WO2021187861A1 - 반사 방지 필름 - Google Patents

반사 방지 필름 Download PDF

Info

Publication number
WO2021187861A1
WO2021187861A1 PCT/KR2021/003228 KR2021003228W WO2021187861A1 WO 2021187861 A1 WO2021187861 A1 WO 2021187861A1 KR 2021003228 W KR2021003228 W KR 2021003228W WO 2021187861 A1 WO2021187861 A1 WO 2021187861A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic nanoparticles
hard coating
low refractive
coating layer
Prior art date
Application number
PCT/KR2021/003228
Other languages
English (en)
French (fr)
Inventor
변진석
고경문
장영래
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180005502.1A priority Critical patent/CN114514445A/zh
Priority to JP2022520772A priority patent/JP2023519045A/ja
Priority to EP21770667.0A priority patent/EP4024091B1/en
Priority to US17/771,228 priority patent/US20220381954A1/en
Priority claimed from KR1020210033702A external-priority patent/KR102498240B1/ko
Priority claimed from KR1020210033696A external-priority patent/KR102498241B1/ko
Publication of WO2021187861A1 publication Critical patent/WO2021187861A1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/109Sols, gels, sol-gel materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to an antireflection film, a polarizing plate, a display device, and an organic light emitting diode display device.
  • a flat panel display device such as a PDP or LCD is equipped with an anti-reflection film for minimizing reflection of light incident from the outside.
  • a method for minimizing light reflection a method of dispersing a filler such as inorganic fine particles in a resin, coating it on a base film, and imparting irregularities (anti-glare: AG coating); There is a method of using interference of light by forming a plurality of layers having different refractive indices on a base film (anti-reflection: AR coating) or a method of mixing them.
  • the absolute amount of reflected light is equivalent to that of a general hard coating, but a low reflection effect can be obtained by reducing the amount of light entering the eye using light scattering through irregularities.
  • the AG coating lowers the clarity of the screen due to surface irregularities, a lot of research has been done on the AR coating in recent years.
  • a multilayer structure in which a hard coating layer (high refractive index layer), a low reflection coating layer, etc. are laminated on a base film is commercially available.
  • the method of forming a plurality of layers as described above has a disadvantage in that the interlayer adhesion (interfacial adhesion) is weak as the process of forming each layer is separately performed, and thus scratch resistance is poor.
  • An object of the present invention is to provide an antireflection film having high light transmittance and high scratch resistance and antifouling properties at the same time, and having a colorless and transparent property while implementing low reflectivity.
  • Another object of the present invention is to provide a polarizing plate including the anti-reflection film.
  • Another object of the present invention is to provide a display device including the anti-reflection film.
  • Another object of the present invention is to provide an organic light emitting diode display device including the anti-reflection film.
  • the hard coating layer and a low-refractive layer, wherein a mixed-particle layer including hollow inorganic nanoparticles and solid inorganic nanoparticles and having a thickness of 1.5 nm to 22 nm is present in the low refractive layer, and b in the CIE Lab color space
  • An antireflection film with an absolute value of 4 or less is provided.
  • a polarizing plate including the anti-reflection film and the polarizer is provided.
  • a display device including the anti-reflection film is provided.
  • the present invention provides an organic light emitting diode display device including the anti-reflection film.
  • the photopolymerizable compound refers to a compound that causes a polymerization reaction when light is irradiated, for example, when irradiated with visible light or ultraviolet light.
  • the fluorine-containing compound refers to a compound containing at least one element of fluorine among the compounds.
  • (meth)acryl [(Meth)acryl] is meant to include both acryl (acryl) and methacrylate (Methacryl).
  • the (co)polymer is meant to include both a copolymer (co-polymer) and a homo-polymer (homo-polymer).
  • the hollow silica particles are silica particles derived from a silicon compound or an organosilicon compound, and means particles in the form of voids present on the surface and/or inside of the silica particles.
  • the low refractive index layer means a layer having a lower refractive index than other layers in the antireflection film, for example, a hard coating layer.
  • the low refractive index layer may have a refractive index of 1.65 or less, or 1.60 or less, or 1.57 or less, or 1.55 or less, or 1.53 or less at a wavelength of 550 nm.
  • a hard coating layer and a low-refractive layer, wherein a mixed-particle layer including hollow inorganic nanoparticles and solid inorganic nanoparticles and having a thickness of 1.5 nm to 22 nm is present in the low refractive layer, and b in the CIE Lab color space
  • An antireflection film having an absolute value of 4 or less can be provided.
  • the antireflection film including the low refractive layer and the hard coating layer has a low refractive index, for example, a reflectance of 1.5% or less at a wavelength of 550 nm
  • the reflectance in the blue region is higher than the reflectance in the green region.
  • the anti-reflection layer may have a blue color, which may have a degree of opacity or color that is not suitable for application to a polarizing plate or a display device.
  • the present inventors conducted research on the anti-reflection film, and a mixed layer of particles having a predetermined thickness including hollow inorganic nanoparticles and solid inorganic nanoparticles in the low refractive layer included in the anti-reflection film.
  • the anti-reflection film may have a feature of simultaneously implementing high scratch resistance and antifouling properties while having a high light transmittance together with the above-described characteristics.
  • the antireflection film may have a colorless and transparent property while implementing a low reflectance.
  • the low refractive layer includes hollow inorganic nanoparticles and solid inorganic nanoparticles, While having high light transmittance, high scratch resistance and antifouling properties can be realized at the same time.
  • the antireflection film includes a particle mixture layer having the predetermined thickness in the low refractive layer, so that the absolute value of b* in the CIE Lab color space is 4 or less, or 3 or less, or 2 or less, or 1.5 It may have the following characteristics.
  • Each value in the CIE Lab color space can be measured by applying a general method of measuring each coordinate of the color space, for example, a spectrophotometer having a detector in the form of an integrating sphere at the measurement position. ) (ex. CM-2600d, KONICA MINOLTA), can be measured according to the manufacturer's manual.
  • each coordinate of the CIE Lab color space may be measured in a state in which the polarizer or polarizer is attached to a liquid crystal panel, for example, the highly reflective liquid crystal panel, or the polarizer or polarizer itself may be measured. .
  • the CIE Lab color space is a color space obtained by nonlinear transformation of the CIE XYZ color space based on the antagonistic theory of human vision.
  • the L* value represents brightness
  • an L* value of 0 indicates black
  • an L* value of 100 indicates white.
  • the value of a* is negative
  • the color is biased toward green
  • the value of a* is positive
  • the color is biased toward red
  • the b* value is negative
  • the color is biased toward blue
  • if the b* value is positive the color is biased toward yellow.
  • the anti-reflection film has a characteristic that the absolute value of b* value in the CIE Lab color space is 4 or less, or 3 or less, or 2 or less, or 1.5 or less, so that red or blue color while implementing low reflectance It can have colorless and transparent characteristics by remarkably reducing the degree of visibility.
  • the reflectance at a wavelength of 550 nm of the anti-reflection film may be greater than 0.5% and less than or equal to 1.5%, or 0.55% to 1.35%, or 0.59 to 1.32%, and while implementing such a low reflectance, b in the CIE Lab color space *
  • the absolute value of the value may be 4 or less, or 3 or less, or 2 or less, or 1.5 or less.
  • the anti-reflection film is easily applied to a display having a high contrast ratio and luminance, resulting in high color reproducibility. can be implemented.
  • a ratio of reflectance at a wavelength of 400 nm to a reflectance at a wavelength of 550 nm of the anti-reflection film may be 1.3 to 2.7, or 1.5 to 2.5.
  • the antireflection film satisfies the characteristic that the ratio of the reflectance at a wavelength of 400nm to the reflectance at a wavelength of 550nm is 1.3 to 2.7, or 1.5 to 2.5, or 1.40 to 2.30, the antireflection film has a reflectance contrast in the green region
  • the reflectance in the blue region may have a low optical characteristic, and thus may have a colorless and transparent characteristic while realizing a low reflectance.
  • the anti-reflection film takes on a blue color, which is not suitable for application to a polarizing plate or a display device. Or it may be colored.
  • the color reproducibility of the organic light emitting diode display device may be reduced.
  • the reflectance at a wavelength of 550 nm of the anti-reflection film is more than 0.5% and 1.5% or less, or 0.55% to It may be 1.35%, or 0.59 to 1.32%, and the reflectance of the antireflection film at a wavelength of 400 nm may be 1.0% to 3.50%, or 1.20% to 2.60%.
  • a hollow inorganic nanoparticle and a solid inorganic nanoparticle are included in the low refractive layer, and 1.5 nm to 22 nm, or 2.0 nm to 20 nm, 2.2 nm There may be a particle mixed layer having a thickness of from 18.5 nm to 18.5 nm.
  • the thickness of the particle mixture layer is too small, destructive interference does not sufficiently occur in the antireflection layer, so that the absolute value of the b* value may exceed 4.
  • the absolute value of b* value in the CIE Lab color space of the anti-reflection film may exceed 4, and accordingly, optical properties such as transparency of the anti-reflection film properties may be degraded.
  • the particle mixed layer includes both hollow inorganic nanoparticles and solid inorganic nanoparticles, and the volume ratio or distribution pattern thereof is not particularly limited.
  • the refractive index or thickness of the particle mixed layer can be confirmed through various optical measurement methods, for example, the ellipticity of the polarization measured by ellipsometry is optimized with a diffusion layer model (fitting), etc. It can also be checked using
  • the ellipticity and related data (Ellipsometry data ( ⁇ , ⁇ )) of the polarization measured by the ellipsometry can be measured using a commonly known method and apparatus. For example, for the particle mixed layer or other regions included in the low refractive layer, J. A. Woollam Co. Using the device of the M-2000, it is possible to apply an incident angle of 70° and measure the linear polarization in the wavelength range of 380 nm to 1000 nm.
  • the measured linear polarization measurement data (Ellipsometry data ( ⁇ , ⁇ )) is a diffusion layer model for the mixed layer using Complete EASE software. Cauchy model) can be optimized (fitting) so that the MSE is 5 or less by dividing the two layers.
  • the thickness and the like cannot be defined by optimizing the measured linear polarization measurement data using the Cauchy model of General Formula 1 can
  • the anti-reflection film realizes a low reflectance while keeping the absolute value of the b* value at a low level in the CIE Lab color space.
  • a particle mixed layer may be formed in the low refractive index layer.
  • This example is only an example of a method or means for forming the mixed particle layer, and the mixed particle layer is not formed in the low refractive layer only when the method or means is used at the same time, and detailed materials for forming the low refractive layer and It can be adjusted according to their content, the thickness of the low refractive index layer, the detailed material of the hard coating layer and their content, the surface characteristics and thickness of the hard coating layer, and the like. That is, the presence of the particle mixed layer in the low refractive index layer and the effect thereof can be realized based on the description or examples of the specification.
  • the hard coating layer included in the antireflection film may include a binder resin including a photocurable resin and organic or inorganic fine particles dispersed in the binder resin, and on this hard coating layer, a binder resin and a hollow type
  • the particle mixed layer may exist.
  • the hard coating layer included in the anti-reflection film is more than 34 mN/m, or more than 34 mN/m, 60 mN/m or less, 34.2 mN/m or more and 59 mN/m or less, or 34.5 mN/m or more and 58 mN/m.
  • the above-described particle mixed layer may be formed in the surface energy optimization process in the low refractive layer due to the high surface energy of the interface.
  • the surface energy of the hard coating layer may be obtained by controlling the surface properties of the hard coating layer.
  • the surface energy of the hard coating layer may be controlled by controlling the degree of surface hardening of the hard coating layer, drying conditions, and the like.
  • the degree of curing of the hard coating layer can be adjusted by adjusting curing conditions, for example, the amount of light irradiation or the intensity of light irradiation or the flow rate of injected nitrogen during the formation of the hard coat layer.
  • curing conditions for example, the amount of light irradiation or the intensity of light irradiation or the flow rate of injected nitrogen during the formation of the hard coat layer.
  • the resin composition forming the hard coating layer is exposed to an exposure amount of 5 to 100 mJ/cm 2 , or 10 to 25 mJ/cm 2 It can be obtained by irradiating with ultraviolet light.
  • the surface energy is measured by measuring the contact angles of di-water (Gebhardt) and di-iodomethane (Owens) at 10 points using a commonly known measuring device, for example, Kruss' DSA-100 contact angle measuring equipment, and after averaging the average value It can be measured by converting the contact angle into surface energy. Specifically, in the measurement of the surface energy, the contact angle can be converted into surface energy by using Dropshape Analysis software and applying the following general formula 2 of the OWRK (Owen, Wendt, Rable, Kaelble) method to the program.
  • OWRK OWRK
  • the particle mixture layer may be formed by applying a drying temperature, an air volume control, etc. when forming the low refractive index layer.
  • the air volume may be adjusted in the drying process.
  • the air volume is set to 0.5 m/s or more, or 0.5 m/s to 10 m/s, or 0.5 m/s to 8 m/s, or 0.5 m/s to 5 m/s. It can also be done in s.
  • the low refractive index layer may be formed on one surface of the hard coating layer, and the particle mixed layer is at a distance of 12 nm or more, or 15 nm to 60 nm, or 16 nm to 50 nm from one surface of the hard coating layer. can be located in
  • the distance between the particle mixed layer and one surface of the hard coating layer is not significantly limited, the particle mixed layer is positioned at a distance of 12 nm or more from the one surface of the hard coating layer, so the abrupt difference in refractive index between the layers in the low refractive layer It plays a role of relaxation, and the absolute value of the slope of the reflectance pattern at a short wavelength is lowered.
  • the particle mixed layer When the particle mixed layer is located in a region less than 12 nm from one surface of the hard coating layer, the effect of alleviating the difference in refractive index between layers in the low refractive layer is limited, so that the absolute value of the slope of the reflectance pattern is not sufficiently found. do.
  • the distance between the particle mixed layer and the hard coating layer may be determined as the shortest distance among the distances between one surface of the hard coating layer and the particle mixed layer based on the plane direction of the hard coating layer.
  • the distance between the mixed particle layer and the hard coating layer may be defined as a thickness of a region between the mixed particle layer from one surface of the hard coating layer.
  • the existence of a region between the particle mixed layer from one surface of the hard coating layer may be confirmed by ellipsommetry.
  • the ellipticity of the polarization measured by ellipsometry for each region between the particle mixed layer or the hard coating layer from one surface of the particle mixed layer or the hard coating layer was optimized with the Cauchy model of Formula 1 above. In this case, it has specific Cauchy parameters A, B, and C, and accordingly, each region between the particle mixed layer or the particle mixed layer from one surface of the hard coating layer may be distinguished from each other.
  • the low refractive layer J. A. Woollam Co.
  • J. A. Woollam Co. Using the device of the M-2000, it is possible to apply an incident angle of 70° and measure the linear polarization in the wavelength range of 380 nm to 1000 nm.
  • the measured linear polarization measurement data (Ellipsometry data ( ⁇ , ⁇ )) is optimized with the Cauchy model of the following general formula 1 for the low refractive index layer or detailed layers in the low refractive index layer using Complete EASE software (fitting) is possible.
  • n( ⁇ ) is a refractive index at a wavelength of ⁇
  • is in the range of 300 nm to 1800 nm
  • A, B and C are Cauchy parameters.
  • the particle mixture layer or the hard coating layer one surface through the optimization (fitting) of the ellipticity of the polarization measured by the ellipsometry (Cauchy model) and the diffusion layer model (Diffuse Layer Model) of Formula 1 Since the thickness of each region between the particle mixed layer can also be derived from the , it is possible to define each region between the particle mixed layer from one surface of the particle mixed layer or the hard coating layer in the low refractive index layer.
  • the low refractive index layer is formed on one surface of the hard coating layer, and the low refractive index layer may include hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in a binder resin, wherein the low refractive index layer is In the layer, 50 vol% or more, or 60 vol% or more, or 70 vol% or more, or more than the above values or 95 vol% or less of the total solid inorganic nanoparticles in the layer exist between the particle mixture layer from one surface of the hard coating layer can
  • the region between the particle mixture layer from one surface of the hard coating layer has a refractive index of 1.46 to 1.65 at a wavelength of 550 nm can have
  • 'More than 50% by volume of the total of the solid inorganic nanoparticles is present in the specific region' is defined as meaning that most of the solid inorganic nanoparticles are present in the specific region in the cross section of the low refractive layer, specifically, More than 70% by volume of the total solid inorganic nanoparticles can be confirmed by measuring the total volume of the solid inorganic nanoparticles.
  • each of the regions in which each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed is present in the low refractive index layer.
  • a transmission electron microscope or a scanning electron microscope it is possible to visually confirm that individual layers or individual regions exist in the low refractive layer, and also in the low refractive layer.
  • the ratio of the solid inorganic nanoparticles and the hollow inorganic nanoparticles distributed in the corresponding layer or each of the corresponding regions can also be confirmed.
  • the low refractive layer 50 vol% or more, or 60 vol% or more, or 70 vol% or more, or more than the above values or 95 vol% or less of the total hollow inorganic nanoparticles from the particle mixture layer It may exist in a region up to one surface of the low refractive index layer facing the hard coating layer.
  • One surface of the low refractive index layer facing the hard coating layer means the other surface positioned in the opposite direction to the surface in contact with the hard coating layer.
  • the hollow inorganic nanoparticles are mainly distributed in the region from the particle mixture layer to one surface of the low refractive index layer facing the hard coating layer, from the particle mixture layer to the low refractive index layer facing the hard coating layer
  • the region up to one surface may have a refractive index of 1.0 to 1.40 at a wavelength of 550 nm.
  • solid inorganic nanoparticles are mainly distributed near the interface between the hard coating layer and the low-refractive layer, and hollow inorganic nanoparticles are located on the opposite side of the interface. is mainly distributed, and a region in which each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles are mainly distributed can form an independent layer in which the low refractive index layer is visually confirmed.
  • the region in which the solid inorganic nanoparticles and the hollow inorganic nanoparticles are ubiquitous in the low refractive layer is divided based on the particle mixed layer, and accordingly, the antireflection film has a wavelength of 550 nm.
  • the reflectance is greater than 0.5% and less than 1.5%
  • the absolute value of b* value in the CIE Lab color space is less than 4, or less than 3, or less than 2, or less than 1.5. can have colorless and transparent properties by significantly reducing the
  • each of the region between the one surface of the hard coating layer and the mixed particle layer and the region from the particle mixed layer to the one surface of the low refractive index layer opposite to the hard coating layer may be divided into individual layers, and as described above, these individual layers The proportion of solid inorganic nanoparticles and hollow inorganic nanoparticles distributed in the layer can also be distinguished.
  • the ellipticity of the polarization measured by ellipsometry with respect to the region between the one surface of the hard coating layer and the particle mixture layer is optimized with the Cauchy model of the following general formula 1
  • A is 1.00 to 1.65
  • B is 0.0010 to 0.0350
  • C may satisfy the conditions of 0 to 1*10 -3.
  • the following A is 1.25 to 1.55, 1.30 to 1.53, or 1.40 to 1.52, and the following B is 0.0010 to 0.0150, 0.0010 to 0.0080, or 0.0010 to 0.0050 , C below may satisfy the condition of 0 to 8.0*10 -4 , 0 to 5.0*10 -4 , or 0 to 4.1352*10 -4 .
  • n( ⁇ ) is a refractive index at a wavelength of ⁇
  • is in the range of 300 nm to 1800 nm
  • A, B and C are Cauchy parameters.
  • the ellipticity of the polarization measured by ellipsometry with respect to the region from the particle mixture layer to one surface of the low-refractive layer opposite to the hard coating layer was optimized with the Cauchy model of General Formula 1 above ( fitting), A is 1.00 to 1.50, B is 0 to 0.007, and C may satisfy the conditions of 0 to 1*10 -3.
  • A is 1.00 to 1.40, 1.00 to 1.39, 1.00 to 1.38, or 1.00 to 1.37
  • B is 0 to 0.0060, 0 to 0.0055, or 0 to 0.00513
  • C may satisfy a condition of 0 to 8*10 -4 , 0 to 5.0*10 -4 , or 0 to 4.8685*10 -4 .
  • each of the particle mixed layer, the region between the one surface of the hard coating layer and the particle mixed layer, and the region from the particle mixed layer to the one surface of the low refractive index layer facing the hard coating layer share common optical properties within one layer. and can be defined as one layer.
  • each of the particle mixed layer, the region between the one surface of the hard coating layer and the particle mixed layer, and the region from the particle mixed layer to the one surface of the low refractive index layer opposite to the hard coating layer are ellipsometry.
  • the ellipticity of the measured polarization is optimized with the Cauchy model of Formula 1 above, it has specific Cauchy parameters A, B, and C. Accordingly, the first layer and the second layer can be separated from each other.
  • the thickness of each layer can be derived through fitting the ellipticity of the polarization measured by the ellipsometry to the Cauchy model of Formula 1 above, in the low refractive index layer
  • Each layer can be defined.
  • Cauchy parameters A, B and C derived when the ellipticity of the polarization measured by the ellipsometry is optimized with the Cauchy model of Formula 1 above are calculated in one layer. It may be an average value. Accordingly, when an interface exists between the respective layers, a region in which the Cauchy parameters A, B, and C of the respective layers overlap may exist. However, even in this case, the thickness and position of each layer may be specified according to the region satisfying the average values of Cauchy parameters A, B, and C of each of the layers.
  • whether the hollow inorganic nanoparticles and solid inorganic nanoparticles exist in the specified region is determined by whether each hollow inorganic nanoparticles or solid inorganic nanoparticles are present in the specified region, , excluding particles existing across the boundary of the specific region.
  • the specific distribution of the solid inorganic nanoparticles and the hollow inorganic nanoparticles in the low refractive layer controls the density difference between the solid inorganic nanoparticles and the hollow inorganic nanoparticles in a specific manufacturing method to be described later, and A method such as adjusting the drying temperature of the photocurable resin composition for forming a low refractive index layer including nanoparticles of species, and the above-described method for forming a mixed-particle layer can be obtained.
  • the solid inorganic nanoparticles may have a density higher than that of the hollow inorganic nanoparticles by 0.50 g/cm 3 or more, and the difference in density between the solid inorganic nanoparticles and the hollow inorganic nanoparticles is 0.50 g/cm 3 to 3.00 g/cm 3 , or 0.50 g/cm 3 to 2.50 g/cm 3 , or 0.50 g/cm 3 to 2.00 g/cm 3 , or 0.60 g/cm 3 to 2.00 g/cm 3 .
  • the solid inorganic nanoparticles may be located closer to the hard coating layer in the low refractive index layer formed on the hard coating layer.
  • the difference in density between the solid inorganic nanoparticles and the hollow inorganic nanoparticles is too large, the solid inorganic particles are concentrated at the interface between the low refractive index layer and the hard coating layer, or particles in the low refractive index layer forming process. Their movement and localization may not be smooth, and a stain may occur on the surface of the low-refractive layer, or the haze of the low-refractive layer may greatly increase, thereby reducing transparency.
  • solid inorganic nanoparticles include zirconia, titania, antimony pentoxide, silica or tin oxide.
  • hollow inorganic nanoparticles include hollow silica.
  • the low refractive layer may include a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles dispersed in the binder resin.
  • the photopolymerizable compound included in the photocurable coating composition of the embodiment may form a base material of the binder resin of the low refractive index layer to be prepared.
  • the photopolymerizable compound may include a monomer or oligomer including (meth)acrylate or a vinyl group. More specifically, the photopolymerizable compound may include a monomer or oligomer containing one or more, or two or more, or three or more (meth)acrylate or vinyl groups.
  • the monomer or oligomer including the (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) ) acrylate, tripentaerythritol hepta (meth) acrylate, torylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri(meth)acrylate, trimethylolpropane polyethoxytri(meth)acrylic Late, trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, butanediol dimethacrylate, hexaethyl methacrylate, butyl methacrylate, or a mixture of two or more thereof
  • the monomer or oligomer including the vinyl group include divinylbenzene, styrene, or paramethylstyrene.
  • the content of the photopolymerizable compound in the photocurable coating composition is not particularly limited, the content of the photopolymerizable compound in the solid content of the photocurable coating composition in consideration of the mechanical properties of the finally manufactured low refractive index layer or antireflection film Silver may be 5 wt% to 80 wt%.
  • the solid content of the photocurable coating composition refers to only solid components excluding components such as liquid components in the photocurable coating composition, for example, organic solvents that may be selectively included as described below.
  • the solid inorganic nanoparticles refer to particles having a maximum diameter of 100 nm or less and having no empty space therein.
  • the hollow inorganic nanoparticles refer to particles having a maximum diameter of 200 nm or less and having an empty space on the surface and/or inside thereof.
  • the solid inorganic nanoparticles may have a diameter of 0.5 to 100 nm, or 1 to 50 nm, or 5 to 30 nm, or 10 to 20 nm.
  • the hollow inorganic nanoparticles may have a diameter of 1 to 200 nm, or 10 to 100 nm, or 50 to 120 nm, or 30 to 90 nm, or 40 to 80 nm.
  • the diameter of the hollow inorganic nanoparticles and the diameter of the solid inorganic nanoparticles may be different.
  • the diameter of the hollow inorganic nanoparticles may be larger than the diameter of the solid inorganic nanoparticles.
  • the diameter of each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles may mean the longest diameter of the nanoparticles identified in the cross section.
  • each of the solid inorganic nanoparticles and the hollow inorganic nanoparticles has at least one reactivity selected from the group consisting of a (meth)acrylate group, an epoxide group, a vinyl group (Vinyl) and a thiol group (Thiol) on the surface It may contain functional groups.
  • the low refractive layer may have a higher degree of crosslinking, thereby securing improved scratch resistance and antifouling properties. can do.
  • the low refractive index layer may be obtained by applying the photocurable coating composition on a predetermined substrate and photocuring the applied result.
  • the specific type or thickness of the substrate is not particularly limited, and a substrate known to be used in the preparation of the low refractive index layer or the anti-reflection film may be used without major limitation.
  • Methods and apparatuses commonly used for applying the photocurable coating composition can be used without any particular limitation, for example, bar coating method such as Meyer bar, gravure coating method, 2 roll reverse coating method, vacuum slot die coating method, 2 roll coating method, etc. can be used.
  • the low refractive index layer may have a thickness of 20 nm to 240 nm, or 50 nm to 200 nm, or 80 nm to 180 nm.
  • ultraviolet or visible light having a wavelength of 200 to 400 nm may be irradiated, and the exposure amount is preferably 100 to 4,000 mJ/cm 2 .
  • the exposure time is not particularly limited, either, and can be appropriately changed depending on the exposure apparatus used, the wavelength of the irradiation light, or the exposure amount.
  • nitrogen purging may be performed in order to apply nitrogen atmospheric conditions.
  • the binder resin included in the low refractive index layer may include a (co)polymer of a photopolymerizable compound and a crosslinked (co)polymer between a fluorine-containing compound including a photoreactive functional group.
  • the low refractive layer described above may be prepared from a photocurable coating composition including a photopolymerizable compound, a fluorine-containing compound including a photoreactive functional group, hollow inorganic nanoparticles, solid inorganic nanoparticles, and a photoinitiator.
  • the binder resin included in the low refractive layer may include a (co)polymer of a photopolymerizable compound and a crosslinked (co)polymer between a fluorine-containing compound including a photoreactive functional group.
  • each particle may form a plurality of different layers, and when the evaporation of the solvent is finished during the formation of each layer, the above-mentioned particle mixed layer may be formed.
  • the surface rise of the fluorine-containing compound may induce the surface rise of the hollow inorganic nanoparticles, and the solid inorganic nanoparticles having a relatively small size may be less affected and phase separation of each particle may occur.
  • the low refractive index layer may be formed to have a predetermined thickness of the above-mentioned mixed layer.
  • the photopolymerizable compound may further include a fluorine-based (meth)acrylate-based monomer or oligomer in addition to the above-described monomers or oligomers.
  • a fluorine-based (meth)acrylate-based monomer or oligomer in addition to the above-described monomers or oligomers.
  • the weight ratio of the fluorine-based (meth)acrylate-based monomer or oligomer to the (meth)acrylate or vinyl group-containing monomer or oligomer is 0.1% to It can be 10%.
  • fluorine-based (meth)acrylate-based monomer or oligomer include at least one compound selected from the group consisting of the following Chemical Formulas 11 to 15.
  • R 1 is a hydrogen group or an alkyl group having 1 to 6 carbon atoms, a is an integer of 0 to 7, and b is an integer of 1 to 3.
  • c is an integer of 1 to 10.
  • d is an integer of 1 to 11.
  • e is an integer of 1 to 5.
  • f is an integer of 4 to 10.
  • the low refractive layer may include a portion derived from the fluorine-containing compound including the photoreactive functional group.
  • One or more photoreactive functional groups may be included or substituted in the fluorine-containing compound including the photoreactive functional group, and the photoreactive functional group may participate in a polymerization reaction by irradiation of light, for example, by irradiation of visible light or ultraviolet light. It means that there is a functional group.
  • the photoreactive functional group may include various functional groups known to participate in the polymerization reaction by irradiation of light, and specific examples thereof include a (meth) acrylate group, an epoxide group, a vinyl group (Vinyl) or a thiol group ( Thiol) can be mentioned.
  • Each of the fluorinated compounds including the photoreactive functional group may have a weight average molecular weight (weight average molecular weight in terms of polystyrene measured by GPC method) of 2,000 to 200,000, preferably 5,000 to 100,000.
  • the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too small, the fluorine-containing compounds in the photocurable coating composition cannot be uniformly and effectively arranged on the surface and are located inside the finally manufactured low-refractive layer. Accordingly, the antifouling property of the surface of the low-refractive-refractive layer may be lowered, and the cross-linking density of the low-refractive layer may be lowered, and thus mechanical properties such as overall strength and scratch resistance may be lowered.
  • the weight average molecular weight of the fluorine-containing compound including the photoreactive functional group is too high, compatibility with other components in the photocurable coating composition may be lowered, and thus the haze of the finally manufactured low refractive layer may be increased or The light transmittance may be lowered, and the strength of the low refractive index layer may also be lowered.
  • the fluorine-containing compound including the photoreactive functional group includes: i) an aliphatic compound or an aliphatic ring compound in which one or more photoreactive functional groups are substituted and one or more fluorine is substituted on at least one carbon; ii) a heteroaliphatic compound or a heteroaliphatic ring compound substituted with one or more photoreactive functional groups, wherein at least one hydrogen is substituted with fluorine and one or more carbons are substituted with silicon; iii) a polydialkylsiloxane-based polymer (eg, polydimethylsiloxane-based polymer) in which at least one photoreactive functional group is substituted and at least one fluorine is substituted in at least one silicone; iv) a polyether compound substituted with one or more photoreactive functional groups and at least one hydrogen substituted with fluorine, or a mixture of two or more of i) to iv) or a copolymer thereof.
  • the photocurable coating composition may include 20 to 300 parts by weight of the fluorine-containing compound including the photoreactive functional group based on 100 parts by weight of the photopolymerizable compound.
  • the coatability of the photocurable coating composition of the embodiment is reduced or the low refractive index layer obtained from the photocurable coating composition has sufficient durability or scratch resistance may not have
  • the amount of the fluorine-containing compound including the photoreactive functional group compared to the photopolymerizable compound is too small, the low refractive index layer obtained from the photocurable coating composition may not have sufficient mechanical properties such as antifouling properties or scratch resistance.
  • the fluorine-containing compound including the photoreactive functional group may further include silicon or a silicon compound. That is, the fluorine-containing compound including the photoreactive functional group may optionally contain silicon or a silicon compound therein, and specifically, the content of silicon in the fluorine-containing compound including the photoreactive functional group is 0.1 wt% to 20 wt% can
  • the silicon included in the fluorine-containing compound including the photoreactive functional group can increase compatibility with other components included in the photocurable coating composition of the embodiment, and thus haze is prevented from occurring in the finally manufactured refractive layer. It can play a role in increasing transparency by preventing it.
  • the content of silicon in the fluorine-containing compound including the photoreactive functional group is too large, compatibility between other components included in the photocurable coating composition and the fluorine-containing compound may be rather reduced, and thus the final manufactured low Since the refractive layer or the antireflection film does not have sufficient light transmittance or antireflection performance, the antifouling property of the surface may also be deteriorated.
  • the low refractive layer may include 10 to 500 parts by weight, or 50 to 480 parts by weight, or 200 to 400 parts by weight of the hollow inorganic nanoparticles relative to 100 parts by weight of the (co)polymer of the photopolymerizable compound.
  • the low refractive layer includes 10 to 400 parts by weight of the solid inorganic nanoparticles, or 50 to 380 parts by weight, or 80 to 300 parts by weight, 100 to 250 parts by weight relative to 100 parts by weight of the (co)polymer of the photopolymerizable compound. can do.
  • the low refractive layer may include the hollow inorganic nanoparticles and the solid inorganic nanoparticles in relatively high content, respectively, compared to the low refractive index layer included in the known optical film.
  • the phase separation between the hollow inorganic nanoparticles and the solid inorganic nanoparticles does not occur sufficiently in the manufacturing process of the low refractive layer and is mixed.
  • the reflectance may be increased, and the surface unevenness may be excessively generated, thereby reducing the antifouling property.
  • the content of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the low refractive layer is too small, many of the solid inorganic nanoparticles are located in a region close to the interface between the hard coating layer and the low refractive layer It may be difficult to do this, and the reflectance of the low refractive index layer may be greatly increased.
  • Each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles may be included in the composition in a colloidal form dispersed in a predetermined dispersion medium.
  • Each colloidal phase including the hollow inorganic nanoparticles and the solid inorganic nanoparticles may include an organic solvent as a dispersion medium.
  • the colloidal phase of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in consideration of the content range of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the photocurable coating composition or the viscosity of the photocurable coating composition, etc.
  • the medium content may be determined, for example, the solid content of each of the hollow inorganic nanoparticles and the solid inorganic nanoparticles in the colloidal phase may be 5% to 60% by weight.
  • alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; dimethylformamide.
  • amides such as dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate, and gamma butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane; or mixtures thereof.
  • any compound known to be used in the photocurable resin composition can be used without limitation, and specifically, a benzophenone-based compound, an acetophenone-based compound, a biimidazole-based compound, a triazine-based compound, an oxime-based compound, or A mixture of two or more thereof may be used.
  • the photopolymerization initiator may be used in an amount of 1 to 100 parts by weight. If the amount of the photopolymerization initiator is too small, an uncured material remaining in the photocuring step of the photocurable coating composition may be issued. If the amount of the photopolymerization initiator is too large, the unreacted initiator may remain as an impurity or the crosslinking density may be lowered, so that mechanical properties of the produced film may be reduced or reflectance may be greatly increased.
  • the photocurable coating composition may further include an organic solvent.
  • Non-limiting examples of the organic solvent include ketones, alcohols, acetates and ethers, or a mixture of two or more thereof.
  • organic solvent examples include ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; acetates such as ethyl acetate, i-propyl acetate, and polyethylene glycol monomethyl ether acetate; ethers such as tetrahydrofuran or propylene glycol monomethyl ether; or a mixture of two or more thereof.
  • ketones such as methyl ethyl kenone, methyl isobutyl ketone, acetylacetone or isobutyl ketone
  • alcohols such as methanol, ethanol, diacetone alcohol, n-propanol, i-propanol, n
  • the organic solvent may be added at the time of mixing each component included in the photocurable coating composition, or may be included in the photocurable coating composition while each component is added in a dispersed or mixed state in the organic solvent. If the content of the organic solvent in the photocurable coating composition is too small, the flowability of the photocurable coating composition may be lowered, and defects such as streaks may occur in the finally manufactured film. In addition, when an excessive amount of the organic solvent is added, the solid content is lowered, and coating and film formation are not sufficiently performed, so that physical properties or surface properties of the film may be deteriorated, and defects may occur during drying and curing. Accordingly, the photocurable coating composition may include an organic solvent such that the concentration of the total solid content of the components included is 1% to 50% by weight, or 2 to 20% by weight.
  • the hard coating layer may have a thickness of 0.1 ⁇ m to 100 ⁇ m.
  • It may further include a substrate bonded to the other surface of the hard coating layer.
  • the specific type or thickness of the substrate is not particularly limited, and a substrate known to be used in the preparation of the low refractive index layer or the anti-reflection film may be used without major limitation.
  • the antireflection film of the above embodiment a photocurable compound or (co)polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, a resin for forming a low refractive index layer including hollow inorganic nanoparticles and solid inorganic nanoparticles Applying the composition on the hard coating layer and drying at a temperature of 35 °C to 100 °C; and photocuring the dried material of the resin composition;
  • the low refractive layer is a photocurable compound or a (co)polymer thereof, a fluorine-containing compound including a photoreactive functional group, a photoinitiator, a resin composition for forming a low refractive index layer including hollow inorganic nanoparticles and solid inorganic nanoparticles on the hard coating layer It can be formed by applying to and drying at a temperature of 35 °C to 100 °C, or 40 °C to 80 °C.
  • the drying temperature of the resin composition for forming the low refractive index layer applied on the hard coating layer is less than 35° C.
  • the antifouling property of the low refractive index layer to be formed may be greatly reduced.
  • the drying temperature of the resin composition for forming the low refractive index layer applied on the hard coating layer is greater than 100° C.
  • phase separation between the hollow inorganic nanoparticles and the solid inorganic nanoparticles does not occur sufficiently in the manufacturing process of the low refractive index layer.
  • the low-refractive-resistance and antifouling properties of the low-refractive layer may be reduced as well as the reflectance may be greatly increased.
  • the low refractive index layer having the above-described properties by controlling the density difference between the solid inorganic nanoparticles and the hollow inorganic nanoparticles together with the drying temperature.
  • the solid inorganic nanoparticles may have a higher density than that of the hollow inorganic nanoparticles by 0.50 g/cm 3 or more, and due to this density difference, the solid inorganic nanoparticles in the low refractive layer formed on the hard coating layer It may be located closer to the hard coating layer side.
  • the step of drying the resin composition for forming the low refractive index layer applied on the hard coating layer at a temperature of 35 °C to 100 °C may be performed for 10 seconds to 5 minutes, or 30 seconds to 4 minutes.
  • the drying time is too short, the phase separation between the solid inorganic nanoparticles and the hollow inorganic nanoparticles may not sufficiently occur.
  • the drying time is too long, the formed low refractive layer may erode the hard coating layer.
  • the hard coating layer a commonly known hard coating layer may be used without significant limitation.
  • a hard coat layer comprising a binder resin including a photocurable resin and organic or inorganic fine particles dispersed in the binder resin.
  • the photocurable resin included in the hard coating layer is a polymer of a photocurable compound that can cause a polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art.
  • the photocurable resin may include a reactive acrylate oligomer group consisting of a urethane acrylate oligomer, an epoxide acrylate oligomer, a polyester acrylate, and a polyether acrylate; and dipentaerythritol hexaacrylate, dipentaerythritol hydroxy pentaacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, trimethylene propyl triacrylate, propoxylated glycerol triacrylate, trimethylpropane ethoxy tri At least one selected from the group consisting of polyfunctional acrylate monomers consisting of acrylate, 1,6-hexanediol diacryl
  • the organic or inorganic fine particles are not specifically limited in particle size, but for example, the organic fine particles may have a particle size of 1 to 10 ⁇ m, and the inorganic particles may have a particle size of 1 nm to 500 nm, or 1 nm to 300 nm. can have The particle diameter of the organic or inorganic fine particles may be defined as a volume average particle diameter.
  • organic or inorganic fine particles included in the hard coating layer are not limited, but for example, the organic or inorganic fine particles are organic fine particles made of an acrylic resin, a styrene-based resin, an epoxide resin, and a nylon resin, or silicon oxide, It may be inorganic fine particles made of titanium dioxide, indium oxide, tin oxide, zirconium oxide and zinc oxide.
  • the binder resin of the hard coating layer may further include a high molecular weight (co)polymer having a weight average molecular weight of 10,000 or more.
  • the high molecular weight (co)polymer may be at least one selected from the group consisting of a cellulose-based polymer, an acrylic polymer, a styrene-based polymer, an epoxide-based polymer, a nylon-based polymer, a urethane-based polymer, and a polyolefin-based polymer.
  • the hard coating layer a binder resin of a photocurable resin; and a hard coating layer comprising an antistatic agent dispersed in the binder resin.
  • the photocurable resin included in the hard coating layer is a polymer of a photocurable compound that can cause a polymerization reaction when irradiated with light such as ultraviolet rays, and may be conventional in the art.
  • the photocurable compound may be a polyfunctional (meth)acrylate-based monomer or oligomer, wherein the number of (meth)acrylate-based functional groups is 2 to 10, preferably 2 to 8, more preferably Preferably, it is 2 to 7, which is advantageous in terms of securing the physical properties of the hard coating layer.
  • the photocurable compound is pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipenta Erythritol hepta(meth)acrylate, tripentaerythritol hepta(meth)acrylate, torylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, trimethylolpropane tri(meth)acrylate, and trimethylolpropane polyethoxy It may be at least one selected from the group consisting of tri (meth) acrylate.
  • the antistatic agent is a quaternary ammonium salt compound; pyridinium salts; cationic compounds having 1 to 3 amino groups; anionic compounds such as sulfonic acid bases, sulfuric acid ester bases, phosphoric acid ester bases and phosphonic acid bases; an amphoteric compound such as an amino acid-based compound or an amino sulfuric acid ester-based compound; nonionic compounds such as imino alcohol compounds, glycerin compounds, and polyethylene glycol compounds; organometallic compounds such as metal alkoxide compounds containing tin or titanium; metal chelate compounds such as acetylacetonate salts of the above organometallic compounds; two or more reactants or polymers of these compounds; It may be a mixture of two or more of these compounds.
  • the quaternary ammonium salt compound may be a compound having one or more quaternary ammonium salt groups in the molecule, and a low molecular type or a high molecular type may be used without limitation.
  • fine-particles can also be used.
  • the conductive polymer include aromatic conjugated poly(paraphenylene), heterocyclic conjugated polypyrrole, polythiophene, aliphatic conjugated polyacetylene, heteroatom-containing conjugated polyaniline, mixed type conjugated poly( phenylene vinylene), a double-chain conjugated compound having a plurality of conjugated chains in the molecule, and a conductive composite obtained by grafting or block copolymerizing a conjugated polymer chain to a saturated polymer.
  • the metal oxide fine particles include zinc oxide, antimony oxide, tin oxide, cerium oxide, indium tin oxide, indium oxide, aluminum oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, and the like.
  • the hard coating layer comprising an antistatic agent dispersed in the binder resin may further include at least one compound selected from the group consisting of an alkoxysilane-based oligomer and a metal alkoxide-based oligomer.
  • the alkoxysilane-based compound may be a conventional one in the art, but preferably tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methacryloxypropyl It may be at least one compound selected from the group consisting of trimethoxysilane, glycidoxypropyl trimethoxysilane, and glycidoxypropyl triethoxysilane.
  • the metal alkoxide-based oligomer may be prepared through a sol-gel reaction of a composition including a metal alkoxide-based compound and water.
  • the sol-gel reaction may be performed by a method similar to the above-described method for preparing an alkoxysilane-based oligomer.
  • the sol-gel reaction may be performed by slowly dropping water after diluting the metal alkoxide-based compound in an organic solvent. At this time, in consideration of reaction efficiency, etc., it is preferable to adjust the molar ratio of the metal alkoxide compound to water (based on metal ions) within the range of 3 to 170.
  • the metal alkoxide-based compound may be at least one compound selected from the group consisting of titanium tetra-isopropoxide, zirconium isopropoxide, and aluminum isopropoxide.
  • a polarizing plate including the anti-reflection film may be provided.
  • the polarizing plate may include a polarizer and an antireflection film formed on at least one surface of the polarizer.
  • the material and manufacturing method of the polarizer are not particularly limited, and conventional materials and manufacturing methods known in the art may be used.
  • the polarizer may be a polyvinyl alcohol-based polarizer.
  • the polarizer and the anti-reflection film may be laminated by an adhesive such as a water-based adhesive or a non-aqueous adhesive.
  • a display device including the above-described anti-reflection film may be provided.
  • the display device is not limited, and may be, for example, a liquid crystal display device, a plasma display device, an organic light emitting diode display device, a flexible display device, or the like.
  • the anti-reflection film may be provided on the outermost surface of the viewer side or the backlight side of the display panel.
  • the anti-reflection film may be positioned on one surface of the polarizing plate that is relatively far from the backlight unit among the pair of polarizing plates.
  • the display device may include a display panel, a polarizer provided on at least one surface of the panel, and an anti-reflection film provided on an opposite surface of the polarizer in contact with the panel.
  • an organic light emitting diode display device including the anti-reflection film may be provided.
  • an organic light emitting diode display device has high resolution and high color reproducibility.
  • an antireflection film having a high color value for example, an absolute value of b* in the CIE Lab color space is greater than 4, the color of the organic light emitting diode display device is It may reduce the reproducibility.
  • the anti-reflection film of the embodiment may have a colorless and transparent property because the absolute value of b* in the CIE Lab color space is as low as 4 or less while implementing high transmittance and low reflectance, and thus the organic light emitting diode An effect of maintaining or increasing the color reproducibility of the display device may be implemented.
  • an anti-reflection film having a high light transmittance and high scratch resistance and antifouling properties at the same time, and a colorless and transparent property while implementing a low reflectivity, a polarizing plate, a display device and an organic light emitting diode display device including the same can be
  • MEK methyl ethyl ketone
  • the diluted hard coating solution was coated on a triacetyl cellulose film with #10 mayer bar, dried and photocured under the conditions of Table 1 below to prepare a hard coating film having a thickness of 5 ⁇ m.
  • the wind speed applied during drying of the hard coating layer in each of the following Examples and Comparative Examples is shown in Table 2.
  • Trimethylolpropane trimethacrylate 75g, silica particles with an average particle diameter of 20nm (surface treatment: 3-methacryloyloxypropylmethyldimethoxysilane) 2g, fluorine-based acrylate (RS-537, DIC) 0.5 g, a photoinitiator (Irgacure 184, Ciba Co.) 1.13 g of solid content was diluted in MEK (methyl ethyl ketone) solvent so that the solid content concentration was 40% by weight to prepare a composition for hard coating.
  • MEK methyl ethyl ketone
  • the diluted hard coating solution was coated on a triacetyl cellulose film with #10 mayer bar, dried and photocured under the conditions of Table 1 below to prepare a hard coating film having a thickness of 5 ⁇ m.
  • the wind speed applied during drying of the hard coating layer in each of the following Examples and Comparative Examples is shown in Table 2.
  • TMPTA trimethylolpropane trimethacrylate
  • hollow silica nanoparticles (diameter: about 50 to 60 nm, density: 1.96 g/cm 3 , manufactured by JSC catalyst and chemicals) 281 parts by weight
  • solid type Silica nanoparticles (diameter: about 12 nm, density: 2.65 g/cm 3 , Nissan Chemical) 63 parts by weight
  • first fluorinated compound X-71-1203M, ShinEtsu
  • second fluorinated compound RS-537, DIC Corporation
  • initiator Irgacure 127, Ciba Corporation
  • MIBK diacetone alcohol
  • DAA isopropyl alcohol in a weight ratio of 3:3:4 It was diluted so that it might become 3 weight% of solid content concentration in the mixed solvent.
  • TMPTA trimethylolpropane trimethacrylate
  • hollow silica nanoparticles (diameter: about 50 to 60 nm, density: 1.96 g/cm 3, manufactured by JSC catalyst and chemicals), solid type Silica nanoparticles (diameter: about 12 nm, density: 2.65 g/cm 3 , Nissan Chemical) 48 parts by weight, first fluorinated compound (X-71-1203M, ShinEtsu) 111 parts by weight, second fluorinated compound ( RS-537, DIC Corporation) 15 parts by weight, initiator (Irgacure 127, Ciba Corporation) 21 parts by weight, methyl isobutyl ketone (MIBK): diacetone alcohol (DAA): isopropyl alcohol in a weight ratio of 3:3:4 It was diluted so that it might become 3 weight% of solid content concentration in the mixed solvent.
  • MIBK diacetone alcohol
  • TMPTA trimethylolpropane trimethacrylate
  • 300 parts by weight of hollow silica nanoparticles (diameter: about 60 to 70 nm, density: 1.79 g/cm 3, manufactured by JSC catalyst and chemicals), solid type Silica nanoparticles (diameter: about 12 nm, density: 2.65 g/cm 3 , Nissan Chemical) 85 parts by weight, first fluorinated compound (X-71-1203M, ShinEtsu) 150 parts by weight, second fluorinated compound ( RS-537, DIC) 33 parts by weight, initiator (Irgacure 127, Ciba) 35 parts by weight, methyl isobutyl ketone (MIBK): diacetone alcohol (DAA): isopropyl alcohol in a weight ratio of 3:3:4 It was diluted so that it might become 3 weight% of solid content concentration in the mixed solvent.
  • MIBK diacetone alcohol
  • TMPTA trimethylolpropane trimethacrylate
  • 248 parts by weight of hollow silica nanoparticles (diameter: about 50 to 60 nm, density: 1.96 g/cm 3, manufactured by JSC catalyst and chemicals), solid type Silica nanoparticles (diameter: about 12 nm, density: 2.65 g/cm 3 , Nissan Chemical) 68 parts by weight, first fluorinated compound (X-71-1203M, ShinEtsu) 120 parts by weight, second fluorinated compound ( RS-537, DIC) 33 parts by weight, initiator (Irgacure 127, Ciba) 30 parts by weight, methyl isobutyl ketone (MIBK): diacetone alcohol (DAA): isopropyl alcohol in a weight ratio of 3:3:4 It diluted so that it might become 3 weight% of solid content concentration in the mixed solvent.
  • MIBK diacetone alcohol
  • the surface energy of each hard coating layer was measured by measuring the contact angles of di-water (Gebhardt) and di-iodomethane (Owens) at 10 points using Kruss's DSA-100 contact angle measuring equipment, and the average value was then averaged. The contact angle was measured in terms of surface energy. In the measurement of the surface energy, Dropshape Analysis software was used and the following general formula 2 of the OWRK (Owen, Wendt, Rable, Kaelble) method was applied to the program to convert the contact angle into surface energy.
  • OWRK Owen, Wendt, Rable, Kaelble
  • the reflectance and b* of the antireflection films obtained in Examples and Comparative Examples at each wavelength in the visible light region (380 to 780 nm) were measured using Solidspec 3700 (SHIMADZU) equipment.
  • the average reflectance and b* were derived using the UV-2401PC Color Analysis program.
  • Anti-reflection properties were measured by drawing a straight line of 5 cm in length with a black name pen on the surface of the anti-reflection film obtained in Examples and Comparative Examples, and checking the number of times it was erased when rubbed with a non-jin cloth.
  • a load was applied to the steel wool (#0000), and the surface of the antireflection film obtained in Examples and Comparative Examples was rubbed while reciprocating 10 times at a speed of 27 rpm.
  • the maximum load in which one or less scratches of 1 cm or less observed with the naked eye were observed was measured.
  • the ellipticity of the polarization was measured by ellipsometry.
  • the measured linear polarization measurement data (Ellipsometry data ( ⁇ , ⁇ )) using Complete EASE software for the first and second layers (Layer 1, Layer 2) of the low-refractive index layer (Layer 1, Layer 2) of the following formula 1 Cauchy model ( Cauchy model) was optimized (fitting).
  • n( ⁇ ) is a refractive index at a wavelength of ⁇
  • is in the range of 300 nm to 1800 nm
  • A, B and C are Cauchy parameters.
  • the refractive index and thickness were optimized (fitting) using a diffuse layer model mode.
  • the MSE of the Cauchy model and the diffuse layer model was set to 5 or less.
  • the refractive index at a wavelength of 550 nm and a wavelength of 400 nm was calculated using the elliptically polarized light measured at a wavelength of 380 nm to 1,000 nm, the Cauchy model, and the Diffuse layer model for the particle mixture layer included in the low refractive index layer obtained in the above Examples.
  • Example 1 Example 2 Example 3 Example 4 Example 5
  • Example 6 Average reflectance (%) 0.9 1.35 1.42 0.6 1.1 1.2 b value in CIE Lab color space 3.3 2.9 1.2 1.5 2.5 2.1 Surface energy of hard coating layer [mN/m] 35 35 35 35 35 35 35 35
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Average reflectance (%) 0.92 0.7 0.75 0.84 b value in CIE Lab color space 4.2 5.1 4.5 -7.73 Surface energy of hard coating layer [mN/m] 33 32 33 34 The position of the mixed particle layer from the hard coating layer (nm) 11 10 65 13.4 Thickness of particle mixed layer (nm) 22.12 25.98 31.58 1.31 Reflectance at wavelength 550 nm of anti-reflection film 0.875 0.5877 0.6521 0.78 Reflectance at wavelength 400nm of antireflection film 2.3886 1.9539 1.9844 2.55 Ratio of reflectance at wavelength 400 nm to reflectance at wavelength 550 nm 2.73 3.32 3.04 3.27 Scratch resistance (g) 150 50 200 100 antifouling X X X X Phase separation X X X X X
  • the anti-reflection film of the embodiments including the hollow inorganic nanoparticles and the solid inorganic nanoparticles and the particle mixture layer having a thickness of 1.5 nm to 22 nm is present in the low refractive layer. It was confirmed that the absolute value of b* in the CIE Lab color space had a low color value of 4 or less, while achieving a reflectance of 1.5% or less at a wavelength of 550 nm, so that it could have colorless and transparent properties.
  • the anti-reflection films of the Examples include the mixed layer in the low refractive layer and phase-separated so that the region where the hollow inorganic nanoparticles and the solid-type inorganic nanoparticles are mainly distributed, high scratch resistance and excellent antifouling properties were also confirmed.
  • the hollow inorganic nanoparticles and the solid inorganic nanoparticles are divided into regions that are mainly distributed, respectively, and it does not seem to be localized (phase separation), and thus scratch resistance However, it was confirmed that the antifouling properties were not sufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명은, 하드 코팅층; 및 저굴절층을 포함하고, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 1.5 ㎚ 내지 22 ㎚의 두께를 갖는 입자 혼재층이 상기 저굴절층 내에 존재하며, CIE Lab 색공간에서 b*값의 절대값이 4이하인 반사 방지 필름 과 상기 반사 방지 필름을 포함하는 편광판, 디스플레이 장치 및 유기발광다이오드 디스플레이 장치에 관한 것이다.

Description

반사 방지 필름
관련 출원(들)과의 상호 인용
본 출원은 2020년 3월 16일자 한국특허출원 제10-2020-0032251호 및 한국특허출원 제10-2020-0032253호와 2021년 3월 16일자 한국특허출원 제10-2021-0033696호 및 한국특허출원 제10-2021-0033702호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 반사 방지 필름, 편광판, 디스플레이 장치 및 유기발광다이오드 디스플레이 장치에 관한 것이다.
일반적으로 PDP, LCD 등의 평판 디스플레이 장치에는 외부로부터 입사되는 빛의 반사를 최소화하기 위한 반사 방지 필름이 장착된다.
빛의 반사를 최소화하기 위한 방법으로는 수지에 무기 미립자 등의 필러를 분산시켜 기재 필름 상에 코팅하고 요철을 부여하는 방법(anti-glare: AG 코팅); 기재 필름 상에 굴절율이 다른 다수의 층을 형성시켜 빛의 간섭을 이용하는 방법 (anti-reflection: AR 코팅) 또는 이들을 혼용하는 방법 등이 있다.
그 중, 상기 AG 코팅의 경우 반사되는 빛의 절대량은 일반적인 하드 코팅과 동등한 수준이지만, 요철을 통한 빛의 산란을 이용해 눈에 들어오는 빛의 양을 줄임으로써 저반사 효과를 얻을 수 있다. 그러나, 상기 AG 코팅은 표면 요철로 인해 화면의 선명도가 떨어지기 때문에, 최근에는 AR 코팅에 대한 많은 연구가 이루어지고 있다.
상기 AR 코팅을 이용한 필름으로는 기재 필름 상에 하드 코팅층(고굴절율층), 저반사 코팅층 등이 적층된 다층 구조인 것이 상용화되고 있다. 그러나, 상기와 같이 다수의 층을 형성시키는 방법은 각 층을 형성하는 공정을 별도로 수행함에 따라 층간 밀착력(계면 접착력)이 약해 내스크래치성이 떨어지는 단점이 있다.
또한, 이전에는 반사 방지 필름에 포함되는 저굴절층의 내스크래치성을 향상시키기 위해서는 나노미터 사이즈의 다양한 입자(예를 들어, 실리카, 알루미나, 제올라이트 등의 입자)를 첨가하는 방법이 주로 시도되었다. 그러나, 상기와 같이 나노미터 사이즈의 입자를 사용하는 경우 저굴절층의 반사율을 낮추면서 내스크래치성을 동시에 높이기 어려운 한계가 있었으며, 나노미터의 사이즈의 입자로 인하여 저굴절층 표면이 갖는 방오성이 크게 저하되었다.
이에 따라, 외부로부터 입사되는 빛의 절대 반사량을 줄이고 표면의 내스크래치성과 함께 방오성을 향상시키기 위한 많은 연구가 이루어지고 있으나, 이에 따른 물성 개선의 정도가 미흡한 실정이다.
본 발명은 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율을 구현하면서도 무색 투명한 특성을 갖는 반사 방지 필름을 제공하기 위한 것이다.
또한, 본 발명은 상기 반사 방지 필름을 포함하는 편광판을 제공하기 위한 것이다.
또한, 본 발명은 상기 반사 방지 필름을 포함하는 디스플레이 장치를 제공하기 위한 것이다.
또한, 본 발명은 상기 반사 방지 필름을 포함하는 유기발광다이오드 디스플레이 장치를 제공하기 위한 것이다.
본 명세서에서는, 하드 코팅층; 및 저굴절층을 포함하고, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 1.5 ㎚ 내지 22 ㎚의 두께를 갖는 입자 혼재층이 상기 저굴절층 내에 존재하며, CIE Lab 색공간에서 b*값의 절대값이 4이하인, 반사 방지 필름 이 제공된다.
또한, 본 명세서에서는, 상기 반사 방지 필름 및 편광자를 포함하는 편광판이 제공된다.
또한, 본 명세서에서는, 상기 반사 방지 필름을 포함하는 디스플레이 장치가 제공된다.
또한, 본 명세서에서는, 본 발명은 상기 반사 방지 필름을 포함하는 유기발광다이오드 디스플레이 장치가 제공된다.
이하 발명의 구체적인 구현예에 따른 반사 방지 필름, 편광판 및 디스플레이 장치, 유기발광다이오드 디스플레이 장치에 관하여 보다 상세하게 설명하기로 한다.
본 명세서에서, 광중합성 화합물은 빛이 조사되면, 예를 들어 가시 광선 또는 자외선의 조사되면 중합 반응을 일으키는 화합물을 통칭한다.
또한, 함불소 화합물은 화합물 중 적어도 1개 이상의 불소 원소가 포함된 화합물을 의미한다.
또한, (메트)아크릴[(Meth)acryl]은 아크릴(acryl) 및 메타크릴레이트(Methacryl) 양쪽 모두를 포함하는 의미이다.
또한, (공)중합체는 공중합체(co-polymer) 및 단독 중합체(homo-polymer) 양쪽 모두를 포함하는 의미이다.
또한, 중공 실리카 입자(silica hollow particles)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.
또한, 저굴절층은 반사 방지 필름 내의 다른 층, 예를 들어 하드 코팅층에 비하여 낮은 굴절율을 갖는 층을 의미한다.
예를 들어, 상기 저굴절층은 파장 550nm에서 1.65 이하, 또는 1.60 이하, 또는 1.57 이하, 또는 1.55 이하, 또는 1.53 이하의 굴절율을 가질 수 있다.
발명의 일 구현예에 따르면, 하드 코팅층; 및 저굴절층을 포함하고, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 1.5 ㎚ 내지 22 ㎚의 두께를 갖는 입자 혼재층이 상기 저굴절층 내에 존재하며, CIE Lab 색공간에서 b*값의 절대값이 4이하인, 반사 방지 필름이 제공될 수 있다.
저굴절층 및 하드 코팅층을 포함하는 반사 방지 필름이 낮은 굴절율, 예를 들어 파장 550nm에서의 1.5% 이하의 반사율을 갖는 경우, 녹색 영역에서의 반사율 대비 푸른색 영역에서의 반사율이 높아진다. 이로 인하여 반사 방지층이 푸른색을 띄게 되어 편광판 또는 디스플레이 장치에 적용하기에 적합하지 않는 정도의 불투명성 또는 유색성을 갖는 경우가 있다.
이에, 본 발명자들은 반사 방지 필름에 관한 연구를 진행하여, 반사 방지 필름에 포함되는 저굴절층 내에 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 소정의 두께를 갖는 입자의 혼재층을 형성시키면, 낮은 반사율을 구현하면서도 푸른색을 띄는 정도를 현격하게 줄여서 무색 투명한 특성을 갖게 할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. 또한, 상기 반사 방지 필름은 상술한 특징과 함께 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있는 특징을 가질 수 있다.
상술한 바와 같이 상기 입자 혼재층의 존재로 인하여, 상기 반사 방지 필름이 낮은 반사율을 구현하면서도 무색 투명한 특성을 가질 수 있는데, 상기 저굴절층이 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자을 포함함에 따라서 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있다.
구체적으로, 상기 반사 방지 필름은 상기 저굴절층 내에 상기 소정의 두께를 갖는 입자 혼재층을 포함하여, CIE Lab 색공간에서 b*의 절대값이 4이하, 또는 3이하, 또는 2이하, 또는 1.5 이하인 특성을 가질 수 있다.
상기 CIE Lab 색공간에서의 각 수치는, 상기 색공간의 각 좌표를 측정하는 일반적인 방식을 적용하여 측정할 수 있으며, 예를 들면, 측정 위치에 적분구 형태의 검출기(detector)를 가지는 장비(spectrophotometer)(ex. CM-2600d, KONICA MINOLTA社)를 위치시킨 후에 제조사의 매뉴얼에 따라 측정할 수 있다. 하나의 예시에서 상기 CIE Lab 색공간의 각 좌표는 상기 편광자 또는 편광판을 액정 패널, 예를 들면 상기 고반사 액정 패널에 부착한 상태에서 측정할 수도 있고, 상기 편광자 또는 편광판 자체에 대해서 측정할 수도 있다.
상기 CIE Lab 색공간은, 인간 시각의 길항 이론에 근거하여 CIE XYZ 색공간을 비선형 변환한 색공간이다. 이러한 색공간에서 L*값은 밝기를 나타내고, L*값이 0이면 검은색, L*값이 100이면 흰색을 나타낸다. 또한, a*값이 음수이면 초록에 치우친 색이되고, 양수이면 빨강에 치우친 색이 된다. 또한, b*값이 음수이면 파랑에 치우친 색이 되며, b*값이 양수이면 노랑에 치우친 색이 된다.
즉, 상기 반사 방지 필름은 CIE Lab 색공간에서 b*값의 절대값이 4이하, 또는 3이하, 또는 2이하, 또는 1.5 이하인 특성을 가짐에 따라서, 낮은 반사율을 구현하면서도 붉은색이나 푸른색을 띄는 정도를 현격하게 줄여서 무색 투명한 특성을 가질 수 있다.
보다 구체적으로, 상기 반사 방지 필름의 파장 550nm에서의 반사율이 0.5% 초과 1.5% 이하, 또는 0.55% 내지 1.35%, 또는 0.59 내지 1.32% 일 수 있으며, 이러한 낮은 반사율을 구현하면서도 CIE Lab 색공간에서 b*값의 절대값이 4이하, 또는 3이하, 또는 2이하, 또는 1.5 이하인 특성을 가질 수 있다.
이와 같이, 낮은 반사율을 구현하면서 CIE Lab 색공간에서 b*값의 절대값을 낮은 수준으로 유지함에 따라서, 상기 반사 방지 필름은 높은 명암비 및 휘도를 가진 디스플레이에 용이하게 적용되어, 색 재현율이 높은 성능을 구현할 수 있다.
한편, 상기 반사 방지 필름이 갖는 파장 550nm에서의 반사율 대비 파장 400nm에서의 반사율의 비율이 1.3 내지 2.7, 또는 1.5 내지 2.5 일 수 있다.
상기 반사 방지 필름이 파장 550nm에서의 반사율 대비 파장 400nm에서의 반사율의 비율이 1.3 내지 2.7, 또는 1.5 내지 2.5, 또는 1.40 내지 2.30 인 특성을 만족함에 따라서, 상기 반사 방지 필름은 녹색 영역에서의 반사율 대비 푸른색 영역에서의 반사율이 낮은 광학 특성을 가질 수 있으며, 이에 따라 낮은 반사율을 구현하면서도 무색 투명한 특성을 가질 수 있다.
상기 반사 방지 필름이 갖는 파장 550nm에서의 반사율 대비 파장 400nm에서의 반사율의 비율이 2.7을 초과하는 경우, 상기 반사 방지 필름이 푸른색을 띄게 되어 편광판 또는 디스플레이 장치에 적용하기에 적합하지 않는 정도의 불투명성 또는 유색성을 가지게 될 수 있다. 특히, 파장 550nm에서의 반사율 대비 파장 400nm에서의 반사율의 비율이 2.7을 초과하는 반사 방지 필름의 경우, 유기발광다이오드 디스플레이 장치의 색 재현력을 저하시킬 수 있다.
상기 반사 방지 필름의 파장 550nm에서의 반사율 대비 파장 400nm에서의 반사율의 비율이 1.3 내지 2.7이 만족하는 범위에서, 상기 반사 방지 필름의 파장 550nm에서의 반사율이 0.5% 초과 1.5% 이하, 또는 0.55% 내지 1.35%, 또는 0.59 내지 1.32%일 수 있고, 또한 상기 반사 방지 필름의 파장 400nm에서의 반사율이 1.0% 내지 3.50%, 또는 1.20% 내지 2.60% 일 수 있다.
한편, 상기 반사 방지 필름의 상술한 특징을 갖기 위해서, 상기 저굴절층 내에 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고, 1.5 ㎚ 내지 22 ㎚, 또는 2.0 ㎚ 내지 20 ㎚, 2.2 ㎚ 내지 18.5 ㎚ 의 두께를 갖는 입자 혼재층이 존재할 수 있다.
상기 입자 혼재층의 두께가 너무 작으면, 반사 방지층 내에서의 상쇄간섭이 충분하게 일어나지 않아 b* 값의 절대값이 4를 초과할 수 있다.
또한, 상기 입자 혼재층의 두께가 너무 두꺼운 경우에도, 상기 반사 방지 필름이 갖는 CIE Lab 색공간에서 b*값의 절대값이 4를 초과할 수 있고, 이에 따라 상기 반사 방지 필름의 투명도 등의 광학 특성이 저하될 수 있다.
한편, 상술한 바와 같이, 상기 입자 혼재층은 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하며, 이들의 부피비나 분포 양상이 크게 한정되는 것은 아니다.
상기 입자 혼재층의 굴절율이나 두께는 다양한 광학 측정 방법을 통해서 확인 가능하며, 예를 들어 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 확산층 모델 (Diffuse layer model)로 최적화 (fitting)하는 방법 등을 이용하여서도 확인 가능하다.
상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율 및 관련 데이터(Ellipsometry data(Ψ,Δ))는 통상적으로 알려진 방법 및 장치를 사용하여 측정할 수 있다. 예를 들어, 상기 저굴절층에 포함된 입자 혼재층 또는 다른 영역에 대하여 J. A. Woollam Co. M-2000 의 장치를 이용하여, 70°의 입사각을 적용하고 380㎚ 내지 1000 ㎚의 파장 범위에서 선편광을 측정할 수 있다.
상기 측정된 선편광 측정 데이터(Ellipsometry data(Ψ,Δ))는 Complete EASE software를 이용하여 혼재층에 대해서는 확산층 모델 (Diffuse layer model)을 혼재층의 아래층, 위층에 대해서는 상기 일반식1의 코쉬 모델 (Cauchy model)로 상기 2개 층을 나누어 적용하여 MSE가 5 이하가 되도록 최적화 (fitting)할 수 있다.
상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하는 입자 혼재층에 대해서는, 상기 측정된 선편광 측정 데이터를 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화하여서는 그 두께 등을 정의하지 못할 수 있다.
상기 저굴절층에 포함된 입자 혼재층의 두께와 굴절율의 범위가 상술한 상기 범위를 만족하는 경우, 각 층간의 굴절율의 급격한 차이를 완화시킬 수 있어, 이에 따라 상기 반사 방지 필름이 낮은 반사율을 구현하면서도 CIE Lab 색공간에서 b*값의 절대값을 낮은 수준으로 유지할 수 있게 한다.
한편, 상기 저굴절층에 포함되는 바인더 수지의 조성이나 입자의 종류나 함량, 저굴절층 형성시 구체적인 공정(예를 들어 코팅 속도나 코팅 방법 또는 건조 조건 등), 하드 코팅층의 특성 등을 조절하여, 상기 저굴절층 내에 입자 혼재층을 형성할 수 있다.
이러한 예는 상기 입자 혼재층의 형성을 위한 방법이나 수단의 예시일 뿐이며, 상기 방법이나 수단을 동시에 사용하여야 상기 저굴절층 내에 입자 혼재층이 형성되는 것은 아니며, 저굴절층을 형성하는 세부 재료 및 이들의 함량, 저굴절층의 두께, 하드 코팅층의 세부 재료 및 이들의 함량, 하드 코팅층의 표면 특성 및 두께 등에 따라서 조정 가능하다. 즉, 상기 저굴절층 내에 입자 혼재층의 존재 및 이에 따른 효과는 명세서의 설명 내용이나 실시예를 기초로 하여 구현 가능하다.
예를 들어, 상기 반사 방지 필름에 포함되는 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함할 수 있으며, 이러한 하드 코팅층 상에 바인더 수지 및 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층을 소정의 조건을 통하여 형성하는 경우 상기 입자 혼재층이 존재할 수 있다.
또한, 상기 반사 방지 필름에 포함되는 하드 코팅층은 34 mN/m 초과, 또는 34 mN/m 초과 60 mN/m 이하, 34.2 mN/m 이상 59 mN/m 이하, 또는 34.5 mN/m 이상 58 mN/m 이하, 또는 35 mN/m 내지 55 mN/m의 표면 에너지를 가질 수 있는데, 이러한 수치 범위의 표면 에너지를 갖는 하드 코팅층 상에 바인더 수지 및 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층이 형성되는 경우, 계면의 높은 표면 에너지로 인한 저굴절층 내에서의 표면에너지 최적화 과정에서 상술한 입자 혼재층이 형성될 수 있다.
상기 하드 코팅층이 갖는 표면 에너지는 상기 하드 코팅층의 표면 특성을 조절함에 따라서 얻어질 수 있다. 예를 들어, 상기 하드 코팅층의 표면 경화도, 건조 조건 등을 조절함으로써, 상기 하드 코팅층이 갖는 표면 에너지를 조절할 수 있다.
구체적으로, 상기 하드 코팅층의 형성 과정에서 경화 조건, 예를 들어 광조사량 또는 광조사 세기나 주입되는 질소의 유량 등을 조절함으로써, 상기 하드 코팅층의 경화도를 조절할 수 있다. 예를 들어, 상기 하드 코팅층은 질소 대기 조건을 적용하기 위하여 질소 치환(purging)을 한 상태에서, 상기 하드 코팅층을 형성하는 수지 조성물을 5 내지 100 mJ/㎠, 또는 10 내지 25 mJ/㎠ 의 노광량으로 자외선을 조사하여 얻어질 수 있다.
상기 표면 에너지는 통상적으로 알려진 측정 장치, 예를 들어 Kruss사의 DSA-100 접촉각 측정 장비를 이용하여 di-water(Gebhardt)와 di-iodomethane(Owens)의 접촉각을 10 points로 측정하여 평균값을 낸 후 평균 접촉각을 표면 에너지로 환산하여 측정할 수 있다. 구체적으로, 상기 표면 에너지의 측정에서는 Dropshape Analysis 소프트웨어를 사용하고 OWRK(Owen, Wendt, Rable, Kaelble) method의 하기 일반식2을 프로그램 상에 적용하여 접촉각을 표면 에너지로 환산할 수 있다.
[일반식2]
Figure PCTKR2021003228-appb-img-000001
또한, 후술하는 바와 같이, 저굴절층 형성시에 건조 온도, 풍량 조절등을 적용함에 따라 상기 입자 혼재층이 형성될 수 있다.
구체적으로, 상기 저굴절층의 형성 과정에서 건조 조건, 예를 들어 흡기 또는 배기량을 조절함으로써, 건조 과정에서 풍량을 조절할 수 있다. 예를 들어, 상기 저굴절층의 코팅 후 건조 과정에서 풍량을 0.5 m/s 이상, 또는 0.5m/s 내지 10m/s, 또는 0.5m/s 내지 8m/s, 또는 0.5m/s 내지 5m/s에서 수행할 수도 있다.
보다 구체적으로, 상기 하드 코팅층의 일면 상에 상기 저굴절층이 형성될 수 있으며, 상기 입자 혼재층은 상기 하드 코팅층 일면으로부터 12 ㎚이상, 또는 15 ㎚ 내지 60 ㎚, 또는 16 ㎚ 내지 50 ㎚의 거리에 위치할 수 있다.
상기 입자 혼재층과 상기 하드 코팅층 일면 간의 거리가 크게 한정되는 것은 아니지만, 상기 입자 혼재층은 상기 하드 코팅층 일면으로부터 12 ㎚ 이상의 거리를 두고 위치함에 따라서, 저굴절층 내에서 층간의 굴절율의 급격한 차이를 완화시켜주는 역할을 하게 되어 단파장에서의 반사율 패턴의 기울기의 절대값이 낮아지게 된다.
상기 입자 혼재층이 상기 하드 코팅층 일면으로부터 12 ㎚ 미만의 영역에 위치하는 경우, 저굴절층 내에서 층간의 굴절율의 차이를 완화시켜주는 효과가 제한적이어서 반사율 패턴의 기울기의 절대값이 충분히 찾아지지 않게 된다.
상기 입자 혼재층과 상기 하드 코팅층 간의 거리는 상기 하드 코팅층의 면 방향 기준으로 상기 하드 코팅층의 일면과 상기 입자 혼재층 간의 거리 중 최단 거리로 정할 수 있다. 또는, 상기 입자 혼재층과 상기 하드 코팅층 간의 거리는 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역의 두께로 정의할 수 있다.
상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역이 존재한다는 것은 타원편광법 (ellipsometry)로 확인할 수 있다. 상기 입자 혼재층이나 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 각각에 대하여 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 특정한 코쉬 파라미터 A, B 및 C를 갖게 되며, 이에 따라 상기 입자 혼재층이나 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 각각은 서로 구분될 수 있다.
구체적으로, 상기 저굴절층에 대하여 J. A. Woollam Co. M-2000 의 장치를 이용하여, 70°의 입사각을 적용하고 380㎚ 내지 1000 ㎚의 파장 범위에서 선편광을 측정할 수 있다. 상기 측정된 선평광 측정 데이터(Ellipsometry data(Ψ,Δ))를 Complete EASE software를 이용하여 상기 저굴절율층 또는 저굴절층 내의 세부층들에 대하여 하기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)할 수 있다.
[일반식1]
Figure PCTKR2021003228-appb-img-000002
상기 일반식1에서, n(λ)는 λ파장에서의 굴절율(refractive index)이고, λ는 300 ㎚ 내지 1800㎚의 범위이고, A, B 및 C는 코쉬 파라미터이다.
또한 상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)및 확산층 모델 (Diffuse Layer Model)로 최적화 (fitting)를 통하여 상기 입자 혼재층이나 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 각각의 두께도 도출될 수 있기 때문에, 상기 저굴절층 내에서 상기 입자 혼재층이나 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 각각의 정의가 가능해진다.
보다 구체적으로, 상기 하드 코팅층의 일면 상에 상기 저굴절층이 형성되고, 상기 저굴절층은 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함할 수 있으며, 이때 상기 저굴절층에서 상기 솔리드형 무기 나노 입자 전체 중 50부피% 이상, 또는 60부피% 이상, 또는 70부피% 이상, 또는 상기 수치들 이상 또는 95부피% 이하가 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이에 존재할 수 있다.
이와 같이, 상기 솔리드형 무기 나노 입자가 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역에 주로 분포 함에 따라서, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역은 파장 550nm에서 1.46 내지 1.65 의 굴절율을 가질 수 있다.
'상기 솔리드형 무기 나노 입자 전체 중 50 부피% 이상이 특정 영역에 존재한다'는 상기 저굴절층의 단면에서 상기 솔리드형 무기 나노 입자가 상기 특정 영역에 대부분 존재한다는 의미로 정의되며, 구체적으로 상기 솔리드형 무기 나노 입자 전체 중 70 부피% 이상은 상기 솔리드형 무기 나노 입자 전체의 부피를 측정하여 확인 가능하다.
예를 들어, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인될 수 있다. 예를 들어 투과 전자현미경 [Transmission Electron Microscope] 또는 주사전자현미경 [Scanning Electron Microscope] 등을 이용하여 개별층 또는 개별 영역 각각이 저굴절층 내에 존재한다는 점을 가시적으로 확인할 수 있으며, 또한 저굴절층 내에서 해당층 또는 해당 영역 각각에 분포하는 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 비율 또한 확인할 수 있다.
또한, 상기 저굴절층에서, 상기 중공형 무기 나노 입자 전체 중 50부피% 이상, 또는 60부피% 이상, 또는 70부피% 이상, 또는 상기 수치들 이상 또는 95부피% 이하가 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역에 존재할 수 있다. 상기 하드 코팅층과 대향하는 저굴절층의 일면은 상기 하드 코팅층과 접하는 면과 반대 방향에 위치하는 다른 일면을 의미한다.
이와 같이, 상기 중공형 무기 나노 입자가 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역에 주로 분포 함에 따라서, 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역은 파장 550nm에서 1.0 내지 1.40의 굴절율을 가질 수 있다.
상기 반사 방지 필름의 저굴절층에서는 상술한 입자 혼재층이 존재하면서 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자가 주로 분포하고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자가 주로 분포하는데, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 각각이 주로 분포하는 영역이 저굴절층 내에서 가시적으로 확인되는 독립된 층을 형성할 수 있다.
구체적으로, 상기 반사 방지 필름의 저굴절층 중 상기 하드 코팅층 및 상기 저굴절층 간의 계면 가까이에 솔리드형 무기 나노 입자를 주로 분포시키고 상기 계면의 반대면 쪽으로는 중공형 무기 나노 입자를 주로 분포시키는 경우, 이전에 무기 입자를 사용하여 얻어질 수 있었던 실제 반사율에 비하여 보다 낮은 반사율을 달성할 수 있으며, 크게 향상된 내스크래치성 및 방오성을 함께 구현할 수 있다.
그리고, 상기 구현예의 반사 방지 필름에서는 저굴절층 내에서 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자가 편재하는 영역이 상기 입자 혼재층을 기준으로 나뉘는데, 이에 따라 상기 반사 방지 필름은 파장 550nm에서의 반사율이 0.5% 초과 1.5% 이하면서도 CIE Lab 색공간에서 b*값의 절대값이 4이하, 또는 3이하, 또는 2이하, 또는 1.5 이하이게 되는데, 이에 따라 낮은 반사율을 구현하면서도 푸른색을 띄는 정도를 현격하게 줄여서 무색 투명한 특성을 가질 수 있다.
또한, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 및 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역 각각은 개별층으로 구별될 수 있으며, 상술한 바와 같이 이들 개별 층에 분포하는 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 비율 또한 구별될 수 있다.
보다 구체적으로, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역에 대하여 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 하기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 하기 A는 1.00 내지 1.65이고 B는 0.0010 내지 0.0350이고 C는 0 내지 1*10 -3의 조건을 만족할 수 있다.
또한, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역에 대하여, 하기 A는 1.25 내지 1.55, 1.30 내지 1.53, 또는 1.40 내지 1.52이면서, 하기 B는 0.0010 내지 0.0150, 0.0010 내지 0.0080, 또는 0.0010 내지 0.0050이면서, 하기 C는 0 내지 8.0*10 -4, 0 내지 5.0*10 -4, 또는 0 내지 4.1352*10 -4인 조건을 만족할 수 있다.
[일반식1]
Figure PCTKR2021003228-appb-img-000003
상기 일반식1에서, n(λ)는 λ파장에서의 굴절율(refractive index)이고, λ는 300 ㎚ 내지 1800㎚의 범위이고, A, B 및 C는 코쉬 파라미터이다.
또한, 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역에 대하여 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 상기 A는 1.00 내지 1.50이고 B는 0 내지 0.007이고 C는 0 내지 1*10 -3의 조건을 만족할 수 있다.
또한, 상기 입자 혼재층으로부터 상기 고분자 수지층과 대향하는 광학 기능층의 일면까지의 영역에 대하여, 상기 A는 1.00 내지 1.40, 1.00 내지 1.39, 1.00 내지 1.38, 또는 1.00 내지 1.37이면서, 상기 B는 0 내지 0.0060, 0 내지 0.0055, 또는 0 내지 0.00513이면서, 상기 C는 0 내지 8*10 -4, 0 내지 5.0*10 -4, 또는 0 내지 4.8685*10 -4인 조건을 만족할 수 있다.
한편, 상기 입자 혼재층, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 및 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역 각각은 하나의 층 안에서 공통된 광학 특성을 공유할 수 있으며, 이에 따라 하나의 층으로 정의될 수 있다.
보다 구체적으로, 상기 입자 혼재층, 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역 및 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역 각각은 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때, 특정한 코쉬 파라미터 A, B 및 C를 갖게 되며, 이에 따라 제1층 및 제2층은 서로 구분될 수 있다. 또한 상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)를 통하여 각각 층의 두께도 도출될 수 있기 때문에, 상기 저굴절층 내에서 각각 층의 정의가 가능해진다.
한편, 상기 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 상기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였을 때 도출되는 코쉬 파라미터 A, B 및 C는 하나의 층 내에서의 평균값일 수 있다. 이에 따라, 상기 각각 층의 사이에 계면이 존재하는 경우, 상기 각각 층이 갖는 코쉬 파라미터 A, B 및 C가 중첩되는 영역이 존재할 수 있다. 다만, 이러한 경우에도, 상기 각각 층 각각이 갖는 코쉬 파라미터 A, B 및 C의 평균값을 만족하는 영역의 따라서, 상기 각각 층의 두께 및 위치가 특정될 수 있다.
한편, 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 특정된 영역에 존재하는지 여부는 각각의 중공형 무기 나노 입자 또는 솔리드형 무기 나노 입자가 상기 특정된 영역 내에 입자가 존재하는지 여부로 결정하며, 상기 특정 영역의 경계면에 걸쳐 존재하는 입자는 제외하고 결정한다.
상기 저굴절층에서 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자의 특이적 분포는 후술하는 특정의 제조 방법에서, 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 밀도 차이를 조절하고 상기 2종의 나노 입자를 포함한 저굴절층 형성용 광경화성 수지 조성물을 건조 온도를 조절 하는 등의 방법 및 상술한 입자 혼재층 형성 방법 등 얻어질 수 있다.
구체적으로, 상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자에 비하여 0.50 g/㎤ 이상 높은 밀도를 가질 수 있으며, 또한 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 간의 밀도의 차이는 0.50 g/㎤ 내지 3.00 g/㎤, 또는 0.50 g/㎤ 내지 2.50 g/㎤, 또는 0.50 g/㎤ 내지 2.00 g/㎤, 또는 0.60 g/㎤ 내지 2.00 g/㎤ 일 수 있다.
이러한 밀도 차이로 인하여 상기 하드 코팅층 상에 형성되는 저굴절층에서 상기 솔리드형 무기 나노 입자가 하드 코팅층 쪽에 보다 가까운 쪽에 위치할 수 있다.
다만, 상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자 간의 밀도의 차이가 너무 커지는 경우, 상기 솔리드형 무기 입자가 저굴절층과 하드 코팅층 계면에 집중적으로 몰리거나 상기 저굴절층 형성 과정에서 입자들의 이동 및 편재가 원활하지 않을 수 있고, 저굴절층 표면에 얼룩이 발생하거나 저굴절층의 헤이즈(Haze)가 크게 상승하여 투명도가 저하될 수 있다.
상기 솔리드형 무기 나노 입자의 구체적인 종류로는 지르코니아, 타이타니아, 오산화안티모니, 실리카 또는 산화 주석 등을 들 수 있다.
또한, 상기 중공형 무기 나노 입자의 구체적인 종류로는 중공 실리카 등을 들 수 있다.
한편, 상기 저굴절층은 바인더 수지와 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함할 수 있다.
상기 구현예의 광경화성 코팅 조성물에 포함되는 광중합성 화합물은 제조되는 저굴절층의 바인더 수지의 기재를 형성할 수 있다.
구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머를 포함할 수 있다. 보다 구체적으로, 상기 광중합성 화합물은 (메트)아크릴레이트 또는 비닐기를 1이상, 또는 2이상, 또는 3이상 포함하는 단량체 또는 올리고머를 포함할 수 있다.
상기 (메트)아크릴레이트를 포함한 단량체 또는 올리고머의 구체적인 예로는, 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트, 트리메틸롤프로판트리메타크릴레이트, 에틸렌글리콜 디메타크릴레이트, 부탄디올 디메타크릴레이트, 헥사에틸 메타크릴레이트, 부틸 메타크릴레이트 또는 이들의 2종 이상의 혼합물이나, 또는 우레탄 변성 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 에테르아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머, 또는 이들의 2종 이상의 혼합물을 들 수 있다. 이때 상기 올리고머의 중량평균분자량은 1,000 내지 10,000인 것이 바람직하다.
상기 비닐기를 포함하는 단량체 또는 올리고머의 구체적인 예로는, 디비닐벤젠, 스티렌 또는 파라메틸스티렌을 들 수 있다.
상기 광경화성 코팅 조성물 중 상기 광중합성 화합물의 함량이 크게 한정되는 것은 아니나, 최종 제조되는 저굴절층이나 반사 방지 필름의 기계적 물성 등을 고려하여 상기 광경화성 코팅 조성물의 고형분 중 상기 광중합성 화합물의 함량은 5중량% 내지 80중량%일 수 있다. 상기 광경화성 코팅 조성물의 고형분은 상기 광경화성 코팅 조성물 중 액상의 성분, 예들 들어 후술하는 바와 같이 선택적으로 포함될 수 있는 유기 용매 등의 성분을 제외한 고체의 성분만을 의미한다.
상기 솔리드형 무기 나노 입자는 100 ㎚이하의 최대 직경을 가지며 그 내부에 빈 공간이 존재하지 않는 형태의 입자를 의미한다.
또한, 상기 중공형 무기 나노 입자는 200 ㎚이하의 최대 직경을 가지며 그 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.
상기 솔리드형 무기 나노 입자는 0.5 내지 100㎚, 또는 1 내지 50㎚, 또는 5 내지 30㎚, 또는 10 내지 20㎚ 의 직경을 가질 수 있다.
상기 중공형 무기 나노 입자는 1 내지 200㎚, 또는 10 내지 100㎚, 또는 50 내지 120㎚, 또는 30 내지 90㎚, 또는 40 내지 80㎚ 의 직경을 가질 수 있다.
상기 중공형 무기 나노 입자의 직경과 상기 솔리드형 무기 나노 입자의 직경은 상이할 수 있다.
또한, 상기 중공형 무기 나노 입자의 직경이 상기 솔리드형 무기 나노 입자의 직경 보다 클 수 있다.
상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각의 직경은 단면에서 확인되는 상기 나노 입자의 최장 직경을 의미할 수 있다.
한편, 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각은 표면에 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 및 싸이올기(Thiol)로 이루어진 군에서 선택된 1종 이상의 반응성 작용기를 함유할 수 있다. 상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 각각이 표면에 상술한 반응성 작용기를 함유함에 따라서, 상기 저굴절층은 보다 높은 가교도를 가질 수 있으며, 이에 따라 보다 향상된 내스크래치성 및 방오성을 확보할 수 있다.
상기 저굴절층은 상기 광경화성 코팅 조성물을 소정의 기재 상에 도포하고 도포된 결과물을 광경화함으로써 얻어질 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다.
상기 광경화성 코팅 조성물을 도포하는데 통상적으로 사용되는 방법 및 장치를 별 다른 제한 없이 사용할 수 있으며, 예를 들어, Meyer bar 등의 바 코팅법, 그라비아 코팅법, 2 roll reverse 코팅법, vacuum slot die 코팅법, 2 roll 코팅법 등을 사용할 수 있다.
상기 저굴절층은 20 ㎚ 내지 240 ㎚, 또는 50 ㎚ 내지 200 ㎚, 또는 80 ㎚ 내지 180 ㎚의 두께를 가질 수 있다.
상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 200 내지 400nm 파장의 자외선 또는 가시 광선을 조사할 수 있고, 조사시 노광량은 100 내지 4,000 mJ/㎠ 이 바람직하다. 노광 시간도 특별히 한정되는 것이 아니고, 사용 되는 노광 장치, 조사 광선의 파장 또는 노광량에 따라 적절히 변화시킬 수 있다.
또한, 상기 광경화성 코팅 조성물을 광경화 시키는 단계에서는 질소 대기 조건을 적용하기 위하여 질소 치환(purging) 등을 할 수 있다.
한편, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함할 수 있다.
상술한 저굴절층은 광중합성 화합물, 광반응성 작용기를 포함한 함불소 화합물, 중공형 무기 나노 입자, 솔리드형 무기 나노 입자 및 광개시제를 포함한 광경화성 코팅 조성물로부터 제조될 수 있다. 이에 따라, 상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함할 수 있다.
상기 함불소 화합물을 포함한 바인더 수지의 소수성과 하드 코팅층의 높은 표면에너지로 인한 친수성에 의해, 반사 방지 필름의 건조과정 중에 상기 함불소 화합물이 코팅층 표면으로 움직이는 속도에 영향을 미칠 수 있다. 이로 인해 용매 내 대류가 형성되고 용매에 고르게 분포되어 있던 미세 입자들은 그 입자의 특성에 따라 다른 거동을 보일 수 있다. 특히, 이 과정에서 각 입자는 서로 다른 복수의 층을 형성 할 수 있으며 각기의 층을 형성시키는 도중에 용매의 증발이 끝나게 되면 상술한 입자 혼재층이 형성될 수 있다.
상기 함불소 화합물의 표면 상승이 중공형 무기 나노 입자의 표면상승을 유도할 수 있으며, 상대적으로 작은 크기를 가지는 솔리드형 무기 나노 입자는 그 영향을 덜 받아 각 입자의 상 분리가 일어날 수 있는데, 그 과정 중 용매의 증발이 끝나 입자의 유동성이 사라지게 되면서 상기 저굴절층 내에 상술한 혼재층의 소정의 두께를 가지고 형성될 수 있다.
상기 광중합성 화합물은 상술한 단량체 또는 올리고머 이외로 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함할 수 있다. 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머를 더 포함하는 경우, 상기 (메트)아크릴레이트 또는 비닐기를 포함하는 단량체 또는 올리고머에 대한 상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 중량비는 0.1% 내지 10%일 수 있다.
상기 불소계 (메트)아크릴레이트계 단량체 또는 올리고머의 구체적인 예로는 하기 화학식 11 내지 15로 이루어진 군에서 선택되는 1종 이상의 화합물을 들 수 있다.
[화학식 11]
Figure PCTKR2021003228-appb-img-000004
상기 화학식 11에서, R 1은 수소기 또는 탄소수 1 내지 6의 알킬기이고, a는 0 내지 7의 정수이며, b는 1 내지 3의 정수이다.
[화학식 12]
Figure PCTKR2021003228-appb-img-000005
상기 화학식 12에서, c는 1 내지 10의 정수이다.
[화학식 13]
Figure PCTKR2021003228-appb-img-000006
상기 화학식 13에서, d는 1 내지 11의 정수이다.
[화학식 14]
Figure PCTKR2021003228-appb-img-000007
상기 화학식 14에서, e는 1 내지 5의 정수이다.
[화학식 15]
Figure PCTKR2021003228-appb-img-000008
상기 화학식 15에서, f는 4 내지 10의 정수이다.
한편, 상기 저굴절층에는 상기 광반응성 작용기를 포함한 함불소 화합물로부터 유래한 부분이 포함될 수 있다.
상기 광반응성 작용기를 포함한 함불소 화합물에는 1이상의 광반응성 작용기가 포함 또는 치환될 수 있으며, 상기 광반응성 작용기는 빛의 조사에 의하여, 예를 들어 가시 광선 또는 자외선의 조사에 의하여 중합 반응에 참여할 수 있는 작용기를 의미한다. 상기 광반응성 작용기는 빛의 조사에 의하여 중합 반응에 참여할 수 있는 것으로 알려진 다양한 작용기를 포함할 수 있으며, 이의 구체적인 예로는 (메트)아크릴레이트기, 에폭사이드기, 비닐기(Vinyl) 또는 싸이올기(Thiol)를 들 수 있다.
상기 광반응성 작용기를 포함한 함불소 화합물 각각은 2,000 내지 200,000, 바람직하게는 5,000 내지 100,000의 중량평균분자량(GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량)을 가질 수 있다.
상기 광반응성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 작으면, 상기 광경화성 코팅 조성물에서 함불소 화합물들이 표면에 균일하고 효과적으로 배열하지 못하고 최종 제조되는 저굴절층의 내부에 위치하게 되는데, 이에 따라 상기 저굴절층의 표면이 갖는 방오성이 저하되고 상기 저굴절층의 가교 밀도가 낮아져서 전체적인 강도나 내크스래치성 등의 기계적 물성이 저하될 수 있다.
또한, 상기 광반응성 작용기를 포함한 함불소 화합물의 중량평균분자량이 너무 높으면, 상기 광경화성 코팅 조성물에서 다른 성분들과의 상용성이 낮아질 수 있고, 이에 따라 최종 제조되는 저굴절층의 헤이즈가 높아지거나 광투과도가 낮아질 수 있으며, 상기 저굴절층의 강도 또한 저하될 수 있다.
구체적으로, 상기 광반응성 작용기를 포함한 함불소 화합물은 i) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 탄소에 1이상의 불소가 치환된 지방족 화합물 또는 지방족 고리 화합물; ii) 1 이상의 광반응성 작용기로 치환되고, 적어도 하나의 수소가 불소로 치환되고, 하나 이상의 탄소가 규소로 치환된 헤테로(hetero) 지방족 화합물 또는 헤테로(hetero)지방족 고리 화합물; iii) 하나 이상의 광반응성 작용기가 치환되고, 적어도 하나의 실리콘에 1이상의 불소가 치환된 폴리디알킬실록산계 고분자(예를 들어, 폴리디메틸실록산계 고분자); iv) 1 이상의 광반응성 작용기로 치환되고 적어도 하나의 수소가 불소로 치환된 폴리에테르 화합물, 또는 상기 i) 내지 iv) 중 2이상의 혼합물 또는 이들의 공중합체를 들 수 있다.
상기 광경화성 코팅 조성물은 상기 광중합성 화합물 100중량부에 대하여 상기 광반응성 작용기를 포함한 함불소 화합물 20 내지 300중량부를 포함할 수 있다.
상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물이 과량으로 첨가되는 경우 상기 구현예의 광경화성 코팅 조성물의 코팅성이 저하되거나 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 내구성이나 내스크래치성을 갖지 못할 수 있다. 또한, 상기 광중합성 화합물 대비 상기 광반응성 작용기를 포함한 함불소 화합물의 양이 너무 작으면, 상기 광경화성 코팅 조성물로부터 얻어진 저굴절층이 충분한 방오성이나 내스크래치성 등의 기계적 물성을 갖지 못할 수 있다.
상기 광반응성 작용기를 포함한 함불소 화합물은 규소 또는 규소 화합물을 더 포함할 수 있다. 즉, 상기 광반응성 작용기를 포함한 함불소 화합물은 선택적으로 내부에 규소 또는 규소 화합물을 함유할 수 있고, 구체적으로 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량은 0.1 중량% 내지 20중량%일 수 있다.
상기 광반응성 작용기를 포함한 함불소 화합물에 포함되는 규소는 상기 구현예의 광경화성 코팅 조성물에 포함되는 다른 성분과의 상용성을 높일 수 있으며 이에 따라 최종 제조되는 굴절층에 헤이즈(haze)가 발생하는 것을 방지하여 투명도를 높이는 역할을 할 수 있다. 한편, 상기 광반응성 작용기를 포함한 함불소 화합물 중 규소의 함량이 너무 커지면, 상기 광경화성 코팅 조성물에 포함된 다른 성분과 상기 함불소 화합물 간의 상용성이 오히려 저하될 수 있으며, 이에 따라 최종 제조되는 저굴절층이나 반사 방지 필름이 충분한 투광도나 반사 방지 성능을 갖지 못하여 표면의 방오성 또한 저하될 수 있다.
상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 중공형 무기 나노 입자 10 내지 500 중량부, 또는 50 내지 480 중량부, 또는 200 내지 400 중량부를 포함할 수 있다.
상기 저굴절층은 상기 광중합성 화합물의 (공)중합체 100중량부 대비 상기 솔리드형 무기 나노 입자 10 내지 400중량부, 또는 50 내지 380 중량부, 또는 80 내지 300중량부, 100 내지 250 중량부를 포함할 수 있다.
상기 저굴절층은 기존에 알려진 광학 필름에 포함되는 저굴절층 대비 상기 중공형 무기 나노 입자 및 상기 솔리드형 무기 나노 입자를 각각 상대적으로 높은 함량으로 포함할 수 있다.
상기 저굴절층 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과다해지는 경우, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 충분히 일어나지 않고 혼재되어 반사율이 높아질 수 있으며, 표면 요철이 과다하게 발생하여 방오성이 저하될 수 있다. 또한, 상기 저굴절층 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자의 함량이 과소한 경우, 상기 하드 코팅층 및 상기 저굴절층 간의 계면으로부터 가까운 영역에 상기 솔리드형 무기 나노 입자 중 다수가 위치하기 어려울 수 있으며, 상기 저굴절층의 반사율은 크게 높아질 수 있다.
상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각은 소정의 분산매에 분산된 콜로이드상으로 조성물에 포함될 수 있다. 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하는 각각의 콜로이드상은 분산매로 유기 용매를 포함할 수 있다.
상기 광경화성 코팅 조성물 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 함량 범위나 상기 광경화성 코팅 조성물의 점도 등을 고려하여 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 콜로이드 상 중 함량이 결정될 수 있으며, 예를 들어 상기 콜로이드상 중 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 각각의 고형분 함량은 5중량% 내지 60중량%일 수 있다.
여기서, 상기 분산매 중 유기 용매로는 메탄올, 이소프로필알코올, 에틸렌글리콜, 부탄올 등의 알코올류; 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤류; 톨루엔, 자일렌 등의 방향족 탄화수소류; 디메틸포름아미드. 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드류; 초산에틸, 초산부틸, 감마부틸로락톤 등의 에스테르류; 테트라하이드로퓨란, 1,4-디옥산 등의 에테르류; 또는 이들의 혼합물이 포함될 수 있다.
상기 광중합 개시제로는 광경화성 수지 조성물에 사용될 수 있는 것으로 알려진 화합물이면 크게 제한 없이 사용 가능하며, 구체적으로 벤조 페논계 화합물, 아세토페논계 화합물, 비이미다졸계 화합물, 트리아진계 화합물, 옥심계 화합물 또는 이들의 2종 이상의 혼합물을 사용할 수 있다.
상기 광중합성 화합물 100중량부에 대하여, 상기 광중합 개시제는 1 내지 100중량부의 함량으로 사용될 수 있다. 상기 광중합 개시제의 양이 너무 작으면, 상기 광경화성 코팅 조성물의 광경화 단계에서 미경화되어 잔류하는 물질이 발행할 수 있다. 상기 광중합 개시제의 양이 너무 많으면, 미반응 개시제가 불순물로 잔류하거나 가교 밀도가 낮아져서 제조되는 필름의 기계적 물성이 저하되거나 반사율이 크게 높아질 수 있다.
한편, 상기 광경화성 코팅 조성물은 유기 용매를 더 포함할 수 있다.
상기 유기 용매의 비제한적인 예를 들면 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 혼합물을 들 수 있다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케논, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, 디아세톤알코올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 유기 용매는 상기 광경화성 코팅 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 광경화성 코팅 조성물에 포함될 수 있다. 상기 광경화성 코팅 조성물 중 유기 용매의 함량이 너무 작으면, 상기 광경화성 코팅 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 상기 유기 용매의 과량 첨가시 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다. 이에 따라, 상기 광경화성 코팅 조성물은 포함되는 성분들의 전체 고형분의 농도가 1중량% 내지 50중량%, 또는 2 내지 20중량%가 되도록 유기 용매를 포함할 수 있다.
상기 하드 코팅층은 0.1㎛ 내지 100㎛의 두께를 가질 수 있다.
상기 하드 코팅층의 다른 일면에 결합된 기재를 더 포함할 수 있다. 상기 기재의 구체적인 종류나 두께는 크게 한정되는 것은 아니며, 저굴절층 또는 반사 방지 필름의 제조에 사용되는 것으로 알려진 기재를 큰 제한 없이 사용할 수 있다.
한편, 상기 구현예의 반사 방지 필름은, 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35 ℃ 내지 100 ℃의 온도에서 건조하는 단계; 및 상기 수지 조성물의 건조물을 광경화하는 단계;를 포함하는 반사 방지 필름의 제조 방법을 통하여 제공될 수 있다.
상기 저굴절층은 광경화형 화합물 또는 이의 (공)중합체, 광반응성 작용기를 포함한 함불소 화합물, 광개시제, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함한 저굴절층 형성용 수지 조성물을 하드 코팅층 상에 도포하고 35 ℃ 내지 100 ℃, 또는 40 ℃ 내지 80 ℃의 온도에서 건조함으로서 형성될 수 있다.
상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 35℃ 미만이면, 상기 형성되는 저굴절층이 갖는 방오성이 크게 저하될 수 있다. 또한, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 온도가 100℃ 초과이면, 상기 저굴절층 제조 과정에서 상기 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자 간의 상분리가 충분히 일어나지 않고 혼재되어 상기 저굴절층의 내스크래치성 및 방오성이 저하될 뿐만 아니라 반사율도 크게 높아질 수 있다.
상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 건조하는 과정에서 상기 건조 온도와 함께 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 밀도 차이를 조절함으로서 상술한 특성을 갖는 저굴절층을 형성할 수 있다. 상기 솔리드형 무기 나노 입자가 상기 중공형 무기 나노 입자에 비하여 0.50 g/㎤ 이상 높은 밀도를 가질 수 있으며, 이러한 밀도 차이로 인하여 상기 하드 코팅층 상에 형성되는 저굴절층에서 상기 솔리드형 무기 나노 입자가 하드 코팅층 쪽에 보다 가까운 쪽에 위치할 수 있다.
한편, 상기 하드 코팅층 상에 도포된 저굴절층 형성용 수지 조성물을 35 ℃ 내지 100 ℃의 온도에서 건조하는 단계는 10초 내지 5분간, 또는 30초 내지 4분간 수행될 수 있다.
상기 건조 시간이 너무 짧은 경우, 상술한 상기 솔리드형 무기 나노 입자 및 중공형 무기 나노 입자 간의 상분리 현상이 충분히 일어나지 않을 수 있다. 이에 반하여, 상기 건조 시간이 너무 긴 경우, 상기 형성되는 저굴절층이 하드 코팅층을 침식할 수 있다.
한편, 상기 하드 코팅층으로는 통상적으로 알려진 하드 코팅층을 큰 제한 없이 사용할 수 있다.
상기 하드 코팅층의 일 예로서, 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는 하드 코팅층을 들 수 있다.
상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 구체적으로, 상기 광경화성 수지는 우레탄 아크릴레이트 올리고머, 에폭사이드 아크릴레이트 올리고머, 폴리에스터 아크릴레이트, 및 폴리에테르 아크릴레이트로 이루어진 반응성 아크릴레이트 올리고머 군; 및 디펜타에리스리톨 헥사아크릴레이트, 디펜타에리스리톨 하이드록시 펜타아크릴레이트, 펜타에리스리톨 테트라아크릴레이트, 펜타에리스리톨 트리아크릴레이트, 트리메틸렌 프로필 트리아크릴레이트, 프로폭시레이티드 글리세롤 트리아크릴레이트, 트리메틸프로판 에톡시 트리아크릴레이트, 1,6-헥산디올디아크릴레이트, 프로폭시레이티드 글리세로 트리아크릴레이트, 트리프로필렌 글리콜 디아크릴레이트, 및 에틸렌글리콜 디아크릴레이트로 이루어진 다관능성 아크릴레이트 단량체 군에서 선택되는 1 종 이상을 포함할 수 있다.
상기 유기 또는 무기 미립자는 입경의 구체적으로 한정되는 것은 아니나, 예들 들어 유기 미립자는 1 내지 10 ㎛의 입경을 가질 수 있으며, 상기 무기 입자는 1 ㎚ 내지 500 ㎚, 또는 1㎚ 내지 300㎚의 입경을 가질 수 있다. 상기 유기 또는 무기 미립자는 입경은 부피 평균 입경으로 정의될 수 있다.
또한, 상기 하드 코팅층에 포함되는 유기 또는 무기 미립자의 구체적인 예가 한정되는 것은 아니나, 예를 들어 상기 유기 또는 무기 미립자는 아크릴계 수지, 스티렌계 수지, 에폭사이드 수지 및 나일론 수지로 이루어진 유기 미립자이거나 산화규소, 이산화티탄, 산화인듐, 산화주석, 산화지르코늄 및 산화아연으로 이루어진 무기 미립자일 수 있다.
상기 하드 코팅층의 바인더 수지는 중량평균분자량 10,000 이상의 고분자량 (공)중합체를 더 포함할 수 있다.
상기 고분자량 (공)중합체는 셀룰로스계 폴리머, 아크릴계 폴리머, 스티렌계 폴리머, 에폭사이드계 폴리머, 나일론계 폴리머, 우레탄계 폴리머, 및 폴리올레핀계 폴리머로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
한편, 상기 하드 코팅층의 또 다른 일 예로서, 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층을 들 수 있다.
상기 하드코팅층에 포함되는 광경화형 수지는 자외선 등의 광이 조사되면 중합 반응을 일으킬 수 있는 광경화형 화합물의 중합체로서, 당업계에서 통상적인 것일 수 있다. 다만, 바람직하게는, 상기 광경화형 화합물은 다관능성 (메트)아크릴레이트계 단량체 또는 올리고머일 수 있고, 이때 (메트)아크릴레이트계 관능기의 수는 2 내지 10, 바람직하게는 2 내지 8, 보다 바람직하게는 2 내지 7인 것이, 하드코팅층의 물성 확보 측면에서 유리하다. 보다 바람직하게는, 상기 광경화형 화합물은 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 디펜타에리스리톨 헥사(메트)아크릴레이트, 디펜타에리스리톨 헵타(메트)아크릴레이트, 트리펜타에리스리톨 헵타(메트)아크릴레이트, 트릴렌 디이소시아네이트, 자일렌 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 트리메틸올프로판 트리(메트)아크릴레이트, 및 트리메틸올프로판 폴리에톡시 트리(메트)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 대전 방지제는 4급 암모늄염 화합물; 피리디늄염; 1 내지 3개의 아미노기를 갖는 양이온성 화합물; 설폰산 염기, 황산 에스테르 염기, 인산 에스테르 염기, 포스폰산 염기 등의 음이온성 화합물; 아미노산계 또는 아미노 황산 에스테르계 화합물 등의 양성 화합물; 이미노 알코올계 화합물, 글리세린계 화합물, 폴리에틸렌 글리콜계 화합물 등의 비이온성 화합물; 주석 또는 티타늄 등을 포함한 금속 알콕사이드 화합물 등의 유기 금속 화합물; 상기 유기 금속 화합물의 아세틸아세토네이트 염 등의 금속 킬레이트 화합물; 이러한 화합물들의 2종 이상의 반응물 또는 고분자화물; 이러한 화합물들의 2종 이상의 혼합물일 수 있다. 여기서, 상기 4급 암모늄염 화합물은 분자 내에 1개 이상의 4급 암모늄염기를 가지는 화합물일 수 있으며, 저분자형 또는 고분자형을 제한 없이 사용할 수 있다.
또한, 상기 대전 방지제로는 도전성 고분자와 금속 산화물 미립자도 사용할 수 있다. 상기 도전성 고분자로는 방향족 공액계 폴리(파라페닐렌), 헤테로고리식 공액계의 폴리피롤, 폴리티오펜, 지방족 공액계의 폴리아세틸렌, 헤테로 원자를 함유한 공액예의 폴리아닐린, 혼합 형태 공액계의 폴리(페닐렌 비닐렌), 분자중에 복수의 공액 사슬을 갖는 공액계인 복쇄형 공액계 화합물, 공액 고분자 사슬을 포화 고분자에 그래프트 또는 블록 공중합시킨 도전성 복합체 등이 있다. 또한, 상기 금속 산화물 미립자로는 산화 아연, 산화 안티몬, 산화 주석, 산화 세륨, 인듐 주석 산화물, 산화 인듐, 산화 알루니뮴, 안티몬 도핑된 산화 주석, 알루미늄 도핑된 산화 아연 등을 들 수 있다.
상기 광경화성 수지의 바인더 수지; 및 상기 바인더 수지에 분산된 대전 방지제를 포함하는 하드 코팅층은 알콕시 실란계 올리고머 및 금속 알콕사이드계 올리고머로 이루어진 군에서 선택되는 1종 이상의 화합물을 더 포함할 수 있다.
상기 알콕시 실란계 화합물은 당업계에서 통상적인 것일 수 있으나, 바람직하게는 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메타크릴록시프로필트리메톡시실란, 글리시독시프로필 트리메톡시실란, 및 글리시독시프로필 트리에톡시실란으로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
또한, 상기 금속 알콕사이드계 올리고머는 금속 알콕사이드계 화합물 및 물을 포함하는 조성물의 졸-겔 반응을 통해 제조할 수 있다. 상기 졸-겔 반응은 전술한 알콕시 실란계 올리고머의 제조 방법에 준하는 방법으로 수행할 수 있다.
다만, 상기 금속 알콕사이드계 화합물은 물과 급격하게 반응할 수 있으므로, 상기 금속 알콕사이드계 화합물을 유기용매에 희석한 후 물을 천천히 드로핑하는 방법으로 상기 졸-겔 반응을 수행할 수 있다. 이때, 반응 효율 등을 감안하여, 물에 대한 금속 알콕사이드 화합물의 몰비(금속이온 기준)는 3 내지 170인 범위 내에서 조절하는 것이 바람직하다.
여기서, 상기 금속 알콕사이드계 화합물은 티타늄 테트라-이소프로폭사이드, 지르코늄 이소프로폭사이드, 및 알루미늄 이소프로폭사이드로 이루어진 군에서 선택되는 1종 이상의 화합물일 수 있다.
발명의 다른 구현예에 따르면, 상기 반사 방지 필름을 포함하는 편광판이 제공될 수 있다.
상기 편광판은 편광자와 상기 편광자의 적어도 일면에 형성된 반사 방지 필름을 포함할 수 있다.
상기 편광자의 재료 및 제조방법은 특별히 한정하지 않으며, 당 기술분야에 알려져 있는 통상적인 재료 및 제조방법을 사용할 수 있다. 예를 들어, 상기 편광자는 폴리비닐알코올계 편광자일 수 있다.
상기 편광자와 상기 반사 방지 필름은 수계 접착제 또는 비수계 접착제 등의 접착제에 의하여 합지될 수 있다.
발명의 또 다른 구현예에 따르면, 상술한 반사 방지 필름을 포함하는 디스플레이 장치가 제공될 수 있다.
상기 디스플레이 장치의 구체적인 예가 한정되는 것은 아니며, 예를 들어 액정표시장치 (Liquid Crystal Display), 플라즈마 디스플레이 장치, 유기발광 다이오드(Organic Light Emitting Diodes) 디스플레이 장치, 플렉서블 디스플레이 장치 등의 장치일 수 있다.
상기 디스플레이 장치에서 상기 반사 방지 필름은 디스플레이 패널의 관측자측 또는 백라이트측의 최외각 표면에 구비될 수 있다.
상기 반사 방지 필름을 포함하는 디스플레이 장치는, 1쌍의 편광판 중에서 상대적으로 백라이트 유닛과 거리가 먼 편광판의 일면에 반사 방지 필름이 위치할 수 있다.
또한, 상기 디스플레이 장치는 디스플레이 패널, 상기 패널의 적어도 일면에 구비된 편광자 및 상기 편광자의 패널과 접하는 반대측 면에 구비된 반사방지 필름을 포함할 수 있다.
발명의 또 다른 구현예에 따르면, 상기 반사 방지 필름을 포함하는 유기발광다이오드 디스플레이 장치가 제공될 수 있다.
통상 유기발광다이오드 디스플레이 장치는 고해상도 및 높은 색재현력을 갖는데, 높은 색값, 예를 들어 CIE Lab 색공간에서 b*의 절대값이 4초과인 특성을 갖는 반사 방지 필름의 경우, 유기발광다이오드 디스플레이 장치의 색 재현력을 저하시킬 수 있다.
이에 반하여, 상기 일 구현예의 반사 방지 필름은 높은 투광율 및 낮은 반사율을 구현하면서도 CIE Lab 색공간에서 b*의 절대값이 4 이하로 낮은 색값을 가져서 무색 투명한 특성을 가질 수 있고, 이에 따라 유기발광다이오드 디스플레이 장치의 색 재현력을 그대로 유지하거나 또는 높이는 효과를 구현할 수 있다.
본 발명에 따르면, 높은 투광율을 가지면서 높은 내스크래치성 및 방오성을 동시에 구현할 수 있고, 낮은 반사율을 구현하면서도 무색 투명한 특성을 갖는 반사 방지 필름, 이를 포함한 편광판, 디스플레이 장치 및 유기발광다이오드 디스플레이 장치가 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<제조예1 내지 2: 하드 코팅층의 제조>
제조예 1: 하드 코팅층(HD1)의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 75g, 평균입경이 20nm인 실리카 미립자(표면처리: 3-메타크릴로일옥시프로필메틸디메톡시실란) 2g, 불소계 아크릴레이트(RS-537, DIC사) 0.05g, 광개시제(Irgacure 184, Ciba사) 1.13g 의 고형분을 MEK(methyl ethyl ketone)용매에 고형분 농도 40중량%가 되도록 희석하여 하드코팅용 조성물을 제조했다.
상기 희석한 하드 코팅액을 트리아세틸 셀룰로스 필름에 #10 mayer bar로 코팅하고 하기 표 1의 조건으로 건조한 및 광경화한 이후 5μm의 두께를 갖는 하드코팅 필름을 제조하였다. 하기 실시예 및 비교예 각각에서 하드 코팅층의 건조시 적용한 풍속은 표2에 기재하였다.
제조예 2: 하드 코팅층(HD2)의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 75g, 평균입경이 20nm인 실리카 미립자(표면처리: 3-메타크릴로일옥시프로필메틸디메톡시실란) 2g, 불소계 아크릴레이트(RS-537, DIC사) 0.5g, 광개시제(Irgacure 184, Ciba사) 1.13g 의 고형분을 MEK(methyl ethyl ketone)용매에 고형분 농도 40중량%가 되도록 희석하여 하드코팅용 조성물을 제조했다.
상기 희석한 하드 코팅액을 트리아세틸 셀룰로스 필름에 #10 mayer bar로 코팅하고 하기 표 1의 조건으로 건조한 및 광경화한 이후 5 ㎛ 의 두께를 갖는 하드코팅 필름을 제조하였다. 하기 실시예 및 비교예 각각에서 하드 코팅층의 건조시 적용한 풍속은 표2에 기재하였다.
광경화시
질소 치환(purging) 여부
자외선 강도[mJ/㎠]
제조예1 O 25mJ/cm 2
제조예2 O 254mJ/cm 2
<제조예 3 내지 6: 저굴절층 코팅 조성물의 제조>
제조예 3. 저굴절층 제조용 광경화성 코팅 조성물의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경: 약 50 내지 60 ㎚, 밀도: 1.96 g/㎤, JSC catalyst and chemicals사 제품) 281 중량부, 솔리드형 실리카 나노 입자(직경: 약 12 ㎚, 밀도: 2.65 g/㎤, Nissan Chemical사) 63 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 131중량부, 제2함불소 화합물 (RS-537, DIC사) 19중량부, 개시제 (Irgacure 127, Ciba사) 31중량부를, 메틸이소부틸케톤(MIBK): 디아세톤알콜(DAA): 이소프로필알코올을 3:3:4의 중량비로 혼합한 용매에 고형분 농도 3 중량%가 되도록 희석하였다.
제조예 4. 저굴절층 제조용 광경화성 코팅 조성물의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경: 약 50 내지 60 ㎚, 밀도: 1.96 g/㎤, JSC catalyst and chemicals사 제품) 200 중량부, 솔리드형 실리카 나노 입자(직경: 약 12 ㎚, 밀도: 2.65 g/㎤, Nissan Chemical사) 48 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 111중량부, 제2함불소 화합물 (RS-537, DIC사) 15중량부, 개시제 (Irgacure 127, Ciba사) 21중량부를, 메틸이소부틸케톤(MIBK): 디아세톤알콜(DAA): 이소프로필알코올을 3:3:4의 중량비로 혼합한 용매에 고형분 농도 3 중량%가 되도록 희석하였다.
제조예 5. 저굴절층 제조용 광경화성 코팅 조성물의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경: 약 60 내지 70 ㎚, 밀도: 1.79 g/㎤, JSC catalyst and chemicals사 제품) 300 중량부, 솔리드형 실리카 나노 입자(직경: 약 12 ㎚, 밀도: 2.65 g/㎤, Nissan Chemical사) 85 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 150중량부, 제2함불소 화합물 (RS-537, DIC사) 33중량부, 개시제 (Irgacure 127, Ciba사) 35중량부를, 메틸이소부틸케톤(MIBK): 디아세톤알콜(DAA): 이소프로필알코올을 3:3:4의 중량비로 혼합한 용매에 고형분 농도 3 중량%가 되도록 희석하였다.
제조예 6. 저굴절층 제조용 광경화성 코팅 조성물의 제조
트리메틸올프로판 트리메트아크릴레이트 (TMPTA) 100중량부에 대하여, 중공형 실리카 나노 입자(직경: 약 50 내지 60 ㎚, 밀도: 1.96 g/㎤, JSC catalyst and chemicals사 제품) 248 중량부, 솔리드형 실리카 나노 입자(직경: 약 12 ㎚, 밀도: 2.65 g/㎤, Nissan Chemical사) 68 중량부, 제1함불소 화합물(X-71-1203M, ShinEtsu사) 120중량부, 제2함불소 화합물 (RS-537, DIC사) 33중량부, 개시제 (Irgacure 127, Ciba사) 30중량부를, 메틸이소부틸케톤(MIBK): 디아세톤알콜(DAA): 이소프로필알코올을 3:3:4의 중량비로 혼합한 용매에 고형분 농도 3 중량%가 되도록 희석하였다.
하드 코팅 하드코팅층
건조풍속 (m/s)
저굴절층
실시예 1 제조예 1 0.5 제조예 3
실시예 2 제조예 1 0.5 제조예 4
실시예 3 제조예 1 1.0 제조예 4
실시예 4 제조예 1 0.5 제조예 5
실시예 5 제조예 1 0.5 제조예 6
실시예 6 제조예 1 1.0 제조예 6
비교예 1 제조예 1 0.3 제조예 6
비교예 2 제조예 2 0.3 제조예 5
비교예 3 제조예 2 0.5 제조예 5
비교예 4 제조예 2 0.7 제조예 3
<실험예: 반사 방지 필름의 물성 측정>
상기 실시예 및 비교예에서 얻어진 반사 방지 필름에 대하여 다음과 같은 항목의 실험을 시행하였다.
1. 하드 코팅 필름의 표면 에너지 측정
실시예 및 비교예 각각의 하드 코팅층의 표면 에너지는 Kruss사의 DSA-100 접촉각 측정 장비를 이용하여 di-water(Gebhardt)와 di-iodomethane(Owens)의 접촉각을 10 points로 측정하여 평균값을 낸 후 평균 접촉각을 표면 에너지로 환산하여 측정하였다. 상기 표면 에너지의 측정에서는 Dropshape Analysis 소프트웨어를 사용하고 OWRK(Owen, Wendt, Rable, Kaelble) method의 하기 일반식2을 프로그램 상에 적용하여 접촉각을 표면 에너지로 환산하였다.
[일반식2]
Figure PCTKR2021003228-appb-img-000009
2. 반사 방지 필름의 반사율 및 CIE Lab 색공간에서의 b* 측정
실시예 및 비교예에서 얻어진 반사 방지 필름이 가시 광선 영역(380 내지 780㎚)에서 각 파장에서의 반사율과 b*를 Solidspec 3700(SHIMADZU) 장비를 이용하여 측정하였다.
시편을 380nm에서 780nm까지 스캔하여 각 파장에서의 반사율을 측정한 후 UV-2401PC Color Analysis 프로그램을 이용하여 평균 반사율과 b*를 도출하였다.
3. 방오성 측정
실시예 및 비교예에서 얻어진 반사 방지 필름의 표면에 검은색 네임펜으로 5 ㎝길이의 직선을 그리고, 무진천을 이용하여 문질렀을 때 지워지는 횟수를 확인하여 방오성을 측정하였다.
<측정 기준>
O: 지워지는 시점이 10회 이하
△: 지워지는 시점이 11회 내지 20회
X: 지워지는 시점이 20회 초과
4. 내스크래치성 측정
스틸울(#0000)에 하중을 걸고 27 rpm의 속도로 10회 왕복하며 실시예 및 비교예에서 얻어진 반사 방지 필름의 표면을 문질렀다. 육안으로 관찰되는 1cm이하의 스크래치가 1개 이하로 관찰되는 최대 하중을 측정하였다.
5. 타원편광법(ellipsometry) 측정
상기 실시예 및 비교예 각각에서 얻어진 저굴절율층에 대하여 타원편광법(ellipsometry)으로 편극의 타원율을 측정하였다.
구체적으로, 상기 실시예 및 비교예 각각에서 얻어진 저굴절율층에 대하여 J. A. Woollam Co. M-2000 의 장치를 이용하여, 70°의 입사각을 적용하고 380㎚ 내지 1000 ㎚의 파장 범위에서 선편광을 측정하였다.
상기 측정된 선평광 측정 데이터(Ellipsometry data(Ψ,Δ))를 Complete EASE software를 이용하여 상기 저굴절율층의 제1,2층(Layer 1, Layer 2)에 대하여 하기 일반식1의 코쉬 모델 (Cauchy model)로 최적화 (fitting)하였다.
[일반식1]
Figure PCTKR2021003228-appb-img-000010
상기 일반식1에서, n(λ)는 λ파장에서의 굴절율(refractive index)이고, λ는 300 ㎚ 내지 1800㎚의 범위이고, A, B 및 C는 코쉬 파라미터이다.
또한 상기 저굴절율층의 혼재층에 대하여는 확산층 모델 (Diffuse Layer Model) 모드를 이용하여 굴절율 및 두께를 최적화 (fitting) 하였다. 상기 코쉬 모델 (Cauchy model)과 확산층 모델 (Diffuse layer model)의 MSE는 5이하가 되도록 하였다.
6. 굴절률의 측정
상기 실시예들에서 얻어진 저굴절율층에 포함되는 입자 혼재층에 대하여 380 nm 내지 1,000 nm의 파장에서 측정된 타원 편광과 Cauchy 모델 및 Diffuse layer model을 이용하여 파장 550nm 및 파장 400nm에서의 굴절율을 계산하였다
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6
평균반사율(%) 0.9 1.35 1.42 0.6 1.1 1.2
CIE Lab 색공간에서 b값 3.3 2.9 1.2 1.5 2.5 2.1
하드코팅층의 표면에너지[mN/m] 35 35 35 35 35 35
하드코팅층으로부터입자 혼재층의 위치 (nm) 32 45 40 31 51 16
입자 혼재층의 두께 2.5 11.1 12.9 8.62 5.8 18.1
반사방지필름의
파장 550nm에서의 반사율
0.8093 1.1233 1.3193 0.598 0.9895 1.121
반사방지필름의파장 400nm에서의 반사율 1.3768 2.5755 2.3928 1.299 1.7627 1.5946
파장 550nm 반사율 대비
파장 400nm에서의 반사율 비율
1.70 2.29 1.81 2.17 1.78 1.42
내스크래치성(g) 500 500 500 500 500 500
방오성 0 0 0 0 0 0
상분리여부 0 0 0 0 0 0
비교예1 비교예2 비교예3 비교예4
평균반사율(%) 0.92 0.7 0.75 0.84
CIE Lab 색공간에서 b값 4.2 5.1 4.5 -7.73
하드코팅층의 표면에너지[mN/m] 33 32 33 34
하드코팅층으로부터 입자 혼재층의 위치 (nm) 11 10 65 13.4
입자 혼재층의 두께 (nm) 22.12 25.98 31.58 1.31
반사 방지 필름의 파장 550nm에서의 반사율 0.875 0.5877 0.6521 0.78
반사 방지 필름의 파장 400nm에서의 반사율 2.3886 1.9539 1.9844 2.55
파장 550nm 반사율 대비 파장 400nm에서의 반사율 비율 2.73 3.32 3.04 3.27
내스크래치성(g) 150 50 200 100
방오성 X X X X
상분리여부 X X X X
상기 표3에 나타난 바와 같이, 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 1.5 ㎚ 내지 22 ㎚의 두께를 갖는 입자 혼재층이 상기 저굴절층 내에 존재하는 실시예들의 반사 방지 필름은 파장 550nm에서의 1.5% 이하의 반사율을 구현하면서도 CIE Lab 색공간에서 b*의 절대값이 4 이하로 낮은 색값을 가져서 무색 투명한 특성을 가질 수 있다는 점이 확인되었다.
그리고, 표3의 결과에서, 실시예들의 반사 방지 필름은 저굴절층에 혼재층을 포함하면서 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 주로 분포하는 영역이 구분되도록 상분리되어, 높은 내스크래치성 및 우수한 방오성 또한 갖는다는 점이 확인되었다.
이에 반하여, 표4에 나타난 바와 같이, 비교예의 반사 방지 필름에서는 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자가 각각 주로 분포하는 영역으로 구분되어 편재하지(상분리) 않는 것으로 보이며, 이에 따라 내스크래치성이나 방오성이 충분하지 않은 것으로 확인되었다.
또한, 표4의 결과에서, 비교예의 반사 방지 필름들의 저굴절층에는 22 ㎚ 초과의 두께를 갖는 입자 혼재층이 존재하거나, 또는 상기 입자 혼재층이 하드 코팅층에 과도하게 근접하여 위치하거나 너무 멀리 위치하는 것으로 보이는데, 이러한 비교예들의 반사 방지 필름의 CIE Lab 색공간에서 b*의 절대값이 4를 초과하여, 편광판 또는 디스플레이 장치에 적용하기에 적합하지 않는 정도의 불투명성 또는 유색성을 갖는다는 점이 확인되었다.

Claims (19)

  1. 하드 코팅층; 및 저굴절층을 포함하고,
    중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 함께 포함하고 1.5 ㎚ 내지 22 ㎚의 두께를 갖는 입자 혼재층이 상기 저굴절층 내에 존재하며,
    CIE Lab 색공간에서 b*값의 절대값이 4이하인, 반사 방지 필름.
  2. 제1항에 있어서,
    상기 입자 혼재층의 두께는 2.0 ㎚ 내지 20 ㎚인, 반사 방지 필름.
  3. 제2항에 있어서,
    상기 입자 혼재층의 두께는 타원편광법(ellipsometry)으로 측정한 편극의 타원율을 확산층 모델 (Diffuse layer model)로 최적화 (fitting)하여 결정되는,
    반사 방지 필름.
  4. 제1항에 있어서,
    상기 하드 코팅층의 일면 상에 상기 저굴절층이 형성되고,
    상기 입자 혼재층은 상기 하드 코팅층 일면으로부터 15 ㎚ 내지 60 ㎚의 거리에 위치하는,
    반사 방지 필름.
  5. 제1항 또는 제4항에 있어서,
    상기 저굴절층은 20㎚ 내지 240 ㎚의 두께를 갖는, 반사 방지 필름.
  6. 제1항에 있어서,
    상기 반사 방지 필름의 파장 550nm에서의 반사율이 0.5% 초과 1.5% 이하인, 반사 방지 필름.
  7. 제1항에 있어서,
    상기 반사 방지 필름의 파장 400nm에서의 반사율이 1.0% 내지 3.50%인, 반사 방지 필름.
  8. 제1항에 있어서,
    상기 하드 코팅층의 표면 에너지는 34 mN/m 초과인, 반사 방지 필름
  9. 제1항에 있어서,
    상기 하드 코팅층의 일면 상에 상기 저굴절층이 형성되고,
    상기 저굴절층은 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하고,
    상기 저굴절층에서 상기 솔리드형 무기 나노 입자 전체 중 50부피% 이상이 상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이에 존재하는, 반사 방지 필름.
  10. 제1항에 있어서,
    상기 하드 코팅층 일면으로부터 상기 입자 혼재층 사이의 영역은 파장 550nm에서 1.46 내지 1.65의 굴절율을 갖는, 반사 방지 필름.
  11. 제9항에 있어서,
    상기 저굴절층에서, 상기 중공형 무기 나노 입자 전체 중 50부피% 이상이 상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역에 존재하는, 반사 방지 필름.
  12. 제11항에 있어서,
    상기 입자 혼재층으로부터 상기 하드 코팅층과 대향하는 저굴절층의 일면까지의 영역은 파장 550nm에서 1.0 내지 1.40의 굴절율을 갖는, 반사 방지 필름.
  13. 제1항에 있어서,
    상기 솔리드형 무기 나노 입자는 0.5 내지 100㎚의 직경을 가지며,
    상기 중공형 무기 나노 입자는 1 내지 200㎚의 직경을 가지는, 반사 방지 필름.
  14. 제1항에 있어서,
    상기 솔리드형 무기 나노 입자 및 상기 중공형 무기 나노 입자 간의 밀도의 차이는 0.50 g/㎤ 내지 3.00 g/㎤ 인, 반사 방지 필름.
  15. 제1항에 있어서,
    상기 저굴절층은 바인더 수지 및 상기 바인더 수지에 분산된 중공형 무기 나노 입자 및 솔리드형 무기 나노 입자를 포함하고,
    상기 저굴절층에 포함되는 바인더 수지는 광중합성 화합물의 (공)중합체 및 광반응성 작용기를 포함한 함불소 화합물 간의 가교 (공)중합체를 포함하는, 반사 방지 필름.
  16. 제1항에 있어서,
    상기 하드 코팅층은 광경화성 수지를 포함하는 바인더 수지 및 상기 바인더 수지에 분산된 유기 또는 무기 미립자;를 포함하는, 반사 방지 필름.
  17. 제1항의 반사 방지 필름 및 편광자를 포함하는 편광판.
  18. 제1항의 반사 방지 필름을 포함하는 디스플레이 장치.
  19. 제1항의 반사 방지 필름을 포함하는 유기발광다이오드 디스플레이 장치.
PCT/KR2021/003228 2020-03-16 2021-03-16 반사 방지 필름 WO2021187861A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180005502.1A CN114514445A (zh) 2020-03-16 2021-03-16 抗反射膜
JP2022520772A JP2023519045A (ja) 2020-03-16 2021-03-16 反射防止フィルム
EP21770667.0A EP4024091B1 (en) 2020-03-16 2021-03-16 Anti-refractive film
US17/771,228 US20220381954A1 (en) 2020-03-16 2021-03-16 Anti-reflective film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2020-0032253 2020-03-16
KR10-2020-0032251 2020-03-16
KR20200032251 2020-03-16
KR20200032253 2020-03-16
KR1020210033702A KR102498240B1 (ko) 2020-03-16 2021-03-16 반사 방지 필름
KR10-2021-0033696 2021-03-16
KR1020210033696A KR102498241B1 (ko) 2020-03-16 2021-03-16 반사 방지 필름
KR10-2021-0033702 2021-03-16

Publications (1)

Publication Number Publication Date
WO2021187861A1 true WO2021187861A1 (ko) 2021-09-23

Family

ID=77771312

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2021/003226 WO2021187859A1 (ko) 2020-03-16 2021-03-16 반사 방지 필름
PCT/KR2021/003228 WO2021187861A1 (ko) 2020-03-16 2021-03-16 반사 방지 필름

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003226 WO2021187859A1 (ko) 2020-03-16 2021-03-16 반사 방지 필름

Country Status (3)

Country Link
US (2) US20220381954A1 (ko)
JP (2) JP2023519045A (ko)
WO (2) WO2021187859A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024091A4 (en) * 2020-03-16 2023-08-30 LG Chem, Ltd. ANTI-REFRACTION FILM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108287A (ko) * 2021-01-26 2022-08-03 삼성디스플레이 주식회사 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301970A (ja) * 2005-08-03 2007-11-22 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
KR20140065250A (ko) * 2012-11-21 2014-05-29 (주)엘지하우시스 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름
KR20170021757A (ko) * 2015-08-18 2017-02-28 주식회사 엘지화학 저굴절층 및 이를 포함하는 반사 방지 필름
KR20190043516A (ko) * 2016-07-14 2019-04-26 주식회사 엘지화학 반사 방지 필름
WO2019107036A1 (ja) * 2017-11-29 2019-06-06 日東電工株式会社 ハードコートフィルム、光学積層体および画像表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102361621B1 (ko) * 2017-04-28 2022-02-09 주식회사 엘지화학 반사 방지 필름
KR102196429B1 (ko) * 2018-03-16 2020-12-29 주식회사 엘지화학 반사 방지 필름, 편광판 및 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301970A (ja) * 2005-08-03 2007-11-22 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
KR20140065250A (ko) * 2012-11-21 2014-05-29 (주)엘지하우시스 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름
KR20170021757A (ko) * 2015-08-18 2017-02-28 주식회사 엘지화학 저굴절층 및 이를 포함하는 반사 방지 필름
KR20190043516A (ko) * 2016-07-14 2019-04-26 주식회사 엘지화학 반사 방지 필름
WO2019107036A1 (ja) * 2017-11-29 2019-06-06 日東電工株式会社 ハードコートフィルム、光学積層体および画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024091A4 (en) * 2020-03-16 2023-08-30 LG Chem, Ltd. ANTI-REFRACTION FILM

Also Published As

Publication number Publication date
JP2023519045A (ja) 2023-05-10
US20230003921A1 (en) 2023-01-05
JP2023519046A (ja) 2023-05-10
US20220381954A1 (en) 2022-12-01
WO2021187859A1 (ko) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2017073903A1 (ko) 폴리머막, 이를 채용한 광학 부재, 편광 부재 및 표시 장치
WO2021187859A1 (ko) 반사 방지 필름
WO2010002182A9 (en) Plastic substrate and device including the same
WO2014178517A1 (ko) 폴리에스테르계 프라이머 조성물, 이를 이용한 광학 필름 및 이를 포함하는 편광판
WO2018221872A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2017048077A1 (ko) 편광자 보호필름, 이를 포함하는 편광판 및 상기 편광판을 포함하는 액정 디스플레이 장치
WO2019031786A1 (en) OPTICAL ELEMENT, POLARIZING ELEMENT, AND DISPLAY DEVICE
WO2017074039A1 (ko) 폴리머막, 이를 채용한 광학 부재, 편광 부재 및 표시 장치
WO2021045557A1 (ko) 플렉서블 디스플레이 장치를 위한 폴리에스테르 보호 필름
WO2022250489A1 (ko) 수지막, 수지막의 제작 방법 및 표시 장치
WO2016003179A1 (ko) 저굴절률층을 갖는 광학 부재
EP3625596A1 (en) Optical member, polarization member, and display device
WO2016003175A1 (ko) 실리카막, 광학 부재 및 편광 부재
WO2021049903A1 (ko) 광학 적층체
WO2020242210A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2020242117A1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
WO2018194262A1 (ko) 명암비 개선 광학 필름, 이를 포함하는 편광판 및 이를 포함하는 액정표시장치
WO2022019610A1 (ko) 눈부심 방지 필름, 편광판 및 디스플레이 장치
WO2022182114A1 (ko) 편광판 및 이를 포함하는 화상표시장치
WO2021177688A1 (ko) 광학 필름 및 이를 포함하는 마이크로 엘이디 디스플레이
WO2018101629A1 (ko) 반사 방지막, 반사 방지 부재, 편광판 및 표시장치
WO2024144104A1 (ko) 반사방지용 편광판 및 이를 포함하는 화상표시장치
WO2017078247A1 (ko) 필름 터치 센서
WO2021210783A1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터
WO2021187853A1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021770667

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE