WO2021190104A1 - 压缩机运行频率的控制方法 - Google Patents

压缩机运行频率的控制方法 Download PDF

Info

Publication number
WO2021190104A1
WO2021190104A1 PCT/CN2021/072003 CN2021072003W WO2021190104A1 WO 2021190104 A1 WO2021190104 A1 WO 2021190104A1 CN 2021072003 W CN2021072003 W CN 2021072003W WO 2021190104 A1 WO2021190104 A1 WO 2021190104A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
target
operating frequency
compressor
time
Prior art date
Application number
PCT/CN2021/072003
Other languages
English (en)
French (fr)
Inventor
张晓迪
张铭
高强
张东
许磊
李记伟
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021190104A1 publication Critical patent/WO2021190104A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the present invention relates to a method for controlling a compressor, and in particular to a method for controlling the operating frequency of the compressor.
  • the compressor can adjust its speed through the inverter controller (referred to as "inverter compressor”), and then can adjust its output power.
  • the air conditioning system incorporating the inverter compressor can therefore adjust the amount of cooling or heating output according to changes in the external cooling or heating load.
  • the inverter compressor increases its speed by increasing its operating frequency, thereby increasing the cooling or heating output of the air conditioning system.
  • the inverter compressor reduces its speed by reducing its operating frequency, thereby reducing the output of cooling or heating heat.
  • the operating frequency of the compressor not only directly affects the power consumption of the air-conditioning system, but also the operating frequency of the compressor is directly related to the noise of the outdoor unit of the air-conditioning system. This is because the compressor is generally directly placed in the outdoor unit (which is usually placed outside the environment-regulated space). When the compressor has been running at a high frequency, the power consumption of the compressor will be very large, and the noise of the compressor will be very high.
  • the present invention provides a method for controlling the operating frequency of the compressor.
  • the method includes: setting a basic target temperature and a plurality of deviation target temperatures that are different from the basic target temperature by different temperature values, and forming a plurality of target temperature intervals based on the basic target temperature and the plurality of deviation target temperatures; determining the corresponding basic target temperature The target operating frequency of the target temperature, and setting the set operating frequency corresponding to each of the target temperature ranges by a predetermined value lower than the target operating frequency; measuring the real-time operating temperature, and selecting the target in which the real-time operating temperature falls Temperature interval; driving the compressor at a set operating frequency corresponding to the selected target temperature interval for a first predetermined period of time, and re-implement the step of measuring the real-time operating temperature after the first predetermined period of time.
  • the base target temperature includes a base target evaporation temperature and a base target condensation temperature.
  • the control method controls the operating frequency of the compressor based on the new basic target temperature.
  • the basic target evaporation temperature and a plurality of deviation target evaporation temperatures that are higher than the basic target evaporation temperature by different temperature values are set.
  • the compressor when the real-time operating evaporation temperature is less than the basic target evaporation temperature, the compressor performs frequency reduction at a predetermined frequency reduction speed, and every second predetermined time period elapses Just re-judge whether the real-time operating evaporation temperature is less than the basic target evaporation temperature, until the real-time operating evaporation temperature is greater than or equal to the basic target evaporation temperature, and then use the target evaporation temperature corresponding to the real-time operating evaporation temperature to fall into The set operating frequency of the interval drives the compressor.
  • the basic target condensing temperature and a plurality of deviation target condensing temperatures that are lower than the basic target condensing temperature by different temperature values are set.
  • the compressor when the real-time operating condensing temperature is greater than the basic target condensing temperature, the compressor is frequency-reduced at a predetermined frequency reduction speed, and every third predetermined period of time has elapsed. Just re-judge whether the real-time operating condensing temperature is greater than the basic target condensing temperature, until the real-time operating condensing temperature is less than or equal to the basic target condensing temperature, and then use the target condensing temperature corresponding to the real-time operating condensing temperature to fall into The set operating frequency of the interval drives the compressor.
  • the control method for example, sets a basic target temperature and a difference from the basic target temperature for an air conditioning system or other refrigeration system that incorporates a compressor. Multiple deviation target temperatures with different temperature values, and multiple target temperature ranges are formed based on the base target temperature and the multiple deviation target temperatures.
  • the base target temperature can generally be determined based on, for example, the actual load demand of the air conditioning system or other refrigeration systems.
  • the control method also needs to determine a target operating frequency corresponding to the basic target temperature, and set a set operating frequency corresponding to each target temperature interval that is lower than the target operating frequency by a predetermined value.
  • the control method measures the real-time operating temperature of the air-conditioning system, and selects the target temperature range in which the real-time operating temperature falls. After the target temperature interval is selected, the control method drives the compressor at a set operating frequency corresponding to the target temperature interval for a first predetermined period of time. Based on different target temperature ranges, the operating frequency of the compressor is appropriately reduced, which can not only ensure the cooling or heating effect of the air conditioning system or other refrigeration systems, but also reduce the noise and energy consumption of the compressor. After the first predetermined period of time, the above-mentioned control method is repeatedly implemented by re-implementing the step of measuring the real-time operating temperature. In summary, the control method reasonably reduces the operating frequency of the compressor without affecting the use effect of the compressor, so as to achieve the purpose of energy saving and noise reduction.
  • the heat exchanger in the indoor unit of the air conditioning system (which is usually placed in an environmentally regulated space) usually acts as an evaporator, and in the cooling mode, it is generally controlled based on the evaporation temperature of the evaporator Air Conditioning System. Therefore, for the cooling mode, a basic target evaporating temperature and multiple deviation target evaporating temperatures that are higher than the basic target evaporating temperature by different temperature values are set.
  • the heat exchanger in the indoor unit of the air-conditioning system usually acts as a condenser, and in the heating mode, the air-conditioning system is generally controlled based on the condensing temperature of the condenser. Therefore, for the heating mode, a basic target condensing temperature and multiple deviation target condensing temperatures that are lower than the basic target condensing temperature by different temperature values are set.
  • Frequency reduction control method (such as reducing the operating frequency of the compressor at a predetermined frequency reduction speed), and re-comparing the real-time operating evaporating temperature with the base target evaporating temperature or the real-time operating condensing temperature with the base every second or third predetermined period of time
  • the target condensing temperature until the real-time operating evaporating temperature is greater than or equal to the base target evaporating temperature or the real-time operating condensing temperature is less than or equal to the base target condensing temperature.
  • Figure 1 is a flowchart of a method for controlling the operating frequency of a compressor according to the present invention
  • FIG. 2 is a schematic diagram of the first embodiment of the method for controlling the operating frequency of the compressor according to the present invention
  • Fig. 3 is a schematic diagram of a second embodiment of the method for controlling the operating frequency of the compressor according to the present invention.
  • the present invention provides a method for controlling the operating frequency of a compressor.
  • the control method includes: setting a basic target temperature and a temperature different from the basic target temperature. The value of multiple deviation target temperatures, and based on the basic target temperature and multiple deviation target temperatures, multiple target temperature ranges are formed; the target operating frequency corresponding to the basic target temperature is determined, and the target operating frequency corresponding to each target temperature range is set to be lower than the target operating frequency.
  • the set operating frequency of the predetermined value measure the real-time operating temperature, and select the target temperature range in which the real-time operating temperature falls; drive the compressor at the set operating frequency corresponding to the selected target temperature range and continue for the first predetermined period of time,
  • the step of measuring the real-time operating temperature is re-implemented after the first predetermined period of time.
  • This control method is based on the basic target control temperature and the corresponding target operating frequency.
  • the compressor is driven at a set operating frequency lower than the target operating frequency by a predetermined value.
  • the compressor mentioned herein may be any suitable similar compressor with variable frequency function, including but not limited to centrifugal compressors, scroll compressors, and the like.
  • the air conditioning system may be an integrated air conditioner, a split air conditioner, a multi-line air conditioner, or other types of air conditioning systems.
  • the air-conditioning system can be selected to have only a cooling mode, or two modes of cooling and heating (for example, a heat pump air-conditioning system).
  • Fig. 1 shows a flow chart of the method for controlling the operating frequency of the compressor according to the present invention.
  • the control method includes steps S1, S2, S3, and S4.
  • step S1 for the compressor incorporated in the air-conditioning system, the control method sets a basic target temperature and a plurality of deviation target temperatures different from the basic target temperature by different temperature values for the air-conditioning system, and is based on the basic target temperature and the plurality of deviations.
  • the target temperature forms a plurality of target temperature intervals.
  • the basic target temperature is generally determined according to the actual load demand of the air conditioning system.
  • the base target temperature may be the base target evaporation temperature or the base target condensation temperature.
  • the basic target temperature may adopt the basic target evaporating temperature
  • the basic target temperature may adopt the basic target condensing temperature
  • the multiple deviation target temperatures may be two, three, four, or more, so as to meet the actual requirements of the air conditioning system.
  • the compressor may be integrated into other refrigeration systems, such as refrigerators and the like.
  • the plurality of deviation target temperatures are selected as the deviation target evaporation temperatures that are respectively larger than the basic target evaporation temperature by different temperature values.
  • the difference between the base target evaporation temperature and the adjacent minimum deviation target evaporation temperature and between the adjacent deviation target evaporation temperatures of the plurality of deviation target evaporation temperatures differ by the same temperature value, for example, 1°C.
  • the temperature value of the difference between the basic target evaporation temperature and the adjacent minimum deviation target evaporation temperature and between the adjacent deviation target evaporation temperatures of multiple deviation target evaporation temperatures can also be adopted. Values other than °C.
  • the multiple target evaporation temperature ranges include not only the temperature range formed between the basic target evaporation temperature and the adjacent minimum deviation target evaporation temperature and between the adjacent deviation target evaporation temperatures of the multiple deviation target evaporation temperatures, but also include the temperature range greater than The temperature range of the maximum deviation from the target evaporation temperature. Therefore, when the deviation target evaporation temperature is three, four target evaporation temperature intervals can be formed. When the deviation target evaporation temperature is four, five target evaporation temperature intervals can be formed.
  • the multiple deviation target temperatures are selected to be the deviation target condensing temperatures which are respectively smaller than the basic target condensing temperature by different temperature values.
  • the difference between the base target condensation temperature and the adjacent maximum deviation target condensation temperature and between the adjacent deviation target condensation temperatures of a plurality of deviation target condensation temperatures differ by the same temperature value, for example, 2°C.
  • the temperature difference between the base target condensation temperature and the adjacent maximum deviation target condensation temperature and between the adjacent deviation target condensation temperatures of multiple deviation target condensation temperatures may also be used. Values other than °C.
  • the multiple target condensing temperature ranges include not only the temperature ranges formed between the base target condensing temperature and the adjacent maximum deviation target condensing temperature and between the adjacent deviation target condensing temperatures of the multiple deviation target condensing temperatures, but also include less than The temperature range with the minimum deviation from the target condensing temperature. Therefore, when the deviation target condensation temperature is three, four target condensation temperature intervals can be formed. When the deviation target condensation temperature is four, five target condensation temperature ranges can be formed.
  • the control method of the present invention can determine the target operating frequency corresponding to the basic target temperature in step S2, and set the ratio target operating frequency corresponding to each target temperature range The set operating frequency is lower than the predetermined value.
  • the closer the target temperature zone is to the base target temperature the larger the predetermined value that the set operating frequency corresponding to the target temperature zone is lower than the target operating frequency.
  • the basic target temperature adopts the basic target evaporation temperature Te
  • the deviation target evaporation temperature is three: Te+1°C, Te+2°C, and Te+3 °C.
  • four target evaporation temperature intervals are formed: the first target evaporation temperature interval that is greater than the basic target evaporation temperature Te and less than or equal to the adjacent minimum deviation target evaporation temperature Te+1°C I; greater than the minimum deviation target evaporation temperature Te+1 °C and less than or equal to the second target evaporation temperature interval between the intermediate deviation target evaporation temperature Te + 2 °C; greater than the intermediate deviation target evaporation temperature Te + 2 °C and less than or equal to the maximum deviation
  • the fourth target evaporation temperature interval IV that is greater than the maximum
  • the target operating frequency corresponding to the basic target evaporation temperature Te is Fe.
  • the first set operating frequency Fse1 corresponding to the first target evaporation temperature zone I is set to Fe-12Hz; the second set operating frequency Fse2 corresponding to the second target evaporation temperature zone II is set to Fe-8Hz; corresponding to the third target evaporation temperature
  • the third set operating frequency Fse3 of section III is set to Fe-4 Hz;
  • the fourth set operating frequency Fse4 corresponding to the fourth target evaporation temperature section IV is set to Fe-0 Hz.
  • the first, second, third, and fourth set operating frequencies Fse1, Fse2, Fse3, and Fse4 may be lower than the target operating frequency Fe by 12 Hz, 8 Hz, 4 Hz, and 0 Hz in this order.
  • the set operating frequency corresponding to each target evaporation temperature interval may be lower than the target operating frequency by other suitable frequency values that are different from the aforementioned frequency values.
  • the basic target temperature adopts the basic target condensation temperature Tc and the deviation target condensation temperature is also three: Tc-2°C, Tc-4°C, and Tc- 6°C.
  • the first target condensing temperature range that is less than the basic target condensing temperature Tc and greater than or equal to the adjacent maximum deviation target condensing temperature Tc-2°C I
  • a second target condensation temperature range II that is less than the maximum deviation target condensation temperature Tc-2°C and greater than or equal to the intermediate deviation target condensation temperature Tc-4°C
  • the third target condensing temperature interval III at a temperature Tc-6°C
  • the fourth target condensing temperature interval IV smaller than the minimum deviation target condensing temperature Tc-6°C.
  • the target operating frequency corresponding to the base target condensing temperature Tc is Fc.
  • the first set operating frequency Fce1 corresponding to the first target condensation temperature zone I is set to Fc-12Hz; the second set operating frequency Fce2 corresponding to the second target condensation temperature zone II is set to Fc-8Hz; corresponding to the third target condensation temperature
  • the third set operating frequency Fce3 of section III is set to Fc-4Hz; the fourth set operating frequency Fce4 corresponding to the fourth target condensation temperature section IV is set to Fc-0Hz. Therefore, the first, second, third, and fourth set operating frequencies Fce1, Fce2, Fce3, and Fce4 may be lower than the target operating frequency Fc by 12 Hz, 8 Hz, 4 Hz, and 0 Hz in sequence.
  • the set operating frequency corresponding to each target condensing temperature interval may be lower than the target operating frequency by other suitable frequency values that are different from the aforementioned frequency values.
  • step S3 After setting the set operating frequency corresponding to each target temperature interval, the control method of the present invention proceeds to step S3 to measure the real-time operating temperature of the air conditioning system, and select the target temperature interval in which the real-time operating temperature falls. It should be pointed out that the control method of the present invention usually needs to wait for the air-conditioning system to start and run to a stable state before it is implemented, for example, wait for 30 minutes or other suitable time after the air-conditioning system is turned on.
  • the real-time operating temperature does not fall within the set target temperature range, for example, the real-time operating evaporating temperature is lower than the basic target evaporating temperature or the real-time operating condensing temperature is higher than the basic target condensing temperature, this indicates that the air conditioning system has not reached a stable state.
  • the control method of the present invention determines that the operation of the air-conditioning system has not reached a steady state, the compression is continuously reduced at a predetermined frequency reduction speed (for example, 1 Hz/5 seconds or other suitable speed).
  • the operating frequency of the air-conditioning system and whether the air-conditioning system enters a stable state is judged every time a predetermined period of time has passed.
  • the control method will continuously reduce the compression at a predetermined frequency reduction speed (for example, 1 Hz/5 seconds or other suitable speed) It is determined whether the real-time operating evaporation temperature is lower than the basic target evaporation temperature every 3 minutes or other suitable time, until the real-time operating evaporation temperature is greater than or equal to the basic target evaporation temperature. When the real-time operating evaporation temperature is greater than or equal to the basic target evaporation temperature, it is then judged which target evaporation temperature range the real-time operating evaporation temperature falls into.
  • a predetermined frequency reduction speed for example, 1 Hz/5 seconds or other suitable speed
  • the control method will continue to decrease at a predetermined frequency reduction rate (for example, 1 Hz/5 seconds or other suitable speed)
  • a predetermined frequency reduction rate for example, 1 Hz/5 seconds or other suitable speed
  • the operating frequency of the compressor, and whether the real-time operating condensing temperature is greater than the basic target condensing temperature is judged every 3 minutes or other suitable time, until the real-time operating condensing temperature is less than or equal to the basic target condensing temperature.
  • the real-time operating condensing temperature is less than or equal to the basic target condensing temperature, it is determined which target condensing temperature range the real-time operating condensing temperature falls into.
  • step S4 After determining the target temperature range in which the real-time operating temperature falls, the control method of the present invention proceeds to step S4 to drive the compressor at a set operating frequency corresponding to the selected target temperature range and continue for a first predetermined period of time. After a predetermined period of time, the step of measuring the real-time operating temperature of the air-conditioning system is re-implemented. For example, referring to Figure 2, when the base target temperature is the base target evaporation temperature, if the real-time operating evaporation temperature falls within the first target evaporation temperature range I, the compressor is driven at the first set operating frequency Fe-12 Hz and continues For example, 15 minutes or other suitable time period.
  • the compressor is driven at the second set operating frequency Fe-8 Hz for, for example, 15 minutes or other suitable time period. If the real-time operating evaporation temperature falls within the third target evaporation temperature range III, the compressor is driven at the third set operating frequency Fe-4 Hz for, for example, 15 minutes or other suitable time period. If the real-time operating evaporation temperature falls within the fourth target evaporation temperature range IV, the compressor is driven at the fourth set operating frequency Fe-0 Hz (ie Fe) and continues for, for example, 15 minutes or other suitable time periods.
  • Fe-0 Hz ie Fe
  • the control method After driving the compressor at any set operating frequency for, for example, 15 minutes or other suitable time period, the control method re-measures the real-time operating evaporation temperature of the air conditioning system and repeats the control of the present invention based on the re-measured real-time operating evaporation temperature The above-mentioned associated steps of the method.
  • the base target temperature is the base target condensing temperature
  • the compressor is driven at the first set operating frequency Fc-12Hz and For example, 15 minutes or other suitable time period.
  • the compressor is driven at the second set operating frequency Fc-8 Hz for, for example, 15 minutes or other suitable time period. If the real-time operating condensing temperature falls within the third target condensing temperature interval III, the compressor is driven at the third set operating frequency Fc-4 Hz for, for example, 15 minutes or other suitable time period. If the real-time operating condensing temperature falls within the fourth target condensing temperature interval IV, the compressor is driven at the fourth set operating frequency Fc-0 Hz (ie, Fc) for, for example, 15 minutes or other suitable time period.
  • the control method re-measures the real-time operating condensing temperature of the air conditioning system and repeats the control of the present invention based on the re-measured real-time operating condensing temperature The above-mentioned associated steps of the method.
  • control method of the present invention when the basic target temperature is changed to a new basic target temperature due to, for example, changes in the load demand of the air conditioning system, if the compressor is driven at a certain operating frequency and has not reached the preset For a predetermined first time period, the control method needs to wait until the first time period is satisfied before controlling the operating frequency of the compressor based on the new basic target temperature and the corresponding new target temperature range.
  • Table 1 above shows the test results of an example of an air conditioning system using the method for controlling the operating frequency of the compressor of the present invention.
  • the rated cooling capacity of the air conditioning system is 20kw, and the above test results are obtained under the nominal cooling conditions.
  • Table 1 above when the cooling capacity is slightly reduced from 20149 to 18960, the capacity attenuation of the air-conditioning system changes little, but the power and noise of the compressor have been significantly improved. Therefore, the method for controlling the operating frequency of the compressor of the present invention can help the air-conditioning system to achieve the goals of energy saving and noise reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种压缩机运行频率的控制方法,该控制方法包括:为空调***设置基础目标温度和与基础目标温度相差不同温度值的多个偏差目标温度,并且基于基础目标温度和多个偏差目标温度形成多个目标温度区间;确定对应基础目标温度的目标运行频率,并且设置对应每个目标温度区间的比目标运行频率低预定值的设定运行频率;测量实时运行温度,并且选择实时运行温度所落入的目标温度区间;以对应所选择的目标温度区间的设定运行频率驱动压缩机并且持续第一预定时间段,在第一预定时间段后重新实施测量实时运行温度的步骤。该控制方法解决了现有变频压缩机在高运行频率下不够节能和噪音大的问题,合理地降低了压缩机的运转频率,实现了节能、降噪。

Description

压缩机运行频率的控制方法 技术领域
本发明涉及压缩机控制方法,具体地涉及压缩机运行频率的控制方法。
背景技术
压缩机可通过变频控制器来调节其转速(简称“变频压缩机”),进而能够调节其输出的功率。结合了变频压缩机的空调***因此能够根据外界制冷或制热负荷的变化来调节其输出的制冷或制热量。当制冷或制热负荷增加时,变频压缩机通过增加其运行频率来提高其转速,进而提高空调***输出的制冷或制热量。相反,当制冷或制热负荷降低时,变频压缩机通过降低其运行频率来降低其转速,进而能够减少输出的制冷或制热量。因此,作为空调***的最重要工作部件,压缩机的运转频率的高低不仅直接影响到空调***的耗电量,而且压缩机的运行频率的高低还跟空调***的室外机噪音有直接关系,这是因为压缩机一般直接被置于室外机(其通常被置于环境受调节空间之外)中。当压缩机一直在高频率下运行时,压缩机的耗电量会非常大,并且压缩机的噪音也会非常的高。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有变频压缩机在高运行频率下不够节能和其噪音大的的技术问题,本发明提供一种压缩机运行频率的控制方法,所述控制方法包括:设置基础目标温度和与所述基础目标温度相差不同温度值的多个偏差目标温度,并且基于所述基础目标温度和多个偏差目标温度形成多个目标温度区间;确定对应所述基础目标温度的目标运行频率,并且设置对应每个所述目标温度区间的比所述目标运行频率低预定值的设定运行频率;测量实时运行温度,并且选择所述实时运行温度所落入的目标温度区间;以对应所选择的目标温度区间的设定运行频率驱动所 述压缩机并且持续第一预定时间段,在所述第一预定时间段后重新实施测量所述实时运行温度的步骤。
在上述压缩机运行频率的控制方法的优选技术方案中,所述基础目标温度包括基础目标蒸发温度和基础目标冷凝温度。
在上述压缩机运行频率的控制方法的优选技术方案中,所述目标温度区间越靠近所述基础目标温度,对应所述目标温度区间的设定运行频率比所述目标运行频率低的所述预定值越大。
在上述压缩机运行频率的控制方法的优选技术方案中,当所述基础目标温度发生变化时,在以对应所选择的目标温度区间的设定运行频率驱动所述压缩机并且持续第一预定时间的步骤结束后,所述控制方法基于新的基础目标温度控制所述压缩机运行频率。
在上述压缩机运行频率的控制方法的优选技术方案中,针对制冷模式,设置所述基础目标蒸发温度和比所述基础目标蒸发温度高不同温度值的多个偏差目标蒸发温度。
在上述压缩机运行频率的控制方法的优选技术方案中,当实时运行蒸发温度小于所述基础目标蒸发温度时,所述压缩机以预定降频速度进行降频,并且每经过第二预定时间段就重新判断所述实时运行蒸发温度是否小于所述基础目标蒸发温度,直到所述实时运行蒸发温度大于等于所述基础目标蒸发温度,然后以对应所述实时运行蒸发温度所落入的目标蒸发温度区间的设定运行频率驱动所述压缩机。
在上述压缩机运行频率的控制方法的优选技术方案中,在所述基础目标蒸发温度和相邻的最小偏差目标蒸发温度之间以及在所述多个偏差目标蒸发温度的相邻偏差目标蒸发温度之间形成相同的温度差。
在上述压缩机运行频率的控制方法的优选技术方案中,针对制热模式,设置所述基础目标冷凝温度和比所述基础目标冷凝温度低不同温度值的多个偏差目标冷凝温度。
在上述压缩机运行频率的控制方法的优选技术方案中,当实时运行冷凝温度大于所述基础目标冷凝温度时,所述压缩机以预定降频速度进行降频,并且每经过第三预定时间段就重新判断所述实时运行冷凝温度是否大于所述基础目标冷凝温度,直到所述实时运行冷凝温度小于等于所述基础目 标冷凝温度,然后以对应所述实时运行冷凝温度所落入的目标冷凝温度区间的设定运行频率驱动所述压缩机。
在上述压缩机运行频率的控制方法的优选技术方案中,在所述基础目标冷凝温度和相邻的最大偏差目标冷凝温度之间以及在所述多个偏差目标冷凝温度的相邻目标冷凝温度之间形成相同的温度差。
本领域技术人员能够理解的是,在本发明压缩机运行频率的控制方法的技术方案中,该控制方法例如为结合了压缩机的空调***或其它制冷***设置基础目标温度和与基础目标温度相差不同温度值的多个偏差目标温度,并且基于基础目标温度和多个偏差目标温度形成多个目标温度区间。基础目标温度一般可基于例如空调***或其它制冷***的实际负荷需求确定。该控制方法还需要确定对应基础目标温度的目标运行频率,并且设置对应每个目标温度区间的比目标运行频率低预定值的设定运行频率。然后,该控制方法测量空调***的实时运行温度,并且选择实时运行温度所落入的目标温度区间。在选择了目标温度区间后,该控制方法以对应该目标温度区间的设定运行频率驱动压缩机并且持续第一预定时间段。基于不同的目标温度区间,适当地降低压缩机的运行频率,这样既能够保证空调***或其它制冷***的制冷或制热效果,又能够降低压缩机的噪音和能耗。在第一预定时间段后通过重新实施测量实时运行温度的步骤来重复地实施上述控制方法。综合言之,该控制方法在不影响压缩机的使用效果的前提下,合理地降低压缩机的运转频率,以便实现节能、降噪的目的。
优选地,在制冷模式下,例如空调***的室内机(其通常被置于环境受调节空间内)内的换热器通常充当蒸发器,并且在制冷模式下一般基于蒸发器的蒸发温度来控制空调***。因此,针对制冷模式,设置基础目标蒸发温度和比基础目标蒸发温度高不同温度值的多个偏差目标蒸发温度。
优选地,在制热模式下,例如空调***的室内机内的换热器通常充当冷凝器,并且在制热模式下一般基于冷凝器的冷凝温度来控制空调***。因此,针对制热模式,设置基础目标冷凝温度和比基础目标冷凝温度低不同温度值的多个偏差目标冷凝温度。
优选地,当实时运行蒸发温度比基础目标蒸发温度低时或者当实时运行冷凝温度比基础目标冷凝温度高时,这表明空调***或其它制冷***还未进入稳定运行状态,因此对压缩机采用持续降频的控制方法(例如以预 定降频速度降低压缩机的运行频率),并且每经过第二或第三预定时间段就重新比较实时运行蒸发温度与基础目标蒸发温度或者实时运行冷凝温度与基础目标冷凝温度,直到实时运行蒸发温度大于等于基础目标蒸发温度或者实时运行冷凝温度小于等于基础目标冷凝温度。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明压缩机运行频率的控制方法的流程图;
图2是本发明压缩机运行频率的控制方法的第一实施例的示意图;
图3是本发明压缩机运行频率的控制方法的第二实施例的示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
为了解决现有压缩机在高频率下不够节能和噪音比较高的技术问题,本发明提供一种压缩机运行频率的控制方法,该控制方法包括:设置基础目标温度和与基础目标温度相差不同温度值的多个偏差目标温度,并且基于基础目标温度和多个偏差目标温度形成多个目标温度区间;确定对应基础目标温度的目标运行频率,并且设置对应每个目标温度区间的比目标运行频率低预定值的设定运行频率;测量实时运行温度,并且选择实时运行温度所落入的目标温度区间;以对应所选择的目标温度区间的设定运行频率驱动压缩机并且持续第一预定时间段,在第一预定时间段后重新实施测量实时运行温度的步骤。这种控制方法基于基础目标控制温度和对应的目标运行频率,在不同的目标温度区间,通过适当地降低压缩机的运行频率,即以比目标运行频率低预定值的设定运行频率驱动压缩机,不仅能够维持例如结合了压缩机的空调***或其它制冷***的制冷或制热效果,而且实现了节能、减噪的目的。
在本文中所提及的压缩机可以是具有变频功能的任何合适类似的压缩机,包括但不限于离心压缩机、涡旋压缩机等。空调***可以是一体式空调、分体式空调、多联机式空调、或者其它类型的空调***。空调***可以选择成只具有制冷模式,也可以具有制冷和制热两种模式(例如热泵式空调***)。
图1示出了本发明压缩机运行频率的控制方法的流程图。如图1所示,该控制方法包括步骤S1、S2、S3、和S4。在步骤S1中,针对结合在空调***中的压缩机,该控制方法为空调***设置基础目标温度和与基础目标温度相差不同温度值的多个偏差目标温度,并且基于基础目标温度和多个偏差目标温度形成多个目标温度区间。基础目标温度一般根据空调***的实际负荷需求确定。在一种或多种实施例中,基础目标温度可以是基础目标蒸发温度或者基础目标冷凝温度。例如,针对空调***的制冷模式,基础目标温度可以采用基础目标蒸发温度,而针对空调***的制热模式,基础目标温度可以采用基础目标冷凝温度。在一种或多种实施例中,多个偏差目标温度可以为两个、三个、四个、或更多个,以便满足空调***的实际需求。替代地,在其它实施例中,压缩机可以结合到其它制冷***中,例如冷柜等。
当基础目标温度为基础目标蒸发温度时,多个偏差目标温度选择成分别比基础目标蒸发温度大不同温度值的偏差目标蒸发温度。可选地,在基础目标蒸发温度与相邻的最小偏差目标蒸发温度之间以及在多个偏差目标蒸发温度的相邻偏差目标蒸发温度之间相差相同的温度值,例如1℃。替代地,在其它实施例中,在基础目标蒸发温度与相邻的最小偏差目标蒸发温度之间以及在多个偏差目标蒸发温度的相邻偏差目标蒸发温度之间相差的温度值也可以采用1℃以外的值。多个目标蒸发温度区间不仅包括形成在基础目标蒸发温度与相邻的最小偏差目标蒸发温度之间和在多个偏差目标蒸发温度的相邻偏差目标蒸发温度之间的温度区间,并且还包括大于最大偏差目标蒸发温度的温度区间。因此,当偏差目标蒸发温度为三个时,可以形成四个目标蒸发温度区间。当偏差目标蒸发温度为四个时,则可以形成五个目标蒸发温度区间。
当基础目标温度为基础目标冷凝温度时,多个偏差目标温度选择成分别比基础目标冷凝温度小不同温度值的偏差目标冷凝温度。可选地,在基础目标冷凝温度与相邻的最大偏差目标冷凝温度之间以及在多个偏差目 标冷凝温度的相邻偏差目标冷凝温度之间相差相同的温度值,例如2℃。替代地,在其它实施例中,在基础目标冷凝温度与相邻的最大偏差目标冷凝温度之间以及在多个偏差目标冷凝温度的相邻偏差目标冷凝温度之间相差的温度值也可以采用2℃以外的值。多个目标冷凝温度区间不仅包括形成在基础目标冷凝温度与相邻的最大偏差目标冷凝温度之间和在多个偏差目标冷凝温度的相邻偏差目标冷凝温度之间的温度区间,并且还包括小于最小偏差目标冷凝温度的温度区间。因此,当偏差目标冷凝温度为三个时,可以形成四个目标冷凝温度区间。当偏差目标冷凝温度为四个时,则可以形成五个目标冷凝温度区间。
基于步骤S1中设置的基础目标温度和多个目标温度区间,本发明的控制方法在步骤S2中就可以确定对应基础目标温度的目标运行频率,并且设置对应每个目标温度区间的比目标运行频率低预定值的设定运行频率。在一种或多种实施例中,目标温度区间越靠近基础目标温度,对应目标温度区间的设定运行频率比目标运行频率低的预定值越大。
例如,如图2所示,在一种或多种实施例中,基础目标温度采用基础目标蒸发温度Te并且偏差目标蒸发温度为三个:Te+1℃,Te+2℃,和Te+3℃。基于基础目标蒸发温度Te和三个偏差目标蒸发温度,形成四个目标蒸发温度区间:大于基础目标蒸发温度Te并且小于等于相邻的最小偏差目标蒸发温度Te+1℃的第一目标蒸发温度区间I;大于最小偏差目标蒸发温度Te+1℃并且小于等于中间偏差目标蒸发温度Te+2℃之间的第二目标蒸发温度区间II;大于中间偏差目标蒸发温度Te+2℃并且小于等于最大偏差目标蒸发温度Te+3℃的第三目标蒸发温度区间III;大于最大偏差目标蒸发温度Te+3℃的第四目标蒸发温度区间IV。基础目标蒸发温度Te所对应的目标运行频率为Fe。对应第一目标蒸发温度区间I的第一设定运行频率Fse1设为Fe-12Hz;对应第二目标蒸发温度区间II的第二设定运行频率Fse2设为Fe-8Hz;对应第三目标蒸发温度区间III的第三设定运行频率Fse3设为Fe-4Hz;对应第四目标蒸发温度区间IV的第四设定运行频率Fse4设为Fe-0Hz。因此,第一、第二、第三和第四设定运行频率Fse1、Fse2、Fse3和Fse4依次可比目标运行频率Fe低12Hz、8Hz、4Hz、和0Hz。替代,在其它实施例中,对应每个目标蒸发温度区间的设定运行频率可比目标运行频率低不同于上述频率值的其它合适频率值。
例如,如图3所示,在一种或多种实施例中,基础目标温度采用基础目标冷凝温度Tc并且偏差目标冷凝温度也为三个:Tc-2℃,Tc-4℃,和Tc-6℃。基于基础目标冷凝温度Tc和三个偏差目标冷凝温度,形成四个目标冷凝温度区间:小于基础目标冷凝温度Tc并且大于等于相邻的最大偏差目标冷凝温度Tc-2℃的第一目标冷凝温度区间I;小于最大偏差目标冷凝温度Tc-2℃并且大于等于中间偏差目标冷凝温度Tc-4℃的第二目标冷凝温度区间II;小于中间偏差目标冷凝温度Tc-4℃并且大于等于最小偏差目标冷凝温度Tc-6℃的第三目标冷凝温度区间III;小于最小偏差目标冷凝温度Tc-6℃的第四目标冷凝温度区间IV。基础目标冷凝温度Tc所对应的目标运行频率为Fc。对应第一目标冷凝温度区间I的第一设定运行频率Fce1设为Fc-12Hz;对应第二目标冷凝温度区间II的第二设定运行频率Fce2设为Fc-8Hz;对应第三目标冷凝温度区间III的第三设定运行频率Fce3设为Fc-4Hz;对应第四目标冷凝温度区间IV的第四设定运行频率Fce4设为Fc-0Hz。因此,第一、第二、第三和第四设定运行频率Fce1、Fce2、Fce3和Fce4依次可比目标运行频率Fc低12Hz、8Hz、4Hz、和0Hz。替代,在其它实施例中,对应每个目标冷凝温度区间的设定运行频率可比目标运行频率低不同于上述频率值的其它合适频率值。
设置好对应每个目标温度区间的设定运行频率后,本发明的控制方法前进到步骤S3,测量空调***的实时运行温度,并且选择实时运行温度所落入的目标温度区间。需要指出的是,本发明的控制方法通常需要等待空调***开机运行达到稳定状态后才开始实施,例如在空调***开机后等待30分钟或其它合适的时间后再实施。因此,如果实时运行温度没有落入设定的目标温度区间,例如实时运行蒸发温度低于基础目标蒸发温度或者实时运行冷凝温度高于基础目标冷凝温度,这说明空调***还未达到稳定状态。在一种或多种实施例中,当本发明的控制方法确定空调***的运行还未达到稳定状态时,就以预定的降频速度(例如1Hz/5秒或其它合适的速度)持续降低压缩机的运行频率,并且每经过一个预定时间段对空调***是否进入稳定状态进行一次判断。例如,当基础目标温度为基础目标蒸发温度时,如果实时运行蒸发温度低于基础目标蒸发温度,该控制方法就以预定的降频速度(例如1Hz/5秒或其它合适的速度)持续降低压缩机的运行频率,并且每经过例如3分钟或其它合适的时间对实时运行蒸发温度是否小于基础目标蒸发温度进行一次判断,直到实时运行蒸发温度大于等于基础目标蒸发温度。在实时 运行蒸发温度大于等于基础目标蒸发温度的情况下,再判断实时运行蒸发温度落入哪个目标蒸发温度区间。类似地,当基础目标温度为基础目标冷凝温度时,如果实时运行冷凝温度高于基础目标冷凝温度,该控制方法就以预定的降频速度(例如1Hz/5秒或其它合适的速度)持续降低压缩机的运行频率,并且每经过例如3分钟或其它合适的时间对实时运行冷凝温度是否大于基础目标冷凝温度进行一次判断,直到实时运行冷凝温度小于等于基础目标冷凝温度。在实时运行冷凝温度小于等于基础目标冷凝温度的情况下,再判断实时运行冷凝温度落入哪个目标冷凝温度区间。
确定实时运行温度所落入的目标温度区间后,本发明的控制方法前进到步骤S4,以对应所选择的目标温度区间的设定运行频率驱动压缩机并且持续第一预定时间段,在第一预定时间段后重新实施测量空调***的实时运行温度的步骤。例如,参考图2,在基础目标温度为基础目标蒸发温度的情况下,如果实时运行蒸发温度落入第一目标蒸发温度区间I,就以第一设定运行频率Fe-12Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行蒸发温度落入第二目标蒸发温度区间II,就以第二设定运行频率Fe-8Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行蒸发温度落入第三目标蒸发温度区间III,就以第三设定运行频率Fe-4Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行蒸发温度落入第四目标蒸发温度区间IV,就以第四设定运行频率Fe-0Hz(即Fe)驱动压缩机并且持续例如15分钟或其它合适的时间段。以任一个设定运行频率驱动压缩机经过例如15分钟或其它合适的时间段后,该控制方法重新测量空调***的实时运行蒸发温度并基于该重新测量的实时运行蒸发温度重复实施本发明的控制方法的上述关联步骤。类似地,参考图3,在基础目标温度为基础目标冷凝温度的情况下,如果实时运行冷凝温度落入第一目标冷凝温度区间I,就以第一设定运行频率Fc-12Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行冷凝温度落入第二目标冷凝温度区间II,就以第二设定运行频率Fc-8Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行冷凝温度落入第三目标冷凝温度区间III,就以第三设定运行频率Fc-4Hz驱动压缩机并且持续例如15分钟或其它合适的时间段。如果实时运行冷凝温度落入第四目标冷凝温度区间IV,就以第四设定运行频率Fc-0Hz(即Fc)驱动压缩机并且持续例如15分钟或其它合适的时间段。以任 一个设定运行频率驱动压缩机经过例如15分钟或其它合适的时间段后,该控制方法重新测量空调***的实时运行冷凝温度并基于该重新测量的实时运行冷凝温度重复实施本发明的控制方法的上述关联步骤。
在本发明的控制方法的实施过程中,当基础目标温度例如因为空调***的负荷需求的变化而改变为新的基础目标温度时,如果以某个设定运行频率驱动压缩机还未达到预先设定的第一时间段,该控制方法需要等待直到第一时间段得到满足后再基于新的基础目标温度和对应的新的目标温度区间控制压缩机的运行频率。
表一:
Figure PCTCN2021072003-appb-000001
上表一显示了一种使用了本发明压缩机运行频率的控制方法的空调***示例的测试结果。在该示例中,空调***的额定制冷量为20kw,并且在名义制冷工况下得到上述测试结果。如上表一所示,在制冷量从20149小幅减到18960的情况下,空调***的能力衰减变化很小,但是压缩机的功率和噪音却得到明显的改善。因此,本发明的压缩机运行频率的控制方法能够帮助空调***实现节能、降噪的目的。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种压缩机运行频率的控制方法,其特征在于,所述控制方法包括:
    设置基础目标温度和与所述基础目标温度相差不同温度值的多个偏差目标温度,并且基于所述基础目标温度和多个偏差目标温度设置多个目标温度区间;
    确定对应所述基础目标温度的目标运行频率,并且设置对应每个所述目标温度区间的比所述目标运行频率低预定值的设定运行频率;
    测量实时运行温度,并且选择所述实时运行温度所落入的目标温度区间;
    以对应所选择的目标温度区间的设定运行频率驱动所述压缩机并且持续第一预定时间段,在所述第一预定时间段后重新实施测量所述实时运行温度的步骤。
  2. 根据权利要求1所述的压缩机运行频率的控制方法,其特征在于,所述基础目标温度包括基础目标蒸发温度和基础目标冷凝温度。
  3. 根据权利要求1或2所述的压缩机运行频率的控制方法,其特征在于,所述目标温度区间越靠近所述基础目标温度,对应所述目标温度区间的设定运行频率比所述目标运行频率低的所述预定值越大。
  4. 根据权利要求1或2所述的的压缩机运行频率的控制方法,其特征在于,当所述基础目标温度发生变化时,在以对应所选择的目标温度区间的设定运行频率驱动所述压缩机并且持续第一预定时间的步骤结束后,所述控制方法基于新的基础目标温度控制所述压缩机运行频率。
  5. 根据权利要求2所述的压缩机运行频率的控制方法,其特征在于,针对制冷模式,设置所述基础目标蒸发温度和比所述基础目标蒸发温度高不同温度值的多个偏差目标蒸发温度。
  6. 根据权利要求5所述的压缩机运行频率的控制方法,其特征在于,当实时运行蒸发温度小于所述基础目标蒸发温度时,所述压缩机以预定降频速度进行降频,并且每经过第二预定时间段就重新判断所述实时运行蒸发温度是否小于所述基础目标蒸发温度,直到所述实时运行蒸发温度大于等于所述基础目标蒸发温度,然后以对应所述实时运行蒸发温度所落入的目标蒸发温度区间的设定运行频率驱动所述压缩机。
  7. 根据权利要求5或6所述的压缩机运行频率的控制方法,其特征在于,在所述基础目标蒸发温度和相邻的最小偏差目标蒸发温度之间以及在所述多个偏差目标蒸发温度的相邻偏差目标蒸发温度之间形成相同的温度差。
  8. 根据权利要求2所述的压缩机运行频率的控制方法,其特征在于,针对制热模式,设置所述基础目标冷凝温度和比所述基础目标冷凝温度低不同温度值的多个偏差目标冷凝温度。
  9. 根据权利要求8所述的压缩机运行频率的控制方法,其特征在于,当实时运行冷凝温度大于所述基础目标冷凝温度时,所述压缩机以预定降频速度进行降频,并且每经过第三预定时间段就重新判断所述实时运行冷凝温度是否大于所述基础目标冷凝温度,直到所述实时运行冷凝温度小于等于所述基础目标冷凝温度,然后以对应所述实时运行冷凝温度所落入的目标冷凝温度区间的设定运行频率驱动所述压缩机。
  10. 根据权利要求8或9所述的压缩机运行频率的控制方法,其特征在于,在所述基础目标冷凝温度和相邻的最大偏差目标冷凝温度之间以及在所述多个偏差目标冷凝温度的相邻偏差目标冷凝温度之间形成相同的温度差。
PCT/CN2021/072003 2020-03-26 2021-01-15 压缩机运行频率的控制方法 WO2021190104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010224813.4 2020-03-26
CN202010224813.4A CN113446670A (zh) 2020-03-26 2020-03-26 压缩机运行频率的控制方法

Publications (1)

Publication Number Publication Date
WO2021190104A1 true WO2021190104A1 (zh) 2021-09-30

Family

ID=77807245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072003 WO2021190104A1 (zh) 2020-03-26 2021-01-15 压缩机运行频率的控制方法

Country Status (2)

Country Link
CN (1) CN113446670A (zh)
WO (1) WO2021190104A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951888A (zh) * 2022-07-19 2023-10-27 广东凯得智能科技股份有限公司 一种多温区冷柜的控制方法、装置、设备及介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410890A (en) * 1994-01-27 1995-05-02 Fujitsu General Limited Control apparatus of air-conditioner
JPH11173639A (ja) * 1997-12-09 1999-07-02 Fujitsu General Ltd 空気調和機の制御方法
CN101089495A (zh) * 2006-06-16 2007-12-19 乐金电子(天津)电器有限公司 变频空调的控制方法
JP2010190510A (ja) * 2009-02-19 2010-09-02 Nakano Refrigerators Co Ltd 冷凍機の制御方法
CN103062866A (zh) * 2013-01-04 2013-04-24 广东美的制冷设备有限公司 节能控制方法、***及空调器
CN105157172A (zh) * 2015-08-31 2015-12-16 Tcl空调器(中山)有限公司 空调器的控制方法及装置
CN105546742A (zh) * 2015-12-25 2016-05-04 美的集团武汉制冷设备有限公司 空调器和空调器的控制方法及装置
CN105674493A (zh) * 2016-02-01 2016-06-15 广东美的制冷设备有限公司 空调器及其控制方法和控制装置
CN106765883A (zh) * 2016-11-29 2017-05-31 奥克斯空调股份有限公司 一种变频空调器频率的控制方法
CN107525228A (zh) * 2017-08-03 2017-12-29 青岛海尔空调器有限总公司 一种空调温湿双控的方法及装置
CN108895629A (zh) * 2018-07-20 2018-11-27 宁波奥克斯电气股份有限公司 变频空调频率控制方法及空调器
CN110736249A (zh) * 2019-10-29 2020-01-31 珠海格力电器股份有限公司 压缩机的运行频率控制方法及装置、存储介质和处理器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052009B (zh) * 2016-05-25 2018-10-12 青岛海尔空调器有限总公司 变频空调频率控制方法及控制装置
CN106705374A (zh) * 2016-12-30 2017-05-24 美的集团股份有限公司 一种空调器的控制方法及装置
CN108224704A (zh) * 2017-12-25 2018-06-29 青岛海尔空调电子有限公司 空调的控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410890A (en) * 1994-01-27 1995-05-02 Fujitsu General Limited Control apparatus of air-conditioner
JPH11173639A (ja) * 1997-12-09 1999-07-02 Fujitsu General Ltd 空気調和機の制御方法
CN101089495A (zh) * 2006-06-16 2007-12-19 乐金电子(天津)电器有限公司 变频空调的控制方法
JP2010190510A (ja) * 2009-02-19 2010-09-02 Nakano Refrigerators Co Ltd 冷凍機の制御方法
CN103062866A (zh) * 2013-01-04 2013-04-24 广东美的制冷设备有限公司 节能控制方法、***及空调器
CN105157172A (zh) * 2015-08-31 2015-12-16 Tcl空调器(中山)有限公司 空调器的控制方法及装置
CN105546742A (zh) * 2015-12-25 2016-05-04 美的集团武汉制冷设备有限公司 空调器和空调器的控制方法及装置
CN105674493A (zh) * 2016-02-01 2016-06-15 广东美的制冷设备有限公司 空调器及其控制方法和控制装置
CN106765883A (zh) * 2016-11-29 2017-05-31 奥克斯空调股份有限公司 一种变频空调器频率的控制方法
CN107525228A (zh) * 2017-08-03 2017-12-29 青岛海尔空调器有限总公司 一种空调温湿双控的方法及装置
CN108895629A (zh) * 2018-07-20 2018-11-27 宁波奥克斯电气股份有限公司 变频空调频率控制方法及空调器
CN110736249A (zh) * 2019-10-29 2020-01-31 珠海格力电器股份有限公司 压缩机的运行频率控制方法及装置、存储介质和处理器

Also Published As

Publication number Publication date
CN113446670A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US6257007B1 (en) Method of control of cooling system condenser fans and cooling tower fans and pumps
US9239174B2 (en) Cascade floating intermediate temperature heat pump system
US9890982B2 (en) Discrete frequency operation for unit capacity control
JP5804774B2 (ja) 冷凍サイクル装置
WO2021218436A1 (zh) 变频空调的控制方法
CN110260492B (zh) 一种变频空调制冷模式下的风机及压缩机控制方法
KR100378822B1 (ko) 인버터 에어컨의 절전냉방 운전방법
JP2012072920A (ja) 冷凍装置
WO2021190104A1 (zh) 压缩机运行频率的控制方法
CN114459133A (zh) 一种中央空调***节能控制方法及节能控制***
WO2021223530A1 (zh) 变频空调的控制方法
KR20100128956A (ko) 공기조화기
JPH0534582B2 (zh)
CN113915889B (zh) 一种冰箱及其控制方法
JP2003106615A (ja) 空気調和装置
KR101153421B1 (ko) 에어컨의 응축용량 제어 방법
CN112984713B (zh) 一种多压机控制方法及空调机组
JPH0623879Y2 (ja) 空気調和機
KR20070079383A (ko) 멀티 공기조화기의 압축기 제어방법
CN108709283B (zh) ***调节方法及使用该调节方法的空气调节***
KR100665737B1 (ko) 인버터 에어컨의 압축기 회전수 제어 방법
CN116481218A (zh) 双氟泵制冷***的控制方法、装置、机房空调和存储介质
KR100390505B1 (ko) 인버터 에어컨의 절전 냉방방법
JP2001280714A (ja) 冷凍装置
CN116878104A (zh) 空调的除霜方法及装置、空调设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774078

Country of ref document: EP

Kind code of ref document: A1