 10 at the current position of the car 4. By finding the correspondence with the information related to the position of the curved part in the cable 7 in the one-dimensional data string obtained from the measurement result by the sensor 10 when the car 4 is in the current position, the cable at the present time. The position of the curved portion in 7 is estimated and calculated.
この推定演算としては、ケーブル7における湾曲部の位置に関連する情報として極値を用いるならば、現時点でのかご4の位置にあるときのセンサ10による計測結果から得られる一次元データ列において、極値にほぼ一致するのが何番目のセンサ10であるのかによって、現時点でのケーブル7における湾曲部の位置を推定するというものである。 As this estimation calculation, if the extreme value is used as the information related to the position of the curved portion in the cable 7, in the one-dimensional data string obtained from the measurement result by the sensor 10 when the position of the car 4 is at the present time, The position of the curved portion in the cable 7 at the present time is estimated depending on the number of the sensor 10 that substantially matches the extreme value.
最後に、この現時点でのケーブル7における湾曲部の位置についての推定結果を利用して、現時点での前記かご4の位置を算出演算する。 Finally, the position of the car 4 at the present time is calculated and calculated by using the estimation result about the position of the curved portion in the cable 7 at the present time.
実施の形態1および実施の形態2に係る、エレベーターの位置検出装置におけるかご位置算出部14およびかご位置算出部14aでは、現時点でのケーブル7における湾曲部の位置を推定演算において、2つの一次元データ列を用いてパターンマッチングの演算を行うものである。 In the car position calculation unit 14 and the car position calculation unit 14a in the elevator position detection device according to the first embodiment and the second embodiment, the position of the curved portion in the cable 7 at the present time is estimated by two one-dimensional operations. A pattern matching operation is performed using a data string.
これに対し、実施の形態3に係る、エレベーターの位置検出装置におけるかご位置算出部14bでは、現時点でのケーブル7における湾曲部の位置を推定演算において、点情報と一次元データ列とを用いて、ケーブル7における湾曲部の位置に関連する情報との対応関係を見つける演算を行うものである。 On the other hand, in the car position calculation unit 14b in the elevator position detection device according to the third embodiment, the position of the curved portion in the cable 7 at the present time is estimated by using the point information and the one-dimensional data string. , The calculation for finding the correspondence with the information related to the position of the curved portion in the cable 7 is performed.
これらの比較から、実施の形態3に係る、エレベーターの位置検出装置は、データベース13を用いて現時点でのケーブル7における湾曲部の位置を推定する上での演算負荷が、実施の形態1および実施の形態2と比較して軽減できるという効果を奏することができることは明らかである。 From these comparisons, in the elevator position detecting device according to the third embodiment, the calculation load for estimating the position of the curved portion in the cable 7 at the present time using the database 13 is the same as that of the first embodiment and the embodiment. It is clear that the effect of mitigation can be achieved as compared with Form 2.
また、本開示においては、以上で説明した、実施の形態1ないし3のいずれか1項に記載のエレベーターの位置検出装置を用いた、エレベーターの制御システムとして、以下に示す構成を、さらに提案するものである。たとえば、本開示の実施の形態1に係る、エレベーターの制御システムの構成であれば、図2を用いて既に前述したように、本開示の実施の形態1に係るエレベーターの位置検出装置の構成に、制御部21を加えたものになる。 Further, in the present disclosure, the following configuration is further proposed as an elevator control system using the elevator position detection device according to any one of the first to third embodiments described above. It is a thing. For example, in the case of the configuration of the elevator control system according to the first embodiment of the present disclosure, as described above with reference to FIG. 2, the configuration of the elevator position detection device according to the first embodiment of the present disclosure , The control unit 21 is added.
本開示におけるエレベーターの制御システムでは、本開示におけるエレベーターの位置検出装置と、かごの昇降運動を制御する制御部21と、を備え、制御部21は、かご位置算出部14が算出した、現時点でのかご4の位置を利用してかご4の昇降運動を制御する、ことを特徴とするものである。この構成により、パルスエンコーダ8の代わりに、かご位置算出部が算出した、現時点でのかご4の位置を利用して、かご4の昇降運動の制御を実現することができる。これにより、パルスエンコーダの位置検出のバックアップとなる効果がある。 The elevator control system according to the present disclosure includes the elevator position detection device according to the present disclosure and the control unit 21 that controls the ascending / descending motion of the car, and the control unit 21 is calculated by the car position calculation unit 14 at present. It is characterized in that the ascending / descending motion of the car 4 is controlled by using the position of the car 4. With this configuration, it is possible to control the ascending / descending motion of the car 4 by using the current position of the car 4 calculated by the car position calculation unit instead of the pulse encoder 8. This has the effect of backing up the position detection of the pulse encoder.
これに加えて、本開示におけるエレベーターの制御システムでは、さらに制御部21は、かご4を昇降駆動するモータの回転角を検出するためのパルスエンコーダ8の出力情報を基に記憶された最新のかご位置情報を利用してかご4の通常時における昇降運動を制御するものであり、当該制御部21は、最新のかご位置情報が特定できなくなった後の昇降運動を開始する場合には、本開示におけるエレベーターの位置検出装置のかご位置算出が算出した、現時点でのかご4の位置を、最新のかご位置情報の代わりの情報として利用する、ことを特徴とするものであっても良い。 In addition to this, in the elevator control system of the present disclosure, the control unit 21 further raises and lowers the car 4, and the latest car stored based on the output information of the pulse encoder 8 for detecting the rotation angle of the motor. The position information is used to control the ascending / descending motion of the car 4 in a normal state, and when the control unit 21 starts the ascending / descending motion after the latest car position information cannot be specified, the present disclosure It may be characterized in that the current position of the car 4 calculated by the car position calculation of the elevator position detection device in the above is used as information instead of the latest car position information.
これにより、停電状態や電源装置による給電の遮断により最新のかご位置情報が特定できなくなった後の昇降運動を開始する場合に、エレベーターの位置検出装置におけるかご位置算出部の算出結果であるかご位置情報を、エレベーターの制御システムにおける制御部が最新のかご位置情報の代わりの情報として利用可能となる。したがって、停電状態や電源装置による給電の遮断によってエレベーターが終端階付近で非常停止し、さらにかご位置情報を失った場合であっても、その後の昇降運動を開始するにあたって、速やかに、上下方向のいずれの方向にかご4を走行させるべきか、あるいはかごが走行可能なのかを判断することができる。その結果、昇降運動開始時においてかごの安全な昇降運動を実現できるという効果を奏するものである。 As a result, when the ascending / descending motion is started after the latest car position information cannot be specified due to a power failure state or the power supply is cut off by the power supply device, the car position is the calculation result of the car position calculation unit in the elevator position detection device. The information can be used by the control unit in the elevator control system as an alternative to the latest car location information. Therefore, even if the elevator stops in the vicinity of the terminal floor due to a power outage or the power supply is cut off by the power supply device and the car position information is lost, the elevator can be swiftly moved up and down to start the subsequent ascending / descending motion. It is possible to determine in which direction the car 4 should be driven or whether the car can be driven. As a result, it is possible to realize a safe ascending / descending motion of the car at the start of the ascending / descending motion.
1 シーブ、2 ロープ、3 釣合錘、4 かご、5 制御ケーブル7、6 昇降路機器、7 ケーブル、8 パルスエンコーダ、9 エンコーダパルスカウンタ、10 センサ、11 読取部、12 かご位置推定部、13 データベース、14、14a、14b かご位置算出部、15 初期設定部、20 電源装置、21 制御部、31 昇降路、32 緩衝器。 1 sheave, 2 rope, 3 balance weight, 4 car, 5 control cable 7, 6 hoistway equipment, 7 cable, 8 pulse encoder, 9 encoder pulse counter, 10 sensor, 11 reader, 12 car position estimation unit, 13 Database, 14, 14a, 14b, car position calculation unit, 15 initial setting unit, 20 power supply unit, 21 control unit, 31 hoistway, 32 shock absorber.

Claims (7)

  1. 昇降路に設けられた機器に一端が、前記昇降路の中を昇降運動するかごに他端が固定され、U字状に吊り下げられた状態での下端位置に湾曲部が形成されているベルト状のケーブルと、
    前記ケーブルのケーブル被覆部のうち少なくとも前記湾曲部の箇所には設けられ、その設けられた箇所の前記ケーブルに沿った曲げ変形に伴う物理量の変化を計測可能なセンサと、
    あらかじめ決められたかご位置に前記かごがあるときの前記湾曲部の前記ケーブルに沿った複数箇所に前記センサが設けられている場合においてあらかじめ計測しておいた前記センサによる計測結果から得られたデータベースに基づいて、現時点での前記かご位置に前記かごがあるときの前記センサによる計測結果に対して現時点での前記ケーブルにおける前記湾曲部の位置を推定し、推定した当該現時点での前記ケーブルにおける前記湾曲部の位置に対応して定まる、現時点での前記かごの位置を算出するかご位置算出部と、
    を備えたことを特徴とするエレベーターの位置検出装置。
    A belt in which one end is fixed to a device provided in the hoistway and the other end is fixed to a car that moves up and down in the hoistway, and a curved portion is formed at the lower end position in a state of being suspended in a U shape. Cable and
    A sensor provided at least at the curved portion of the cable covering portion of the cable and capable of measuring a change in physical quantity due to bending deformation along the cable at the provided portion.
    A database obtained from measurement results by the sensors measured in advance when the sensors are provided at a plurality of locations along the cable in the curved portion when the car is in a predetermined car position. Based on the above, the position of the curved portion in the cable at the present time is estimated with respect to the measurement result by the sensor when the car is in the car position at the present time, and the estimated position of the curved portion in the cable at the present time is estimated. The car position calculation unit that calculates the current position of the car, which is determined according to the position of the curved part,
    Elevator position detection device characterized by being equipped with.
  2. 前記ケーブルは、制御ケーブルである、
    ことを特徴とする請求項1に記載のエレベーターの位置検出装置。
    The cable is a control cable,
    The position detection device for an elevator according to claim 1.
  3. 前記かご位置算出部は、
    前記現時点での前記かご位置に前記かごがあるときの前記センサによる計測結果を、前記ケーブル上の前記センサが設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、
    あらかじめ決められたかご位置に前記かごがあるときにあらかじめ計測しておいた前記センサによる計測結果から得られた前記ケーブルにおける前記湾曲部の位置に関連する情報を記憶してあるデータベースを参照し、
    当該データベースに記憶されている前記湾曲部の位置に関連する情報と現時点での前記かご位置に前記かごがあるときの前記センサによる計測結果から得られる前記一次元データ列とを用いて、現時点での前記ケーブルにおける前記湾曲部の位置を推定し、推定した当該現時点での前記ケーブルにおける前記湾曲部の位置に対応して定まる、現時点での前記かごの位置を算出する、
    ことを特徴とする請求項1または2に記載のエレベーターの位置検出装置。
    The car position calculation unit
    The measurement result by the sensor when the car is in the car position at the present time is treated as a one-dimensional data string obtained by arranging the measurement results by the sensor in order corresponding to the positions where the sensors are provided on the cable. It is a thing
    Refer to the database that stores the information related to the position of the curved portion in the cable obtained from the measurement result by the sensor measured in advance when the car is in the predetermined car position.
    At present, using the information related to the position of the curved portion stored in the database and the one-dimensional data string obtained from the measurement result by the sensor when the car is at the current position of the car. The position of the curved portion in the cable is estimated, and the position of the car at the present time, which is determined corresponding to the estimated position of the curved portion in the cable at the present time, is calculated.
    The position detection device for an elevator according to claim 1 or 2.
  4. 前記かご位置算出部は、
    前記センサによる計測結果を、前記ケーブル上の前記センサが設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、
    あらかじめ決められたかご位置に前記かごがあるときにあらかじめ計測しておいた前記センサによる計測結果から得られる前記一次元データ列をテンプレートとして記憶してあるデータベースを参照し、
    当該データベースに記憶されている前記テンプレートとしての前記一次元データ列と現時点での前記かごの位置に対応する前記センサによる計測結果から得られる前記一次元データ列とのパターンマッチングを行い、最良な類似度が得られたパターンマッチング結果を基にして現時点での前記ケーブルにおける前記湾曲部の位置を推定し、推定した当該現時点での前記ケーブルにおける前記湾曲部の位置に対応して定まる、現時点での前記かごの位置を算出する、
    ことを特徴とする請求項1または2に記載のエレベーターの位置検出装置。
    The car position calculation unit
    The measurement result by the sensor is treated as a one-dimensional data string obtained by arranging the measurement results by the sensors in order corresponding to the positions where the sensors are provided on the cable.
    Refer to the database that stores the one-dimensional data string obtained from the measurement result by the sensor that was measured in advance when the car is in the predetermined car position as a template.
    Pattern matching is performed between the one-dimensional data string as the template stored in the database and the one-dimensional data string obtained from the measurement result by the sensor corresponding to the current position of the car, and the best similarity is performed. Based on the pattern matching result obtained, the position of the curved portion in the cable at the present time is estimated, and the position of the curved portion in the cable at the present time is estimated and determined corresponding to the position of the curved portion in the cable at the present time. Calculate the position of the car,
    The position detection device for an elevator according to claim 1 or 2.
  5. 前記かご位置算出部は、
    前記センサによる計測結果を、前記ケーブル上の前記センサが設けられた位置にそれぞれ対応して順に並べることで得られる一次元のデータ列として取り扱うものであり、
    あらかじめ決められたかご位置に前記かごがあるときにあらかじめ計測しておいた前記センサによる計測結果から得られる前記一次元データ列をテンプレートとして記憶してあるデータベースを参照し、
    当該データベースに記憶されている前記テンプレートとしての前記一次元データ列を基に補間して得られる一次元データ列と現時点での前記かごの位置に対応する前記センサによる計測結果から得られる前記一次元データ列とのパターンマッチングを行い、最良な類似度が得られたパターンマッチング結果を基にして前記ケーブルにおける前記湾曲部の位置を推定し、推定した当該現時点での前記ケーブルにおける前記湾曲部の位置に対応して定まる、現時点での前記かごの位置を算出する、
    ことを特徴とする請求項1または2に記載のエレベーターの位置検出装置。
    The car position calculation unit
    The measurement result by the sensor is treated as a one-dimensional data string obtained by arranging the measurement results by the sensors in order corresponding to the positions where the sensors are provided on the cable.
    Refer to the database that stores the one-dimensional data string obtained from the measurement result by the sensor that was measured in advance when the car is in the predetermined car position as a template.
    The one-dimensional data string obtained by interpolation based on the one-dimensional data string as the template stored in the database and the one-dimensional data obtained from the measurement result by the sensor corresponding to the current position of the car. The position of the curved portion in the cable was estimated based on the pattern matching result obtained by performing pattern matching with the data string and the best similarity was obtained, and the estimated position of the curved portion in the cable at the present time was estimated. Calculate the current position of the car, which is determined according to
    The position detection device for an elevator according to claim 1 or 2.
  6. 請求項1ないし5のいずれか1項に記載のエレベーターの位置検出装置と、
    前記かごの昇降運動を制御する制御部と、を備え、
    前記制御部は、
    前記かご位置算出部が算出した、現時点での前記かごの位置を利用して前記かごの昇降運動を制御する、
    ことを特徴とするエレベーターの制御システム。
    The position detection device for the elevator according to any one of claims 1 to 5.
    A control unit that controls the ascending / descending motion of the car is provided.
    The control unit
    The ascending / descending motion of the car is controlled by using the current position of the car calculated by the car position calculation unit.
    An elevator control system that features this.
  7. 前記制御部は、前記かごを昇降駆動するモータの回転角を検出するためのパルスエンコーダの出力情報を基に記憶された最新のかご位置情報を利用して前記かごの通常時における昇降運動を制御するものであり、
    当該制御部は、
    前記最新のかご位置情報が特定できなくなった後の昇降運動を開始する場合には、前記かご位置算出部が算出した、現時点での前記かごの位置を、前記最新のかご位置情報の代わりの情報として利用する、
    ことを特徴とする請求項6に記載のエレベーターの制御システム。
    The control unit controls the ascending / descending motion of the car in a normal state by using the latest car position information stored based on the output information of the pulse encoder for detecting the rotation angle of the motor that drives the car up / down. To do
    The control unit
    When the ascending / descending motion is started after the latest car position information cannot be specified, the current car position calculated by the car position calculation unit is used as information instead of the latest car position information. Use as,
    The elevator control system according to claim 6.
PCT/JP2020/013943 2020-03-27 2020-03-27 Position detection device for elevator and elevator control system using same WO2021192209A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/013943 WO2021192209A1 (en) 2020-03-27 2020-03-27 Position detection device for elevator and elevator control system using same
CN202080097386.6A CN115279680B (en) 2020-03-27 2020-03-27 Elevator position detecting device and elevator control system using the same
JP2022510313A JP7226647B2 (en) 2020-03-27 2020-03-27 Elevator position detector and elevator control system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013943 WO2021192209A1 (en) 2020-03-27 2020-03-27 Position detection device for elevator and elevator control system using same

Publications (1)

Publication Number Publication Date
WO2021192209A1 true WO2021192209A1 (en) 2021-09-30

Family

ID=77889944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013943 WO2021192209A1 (en) 2020-03-27 2020-03-27 Position detection device for elevator and elevator control system using same

Country Status (3)

Country Link
JP (1) JP7226647B2 (en)
CN (1) CN115279680B (en)
WO (1) WO2021192209A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115277Y1 (en) * 1970-09-30 1976-04-22
JPH05262467A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Elevator position detecting device
JP2006036430A (en) * 2004-07-26 2006-02-09 Mitsubishi Electric Corp Elevator device
CN110054046A (en) * 2019-05-17 2019-07-26 日立楼宇技术(广州)有限公司 Method, apparatus, system and lift facility are determined based on the car position of compensation chain

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010207A (en) * 2002-06-04 2004-01-15 Mitsubishi Electric Corp Car position detection device of elevator
JP4940895B2 (en) * 2006-10-31 2012-05-30 株式会社日立製作所 Elevator
JP2012224422A (en) * 2011-04-18 2012-11-15 Hitachi Ltd Elevator position detecting device and method
JP5932577B2 (en) * 2012-09-06 2016-06-08 株式会社日立製作所 Elevator safety system
WO2014136200A1 (en) * 2013-03-05 2014-09-12 三菱電機株式会社 Elevator device and method for detecting position of elevator car
CN107406226A (en) * 2015-04-03 2017-11-28 三菱电机株式会社 Lift appliance
KR102135192B1 (en) * 2016-07-20 2020-07-17 미쓰비시덴키 가부시키가이샤 Elevator control device and control method
JP6804430B2 (en) * 2017-11-30 2020-12-23 株式会社日立製作所 Elevator control device
EP3599200B1 (en) * 2018-07-23 2022-06-01 KONE Corporation Elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115277Y1 (en) * 1970-09-30 1976-04-22
JPH05262467A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Elevator position detecting device
JP2006036430A (en) * 2004-07-26 2006-02-09 Mitsubishi Electric Corp Elevator device
CN110054046A (en) * 2019-05-17 2019-07-26 日立楼宇技术(广州)有限公司 Method, apparatus, system and lift facility are determined based on the car position of compensation chain

Also Published As

Publication number Publication date
CN115279680B (en) 2023-11-28
JP7226647B2 (en) 2023-02-21
JPWO2021192209A1 (en) 2021-09-30
CN115279680A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6008995B2 (en) Elevator equipment
EP2867150B1 (en) Position and load measurement system for an elevator
JP4468224B2 (en) Elevator position detection system and method
US9926170B2 (en) Movement-monitoring system of an elevator installation
JP4588773B2 (en) Elevator abnormality detection device
JP5932577B2 (en) Elevator safety system
KR20180031032A (en) Elevator device
CN104909234A (en) Condition monitoring of vertical transport equipment
JP2009215057A (en) Compulsory deceleration control system of elevator
CN109850705B (en) Control device for elevator
KR20120123124A (en) Control device for elevator
WO2021192209A1 (en) Position detection device for elevator and elevator control system using same
CN110775751B (en) Elevator, elevator maintenance inspection system, and elevator abnormality diagnosis device
WO2018016033A1 (en) Elevator control device and control method
JP3806287B2 (en) Elevator equipment
JP2007168937A (en) Elevator abnormality detecting device
JP6680179B2 (en) Elevator equipment
JP6648668B2 (en) Elevator equipment
CN114524341A (en) Detection method and device of elevator, elevator and computer readable storage medium
WO2011089691A1 (en) Elevator apparatus
JP6306135B1 (en) Elevator control device
KR20200130929A (en) System for detecting position of an elevator car
JP7347666B2 (en) Elevator abnormality detection device
CN108689273A (en) Elevator overtravel tests system and method
KR102333643B1 (en) anomaly detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927512

Country of ref document: EP

Kind code of ref document: A1