WO2021189271A1 - 显示器件及显示装置 - Google Patents

显示器件及显示装置 Download PDF

Info

Publication number
WO2021189271A1
WO2021189271A1 PCT/CN2020/080982 CN2020080982W WO2021189271A1 WO 2021189271 A1 WO2021189271 A1 WO 2021189271A1 CN 2020080982 W CN2020080982 W CN 2020080982W WO 2021189271 A1 WO2021189271 A1 WO 2021189271A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
polarization
pixel array
substrate
Prior art date
Application number
PCT/CN2020/080982
Other languages
English (en)
French (fr)
Inventor
孟宪芹
陈小川
王维
王灿
彭玮婷
马森
田依杉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/639,189 priority Critical patent/US20220328796A1/en
Priority to CN202080000362.4A priority patent/CN113728437B/zh
Priority to JP2022527725A priority patent/JP7522192B2/ja
Priority to EP20928015.5A priority patent/EP4033537A4/en
Priority to PCT/CN2020/080982 priority patent/WO2021189271A1/zh
Publication of WO2021189271A1 publication Critical patent/WO2021189271A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display device and a display device.
  • NED Near-eye display
  • HMD head-mounted display
  • AR augmented reality
  • VR virtual reality
  • the waveguide may be used in a near-eye display device to transmit light representing an artificially generated image from the image generating part of the device to the user's eyes.
  • the waveguide grating AR glasses shown in Figure 1 are based on the waveguide 3. After compressing the content in the microdisplay screen 1, it is coupled into the waveguide 3 through the coupling grating 2, and after being transmitted in the waveguide 3, at the coupling out position (that is, the human eye Within the observation range) the optical information on the screen is coupled out through the coupling out grating 4.
  • the embodiments of the present disclosure provide a display device and a display device, and the specific solutions are as follows:
  • a display device provided by an embodiment of the present disclosure includes: a first substrate and a second substrate disposed opposite to each other.
  • a light-emitting pixel array is located between the first substrate and the second substrate.
  • the reflective plate on the backlight side of the light-emitting pixel array is sequentially located in the polarization conversion structure and the polarization filter structure of the light-emitting pixel array;
  • the polarization filter structure is used to filter the light irradiated to the polarization filter structure from the side of the light-emitting pixel array, so that the light of the target polarization is transmitted through, and the light that is not deflected by the target is reflected back;
  • the polarization conversion structure is used to convert the transmitted circularly polarized light into linearly polarized light, or convert the transmitted linearly polarized light into circularly polarized light.
  • the polarization filter structure is a semi-reflective and semi-transmissive nanowire grid structure, a semi-reflective and semi-transmissive photonic crystal nanostructure, and a semi-reflective and semi-transparent metamaterial nanostructure. Or one of the semi-reflective and semi-transparent polarizing band-pass filter films.
  • the polarization filter structure is a semi-reflective and semi-transparent nanowire grid structure
  • the material of the semi-reflective and semi-transparent nanowire grid structure is a metal material.
  • the material of the transflective nanowire grid structure is aluminum, silver, gold or copper.
  • the ratio of the line width of the transflective nanowire grid structure to the grating period is 20% to 80%.
  • the grating period of the transflective nanowire grid structure is 40 nm, the line width is 20 nm, and the line height is 200 nm.
  • the polarization filter structure is a semi-reflective and semi-transmissive nanowire grid structure, a semi-reflective and semi-transmissive photonic crystal nanostructure, or a semi-reflective and semi-transparent metamaterial nanostructure ;
  • the display also includes:
  • the polarization conversion efficiency of the polarization conversion structure is greater than 40%.
  • the polarization conversion structure is a quarter wave plate or a reflective polarizer.
  • the second substrate is located at the light-emitting side of the light-emitting pixel array
  • the polarization conversion structure and the polarization filter structure are both located on the side of the second substrate away from the light-emitting pixel array, and the polarization conversion structure is located between the polarization filter structure and the second substrate.
  • the second substrate is located at the light-emitting side of the light-emitting pixel array
  • the polarization conversion structure and the polarization filter structure are both located between the second substrate and the light-emitting pixel array, and the polarization filter structure is located between the polarization conversion structure and the second substrate.
  • the second substrate is located at the light-emitting side of the light-emitting pixel array
  • the polarization filter structure is located on the side of the second substrate away from the light-emitting pixel array;
  • the polarization conversion structure is located between the second substrate and the light-emitting pixel array.
  • the display device further includes: a color filter layer located between the light-emitting pixel array and the second substrate;
  • the polarization conversion structure and the polarization filtering structure are both located on the side of the color filter layer facing the light-emitting pixel array; or
  • the polarization conversion structure and the polarization filtering structure are both located on the side of the color filter layer away from the light-emitting pixel array; or
  • the polarization conversion structure is located between the color filter layer and the light-emitting pixel array, and the polarization filter structure is located on the side of the color filter layer away from the light-emitting pixel array.
  • the display device is: an OLED display device, a mini-LED display device, a micro-LED display device, a quantum dot display device, or a reflective display device.
  • the embodiments of the present disclosure also provide a display device, including any of the above-mentioned display devices provided by the embodiments of the present disclosure.
  • Figure 1 is a schematic diagram of the structure of waveguide grating AR glasses in the related art
  • FIG. 2a is a top view structural view of a one-dimensional metal grating in an embodiment of the disclosure
  • FIG. 2b is a cross-sectional structure diagram of the one-dimensional metal grating shown in FIG. 2a;
  • FIG. 3 is a simulation result of the response of the one-dimensional metal grating provided by the embodiment of the disclosure to the TM polarization state and the TE polarization state respectively;
  • FIG. 4 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of another display device provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of yet another display device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another display device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another display device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of yet another display device provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of yet another display device provided by an embodiment of the disclosure.
  • FIG. 11 is a schematic structural diagram of yet another display device provided by an embodiment of the disclosure.
  • FIG. 12 is a schematic structural diagram of yet another display device provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic structural diagram of a transflective nanowire grid structure in a display device provided by an embodiment of the disclosure.
  • FIG. 14a is a simulation result of the reflectance and transmittance of the P light in the semi-reflective and semi-transmissive nanowire grid structure shown in FIG. 13;
  • Figure 14b is a simulation result of the reflectivity and transmittance of the S light in the semi-reflective and semi-transmissive nanowire grid structure shown in Figure 13;
  • FIG. 15 is a schematic structural diagram of another display device provided by an embodiment of the disclosure.
  • the one-dimensional grating has a strong dependence on the polarization of the incident light, that is, the polarization response to the polarization perpendicular to the grating direction is obvious, and the polarization in the direction parallel to the grating direction is basically not significantly modulated.
  • the one-dimensional metal grating shown in FIG. 2a and FIG. 2b as an example, where the grating period P, line width W, and line height H are 100 nm, 50 nm, and 150 nm, respectively.
  • Simulate different metal materials such as aluminum (Al), titanium (Ti), silver (Ag), gold (Au), copper (Cu), and use optical software based on solving Maxwell's equations in time domain and frequency domain.
  • Model solve the electromagnetic field distribution of the one-dimensional grating formed by the above materials.
  • the electric field direction of the incident light is perpendicular to the one-dimensional grating, it is the TM polarization state
  • the electric field direction is parallel to the one-dimensional grating
  • it is the TE polarization state.
  • the TE polarization in the direction parallel to the grating direction has no obvious modulation, that is, the light in the TM polarization state will have a significant impact on the grating material, and the light in the TE polarization state basically has no obvious response to the material.
  • the current AR equipment mainly polarizes the light of the non-polarized light source on the display screen, absorbs the light of the non-target polarization, and avoids the interference caused by the uncontrollability of the light and the polarization of the target.
  • the light is precisely controlled and used for imaging.
  • the limit value of the light that can be effectively utilized by the non-polarized light source emitted by the OLED is generally about 50% of the luminous brightness.
  • the effective utilization rate of the OLED screen light is only 3%-4%. If the OLED brightness is 3000nit, then the brightness of the AR display device is only 45nit-60nit, which is an impossible task for the AR display device in outdoor applications.
  • embodiments of the present disclosure provide a display device and a display device to realize a high-brightness single-polarization display device.
  • a display device provided by an embodiment of the present disclosure includes: a first substrate 01 and a second substrate 02 arranged oppositely and a light-emitting pixel array between the first substrate 01 and the second substrate 02 03, the reflective plate 04 located on the backlight side of the light-emitting pixel array 03, is located in turn on the polarization conversion structure 05 and the polarization filter structure 06 of the light-emitting pixel array 03;
  • the polarizing filter structure 06 is used to filter the light irradiated to the polarizing filter structure 06 from the side of the light-emitting pixel array 03, so that the target polarized light is transmitted through, and the non-target deflected light is reflected back;
  • the polarization conversion structure 05 is used to convert the transmitted circularly polarized light into linearly polarized light, or convert the transmitted linearly polarized light into circularly polarized light.
  • the display device includes: a first substrate and a second substrate arranged oppositely, a light-emitting pixel array located between the first substrate and the second substrate, a reflective plate located on the backlight side of the light-emitting pixel array, and a light-emitting pixel array in turn.
  • the polarization conversion structure and polarization filtering structure of the pixel array for light measurement in this way, after the non-polarized light emitted by the light-emitting pixel array passes through the polarization conversion structure, the non-polarized light is still non-polarized light.
  • this non-polarized light In the polarized light, the light that meets the target polarization of the polarization filter structure is filtered out of the display device, and the non-target deflected light is reflected back to the inside of the display device; the light reflected back to the inside of the display device is the non-target deflected light is linearly polarized light, and the linearly polarized light passes through
  • the polarization conversion structure is then converted into circularly polarized light; the circularly polarized light reaches the reflector and is reflected back, at this time the reflected light is still circularly polarized light; the reflected circularly polarized light is converted into linearly polarized light after passing through the polarization conversion structure.
  • the display device provided by the embodiment of the present disclosure can increase the brightness of single-polarized light.
  • the light output brightness that can be effectively utilized by the AR device will be twice the existing one.
  • the second substrate 02 is located at the light-emitting side of the light-emitting pixel array 03; the polarization conversion structure 05 and the polarization filtering structure 06 are both located away from the second substrate 02.
  • One side of the light-emitting pixel array 03, and the polarization conversion structure 05 is located between the polarization filter structure 06 and the second substrate 02.
  • the second substrate 02 is located on the light emitting side of the light-emitting pixel array 03; the polarization conversion structure 05 and the polarization filtering structure 06 are both located on the second substrate 02 and the light-emitting pixel array 03, and the polarization filter structure 06 is located between the polarization conversion structure 05 and the second substrate 02.
  • the second substrate 02 is located at the light-emitting side of the light-emitting pixel array 03; the polarization filter structure 06 is located on the second substrate 02 away from the light-emitting pixel array 03 One side; the polarization conversion structure 05 is located between the second substrate 02 and the light-emitting pixel array 03.
  • the light emitted by the light-emitting pixel array may be colored light including the three primary colors of RGB.
  • Interference crosstalk especially for high-ppi display device structures, can achieve high-ppi and high-contrast.
  • the display device provided by the embodiment of the present disclosure when the light emitted by the light-emitting pixel array is white light, as shown in FIGS. 7 to 12, the display device provided by the embodiment of the present disclosure further includes: The color film layer 07 between 03 and the second substrate 02;
  • the polarization conversion structure 05 and the polarization filtering structure 06 are both located on the side of the color film layer 07 facing the light-emitting pixel array 03; or
  • both the polarization conversion structure 05 and the polarization filter structure 06 are located on the side of the color film layer 07 away from the light-emitting pixel array 03; or
  • the polarization conversion structure 05 is located between the color film layer 07 and the light-emitting pixel array 03, and the polarization filter structure 06 is located on the side of the color film layer 07 away from the light-emitting pixel array 03.
  • the display device provided by the embodiment of the present disclosure may be: an OLED display device, a mini-LED display device, a micro-LED display device, a quantum dot display device, or a reflective display device, which is not limited herein.
  • the display device provided by the embodiment of the present disclosure is an OLED display device, it may have a bottom emission structure or a top emission structure, which is not limited herein.
  • the light-emitting pixel array mainly includes an anode layer, a light-emitting layer, and a cathode layer.
  • the anode layer or the cathode layer is generally used as a reflective electrode, so the emitter electrode can also be multiplexed.
  • the reflector For the reflector.
  • the surface of the second substrate on the side facing away from the light-emitting pixel array may be modified so that the interface of the emitted light is no longer a smooth surface, and the effect of anti-reflection is achieved.
  • the polarization filter structure in order to increase the brightness of the single-polarized light, in the display device provided by the embodiment of the present disclosure, the polarization filter structure not only needs to filter the target polarized light, but also the non-polarized light is reflected back to the side of the light-emitting pixel array. Then combined with the polarization conversion structure is used again, in order to achieve the maximum utilization rate of the light emitted by the display device as much as possible.
  • the semi-reflective nano-wire grid structure, the semi-reflective semi-transparent photonic crystal nano-structure, the semi-reflective semi-transparent metamaterial nano-structure or the semi-reflective semi-transparent polarizing band-pass filter film can achieve polarization filtering.
  • the goal of. Specifically, the responsivity of target polarized light with different structures (transmittance), the responsivity of non-target polarized light (transmittance), and the destination of non-target polarized light (including reflection or absorption loss) are shown in Table 1 below. Show. It can be seen from Table 1 that the ideal transmittance of the above-mentioned structures are all 40-50%, and the reflectivity of non-target polarized light is about 48%.
  • the polarization filter structure is a transflective nanowire grid structure, a transflective photonic crystal nanostructure, or a transflective metamaterial nanostructure. Or one of the semi-reflective and semi-transparent polarizing band-pass filter films, which is not limited here.
  • the polarization filter structure is a semi-reflective semi-transparent nanowire grid structure
  • the material of the semi-reflective and semi-transparent nanowire grid structure is a metal material.
  • the grating period of the transflective nanowire grid structure is smaller than the wavelength of the incident light.
  • the reverse transflective nanowire grid structure is generally formed by etching several nanometer-scale trenches on a metal substrate.
  • the transmissivity of the target polarized light of the transflective nanowire grid structure depends on the parameters of the nanowire grid structure and its use conditions.
  • the parameters of the nanowire grid structure include the material of the nanowire grid structure and the line height (that is, the depth of the trench). ), grating period, grating line width (that is, the gap width between grooves), etc.
  • the use conditions include: incident light wavelength, incident angle, polarization state, etc.
  • the transflective nanowire grid structure in the embodiment of the present disclosure there are three main structural parameters, namely the grating period (Pitch, P), the duty cycle (W/P) and the metal wire height (Height ,H).
  • the grating period determines the shortest wavelength at which the wire grid can effectively produce polarization;
  • the duty cycle, or fill factor is the ratio (W/P) of the metal line width (W) to the grating period (P), and its adjustment
  • W/P the ratio of the metal line width
  • P the grating period
  • the trade-off between the degree of polarization and the transmission absorption can be realized. For the convenience of processing, it is generally about 0.5.
  • the height of the metal wire H has the most obvious influence on the degree of polarization, and the greater the value of H, the higher the degree of polarization.
  • the material of the transflective nanowire grid structure may be a metal material such as aluminum, silver, gold, or copper, which is not limited herein.
  • the material of the transflective nanowire grid structure is preferably aluminum.
  • the ratio of the line width of the transflective nanowire grid structure to the grating period is 20% to 80%.
  • the ratio of the line width of the transflective nanowire grid structure to the grating period is 50%.
  • the grating period P of the transflective nanowire grid structure is 40 nm, the line width W is 20 nm, and the line height H is 200 nm.
  • the light emitted by the OLED is unpolarized light, and the unpolarized light is irradiated on the transflective nanowire grid structure shown in FIG. 13, and when the incident light is P light (target In the case of polarized light), the P light is expected to be completely transmitted. If it cannot be completely transmitted, it is desired that the non-transmitted light is reflected back, that is, the P light is nearly 100% transmitted, 0% reflected and 0% absorbed.
  • the incident light is S light (non-target polarized light)
  • the S light is expected to be completely reflected. If it cannot be completely reflected, it is hoped that the non-reflected light is absorbed rather than transmitted to avoid unnecessary crosstalk.
  • the transmittance and reflectance of P light are simulated and calculated as shown in Fig. 14a, and the transmittance and reflectance of S light are shown in Fig. 14b.
  • Figure 14a when the incident light is P light, in the visible light range, the reflectance is below 10%, and the transmittance is close to 90%, that is, the transflective nanowire provided by the embodiment of the present disclosure
  • the grid structure can achieve the purpose of polarization filtering of P light in the design goal, and other purposes of being reflected; as can be seen from Figure 8b, when the incident light is S light, the reflectivity is basically about 90%, and the transmittance is basically close to 0, that is, the semi-reflective and semi-transparent nanowire grid structure provided by the embodiment of the present disclosure can achieve the purpose of reflecting the S light back and zero transmission in the design target.
  • the display when the polarization filter structure is a transflective nanowire grid structure, a transflective photonic crystal nanostructure, or a transflective metamaterial nanostructure, As shown in Figure 15, the display also includes:
  • the encapsulation layer 20 covering the polarizing filter structure 06 protects the polarizing filter structure 06 from environmental wear or particulate matter.
  • the refractive index of the encapsulation layer is smaller than the refractive index of the polarization filter structure, so as to prevent the encapsulation layer from affecting the optical characteristics of the polarization filter structure, and in specific implementation, the encapsulation layer The greater the difference between the refractive index and the refractive index of the polarization filter structure, the better the effect.
  • the polarization filter structure when the polarization filter structure is located on the side of the second substrate facing the light-emitting pixel array, since the polarization filter structure is encapsulated between the second substrate and the first substrate, it can also save energy. Go to the settings of the encapsulation layer.
  • the polarization conversion efficiency of the polarization conversion structure is greater than 40% to ensure effective use of light.
  • the more mature polarizing beam splitting prisms and deflection beam splitters are widely used in optics.
  • 1/4 wave plate, film design similar to 1/4 wave plate function, metamaterial or super structure, etc. can realize the function similar to 1/4 wave plate.
  • the polarizing beam splitter and prism film are not suitable for micro-display OLED display screens.
  • the quarter-wave plate uses the anisotropic characteristics of the material to have different refractive indexes and propagation speeds for light in different polarization directions, resulting in a phase difference between the two components, thereby converting linearly polarized light into circularly polarized light , Or convert circularly polarized light into linearly polarized light.
  • the quarter wave plate or similar structure controls the material (refractive index n) and thickness (t) to make the light pass through the wave plate, and the two different polarization directions produce a 1/4 wavelength phase difference. Under this phase difference The synthesized light is circularly polarized light.
  • the outgoing polarization and the original polarization produce a 1/4 wavelength phase difference.
  • the direction and phase difference of the two components remain unchanged.
  • the two components are again superimposed with a 1/4 wavelength phase difference, a total of 1/2 phase difference, so the light is also linearly polarized, and the polarization direction is perpendicular to the original direction.
  • the polarization conversion structure may be 1/
  • the 4-wave plate or reflective polarizer (Dual Brightness Enhancement Film, DBEF) is not limited here.
  • the reflective polarizer can adopt the DBEF multilayer film structure of 3M Company.
  • the DBEF multilayer film structure can be used to directly replace the encapsulation layer of the existing OLED display device to realize a lighter, thinner, and more integrated single-polarization OLED display device.
  • the quarter-wave plate is currently the most well-developed and can be directly superimposed and used. Therefore, the specific implementation of the polarization conversion structure can be selected according to actual product application scenarios, which is not limited here.
  • the display device provided by the embodiments of the present disclosure can realize a high-efficiency single-polarization display device structure that can be used without changing the process route of the existing display device.
  • the display device provided by the embodiment of the present disclosure can realize AR, VR, MR, vehicle-mounted, and light control device structure dependent on the polarization state, and can also be applied to the fields of light and thin near-eye display and light field display.
  • embodiments of the present disclosure also provide a display device, including any of the above-mentioned display devices provided by the embodiments of the present disclosure.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and so on.
  • the implementation of the display device can be referred to the embodiment of the above-mentioned display panel, and the repetition will not be repeated.
  • a display device and a display device include: a first substrate and a second substrate arranged oppositely, a light-emitting pixel array located between the first substrate and the second substrate, and a reflector located on the backlight side of the light-emitting pixel array
  • the plate, the polarization conversion structure and the polarization filter structure that are located in the light-emitting pixel array in turn; in this way, after the non-polarized light emitted by the light-emitting pixel array passes through the polarization conversion structure, the non-polarized light is still non-polarized light, and when the non-polarized light reaches the polarization filter structure
  • the non-polarized light meets the target polarization of the polarization filter structure, the light is filtered out of the display device, and the non-target deflected light is reflected back to the inside of the display device; the light reflected back to the inside of the display device is the non-target deflected light is linearly polarized light ,

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开公开了一种显示器件及显示装置,包括:相对设置的第一基板和第二基板位于第一基板与第二基板之间的发光像素阵列,位于发光像素阵列背光侧的反射板,依次位于发光像素阵列出光测的偏振转化结构和偏振过滤结构;偏振过滤结构用于对由发光像素阵列侧照射至偏振过滤结构的光进行过滤,以使目标偏振的光透过,非目标偏转的光反射回去;偏振转化结构用于将透过的圆偏振光转换为线偏振光,或将透过的线偏振光转换为圆偏振光。

Description

显示器件及显示装置 技术领域
本公开涉及显示技术领域,尤指一种显示器件及显示装置。
背景技术
诸如头戴式显示(HMD)设备等近眼显示(NED)设备最近已经被引入消费者市场,以支持诸如增强现实(AR)和虚拟现实(VR)等可视化技术。
波导可以用在近眼显示设备中,以将表示人工生成的图像的光从设备的图像生成部件传送到用户的眼睛。例如图1所示的波导光栅AR眼镜是基于波导3,将微显示屏幕1中内容压缩后,通过耦入光栅2耦入波导3,在波导3内传输后,在耦出位置(即人眼观察范围内)通过耦出光栅4耦出屏幕光学信息。
但目前的AR显示设备存在出光亮度较低,光的利用效率较低的问题。
发明内容
有鉴于此,本公开实施例提供了一种显示器件及显示装置,具体方案如下:
一方面,本公开实施例提供的一种显示器件,其中,包括:相对设置的第一基板和第二基板位于所述第一基板与所述第二基板之间的发光像素阵列,位于所述发光像素阵列背光侧的反射板,依次位于所述发光像素阵列出光测的偏振转化结构和偏振过滤结构;
所述偏振过滤结构用于对由所述发光像素阵列侧照射至所述偏振过滤结构的光进行过滤,以使目标偏振的光透过,非目标偏转的光反射回去;
所述偏振转化结构用于将透过的圆偏振光转换为线偏振光,或将透过的线偏振光转换为圆偏振光。
可选地,在本公开实施例提供的显示器件中,所述偏振过滤结构为半反 半透式纳米线栅结构、半反半透式光子晶体纳米结构、半反半透式超材料纳米结构或半反半透式偏振带通滤波膜中的一种。
可选地,在本公开实施例提供的显示器件中,所述偏振过滤结构为半反半透式纳米线栅结构;
所述半反半透式纳米线栅结构的材料为金属材料。
可选地,在本公开实施例提供的显示器件中,所述半反半透式纳米线栅结构的材料为铝、银、金或铜。
可选地,在本公开实施例提供的显示器件中,所述半反半透式纳米线栅结构的线宽与光栅周期的比例为20%~80%。
可选地,在本公开实施例提供的显示器件中,所述半反半透式纳米线栅结构的光栅周期为40nm,线宽为20nm,线高为200nm。
可选地,在本公开实施例提供的显示器件中,所述偏振过滤结构为半反半透式纳米线栅结构、半反半透式光子晶体纳米结构或半反半透式超材料纳米结构;所述显示器还包括:
包覆所述偏振过滤结构的封装层,且所述封装层的折射率小于所述偏振过滤结构的折射率。
可选地,在本公开实施例提供的显示器件中,所述偏振转化结构的偏振转换效率大于40%。
可选地,在本公开实施例提供的显示器件中,所述偏振转化结构为1/4波片或反射型偏光片。
可选地,在本公开实施例提供的显示器件中,所述第二基板位于所述发光像素阵列的出光测;
所述偏振转化结构和所述偏振过滤结构均位于第二基板背离所述发光像素阵列一侧,且所述偏振转化结构位于所述偏振过滤结构和所述第二基板之间。
可选地,在本公开实施例提供的显示器件中,所述第二基板位于所述发光像素阵列的出光测;
所述偏振转化结构和所述偏振过滤结构均位于第二基板与所述发光像素阵列之间,且所述偏振过滤结构位于所述偏振转化结构和所述第二基板之间。
可选地,在本公开实施例提供的显示器件中,所述第二基板位于所述发光像素阵列的出光测;
所述偏振过滤结构位于所述第二基板背离所述发光像素阵列一侧;
所述偏振转化结构位于所述第二基板和所述发光像素阵列之间。
可选地,在本公开实施例提供的显示器件中,还包括:位于所述发光像素阵列与所述第二基板之间的彩膜层;
所述偏振转化结构和所述偏振过滤结构均位于所述彩膜层面向所述发光像素阵列一侧;或
所述偏振转化结构和所述偏振过滤结构均位于所述彩膜层背离所述发光像素阵列一侧;或
所述偏振转化结构位于所述彩膜层与所述发光像素阵列之间,所述偏振过滤结构位于所述彩膜层背离所述发光像素阵列一侧。
可选地,在本公开实施例提供的显示器件中,所述显示器件为:OLED显示器件、mini-LED显示器件、micro-LED显示器件、量子点显示器件或反射式显示器件。
另一方面,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述任一种显示器件。
附图说明
图1为相关技术中波导光栅AR眼镜的结构示意图;
图2a为本公开实施例中一维金属光栅的俯视结构图;
图2b为图2a所示一维金属光栅的剖面结构图;
图3为本公开实施例提供的一维金属光栅分别对TM偏振态和TE偏振态的响应模拟结果;
图4为本公开实施例提供的一种显示器件的结构示意图;
图5为本公开实施例提供的另一种显示器件的结构示意图;
图6为本公开实施例提供的又一种显示器件的结构示意图;
图7为本公开实施例提供的又一种显示器件的结构示意图;
图8为本公开实施例提供的又一种显示器件的结构示意图;
图9为本公开实施例提供的又一种显示器件的结构示意图;
图10为本公开实施例提供的又一种显示器件的结构示意图;
图11为本公开实施例提供的又一种显示器件的结构示意图;
图12为本公开实施例提供的又一种显示器件的结构示意图;
图13为本公开实施例提供的显示器件中半反半透式纳米线栅结构的结构示意图;
图14a为P光在图13所示半反半透式纳米线栅结构的反射率和透过率的模拟结果;
图14b为S光在图13所示半反半透式纳米线栅结构的反射率和透过率的模拟结果;
图15为本公开实施例提供的又一种显示器件的结构示意图。
具体实施方式
具体地,由于一维光栅对入射光的偏振有强的依赖性,即对与光栅方向垂直的偏振响应明显,与光栅方向平行的方向的偏振基本无明显调制。以图2a和图2b所示的一维金属光栅为例,其中光栅周期P、线宽W和线高H分别为100nm、50nm和150nm。分别对不同的金属材料如铝(Al)、钛(Ti)、银(Ag)、金(Au)、铜(Cu)进行模拟,利用基于在时域和频域空间求解麦克斯韦方程的光学软件建模,求解以上材料形成的一维光栅的电磁场分布。入射光的电场方向与一维光栅垂直时为TM偏振态,电场方向与一维光栅平行时为TE偏振态,从图3的模拟结果可以看到与光栅垂直的TM偏振态的响应明显,与光栅方向平行的方向的TE偏振无明显的调制,即TM偏振态的光会对光栅材料有明显影响,TE偏振态的光对材料基本无明显响应。
正是由于上述原因,目前的AR设备主要是对显示屏幕的对非偏振光源的光起偏,将非目标偏振的光吸收,避免由于其光的不可控性带来的干扰,对目标偏振的光进行精确控制,用于成像。但是,以显示屏幕为OLED为例,OLED发出的非偏振光源能有效利用的光的极限值一般在发光亮度的50%左右。再通过耦入光栅和耦出光栅以及波导传输后,OLED屏幕光的有效利用率仅为3%-4%。如果OLED发光亮度为3000nit,那么AR显示设备的亮度只有45nit-60nit,这对AR显示设备在室外应用是个不可能的任务。
因此,基于此,本公开实施例提供了一种显示器件及显示装置,以实现一种高亮度单偏振的显示器件。
为使本公开的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本公开做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本公开中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本公开保护范围内。本公开的附图仅用于示意相对位置关系不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于充分理解本公开。但是本公开能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下做类似推广。因此本公开不受下面公开的具体实施方式的限制。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
下面结合附图,对本公开实施例提供的显示器件及显示装置进行具体说明。
本公开实施例提供的一种显示器件,如图4至图6所示,包括:相对设置的第一基板01和第二基板02位于第一基板01与第二基板02之间的发光 像素阵列03,位于发光像素阵列03背光侧的反射板04,依次位于发光像素阵列03出光测的偏振转化结构05和偏振过滤结构06;
偏振过滤结构06用于对由发光像素阵列03侧照射至偏振过滤结构06的光进行过滤,以使目标偏振的光透过,非目标偏转的光反射回去;
偏振转化结构05用于将透过的圆偏振光转换为线偏振光,或将透过的线偏振光转换为圆偏振光。
本公开实施例提供的显示器件,包括:相对设置的第一基板和第二基板、位于第一基板与第二基板之间的发光像素阵列、位于发光像素阵列背光侧的反射板、依次位于发光像素阵列出光测的偏振转化结构和偏振过滤结构;这样发光像素阵列发出的非偏振光经过偏振转化结构后,非偏振光依旧为非偏振光,当非偏振光到达偏振过滤结构时,将此非偏振光中符合偏振过滤结构的目标偏振的光过滤出显示器件,非目标偏转的光反射回显示器件内部;反射回显示器件内部的光为非目标偏转的光为线偏振光,线偏振光经过偏振转化结构之后转换为圆偏振光;圆偏振光到达反射板后被反射回去,此时反射回去的光仍旧为圆偏振光;反射回的圆偏振光经过偏振转化结构之后转换为线偏振光,该线偏振光的偏振方向与第一次反射回的线偏振光之间相差π/2,而该线偏振光正好是可以透过偏振过滤结构的目标偏振的光。因此,本公开实施例提供的显示器件可以增加单偏振出光的亮度。
在具体实施时,当本公开实施例提供的显示器件应用于AR设备时,从理论上来可被AR设备有效利用的出光亮度将是现有的2倍。
下面结合具体实施例,对本公开进行详细说明。需要说明的是,本实施例是为了更好的解释本公开,但不限制本公开。
可选地,在本公开实施例提供的显示器件中,如图4所示,第二基板02位于发光像素阵列03的出光测;偏振转化结构05和偏振过滤结构06均位于第二基板02背离发光像素阵列03一侧,且偏振转化结构05位于偏振过滤结构06和第二基板02之间。
或者,可选地,在本公开实施例提供的显示器件中,如图5所示,第二 基板02位于发光像素阵列03的出光测;偏振转化结构05和偏振过滤结构06均位于第二基板02与发光像素阵列03之间,且偏振过滤结构06位于偏振转化结构05和第二基板02之间。
或者,可选地,在本公开实施例提供的显示器件中,如图6所示,第二基板02位于发光像素阵列03的出光测;偏振过滤结构06位于第二基板02背离发光像素阵列03一侧;偏振转化结构05位于第二基板02和发光像素阵列03之间。
在具体实施时,在本公开实施例提供的显示器件中,发光像素阵列发出的光可以是包括RGB三原色在内的彩色光,这种情况,由于不同颜色的像素单独控制,不存在不同像素之间的串扰,尤其对于高ppi的显示器件结构来说,更能实现高ppi和高对比度。
进一步地,在本公开实施例提供的显示器件中,当发光像素阵列发出的光为白光时,如图7至图12所示,本公开实施例提供的显示器件中还包括:位于发光像素阵列03与第二基板02之间的彩膜层07;
如图9所示,偏振转化结构05和偏振过滤结构06均位于彩膜层07面向发光像素阵列03一侧;或
如图7、图10和图11所示,偏振转化结构05和偏振过滤结构06均位于彩膜层07背离发光像素阵列03一侧;或
如图8和图12所示,偏振转化结构05位于彩膜层07与发光像素阵列03之间,偏振过滤结构06位于彩膜层07背离发光像素阵列03一侧。
可选地,本公开实施例提供的显示器件可以为:OLED显示器件、mini-LED显示器件、micro-LED显示器件、量子点显示器件或反射式显示器件,在此不作限定。
具体地,当本公开实施例提供的显示器件为OLED显示器件,既可以是底发射式结构也可以是顶发射式结构,在此不作限定。
进一步地,当本公开实施例提供的显示器件为OLED显示器件时,发光像素阵列主要包括阳极层、发光层和阴极层,其中阳极层或者阴极层一般作 为反射电极,因此发射电极也可以复用为反射板。
可选地,在本公开实施例提供的显示器件中,可以对第二基板背离发光像素阵列一侧表面做修饰,使出射光的界面不再是平滑表面,实现增透的效果。
在具体实施时,为了增加单偏振出光的亮度,本公开实施例提供的显示器件中,偏振过滤结构不仅需要使目标偏振的光过滤通过,而且非偏振的光要被反射回去发光像素阵列侧,然后结合偏振转换结构再次被利用,以尽量实现显示器件出光的最大利用率。
在具体实施时,半反半透式纳米线栅结构、半反半透式光子晶体纳米结构、半反半透式超材料纳米结构或半反半透式偏振带通滤波膜都能实现偏振过滤的目的。具体地,不同结构的目标偏振光的响应度(为透过率),非目标偏振光的响应度(为透过率)以及非目标偏振光的去向(包括反射或者吸收损耗)如下表1所示。从表1可以看出,上述几种结构的理想透过率都在40-50%,非目标偏振光的反射率都在48%左右。
Figure PCTCN2020080982-appb-000001
表1 偏振过滤结构的四种实施方式
因此,可选地,在本公开实施例提供的显示器件中,偏振过滤结构为半反半透式纳米线栅结构、半反半透式光子晶体纳米结构、半反半透式超材料纳米结构或半反半透式偏振带通滤波膜中的一种,在此不作限定。
在具体实施时,从工艺程成熟度,结构复杂性以及成本的角度考虑,可选地,在本公开实施例提供的显示器件中,偏振过滤结构为半反半透式纳米 线栅结构;
且该半反半透式纳米线栅结构的材料为金属材料。
在具体实施时,在本公开实施例提供的显示器件中,半反半透式纳米线栅结构的光栅周期小于入射光的波长。
具体地,反半透式纳米线栅结构一般是通过在金属基板上刻蚀若干纳米级的沟槽形成。
反半透式纳米线栅结构的目标偏振光的透过率取决于纳米线栅结构自身参数及其使用条件,纳米线栅结构自身参数包括纳米线栅结构的材料、线高(即沟槽深度)、光栅周期、光栅线宽(即沟槽之间的间隙宽度)等,使用条件包括:入射光波长、入射角、偏振态等。对于本公开实施例中的半反半透式纳米线栅结构,有三个主要结构参数,分别是光栅周期(Pitch,P),占空比(Duty Cycle,W/P)和金属线高度(Height,H)。其中,光栅周期决定了线栅能有效产生偏振的最短波长;占空比或者称为填充因子,它是金属线宽(W)与光栅周期(P)之比(W/P),它的调节可以实现偏振度和透射吸收之间的权衡,为加工方便,一般取0.5左右。金属线高度H对偏振度的影响最为明显,H值越大则偏振度也越高。
可选地,在本公开实施例提供的显示器件中,半反半透式纳米线栅结构的材料可以为铝、银、金或铜等金属材料,在此不作限定。
具体地,在本公开实施例提供的显示器件中,半反半透式纳米线栅结构的材料为铝效果较佳。
在具体实施时,在本公开实施例提供的显示器件中,半反半透式纳米线栅结构的线宽与光栅周期的比例在20%~80%。
可选地,为加工方便,在本公开实施例提供的显示器件中,半反半透式纳米线栅结构的线宽与光栅周期的比例为50%。
可选地,在本公开实施例提供的显示器件中,如图13所示,半反半透式纳米线栅结构的光栅周期P为40nm,线宽W为20nm,线高H为200nm。
具体地,以发光像素阵列为OLED为例,OLED发出的光为非偏振光, 非偏振光照射到图13所示的半反半透式纳米线栅结构上,当入射光为P光(目标偏振光)时,P光希望是被完全透射,如果不能被完全透射,希望非透射光被反射回,即P光以接近100%透射,0%反射和0%吸收。当入射光为S光(非目标偏振光)时,S光希望被完全反射,如果不能被完全反射,希望非反射光被吸收而非透射,以免其带来不必要的串扰。在光学模拟软件FDTD Solution中模拟计算其P光的透过率和反射率如图14a所示,S光的透过率和反射率如图14b所示。从图14a可以看出,当入射光为P光时,在可见光范围内,其反射率都在10%以下,透过率接近90%,即本公开实施例提供的半反半透式纳米线栅结构能够实现设计目标中的P光偏振过滤通过,其他被反射的目的;从图8b可以看出,当入射光是S光时,其反射率基本为90%左右,透过率基本接近于0,即本公开实施例提供的半反半透式纳米线栅结构能够实现设计目标中,S光被反射回,透射为0的目的。
具体地,假设非偏振光简化为50%P光+50%S光的组合,如果半反半透式纳米线栅结构设计的有90%的P光透过,则透过率为50%*90%=45%。
具体地,在本公开实施例提供的显示器件中,当偏振过滤结构为半反半透式纳米线栅结构、半反半透式光子晶体纳米结构或半反半透式超材料纳米结构时,如图15所示,该显示器还包括:
包覆偏振过滤结构06的封装层20,以保护偏振过滤结构06不受环境磨损或者颗粒物影响。
进一步地,具体地,在本公开实施例提供的显示器件中,封装层的折射率小于偏振过滤结构的折射率,以避免封装层影响偏振过滤结构的光学特性,且在具体实施时,封装层的折射率与偏振过滤结构的折射率的差异越大,效果越好。
具体地,在本公开实施例提供的显示器件中,当偏振过滤结构位于第二基板面向发光像素阵列一侧时,由于偏振过滤结构的封装于第二基板与第一基板之间,也可以省去封装层的设置。
具体地,在本公开实施例提供的显示器件中,偏振转化结构的偏振转换 效率大于40%,以确保对光的有效利用。
在具体实施时,本公开实施例提供的显示器件中偏振转化结构的实现方式有很多种,其中比较成熟的有偏振分束棱镜、偏折分束器等在光学中有较为普遍的应用,也有1/4波片、类似1/4波片功能的膜层设计、超材料或者超结构等,都能实现类似1/4波片功能。其中,偏振分束器和棱镜膜不适用于微显示的OLED显示屏。
具体地,1/4波片是利用材料的各项异性特点,对不同偏振方向的光有不同的折射率与传播速度,从而造成两个分量相位差,从而将线偏振光转换为圆偏振光,或将圆偏振光转换为线偏振光。而1/4波片或者类似结构通过控制材料(折射率n)和厚度(t)使光经过波片后,两个不同偏振方向的光产生1/4波长的相位差,在此相位差下合成的光为圆偏振光。在本公开实施例提供的显示器件中,线偏振光经过1/4波片后,出射偏振与原偏振产生1/4波长相位差,反射回来后,两个分量的方向和相位差不变,再次经过1/4波片,两个分量再次叠加1/4波长相位差,共1/2相位差,所以出光也为线偏振光,且偏振方向与原方向垂直。
具体地,由于1/4波片或反射型偏光片的偏振转换效率在50%~90%之间,因此可选地,在本公开实施例提供的显示器件中,偏振转化结构可以为1/4波片或反射型偏光片(Dual Brightness Enhancement Film,DBEF),在此不作限定。
在具体实施时,反射型偏光片可以采用3M公司的DBEF多层膜结构。这样可以利用DBEF多层膜结构直接替代现有OLED显示器件的封装层,实现更轻薄、更高集成的单偏振OLED显示器件。从技术开发的成熟度来讲,1/4波片目前开发最为完善,可以直接叠加使用。因此,偏振转化结构具体实施方式可以根据实际产品应用场景选择,在此不作限定。
综上,本公开实施例提供的显示器件可以实现一种可用不改变现有显示器件工艺路线的高光效单偏振的显示器件结构。
本公开实施例提供的显示器件可以实现AR、VR、MR,车载,以及对偏 振态有依赖的光控器件结构,也可以应用到轻薄化的近眼显示和光场显示等领域。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述任一种显示器件。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述显示面板的实施例,重复之处不再赘述。
本公开实施例提供的一种显示器件及显示装置,包括:相对设置的第一基板和第二基板、位于第一基板与第二基板之间的发光像素阵列、位于发光像素阵列背光侧的反射板、依次位于发光像素阵列出光测的偏振转化结构和偏振过滤结构;这样发光像素阵列发出的非偏振光经过偏振转化结构后,非偏振光依旧为非偏振光,当非偏振光到达偏振过滤结构时,将此非偏振光中符合偏振过滤结构的目标偏振的光过滤出显示器件,非目标偏转的光反射回显示器件内部;反射回显示器件内部的光为非目标偏转的光为线偏振光,线偏振光经过偏振转化结构之后转换为圆偏振光;圆偏振光到达反射板后被反射回去,此时反射回去的光仍旧为圆偏振光;反射回的圆偏振光经过偏振转化结构之后转换为线偏振光,该线偏振光的偏振方向与第一次反射回的线偏振光之间相差π/2,而该线偏振光正好是可以透过偏振过滤结构的目标偏振的光。因此,本公开实施例提供的显示器件可以增加单偏振出光的亮度。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示器件,其中,包括:相对设置的第一基板和第二基板,位于所述第一基板与所述第二基板之间的发光像素阵列,位于所述发光像素阵列背光侧的反射板,依次位于所述发光像素阵列出光测的偏振转化结构和偏振过滤结构;
    所述偏振过滤结构用于对由所述发光像素阵列侧照射至所述偏振过滤结构的光进行过滤,以使目标偏振的光透过,非目标偏转的光反射回去;
    所述偏振转化结构用于将透过的圆偏振光转换为线偏振光,或将透过的线偏振光转换为圆偏振光。
  2. 如权利要求1所述的显示器件,其中,所述偏振过滤结构为半反半透式纳米线栅结构、半反半透式光子晶体纳米结构、半反半透式超材料纳米结构或半反半透式偏振带通滤波膜中的一种。
  3. 如权利要求2所述的显示器件,其中,所述偏振过滤结构为半反半透式纳米线栅结构;
    所述半反半透式纳米线栅结构的材料为金属材料。
  4. 如权利要求3所述的显示器件,其中,所述半反半透式纳米线栅结构的材料为铝、银、金或铜。
  5. 如权利要求2所述的显示器件,其中,所述半反半透式纳米线栅结构的线宽与光栅周期的比例为20%~80%。
  6. 如权利要求5所述的显示器件,其中,所述半反半透式纳米线栅结构的光栅周期为40nm,线宽为20nm,线高为200nm。
  7. 如权利要求2所述的显示器件,其中,所述偏振过滤结构为半反半透式纳米线栅结构、半反半透式光子晶体纳米结构或半反半透式超材料纳米结构;所述显示器还包括:
    包覆所述偏振过滤结构的封装层,且所述封装层的折射率小于所述偏振过滤结构的折射率。
  8. 如权利要求1所述的显示器件,其中,所述偏振转化结构的偏振转换效率大于40%。
  9. 如权利要求1所述的显示器件,其中,所述偏振转化结构为1/4波片或反射型偏光片。
  10. 如权利要求1所述的显示器件,其中,所述第二基板位于所述发光像素阵列的出光测;
    所述偏振转化结构和所述偏振过滤结构均位于第二基板背离所述发光像素阵列一侧,且所述偏振转化结构位于所述偏振过滤结构和所述第二基板之间。
  11. 如权利要求1所述的显示器件,其中,所述第二基板位于所述发光像素阵列的出光测;
    所述偏振转化结构和所述偏振过滤结构均位于第二基板与所述发光像素阵列之间,且所述偏振过滤结构位于所述偏振转化结构和所述第二基板之间。
  12. 如权利要求1所述的显示器件,其中,所述第二基板位于所述发光像素阵列的出光测;
    所述偏振过滤结构位于所述第二基板背离所述发光像素阵列一侧;
    所述偏振转化结构位于所述第二基板和所述发光像素阵列之间。
  13. 如权利要求10-12任一项所述的显示器件,其中,还包括:位于所述发光像素阵列与所述第二基板之间的彩膜层;
    所述偏振转化结构和所述偏振过滤结构均位于所述彩膜层面向所述发光像素阵列一侧;或
    所述偏振转化结构和所述偏振过滤结构均位于所述彩膜层背离所述发光像素阵列一侧;或
    所述偏振转化结构位于所述彩膜层与所述发光像素阵列之间,所述偏振过滤结构位于所述彩膜层背离所述发光像素阵列一侧。
  14. 如权利要求1所述的显示器件,其中,所述显示器件为:OLED显示器件、mini-LED显示器件、micro-LED显示器件、量子点显示器件或反射 式显示器件。
  15. 一种显示装置,其中,包括如权利要求1-14任一项所述的显示器件。
PCT/CN2020/080982 2020-03-24 2020-03-24 显示器件及显示装置 WO2021189271A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/639,189 US20220328796A1 (en) 2020-03-24 2020-03-24 Display device and display apparatus
CN202080000362.4A CN113728437B (zh) 2020-03-24 2020-03-24 显示器件及显示装置
JP2022527725A JP7522192B2 (ja) 2020-03-24 2020-03-24 ディスプレイデバイスおよびディスプレイ装置
EP20928015.5A EP4033537A4 (en) 2020-03-24 2020-03-24 DISPLAY MEANS AND DISPLAY DEVICE
PCT/CN2020/080982 WO2021189271A1 (zh) 2020-03-24 2020-03-24 显示器件及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080982 WO2021189271A1 (zh) 2020-03-24 2020-03-24 显示器件及显示装置

Publications (1)

Publication Number Publication Date
WO2021189271A1 true WO2021189271A1 (zh) 2021-09-30

Family

ID=77890898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080982 WO2021189271A1 (zh) 2020-03-24 2020-03-24 显示器件及显示装置

Country Status (5)

Country Link
US (1) US20220328796A1 (zh)
EP (1) EP4033537A4 (zh)
JP (1) JP7522192B2 (zh)
CN (1) CN113728437B (zh)
WO (1) WO2021189271A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241268A1 (zh) * 2022-06-15 2023-12-21 京东方科技集团股份有限公司 前置光源和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
JP2010225307A (ja) * 2009-03-19 2010-10-07 Tohoku Univ 偏光機能付光源とホモジェナイザーとこれらを用いた光源装置とこれを用いたローカルディミングバックライトシステム
CN110632697A (zh) * 2019-09-24 2019-12-31 杭州灯之塔科技有限公司 一种偏振元件及其制备方法
CN110764265A (zh) * 2019-11-13 2020-02-07 京东方科技集团股份有限公司 一种近眼导光组件、显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122103A (en) 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP4011292B2 (ja) * 2001-01-15 2007-11-21 株式会社日立製作所 発光素子、及び表示装置
CN1851539A (zh) * 2005-04-22 2006-10-25 青岛讯源光电有限公司 全反射全透过型彩色液晶显示器
US20070183035A1 (en) * 2005-10-31 2007-08-09 Koji Asakawa Short-wavelength polarizing elements and the manufacture and use thereof
JP2008242349A (ja) * 2007-03-29 2008-10-09 Nippon Zeon Co Ltd 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP2010015109A (ja) 2008-07-07 2010-01-21 Sony Corp 光学フィルムおよびその製造方法、防眩性偏光子、ならびに表示装置
WO2010137263A1 (ja) * 2009-05-29 2010-12-02 パナソニック株式会社 液晶表示装置
US8427747B2 (en) 2010-04-22 2013-04-23 3M Innovative Properties Company OLED light extraction films laminated onto glass substrates
WO2014085199A1 (en) 2012-11-30 2014-06-05 3M Innovative Properties Company Emissive display with reflective polarizer
CN104345370B (zh) * 2013-08-09 2018-08-24 住友化学株式会社 光学膜
JP2017003879A (ja) 2015-06-12 2017-01-05 大日本印刷株式会社 偏光子、反射防止フィルム、画像表示装置
CN105866874B (zh) * 2016-06-01 2019-03-15 武汉华星光电技术有限公司 偏光片及具有该偏光片的显示设备
JP2019053227A (ja) 2017-09-15 2019-04-04 シャープ株式会社 撮影装置
CN107562280B (zh) * 2017-09-15 2021-04-09 京东方科技集团股份有限公司 压力触控显示装置及制作和驱动方法
JP6589964B2 (ja) * 2017-11-14 2019-10-16 セイコーエプソン株式会社 表示装置および液晶装置
US11046885B2 (en) 2017-12-18 2021-06-29 Samsung Electronics Co., Ltd. Layered structures and electronic devices including the same
US11226482B2 (en) 2018-06-07 2022-01-18 Facebook Technologies, Llc Reverse-order crossed pancake lens with azimuthal compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777289A (zh) * 2009-01-09 2010-07-14 三星移动显示器株式会社 具有镜子功能的有机发光二极管显示器
CN101783360A (zh) * 2009-01-21 2010-07-21 三星移动显示器株式会社 有机发光二极管显示器及光学构件
JP2010225307A (ja) * 2009-03-19 2010-10-07 Tohoku Univ 偏光機能付光源とホモジェナイザーとこれらを用いた光源装置とこれを用いたローカルディミングバックライトシステム
CN110632697A (zh) * 2019-09-24 2019-12-31 杭州灯之塔科技有限公司 一种偏振元件及其制备方法
CN110764265A (zh) * 2019-11-13 2020-02-07 京东方科技集团股份有限公司 一种近眼导光组件、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033537A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241268A1 (zh) * 2022-06-15 2023-12-21 京东方科技集团股份有限公司 前置光源和显示装置

Also Published As

Publication number Publication date
JP7522192B2 (ja) 2024-07-24
JP2023527256A (ja) 2023-06-28
US20220328796A1 (en) 2022-10-13
EP4033537A1 (en) 2022-07-27
CN113728437A (zh) 2021-11-30
CN113728437B (zh) 2023-01-31
EP4033537A4 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US9946068B2 (en) Optical waveguide and display device
US5650865A (en) Holographic backlight for flat panel displays
WO2018076961A1 (zh) 显示面板及显示装置
CN104145208B (zh) 具有衍射透镜的近眼式显示器
WO2018161650A1 (zh) 显示面板和显示装置
Gu et al. Holographic waveguide display with large field of view and high light efficiency based on polarized volume holographic grating
JP2003519898A (ja) 表示装置
CN105549150A (zh) 一种全息波导显示装置
WO2021035787A1 (zh) 基于波导的增强现实显示装置
CN113485015A (zh) 一种具有高耦合效率的波导显示装置
CN112213861A (zh) 一种轻薄型光波导ar光学成像***
CN111610635B (zh) 一种ar光学***及ar显示设备
CN111175971A (zh) 一种近眼光学显示***、增强现实眼镜
WO2021189271A1 (zh) 显示器件及显示装置
Komura et al. 49‐4: Thin and Lightweight Head‐Mounted Displays with Polarized Laser Backlights and Holographic Optics
KR20210061858A (ko) 디스플레이 장치
US20240210612A1 (en) Waveguide display system with wide field of view
WO2019137109A1 (zh) 色域拓宽装置
US20210026057A1 (en) Display panel, display device and driving method for driving a display panel
JPH01189627A (ja) 液晶表示装置用照明装置
JPH06273691A (ja) ヘッドアップ型車両用表示装置
CN108490681B (zh) 一种液晶材料色域拓宽装置
CN220064518U (zh) 一种增强现实显示装置
CN215986721U (zh) 一种具有高耦合效率的波导显示装置
CN213690115U (zh) 一种轻薄型光波导ar光学成像***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020928015

Country of ref document: EP

Effective date: 20220422

ENP Entry into the national phase

Ref document number: 2022527725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE