WO2021190312A1 - 透镜***、摄像装置及移动体 - Google Patents

透镜***、摄像装置及移动体 Download PDF

Info

Publication number
WO2021190312A1
WO2021190312A1 PCT/CN2021/080005 CN2021080005W WO2021190312A1 WO 2021190312 A1 WO2021190312 A1 WO 2021190312A1 CN 2021080005 W CN2021080005 W CN 2021080005W WO 2021190312 A1 WO2021190312 A1 WO 2021190312A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
lens system
imaging
lenses
Prior art date
Application number
PCT/CN2021/080005
Other languages
English (en)
French (fr)
Inventor
中辻达也
大畑笃
藤仓崇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2021190312A1 publication Critical patent/WO2021190312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Definitions

  • the invention relates to a lens system, an imaging device and a moving body.
  • Patent documents 1-3 disclose a wide-angle lens.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-042377
  • Patent Document 2 Japanese Patent Document Special Form No. 2018-522266
  • Patent Document 3 Specification of U.S. Patent Application Publication No. 2019/0250380
  • the lens system according to an aspect of the present invention includes a first lens group, an aperture stop, and a second lens group in order from the object side to the image side.
  • the first lens group and the second lens group may include a total of seven lenses.
  • the first lens group may include one to four lenses.
  • the second lens group may include one or more lenses having a biconvex aspheric shape.
  • TTL be the distance on the optical axis from the lens surface closest to the object side of the first lens group to the imaging surface when focusing on an object at infinity
  • Y is the maximum image height
  • HFOV is the maximum half-field angle
  • EPD is the distance from the exit pupil to the imaging surface
  • G1R1MR is the maximum ray height of the lens surface closest to the object side of the first lens group, which can satisfy the conditional formula:
  • Nd1 be the refractive index of the one or more biconvex aspherical lenses included in the second lens group with respect to the d-line, and the conditional formula can be satisfied:
  • vd1 be the Abbe number of the d-line of the one or more lenses with biconvex aspheric shape included in the second lens group, and the conditional formula can be satisfied:
  • fL the focal length of the lens closest to the image side of the second lens group
  • f the focal length of the entire system
  • An imaging device includes the above-mentioned lens system.
  • the imaging device includes an imaging element.
  • a moving body includes the above-mentioned lens system and moves.
  • the moving body may be an unmanned aircraft.
  • the lens system it is possible to provide a lens system having a large image circle.
  • the total optical length including the back focus can be shortened.
  • FIG. 1 shows the lens structure of the lens system 100 and the optical member p in the first embodiment at the same time.
  • FIG. 2 shows the spherical aberration, astigmatism, and distortion aberration of the lens system 100 in the first embodiment in an infinity focus state.
  • FIG. 3 shows the lens structure of the lens system 200 and the optical component P in the second embodiment at the same time.
  • FIG. 4 shows the spherical aberration, astigmatism, and distortion aberration of the lens system 200 in the second embodiment in an infinity focus state.
  • FIG. 5 shows the lens structure of the lens system 300 and the optical component P in the third embodiment at the same time.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 in the third embodiment in an infinity focus state.
  • FIG. 7 shows the lens structure of the lens system 400 and the optical component P in the fourth embodiment at the same time.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 in the fourth embodiment in an infinity focus state.
  • FIG. 9 shows the lens structure of the lens system 500 and the optical component P in the fifth embodiment at the same time.
  • FIG. 10 shows spherical aberration, astigmatism, and distortion aberration of the lens system 500 in the fifth embodiment in an infinity focus state.
  • FIG. 11 shows the lens structure of the lens system 600 and the optical component P in the sixth embodiment at the same time.
  • FIG. 12 shows spherical aberration, astigmatism, and distortion aberration of the lens system 600 in the sixth embodiment in an infinity focus state.
  • FIG. 13 schematically shows an example of a mobile body system 10 including an unmanned aerial vehicle (UAV) 40 and a controller 50.
  • UAV unmanned aerial vehicle
  • FIG. 14 shows an example of the functional blocks of UAV40.
  • FIG. 15 is an external perspective view showing an example of the stabilizer 3000.
  • the lens system of an embodiment includes a first lens group, an aperture stop, and a second lens group in order from the object side to the image side.
  • the first lens group and the second lens group include a total of seven lenses.
  • the first lens group includes one to four lenses.
  • the second lens group includes one or more lenses having a biconvex aspheric shape.
  • TTL be the distance on the optical axis from the lens surface closest to the object side of the first lens group to the imaging surface when focusing on an object at infinity
  • Y is the maximum image height
  • HFOV is the maximum half-field angle
  • EPD is the distance from the exit pupil to the imaging surface
  • G1R1MR is the maximum ray height of the lens surface closest to the object side of the first lens group, which satisfies the conditional formula:
  • the lens system can be miniaturized while shortening the back focus.
  • the diameter of the lens closest to the object side of the first lens group is usually significantly larger.
  • Conditional expression (1) specifies the ratio of the total length to the image height.
  • the incident angle of the imaging element becomes large, and it is difficult to maintain the surrounding light amount.
  • the entire system of the lens can be miniaturized, the manufacturing sensitivity is extremely high, making the manufacturing of the lens system difficult.
  • the total length of the entire lens system becomes larger relative to the size of the sensor.
  • the manufacturing difficulty is relatively low, it is advantageous for aberration correction, but it is not easy to miniaturize the lens system.
  • Conditional expression (2) specifies the viewing angle. By satisfying conditional expression (2), a wider-angle lens structure is formed.
  • Conditional expression (3) specifies the distance from the exit pupil to the imaging surface.
  • the lower limit of the conditional expression (3) is equal to or lower, it is difficult to maintain an appropriate incident angle of the imaging element.
  • the upper limit of the conditional expression (3) is greater than or equal to, it is difficult to reduce the size of the lens system.
  • Conditional expression (4) specifies the size of the lens closest to the object side of the first lens group.
  • the lower limit of the conditional expression (4) is equal to or less, although it is advantageous for aberration correction, it is difficult to contribute to the miniaturization of the lens system.
  • Nd1 is the refractive index of the d-line of one or more lenses with biconvex aspheric shapes included in the second lens group, and satisfies the conditional formula:
  • vd1 is the Abbe number of the d-line of one or more lenses with biconvex aspheric shape included in the second lens group, which satisfies the conditional formula:
  • Conditional expression (5) and conditional expression (6) define the glass material of the lens having positive refractive power in the second lens group.
  • environmental changes such as temperature cause greater changes in the imaging position. Changes in the imaging position caused by environmental changes can be corrected to a certain extent during focusing, but correction errors will occur. Therefore, it is desirable to reduce the variation of the imaging position by reducing the refractive index of the glass material of the lens having a high refractive power shape.
  • chromatic aberration can be reduced and the optical performance of the lens system can be improved.
  • fL the focal length of the lens closest to the image side of the second lens group
  • f the focal length of the entire system
  • Conditional expression (7) specifies the ratio of the refractive power of the entire lens system to the refractive power of the lens closest to the image side of the second lens group. If it is less than or equal to the lower limit of the conditional expression, the refractive power of the lens closest to the image side of the second lens group becomes larger. The smaller the entire system of the lens system is, the closer the lens of the second lens group closest to the image side is to the imaging surface, so this lens has a larger volume than other lenses. Therefore, if the refractive power of the lens closest to the image side of the second lens group is large, the change in the imaging position when the environment changes increases, and the environment reliability decreases. Therefore, it is desirable to satisfy the conditional expression (7).
  • f1 be the focal length of the first lens group and f2 be the focal length of the second lens group, satisfying the conditional formula:
  • the refractive power of the second lens group is relatively enhanced, and although it contributes to the miniaturization of the lens system, it is difficult to correct off-axis aberrations.
  • the lens system it is possible to provide a lens system having a large image circle and high optical performance, while shortening the total optical length including the back focus, and being affected by environmental changes. Smaller.
  • lenses that actually have no refractive power may be included.
  • Optical elements other than lenses that actually have refractive power such as diaphragms, filters, and glass covers, and/or mechanical elements such as lens flanges, imaging elements, and shake correction mechanisms.
  • optical elements and/or mechanism elements other than lenses that actually have refractive power may be included.
  • a table showing the surface number, radius of curvature, surface interval, refractive index, Abbe number, and glass material of lens data is disclosed.
  • the surface number is shown in the surface number column, with the surface closest to the object side as the first surface, and the surface number is sequentially increased toward the image side.
  • the R column shows the radius of curvature of each surface. The sign of the radius of curvature is positive when the surface shape is convex toward the object side, and negative when it is convex toward the image surface.
  • the "INF" in the radius of curvature indicates that the surface is flat.
  • Column D shows the surface spacing on the optical axis between each surface and the surface adjacent to the image side.
  • the column Nd shows the refractive index of each optical element with respect to the d-line (wavelength 587.6 nm (nanometer)).
  • the vd column shows the Abbe number based on the d-line of each optical element.
  • the column of glass material shows whether the glass material of the lens is plastic or glass.
  • the lens data also includes the aperture stop S.
  • the term (STO) is shown in the surface number column of the surface corresponding to the aperture stop S.
  • represents the sum of m.
  • f represents the focal length.
  • Fno represents the F number.
  • represents the half angle of view (the maximum half angle of view).
  • Y represents the maximum image height.
  • Dex represents the exit pupil distance.
  • the specification data indicates the value when focusing on a subject at infinity.
  • the lens system when the lens system is mounted on an imaging device as an imaging lens, it is preferable to include various filters such as a low-pass filter corresponding to the specifications of the imaging device, and optical elements such as a cover glass for protection.
  • various filters such as a low-pass filter corresponding to the specifications of the imaging device
  • optical elements such as a cover glass for protection.
  • an example including a lens system and an optical member P as an example of the optical element involved is shown.
  • the lens system of the present embodiment may adopt a method including or not including the optical element involved.
  • the lens system including the relevant optical element and the lens system not including the relevant optical element can be said to be equivalent lens systems.
  • Gi represents a lens group.
  • the i after the letter G in “Gi” is a natural number, which is used to identify the lens group included in the lens system in each embodiment.
  • the lens group is configured to include one or more lenses.
  • "Lj" represents a lens.
  • the j after the letter L in “Lj” is a natural number, which is used to identify the lens included in the lens system in each embodiment.
  • the lens to which the symbol Lj is assigned does not mean that the lens to which the same symbol Lj is assigned in the other embodiments is the same lens.
  • an optical element such as a lens to which a specific symbol is assigned does not mean that the optical element to which the same symbol is assigned in other embodiments is the same optical element.
  • FIG. 1 shows the lens structure of the lens system 100 and the optical component P in the first embodiment at the same time.
  • the lens system 100 of the first embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1, the aperture stop S, and the second lens group G2 can move as a whole to perform focusing.
  • the first lens group G1 is composed of two negative aspheric meniscus lenses L1 and L2 with a concave surface facing the image side, a total of two lenses. According to this configuration, the negative component also precedes, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the second lens group G2 consists of a biconvex positive aspheric lens L3, a negative aspheric meniscus lens L4 with a convex surface facing the object side, a biconvex positive aspheric lens L5, and a negative concave surface facing the object side.
  • the aspheric meniscus lens L6 and the aspheric lens L7 whose convex surface faces the object side and the concave surface faces the image side, and which are positive in the paraxial region, consist of a total of five lenses.
  • the third positive aspheric lens L5 with a biconvex shape from the object side in the second lens group G2 is made of a glass material with a high Abbe number, it is possible to appropriately correct aberrations for light of various angles of view, and to achieve good The balance realizes the correction of on-axis aberration and off-axis aberration.
  • the fourth lens L6 from the object side in the second lens group G2 is made of a plastic material with a low Abbe number, which can improve the overall system performance of the lens system. At the same time of environmental reliability, the on-axis chromatic aberration and off-axis chromatic aberration are well corrected.
  • Table 1 shows lens data of the lens system 100 of the first embodiment.
  • Table 2 is a table showing aspheric surface data of the lens system 100.
  • Table 3 shows the focal length f, F number Fno, half angle of view ⁇ , image height Y, and exit pupil distance Dex of the entire system when focusing on a subject at infinity of the lens system 100 of the first embodiment. Table of specification data.
  • FIG. 2 shows spherical aberration, astigmatism, and distortion aberration of the lens system 100 in a state where a subject at infinity is focused.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the broken line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that various aberrations in the lens system 100 of the first embodiment are well corrected and have excellent imaging performance.
  • FIG. 3 shows the lens structure of the lens system 200 and the optical component P in the second embodiment at the same time.
  • the lens system 200 of the second embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1, the aperture stop S, and the second lens group G2 can move as a whole to perform focusing.
  • the first lens group G1 is composed of a total of two negative aspheric meniscus lenses L1 and L2 with a concave surface facing the image side. According to this configuration, the negative component also precedes, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the second lens group G2 consists of a biconvex positive aspheric lens L3, a negative aspheric meniscus lens L4 with a convex surface facing the object side, a biconvex positive aspheric lens L5, and a negative concave surface facing the object side.
  • the first and third positive aspheric lenses L3 and L5 of double convex shape from the object side in the second lens group G2 are made of a glass material with an Abbe number greater than 56, it is possible to appropriately respond to light of various angles of view. By performing aberration correction, on-axis aberrations and off-axis aberrations can be corrected with a good balance.
  • the three lenses L3, L4, and L5 from the object side in the second lens group G2 are made of glass material.
  • the second lens group G2 separates from the object
  • the fourth lens L6 from the side is made of a plastic material with a low Abbe number, which can improve the environmental reliability of the entire lens system, and can well correct the axial chromatic aberration and off-axis chromatic aberration.
  • Table 4 shows lens data of the lens system 200 of the second embodiment.
  • Table 5 is a table showing aspheric surface data of the lens system 200.
  • Table 6 shows the specifications of the focal length f, F number Fno, half field angle ⁇ , image height Y, and exit pupil distance Dex of the entire system when the lens system 200 of the second embodiment focuses on a subject at infinity. Data table.
  • FIG. 4 shows the spherical aberration, astigmatism, and distortion aberration of the lens system 200 in a state where the subject at infinity is focused.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the broken line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that the lens system 200 of the second embodiment has various aberrations well corrected and has excellent imaging performance.
  • FIG. 5 shows the lens structure of the lens system 300 and the optical component P in the third embodiment at the same time.
  • the lens system 300 of the third embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1, the aperture stop S, and the second lens group G2 can move as a whole to perform focusing.
  • the first lens group G1 is composed of a total of three negative aspheric meniscus lenses L1 and L2 with a concave surface facing the image side and one positive aspheric meniscus lens L3 with a convex surface facing the object side. According to this configuration, the negative components of the entire system of the first lens group G1 are arranged in advance, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the second lens group G2 consists of two lenses, positive aspheric lenses L4 and L5 with a biconvex shape, a negative aspheric meniscus lens L6 with a concave surface facing the object side, a convex surface facing the object side and a concave surface facing the image side.
  • the aspheric lens L7 that is positive in the axial region is composed of a total of four lenses.
  • the first and second double-convex positive aspheric lenses L4 and L5 in the second lens group G2 from the object side are made of glass material with an Abbe number greater than 56, which can be suitable for light of various viewing angles. Correction of aberrations is carried out so that the on-axis aberrations and off-axis aberrations can be corrected with a good balance.
  • the two lenses L4 and L5 from the object side in the second lens group G2 are made of glass material, and the change in refractive index and the change in refractive index corresponding to changes in the environment can be changed from the object in the second lens group G2.
  • the third lens L6 from the side is made of a plastic material with a low Abbe number, which can improve the environmental reliability of the entire lens system and at the same time can well correct the axial chromatic aberration and off-axis chromatic aberration.
  • Table 7 shows lens data of the lens system 300 in the third embodiment.
  • Table 8 is a table showing aspheric surface data of the lens system 300.
  • Table 9 shows the focal length f, the F number Fno, the half field angle ⁇ , the image height Y, and the exit pupil distance of the entire system when the lens system 300 in the third embodiment focuses on a subject at infinity.
  • FIG. 6 shows spherical aberration, astigmatism, and distortion aberration of the lens system 300 in a state where the subject at infinity is in focus.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the broken line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that the lens system 300 of the third embodiment has various aberrations well corrected and has excellent imaging performance.
  • FIG. 7 shows the lens structure of the lens system 400 and the optical component P in the fourth embodiment at the same time.
  • the lens system 400 of the fourth embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1, the aperture stop S, and the second lens group G2 can move as a whole to perform focusing.
  • the first lens group G1 consists of two negative aspheric meniscus lenses L1 and L2 with a concave surface facing the image side and L2, a biconcave negative aspheric lens L3, and a positive aspheric lens L4 with a convex surface facing the object side, a total of four Lens composition.
  • the negative components of the entire system of the first lens group G1 are arranged in advance, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the position of the aperture stop S is close to the image surface, and the light deflection angle after the second lens group G2 becomes larger, making it difficult to correct aberrations.
  • the second lens group G2 consists of a biconvex positive aspheric lens L5, a negative aspheric lens L6 with a concave surface facing the object side, and a positive aspheric lens in the paraxial region with a convex surface facing the object side and a concave surface facing the image side.
  • L7 consists of three lenses in total.
  • the double-convex positive aspheric lens L5 in the second lens group G2 is composed of a glass material with an Abbe number greater than 56, and can appropriately correct aberrations for light of each viewing angle, thereby achieving axial aberrations and aberrations. The correction of off-axis aberration is well balanced.
  • the double-convex positive aspheric lens L5 in the second lens group G2 is made of a glass material.
  • the second lens group G2 from the object side The second lens L6 is made of a plastic material with a low Abbe number, which can improve the environmental reliability of the entire lens system and at the same time can well correct the axial chromatic aberration and off-axis chromatic aberration.
  • Table 10 shows lens data of the lens system 400 in the fourth embodiment.
  • Table 11 is a table showing aspheric surface data of the lens system 400.
  • Table 12 shows the focal length f, F number Fno, half field angle ⁇ , image height Y, and exit pupil distance of the lens system 400 in the fourth embodiment when focusing on a subject at infinity.
  • FIG. 8 shows spherical aberration, astigmatism, and distortion aberration of the lens system 400 in a state where the subject at infinity is in focus.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the dashed line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that the lens system 400 of the fourth embodiment has various aberrations well corrected and has excellent imaging performance.
  • FIG. 9 shows the lens structure of the lens system 500 and the optical component P in the fifth embodiment at the same time.
  • the lens system 500 of the fifth embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1, the aperture stop S, and the second lens group G2 can move as a whole to perform focusing.
  • the first lens group G1 is composed of a negative aspheric meniscus lens L1 with a concave surface facing the image side. According to this configuration, the negative components of the entire system of the first lens group are arranged first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the second lens group G2 consists of a biconvex positive aspheric lens L2, a positive aspheric meniscus lens L3 with a concave surface facing the object side, a biconvex positive aspheric lens L4, and a biconcave negative aspheric lens L3.
  • the spherical lens L5, a convex surface facing the object side and a concave surface facing the image side, are composed of a total of six aspheric lenses L6 and L7, which are positive in the paraxial region.
  • the third positive aspheric lens L4 with a biconvex shape from the object side in the second lens group G2 is made of a glass material with an Abbe number greater than 56, and can appropriately correct aberrations for light of various viewing angles, thereby enabling Achieve a good balance of correction of on-axis aberration and off-axis aberration.
  • the third positive aspheric lens L4 with a biconvex shape from the object side in the second lens group G2 is made of a glass material.
  • the second lens The fourth lens L5 from the object side in the group G2 is made of a low Abbe number plastic material, which can improve the environmental reliability of the entire lens system while simultaneously correcting the axial chromatic aberration and off-axis chromatic aberration. Corrected well.
  • Table 13 shows lens data of the lens system 500 in the fifth embodiment.
  • Table 14 is a table showing aspheric surface data of the lens system 500.
  • Table 15 shows the focal length f, F number Fno, half field angle ⁇ , image height Y, and exit pupil distance of the lens system 500 in the fifth embodiment when focusing on a subject at infinity.
  • FIG. 10 shows spherical aberration, astigmatism, and distortion aberration of the lens system 500 in a state where the subject at infinity is in focus.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the broken line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that the lens system 500 of the fifth embodiment has various aberrations well corrected and has excellent imaging performance.
  • FIG. 11 shows the lens structure of the lens system 600 and the optical component P in the sixth embodiment at the same time.
  • the lens system 600 of the sixth embodiment is composed of a first lens group G1 including a negative refractive power, an aperture stop S, and a second lens group G2 including a positive refractive power, in order from the object side.
  • the first lens group G1 is composed of two negative aspheric meniscus lenses L1 and L2 with a concave surface facing the image side, a total of two lenses.
  • the negative components are arranged first, and in a lens system with a small lens diameter, spherical aberration and off-axis aberration can be corrected well.
  • the second lens group G2 consists of a biconvex positive aspheric lens L3, a negative aspheric meniscus lens L4 with a convex surface facing the object side, a biconvex positive aspheric lens L5, and a negative concave surface facing the object side.
  • the aspheric meniscus lens L6 and the aspheric lens L7 whose convex surface faces the object side and the concave surface faces the image side, and which are positive in the paraxial region, consist of a total of five lenses.
  • the third positive aspheric lens L5 with a biconvex shape from the object side in the second lens group G2 is made of a glass material with a high Abbe number. It is possible to appropriately correct aberrations for light of each angle of view, thereby enabling Achieve a good balance of correction of on-axis aberration and off-axis aberration.
  • the fourth lens L6 from the object side in the second lens group G2 is made of a low Abbe number plastic material, which can improve the overall lens system At the same time of environmental reliability, it can well correct the on-axis chromatic aberration and off-axis chromatic aberration.
  • focusing is performed by moving only the lens L7 of the second lens group G2 closest to the image side in the optical axis direction.
  • the lens L7 needs to have a certain degree of refractive power.
  • Table 16 shows lens data of the lens system 600 in the sixth embodiment.
  • Table 17 is a table showing aspheric surface data of the lens system 600.
  • Table 18 shows the focal length f, F number Fno, half field angle ⁇ , image height Y, and exit pupil distance of the lens system 600 in the sixth embodiment when focusing on a subject at infinity.
  • FIG. 12 shows spherical aberration, astigmatism, and distortion aberration of the lens system 600 in a state where the subject at infinity is in focus.
  • the one-dot chain line represents the value of the C line (656.27 nm)
  • the solid line represents the value of the d line (587.56 nm)
  • the broken line represents the value of the g line (435.84 nm).
  • the solid line represents the value of the sagittal image surface of the d-line
  • the broken line represents the value of the meridional image surface of the d-line.
  • the value of the d-line is shown in the distortion aberration. From the various aberration diagrams, it is obvious that the lens system 600 of the sixth embodiment has various aberrations well corrected and has excellent imaging performance.
  • Table 19 shows the corresponding values of the conditional expressions (1) to (8) in the lens systems from the first embodiment to the sixth embodiment.
  • the lens system of this embodiment it is possible to provide a lens system that has a large image circle and includes high optical performance. The impact of changes is small.
  • the configurations included in the above-mentioned lens system can be combined arbitrarily, and can be appropriately and selectively adopted according to the required specifications.
  • the lens system based on the above embodiment may satisfy conditional expressions (1) to (8), (1-1), and (3-1) on the basis of satisfying conditional expressions (1) to (8), ( Any one of 1-1) and (3-1) may satisfy any combination of these conditional expressions.
  • the present invention has been described by enumerating the embodiments and examples, but the present invention is not limited to the above-mentioned embodiments and examples, and various modifications can be made.
  • the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens are not limited to the values shown in the above-mentioned respective embodiments, and other values may be adopted.
  • the lens system according to this embodiment can be applied to lens systems for imaging devices such as digital cameras and video cameras.
  • the lens system according to this embodiment can be applied to a lens system that does not have a zoom mechanism.
  • the lens system according to this embodiment can be applied to lens systems such as aerial cameras and surveillance cameras.
  • the lens system according to this embodiment can be applied to an imaging lens included in a non-interchangeable lens type imaging device.
  • the lens system according to this embodiment can be applied to interchangeable lenses of interchangeable lens cameras such as single-lens reflex cameras.
  • FIG. 13 schematically shows an example of a mobile body system 10 including an unmanned aerial vehicle (UAV) 40 and a controller 50.
  • the UAV 40 includes a UAV main body 1101, a universal joint 1110, a plurality of camera devices 1230, and a camera device 1220.
  • the imaging device 1220 includes a lens device 1160 and an imaging unit 1140.
  • the lens device 1160 includes the above-mentioned lens system.
  • the UAV40 is an example of a moving body that includes the imaging device having the above-mentioned lens system and moves.
  • the mobile body refers to a concept that includes other aircraft moving in the air, vehicles moving on the ground, and ships moving on the water in addition to UAVs.
  • the UAV main body 1101 includes a plurality of rotors.
  • the UAV main body 1101 makes the UAV 40 fly by controlling the rotation of a plurality of rotors.
  • the UAV main body 1101 uses, for example, four rotors to fly the UAV 40.
  • the number of rotors is not limited to four.
  • UAV40 can also be a fixed-wing aircraft without rotors.
  • the imaging device 1230 is an imaging camera for imaging a subject included in a desired imaging range.
  • the plurality of imaging devices 1230 are sensing cameras that photograph the surroundings of the UAV 40 in order to control the flight of the UAV 40.
  • the camera 1230 may be fixed on the UAV main body 1101.
  • the two camera devices 1230 can be installed on the nose of the UAV 40, that is, on the front side.
  • the other two camera devices 1230 can be installed on the bottom surface of the UAV 40.
  • the two camera devices 1230 on the front side can be paired to function as a so-called stereo camera.
  • the two imaging devices 1230 on the bottom side can also be paired to function as a stereo camera.
  • the three-dimensional spatial data around the UAV 40 can be generated based on the images captured by the plurality of camera devices 1230.
  • the distance to the subject captured by the plurality of imaging devices 1230 can be determined by the stereo cameras of the plurality of imaging devices 1230.
  • the number of camera devices 1230 included in the UAV 40 is not limited to four.
  • the UAV40 only needs to include at least one camera 1230.
  • the UAV40 may also include at least one camera 1230 on the nose, tail, sides, bottom and top of the UAV40.
  • the imaging device 1230 may also have a single focus lens or a fisheye lens.
  • the plurality of imaging devices 1230 may be simply collectively referred to as imaging devices 1230.
  • the controller 50 includes a display unit 54 and an operation unit 52.
  • the operation unit 52 receives an input operation for controlling the posture of the UAV 40 from the user.
  • the controller 50 transmits a signal for controlling the UAV 40 in accordance with the user's operation received by the operation unit 52.
  • the controller 50 receives an image captured by at least one of the camera 1230 and the camera 1220.
  • the display section 54 displays the image received by the controller 50.
  • the display part 54 may be a touch panel.
  • the controller 50 may receive input operations from the user through the display part 54.
  • the display unit 54 can receive a user operation or the like that the user specifies the position of the subject to be photographed by the imaging device 1220.
  • the imaging unit 1140 generates and records image data of an optical image formed by the lens device 1160.
  • the lens device 1160 may be integrally provided on the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 can be detachably installed with respect to the imaging unit 1140.
  • the universal joint 1110 has a supporting mechanism that movably supports the camera device 1220.
  • the camera device 1220 is mounted on the UAV main body 1101 through a universal joint 1110.
  • the universal joint 1110 rotatably supports the imaging device 1220 around the pitch axis.
  • the universal joint 1110 rotatably supports the imaging device 1220 with the roll axis as the center.
  • the universal joint 1110 rotatably supports the camera device 1220 around the yaw axis.
  • the universal joint 1110 can rotatably support the camera device 1220 around at least one of the pitch axis, the roll axis, and the yaw axis.
  • the universal joint 1110 can rotatably support the camera device 1220 around the pitch axis, the roll axis, and the yaw axis, respectively.
  • the universal joint 1110 may also hold the imaging unit 1140.
  • the universal joint 1110 can also hold the lens device 1160.
  • the universal joint 1110 can rotate the imaging unit 1140 and the lens device 1160 around at least one of the yaw axis, the pitch axis, and the roll axis, thereby changing the imaging direction of the imaging device 1220.
  • FIG. 14 shows an example of the functional blocks of UAV40.
  • the UAV 40 includes an interface 1102, a control unit 1104, a memory 1106, a universal joint 1110, a camera unit 1140, and a lens device 1160.
  • the interface 1102 communicates with the controller 50.
  • the interface 1102 receives various instructions from the controller 50.
  • the control unit 1104 controls the flight of the UAV 40 in accordance with instructions received from the controller 50.
  • the control unit 1104 controls the universal joint 1110, the imaging unit 1140, and the lens device 1160.
  • the control unit 1104 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, and the like.
  • the memory 1106 stores programs and the like necessary for the control unit 1104 to control the gimbal 1110, the imaging unit 1140, and the lens device 1160.
  • the memory 1106 may be a computer-readable recording medium.
  • the memory 1106 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the storage 1106 may be provided in the housing of the UAV40. It can be set to be detachable from the UAV40 housing.
  • the universal joint 1110 has a control part 1112, a driver 1114, a driver 1116, a driver 1118, a driving part 1124, a driving part 1126, a driving part 1128, and a supporting mechanism 1130.
  • the driving part 1124, the driving part 1126, and the driving part 1128 may be electric motors.
  • the supporting mechanism 1130 supports the imaging device 1220.
  • the supporting mechanism 1130 movably supports the imaging device 1220 in the imaging direction.
  • the supporting mechanism 1130 rotatably supports the imaging unit 1140 and the lens device 1160 around the yaw axis, the pitch axis, and the roll axis.
  • the supporting mechanism 1130 includes a rotating mechanism 1134, a rotating mechanism 1136, and a rotating mechanism 1138.
  • the rotation mechanism 1134 uses the drive unit 1124 to rotate the imaging unit 1140 and the lens device 1160 around the yaw axis.
  • the rotation mechanism 1136 uses the drive unit 1126 to rotate the imaging unit 1140 and the lens device 1160 around the pitch axis.
  • the rotation mechanism 1138 uses the drive unit 1128 to rotate the imaging unit 1140 and the lens device 1160 around the roll axis.
  • the control unit 1112 outputs an operation command to the driver 1114, the driver 1116, and the driver 1118 in accordance with the operation command of the universal joint 1110 from the control unit 1104, and the operation command is used to indicate each rotation angle.
  • the driver 1114, the driver 1116, and the driver 1118 drive the driving unit 1124, the driving unit 1126, and the driving unit 1128 in accordance with an operation command indicating the rotation angle.
  • the rotation mechanism 1134, the rotation mechanism 1136, and the rotation mechanism 1138 are driven and rotated by the drive unit 1124, the drive unit 1126, and the drive unit 1128, respectively, thereby changing the postures of the imaging unit 1140 and the lens device 1160.
  • the imaging unit 1140 performs imaging by light passing through the lens system 1168.
  • the imaging unit 1140 includes a control unit 1222, an imaging element 1221, and a memory 1223.
  • the control unit 1222 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, and the like.
  • the control unit 1222 performs focus control of the lens system 1168.
  • the control unit 1222 controls the imaging unit 1140 and the lens device 1160 in accordance with the operation instructions for the imaging unit 1140 and the lens device 1160 from the control unit 1104.
  • the control unit 1222 outputs a control command for the lens device 1160 to the lens device 1160 according to the signal received from the controller 50.
  • the control instruction may also include an instruction to vibrate the lens system 1168, an instruction to detect the temperature of the lens system 1168, and the like.
  • the memory 1223 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 1223 may be provided inside the housing of the imaging unit 1140.
  • the imaging unit 1140 can be configured to be detachable from the housing.
  • the imaging element 1221 is held inside the housing of the imaging unit 1140, generates image data of an imaged optical image through the lens device 1160, and outputs the image data to the control unit 1222.
  • the imaging element 1221 converts the optical image formed by the lens system 1168 into an electric signal.
  • the imaging element 1221 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) or the like.
  • the imaging element 1221 is arranged such that the imaging surface thereof coincides with the image surface of the lens system 1168.
  • the image captured by the lens system 1168 is formed on the imaging surface of the imaging element 1221 and output from the imaging element 1221 as image data.
  • the control unit 1222 performs signal processing on the image data output from the imaging element 1221 and stores it in the memory 1223.
  • the control unit 1222 may output the image data to the memory 1106 through the control unit 1104 and store it.
  • the lens device 1160 includes a control unit 1162, a memory 1163, a driving mechanism 1161, and a lens system 1168.
  • the lens system according to the above-mentioned embodiments and examples can be applied as the lens system 1168.
  • the control unit 1162 can drive the lens system 1168 according to a control command from the control unit 1222.
  • the driving mechanism 1161 can move one or more lens groups and the aperture stop included in the lens system 1168 in the optical axis direction according to a control command from the control unit 1162, thereby adjusting the focus of the lens system 1168.
  • the driving mechanism 1161 can control the aperture stop included in the lens system 1168 according to a control command from the control unit 1162.
  • the driving mechanism 1161 can vibrate the lens system 1168 in accordance with a control command from the control unit 1162.
  • the driving mechanism 1161 includes, for example, an actuator and the like.
  • the imaging unit 1140 captures an image formed by the lens system 1168 of the lens device 1160.
  • the lens device 1160 may be integrally provided on the imaging unit 1140.
  • the lens device 1160 may be a so-called interchangeable lens.
  • the lens device 1160 can be detachably installed with respect to the imaging unit 1140.
  • the imaging device 1230 includes a control unit 1232, a control unit 1234, an imaging element 1231, a memory 1233, and a lens 1235.
  • the control unit 1232 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, and the like.
  • the control unit 1232 controls the imaging element 1231 in accordance with the operation command of the imaging element 1231 from the control unit 1104.
  • the control unit 1234 may be composed of a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, and the like.
  • the control unit 1234 can adjust the focus of the lens 1235 in accordance with the operation instruction for the lens 1235.
  • the control unit 1234 can control the aperture stop of the lens 1235 in accordance with an operation command for the lens 1235.
  • the memory 1233 may be a computer-readable recording medium.
  • the memory 1233 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the imaging element 1231 generates image data of an optical image formed by the lens 1235, and outputs it to the control unit 1232.
  • the control unit 1232 stores the image data output from the imaging element 1231 in the memory 1233.
  • the UAV 40 includes a control unit 1104, a control unit 1112, a control unit 1222, a control unit 1232, a control unit 1234, and a control unit 1162.
  • the processing performed by a plurality of the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 may be executed by any one control unit.
  • the processing executed by the control unit 1104, the control unit 1112, the control unit 1222, the control unit 1232, the control unit 1234, and the control unit 1162 may also be executed by one control unit.
  • the UAV 40 includes a memory 1106, a memory 1223, and a memory 1233.
  • the information stored in at least one of the storage 1106, the storage 1223, and the storage 1233 may be stored in one or more other storages among the storage 1106, the storage 1223, and the storage 1233.
  • the imaging device 1220 includes the lens device 1160 having the lens system according to the above-described embodiments and examples, so that the imaging device 1220 can be miniaturized. In addition, it is possible to suppress the image captured by the imaging device 1220 from being affected by changes in the environment.
  • FIG. 15 is an external perspective view showing an example of the stabilizer 3000.
  • the stabilizer 3000 is another example of a moving body.
  • the camera unit 3013 included in the stabilizer 3000 may include an imaging device having the same configuration as the imaging device 1220.
  • the camera unit 3013 may include a lens device of the same configuration as the lens device 1160.
  • the stabilizer 3000 includes a camera unit 3013, a universal joint 3020, and a handle 3003.
  • the universal joint 3020 rotatably supports the camera unit 3013.
  • the universal joint 3020 has a translation shaft 3009, a roll shaft 3010, and a tilt shaft 3011.
  • the universal joint 3020 rotatably supports the camera unit 3013 centered on the translation shaft 3009, the roll shaft 3010, and the tilt shaft 3011.
  • the universal joint 3020 is an example of a supporting mechanism.
  • the camera unit 3013 is an example of an imaging device.
  • the camera unit 3013 has a slot 3014 into which a memory is inserted.
  • the universal joint 3020 is fixed on the handle 3003 by a bracket 3007.
  • the handle 3003 has various buttons for operating the universal joint 3020 and the camera unit 3013.
  • the handheld portion 3003 includes a shutter button 3004, a recording button 3005, and an operation button 3006. By pressing the shutter button 3004, a still image can be recorded by the camera unit 3013. By pressing the recording button 3005, the camera unit 3013 can record a video.
  • the device holder 3001 is fixed on the handle 3003.
  • the device holder 3001 holds a mobile device 3002 such as a smart phone.
  • the mobile device 3002 is communicably connected with the stabilizer 3000 through a wireless network such as WiFi. In this way, the image taken by the camera unit 3013 can be displayed on the screen of the mobile device 3002.
  • the camera unit 3013 also includes the lens system according to the above-mentioned embodiment, so that the stabilizer 3000 can be miniaturized. In addition, it is possible to suppress the image captured by the camera unit 3013 from being affected by changes in the environment.
  • the UAV 40 and the stabilizer 3000 are cited as an example of the mobile body for description.
  • An imaging device having the same configuration as the imaging device 1220 can be mounted on a movable body other than the UAV 40 and the stabilizer 3000.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种透镜***(100、200、300、400、500),透镜***(100、200、300、400、500)从物体侧到像侧依次包括:第一透镜组(G1)、孔径光阑(S)、第二透镜组(G2)。第一透镜组(G1)以及第二透镜组(G2)可以包括总共七个透镜。第一透镜组(G1)可以包括一到四个透镜。第二透镜组(G2)可以包括一个或多个具有双凸形成的非球面形状的透镜。设TTL为在对无限远处的物体进行对焦时第一透镜组(G1)的最靠近物体侧的透镜面到成像面在光轴上的距离、Y为最大像高、HFOV为最大半视场角、EPD为从出瞳到成像面的距离、G1R1MR为通过第一透镜组(G1)的最靠近物体侧的透镜面的最大光线高度,可以满足条件式1.5<TTL/Y<3.0 ,TAN(HFOV)>3.5 ,6<EPD<25,Y-G1R1MR>0。

Description

透镜***、摄像装置及移动体 技术领域
本发明涉及一种透镜***、摄像装置及移动体。
背景技术
专利文献1-3公开了一种广角镜头。
[现有技术文献]
[专利文献]
[专利文献1]日本专利特开2009-042377号公报
[专利文献2]日本专利文献特表2018-522266号公报
[专利文献3]美国专利申请公开第2019/0250380号说明书
发明内容
本发明的一个方面所涉及的透镜***从物体侧至像侧依次包括:第一透镜组、孔径光阑、第二透镜组。第一透镜组以及第二透镜组可以包括总共七个透镜。第一透镜组可以包括一到四个透镜。第二透镜组可以包括一个或多个具有双凸形成的非球面形状的透镜。设TTL为在对无限远处的物体进行对焦时第一透镜组的最靠近物体侧的透镜面到成像面在光轴上的距离、Y为最大像高、HFOV为最大半视场角、EPD为从出瞳到成像面的距离、G1R1MR为通过第一透镜组的最靠近物体侧的透镜面的最大光线高度,可以满足条件式:
1.5<TTL/Y<3.0…(1)
TAN(HFOV)>3.5…(2)
6<EPD<25…(3)
Y-G1R1MR>0…(4)。
设Nd1为第二透镜组包括的所述一个或多个具有双凸形成的非球面形状的透镜相对于d线的折射率,可以满足条件式:
Nd1<1.5…(5)。
设vd1为第二透镜组包括的所述一个或多个具有双凸形成的非球面形状的透镜的d线的阿贝数,可以满足条件式:
vd1>56…(6)。
设fL为第二透镜组的最靠近像侧的透镜的焦距,f为整个***的焦距,可以满足条件式:
|fL/f|>4.8…(7)。
设f1为第一透镜组的焦距,f2为第二透镜组的焦距,可以满足条件式:
0<|f1/f2|<1.7…(8)。
本发明的一个方面所涉及的摄像装置包括上述透镜***。摄像装置包括摄像元件。
本发明的一个方面所涉及的移动体包括上述透镜***并进行移动。
移动体可以是无人驾驶航空器。
根据上述透镜***,能够提供一种具有大型像圈的透镜***。此外,能够缩短包含后焦距的光学全长。
此外,上述发明内容未列举本发明的必要的全部特征。此外,这些特征组的子组合也可以构成发明。
附图说明
图1同时示出了第一实施例中的透镜***100的透镜结构以及光学构件p。
图2示出了第一实施例中的透镜***100在无限远对焦状态下的球面像差、像散以及畸变像差。
图3同时示出了第二实施例中的透镜***200的透镜结构以及光学构件P。
图4示出了第二实施例中的透镜***200在无限远对焦状态下的球面像差、像散以及畸变像差。
图5同时示出了第三实施例中的透镜***300的透镜结构以及光学构件P。
图6示出了第三实施例中的透镜***300在无限远对焦状态下的球面像差、像散以及畸变像差。
图7同时示出了第四实施例中的透镜***400的透镜结构以及光学构件P。
图8示出了第四实施例中的透镜***400在无限远对焦状态下的球面像差、像散以及畸变像差。
图9同时示出了第五实施例中的透镜***500的透镜结构以及光学构件P。
图10示出了第五实施例中的透镜***500在无限远对焦状态下的球面像差、像散以及畸变像差。
图11同时示出了第六实施例中的透镜***600的透镜结构以及光学构件P。
图12示出了第六实施例中的透镜***600在无限远对焦状态下的球面像差、像散以及畸变像差。
图13示意性地示出了包括无人驾驶航空器(UAV)40及控制器50的移动体***10的一个示例。
图14示出了UAV40的功能块的一个示例。
图15是示出了稳定器3000的一个示例的外观立体图。
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,实施方式中所说明的所有特征组合对于发明的解决方案未必是必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人则不会提出异议。但是,在除此以外的情况下,保留一切的著作权。
结合图1至图6公开了透镜***的实施例。如各实施例所公开地,一实施方式的透镜***从物体侧至像侧依次包括:第一透镜组、孔径光阑、第二透镜组。第一透镜组以及第二透镜组包括总共七个透镜。第一透镜组包括一到四个透镜。第二透镜组包括一个或多个具有双凸形成的非球面形状的透镜。设TTL为在对无限远处的物体进行对焦时第一透镜组的最靠近物体侧的透镜面至成像面在光轴上的距离、Y为最大像高、HFOV为最大半视场角、EPD为从出瞳到成像面的距离、G1R1MR为通过第一透镜组的最靠近物体侧的透镜面的最大光线高度,满足条件式:
1.5<TTL/Y<3.0…(1)
TAN(HFOV)>3.5…(2)
6<EPD<25…(3)
Y-G1R1MR>0…(4)。
通过采用上述结构,在用于大型传感器尺寸的摄像元件的、具有广视角的透镜***中,相对于传感器尺寸较大的摄像元件,可以在缩短后焦距的同时,使透镜***小型化。此外,在广角镜头中,第一透镜组的最靠近物体侧的透镜直径通常明显变大,通过采用上述结构,可以在维持像差性能和可制造的耐用性的同时,减小第一透镜组的最靠近物体侧的透镜直径。
条件式(1)对全长与像高的比值进行规定。在小于等于条件式的下限时,摄像元件的入射角变大,不易维持周围光量。此外,虽然可以使镜头的整个***小型化,但是制造敏感度极高,造成透镜***的制造困难。而在大于等于条件式的上限时,整个透镜***的全长相对 于传感器尺寸变大,虽然制造难度较低,有利于像差校正,但是不易使透镜***小型化。
此外,通过满足下述条件式(1-1),以使上述效果更为显著。
1.7<TTL/Y<2.7…(1-1)
条件式(2)对视角进行规定。通过满足条件式(2),从而形成更广角的透镜结构。
条件式(3)对从出瞳至成像面的距离进行规定。在小于等于条件式(3)的下限时,不易维持摄像元件的适当的入射角。而在大于等于条件式(3)的上限时,不易使透镜***小型化。
此外,通过满足下述条件式(3-1),以使上述效果更为显著。
6<EPD<15…(3-1)
条件式(4)对关于第一透镜组的最靠近物体侧的透镜的尺寸进行规定。在小于等于条件式(4)的下限时,虽然有利于像差校正,但是难以有助于透镜***的小型化。关于透镜***的小型化,期望制约第一透镜组的最靠近物体侧的透镜尺寸,以便有助于具有更大的像圈的透镜***整体的小型化。
Nd1为第二透镜组包括的一个或多个具有双凸形成的非球面形状的透镜的d线的折射率,满足条件式:
Nd1<1.5…(5)。
vd1为第二透镜组包括的一个或多个具有双凸形成的非球面形状的透镜对d线的阿贝数,满足条件式:
vd1>56…(6)。
条件式(5)以及条件式(6)对第二透镜组的具有正的屈光力的透镜的玻璃材料进行规定。在大于等于条件式(5)的上限或小于等于条件式(6)的下限时,温度等环境变化引起成像位置的变动变大。环境变化引起的成像位置的变动可以在聚焦时得到一定程度的校正,但是会产生校正误差。因此,期望通过减小具有高屈光力形状的透镜的玻璃材料的折射率,减小成像位置的变动。此外,通过使用阿贝数较大的玻璃材料,可以减轻色像差,并可以提高透镜***的光学性能。
设fL为第二透镜组的最靠近像侧的透镜的焦距,f为整个***的焦距,满足条件式:
|fL/f|>4.8…(7)。
条件式(7)对整个透镜***的屈光力和第二透镜组的最靠近像侧的透镜的屈光力的比值进行规定。如果小于等于该条件式的下限,则第二透镜组的最靠近像侧的透镜的屈光力的大小变大。透镜***的整个***越小型化,第二透镜组的最靠近像侧的透镜就越接近成像面,所以该透镜与其他透镜相比体积增大。故而,若第二透镜组的最靠近像侧的透镜的屈光力的 大小较大,则环境变化时的成像位置的变动增大,环境可靠性降低,所以希望满足条件式(7)。
设f1为第一透镜组的焦距,f2为第二透镜组的焦距,满足条件式:
0<|f1/f2|<1.7…(8)。
在大于等于条件式(8)的上限时,第二透镜组的屈光力相对增强,虽然有助于透镜***的小型化,但是不易进行轴外像差的校正。
如上所述,根据上述透镜***,能够提供一种透镜***,所述透镜***具有大型像圈,并且具有较高的光学性能,在缩短包含后焦距的光学全长的同时,受环境变化的影响较小。
此外,在本说明书中当使用“由~组成”、“由~构成”、“由~构成的”这一术语时,在所列举的构成元件的基础上,可以包括实际上不具有屈光力的透镜、光阑、滤波器及玻璃盖片等实际具有屈光力的透镜以外的光学元件及/或者、透镜凸缘、摄像元件及抖动校正机构等机构要素。例如,当使用“由X组成”、“由X构成”、“由X构成的”这一术语时,在X的基础上,可以包括实际具有屈光力的透镜以外的光学元件及/或者机构要素。
以下,对透镜***的具体实施方式中应用具体数值的实施例进行说明。首先,对透镜***的各实施例的说明中使用的符号等的意思进行说明。
公开了表示透镜数据的面编号、曲率半径、面间隔、折射率、阿贝数以及玻璃材料的表。在透镜数据的表中,面编号栏中示出了面编号,以最靠近物体侧的面作为第一面,并且随着朝向像侧依次增加。R栏中示出了各个面的曲率半径。曲率半径的符号是以面形状凸向物体侧时为正,凸向像面侧时为负。曲率半径中的“INF”表示该面为平面。D栏中示出了各个面与该像侧相邻的面之间在光轴上的面间隔。Nd栏中示出了各光学元件对于d线(波长587.6nm(纳米))的折射率。vd栏中示出了各光学元件的d线基准的阿贝数。玻璃材料栏中示出了透镜的玻璃材料是塑料(plastic)还是玻璃(glass)。
透镜数据也包括孔径光阑S。在相当于孔径光阑S的面的面编号栏中示出了(STO)这一术语。
在透镜数据中,示出了曲率半径栏中近轴的曲率半径的数值。此外,关于具有非球面的透镜***的实施例,附上了包括非球面的面编号、关于各非球面的非球面系数以及圆锥常数的非球面数据的表。在非球面数据的表中,非球面系数的数值「E±n」(n:自然数)是以10为底的指数表现。也就是说,「E±n」表示「×10 ±n」。例如,「0.12345E-05」表示「0.12345×10 -5」。设“zd”为在光轴方向上距离透镜面的顶点的距离(下垂量),“h”为在与光轴方向垂直的方向上的距离(高度),“c”为透镜的顶点处的近轴曲率(曲率半径的倒数),“κ”为圆锥常数(锥常数),“Am”为m次非球面系数,非球面形状由下式定义:
zd=ch 2/(1+(1-(1+κ)c 2h 2) 1/2)+∑Am*h m
并且,∑表示m的总和。
此外,附上了各实施例的透镜***的规格数据的表。在规格数据的表中,“f”表示焦距。“Fno”表示F数。“ω”表示半视场角(最大半视场角)。“Y”表示最大像高。“Dex”表示出瞳距离。除非另有说明,规格数据的表示出对无限远处的被摄体进行对焦时的值。
在透镜数据、变化的面间隔数据及透镜***的规格数据的表中,使用“度”作为角度单位,使用“mm”作为长度单位。但是,由于即使使透镜***比例扩大或者比例缩小也可使用,因此也能够使用其他任意的单位。
此外,当透镜***作为摄像镜头搭载于摄像装置上时,优选包括对应于摄像装置的规格的低通滤波器等各种滤波器及保护用的玻璃盖片等光学元件。在本实施方式中,示出了包括透镜***以及作为所涉及的光学元件的一个示例的光学构件P的实施例。本实施方式的透镜***,可以采用包括所涉及的光学元件的方式或不包括的方式。包括所涉及的光学元件的透镜***和不包括所涉及的光学元件的透镜***可以说是等效的透镜***。
“Gi”表示透镜组。“Gi”中的字母G之后的i为自然数,其用于对各实施例中透镜***所包括的透镜组进行识别。透镜组被构成为包括一个或多个透镜。“Lj”表示一个透镜。“Lj”中的字母L之后的j为自然数,其用于对各实施例中透镜***所包括的透镜进行识别。在各实施例的说明中,分配了符号Lj的透镜并不意味着与其他的实施例中分配了相同符号Lj的透镜是同一透镜。同样,在某一实施例中,分配了特定的符号的透镜等光学元件并不意味着与其他的实施例中分配了相同符号的光学元件是同一光学元件。
图1同时示出了第一实施例中的透镜***100的透镜结构以及光学构件P。
第一实施例的透镜***100从物体侧起依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。第一透镜组G1、孔径光阑S、以及第二透镜组G2可整体移动来进行聚焦。
第一透镜组G1由凹面朝向像侧的两个负的非球面弯月形透镜L1及L2共计两个透镜构成。根据这一构成,也存在负成分先行,在透镜直径较小的透镜***中,能够良好地对球面像差与轴外像差进行校正。
第二透镜组G2由双凸形状的正的非球面透镜L3、凸面朝向物体侧的负的非球面弯月形透镜L4、双凸形状的正的非球面透镜L5、凹面朝向物体侧的负的非球面弯月形透镜L6、以及凸面朝向物体侧且凹面朝向像侧的、在近轴区域中为正的非球面透镜L7共计五个透镜构成。
通过第二透镜组G2中从物体侧起第三个双凸形状的正的非球面透镜L5由高阿贝数的玻璃材料构成,能够对各个视角光线适当地进行像差校正,而能够以良好的平衡实现轴上像差及轴外像差的校正。此外,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜 组G2中从物体侧起第四个透镜L6由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,对轴上色像差与轴外色像差进行良好地校正。
表1示出了第一实施例的透镜***100的透镜数据。表2是示出透镜***100的非球面数据的表。
表1
面编号 R D Nd Vd 玻璃材料
1 -113.048 0.700 1.535 55.711 塑料
2 3.713 2.387      
3 20.542 0.765 1.535 55.711 塑料
4 12.109 1.433      
STO INF 0.300      
6 11.030 2.024 1.535 56.072 塑料
7 -4.766 0.313      
8 10.946 0.700 1.661 20.401 塑料
9 7.321 0.539      
10 10.826 3.329 1.497 81.560 玻璃
11 -6.500 1.061      
12 -51.060 0.700 1.661 20.401 塑料
13 8.839 0.697      
14 7.916 2.307 1.535 55.711 塑料
15 10.477 2.329      
16 INF 0.800 1.517 64.167 玻璃
17 INF 0.000      
表2
Figure PCTCN2021080005-appb-000001
Figure PCTCN2021080005-appb-000002
面编号 14 15
K 3.91325E-02 -3.59896E-01
A4 -3.41261E-03 -1.59848E-03
A6 6.00851E-05 5.34475E-06
A8 -7.84805E-08 3.75751E-07
A10 -6.06597E-09 -4.19037E-09
A12 -1.62876E-11 -5.99189E-11
A14 -1.13459E-13 -5.54088E-14
A16 2.04035E-15 7.95220E-15
A18 6.60362E-17 1.10214E-16
A20 5.56775E-19 1.36463E-19
表3是表示第一实施例的透镜***100的对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表3
f 5.20
Fno 3.05
ω 77.5
Y 7.932
Dex -10.59
图2示出了对无限远处的被摄体进行对焦的状态下的透镜***100的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值、实线表示d线(587.56nm)的值、虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值、虚线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第一实施例的透镜***100中各种像差得以良好地校正,并且具有优异的成像性能。
图3同时示出了第二实施例中的透镜***200的透镜结构以及光学构件P。
第二实施例的透镜***200从物体侧起依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。第一透镜组G1、孔径光阑S、以及第二透镜组G2可整体移动来进行聚焦。
第一透镜组G1由凹面朝向像侧的两个负的非球面弯月形透镜L1及L2共计两个构成。根据这一构成,也存在负成分先行,在透镜直径较小的透镜***中,能够良好地对球面像差与轴外像差进行校正。
第二透镜组G2由双凸形状的正的非球面透镜L3、凸面朝向物体侧的负的非球面弯月形透镜L4、双凸形状的正的非球面透镜L5、凹面朝向物体侧的负的非球面弯月形透镜L6、以及凸面朝向物体侧且凹面朝向像侧的、在近轴区域中为正的非球面透镜L7共计五个构成。
通过第二透镜组G2中从物体侧起第一个和第三个双凸形状的正的非球面透镜L3以及L5由阿贝数大于56的玻璃的玻璃材料构成,能够对各个视角光线适当地进行像差校正,从而能够以良好的平衡实现轴上像差及轴外像差的校正。
此外,第二透镜组G2中从物体侧起三个透镜L3、L4以及L5由玻璃的玻璃材料构成,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜组G2中从物体侧起第四个透镜L6由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,能够对轴上色像差与轴外色像差进行良好地校正。
表4示出了第二实施例的透镜***200的透镜数据。表5是示出透镜***200的非球面数据的表。
表4
面编号 R D Nd Vd 玻璃材料
1 -105.472 0.700 1.535 55.711 塑料
2 3.705 2.302      
3 13.060 0.700 1.535 55.711 塑料
4 9.548 1.500      
STO INF 0.300      
6 11.791 2.197 1.583 59.461 玻璃
7 -4.525 0.412      
8 13.800 0.700 1.822 24.040 玻璃
9 8.393 0.539      
10 14.257 3.548 1.497 81.560 玻璃
11 -6.500 1.137      
12 -54.099 0.700 1.661 20.401 塑料
13 8.713 0.680      
14 8.179 2.321 1.535 55.711 塑料
15 11.664 1.919      
16 INF 0.800 1.517 64.167 玻璃
17 INF 0.000      
表5
Figure PCTCN2021080005-appb-000003
面编号 8 9 10 11 12 13
K 1.16488E+00 -8.49869E-01 -4.72638E+00 3.77687E-01 1.00000E+01 -4.60256E+00
A4 -4.06164E-03 -3.18833E-03 6.14244E-04 -1.45632E-03 -7.61167E-03 -4.39277E-03
A6 -1.51911E-04 -2.83448E-05 8.43335E-06 6.42691E-05 7.39602E-06 6.58718E-05
A8 3.45683E-06 5.55925E-06 -6.35079E-08 1.80333E-06 -7.41486E-06 1.47748E-06
A10 8.31273E-08 5.17466E-07 4.74676E-08 -6.99123E-08 2.93773E-07 -1.14581E-08
A12 -7.83140E-08 2.37357E-08 -2.50109E-09 -3.86521E-09 2.63137E-08 -3.73837E-10
A14 -7.63988E-09 -2.39951E-09 -7.20804E-10 -1.12015E-10 9.34824E-10 9.89259E-12
A16 3.17244E-09 -5.12764E-10 -6.52316E-11 -5.72575E-12 1.13954E-11 1.04589E-12
A18 -4.20284E-11 -4.05836E-11 2.83029E-13 2.54759E-13 -1.28759E-12 2.91151E-14
A20 -5.63336E-11 4.34352E-12 4.13760E-13 6.85677E-14 -1.37452E-13 -2.30978E-15
面编号 14 15
K 4.46884E-02 4.41080E-01
A4 -3.37984E-03 -1.49627E-03
A6 6.03108E-05 2.17915E-06
A8 -7.10273E-08 3.94905E-07
A10 -6.00154E-09 -3.63519E-09
A12 -1.59755E-11 -4.63948E-11
A14 -1.15670E-13 1.06076E-13
A16 2.51222E-15 8.20004E-15
A18 6.50930E-17 5.47515E-17
A20 5.28857E-20 -2.07307E-18
表6是表示第二实施例的透镜***200对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表6
f 5.20
Fno 3.01
ω 77.5
Y 7.932
Dex -10.58
图4示出了处于对无限远处的被摄体进行了对焦的状态下的透镜***200的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值,实线表示d线(587.56 nm)的值,虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值,虚线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第二实施例的透镜***200的各种像差得以良好地校正,并且具有优异的成像性能。
图5同时示出了第三实施例中的透镜***300的透镜结构以及光学构件P。
第三实施例的透镜***300从物体侧依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。第一透镜组G1、孔径光阑S、以及第二透镜组G2可整体移动来进行聚焦。
第一透镜组G1由凹面朝向像侧的两个负的非球面弯月形透镜L1以及L2、凸面朝向物体侧的一个正的非球面弯月形透镜L3共计三个构成。根据这一构成,第一透镜组G1的整个***的负成分先行配置,在透镜直径较小的透镜***中,能够对球面像差与轴外像差进行良好地校正。
第二透镜组G2由双凸形状的正的非球面透镜L4以及L5这两个透镜、凹面朝向物体侧的负的非球面弯月形透镜L6、凸面朝向物体侧且凹面朝向像侧的、近轴区域中为正的非球面透镜L7共计四个透镜构成。
通过第二透镜组G2中从物体侧起第一个和第二个的双凸形状的正的非球面透镜L4以及L5由阿贝数大于56的玻璃的玻璃材料构成,能够对各个视角光线适当地进行像差校正,从而能够以良好的平衡实现轴上像差及轴外像差的校正。
此外,通过第二透镜组G2中从物体侧起的两个透镜L4以及L5由玻璃的玻璃材料构成,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜组G2中从物体侧起第三个透镜L6由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,能够对轴上色像差与轴外色像差进行良好地校正。
表7示出了第三实施例中的透镜***300的透镜数据。表8是示出透镜***300的非球面数据的表。
表7
面编号 R D Nd Vd 玻璃材料
1 -37.049 0.950 1.535037 55.711 塑料
2 4.073 1.965      
3 8.984 0.950 1.535037 55.711 塑料
4 5.919 0.728      
5 13.1914 0.974 1.66059 20.401 塑料
6 14.167 0.333      
STO INF 0.267      
8 9.375 2.136 1.58313 59.461 玻璃
9 -5.058 1.384      
10 11.112 2.639 1.497103 81.560 玻璃
11 -6.492 0.391      
12 -8.922 1.180 1.66059 20.401 塑料
13 26.731 1.559      
14 8.743 1.917 1.535037 55.711 塑料
15 8.249 1.849      
16 INF 0.800 1.5168 64.167 玻璃
17 INF 0.000      
表8
面编号 1 2 3 4 5 6
K 1.14032E+01 -1.12805E-01 -4.44282E-01 1.86983E+00 -1.18571E+01 -3.70374E+00
A4 5.67674E-04 -3.29980E-03 1.45888E-03 9.87284E-03 -1.24865E-03 1.08408E-03
A6 -1.37630E-06 -5.63592E-05 9.30928E-06 6.73871E-04 -1.32143E-04 2.80112E-04
A8 3.52589E-09 3.42784E-06 -1.09651E-05 9.28983E-05 2.08965E-05 -1.65631E-04
A10 -1.47777E-10 6.31427E-08 -8.42679E-07 9.13736E-07 -2.28892E-05 4.62319E-06
A12 -2.95848E-12 -3.31517E-09 9.71012E-09 9.50008E-08 -1.16817E-06 3.21969E-06
A14 9.63348E-14 -2.63662E-10 6.02626E-09 -7.10200E-07 -3.15369E-07 -1.38742E-06
A16 -1.74323E-16 5.30102E-12 -3.11780E-10 1.12676E-07 -1.72428E-08 -7.56316E-07
A18 -2.89025E-18 -2.02143E-13 4.41908E-12 -8.63810E-10 1.09475E-08 -1.45339E-07
A20 2.33006E-20 -8.40763E-14 1.94339E-12 -4.91341E-10 2.92279E-09 1.15803E-07
面编号 8 9 10 11 12 13
K 1.43700E+01 -1.25054E+00 5.39300E+00 -6.30967E-02 4.23285E+00 1.84657E+00
A4 4.58257E-03 1.30675E-03 6.16669E-04 2.02817E-04 -2.93542E-03 -2.47985E-03
A6 5.01426E-04 3.07587E-04 2.19264E-06 -6.35134E-06 -1.02034E-04 6.99685E-05
A8 -1.04902E-04 5.76204E-05 -2.20410E-06 -1.63700E-06 -1.32281E-06 1.05919E-06
A10 5.81501E-06 1.14971E-05 1.97515E-07 -2.04816E-07 1.66843E-07 -1.80050E-08
A12 3.00987E-06 1.77168E-07 -6.40868E-09 -5.19145E-09 6.38230E-10 5.61580E-10
A14 -2.77919E-06 1.93902E-08 -3.02708E-10 -3.64990E-10 -1.58680E-10 2.37087E-11
A16 5.80312E-07 1.95442E-09 -1.20183E-11 -2.99322E-11 -1.79808E-11 4.69246E-13
A18 6.46177E-08 7.63622E-10 4.22892E-13 -2.63837E-12 -1.14885E-12 -2.32557E-14
A20 -2.42340E-08 6.87195E-10 1.87229E-13 -2.44230E-13 -4.54857E-14 -3.84782E-15
面编号 14 15
K -4.84765E-01 -4.73687E+00
A4 -4.86642E-03 -2.10001E-03
A6 8.12244E-05 4.42835E-05
A8 3.21669E-07 -4.58483E-07
A10 -1.67383E-08 -1.08374E-08
A12 1.15707E-10 1.72329E-10
A14 4.55130E-13 3.26658E-13
A16 -6.26368E-14 8.40726E-15
A18 -6.87070E-16 -1.98600E-16
A20 5.29954E-17 -1.10733E-17
表9是示出第三实施例中的透镜***300的对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表9
f 5.17
Fno 2.99
ω 77.5
Y 7.932
Dex -9.79
图6示出了处于对无限远处的被摄体处于进行对焦的状态下的透镜***300的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值、实线表示d线(587.56nm)的值、虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值、虚线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第三实施例的透镜***300的各种像差得以良好地校正,并且具有优异的成像性能。
图7同时示出了第四实施例中的透镜***400的透镜结构以及光学构件P。
第四实施例的透镜***400,从物体侧起依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。第一透镜组G1、孔径光阑S、以及第二透镜组G2可整体移动来进行聚焦。
第一透镜组G1由凹面朝向像侧的两个负的非球面弯月形透镜L1以及L2、双凹的负的非球面透镜L3、凸面朝向物体侧的一个正的非球面透镜L4共计四个透镜构成。根据这一构成,第一透镜组G1的整个***的负成分先行配置,在透镜直径较小的透镜***中,能够对球面像差与轴外像差进行良好地校正。并且,在透镜***400的透镜结构中,由于构成透镜***的透镜数增加,孔径光阑S的位置接近像面,第二透镜组G2之后的光线偏角变大,不易于像差校正。
第二透镜组G2由双凸形状的正的非球面透镜L5、凹面朝向物体侧的负的非球面透镜L6、凸面朝向物体侧且凹面朝向像侧的、近轴区域中为正的非球面透镜L7共计三个透镜构成。第二透镜组G2中的双凸形状的正的非球面透镜L5由阿贝数大于56的玻璃的玻璃材料构成,能够对各个视角光线适当地进行像差校正,从而能够实现轴上像差及轴外像差的校正的良好平衡。
此外,第二透镜组G2中的双凸形状的正的非球面透镜L5由玻璃的玻璃材料构成,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜组G2中从物体侧起第二个透镜L6由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,能够对轴上色像差与轴外色像差进行良好地校正。
表10示出了第四实施例中的透镜***400的透镜数据。表11是示出透镜***400的非球面数据的表。
表10
面编号 R D Nd Vd 玻璃材料
1 -26.635 1.135 1.535037 55.711 塑料
2 4.024 1.539      
3 21.064 0.700 1.535037 55.711 塑料
4 13.360 1.217      
5 -12.5845 0.700 1.535037 55.711 塑料
6 71.787 0.300      
7 6.272 1.801 1.535037 55.711 塑料
8 -45.380 0.300      
STO INF 0.300      
10 5.774 2.810 1.497103 81.560 玻璃
11 -3.672 1.473      
12 -6.245 0.700 1.66059 20.401 塑料
13 5027.994 2.790      
14 27.252 1.982 1.535037 55.711 塑料
15 79.930 1.953      
16 INF 0.800 1.5168 64.167 玻璃
17 INF 0.000      
表11
面编号 1 2 3 4 5 6
K -7.97182E+00 -3.15804E-01 -1.00000E+01 7.25357E-01 -1.09143E+00 -1.00000E+01
A4 6.30597E-04 -4.60351E-03 -8.39855E-04 1.00110E-02 -5.79013E-04 -5.67952E-04
A6 2.61305E-07 -7.24302E-05 -5.95448E-06 2.50681E-04 6.04421E-04 6.89287E-04
A8 -1.58004E-08 1.14593E-05 -8.78867E-06 6.17319E-05 5.97125E-05 2.82031E-04
A10 -3.62519E-10 2.34428E-07 -5.75712E-07 -3.61895E-06 7.73837E-06 -1.97946E-05
A12 3.56691E-12 -4.59664E-09 2.23274E-08 -2.30060E-07 -5.26279E-16 6.67605E-25
A14 1.47603E-13 -2.85921E-10 6.98500E-09 -7.03477E-07 -5.97021E-27 -5.56435E-27
A16 -7.10467E-16 2.70072E-19 -2.62009E-10 1.30156E-07 -9.73822E-30 -1.44504E-30
A18 -1.46002E-17 2.54672E-22 -5.80138E-32 -6.31045E-33 -2.55474E-32 0.00000E+00
A20 4.19423E-19 2.78968E-33 3.65559E-34 0.00000E+00 1.54600E-35 0.00000E+00
面编号 7 8 10 11 12 13
K 2.01966E+00 -1.00000E+01 3.59736E+00 -1.24303E+00 3.61976E+00 -1.00000E+01
A4 5.09519E-03 4.69957E-03 -3.83348E-03 4.68689E-04 2.28081E-03 3.83432E-04
A6 1.54652E-04 6.67689E-06 -7.46694E-04 -5.58911E-04 -6.11829E-05 1.81683E-04
A8 2.07602E-04 1.16273E-04 4.96424E-05 7.36253E-05 1.82532E-06 -9.17897E-06
A10 -2.14758E-05 1.06189E-05 -1.06352E-05 -1.30041E-05 1.48228E-07 -9.16707E-08
A12 -4.46079E-25 6.40663E-26 3.41785E-06 5.94733E-08 2.70132E-10 -2.81999E-10
A14 -1.16362E-27 3.26222E-28 -3.21784E-06 2.05678E-08 2.41734E-10 -1.34999E-11
A16 1.48443E-31 -1.62021E-31 3.36960E-07 3.02129E-09 5.85590E-11 -2.39403E-12
A18 0.00000E+00 0.00000E+00 1.75718E-08 3.83142E-12 1.89742E-11 -4.93719E-13
A20 0.00000E+00 0.00000E+00 7.80859E-09 -1.40727E-10 4.86508E-12 -7.66813E-14
面编号 14 15
K 5.64301E+00 -1.00000E+01
A4 -2.35810E-03 1.35921E-04
A6 5.37738E-05 -2.47115E-05
A8 7.28956E-08 2.91693E-08
A10 2.72267E-09 1.45145E-09
A12 -7.71459E-10 1.00930E-10
A14 1.51627E-11 -6.68658E-13
A16 -1.30773E-13 -2.68399E-15
A18 2.55376E-19 -4.82106E-16
A20 3.21157E-22 5.97687E-22
表12是示出第四实施例中的透镜***400的对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表12
f 5.32
Fno 3.09
ω 77.5
Y 7.932
Dex -10.48
图8示出了处于对无限远处的被摄体处于进行对焦的状态下的透镜***400的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值、实线表示d线(587.56nm)的值、虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值、虚 线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第四实施例的透镜***400的各种像差得以良好地校正,并且具有优异的成像性能。
图9同时示出了第五实施例中的透镜***500的透镜结构以及光学构件P。
第五实施例的透镜***500从物体侧起依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。第一透镜组G1、孔径光阑S、以及第二透镜组G2可整体移动来进行聚焦。
第一透镜组G1由凹面朝向像侧的负的非球面弯月形透镜L1一个透镜构成。根据这一构成,第一透镜组的整个***的负成分先行配置,在透镜直径较小的透镜***中,能够对球面像差与轴外像差进行良好地校正。
第二透镜组G2由双凸形状的正的非球面透镜L2、凹面朝向物体侧的正的非球面弯月形透镜L3、双凸形状的正的非球面透镜L4、双凹形状的负的非球面透镜L5、凸面朝向物体侧且凹面朝向像侧的、近轴区域中为正的非球面透镜L6以及L7共计六个透镜构成。
第二透镜组G2中从物体侧起第三个双凸形状的正的非球面透镜L4由阿贝数大于56的玻璃的玻璃材料构成,能够对各个视角光线适当地进行像差校正,从而能够实现轴上像差及轴外像差的校正的良好平衡。
此外,第二透镜组G2中从物体侧起第三个双凸形状的正的非球面透镜L4由玻璃的玻璃材料构成,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜组G2中从物体侧起第四个透镜L5由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,能够对轴上色像差与轴外色像差进行良好地校正。
表13示出了第五实施例中的透镜***500的透镜数据。表14是示出透镜***500的非球面数据的表。
表13
面编号 R D Nd Vd 玻璃材料
1 9.161 0.724 1.535037 55.711 塑料
2 2.660 3.310      
STO INF 0.300      
4 26.895 2.144 1.535037 55.711 塑料
5 -3.7434 0.354      
6 -4.878 1.821 1.66059 20.401 塑料
7 -4.761 0.300      
8 24.814 3.333 1.497103 81.560 玻璃
9 -5.0214 0.372      
10 -5.119 0.700 1.66059 20.401 塑料
11 25.582 0.355      
12 6.050 0.835 1.535037 55.711 塑料
13 6.040 0.721      
14 5.195 1.577 1.535037 55.711 塑料
15 7.112 2.832      
16 INF 0.800 1.5168 64.167 玻璃
17 INF 0.000      
表14
面编号 1 2 4 5 6 7
K -6.68874E+00 -2.92252E-01 -5.93087E+00 6.93398E-01 -7.96760E-03 -3.97671E-01
A4 -7.07058E-04 -1.58320E-03 -7.43474E-03 -2.61269E-03 1.77482E-04 1.10072E-03
A6 -8.36604E-06 -3.82515E-04 -8.83467E-04 -3.65951E-04 -8.56741E-05 7.10920E-05
A8 4.50769E-07 -3.38410E-06 -1.84866E-04 -5.48694E-05 -3.37660E-05 1.56697E-06
A10 2.94688E-08 -3.35736E-06 -6.31920E-05 -1.93175E-05 -2.88750E-06 -5.91868E-07
A12 -4.05573E-10 -1.44467E-07 6.57094E-06 -7.03226E-07 -2.26787E-06 -1.29831E-07
A14 -2.89761E-11 1.91942E-08 -3.44753E-06 -3.15988E-07 -6.01592E-08 -1.22186E-08
A16 -2.70809E-12 2.55070E-09 -6.55414E-06 2.05660E-08 -3.47965E-09 -3.35940E-11
A18 1.08141E-13 -7.62906E-10 3.27804E-06 1.19634E-08 1.01698E-08 1.74048E-10
A20 0.00000E+00 0.00000E+00 -7.02581E-07 0.00000E+00 0.00000E+00 0.00000E+00
面编号 8 9 10 11 12 13
K 2.65776E+00 2.15395E-01 -4.37933E-01 5.74405E+00 -4.96200E+00 -1.17950E-01
A4 -3.79030E-04 -7.94838E-05 1.35938E-04 -1.50804E-03 3.26443E-04 -2.62846E-03
A6 1.86857E-05 1.84387E-06 1.88423E-05 8.01909E-05 -1.88897E-04 -8.52002E-05
A8 -2.57880E-06 2.00028E-07 8.24206E-08 -1.09400E-07 6.31672E-07 4.45936E-07
A10 -2.09753E-07 3.84339E-08 -1.07926E-07 1.47904E-08 3.13823E-07 9.70356E-08
A12 -1.39635E-08 8.22225E-10 -1.11839E-08 1.45585E-09 -4.92149E-09 -1.66339E-09
A14 -1.07335E-10 -1.14024E-10 -2.54956E-10 -2.36016E-10 -1.62086E-10 -1.18679E-10
A16 1.98988E-11 -2.06956E-11 3.22103E-11 2.48106E-12 2.02567E-12 -1.70925E-12
A18 -1.06637E-11 -2.53238E-12 2.24866E-12 7.29204E-14 1.05138E-13 1.10066E-13
A20 0.00000E+00 1.21754E-13 -5.50317E-14 0.00000E+00 -1.14485E-15 4.95323E-15
面编号 14 15
K -1.77060E-01 -6.27299E+00
A4 -4.83524E-03 1.00715E-03
A6 3.35679E-05 -1.09605E-04
A8 -1.69766E-06 2.33111E-06
A10 -3.77161E-08 -9.93518E-09
A12 4.01672E-10 -8.07635E-11
A14 3.87145E-11 -2.27359E-12
A16 0.00000E+00 0.00000E+00
A18 0.00000E+00 0.00000E+00
A20 0.00000E+00 0.00000E+00
表15是示出第五实施例中的透镜***500的对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表15
f 5.74
Fno 3.07
ω 77.5
Y 7.932
Dex -12.40
图10示出了处于对无限远处的被摄体处于进行对焦的状态下的透镜***500的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值、实线表示d线(587.56nm)的值、虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值、虚线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第五实施例的透镜***500的各种像差得以良好地校正,并且具有优异的成像性能。
图11同时示出了第六实施例中的透镜***600的透镜结构以及光学构件P。
第六实施例的透镜***600从物体侧起依次由包括负的屈光力的第一透镜组G1、孔径光阑S、以及包括正的屈光力的第二透镜组G2构成。
与第一实施例相同,第一透镜组G1由凹面朝向像侧的两个负的非球面弯月形透镜L1以及L2共计两个透镜构成。根据这一构成,负成分先行配置,在透镜直径较小的透镜***中,能够对球面像差与轴外像差进行良好地校正。
第二透镜组G2由双凸形状的正的非球面透镜L3、凸面朝向物体侧的负的非球面弯月形透镜L4、双凸形状的正的非球面透镜L5、凹面朝向物体侧的负的非球面弯月形透镜L6、以及凸面朝向物体侧且凹面朝向像侧的、在近轴区域中为正的非球面透镜L7共计五个透镜构成。
通过第二透镜组G2中从物体侧起第三个双凸形状的正的非球面透镜L5由高阿贝数的玻璃的玻璃材料构成,能够对各个视角光线适当地进行像差校正,从而能够实现轴上像差及轴 外像差的校正的良好平衡。
此外,对于环境变化对应的折射率的变化以及折射率的变化,第二透镜组G2中从物体侧起第四个透镜L6由低阿贝数的塑料材料构成,能够在提高透镜***整个***的环境可靠性的同时,能够对轴上色像差与轴外色像差进行良好地校正。
并且,在透镜***600中,通过在光轴方向上仅移动第二透镜组G2的最靠近像侧的透镜L7这一个透镜来进行聚焦。为了通过第二透镜组G2的最靠近像侧的一个透镜进行聚焦,透镜L7需要具有一定程度的光焦度,通过满足条件式(7)的条件,能够提高环境可靠性。
表16示出了第六实施例中的透镜***600的透镜数据。表17是示出透镜***600的非球面数据的表。
表16
面编号 R D Nd Vd 玻璃材料
1 -194.865 0.600 1.535037 55.711 塑料
2 3.500 2.329      
3 7.1860 0.636 1.535037 55.711 塑料
4 5.383 1.667      
STO INF 0.150      
6 10.546 2.191 1.535037 55.711 塑料
7 -4.411 0.461      
8 6.679 0.600 1.66059 20.401 塑料
9 4.8661 0.625      
10 12.584 2.914 1.497103 81.560 玻璃
11 -6.500 0.969      
12 39.697 0.600 1.66059 20.401 塑料
13 6.433 1.200      
14 9.405 2.279 1.535037 55.711 塑料
15 22.826 2.479      
16 INF 0.800 1.5168 64.167 玻璃
17 INF 0.000      
表17
面编号 1 2 3 4 6 7
K 1.00000E+01 -3.09806E-01 -9.68459E+00 -5.97711E+00 -1.77268E+00 -6.54493E-02
A4 6.68443E-04 -3.31889E-03 -3.56121E-03 6.55774E-03 3.04894E-03 -1.86277E-04
A6 -3.15956E-06 -7.91878E-05 -1.78710E-04 8.21925E-04 -2.76511E-04 1.09127E-05
A8 8.57336E-09 1.14585E-05 -6.61282E-06 -3.11813E-04 1.31444E-04 3.21921E-05
A10 -3.11847E-10 -3.28352E-07 5.02100E-06 7.60981E-05 3.57552E-06 -2.08870E-06
A12 4.45802E-12 -2.68194E-08 -3.34617E-07 2.25559E-06 -9.67408E-06 -5.86249E-07
A14 1.66645E-13 -2.00968E-10 -1.41859E-08 -1.06321E-07 -2.67218E-06 2.10388E-08
A16 2.84458E-15 1.78644E-11 5.33871E-10 -3.91040E-07 9.25497E-07 1.30839E-08
A18 -6.14491E-17 4.91420E-13 3.50418E-10 -1.16896E-07 3.71979E-07 5.28426E-10
A20 -6.50960E-19 -1.80078E-13 -2.74628E-12 4.04431E-08 -1.01019E-07 -2.49576E-10
面编号 8 9 10 11 12 13
K -8.39431E+00 -3.75023E+00 -1.33020E+00 -1.02485E+00 -1.00000E+01 -7.08050E+00
A4 -4.39673E-03 -3.86709E-03 6.44650E-04 1.75598E-04 -7.55957E-03 -4.59073E-03
A6 -1.32859E-04 -4.78722E-05 1.33048E-05 -2.36000E-05 4.57390E-05 8.68185E-05
A8 -2.43865E-06 9.10336E-06 -2.77284E-06 2.87361E-06 -9.44595E-06 1.19142E-06
A10 3.70412E-07 1.09661E-07 9.09696E-08 8.53580E-08 2.10154E-07 -3.76918E-08
A12 -1.75916E-08 -3.45116E-08 9.00182E-09 -3.88588E-10 2.41445E-08 -7.93888E-10
A14 -1.78309E-08 -5.31764E-09 -3.40489E-10 -3.36714E-10 8.81681E-10 2.15606E-11
A16 -1.62393E-09 -4.33868E-10 -6.52057E-11 -2.63952E-11 1.02978E-11 1.93805E-12
A18 -5.03270E-11 -2.35399E-11 -1.84860E-12 -3.98567E-13 -1.02664E-12 5.04820E-14
A20 -1.23123E-11 5.71852E-12 1.35854E-13 1.38743E-13 -7.72364E-14 -3.15676E-15
面编号 14 15
K 3.76769E-01 6.37892E+00
A4 -2.37519E-03 -4.37836E-05
A6 6.18795E-05 -5.17491E-05
A8 -7.80526E-07 1.49497E-06
A10 -3.06106E-09 -7.57783E-09
A12 1.14045E-10 -1.72395E-10
A14 7.36719E-13 -6.42485E-13
A16 -6.83838E-14 1.65417E-14
A18 -1.41159E-16 3.37873E-16
A20 1.60055E-17 -3.20128E-18
表18是示出第六实施例中的透镜***600的对无限远处的被摄体进行对焦时的整个***的焦距f、F数Fno、半视场角ω、像高Y以及出瞳距离Dex的规格数据的表。
表18
f 5.21
Fno 3.08
ω 77.2
Y 7.932
Dex -12.46
图12示出了处于对无限远处的被摄体处于进行对焦的状态下的透镜***600的球面像差、像散以及畸变像差。在球面像差中,单点划线表示C线(656.27nm)的值、实线表示d线(587.56nm)的值、虚线表示g线(435.84nm)的值。在像散中,实线表示d线的弧矢像面的值、虚线表示d线的子午像面的值。在畸变像差中示出了d线的值。从各像差图可知,显然第六实 施例的透镜***600的各种像差得以良好地校正,并且具有优异的成像性能。
表19表示从第一实施例到第六实施例的透镜***中的条件式(1)~(8)的对应值。
表19
Figure PCTCN2021080005-appb-000004
如上所述,根据本实施方式的透镜***,能够提供一种透镜***,所述透镜***具有大型像圈,并且包括较高的光学性能,在缩短包含后焦距的光学全长的同时,受环境变化的影响较小。
并且,上述透镜***所包括的构成能够进行任意组合,可按照要求的规格适当选择性地采用。例如,基于上述实施例的透镜***在满足条件式(1)~(8)、(1-1)以及(3-1)的基础上,也可以满足条件式(1)~(8)、(1-1)以及(3-1)中的任意一个,也可以满足这些条件式的任意组合。
以上,通过列举实施方式及实施例对本发明进行了说明,但本发明并不限定于上述实施方式及实施例,可进行各种变形。例如,各个透镜的曲率半径、面间隔、折射率及阿贝数并不限定于上述各个实施例所示的值,也可以取其他的值。
本实施方式所涉及的透镜***能够应用于数码相机、摄像机等摄像装置用的透镜***。本实施方式所涉及的透镜***能够应用于不具有变焦机构的透镜***。本实施方式所涉及的透镜***能够应用于空中摄像机、监控用摄像机等透镜***。本实施方式所涉及的透镜***能够应用于非更换镜头式的摄像装置所包括的摄像镜头。本实施方式所涉及的透镜***能够应用于单反相机等更换镜头式相机的可更换镜头。
以下,作为包括本实施方式所涉及的透镜***的***的一个示例,对一移动体***进行说明。
图13示意性地示出了包括无人驾驶航空器(UAV)40及控制器50的移动体***10的一个示例。UAV40包括UAV主体1101、万向节1110、多个摄像装置1230、以及摄像装置1220。摄像装置1220包括镜头装置1160及摄像部1140。镜头装置1160包括上述透镜***。UAV40是包括具有上述透镜***的摄像装置并移动的移动体的一个示例。移动体是指除了UAV以外包含在空中移动的其他的飞机、在地面移动的车辆、在水上移动的船舶等的概念。
UAV主体1101包括多个旋翼。UAV主体1101通过控制多个旋翼的旋转而使UAV40飞行。UAV主体1101使用例如四个旋翼来使UAV40飞行。旋翼的数量不限于四个。UAV40也可以是没有旋翼的固定翼机。
摄像装置1230是为对包含在所期望的摄像范围内的被摄体进行摄像的摄像用相机。多个摄像装置1230是为了控制UAV40的飞行而对UAV40的周围进行拍摄的传感用相机。摄像装置1230可以固定在UAV主体1101上。
两个摄像装置1230可以设置于UAV40的机头、即正面。并且,其它两个摄像装置1230可以设置于UAV40的底面。正面侧的两个摄像装置1230可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置1230也可以成对,起到立体相机的作用。可以根据由多个摄像装置1230所拍摄的图像来生成UAV40周围的三维空间数据。到由多个摄像装置1230拍摄的被摄体的距离能够被多个摄像装置1230的立体相机所确定。
UAV40所包括的摄像装置1230的数量不限于四个。UAV40包括至少一个摄像装置1230即可。UAV40也可以在UAV40的机头、机尾、侧面、底面及顶面分别包括至少一个摄像装置1230。摄像装置1230也可以具有单焦点镜头或鱼眼镜头。在UAV40所涉及的说明中,有时将多个摄像装置1230简单地统称为摄像装置1230。
控制器50包括显示部54与操作部52。操作部52接收来自用户的对UAV40的姿态进行控制的输入操作。控制器50根据操作部52所接收的用户的操作发送对UAV40进行控制的信号。
控制器50接收摄像装置1230及摄像装置1220中的至少一个所拍摄的图像。显示部54显示控制器50接收到的图像。显示部54可以是触摸式面板。控制器50可以通过显示部54接收来自用户的输入操作。显示部54可以接收用户对需要摄像装置1220拍摄的被摄体的位置进行指定的用户操作等。
摄像部1140生成由镜头装置1160成像的光学图像的图像数据并进行记录。镜头装置1160可以一体地设在摄像部1140上。镜头装置1160可以是所谓的可更换镜头。镜头装置1160可以相对于摄像部1140可拆装地设置。
万向节1110具有可移动地支撑摄像装置1220的支撑机构。摄像装置1220通过万向节1110安装在UAV主体1101上。万向节1110以俯仰轴为中心可旋转地支撑摄像装置1220。万向节1110以滚转轴为中心可旋转地支撑摄像装置1220。万向节1110以偏航轴为中心可旋转地支撑摄像装置1220。万向节1110可以以俯仰轴、滚转轴及偏航轴中的至少一个轴为中心可旋转地支撑摄像装置1220。万向节1110可以分别以俯仰轴、滚转轴及偏航轴为中心可旋转地支撑摄像装置1220。万向节1110也可以对摄像部1140进行保持。万向节1110也可以 对镜头装置1160进行保持。万向节1110可以以偏航轴、俯仰轴及滚转轴中的至少一个为中心使摄像部1140及镜头装置1160旋转,从而改变摄像装置1220的摄像方向。
图14示出了UAV40的功能块的一个示例。UAV40包括接口1102、控制部1104、存储器1106、万向节1110、摄像部1140以及镜头装置1160。
接口1102与控制器50通信。接口1102从控制器50接收各种指令。控制部1104根据从控制器50接收的指令对UAV40的飞行进行控制。控制部1104对万向节1110、摄像部1140以及镜头装置1160进行控制。控制部1104可以由CPU或者MPU等微处理器、MCU等微控制器等组成。存储器1106存储控制部1104对万向节1110、摄像部1140以及镜头装置1160进行控制时所需的程序等。
存储器1106可以为计算机可读记录介质。存储器1106可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪速存储器中的至少一个。存储器1106可以设置在UAV40的壳体内。可以设置成可从UAV40的壳体上拆卸下来。
万向节1110具有控制部1112、驱动器1114、驱动器1116、驱动器1118、驱动部1124、驱动部1126、驱动部1128及支撑机构1130。驱动部1124、驱动部1126以及驱动部1128可以是电动机。
支撑机构1130对摄像装置1220进行支撑。支撑机构1130在摄像方向上可移动地支撑摄像装置1220。支撑机构1130以偏航轴、俯仰轴及滚转轴为中心可旋转地支撑摄像部1140以及镜头装置1160。支撑机构1130包括旋转机构1134、旋转机构1136以及旋转机构1138。旋转机构1134使用驱动部1124以偏航轴为中心使摄像部1140及镜头装置1160旋转。旋转机构1136使用驱动部1126以俯仰轴为中心使摄像部1140及镜头装置1160旋转。旋转机构1138使用驱动部1128以滚转轴为中心使摄像部1140及镜头装置1160旋转。
控制部1112按照来自控制部1104的万向节1110的动作指令向驱动器1114、驱动器1116及驱动器1118输出的动作指令,所述动作指令用于表示各旋转角度。驱动器1114、驱动器1116及驱动器1118根据用于表示旋转角度的动作指令使驱动部1124、驱动部1126以及驱动部1128进行驱动。旋转机构1134、旋转机构1136以及旋转机构1138分别通过驱动部1124、驱动部1126以及驱动部1128进行驱动并旋转,从而改变摄像部1140及镜头装置1160的姿态。
摄像部1140是通过穿过透镜***1168的光进行拍摄。摄像部1140包括控制部1222、摄像元件1221以及存储器1223。控制部1222可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1222进行透镜***1168的对焦控制。控制部1222按照来自控制部1104的对于摄像部1140及镜头装置1160的动作指令来控制摄像部1140及镜头装置1160。 控制部1222根据从控制器50接收的信号将对于镜头装置1160的控制指令输出至镜头装置1160。除了使负责聚焦的透镜组移动的指令以外,控制指令还可以包括使透镜***1168振动的指令、对透镜***1168的温度进行检测的指令等。
存储器1223可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器1223可以设置在摄像部1140的壳体的内部。摄像部1140可以设置成可从壳体上拆卸下来。
摄像元件1221保持在摄像部1140的壳体的内部,通过镜头装置1160生成成像的光学图像的图像数据,并且输出至控制部1222。摄像元件1221将通过透镜***1168形成的光学图像转换为电信号。例如,摄像元件1221可以是CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide Semiconductor)等。摄像元件1221配置为其摄像面与透镜***1168的像面一致。由透镜***1168所拍摄的像成像在摄像元件1221的摄像面上,并且作为图像数据从摄像元件1221输出。控制部1222对从摄像元件1221输出的图像数据实施信号处理并存储在存储器1223内。控制部1222也可以通过控制部1104将图像数据输出至存储器1106中并进行存储。
镜头装置1160包括控制部1162、存储器1163、驱动机构1161以及透镜***1168。可以应用上述实施方式以及实施例所涉及的透镜***作为透镜***1168。
控制部1162可以根据来自控制部1222的控制指令对透镜***1168进行驱动。驱动机构1161可以根据来自控制部1162的控制指令使透镜***1168所包括的一组以上的透镜组及孔径光阑在光轴方向上移动,从而对透镜***1168的焦点进行调节。驱动机构1161可以根据来自控制部1162的控制指令对透镜***1168所包括的孔径光阑进行控制。驱动机构1161可以根据来自控制部1162的控制指令使透镜***1168振动。驱动机构1161包括例如致动器等。摄像部1140对由镜头装置1160的透镜***1168成像的像进行拍摄。
镜头装置1160可以一体地设在摄像部1140上。镜头装置1160可以是所谓的可更换镜头。镜头装置1160可以相对于摄像部1140可拆装地设置。
摄像装置1230包括控制部1232、控制部1234、摄像元件1231、存储器1233以及镜头1235。控制部1232可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1232按照来自控制部1104的摄像元件1231的动作指令控制摄像元件1231。
控制部1234可以由CPU或者MPU等微处理器、MCU等微控制器等组成。控制部1234可以按照针对镜头1235的动作指令对镜头1235的焦点进行调节。控制部1234可以按照针对镜头1235的动作指令对镜头1235所具有的孔径光阑进行控制。
存储器1233可以为计算机可读记录介质。存储器1233可以包括SRAM、DRAM、EPROM、 EEPROM及USB存储器等闪速存储器中的至少一个。
摄像元件1231生成通过镜头1235成像的光学图像的图像数据,并且输出至控制部1232。控制部1232将从摄像元件1231输出的图像数据存储在存储器1233中。
在本实施方式中,UAV40包括控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162。但是,由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162中的多个执行的处理可以由任意一个控制部执行。由控制部1104、控制部1112、控制部1222、控制部1232、控制部1234及控制部1162执行的处理也可以由一个控制部执行。在本实施方式中,UAV40包括存储器1106、存储器1223及存储器1233。存储在存储器1106、存储器1223及存储器1233中至少一个中的信息可以存储在存储器1106、存储器1223及存储器1233中的其他的一个或者多个存储器中。
摄像装置1220包括具有上述实施方式以及实施例所涉及的透镜***的镜头装置1160,从而能够使摄像装置1220小型化。此外,能够抑制摄像装置1220拍摄的图像受环境变化的影响。
以下,作为包括上述实施方式以及实施例所涉及的透镜***的***的一个示例,对一稳定器进行说明。
图15是示出了稳定器3000的一个示例的外观立体图。稳定器3000是移动体的另一个示例。例如,稳定器3000所包括的相机单元3013可以包括与摄像装置1220相同的构成的摄像装置。相机单元3013可以包括与镜头装置1160相同的构成的镜头装置。
稳定器3000包括相机单元3013、万向节3020及手持部3003。万向节3020可旋转地支撑相机单元3013。万向节3020具有平移轴3009、滚转轴3010及倾斜轴3011。万向节3020以平移轴3009、滚转轴3010及倾斜轴3011为中心可旋转地支撑相机单元3013。万向节3020为支撑机构的一个示例。
相机单元3013是摄像装置的一个示例。相机单元3013具有***存储器的插槽3014。万向节3020通过支架3007固定在手持部3003上。
手持部3003具有对万向节3020、相机单元3013进行操作的各种按钮。手持部3003包括快门按钮3004、录像按钮3005及操作按钮3006。通过按下快门按钮3004,从而能够通过相机单元3013对静止图像进行记录。通过按下录像按钮3005,从而能够通过相机单元3013对视频进行记录。
器件保持架3001固定在手持部3003上。器件保持架3001对智能电话等移动设备3002进行保持。移动设备3002通过WiFi等无线网络与稳定器3000可通信地连接。由此,能够使相机单元3013拍摄的图像显示在移动设备3002的画面上。
在稳定器3000中,相机单元3013也包括上述实施方式所涉及的透镜***,从而能够使稳定器3000小型化。此外,能够抑制相机单元3013拍摄的图像受环境变化的影响。
以上,列举了UAV40及稳定器3000作为移动体的一个示例进行了说明。具有与摄像装置1220相同的构成的摄像装置可以安装在UAV40及稳定器3000以外的移动体上。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
应该注意的是,权利要求书、说明书以及附图中所示的装置、***、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
符号说明
10 移动体***
40 UAV
50 控制器
52 操作部
54 显示部
1101 UAV主体
1102 接口
1104 控制部
1106 存储器
1110 万向节
1112 控制部
1114、1116、1118 驱动器
1124、1126、1128 驱动部
1130 支撑机构
1134、1136、1138 旋转机构
1140 摄像部
1160 镜头装置
1161 驱动机构
1162 控制部
1163 存储器
1168 透镜***
1220、1230 摄像装置
1221 摄像元件
1222 控制部
1223 存储器
1231 摄像元件
1232 控制部
1233 存储器
1234 控制部
1235 镜头
100、200、300、400、500 透镜***
3000 稳定器
3001 器件保持架
3002 移动设备
3003 手持部
3004 快门按钮
3005 录像按钮
3006 操作按钮
3007 支架
3009 平移轴
3010 滚转轴
3011 倾斜轴
3013 相机单元
3014 插槽
3020 万向节

Claims (8)

  1. 一种透镜***,其特征在于,所述透镜***从物体侧至像侧依次包括第一透镜组、孔径光阑、第二透镜组,
    所述第一透镜组以及第二透镜组包括总共七个透镜,
    所述第一透镜组包括一到四个透镜,
    所述第二透镜组包括一个或多个具有双凸形成的非球面形状的透镜,
    设TTL为在对无限远处的物体进行对焦时第一透镜组的最靠近物体侧的透镜面到成像面在光轴上的距离、Y为最大像高、HFOV为最大半视场角、EPD为从出瞳到成像面的距离、G1R1MR为通过第一透镜组的最靠近物体侧的透镜面的最大光线高度,满足条件式:
    1.5<TTL/Y<3.0
    TAN(HFOV)>3.5
    6<EPD<25
    Y-G1R1MR>0。
  2. 根据权利要求1或者2所述的透镜***,其特征在于,设Nd1为第二透镜组包括的所述一个或多个具有双凸形成的非球面形状的透镜的d线的折射率,满足条件式
    Nd1<1.5。
  3. 根据权利要求1或者2所述的透镜***,其特征在于,设vd1为第二透镜组包括的所述一个或多个具有双凸形成的非球面形状的透镜的d线的阿贝数,满足条件式
    vd1>56。
  4. 根据权利要求1或者2所述的透镜***,其特征在于,设fL为第二透镜组的最靠近像侧的透镜的焦距,
    f为整个***的焦距,
    满足条件式
    |fL/f|>4.8。
  5. 根据权利要求1或者2所述的透镜***,其特征在于,设f1为第一透镜组的焦距,
    f2为第二透镜组的焦距,
    满足条件式
    0<|f1/f2|<1.7。
  6. 一种摄像装置,其特征在于,包括根据权利要求1或者2所述的透镜***以及摄像元件。
  7. 一种移动体,其特征在于,包括根据权利要求1或者2所述的透镜***并进行移动。
  8. 根据权利要求7所述的移动体,其特征在于,所述移动体为无人驾驶航空器。
PCT/CN2021/080005 2020-03-27 2021-03-10 透镜***、摄像装置及移动体 WO2021190312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057945A JP6903850B1 (ja) 2020-03-27 2020-03-27 レンズ系、撮像装置、及び移動体
JP2020-057945 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021190312A1 true WO2021190312A1 (zh) 2021-09-30

Family

ID=76753200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080005 WO2021190312A1 (zh) 2020-03-27 2021-03-10 透镜***、摄像装置及移动体

Country Status (2)

Country Link
JP (1) JP6903850B1 (zh)
WO (1) WO2021190312A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044873A1 (en) * 2021-07-20 2023-02-09 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
EP4184232A1 (en) * 2021-11-19 2023-05-24 LARGAN Precision Co., Ltd. Optical lens assembly, image capturing unit and electronic device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202334707A (zh) * 2022-02-17 2023-09-01 佳凌科技股份有限公司 光學成像鏡頭
CN114460723B (zh) * 2022-03-21 2023-06-06 江西晶超光学有限公司 光学***、摄像模组及电子设备
CN114740599B (zh) * 2022-03-31 2023-09-08 江西晶超光学有限公司 光学***、摄像模组和电子设备
CN115980984B (zh) * 2023-03-15 2023-06-27 江西联创电子有限公司 光学镜头
CN117666095B (zh) * 2024-01-31 2024-04-12 深圳奇立电子科技有限公司 大视场短焦超短距超高清成像***及镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056976A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Wide angle lens system and photographing apparatus
CN105974561A (zh) * 2016-07-08 2016-09-28 浙江舜宇光学有限公司 广角摄像镜头
CN106547072A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像***
CN106597635A (zh) * 2015-10-19 2017-04-26 三星电机株式会社 光学成像***
CN108267834A (zh) * 2016-12-30 2018-07-10 中强光电股份有限公司 定焦镜头
CN109960014A (zh) * 2017-12-25 2019-07-02 大立光电股份有限公司 摄影透镜组、取像装置及电子装置
CN209327655U (zh) * 2017-10-23 2019-08-30 Hoya株式会社 成像光学***

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5035867B2 (ja) * 2005-12-01 2012-09-26 富士フイルム株式会社 内視鏡用対物レンズ
JP4834799B2 (ja) * 2009-05-26 2011-12-14 オリンパスメディカルシステムズ株式会社 内視鏡の対物レンズ
WO2014175038A1 (ja) * 2013-04-22 2014-10-30 オリンパスメディカルシステムズ株式会社 広角対物光学系
TWI559027B (zh) * 2014-06-20 2016-11-21 雙鴻科技股份有限公司 微型廣角鏡頭
CN106291882B (zh) * 2016-09-06 2018-08-17 浙江舜宇光学有限公司 摄像镜头
WO2019085524A1 (zh) * 2017-11-02 2019-05-09 浙江舜宇光学有限公司 光学成像***
TWI657258B (zh) * 2018-03-02 2019-04-21 大立光電股份有限公司 光學攝影鏡組、取像裝置及電子裝置
TWI684024B (zh) * 2018-07-04 2020-02-01 大立光電股份有限公司 攝影光學鏡組、取像裝置及電子裝置
CN110824664B (zh) * 2018-08-10 2022-08-02 佳能企业股份有限公司 光学镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120056976A1 (en) * 2010-09-07 2012-03-08 Samsung Electronics Co., Ltd. Wide angle lens system and photographing apparatus
CN106547072A (zh) * 2015-09-17 2017-03-29 先进光电科技股份有限公司 光学成像***
CN106597635A (zh) * 2015-10-19 2017-04-26 三星电机株式会社 光学成像***
CN105974561A (zh) * 2016-07-08 2016-09-28 浙江舜宇光学有限公司 广角摄像镜头
CN108267834A (zh) * 2016-12-30 2018-07-10 中强光电股份有限公司 定焦镜头
CN209327655U (zh) * 2017-10-23 2019-08-30 Hoya株式会社 成像光学***
CN109960014A (zh) * 2017-12-25 2019-07-02 大立光电股份有限公司 摄影透镜组、取像装置及电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044873A1 (en) * 2021-07-20 2023-02-09 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
EP4184232A1 (en) * 2021-11-19 2023-05-24 LARGAN Precision Co., Ltd. Optical lens assembly, image capturing unit and electronic device

Also Published As

Publication number Publication date
JP6903850B1 (ja) 2021-07-14
JP2021157077A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2021190312A1 (zh) 透镜***、摄像装置及移动体
JP6665587B2 (ja) 結像レンズ、カメラ装置、及びセンシング装置
JP6736820B1 (ja) レンズ系、撮像装置、及び移動体
JP6519890B1 (ja) レンズ系、撮像装置、及び移動体
WO2018135000A1 (ja) レンズ系、撮像装置、移動体及びシステム
JP2022054357A (ja) レンズ系、撮像装置、及び移動体
WO2020238982A1 (zh) 透镜***、摄像装置及移动体
US20220057601A1 (en) Lens system, photographing apparatus, and moving body
JP6524548B2 (ja) レンズ系、撮像装置、移動体及びシステム
US20210247597A1 (en) Lens system and image capturing apparatus
JP6750176B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6561369B2 (ja) レンズ系、撮像装置、移動体及びシステム
JP6532044B2 (ja) ズームレンズ、撮像装置、移動体及びシステム
WO2021031885A1 (zh) 透镜***、摄像装置及移动体
JP2021189381A (ja) レンズ系、撮像装置、及び移動体
WO2021190268A1 (zh) 透镜***、摄像装置及移动体
WO2022213793A1 (zh) 镜头***、摄像装置及移动体
WO2021190311A1 (zh) 透镜***、摄像装置及移动体
US20220187568A1 (en) Lens system, photographing apparatus, and movable object
JP2021189382A (ja) レンズ系、撮像装置、及び移動体
JP2022049359A (ja) レンズ系、撮像装置、及び移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775047

Country of ref document: EP

Kind code of ref document: A1