WO2021187600A1 - Optical multilayer body and moving body - Google Patents

Optical multilayer body and moving body Download PDF

Info

Publication number
WO2021187600A1
WO2021187600A1 PCT/JP2021/011229 JP2021011229W WO2021187600A1 WO 2021187600 A1 WO2021187600 A1 WO 2021187600A1 JP 2021011229 W JP2021011229 W JP 2021011229W WO 2021187600 A1 WO2021187600 A1 WO 2021187600A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
less
optical laminate
light
wavelength
Prior art date
Application number
PCT/JP2021/011229
Other languages
French (fr)
Japanese (ja)
Inventor
雄一朗 船越
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2022508443A priority Critical patent/JPWO2021187600A1/ja
Publication of WO2021187600A1 publication Critical patent/WO2021187600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an optical laminate and a moving body.
  • a molded product molded using a resin composition containing a permeable resin material as a main material is lightweight and has excellent moldability, and in particular, a molded product using polycarbonate as a main material is transparent. It is also good and has excellent impact resistance compared to glass products. Therefore, such molded bodies are often used for various lamp lenses, window materials, covers for instruments, windshields, and the like.
  • the optical laminate to which the light absorber is added mainly exhibits black color, and the optical laminate using the reflection mechanism is limited to a metallic luster color tone.
  • the cover material lacks design compatibility with the exterior of the sensor or the camera. As a result, it was difficult to improve the design of the sensor and camera.
  • An object of the present invention is to provide an optical laminate with improved design compatibility with the exterior of a sensor unit and a moving body with improved design.
  • a second layer laminated on the first layer and containing a polycarbonate as a main agent and a fluorescent coloring material is provided.
  • the fluorescent color material is excited by excitation light having a first peak of excitation wavelength intensity in a wavelength region of 200 nm or more and 780 nm or less, and emits light having a second peak of fluorescence wavelength intensity in a wavelength region of 380 nm or more and 780 nm or less.
  • An optical laminate characterized by being configured to emit light.
  • the fluorescent coloring material is at least one selected from the group consisting of anthraquinone dyes, perylene dyes, quinoline dyes, heterocyclic dyes, benzoxazole derivatives and naphthalene dyes in (1) above.
  • the optical laminate according to the description.
  • optical laminate according to any one of (1) to (5) above which is configured to be used as a cover member for covering a light emitting / receiving portion of an infrared sensor.
  • FIG. 1 is a vertical cross-sectional view showing a first embodiment of the optical laminate of the present invention.
  • FIG. 2 is a vertical sectional view showing a second embodiment of the optical laminate of the present invention.
  • FIG. 3 is a vertical sectional view showing a third embodiment of the optical laminate of the present invention.
  • FIG. 4 is a diagram showing an example of a spectrum having a first peak of an excitation wavelength.
  • FIG. 5 is a diagram showing an example of a spectrum having a second peak of the fluorescence wavelength.
  • FIG. 1 is a vertical cross-sectional view showing a first embodiment of the optical laminate of the present invention.
  • the upper side of FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the optical laminate 10 (optical film) is applied to a cover member or the like that covers a light emitting / receiving portion of an infrared sensor.
  • the optical laminate 10 is laminated on the first layer 1 (base material layer) and the first layer 1 and emits fluorescent light, as shown in FIG. 1, the second layer 2 (fluorescent layer). ) And.
  • the optical laminate 10 When the optical laminate 10 is applied to the cover member, the optical laminate 10 is installed so that the second layer 2 faces the outside and the first layer 1 is the object side to be covered. Will be done.
  • the second layer 2 can be provided with a function as a protective layer that protects the first layer 1.
  • the optical laminate of the present invention has a first layer (base material layer) containing a polycarbonate as a main agent and a visible light absorber that absorbs visible light, and a polycarbonate as a main agent that is laminated on the first layer.
  • the fluorescent color material includes a second layer (fluorescent layer) including the fluorescent color material, and the fluorescent color material has a first peak of the intensity of the excitation wavelength in the wavelength range of 200 nm or more and 780 nm or less (ultraviolet light to visible light). It is characterized in that it is excited by the excitation light and is configured to emit emitted light having a second peak of the intensity of the fluorescence wavelength in the wavelength range of 380 nm or more and 780 nm or less (visible light).
  • the optical laminate of the present invention can emit fluorescent light by providing a second layer (fluorescent layer) containing a fluorescent coloring material.
  • a second layer fluorescent layer
  • the optical laminate can improve the design compatibility with the exterior of the sensor unit.
  • the first layer contains polycarbonate as a main agent and a visible light absorber that absorbs visible light.
  • ultraviolet light to visible light refers to an electromagnetic wave having a wavelength of 200 nm or more and 780 nm or less.
  • the first layer (base material layer) 1 is a resin composition containing polycarbonate as a main agent (main material) having translucency and a visible light absorber that is dissolved and dispersed in the polycarbonate and absorbs visible light. It is a molded body molded into a layer using. By containing a visible light absorber in the resin composition, it is possible to accurately suppress or prevent the transmission of visible light in a specific wavelength region. As a result, the first layer 1 can have a function of allowing the transmission of light having a desired wavelength region.
  • the optical laminate 10 When the optical laminate 10 includes the first layer 1, the optical laminate 10 exhibits a light blocking property that blocks light in a specific wavelength region, so that light having a desired wavelength region is transmitted. Demonstrate light transmission. Therefore, the optical laminate 10 can be used as a cover member that allows the transmission of light having a desired color tone.
  • Polycarbonate Polycarbonate (polycarbonate-based resin) is contained as a main agent (base resin) of the first layer 1, and is used for molding the first layer 1 into a substrate shape.
  • This polycarbonate is rich in mechanical strength such as transparency (translucency), rigidity, and impact resistance. Therefore, by using polycarbonate as the main agent of the first layer 1, the optical laminate 10 can have excellent transparency and mechanical strength. Further, since polycarbonate has a specific gravity of about 1.2 and is classified as a light one among known resin materials, the weight of the optical laminate 10 can be reduced.
  • polycarbonate various types of polycarbonate can be used, and examples thereof include bisphenol-type polycarbonate and isosorbide-derived polycarbonate produced using plant-derived isosorbide as a main component. Among them, bisphenol-type polycarbonate can be used. preferable.
  • the bisphenol type polycarbonate has a benzene ring in its main chain, whereby the optical laminate 10 can have a higher strength.
  • This bisphenol type polycarbonate is synthesized by, for example, an interfacial polycondensation reaction between bisphenol and phosgene, a transesterification reaction between bisphenol and diphenyl carbonate, and the like.
  • bisphenol examples include bisphenol A and bisphenol (modified bisphenol) which is the origin of the repeating unit of polycarbonate represented by the following formula (A).
  • X is an alkyl group having 1 to 18 carbon atoms, an aromatic group or a cyclic aliphatic group, and Ra and Rb are independently alkyl groups having 1 to 12 carbon atoms.
  • M and n are integers from 0 to 4, respectively, and p is the number of repeating units.
  • the content of the polycarbonate in the optical laminate 10 is not particularly limited, but is preferably 75 wt% or more, and more preferably 85 wt% or more. By setting the content of the polycarbonate within the above range, the optical laminate 10 can exhibit excellent strength.
  • the visible light absorber has a function of suppressing or preventing the transmission of visible light in a specific wavelength region.
  • Such a visible light absorber is not particularly limited, but for example, a first light absorber that absorbs light having a wavelength of 300 nm or more and 550 nm or less, and a second light absorber that absorbs light having a wavelength of 450 nm or more and 800 nm or less.
  • a third light absorber that absorbs light having a wavelength of 400 nm or more and 800 nm or less can be mentioned. Further, these can be used in combination, and further, by appropriately setting the content thereof, the first layer 1 can be surely provided with a function of allowing the transmission of light having a desired wavelength region. .. Therefore, the optical laminate 10 (cover member) exhibits light transmission that transmits light having a desired wavelength region.
  • the first light absorber has an absorption wavelength characteristic of absorbing light having a wavelength of 300 nm or more and 550 nm or less.
  • Examples of the first light absorber include quinoline pigments.
  • Examples of the quinoline pigment include 2-methylquinoline, 3-methylquinoline, 4-methylquinoline, 6-methylquinoline, 7-methylquinoline, 8-methylquinoline, 6-isopropylquinoline, and 2,4-dimethylquinoline.
  • Alkyl substituted quinoline compounds such as 2,6-dimethylquinoline and 4,6,8-trimethylquinoline, 2-aminoquinoline, 3-aminoquinoline, 5-aminoquinoline, 6-aminoquinoline, 8-aminoquinoline, 6-amino Amino group substituted quinoline compounds such as -2-methylquinoline, alkoxy group substituted quinoline compounds such as 6-methoxy-2-methylquinoline, 6,8-dimethoxy-4-methylquinoline, 6-chloroquinoline, 4,7-dichloro Examples thereof include halogen group-substituted quinoline compounds such as quinoline, 3-bromoquinoline, and 7-chloro-2-methylquinoline, and one or a combination of two or more of these can be
  • a first light absorber as a visible light absorber, it is possible to reliably absorb the light having a wavelength of 300 nm or more and 550 nm or less in the first layer 1 among the light incident on the first layer 1. can.
  • the content of the first light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.3 wt% or less.
  • the content of the first light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 300 nm or more and 550 nm or less) depending on the type of the first light absorber. Absorption may decrease.
  • the content of the first light absorber in the first layer 1 exceeds the upper limit value, the absorption of visible light (light having a wavelength of 300 nm or more and 550 nm or less) is not improved, and the first layer 1 is not improved.
  • the adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
  • the second light absorber has an absorption wavelength characteristic that absorbs light having a wavelength of 450 nm or more and 800 nm or less.
  • Examples of the second light absorber include anthraquinone-based dyes.
  • anthraquinone dye examples include (1) 2-anilino-1,3,4-trifluoroanthraquinone, (2) 2- (o-ethoxycarbonylanilino) -1,3,4-trifluoroanthraquinone, ( 3) 2- (p-ethoxycarbonylanilinone) -1,3,4-trifluoroanthraquinone, (4) 2- (m-ethoxycarbonylanilinone) -1,3,4-trifluoroanthraquinone, (5) 2- (o-cyanoanilinone) -1,3,4-trifluoroanthraquinone, (6) 2- (p-cyanoanilinone) -1,3,4-trifluoroanthraquinone, (7) 2- (m-cyanoanilinone)- 1,3,4-trifluoroanthraquinone, (8) 2- (o-nitroanilino) -1,3,4-trifluoroanthra
  • a second light absorber as a visible light absorber, it is possible to reliably absorb the light having a wavelength of 450 nm or more and 800 nm or less in the first layer 1 among the light incident on the first layer 1. can.
  • the content of the second light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.6 wt% or less.
  • the content of the second light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 450 nm or more and 800 nm or less) depending on the type of the second light absorber. Absorption may decrease.
  • the content of the second light absorber in the first layer 1 exceeds the upper limit value, no further improvement in the absorbability of visible light (light having a wavelength of 450 nm or more and 800 nm or less) is not observed, and the second layer 1 The adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
  • the third light absorber has an absorption wavelength characteristic that absorbs light having a wavelength of 400 nm or more and 800 nm or less.
  • Examples of the third light absorber include perinone-based dyes.
  • perinone-based dye examples include 2,3-naphtharoperinone, 1,8-naphtharoperinone, tetrabromo-1,2-naphtharoperinone, and the like, and one or more of these can be used in combination.
  • the light having a wavelength of 400 nm or more and 800 nm or less can be reliably absorbed in the first layer 1.
  • the content of the third light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.6 wt% or less.
  • the content of the third light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 400 nm or more and 800 nm or less) depending on the type of the third light absorber. Absorption may decrease.
  • the absorbability of visible light (light having a wavelength of 400 nm or more and 800 nm or less) is not improved, and the first layer 1 is not improved.
  • the adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
  • the first layer 1 further contains an ultraviolet absorber in addition to the visible light absorber.
  • an ultraviolet absorber in addition to the visible light absorber.
  • the content of the ultraviolet absorber in the first layer 1 may be 0.005 wt% or more in the present embodiment, but is preferably 0.005 wt% or more and 0.200 wt% or less, and is 0. More preferably, it is .008 wt% or more and 0.150 wt% or less. If the content of the ultraviolet absorber in the first layer 1 is less than the lower limit, the absorption of ultraviolet rays in the first layer 1 may decrease depending on the type of the ultraviolet absorber. Further, even if the content of the ultraviolet absorber in the first layer 1 exceeds the upper limit value, no further improvement in the absorption of ultraviolet rays is observed, and the adhesion of the first layer 1 to the second layer 2 is impaired. In some cases.
  • the first layer 1 is covered with the resin material and the visible light absorber contained in the first layer 1 by containing the ultraviolet absorber within the above-mentioned range, and by extension, the optical laminate 10 (cover member). It is possible to more accurately suppress or prevent the object to be deteriorated from being deteriorated by ultraviolet rays. Therefore, the first layer 1 can have better weather resistance.
  • the ultraviolet absorber is contained in the second layer 2, or the third layer 3 in the case of the configuration shown in FIG. 2, or in the ultraviolet absorbing layer 5 in the case of the configuration shown in FIG. Is preferable. Thereby, it is possible to accurately suppress or prevent the fluorescent coloring material from being deteriorated by ultraviolet rays. As a result, the effects of the present invention can be stably exerted for a long period of time.
  • the ultraviolet absorber is not particularly limited, but preferably contains a light absorber that absorbs light having a wavelength of 100 nm or more and 400 nm or less. As a result, it is possible to suppress the transmission of ultraviolet rays and visible light having a relatively short wavelength (light having a wavelength of 400 nm or less). Therefore, the function as an ultraviolet absorber can be surely exhibited.
  • the ultraviolet absorber is not particularly limited, and examples thereof include triazine compounds, benzophenone compounds, benzotriazole compounds, and cyanoacrylate compounds, and one or a combination of two or more of these can be used. .. Among these, a triazine-based compound is particularly preferable. As a result, deterioration of the first layer 1 due to ultraviolet rays can be more reliably prevented or suppressed, and the weather resistance of the optical laminate 10 can be further enhanced.
  • triazine-based compounds examples include 2-mono (hydroxyphenyl) -1,3,5-triazine compound, 2,4-bis (hydroxyphenyl) -1,3,5-triazine compound, 2,4,6- Examples thereof include tris (hydroxyphenyl) -1,3,5-triazine compounds, specifically 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-Diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5- Triazine, 2,4-diphenyl- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3, 5-Triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxy
  • triazine-based ultraviolet absorbers examples include “Tinubin 1577”, “Tinubin 460”, “Tinubin 477” (manufactured by BASF Japan), “ADEKA STUB LA-F70” (manufactured by ADEKA), and the like.
  • Teinubin 1577 examples include "Tinubin 1577”, “Tinubin 460”, “Tinubin 477” (manufactured by BASF Japan), “ADEKA STUB LA-F70” (manufactured by ADEKA), and the like.
  • ADEKA STUB LA-F70 manufactured by ADEKA
  • the light having a wavelength of 100 nm or more and 400 nm or less among the light incident on the second layer 2 is reliably absorbed by the second layer 2. can do.
  • the content of the ultraviolet absorber in the second layer 2 is preferably 0.005 wt% or more and 0.200 wt% or less, and 0.008 wt% or more and 0. More preferably, it is 150 wt% or less. If the content of the ultraviolet absorber in the second layer 2 is less than the lower limit, the weather resistance of the second layer 2 may decrease depending on the type of the ultraviolet absorber. Further, even if the content of the ultraviolet absorber in the second layer 2 exceeds the upper limit value, no further improvement in weather resistance is observed, and the adhesion of the second layer 2 to the third layer 3 may be impaired. There is.
  • the first layer 1 may contain a dye (for example, an infrared light absorber) different from the visible light absorbers mentioned above.
  • the dye is not particularly limited, and examples thereof include pigments and dyes, and these can be used alone or in combination.
  • the pigment is not particularly limited, but for example, phthalocyanine pigments such as phthalocyanine green and phthalocyanine blue, fast yellow, disazo yellow, condensed azo yellow, benzoimidazolone yellow, dinitroaniline orange, benzimidazolone orange, toluidine red, permanent.
  • Azo pigments such as carmine, permanent red, naphthol red, condensed azo red, benz imidazolone carmine, benz imidazolone brown, anthraquinone pigments such as anthrapyrimidine yellow and anthraquinonyl red, azomethine pigments such as copper azomethin yellow, quinophthalone.
  • Kinophthalone pigments such as yellow, isoindolin pigments such as isoindolin yellow, nitroso pigments such as nickeldioxime yellow, perinone pigments such as perinone orange, quinacridone magenta, quinacridone maroon, quinacridone scarlet, quinacridone such as quinacridone red
  • Perylene pigments such as perylene red and perylene maroon
  • pyrrolopyrrole pigments such as diketopyrrolopyrrole red
  • organic pigments such as dioxazine pigments such as dioxazine violet, carbon black, lamp black, furnace black, ivory Carbon pigments such as black, graphite and fullerene
  • chromate pigments such as yellow lead and molybdate orange, cadmium yellow, cadmium lithopon yellow, cadmium orange, cadmium lithopon orange, silver vermilion, cadmium red, cadmium lithopon red Sulfur pigments such as
  • Oxide pigments such as Cerulean Blue, Cobalt Aluminum Chrome Blue, Iron Black, Manganese Ferrite Black, Cobalt Ferrite Black, Copper Chrome Black, Copper Chromium Manganese Black, Hydroxide Pigments such as Viridian, Ferocyanide Pigments such as Navy Blue Examples thereof include pigments, silicate pigments such as ultramarine, phosphate pigments such as cobalt violet and mineral violet, and inorganic pigments such as other (for example, cadmium sulfide, cadmium selenium, etc.), and one of them. Species or a combination of two or more can be used.
  • the dye is not particularly limited, and examples thereof include a metal complex dye, a cyan dye, a xanthene dye, an azo dye, a hibiscus dye, a blackberry dye, a raspberry dye, a pomegranate juice dye, and a chlorophyll dye. One of them or two or more of them can be used in combination.
  • the first layer 1 transmits light having a desired wavelength region. It is possible to exert a function that selectively allows.
  • the first layer preferably has a transmittance of light in the wavelength range of 850 nm or more and 1100 nm or less (infrared rays), or light in the wavelength range of 1300 nm or more and 1600 nm or less, preferably 85% or more and 95% or less, and is 86% or more and 93% or less. Is more preferable.
  • the optical laminate can be suitably used as a cover member for covering the light receiving / receiving portion of the infrared sensor or the infrared camera.
  • the thickness of the first layer 1 is not particularly limited, but is preferably 0.1 mm or more and 3 mm or less, and more preferably 0.5 mm or more and 2.0 mm or less. As a result, the first layer 1 can sufficiently exert its effect as a base material layer, and cracks occur in the second layer 2 when the optical laminate 10 is molded into a curved surface shape. Can be prevented.
  • the second layer contains polycarbonate as a main agent and a fluorescent coloring material.
  • the second layer (fluorescent layer) is layered using a resin composition containing polycarbonate as a main agent (main material) having translucency and a fluorescent coloring material that is dissolved and dispersed in the polycarbonate and emits fluorescence. It is a molded body molded into.
  • the second layer can emit fluorescent light by containing a fluorescent coloring material in the resin composition.
  • the optical laminate 10 (cover member) can be used as a cover member having improved design compatibility with the exterior of the sensor unit.
  • Polycarbonate Polycarbonate (polycarbonate-based resin) is contained as the main agent (base resin) of the second layer 2, and is used for molding the second layer 2 into a substrate shape.
  • the same polycarbonate as the polycarbonate constituting the first layer 1 described above can be used.
  • the fluorescent coloring material contained in the second layer 2 is excited by excitation light having the first peak of the intensity of the excitation wavelength in the wavelength range of 200 nm or more and 780 nm or less (visible light), and is 380 nm or more and 780 nm. It is configured to emit emitted light having a second peak of fluorescence wavelength intensity in the following (visible light) wavelength range.
  • the fluorescent coloring material includes a fluorescent dye and a fluorescent pigment.
  • fluorescent coloring material examples include nonionic fluorescent dyes, anthraquinone dyes, perylene dyes, biolantron dyes, isobiolantron dyes, vilantron dyes, flavantron dyes, and bilen dyes. At least one selected from the group consisting of dyes, xanthene dyes, thioxanthene dyes, naphthalene dyes, quinoline dyes, naphthalimide dyes, naphtholactam dyes, benzoanthrone dyes and coumarin dyes.
  • the second layer 2 and thus the optical laminate can have more excellent heat resistance and weather resistance as well as excellent fluorescent color development.
  • the fluorescent dye may be used alone or in combination of two or more.
  • examples of the anthraquinone dye include, for example, Arimoto Chemical Industry Co., Ltd., Last Red 8355 and the like.
  • Examples of the perylene-based pigment include Yellow 083, Orange 240, Red 305 and the like of the Lumogen F series trade name manufactured by BASF Akchen Gezel Shaft.
  • FIG. 4 an example of a spectrum having a first peak of an excitation wavelength is shown in FIG. 4, and an example of a spectrum having a second peak of a fluorescence wavelength is shown in FIG.
  • This spectrum is a fluorescence spectrum of Last Red 8355 manufactured by Arimoto Chemical Industry Co., Ltd., and has a first peak of an excitation wavelength at 548 nm (see FIG. 4) and a second peak of an excitation wavelength at 580 nm (FIG. 5).
  • the difference between the maximum intensity wavelength at the first peak and the maximum intensity wavelength at the second peak is preferably 10 nm or more and 150 nm or less, more preferably 20 nm or more and 110 nm or less, and more preferably 30 nm. It is more preferably 65 nm or less.
  • the difference between the maximum excitation wavelength (first peak) and the maximum fluorescence wavelength (second peak) in a certain fluorescent substance (fluorescent color material) is called a Stokes shift.
  • the larger the Stokes shift the smaller the overlap (self-absorption) between the absorption spectrum and the emission spectrum. As a result, concentration quenching is suppressed and the emission intensity is increased.
  • the maximum intensity of the second peak is preferably 6 or more and 28,000 or less, and more preferably 60 or more and 17,000 or less. As a result, the second layer 2 can fully exert the effect as a fluorescent design layer.
  • the half width of the second peak (emission peak) at the first maximum peak wavelength is preferably 20 nm or more and less than 150 nm, preferably 30 nm or more and less than 100 nm, and 40 nm or more and less than 80 nm. It is even more preferable to have it.
  • the half width of the second peak is within the above range because the color purity and the emission intensity are excellent.
  • the wavelength and full width at half maximum of the second peak can be calculated from the obtained emission spectrum.
  • the full width at half maximum means the wavelength width of the emission spectrum showing an emission intensity of 50% of the maximum emission intensity in the emission spectrum of the fluorescent color material.
  • the emission spectrum of the fluorescent color material is measured, for example, with respect to a 2 mmt-thick polycarbonate substrate to which the fluorescent color material is added at 1.3 wt%, the fluorescence spectrophotometer FP-8600 (JASCO Corporation). For example, it can be carried out under the condition of PMT voltage 600V.
  • the glossiness (surface glossiness) of the second layer 2 is preferably such that the 60 ° mirror glossiness Gs is 20 or more and 200 or less, and more preferably 30 or more and 150 or less.
  • the glossiness (gloss value) is measured at a measurement angle of 60 ° using a gloss meter "PG-1M” manufactured by Nippon Denshoku Industries Co., Ltd. by a method based on JIS Z8741: 1997 (mirror glossiness). It is a value measured when it is set to.
  • the optical laminate 10 can have a high texture (high-grade texture) and a better aesthetic appearance.
  • the content of the fluorescent color material in the second layer 2 is preferably 0.001 wt% or more and 5.0 wt% or less, and more preferably 0.005 wt% or more and 3.0 wt% or less.
  • the content of the fluorescent color material is 0.001 wt% or more, a sufficient amount of fluorescence can be emitted. Further, when the content of the fluorescent color material is 5.0 wt% or less, the fluorescent color material is unlikely to aggregate inside the resin, and the fluorescence luminous efficiency is sufficiently increased with the minimum necessary amount of the fluorescent color material at low cost. It is possible to reduce the burden on the environment at the time of incineration of the optical laminate. This makes it possible to obtain an optical laminate having excellent fluorescence color development.
  • the thickness of the second layer 2 is not particularly limited, but is preferably 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably 20 ⁇ m or more and 500 ⁇ m or less. As a result, the second layer 2 can sufficiently exert the effect as a fluorescent layer, and prevents cracks from occurring in the second layer 2 when the optical laminate 10 is molded into a curved surface shape. can do.
  • the second layer 2 may further contain an ultraviolet absorber in addition to the fluorescent coloring material.
  • an ultraviolet absorber in addition to the fluorescent coloring material.
  • the same ultraviolet absorbers as those mentioned in the first layer 1 above can be used.
  • the second layer 2 may contain a dye (for example, an infrared light absorber) different from the fluorescent coloring material and the ultraviolet absorber mentioned above.
  • a dye for example, an infrared light absorber
  • the dye is not particularly limited, and examples thereof include pigments and dyes, and these can be used alone or in combination.
  • pigments, dyes, etc. the same pigments, dyes, etc. as those mentioned in the first layer 1 above can be used.
  • the optical laminate 10 having the above configuration can be obtained by, for example, the following manufacturing method.
  • the method for producing the optical laminate 10 includes a base material layer forming step for forming the first layer 1 and a fluorescent layer forming step for forming the second layer 2. These steps may be carried out in sequence, and the first layer 1 and the second layer 2 may be laminated or coextruded.
  • the first layer 1 formed as a strip-shaped sheet is formed. Specifically, a molten sheet is formed by extruding a resin composition for forming the first layer 1 in a molten state or a softened state in a band shape.
  • a molten resin in which the resin composition in which the constituent materials constituting the first layer 1 are kneaded described above is in a molten state is extruded from, for example, an opening provided in the T-die to form a strip-shaped sheet.
  • a molten sheet in a molten or softened state can be continuously sent out.
  • the second layer 2 formed as a strip-shaped sheet is formed. Specifically, a molten sheet is formed by extruding a resin composition for forming the second layer 2 in a molten state or a softened state in a band shape.
  • a molten resin in which the resin composition in which the constituent materials constituting the second layer 2 are kneaded described above is in a molten state is extruded from, for example, an opening provided in the T-die to form a strip-shaped sheet.
  • a molten sheet in a molten or softened state can be continuously sent out.
  • the first layer 1 and the second layer 2 are extruded from different T dies at the same time, and the first layer 1 in the molten or softened state and the second layer 2 in the molten or softened state are laminated.
  • a molten sheet having a two-layer structure is obtained.
  • the outer peripheral surfaces of the two rolls each have a smooth roll shape. Therefore, both sides of the molten sheet are flattened by being pressed against the outer peripheral surface having smoothness.
  • the separation distance between the outer peripheral surfaces of the two rolls is set to the thickness of the optical laminate 10 to be formed, and by appropriately setting this separation distance to a predetermined size, melting of a desired thickness is performed. A sheet (optical laminate 10) can be obtained.
  • the two rolls are used for flattening both sides and for setting the thickness of the molten sheet, respectively.
  • the optical laminate 10 (melted sheet) in a molten state or a softened state, which is flattened on both sides and set to a predetermined thickness, is cooled (cooling step). As a result, the optical laminate 10 in which the first layer 1 and the second layer 2 are laminated is formed.
  • This cooling step can be performed, for example, by bringing the molten sheet into contact with a cooling roll provided with cooling means.
  • the optical laminate 10 formed into a strip-shaped sheet is formed.
  • the first layer 1 may be formed as follows. That is, a molten resin in which the resin composition for forming the first layer 1 is in a molten state is used to form granular granules, and then the granular material is used to form a sheet in a molten state.
  • the first layer 1 may be formed by cooling the molten resin after obtaining the molten resin forming the above. This also applies to the second layer 2.
  • the optical laminate 10 forming a flat plate is heated and pressed against a mold immediately after the resin is softened to form a curved surface shape.
  • a method of molding can be mentioned.
  • the method for heating the resin is not particularly limited, and examples thereof include known methods such as an infrared drying oven, a gas type hot air drying oven, and a hot air circulation type drying oven. Further, as a method of thermoforming, for example, a method such as vacuum forming, compressed air forming, press molding, free blow molding and the like can be mentioned.
  • the curved surface shape is a shape having a curved surface, and includes, for example, a shape in which the cross-sectional shape of the molded body is an arc shape.
  • the optical laminate 10 in which a part or all of the flat plate is formed into a curved surface shape.
  • FIG. 2 is a vertical sectional view showing a second embodiment of the optical laminate of the present invention.
  • the optical laminate 10A of the second embodiment will be described mainly on the differences from the optical laminate 10 of the first embodiment, and the same matters will be omitted.
  • the optical laminate 10A of the present embodiment is the same as that of the first embodiment except that it has a third layer 3 (protective layer) laminated on the second layer 2.
  • the third layer 3 is provided so as to be laminated on the second layer 2 to cover the second layer 2, thereby functioning as a hard coat layer (coating layer) for protecting the second layer 2 and having optical properties. Excellent weather resistance, durability and scratch resistance can be imparted to the laminated body 10.
  • the resin composition used to form the third layer 3 contains a silicon-modified (meth) acrylic resin and a urethane (meth) acrylate.
  • the resin composition contains a silicon-modified (meth) acrylic resin
  • the surface hardness of the third layer 3 is increased, and excellent scratch resistance can be imparted to the optical laminate 10.
  • the resin composition contains urethane (meth) acrylate, the flexibility of the third layer 3 can be improved, and the surface of the third layer 3 when the optical laminate 10 is thermoformed. It is possible to suppress the occurrence of cracks and impart excellent thermoformability to the optical laminate 10.
  • silicon-modified (meth) acrylic resin In the silicon-modified (meth) acrylic resin, a main chain in which a structural unit derived from a (meth) acrylic monomer having a (meth) acryloyl group is repeated and a structural unit linked to the main chain and having a siloxane bond are repeated. It is a polymer (prepolymer) having a repeating body.
  • the silicon-modified (meth) acrylic resin imparts transparency to the third layer 3 by having the main chain, and has a repeating body in which the structural unit having the siloxane bond is repeated. Scratch resistance is imparted to 3 layers 3.
  • the main chain of the silicon-modified (meth) acrylic resin is specifically composed of repeating structural units derived from a monomer having at least one (meth) acryloyl group of the following formulas (1) and (2). What has been done is mentioned.
  • n represents an integer of 1 or more
  • R1 independently represents a hydrocarbon group, an organic group, or a hydrogen atom
  • R0 independently represents a hydrocarbon group or a hydrogen atom.
  • m represents an integer of 1 or more
  • R2 independently represents a hydrocarbon group, an organic group, or a hydrogen atom
  • R0 independently represents a hydrocarbon group or a hydrogen atom.
  • the terminal or side chain of the main chain has a hydroxyl group (-OH). That is, in the case of the formula (1) or the formula (2), it is preferable that R1 or R2 is hydrogen.
  • the adhesion between the third layer 3 and the polycarbonate can be improved. Therefore, the adhesion of the third layer 3 to the second layer 2 is enhanced, and it is possible to prevent the second layer 2 and the third layer 3 from being unintentionally peeled off.
  • a curing agent having an isocyanate group which will be described later, is used, the hydroxyl group reacts with the isocyanate group of the curing agent to form a crosslinked structure by a urethane bond.
  • At least one end or side chain of the main chain is bound to a repeater in which structural units having a siloxane bond are repeated.
  • the silicon-modified (meth) acrylic resin has a repeating body in which the structural unit having the siloxane bond is repeated, so that the third layer 3 has better heat resistance and weather resistance. Can be obtained. Further, since the hard third layer 3 can be obtained due to the high bonding force of the siloxane bond, the scratch resistance of the optical laminate 10 to impacts such as sand dust and stepping stones can be further increased.
  • repeating body in which the structural unit having a siloxane bond is repeated include those composed of repeating the structural unit having at least one of the following formulas (3) and (4). Be done.
  • X 1 represents a hydrocarbon group or a hydroxyl group.
  • X 2 represents a hydrocarbon group or a hydroxyl group
  • X 3 represents a divalent group in which hydrogen is removed from the hydrocarbon group or the hydroxyl group.
  • repeating body in which the structural unit having the siloxane bond is repeated include those having polyorganosiloxane and those having silsesquioxane.
  • the structure of silsesquioxane may be any structure such as a random structure, a cage structure, and a ladder structure (ladder type structure).
  • hydrocarbon group examples include an alkyl group such as a methyl group, an ethyl group, a propyl group and an isopropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group and a naphthyl group, and 2 -An aryl group such as a methylphenyl group, an aralkyl group such as a benzyl group, a diphenylmethyl group and a naphthylmethyl group, a phenyl group, a biphenyl group and the like can be mentioned.
  • alkyl group such as a methyl group, an ethyl group, a propyl group and an isopropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl
  • an unsaturated double bond is introduced into the terminal or side chain of the repeating body in which the structural unit having a siloxane bond is repeated.
  • the silicon-modified (meth) acrylic resin and the urethane (meth) acrylate are more uniformly dispersed, and as a result, the third layer 3 more uniformly expresses the above-mentioned characteristics throughout. be able to.
  • the content of the silicon-modified (meth) acrylic resin in the resin composition is not particularly limited, but is preferably 5% by weight or more and 45% by weight or less, and 11% by weight or more and 28% by weight or less. Is more preferable.
  • the content of the silicon-modified (meth) acrylic resin in the resin composition is less than the lower limit, the hardness of the third layer 3 obtained by the resin composition may decrease. Further, when the content of the silicon-modified (meth) acrylic resin in the resin composition exceeds the upper limit value, the content of the material other than the silicon-modified (meth) acrylic resin in the resin composition is relatively high. This may decrease, and the flexibility of the third layer 3 formed by using the resin composition may decrease.
  • the urethane (meth) acrylate is a compound having a main chain having a urethane bond (-OCONH-) and a (meth) acryloyl group linked to the main chain.
  • the urethane (meth) acrylate is a monomer or an oligomer.
  • This urethane (meth) acrylate is a compound with excellent flexibility because it has a urethane bond. Therefore, when the third layer 3 contains urethane (meth) acrylate, further flexibility (flexibility) can be imparted to the third layer 3.
  • the number of (meth) acryloyl groups in one molecule of the urethane (meth) acrylate is preferably two or more.
  • the urethane (meth) acrylate When the number of (meth) acryloyl groups in one molecule of the urethane (meth) acrylate is two or more, the urethane (meth) acrylate can be bonded to the silicon-modified (meth) acrylic resin to form a network. , The curing of the third layer 3 can be promoted. As a result, the crosslink density of the third layer 3 is increased, and the hardness of the third layer 3 can be increased to some extent. Therefore, the properties such as scratch resistance and solvent resistance of the third layer 3 can be improved.
  • the urethane (meth) acrylate can be obtained as a reaction product of an isocyanate compound obtained by reacting a polyol with a diisocyanate and a (meth) acrylate monomer having a hydroxyl group.
  • polyol examples include polyether polyols, polyester polyols, and polycarbonate diols.
  • the polyether polyol is a polyethylene oxide, polypropylene oxide, or ethylene oxide-propylene oxide random copolymer, preferably having a number average molecular weight of less than 1300.
  • a polyether polyol having a number average molecular weight of 1300 or more is used, the flexibility of the third layer 3 is too high, and there is a risk that the third layer 3 is easily scratched by the impact of sand dust or stepping stones. be.
  • the polyester polyol can be obtained, for example, by subjecting a diol to a dicarboxylic acid or a dicarboxylic acid chloride in a polycondensation reaction, or by esterifying a diol or a dicarboxylic acid and causing a transesterification reaction.
  • Dicarboxylic acids include adipic acid, succinic acid, glutaric acid, pimelli acid, sebacic acid, azelaic acid, maleic acid, terephthalic acid, isophthalic acid, phthalic acid, etc.
  • diols include ethylene glycol, 1,4-butanediol, 1. , 6-Hexenediol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol, tripropylene glycol, tetrapropylene glycol and the like are used.
  • polycarbonate diol examples include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, and dipropylene glycol.
  • 2-Ethyl-1,3-hexanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanediol, polyoxyethylene glycol, etc. are used, and even one kind is 2 Seeds or more may be used together.
  • acrylate monomer having a hydroxyl group examples include trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, and 3-hydroxybutyl acrylate. , Polyethylene glycol monoacrylate.
  • the weight average molecular weight of the urethane (meth) acrylate is not particularly limited , but is preferably 1.0 ⁇ 10 3 or more and 2.0 ⁇ 10 3 or less, and 1.1 ⁇ 10 3 or more and 1.5 ⁇ and more preferably 10 3 or less.
  • the weight average molecular weight of the urethane (meth) acrylate is within the above range, the balance between the flexibility and hardness of the third layer 3 becomes good, and when the optical laminate 10 is molded into a curved surface shape. However, it is possible to suppress the occurrence of cracks in the bent portion.
  • the weight average molecular weight of the urethane (meth) acrylate can be measured by, for example, GPC (gel permeation chromatography).
  • the content of the urethane (meth) acrylate in the resin composition is not particularly limited, but is preferably 10% or more and 75% or less, and more preferably 17% or more and 50% or less.
  • the flexibility of the third layer 3 may be poor. Further, when the content of the urethane (meth) acrylate in the resin composition exceeds the upper limit value, the content of the material other than the urethane (meth) acrylate in the resin composition is relatively reduced, and the optics The scratch resistance of the sex laminate 10 may decrease.
  • the resin composition preferably further contains an acrylate monomer.
  • the adhesion between the second layer 2 and the third layer 3 is improved, and the third layer 3 is less likely to be peeled from the second layer 2 during thermal bending.
  • the acrylate monomer also functions as a reactive diluent, the viscosity of the resin composition can be reduced.
  • the acrylate monomer is not particularly limited, but for example, pentaerythritol tetraacrylate, ditrimethylolpropantriacrylate, trimethylolpropantriacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, ethoxylated trimethylolpropantriacrylate, ethoxy.
  • an aromatic-free resin from the viewpoint of improving the weather resistance of the optical laminate 10, it is preferable to use an aromatic-free resin.
  • the content of the acrylate monomer in the resin composition is not particularly limited, but is preferably 15% or more and 55% or less, and more preferably 27% or more and 55% or less.
  • the content of the acrylate monomer in the resin composition is less than the lower limit, the adhesion between the second layer 2 and the third layer 3 is insufficient, and the third layer 3 is peeled from the second layer 2 during thermal bending. It will be easier to do. Further, the crosslink density of the third layer 3 may decrease, and the scratch resistance of the optical laminate 10 may decrease. Further, when the content of the acrylate monomer in the resin composition exceeds the upper limit value, the third layer 3 may not be stretched and may be cracked at the time of thermal bending.
  • the resin composition preferably further contains isocyanate as a cross-linking agent for bonding (cross-linking) silicon-modified (meth) acrylate between molecules.
  • isocyanate as a cross-linking agent, the hydroxyl group of the silicon-modified (meth) acrylate reacts with the isocyanate group of the isocyanate to form a cross-linked structure composed of urethane bonds. Thereby, the scratch resistance of the resin composition can be improved.
  • the isocyanate is not particularly limited, and examples thereof include polyisocyanates having two or more isocyanate groups, and more preferably, it also contains a polyfunctional isocyanate having three or more isocyanate groups, and further, scratch resistance. Can be improved.
  • the content of the isocyanate in the resin composition is not particularly limited, but is preferably 3% or more and 40% or less, and more preferably 10% or more and 25% or less.
  • the scratch resistance of the third layer 3 may decrease. Further, when the content of the isocyanate in the resin composition exceeds the upper limit value, an unreacted product of isocyanate remains in the coating film as an impurity, so that the coating film has scratch resistance and durability (adhesion of the coating film). ) May decrease.
  • the resin composition may contain an ultraviolet absorber.
  • the ultraviolet absorber is not particularly limited, and examples thereof include triazine-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers, and one or two of these can be used in combination.
  • a triazine-based ultraviolet absorber is particularly preferably used, and among the triazine-based ultraviolet absorbers, a hydroxyphenyl triazine-based ultraviolet absorber is more preferable.
  • deterioration of the third layer 3 due to ultraviolet rays can be more reliably prevented or suppressed, and the weather resistance of the optical laminate 10 can be further increased.
  • the content of the ultraviolet absorber in the resin composition is not particularly limited, but is preferably 0.1 part by weight or more and 20 parts by weight or less, and is preferably 1 part by weight or more and 10 parts by weight or less. Is more preferable. If the content of the ultraviolet absorber in the resin composition is less than the lower limit, the weather resistance of the third layer 3 may decrease. Further, even if the content of the ultraviolet absorber in the resin composition exceeds the upper limit value, no further improvement in weather resistance is observed, and the transparency of the third layer 3 and the transparency of the third layer 3 and the third layer 3 The adhesion to the second layer 2 may be impaired.
  • the resin composition may contain a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited, but includes benzoin or benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether, aromatic ketones such as benzophenone and benzoyl benzoic acid, and benzyl.
  • the content of the photopolymerization initiator in the resin composition is not particularly limited, but is preferably 0.5 parts by weight or more and 15 parts by weight or less, and is preferably 1 part by weight or more and 10 parts by weight or less. It is more preferable to have it. If the content of the photopolymerization initiator in the resin composition is less than the lower limit, it may be difficult to sufficiently cure the resin composition. Further, even if the content of the photopolymerization initiator in the resin composition exceeds the upper limit value, no further improvement is observed.
  • the resin composition may contain other materials other than the above-mentioned materials.
  • other materials include resin materials other than the silicon-modified (meth) acrylic resin, colorants, sensitizers, stabilizers, surfactants, antioxidants, antioxidants, antistatic agents, and surface conditioners. And a solvent and the like.
  • the solvent examples include aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, propanol and butanol, methyl ethyl ketone, 2-pentanone, isophorone and diisobutyl ketone.
  • aliphatic hydrocarbons such as hexane, heptane and cyclohexane
  • aromatic hydrocarbons such as toluene and xylene
  • alcohols such as methanol, ethanol, propanol and butanol, methyl ethyl ketone, 2-pentanone, isophorone and diisobutyl ketone.
  • esters such as ketone, ethyl acetate, butyl acetate, isobutyl acetate and methoxypropyl acetate
  • cellosolve solvents such as ethyl cellosolve
  • glycol solvents such as methoxypropanol, ethoxypropanol and methoxybutanol.
  • alcohol-based, cellosolve-based, and glycol-based materials may react with isocyanates in the resin composition, and therefore it is desirable not to use them alone. It is more preferable to use a hydrocarbon-based solvent, a ketone-based solvent, or an ester-based solvent as the main component of the solvent.
  • the thickness of the third layer 3 is not particularly limited, but is preferably 1 ⁇ m or more and 40 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less, and further preferably 3 ⁇ m or more and 20 ⁇ m or less. If the thickness of the third layer 3 is less than the lower limit, the weather resistance of the optical laminate 10 may decrease. On the other hand, if the thickness of the third layer 3 exceeds the upper limit value, cracks may occur at the bent portion when the optical laminate 10 is formed into a curved surface shape.
  • FIG. 3 is a vertical sectional view showing a third embodiment of the optical laminate of the present invention.
  • the optical laminate 10B of the third embodiment will be described mainly on the differences from the optical laminate 10 of the first embodiment, and the same matters will be omitted.
  • the optical laminate 10B has a first layer 1, a second layer 2, and an ultraviolet absorbing layer 5 that absorbs ultraviolet rays, and these are laminated in order from the lower side. Yes (see Figure 3).
  • the ultraviolet absorbing layer 5 contains a resin material having translucency as a main agent and an ultraviolet absorber that is dissolved and dispersed in the resin material and absorbs ultraviolet rays, thereby transmitting ultraviolet rays and visible light. It has a function of allowing and suppressing or preventing the transmission of ultraviolet rays.
  • the resin material contained in the ultraviolet absorbing layer 5 is contained as a main agent of each layer and is for molding each layer into a substrate shape.
  • acrylic resin polystyrene resin, polyethylene resin, polypropylene resin.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonates, vinyl chloride resins, polyacetal resins, etc., and one or more of these may be used in combination.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polycarbonates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)
  • vinyl chloride resins polyacetal resins, etc.
  • the ultraviolet absorber contained in the ultraviolet absorbing layer 5 absorbs light having a wavelength of 100 nm or more and 400 nm or less in the present embodiment, similarly to the ultraviolet absorber which may be contained in the first layer 1 of the first embodiment. It is preferable that the light absorber is contained. Further, as the ultraviolet absorber, the same one as described as the ultraviolet absorber that may be contained in the first layer 1 in the first embodiment can be used.
  • the optical laminate 10B of the present embodiment may also have the third layer 3 (protective layer) laminated on the second layer 2 as shown in the second embodiment.
  • the optical laminate of the present invention as described above is used as a cover member for covering the light receiving / receiving portion of the infrared sensor.
  • the optical laminate is applied to a cover member for covering various sensors and cameras provided in a moving body such as an automobile or a two-wheeled vehicle, and for example, a cover member included in a brake lamp or a hazard lamp provided in the moving body. It can be applied to a spoiler provided on a moving body, a lens material (cover member) provided on a surveillance camera, and the like. Further, the optical laminate can be applied to a lens material (cover member) such as eyeglasses and sunglasses.
  • the optical laminate of the present invention is applied to a cover member covering various sensors, as described above, in addition to application to various sensors (built-in sensors, etc.) provided in a moving body such as an automobile.
  • various sensors built-in sensors, etc.
  • it may be applied to a sensor (built-in sensor, etc.) provided in an automatic ticket vending machine, a vending machine, etc. installed outdoors.
  • the moving body of the present invention is characterized by including an optical laminate as described above.
  • the moving body of the present invention is provided with the above-mentioned optical laminate as a cover member for covering the light emitting / receiving portion of the infrared sensor, so that the design compatibility with the exterior of the sensor unit can be improved and the design width can be widened. The spread design can be further improved.
  • the moving body (moving body of the present invention) provided with the optical laminate of the present invention as a cover member includes automobiles, two-wheeled vehicles (motorcycles, bicycles), ships, railroad vehicles, airplanes, buses, forklifts, construction sites, etc. It may be a work vehicle, a golf cart, an unmanned transport vehicle, a drone, etc., which perform a predetermined work in the above.
  • optical laminate and the moving body of the present invention have been described above, but the present invention is not limited thereto.
  • each configuration can be replaced with an arbitrary configuration capable of exhibiting the same function, or an arbitrary configuration can be added.
  • an optical laminate having improved design compatibility with the exterior of the sensor unit.
  • Such an optical laminate can be widely used as a cover member for covering the light receiving / receiving portion of the infrared sensor. Therefore, the present invention has industrial applicability.
  • the first layer forming material and the second layer forming material are stored in different extruders, melted, coextruded from a T die, and the first layer and the second layer are laminated. I got the wood. Then, the sheet material was cooled and molded, and cut into a rectangular shape having an average thickness of 2.0 mm and a plan view of 100 mm ⁇ 200 mm to prepare an optical laminate.
  • the average transmittance of light having a wavelength range of 300 nm to 700 nm in the first layer of the obtained optical laminate is 1% or less, and the average transmittance of light having a wavelength range of 800 nm to 1100 nm is 89%.
  • the average transmittance of light having a wavelength range of 1300 nm to 1600 nm was 87%.
  • the thickness (total thickness) of the optical laminate was 2 mm.
  • the thickness of the second layer of the obtained optical laminate was 40 ⁇ m.
  • the excitation wavelength of the first peak of the excitation light is 550 nm
  • the fluorescence wavelength of the second peak of the emitted light is 590 nm
  • the maximum intensity of the second peak is 1570
  • the average wavelength is close to 905 nm.
  • the average transmittance of infrared light was 89%
  • the average transmittance of near-infrared light having an average wavelength of 1550 nm was 87%.
  • Example 2 An optical laminate of Example 2 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
  • Example 3 An optical laminate of Example 3 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
  • Example 4 An optical laminate of Example 4 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
  • Comparative Example 1 An optical laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
  • Comparative Example 2 An optical laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

This optical multilayer body is provided with: a first layer that contains a polycarbonate, which serves as a base material, and a visible light absorbent, which absorbs visible light; and a second layer that is superposed on the first layer, while containing a polycarbonate, which serves as a base material, and a fluorescent colorant. The fluorescent colorant is configured so as to emit emission light that has a second peak of the intensity of fluorescence wavelength within the wavelength range of from 380 nm to 780 nm by being excited by excitation light that has a first peak of the intensity of excitation wavelength within the wavelength range of from 200 nm to 780 nm. Consequently, the present invention is able to provide: an optical multilayer body which has improved design compatibility with a sensor unit outer package; and a moving body which has improved designability.

Description

光学性積層体および移動体Optical laminates and moving bodies
 本発明は、光学性積層体および移動体に関する。 The present invention relates to an optical laminate and a moving body.
 一般に、透過性を有する樹脂材料を主剤(主材料)とする樹脂組成物を用いて成形された成形体は、軽量で成形性に優れ、特に、ポリカーボネートを主材料とする成形体は、透明性も良好で、ガラス製品に比べて耐衝撃性に優れている。そのため、このような成形体は、各種ランプレンズ、窓材、計器類のカバーや風防板等に多用されている。 In general, a molded product molded using a resin composition containing a permeable resin material as a main material (main material) is lightweight and has excellent moldability, and in particular, a molded product using polycarbonate as a main material is transparent. It is also good and has excellent impact resistance compared to glass products. Therefore, such molded bodies are often used for various lamp lenses, window materials, covers for instruments, windshields, and the like.
 近年、このような成形体を、自動車または2輪車のような移動体において、各種センサーやカメラをカバーするカバー部材に適用する場合、近赤外領域のような特定波長領域の波長を有する光を選択的に透過させることを目的に、特定波長領域の波長を有する光の透過を許容し、他の特定波長領域の波長を有する光の透過を低減させることができる光吸収特性を有する光吸収剤が添加された光学性積層体(成形体)が提案されている(例えば、特許文献1参照)。 In recent years, when such a molded body is applied to a cover member covering various sensors and cameras in a moving body such as an automobile or a two-wheeled vehicle, light having a wavelength in a specific wavelength region such as the near infrared region is applied. Light absorption having a light absorption characteristic that allows the transmission of light having a wavelength in a specific wavelength region and reduces the transmission of light having a wavelength in another specific wavelength region for the purpose of selectively transmitting the light. An optical laminate (molded body) to which an agent is added has been proposed (see, for example, Patent Document 1).
 しかしながら、上述したような、光吸収剤が添加された光学性積層体は主として黒色を呈し、反射メカニズムを用いた光学性積層体は金属光沢調の色調に限られている。このような光学性積層体をセンサーやカメラのカバー材として用いる場合、このカバー材は、センサーやカメラの外装との意匠適合性が不足していた。その結果、センサーやカメラの意匠性の向上が困難であった。 However, as described above, the optical laminate to which the light absorber is added mainly exhibits black color, and the optical laminate using the reflection mechanism is limited to a metallic luster color tone. When such an optical laminate is used as a cover material for a sensor or a camera, the cover material lacks design compatibility with the exterior of the sensor or the camera. As a result, it was difficult to improve the design of the sensor and camera.
特開2013-227562号公報Japanese Unexamined Patent Publication No. 2013-227562
 本発明の目的は、センサユニット外装との意匠適合性を向上させた光学性積層体および意匠性を向上させた移動体を提供することにある。 An object of the present invention is to provide an optical laminate with improved design compatibility with the exterior of a sensor unit and a moving body with improved design.
 このような目的は、下記(1)~(7)に記載の本発明により達成される。
 (1) 主剤としてのポリカーボネートと、可視光を吸収する可視光吸収剤と、を含む第1層と、
 前記第1層に積層され、主剤としてのポリカーボネートと、蛍光色材と、を含む第2層と、を備え、
 前記蛍光色材は、200nm以上780nm以下の波長域に励起波長の強度の第1ピークを有する励起光で励起されて、380nm以上780nm以下の波長域に蛍光波長の強度の第2ピークを有する発光光を発光するように構成されていることを特徴とする光学性積層体。
Such an object is achieved by the present invention described in the following (1) to (7).
(1) A first layer containing polycarbonate as a main agent and a visible light absorber that absorbs visible light.
A second layer laminated on the first layer and containing a polycarbonate as a main agent and a fluorescent coloring material is provided.
The fluorescent color material is excited by excitation light having a first peak of excitation wavelength intensity in a wavelength region of 200 nm or more and 780 nm or less, and emits light having a second peak of fluorescence wavelength intensity in a wavelength region of 380 nm or more and 780 nm or less. An optical laminate characterized by being configured to emit light.
 (2) 前記蛍光色材は、アントラキノン系色素、ペリレン系色素、キノリン系色素、複素環系色素、ベンゾオキサゾール誘導体およびナフタレン系色素からなる群より選択される少なくとも1つである上記(1)に記載の光学性積層体。 (2) The fluorescent coloring material is at least one selected from the group consisting of anthraquinone dyes, perylene dyes, quinoline dyes, heterocyclic dyes, benzoxazole derivatives and naphthalene dyes in (1) above. The optical laminate according to the description.
 (3) 前記第2層中における前記蛍光色材の含有量は、0.001wt%以上5.0wt%以下である上記(1)または(2)に記載の光学性積層体。 (3) The optical laminate according to (1) or (2) above, wherein the content of the fluorescent color material in the second layer is 0.001 wt% or more and 5.0 wt% or less.
 (4) 前記蛍光色材において、前記第1ピークにおける最大強度の波長と、前記第2ピークにおける最大強度の波長との差が10nm以上150nm以下である上記(1)ないし(3)のいずれかに記載の光学性積層体。 (4) In the fluorescent color material, any one of (1) to (3) above, wherein the difference between the maximum intensity wavelength at the first peak and the maximum intensity wavelength at the second peak is 10 nm or more and 150 nm or less. The optical laminate according to.
 (5) 前記第1層は、850nm以上1100nm以下ないしは1300nm以上1600nm以下の波長域の光の透過率が85%以上95%以下である上記(1)ないし(4)のいずれかに記載の光学性積層体。 (5) The optics according to any one of (1) to (4) above, wherein the first layer has a light transmittance of 85% or more and 95% or less in a wavelength range of 850 nm or more and 1100 nm or less or 1300 nm or more and 1600 nm or less. Sex laminate.
 (6) 赤外線センサーの受発光部を覆うカバー部材として用いられるように構成されている上記(1)ないし(5)のいずれかに記載の光学性積層体。
 (7) 上記(6)に記載の光学性積層体を備えることを特徴とする移動体。
(6) The optical laminate according to any one of (1) to (5) above, which is configured to be used as a cover member for covering a light emitting / receiving portion of an infrared sensor.
(7) A moving body including the optical laminate according to (6) above.
 本発明によれば、センサユニット外装との意匠適合性を向上させた光学性積層体および意匠性を向上させた移動体を提供することができる。 According to the present invention, it is possible to provide an optical laminate with improved design compatibility with the exterior of the sensor unit and a moving body with improved design.
図1は、本発明の光学性積層体の第1実施形態を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a first embodiment of the optical laminate of the present invention. 図2は、本発明の光学性積層体の第2実施形態を示す縦断面図である。FIG. 2 is a vertical sectional view showing a second embodiment of the optical laminate of the present invention. 図3は、本発明の光学性積層体の第3実施形態を示す縦断面図である。FIG. 3 is a vertical sectional view showing a third embodiment of the optical laminate of the present invention. 図4は、励起波長の第1ピークを有するスペクトルの一例を示す図である。FIG. 4 is a diagram showing an example of a spectrum having a first peak of an excitation wavelength. 図5は、蛍光波長の第2ピークを有するスペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of a spectrum having a second peak of the fluorescence wavelength.
 以下、本発明の光学性積層体および移動体を添付図面に示す好適な実施形態に基づいて詳細に説明する。 Hereinafter, the optical laminate and the moving body of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
≪第1実施形態≫
[光学性積層体]
 以下では、まず、本発明の光学性積層体の第1実施形態について説明する。
 図1は、本発明の光学性積層体の第1実施形態を示す縦断面図である。なお、以下では、説明の都合上、図1の上側を「上」、下側を「下」と言う。
<< First Embodiment >>
[Optical laminate]
Hereinafter, first, the first embodiment of the optical laminate of the present invention will be described.
FIG. 1 is a vertical cross-sectional view showing a first embodiment of the optical laminate of the present invention. In the following, for convenience of explanation, the upper side of FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
 光学性積層体10(光学性フィルム)は、赤外線センサーの受発光部を覆うカバー部材等に適用される。光学性積層体10は、本実施形態では、図1に示すように、第1層1(基材層)と、第1層1に積層され、蛍光光を発光する第2層2(蛍光層)とを有している。 The optical laminate 10 (optical film) is applied to a cover member or the like that covers a light emitting / receiving portion of an infrared sensor. In the present embodiment, the optical laminate 10 is laminated on the first layer 1 (base material layer) and the first layer 1 and emits fluorescent light, as shown in FIG. 1, the second layer 2 (fluorescent layer). ) And.
 なお、光学性積層体10をカバー部材に適用した際には、第2層2が外側を臨む側、第1層1がカバーすべき対象物側となるように、光学性積層体10が設置される。これにより、第2層2に、第1層1を保護する保護層としての機能を付与することができる。 When the optical laminate 10 is applied to the cover member, the optical laminate 10 is installed so that the second layer 2 faces the outside and the first layer 1 is the object side to be covered. Will be done. As a result, the second layer 2 can be provided with a function as a protective layer that protects the first layer 1.
 本発明の光学性積層体は、主剤としてのポリカーボネートと、可視光を吸収する可視光吸収剤と、を含む第1層(基材層)と、第1層に積層され、主剤としてのポリカーボネートと、蛍光色材と、を含む第2層(蛍光層)と、を備え、蛍光色材は、200nm以上780nm以下(紫外光~可視光)の波長域に励起波長の強度の第1ピークを有する励起光で励起されて、380nm以上780nm以下(可視光)の波長域に蛍光波長の強度の第2ピークを有する発光光を発光するように構成されていることを特徴とする。 The optical laminate of the present invention has a first layer (base material layer) containing a polycarbonate as a main agent and a visible light absorber that absorbs visible light, and a polycarbonate as a main agent that is laminated on the first layer. The fluorescent color material includes a second layer (fluorescent layer) including the fluorescent color material, and the fluorescent color material has a first peak of the intensity of the excitation wavelength in the wavelength range of 200 nm or more and 780 nm or less (ultraviolet light to visible light). It is characterized in that it is excited by the excitation light and is configured to emit emitted light having a second peak of the intensity of the fluorescence wavelength in the wavelength range of 380 nm or more and 780 nm or less (visible light).
 本発明の光学性積層体は、蛍光色材を含む第2層(蛍光層)を備えることで、蛍光光を発することができる。これにより、光学性積層体は、センサユニット外装との意匠適合性を向上させることができる。 The optical laminate of the present invention can emit fluorescent light by providing a second layer (fluorescent layer) containing a fluorescent coloring material. As a result, the optical laminate can improve the design compatibility with the exterior of the sensor unit.
<第1層>
 第1層は、主剤としてのポリカーボネートと、可視光を吸収する可視光吸収剤と、を含む。
<First layer>
The first layer contains polycarbonate as a main agent and a visible light absorber that absorbs visible light.
 ここで、本明細書において、「紫外光~可視光」とは、波長200nm以上780nm以下の電磁波のことを言う。 Here, in the present specification, "ultraviolet light to visible light" refers to an electromagnetic wave having a wavelength of 200 nm or more and 780 nm or less.
 第1層(基材層)1は、透光性を有する主剤(主材料)としてのポリカーボネートと、このポリカーボネート中に溶解・分散され、可視光を吸収する可視光吸収剤とを含む樹脂組成物を用いて層状に成形された成形体である。樹脂組成物中に可視光吸収剤を含有することで、特定の波長領域における可視光の透過を的確に抑制または防止することができる。これにより、第1層1は、所望の波長領域を有する光の透過を許容する機能を有することができる。 The first layer (base material layer) 1 is a resin composition containing polycarbonate as a main agent (main material) having translucency and a visible light absorber that is dissolved and dispersed in the polycarbonate and absorbs visible light. It is a molded body molded into a layer using. By containing a visible light absorber in the resin composition, it is possible to accurately suppress or prevent the transmission of visible light in a specific wavelength region. As a result, the first layer 1 can have a function of allowing the transmission of light having a desired wavelength region.
 かかる第1層1を光学性積層体10が備えることにより、光学性積層体10は、特定の波長領域における光を遮断する光遮断性を発揮することで、所望の波長領域を有する光が透過する光透過性を発揮する。したがって、この光学性積層体10を、所望の色調を有する光の透過を許容するカバー部材として用いることができる。 When the optical laminate 10 includes the first layer 1, the optical laminate 10 exhibits a light blocking property that blocks light in a specific wavelength region, so that light having a desired wavelength region is transmitted. Demonstrate light transmission. Therefore, the optical laminate 10 can be used as a cover member that allows the transmission of light having a desired color tone.
(ポリカーボネート)
 ポリカーボネート(ポリカーボネート系樹脂)は、第1層1の主剤(ベース樹脂)として含まれ、第1層1を基板状に成型するために用いられる。
(Polycarbonate)
Polycarbonate (polycarbonate-based resin) is contained as a main agent (base resin) of the first layer 1, and is used for molding the first layer 1 into a substrate shape.
 このポリカーボネートは、透明性(透光性)や剛性、耐衝撃性等の機械的強度に富む。このため、第1層1の主剤としてポリカーボネートを用いることで、光学性積層体10は、優れた透明性や機械的強度を有することができる。また、ポリカーボネートは、その比重が1.2程度であり、公知の樹脂材料のなかでも軽いものに分類されることから、光学性積層体10の軽量化を図ることができる。 This polycarbonate is rich in mechanical strength such as transparency (translucency), rigidity, and impact resistance. Therefore, by using polycarbonate as the main agent of the first layer 1, the optical laminate 10 can have excellent transparency and mechanical strength. Further, since polycarbonate has a specific gravity of about 1.2 and is classified as a light one among known resin materials, the weight of the optical laminate 10 can be reduced.
 このポリカーボネートとしては、各種のポリカーボネートを用いることができ、例えば、ビスフェノール型ポリカーボネートの他、植物由来のイソソルバイドを主剤として生成されたイソソルバイド由来ポリカーボネート等が挙げられるが、中でも、ビスフェノール型ポリカーボネートであることが好ましい。ビスフェノール型ポリカーボネートは、その主鎖にベンゼン環を備えており、これにより、光学性積層体10は、より優れた強度を有することができる。 As this polycarbonate, various types of polycarbonate can be used, and examples thereof include bisphenol-type polycarbonate and isosorbide-derived polycarbonate produced using plant-derived isosorbide as a main component. Among them, bisphenol-type polycarbonate can be used. preferable. The bisphenol type polycarbonate has a benzene ring in its main chain, whereby the optical laminate 10 can have a higher strength.
 このビスフェノール型ポリカーボネートは、例えば、ビスフェノールとホスゲンとの界面重縮合反応、ビスフェノールとジフェニルカーボネートとのエステル交換反応等により合成される。 This bisphenol type polycarbonate is synthesized by, for example, an interfacial polycondensation reaction between bisphenol and phosgene, a transesterification reaction between bisphenol and diphenyl carbonate, and the like.
 ビスフェノールとしては、例えば、ビスフェノールAや、下記式(A)に示すポリカーボネートの繰り返し単位の起源となるビスフェノール(変性ビスフェノール)等が挙げられる。 Examples of bisphenol include bisphenol A and bisphenol (modified bisphenol) which is the origin of the repeating unit of polycarbonate represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000001
(式(A)中、Xは、炭素数1~18のアルキル基、芳香族基または環状脂肪族基であり、RaおよびRbは、それぞれ独立して、炭素数1~12のアルキル基であり、mおよびnは、それぞれ0~4の整数であり、pは、繰り返し単位の数である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula (A), X is an alkyl group having 1 to 18 carbon atoms, an aromatic group or a cyclic aliphatic group, and Ra and Rb are independently alkyl groups having 1 to 12 carbon atoms. , M and n are integers from 0 to 4, respectively, and p is the number of repeating units.)
 なお、前記式(A)に示すポリカーボネートの繰り返し単位の起源となるビスフェノールとしては、具体的には、例えば4,4’-(ペンタン-2,2-ジイル)ジフェノール、4,4’-(ペンタン-3,3-ジイル)ジフェノール、4,4’-(ブタン-2,2-ジイル)ジフェノール、1,1’-(シクロヘキサンジイル)ジフェノール、2-シクロヘキシル-1,4-ビス(4-ヒドロキシフェニル)ベンゼン、2,3-ビスシクロヘキシル-1,4-ビス(4-ヒドロキシフェニル)ベンゼン、1,1’-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、2,2’-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Specific examples of the bisphenol that is the origin of the repeating unit of the polycarbonate represented by the formula (A) include 4,4'-(pentane-2,2-diyl) diphenol and 4,4'-(. Pentan-3,3-diyl) diphenol, 4,4'-(butane-2,2-diyl) diphenol, 1,1'- (cyclohexanediyl) diphenol, 2-cyclohexyl-1,4-bis ( 4-Hydroxyphenyl) benzene, 2,3-biscyclohexyl-1,4-bis (4-hydroxyphenyl) benzene, 1,1'-bis (4-hydroxy-3-methylphenyl) cyclohexane, 2,2'- Examples thereof include bis (4-hydroxy-3-methylphenyl) propane, and one or a combination of two or more of these can be used.
 また、光学性積層体10中のポリカーボネートの含有量は、特に限定されないが、75wt%以上であるのが好ましく、85wt%以上であるのがより好ましい。ポリカーボネートの含有量を上記範囲内とすることにより、光学性積層体10は、優れた強度を発揮することができる。 The content of the polycarbonate in the optical laminate 10 is not particularly limited, but is preferably 75 wt% or more, and more preferably 85 wt% or more. By setting the content of the polycarbonate within the above range, the optical laminate 10 can exhibit excellent strength.
(可視光吸収剤)
 可視光吸収剤は、特定の波長領域における可視光の透過を抑制または防止する機能を有する。可視光吸収剤は、第1層1に溶解・分散した状態でほぼ均一に含まれることで、第1層1に、所望の波長領域を有する光の透過を許容する機能を付与することができる。
(Visible light absorber)
The visible light absorber has a function of suppressing or preventing the transmission of visible light in a specific wavelength region. By containing the visible light absorber substantially uniformly in the state of being dissolved and dispersed in the first layer 1, it is possible to impart a function of allowing the transmission of light having a desired wavelength region to the first layer 1. ..
 このような可視光吸収剤としては、特に限定されないが、例えば、波長が300nm以上550nm以下の光を吸収する第1光吸収剤、波長が450nm以上800nm以下の光を吸収する第2光吸収剤、波長が400nm以上800nm以下の光を吸収する第3光吸収剤が挙げられる。また、これらを組み合わせて用いることもでき、さらにはその含有量を適宜設定することで、第1層1に、所望の波長領域を有する光の透過を許容する機能を確実に付与することができる。したがって、光学性積層体10(カバー部材)は、所望の波長領域を有する光を透過する光透過性を発揮する。 Such a visible light absorber is not particularly limited, but for example, a first light absorber that absorbs light having a wavelength of 300 nm or more and 550 nm or less, and a second light absorber that absorbs light having a wavelength of 450 nm or more and 800 nm or less. A third light absorber that absorbs light having a wavelength of 400 nm or more and 800 nm or less can be mentioned. Further, these can be used in combination, and further, by appropriately setting the content thereof, the first layer 1 can be surely provided with a function of allowing the transmission of light having a desired wavelength region. .. Therefore, the optical laminate 10 (cover member) exhibits light transmission that transmits light having a desired wavelength region.
 第1光吸収剤は、波長が300nm以上550nm以下の光を吸収する吸収波長特性を有する。この第1光吸収剤としては、例えば、キノリン系色素が挙げられる。 The first light absorber has an absorption wavelength characteristic of absorbing light having a wavelength of 300 nm or more and 550 nm or less. Examples of the first light absorber include quinoline pigments.
 キノリン系色素としては、例えば、2-メチルキノリン、3-メチルキノリン、4-メチルキノリン、6-メチルキノリン、7-メチルキノリン、8-メチルキノリン、6-イソプロピルキノリン、2,4-ジメチルキノリン、2,6-ジメチルキノリン、4,6,8-トリメチルキノリン等のアルキル置換キノリン化合物、2-アミノキノリン、3-アミノキノリン、5-アミノキノリン、6-アミノキノリン、8-アミノキノリン、6-アミノ-2-メチルキノリン等のアミノ基置換キノリン化合物、6-メトキシ-2-メチルキノリン、6,8-ジメトキシ-4-メチルキノリン等のアルコキシ基置換キノリン化合物、6-クロロキノリン、4,7-ジクロロキノリン、3-ブロモキノリン、7-クロロ-2-メチルキノリン等のハロゲン基置換キノリン化合物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the quinoline pigment include 2-methylquinoline, 3-methylquinoline, 4-methylquinoline, 6-methylquinoline, 7-methylquinoline, 8-methylquinoline, 6-isopropylquinoline, and 2,4-dimethylquinoline. Alkyl substituted quinoline compounds such as 2,6-dimethylquinoline and 4,6,8-trimethylquinoline, 2-aminoquinoline, 3-aminoquinoline, 5-aminoquinoline, 6-aminoquinoline, 8-aminoquinoline, 6-amino Amino group substituted quinoline compounds such as -2-methylquinoline, alkoxy group substituted quinoline compounds such as 6-methoxy-2-methylquinoline, 6,8-dimethoxy-4-methylquinoline, 6-chloroquinoline, 4,7-dichloro Examples thereof include halogen group-substituted quinoline compounds such as quinoline, 3-bromoquinoline, and 7-chloro-2-methylquinoline, and one or a combination of two or more of these can be used.
 このような第1光吸収剤を可視光吸収剤として配合することにより、第1層1に入射する光のうち、波長が300nm以上550nm以下の光を第1層1において確実に吸収することができる。 By blending such a first light absorber as a visible light absorber, it is possible to reliably absorb the light having a wavelength of 300 nm or more and 550 nm or less in the first layer 1 among the light incident on the first layer 1. can.
 また、第1層1における第1光吸収剤の含有率は、特に限定されないが、0.001wt%以上10wt%以下であるのが好ましく、0.002wt%以上1.0wt%以下であることがより好ましく、0.005wt%以上0.3wt%以下であるのがさらに好ましい。第1層1中における第1光吸収剤の含有率が前記下限値未満であると、第1光吸収剤の種類によっては、第1層1の可視光(波長が300nm以上550nm以下の光)の吸収性が低下するおそれがある。また、第1層1における第1光吸収剤の含有率が前記上限値を超えても、それ以上の可視光(波長が300nm以上550nm以下の光)の吸収性の向上は見られず、第1層1の第2層2に対する密着性を損ねるおそれがある。 The content of the first light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.3 wt% or less. When the content of the first light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 300 nm or more and 550 nm or less) depending on the type of the first light absorber. Absorption may decrease. Further, even if the content of the first light absorber in the first layer 1 exceeds the upper limit value, the absorption of visible light (light having a wavelength of 300 nm or more and 550 nm or less) is not improved, and the first layer 1 is not improved. The adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
 第2光吸収剤は、波長が450nm以上800nm以下の光を吸収する吸収波長特性を有する。この第2光吸収剤としては、例えば、アントラキノン系色素が挙げられる。 The second light absorber has an absorption wavelength characteristic that absorbs light having a wavelength of 450 nm or more and 800 nm or less. Examples of the second light absorber include anthraquinone-based dyes.
 アントラキノン系色素としては、例えば、(1)2-アニリノ-1,3,4-トリフルオロアントラキノン、(2)2-(o-エトキシカルボニルアニリノ)-1,3,4-トリフルオロアントラキノン、(3)2-(p-エトキシカルボニルアニリノ)-1,3,4-トリフルオロアントラキノン、(4)2-(m-エトキシカルボニルアニリノ)-1,3,4-トリフルオロアントラキノン、(5)2-(o-シアノアニリノ)-1,3,4-トリフルオロアントラキノン、(6)2-(p-シアノアニリノ)-1,3,4-トリフルオロアントラキノン、(7)2-(m-シアノアニリノ)-1,3,4-トリフルオロアントラキノン、(8)2-(o-ニトロアニリノ)-1,3,4-トリフルオロアントラキノン、(9)2-(p-ニトロアニリノ)-1,3,4-トリフルオロアントラキノン、(10)2-(m-ニトロアニリノ)-1,3,4-トリフルオロアントラキノン、(11)2-(p-ターシャルブチルアニリノ)-1,3,4-トリフルオロアントラキノン、(12)2-(o-メトキシアニリノ)-1,3,4-トリフルオロアントラキノン、(13)2-(2,6-ジイソプロピルアニリノ)-1,3,4-トリフルオロアントラキノン、(14)2-(2,6-ジクロロアニリノ)-1,3,4-トリフルオロアントラキノン、(15)2-(2,6-ジフルオロアニリノ)-1,3,4-トリフルオロアントラキノン、(16)2-(3,4-ジシアノアニリノ)-1,3,4-トリフルオロアントラキノン、(17)2-(2,4,6-トリクロロアニリノ)-1,3,4-トリフルオロアントラキノン、(18)2-(2,3,5,6-テトラクロロアニリノ)-1,3,4-トリフルオロアントラキノン、(19)2-(2,3,5,6-テトラフルオロアニリノ)-1,3,4-トリフルオロアントラキノン、(20)3-(2,3,4,5-テトラフルオロアニリノ)-2-ブトキシ-1,4-ジフルオロアントラキノン、(21)3-(4-シアノ-3-クロロアニリノ)-2-オクチルオキシ-1,4-ジフルオロアントラキノン、(22)3-(3,4-ジシアノアニリノ)-2-ヘキシルオキシ-1,4-ジフルオロアントラキノン、(23)3-(4-シアノ-3-クロロアニリノ)-1,2-ジブトキシ-4-フルオロアントラキノン、(24)3-(p-シアノアニリノ)-2-フェノキシ-1,4-ジフルオロアントラキノン、(25)3-(p-シアノアニリノ)-2-(2,6-ジエチルフェノキシ)-1,4-ジフルオロアントラキノン、(26)3-(2,6-ジクロロアニリノ)-2-(2,6-ジクロロフェノキシ)-1,4-ジフルオロアントラキノン、(27)3-(2,3,5,6-テトラクロロアニリノ)-2-(2,6-ジメトキシフェノキシ)-1,4-ジフルオロアントラキノン、(28)2,3-ジアニリノ-1,4-ジフルオロアントラキノン、(29)2,3-ビス(p-ターシャルブチルアニリノ)-1,4-ジフルオロアントラキノン、(30)2,3-ビス(p-メトキシアニリノ)-1,4-ジフルオロアントラキノン、(31)2,3-ビス(2-メトキシ-6-メチルアニリノ)-1,4-ジフルオロアントラキノン、(32)2,3-ビス(2,6-ジイソプロピルアニリノ)-1,4-ジフルオロアントラキノン、(33)2,3-ビス(2,4,6-トリクロロアニリノ)-1,4-ジフルオロアントラキノン、(34)2,3-ビス(2,3,5,6-テトラクロロアニリノ)-1,4-ジフルオロアントラキノン、(35)2,3-ビス(2,3,5,6-テトラフルオロアニリノ)-1,4-ジフルオロアントラキノン、(36)2,3-ビス(p-シアノアニリノ)-1-メトキシエトキシ-4-フルオロアントラキノン、(37)2-(2,6-ジクロロアニリノ)-1,3,4-トリクロロアントラキノン、(38)2-(2,3,5,6-テトラフルオロアニリノ)-1,3,4-トリクロロアントラキノン、(39)3-(2,6-ジクロロアニリノ)-2-(2,6-ジクロロフェノキシ)-1,4-ジクロロアントラキノン、(40)2-(2,6-ジクロロアニリノ)アントラキノン、(41)2-(2,3,5,6-テトラフルオロアニリノ)アントラキノン、(42)3-(2,6-ジクロロアニリノ)-2-(2,6-ジクロロフェノキシ)アントラキノン、(43)2,3-ビス(2-メトキシ-6-メチルアニリノ)-1,4-ジクロロアントラキノン、(44)2,3-ビス(2,6-ジイソプロピルアニリノ)アントラキノン、(45)2-ブチルアミノ-1,3,4-トリフルオロアントラキノン、(46)1,4-ビス(n-ブチルアミノ)-2,3-ジフルオロアントラキノン、(47)1,4-ビス(n-オクチルアミノ)-2,3-ジフルオロアントラキノン、(48)1,4-ビス(ヒドロキシエチルアミノ)-2,3-ジフルオロアントラキノン、(49)1,4-ビス(シクロヘキシルアミノ)-2,3-ジフルオロアントラキノン、(50)1,4-ビス(シクロヘキシルアミノ)-2-オクチルオキシ-3-フルオロアントラキノン、(51)1,2,4-トリス(2,4-ジメトキシフェノキシ-3-フルオロアントラキノン、(52)2,3-ビス(フェニルチオ)-1-フェノキシ-4-フルオロアントラキノン、(53)1,2,3,4-テトラ(p-メトキシフェノキシ)-アントラキノン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the anthraquinone dye include (1) 2-anilino-1,3,4-trifluoroanthraquinone, (2) 2- (o-ethoxycarbonylanilino) -1,3,4-trifluoroanthraquinone, ( 3) 2- (p-ethoxycarbonylanilinone) -1,3,4-trifluoroanthraquinone, (4) 2- (m-ethoxycarbonylanilinone) -1,3,4-trifluoroanthraquinone, (5) 2- (o-cyanoanilinone) -1,3,4-trifluoroanthraquinone, (6) 2- (p-cyanoanilinone) -1,3,4-trifluoroanthraquinone, (7) 2- (m-cyanoanilinone)- 1,3,4-trifluoroanthraquinone, (8) 2- (o-nitroanilino) -1,3,4-trifluoroanthraquinone, (9) 2- (p-nitroanilino) -1,3,4-trifluoro Anthraquinone, (10) 2- (m-nitroanilinone) -1,3,4-trifluoroanthraquinone, (11) 2- (p-talshalbutylanilinone) -1,3,4-trifluoroanthraquinone, (12) ) 2- (o-methoxyanilino) -1,3,4-trifluoroanthraquinone, (13) 2- (2,6-diisopropylanilinone) -1,3,4-trifluoroanthraquinone, (14) 2 -(2,6-dichloroanilinone) -1,3,4-trifluoroanthraquinone, (15) 2- (2,6-difluoroanilinone) -1,3,4-trifluoroanthraquinone, (16) 2 -(3,4-Dicyanoanilinone) -1,3,4-trifluoroanthraquinone, (17) 2- (2,4,6-trichloroanilinone) -1,3,4-trifluoroanthraquinone, (18) 2 -(2,3,5,6-tetrachloroanilinone) -1,3,4-trifluoroanthraquinone, (19) 2- (2,3,5,6-tetrafluoroanilinone) -1,3, 4-Trifluoroanthraquinone, (20) 3- (2,3,4,5-tetrafluoroanilinone) -2-butoxy-1,4-difluoroanthraquinone, (21) 3- (4-cyano-3-chloroanilinone) ) -2-octyloxy-1,4-difluoroanthraquinone, (22) 3- (3,4-dicyanoanilinone) -2-hexyloxy-1,4-difluoroanthraquinone, (23) 3- (4-cyano-3) -Chloroanilino) -1,2-dibutoxy-4-fluoroanthraquinone, (24) 3- (p-si) Annoanilino) -2-phenoxy-1,4-difluoroanthraquinone, (25) 3- (p-cyanoanilino) -2- (2,6-diethylphenoxy) -1,4-difluoroanthraquinone, (26) 3- (2) , 6-Dichloroanilinone) -2- (2,6-dichlorophenoxy) -1,4-difluoroanthraquinone, (27) 3- (2,3,5,6-tetrachloroanilinone) -2- (2) , 6-Dimethoxyphenoxy) -1,4-difluoroanthraquinone, (28) 2,3-dianilino-1,4-difluoroanthraquinone, (29) 2,3-bis (p-talshalbutylanilinone) -1, 4-difluoroanthraquinone, (30) 2,3-bis (p-methoxyanilino) -1,4-difluoroanthraquinone, (31) 2,3-bis (2-methoxy-6-methylanilino) -1,4- Difluoroanthraquinone, (32) 2,3-bis (2,6-diisopropylanilinone) -1,4-difluoroanthraquinone, (33) 2,3-bis (2,4,6-trichloroanilinone) -1, 4-Difluoroanthraquinone, (34) 2,3-bis (2,3,5,6-tetrachloroanilinone) -1,4-difluoroanthraquinone, (35) 2,3-bis (2,3,5) 6-Tetrafluoroanilinone) -1,4-difluoroanthraquinone, (36) 2,3-bis (p-cyanoanilino) -1-methoxyethoxy-4-fluoroanthraquinone, (37) 2- (2,6-dichloro Anilino) -1,3,4-trichloroanthraquinone, (38) 2- (2,3,5,6-tetrafluoroanthraquinone) -1,3,4-trichloroanthraquinone, (39) 3- (2) 6-Dichloroanilinone) -2- (2,6-dichlorophenoxy) -1,4-dichloroanthraquinone, (40) 2- (2,6-dichloroanilinone) anthraquinone, (41) 2- (2,3) , 5,6-tetrafluoroanilinone) anthraquinone, (42) 3- (2,6-dichloroanilino) -2- (2,6-dichlorophenoxy) anthraquinone, (43) 2,3-bis (2-) Methoxy-6-methylanilinone) -1,4-dichloroanthraquinone, (44) 2,3-bis (2,6-diisopropylanilino) anthraquinone, (45) 2-butylamino-1,3,4-trifluoroanthraquinone , (46) 1,4-bis (n-butylamino) -2,3-difluoroanthraquinone , (47) 1,4-bis (n-octylamino) -2,3-difluoroanthraquinone, (48) 1,4-bis (hydroxyethylamino) -2,3-difluoroanthraquinone, (49) 1, 4-bis (cyclohexylamino) -2,3-difluoroanthraquinone, (50) 1,4-bis (cyclohexylamino) -2-octyloxy-3-fluoroanthraquinone, (51) 1,2,4-tris (2) , 4-Dimethoxyphenoxy-3-fluoroanthraquinone, (52) 2,3-bis (phenylthio) -1-phenoxy-4-fluoroanthraquinone, (53) 1,2,3,4-tetra (p-methoxyphenoxy) -Anthraquinone and the like can be mentioned, and one or more of these can be used in combination.
 このような第2光吸収剤を可視光吸収剤として配合することにより、第1層1に入射する光のうち、波長が450nm以上800nm以下の光を第1層1において確実に吸収することができる。 By blending such a second light absorber as a visible light absorber, it is possible to reliably absorb the light having a wavelength of 450 nm or more and 800 nm or less in the first layer 1 among the light incident on the first layer 1. can.
 また、第1層1における第2光吸収剤の含有率は、特に限定されないが、0.001wt%以上10wt%以下であるのが好ましく、0.002wt%以上1.0wt%以下であることがより好ましく、0.005wt%以上0.6wt%以下であるのがさらに好ましい。第1層1中における第2光吸収剤の含有率が前記下限値未満であると、第2光吸収剤の種類によっては、第1層1の可視光(波長が450nm以上800nm以下の光)の吸収性が低下する場合がある。また、第1層1における第2光吸収剤の含有率が前記上限値を超えても、それ以上の可視光(波長が450nm以上800nm以下の光)の吸収性の向上は見られず、第1層1の第2層2に対する密着性を損ねる場合がある。 The content of the second light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.6 wt% or less. When the content of the second light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 450 nm or more and 800 nm or less) depending on the type of the second light absorber. Absorption may decrease. Further, even if the content of the second light absorber in the first layer 1 exceeds the upper limit value, no further improvement in the absorbability of visible light (light having a wavelength of 450 nm or more and 800 nm or less) is not observed, and the second layer 1 The adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
 第3光吸収剤は、波長が400nm以上800nm以下の光を吸収する吸収波長特性を有する。この第3光吸収剤としては、例えば、ペリノン系色素が挙げられる。 The third light absorber has an absorption wavelength characteristic that absorbs light having a wavelength of 400 nm or more and 800 nm or less. Examples of the third light absorber include perinone-based dyes.
 ペリノン系色素としては、例えば、2,3-ナフタロペリノン、1,8-ナフタロペリノン、テトラブロモ-1,2-ナフタロペリノン等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of the perinone-based dye include 2,3-naphtharoperinone, 1,8-naphtharoperinone, tetrabromo-1,2-naphtharoperinone, and the like, and one or more of these can be used in combination.
 このようなペリノン系色素を配合することにより、第1層1に入射する光のうち、波長が400nm以上800nm以下の光を第1層1において確実に吸収することができる。 By blending such a perinone-based dye, among the light incident on the first layer 1, the light having a wavelength of 400 nm or more and 800 nm or less can be reliably absorbed in the first layer 1.
 また、第1層1における第3光吸収剤の含有率は、特に限定されないが、0.001wt%以上10wt%以下であるのが好ましく、0.002wt%以上1.0wt%以下であることがより好ましく、0.005wt%以上0.6wt%以下であるのがさらに好ましい。第1層1中における第3光吸収剤の含有率が前記下限値未満であると、第3光吸収剤の種類によっては、第1層1の可視光(波長が400nm以上800nm以下の光)の吸収性が低下する場合がある。また、第1層1における第3光吸収剤の含有率が前記上限値を超えても、それ以上の可視光(波長が400nm以上800nm以下の光)の吸収性の向上は見られず、第1層1の第2層2に対する密着性を損ねる場合がある。 The content of the third light absorber in the first layer 1 is not particularly limited, but is preferably 0.001 wt% or more and 10 wt% or less, and is preferably 0.002 wt% or more and 1.0 wt% or less. More preferably, it is 0.005 wt% or more and 0.6 wt% or less. When the content of the third light absorber in the first layer 1 is less than the lower limit, visible light of the first layer 1 (light having a wavelength of 400 nm or more and 800 nm or less) depending on the type of the third light absorber. Absorption may decrease. Further, even if the content of the third light absorber in the first layer 1 exceeds the upper limit value, the absorbability of visible light (light having a wavelength of 400 nm or more and 800 nm or less) is not improved, and the first layer 1 is not improved. The adhesion of the 1st layer 1 to the 2nd layer 2 may be impaired.
 また、第1層1は、可視光吸収剤の他に、さらに、紫外線吸収剤を含有することが好ましい。これにより、第1層1に含まれる樹脂材料や可視光吸収剤、ひいては光学性積層体10(カバー部材)でカバーすべき対象物が紫外線により劣化するのを的確に抑制または防止することができる。そのため、第1層1は、優れた耐候性を有することができる。 Further, it is preferable that the first layer 1 further contains an ultraviolet absorber in addition to the visible light absorber. As a result, it is possible to accurately suppress or prevent the deterioration of the resin material, the visible light absorber, and the object to be covered by the optical laminate 10 (cover member) contained in the first layer 1 due to ultraviolet rays. .. Therefore, the first layer 1 can have excellent weather resistance.
 また、第1層1における紫外線吸収剤の含有率は、本実施形態では、0.005wt%以上含有していればよいが、0.005wt%以上0.200wt%以下であるのが好ましく、0.008wt%以上0.150wt%以下であることがより好ましい。第1層1中における紫外線吸収剤の含有率が前記下限値未満であると、紫外線吸収剤の種類によっては、第1層1の紫外線の吸収性が低下する場合がある。また、第1層1における紫外線吸収剤の含有率が前記上限値を超えても、それ以上の紫外線の吸収性の向上は見られず、第1層1の第2層2に対する密着性を損ねる場合がある。 Further, the content of the ultraviolet absorber in the first layer 1 may be 0.005 wt% or more in the present embodiment, but is preferably 0.005 wt% or more and 0.200 wt% or less, and is 0. More preferably, it is .008 wt% or more and 0.150 wt% or less. If the content of the ultraviolet absorber in the first layer 1 is less than the lower limit, the absorption of ultraviolet rays in the first layer 1 may decrease depending on the type of the ultraviolet absorber. Further, even if the content of the ultraviolet absorber in the first layer 1 exceeds the upper limit value, no further improvement in the absorption of ultraviolet rays is observed, and the adhesion of the first layer 1 to the second layer 2 is impaired. In some cases.
 また、第1層1は、上述した範囲内で、紫外線吸収剤を含有することにより、第1層1に含まれる樹脂材料や可視光吸収剤、ひいては光学性積層体10(カバー部材)でカバーすべき対象物が紫外線により劣化するのをより的確に抑制または防止することができる。そのため、第1層1は、より優れた耐候性を有することができる。 Further, the first layer 1 is covered with the resin material and the visible light absorber contained in the first layer 1 by containing the ultraviolet absorber within the above-mentioned range, and by extension, the optical laminate 10 (cover member). It is possible to more accurately suppress or prevent the object to be deteriorated from being deteriorated by ultraviolet rays. Therefore, the first layer 1 can have better weather resistance.
 なお、紫外線吸収剤は、第2層2か、または、図2に示す構成である場合、第3層3か、または、図3に示す構成である場合、紫外線吸収層5に含まれているのが好ましい。これにより、蛍光色材が紫外線により劣化するのを的確に抑制または防止することができる。その結果、本発明の効果を長期にわたって安定的に発揮することができる。 The ultraviolet absorber is contained in the second layer 2, or the third layer 3 in the case of the configuration shown in FIG. 2, or in the ultraviolet absorbing layer 5 in the case of the configuration shown in FIG. Is preferable. Thereby, it is possible to accurately suppress or prevent the fluorescent coloring material from being deteriorated by ultraviolet rays. As a result, the effects of the present invention can be stably exerted for a long period of time.
 この紫外線吸収剤としては、特に限定されないが、波長が100nm以上400nm以下の光を吸収する光吸収剤を含むことが好ましい。これにより、紫外線や、可視光のうち、比較的波長が短い光(波長が400nm以下の光)の透過を抑制することができる。そのため、紫外線吸収剤としての機能を確実に発揮させることができる。 The ultraviolet absorber is not particularly limited, but preferably contains a light absorber that absorbs light having a wavelength of 100 nm or more and 400 nm or less. As a result, it is possible to suppress the transmission of ultraviolet rays and visible light having a relatively short wavelength (light having a wavelength of 400 nm or less). Therefore, the function as an ultraviolet absorber can be surely exhibited.
 紫外線吸収剤としては、特に限定されないが、例えば、トリアジン系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。これらの中でも、特に、トリアジン系化合物であることが好ましい。これにより、第1層1の紫外線による劣化をより確実に防止または抑制することができ、光学性積層体10の耐候性をより高めることができる。 The ultraviolet absorber is not particularly limited, and examples thereof include triazine compounds, benzophenone compounds, benzotriazole compounds, and cyanoacrylate compounds, and one or a combination of two or more of these can be used. .. Among these, a triazine-based compound is particularly preferable. As a result, deterioration of the first layer 1 due to ultraviolet rays can be more reliably prevented or suppressed, and the weather resistance of the optical laminate 10 can be further enhanced.
 トリアジン系化合物としては、例えば、2-モノ(ヒドロキシフェニル)-1,3,5-トリアジン化合物や2,4-ビス(ヒドロキシフェニル)-1,3,5-トリアジン化合物、2,4,6-トリス(ヒドロキシフェニル)-1,3,5-トリアジン化合物が挙げられ、具体的には、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシエトキシ)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-エトキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ブトキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-プロポキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-メトキシカルボニルプロピルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-エトキシカルボニルエチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-(1-(2-エトキシヘキシルオキシ)-1-オキソプロパン-2-イルオキシ)フェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-メトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-エトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-プロポキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ブトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ベンジルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-エトキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ブトキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-プロポキシエトキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-メトキシカルボニルプロピルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-エトキシカルボニルエチルオキシフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-(1-(2-エトキシヘキシルオキシ)-1-オキソプロパン-2-イルオキシ)フェニル)-1,3,5-トリアジン等が挙げられる。また、トリアジン系紫外線吸収剤の市販品としては、例えば、「チヌビン1577」「チヌビン460」「チヌビン477」(BASFジャパン製)「アデカスタブLA-F70」(ADEKA製)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 Examples of triazine-based compounds include 2-mono (hydroxyphenyl) -1,3,5-triazine compound, 2,4-bis (hydroxyphenyl) -1,3,5-triazine compound, 2,4,6- Examples thereof include tris (hydroxyphenyl) -1,3,5-triazine compounds, specifically 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-Diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5- Triazine, 2,4-diphenyl- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3, 5-Triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) )-1,3,5-Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy) -4-benzyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyethoxy) -1,3,5-triazine, 2,4-bis (2) -Hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3-5-triazine, 2,4,6-tris (2-hydroxy-4-methoxyphenyl) -1,3 , 5-Triazine, 2,4,6-Tris (2-hydroxy-4-ethoxyphenyl) -1,3,5-Triazine, 2,4,5-Tris (2-hydroxy-4-propoxyphenyl) -1 , 3,5-Triazine, 2,4,6-Tris (2-hydroxy-4-butoxyphenyl) -1,3,5-Triazine, 2,4,5-Triazine (2-hydroxy-4-hexyloxyphenyl) ) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-4) -Dodecyloxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-4-benzyloxyphenyl) -1,3,5-triazine, 2,4,6 -Tris (2-hydroxy-4-ethoxyethoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-4-butoxyethoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-hydroxy-4-propoxyethoxyphenyl) -1,3,5-triazine, 2,4,6-Tris (2-hydroxy-4-methoxycarbonylpropyloxyphenyl) -1,3 , 5-Triazine, 2,4,6-Tris (2-Hydroxy-4-ethoxycarbonylethyloxyphenyl) -1,3,5-Triazine, 2,4,6-Tris (2-Hydroxy-4- (1) -(2-ethoxyhexyloxy) -1-oxopropan-2-yloxy) phenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-methoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-ethoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy) -3-Methyl-4-propoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-butoxyphenyl) -1,3,5-triazine, 2 , 4,6-Tris (2-Hydroxy-3-methyl-4-hexyloxyphenyl) -1,3,5-triazine, 2,4,6-Tris (2-Hydroxy-3-methyl-4-octyloxyphenyl) Phenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4,6-tris (Phenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-dodecyloxyphenyl) 2-Hydroxy-3-methyl-4-benzyloxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-ethoxyethoxyphenyl) -1,3, 5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-butoxyethoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl) -4-propoxyethoxyphenyl) -1,3,5-triazine, 2,4,6-tris (2-hydroxy-3-methyl-4-methoxycarbonylpropyloxyphenyl) -1,3,5-triazine, 2, , 4,6-Tris (2-hydroxy-3-methyl-4-ethoxycarbonylethyloxyphenyl) -1,3,5-triazine, 2,4,6-Tris (2) -Hydroxy-3-methyl-4- (1- (2-ethoxyhexyloxy) -1-oxopropane-2-yloxy) phenyl) -1,3,5-triazine and the like can be mentioned. Examples of commercially available triazine-based ultraviolet absorbers include "Tinubin 1577", "Tinubin 460", "Tinubin 477" (manufactured by BASF Japan), "ADEKA STUB LA-F70" (manufactured by ADEKA), and the like. One type or a combination of two or more types of the above can be used.
 このような紫外線吸収剤を第2層2の樹脂組成物中に配合することにより、第2層2に入射する光のうち、波長が100nm以上400nm以下の光を第2層2において確実に吸収することができる。 By blending such an ultraviolet absorber into the resin composition of the second layer 2, the light having a wavelength of 100 nm or more and 400 nm or less among the light incident on the second layer 2 is reliably absorbed by the second layer 2. can do.
 また、第2層2が紫外線吸収剤を含有する場合、第2層2における紫外線吸収剤の含有率は、0.005wt%以上0.200wt%以下であるのが好ましく、0.008wt%以上0.150wt%以下であることがより好ましい。第2層2中における紫外線吸収剤の含有率が前記下限値未満であると、紫外線吸収剤の種類によっては、第2層2の耐候性が低下するおそれがある。また、第2層2中における紫外線吸収剤の含有率が前記上限値を超えても、それ以上の耐候性の向上は見られず、第2層2の第3層3に対する密着性を損ねるおそれがある。 When the second layer 2 contains an ultraviolet absorber, the content of the ultraviolet absorber in the second layer 2 is preferably 0.005 wt% or more and 0.200 wt% or less, and 0.008 wt% or more and 0. More preferably, it is 150 wt% or less. If the content of the ultraviolet absorber in the second layer 2 is less than the lower limit, the weather resistance of the second layer 2 may decrease depending on the type of the ultraviolet absorber. Further, even if the content of the ultraviolet absorber in the second layer 2 exceeds the upper limit value, no further improvement in weather resistance is observed, and the adhesion of the second layer 2 to the third layer 3 may be impaired. There is.
 なお、第1層1には、上記で挙げた可視光吸収剤とは異なる色素(例えば、赤外線光吸収剤等)が含まれていてもよい。この色素としては、特に限定されないが、例えば、顔料、染料等が挙げられ、これらを単独または混合して使用することができる。 Note that the first layer 1 may contain a dye (for example, an infrared light absorber) different from the visible light absorbers mentioned above. The dye is not particularly limited, and examples thereof include pigments and dyes, and these can be used alone or in combination.
 顔料としては、特に限定されないが、例えば、フタロシアニングリーン、フタロシアニンブルー等のフタロシアニン系顔料、ファストイエロー、ジスアゾイエロー、縮合アゾイエロー、ベンゾイミダゾロンイエロー、ジニトロアニリンオレンジ、ベンズイミダゾロンオレンジ、トルイジンレッド、パーマネントカーミン、パーマネントレッド、ナフトールレッド、縮合アゾレッド、ベンズイミダゾロンカーミン、ベンズイミダゾロンブラウン等のアゾ系顔料、アントラピリミジンイエロー、アントラキノニルレッド等のアントラキノン系顔料、銅アゾメチンイエロー等のアゾメチン系顔料、キノフタロンイエロー等のキノフタロン系顔料、イソインドリンイエロー等のイソインドリン系顔料、ニッケルジオキシムイエロー等のニトロソ系顔料、ペリノンオレンジ等のペリノン系顔料、キナクリドンマゼンタ、キナクリドンマルーン、キナクリドンスカーレット、キナクリドンレッド等のキナクリドン系顔料、ペリレンレッド、ペリレンマルーン等のペリレン系顔料、ジケトピロロピロールレッド等のピロロピロール系顔料、ジオキサジンバイオレット等のジオキサジン系顔料のような有機顔料、カーボンブラック、ランプブラック、ファーネスブラック、アイボリーブラック、黒鉛、フラーレン等の炭素系顔料、黄鉛、モリブデートオレンジ等のクロム酸塩系顔料、カドミウムイエロー、カドミウムリトポンイエロー、カドミウムオレンジ、カドミウムリトポンオレンジ、銀朱、カドミウムレッド、カドミウムリトポンレッド等の硫化物系顔料、オーカー、チタンイエロー、チタンバリウムニッケルイエロー、べんがら、鉛丹、アンバー、褐色酸化鉄、亜鉛鉄クロムブラウン、酸化クロム、コバルトグリーン、コバルトクロムグリーン、チタンコバルトグリーン、コバルトブルー、セルリアンブルー、コバルトアルミニウムクロムブルー、鉄黒、マンガンフェライトブラック、コバルトフェライトブラック、銅クロムブラック、銅クロムマンガンブラック等の酸化物系顔料、ビリジアン等の水酸化物系顔料、紺青等のフェロシアン化物系顔料、群青等のケイ酸塩系顔料、コバルトバイオレット、ミネラルバイオレット等のリン酸塩系顔料、その他(例えば硫化カドミウム、セレン化カドミウム等)のような無機顔料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The pigment is not particularly limited, but for example, phthalocyanine pigments such as phthalocyanine green and phthalocyanine blue, fast yellow, disazo yellow, condensed azo yellow, benzoimidazolone yellow, dinitroaniline orange, benzimidazolone orange, toluidine red, permanent. Azo pigments such as carmine, permanent red, naphthol red, condensed azo red, benz imidazolone carmine, benz imidazolone brown, anthraquinone pigments such as anthrapyrimidine yellow and anthraquinonyl red, azomethine pigments such as copper azomethin yellow, quinophthalone. Kinophthalone pigments such as yellow, isoindolin pigments such as isoindolin yellow, nitroso pigments such as nickeldioxime yellow, perinone pigments such as perinone orange, quinacridone magenta, quinacridone maroon, quinacridone scarlet, quinacridone such as quinacridone red Perylene pigments such as perylene red and perylene maroon, pyrrolopyrrole pigments such as diketopyrrolopyrrole red, organic pigments such as dioxazine pigments such as dioxazine violet, carbon black, lamp black, furnace black, ivory Carbon pigments such as black, graphite and fullerene, chromate pigments such as yellow lead and molybdate orange, cadmium yellow, cadmium lithopon yellow, cadmium orange, cadmium lithopon orange, silver vermilion, cadmium red, cadmium lithopon red Sulfur pigments such as ocher, titanium yellow, titanium barium nickel yellow, bengara, lead tan, amber, brown iron oxide, zinc iron chrome brown, chrome oxide, cobalt green, cobalt chrome green, titanium cobalt green, cobalt blue, etc. Oxide pigments such as Cerulean Blue, Cobalt Aluminum Chrome Blue, Iron Black, Manganese Ferrite Black, Cobalt Ferrite Black, Copper Chrome Black, Copper Chromium Manganese Black, Hydroxide Pigments such as Viridian, Ferocyanide Pigments such as Navy Blue Examples thereof include pigments, silicate pigments such as ultramarine, phosphate pigments such as cobalt violet and mineral violet, and inorganic pigments such as other (for example, cadmium sulfide, cadmium selenium, etc.), and one of them. Species or a combination of two or more can be used.
 染料としては、特に限定されないが、例えば、金属錯体色素、シアン系色素、キサンテン系色素、アゾ系色素、ハイビスカス色素、ブラックベリー色素、ラズベリー色素、ザクロ果汁色素、クロロフィル色素等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。 The dye is not particularly limited, and examples thereof include a metal complex dye, a cyan dye, a xanthene dye, an azo dye, a hibiscus dye, a blackberry dye, a raspberry dye, a pomegranate juice dye, and a chlorophyll dye. One of them or two or more of them can be used in combination.
 上述した可視光吸収剤、紫外線吸収剤、および、これらとは異なる色素の種類の組み合わせ、さらにはその含有量を適宜設定することにより、第1層1に、所望の波長領域を有する光の透過を選択的に許容する機能を発揮させることができる。 By appropriately setting the combination of the above-mentioned visible light absorber, ultraviolet absorber, and dye types different from these, and the content thereof, the first layer 1 transmits light having a desired wavelength region. It is possible to exert a function that selectively allows.
 第1層は、850nm以上1100nm以下(赤外線)の波長域の光、ないしは1300nm以上1600nm以下の波長域の光の透過率が85%以上95%以下であることが好ましく、86%以上93%以下であることがより好ましい。 The first layer preferably has a transmittance of light in the wavelength range of 850 nm or more and 1100 nm or less (infrared rays), or light in the wavelength range of 1300 nm or more and 1600 nm or less, preferably 85% or more and 95% or less, and is 86% or more and 93% or less. Is more preferable.
 これにより、光学性積層体を赤外線センサーや赤外線カメラの受発光部を覆うカバー部材として好適に用いることができる。 As a result, the optical laminate can be suitably used as a cover member for covering the light receiving / receiving portion of the infrared sensor or the infrared camera.
 第1層1の厚さは、特に限定されないが、0.1mm以上3mm以下であることが好ましく、0.5mm以上2.0mmm以下であるのがより好ましい。これにより、第1層1は、基材層としての効果を十分に発揮することができるとともに、光学性積層体10を曲面形状に成型した際に第2層2にクラックが生じてしまうのを防止することができる。 The thickness of the first layer 1 is not particularly limited, but is preferably 0.1 mm or more and 3 mm or less, and more preferably 0.5 mm or more and 2.0 mm or less. As a result, the first layer 1 can sufficiently exert its effect as a base material layer, and cracks occur in the second layer 2 when the optical laminate 10 is molded into a curved surface shape. Can be prevented.
<第2層>
 第2層は、主剤としてのポリカーボネートと、蛍光色材と、を含む。
<2nd layer>
The second layer contains polycarbonate as a main agent and a fluorescent coloring material.
 第2層(蛍光層)は、透光性を有する主剤(主材料)としてのポリカーボネートと、このポリカーボネート中に溶解・分散され、蛍光を発光する蛍光色材とを含む樹脂組成物を用いて層状に成形された成形体である。第2層は、樹脂組成物中に蛍光色材を含有することで、蛍光光を発光することができる。 The second layer (fluorescent layer) is layered using a resin composition containing polycarbonate as a main agent (main material) having translucency and a fluorescent coloring material that is dissolved and dispersed in the polycarbonate and emits fluorescence. It is a molded body molded into. The second layer can emit fluorescent light by containing a fluorescent coloring material in the resin composition.
 かかる第2層2を光学性積層体10が備えることにより、光学性積層体10(カバー部材)は、センサユニット外装との意匠適合性を向上させたカバー部材として用いることができる。 By providing the second layer 2 in the optical laminate 10, the optical laminate 10 (cover member) can be used as a cover member having improved design compatibility with the exterior of the sensor unit.
(ポリカーボネート)
 ポリカーボネート(ポリカーボネート系樹脂)は、第2層2の主剤(ベース樹脂)として含まれ、第2層2を基板状に成型するために用いられる。
(Polycarbonate)
Polycarbonate (polycarbonate-based resin) is contained as the main agent (base resin) of the second layer 2, and is used for molding the second layer 2 into a substrate shape.
 第2層2を構成するポリカーボネートとしては、上述した第1層1を構成するポリカーボネートと同様のものを用いることができる。 As the polycarbonate constituting the second layer 2, the same polycarbonate as the polycarbonate constituting the first layer 1 described above can be used.
(蛍光色材)
 本実施形態において、第2層2に含有される蛍光色材は、200nm以上780nm以下(可視光)の波長域に励起波長の強度の第1ピークを有する励起光で励起されて、380nm以上780nm以下(可視光)の波長域に蛍光波長の強度の第2ピークを有する発光光を発光するように構成されている。
(Fluorescent color material)
In the present embodiment, the fluorescent coloring material contained in the second layer 2 is excited by excitation light having the first peak of the intensity of the excitation wavelength in the wavelength range of 200 nm or more and 780 nm or less (visible light), and is 380 nm or more and 780 nm. It is configured to emit emitted light having a second peak of fluorescence wavelength intensity in the following (visible light) wavelength range.
 ここで、本明細書において、蛍光色材は、蛍光染料および蛍光顔料を包含するものとする。 Here, in the present specification, the fluorescent coloring material includes a fluorescent dye and a fluorescent pigment.
 蛍光色材(蛍光色素)としては、非イオン系の蛍光色素が挙げられ、アントラキノン系色素、ペリレン系色素、ビオラントロン系色素、イソビオラントロン系色素、ビラントロン系色素、フラバントロン系色素、ビレン系色素、キサンテン系色素、チオキサンテン系色素、ナフタレン系色素、キノリン系色素、ナフタルイミド系色素、ナフトラクタム系色素、ベンゾアントロン系色素およびクマリン系色素からなる群より選択される少なくとも1つであることが好ましく、アントラキノン系色素、ペリレン系色素、キノリン系色素、複素環系色素、ベンゾオキサゾール誘導体およびナフタレン系色素からなる群より選択される少なくとも1つであることがより好ましい。 Examples of the fluorescent coloring material (fluorescent dye) include nonionic fluorescent dyes, anthraquinone dyes, perylene dyes, biolantron dyes, isobiolantron dyes, vilantron dyes, flavantron dyes, and bilen dyes. At least one selected from the group consisting of dyes, xanthene dyes, thioxanthene dyes, naphthalene dyes, quinoline dyes, naphthalimide dyes, naphtholactam dyes, benzoanthrone dyes and coumarin dyes. It is preferable that it is at least one selected from the group consisting of anthraquinone-based dyes, perylene-based dyes, quinoline-based dyes, heterocyclic dyes, benzoxazole derivatives and naphthalene-based dyes.
 これにより、優れた蛍光発色性とともに、第2層2ひいては光学性積層体は、より優れた耐熱性、耐候性を有することができる。
 蛍光色素は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As a result, the second layer 2 and thus the optical laminate can have more excellent heat resistance and weather resistance as well as excellent fluorescent color development.
The fluorescent dye may be used alone or in combination of two or more.
 特に、アントラキノン系色素としては、例えば、有本化学工業社製、Plast  Red  8355等が挙げられる。 In particular, examples of the anthraquinone dye include, for example, Arimoto Chemical Industry Co., Ltd., Last Red 8355 and the like.
 また、ペリレン系色素としては、例えば、ビーエーエスエフ  アクチェンゲゼルシャフト社製の商品名Lumogen  FシリーズのYellow  083、Orange  240、Red  305等が挙げられる。 Examples of the perylene-based pigment include Yellow 083, Orange 240, Red 305 and the like of the Lumogen F series trade name manufactured by BASF Akchen Gezel Shaft.
 ここで、蛍光色材について、励起波長の第1ピークを有するスペクトルの一例を図4に示し、蛍光波長の第2ピークを有するスペクトルの一例を図5に示す。 Here, regarding the fluorescent color material, an example of a spectrum having a first peak of an excitation wavelength is shown in FIG. 4, and an example of a spectrum having a second peak of a fluorescence wavelength is shown in FIG.
 このスペクトルは、有本化学工業社製、Plast  Red  8355についての蛍光スペクトルであり、548nmに励起波長の第1ピークを有し(図4参照)、580nmに励起波長の第2ピークを有する(図5参照)。 This spectrum is a fluorescence spectrum of Last Red 8355 manufactured by Arimoto Chemical Industry Co., Ltd., and has a first peak of an excitation wavelength at 548 nm (see FIG. 4) and a second peak of an excitation wavelength at 580 nm (FIG. 5).
 蛍光色材において、第1ピークにおける最大強度の波長と、第2ピークにおける最大強度の波長との差が、10nm以上150nm以下であることが好ましく、20nm以上110nm以下であることがより好ましく、30nm以上65nm以下であることがさらに好ましい。 In the fluorescent color material, the difference between the maximum intensity wavelength at the first peak and the maximum intensity wavelength at the second peak is preferably 10 nm or more and 150 nm or less, more preferably 20 nm or more and 110 nm or less, and more preferably 30 nm. It is more preferably 65 nm or less.
 ここで、ある蛍光物質(蛍光色材)における最大励起波長(第1ピーク)と最大蛍光波長(第2ピーク)との差をストークスシフトと呼ぶ。 Here, the difference between the maximum excitation wavelength (first peak) and the maximum fluorescence wavelength (second peak) in a certain fluorescent substance (fluorescent color material) is called a Stokes shift.
 ストークスシフトが小さいと、吸収スペクトルと発光スペクトルの重なり(自家吸収)が大きくなり、「内部フィルター効果」とよばれる発光の再吸収の影響のため、蛍光スペクトルのとくに短波長側が歪んだスペクトルが得られる。再吸収は、蛍光量子効率の低下や、場合によっては蛍光寿命の低下を引き起こす原因となる。 When the Stokes shift is small, the overlap between the absorption spectrum and the emission spectrum (self-absorption) becomes large, and due to the effect of reabsorption of emission called the "internal filter effect", a spectrum in which the short wavelength side of the fluorescence spectrum is distorted is obtained. Be done. Reabsorption causes a decrease in fluorescence quantum efficiency and, in some cases, a decrease in fluorescence lifetime.
 一般的に、ストークスシフトが大きいほど、吸収スペクトルと発光スペクトルの重なり(自家吸収)が小さくなる。その結果、濃度消光を抑制し、発光強度が高くなる。 Generally, the larger the Stokes shift, the smaller the overlap (self-absorption) between the absorption spectrum and the emission spectrum. As a result, concentration quenching is suppressed and the emission intensity is increased.
 しかし、ストークスシフトが大きすぎると、再配向エネルギーが大きくなり、励起時に吸収したエネルギーを分子配座の変化などで熱的に放出してしまい、効率良く蛍光を発光できない。 However, if the Stokes shift is too large, the reorientation energy becomes large, and the energy absorbed at the time of excitation is thermally released due to changes in the molecular conformation, etc., and fluorescence cannot be emitted efficiently.
 ストークスシフトが上記範囲である蛍光色材を用いることにより、より強度の高い蛍光をより効率よく発光することができる。 By using a fluorescent color material whose Stokes shift is in the above range, it is possible to emit more intense fluorescence more efficiently.
 第2ピークの最大強度は、6以上28000以下であるのが好ましく、60以上17000以下であるのがより好ましい。これにより、第2層2は、蛍光意匠層としての効果を十分に発揮することができる。 The maximum intensity of the second peak is preferably 6 or more and 28,000 or less, and more preferably 60 or more and 17,000 or less. As a result, the second layer 2 can fully exert the effect as a fluorescent design layer.
 また、蛍光色材の発光スペクトルにおいて、第1最大ピーク波長における第2ピーク(発光ピーク)の半値幅が、20nm以上150nm未満、好ましくは30nm以上100nm未満であるのが好ましく、40nm以上80nm未満であるのがさらに好ましい。 Further, in the emission spectrum of the fluorescent color material, the half width of the second peak (emission peak) at the first maximum peak wavelength is preferably 20 nm or more and less than 150 nm, preferably 30 nm or more and less than 100 nm, and 40 nm or more and less than 80 nm. It is even more preferable to have it.
 第2ピーク(発光ピーク)の半値幅が上記範囲内であると、色純度や発光強度が優れるため好ましい。 It is preferable that the half width of the second peak (emission peak) is within the above range because the color purity and the emission intensity are excellent.
 第2ピーク(発光ピーク)の波長および半値幅は、得られる発光スペクトルから算出することができる。半値幅は、蛍光色材の発光スペクトルにおいて、最大発光強度の50%の発光強度を示す発光スペクトルの波長幅を意味する。 The wavelength and full width at half maximum of the second peak (emission peak) can be calculated from the obtained emission spectrum. The full width at half maximum means the wavelength width of the emission spectrum showing an emission intensity of 50% of the maximum emission intensity in the emission spectrum of the fluorescent color material.
 なお、本明細書において蛍光色材の発光スペクトルの測定は、例えば、蛍光色材を1.3wt%で添加した、厚み2mmtのポリカーボネート基板について、蛍光分光光度計FP-8600(日本分光(株)製)等を用いて、例えば、PMT電圧600V条件下で行うことができる。 In the present specification, the emission spectrum of the fluorescent color material is measured, for example, with respect to a 2 mmt-thick polycarbonate substrate to which the fluorescent color material is added at 1.3 wt%, the fluorescence spectrophotometer FP-8600 (JASCO Corporation). For example, it can be carried out under the condition of PMT voltage 600V.
 このような第2層2の光沢度(表面光沢度)は、60°鏡面光沢度Gsが20以上200以下であることが好ましく、30以上150以下であることがより好ましい。 The glossiness (surface glossiness) of the second layer 2 is preferably such that the 60 ° mirror glossiness Gs is 20 or more and 200 or less, and more preferably 30 or more and 150 or less.
 ここで、光沢度(gloss値)は、JIS Z8741:1997(鏡面光沢度)に準拠した方法により、日本電色工業(株)製、光沢計「PG-1M」を用いて測定角度を60°にした時に測定した値である。 Here, the glossiness (gloss value) is measured at a measurement angle of 60 ° using a gloss meter "PG-1M" manufactured by Nippon Denshoku Industries Co., Ltd. by a method based on JIS Z8741: 1997 (mirror glossiness). It is a value measured when it is set to.
 第2層2の光沢度が上記範囲であることにより、光学性積層体10は、高い質感(高級質感)、およびより優れた美観性を有することができる。 When the glossiness of the second layer 2 is within the above range, the optical laminate 10 can have a high texture (high-grade texture) and a better aesthetic appearance.
 第2層2中における蛍光色材の含有量は、0.001wt%以上5.0wt%以下であることが好ましく、0.005wt%以上3.0wt%以下であることがより好ましい。 The content of the fluorescent color material in the second layer 2 is preferably 0.001 wt% or more and 5.0 wt% or less, and more preferably 0.005 wt% or more and 3.0 wt% or less.
 蛍光色材の含有量が0.001wt%以上であれば、十分な量の蛍光を発光させることができる。また、蛍光色材の含有量が5.0wt%以下であれば、蛍光色材が樹脂内部で凝集しにくく、必要最小限の蛍光色材の量で蛍光発光効率を十分に高め、低コストでの製造を可能にするとともに、光学性積層体焼却時の環境への負荷を低減することができる。
 これにより、蛍光発色性に優れた光学性積層体を得ることができる。
When the content of the fluorescent color material is 0.001 wt% or more, a sufficient amount of fluorescence can be emitted. Further, when the content of the fluorescent color material is 5.0 wt% or less, the fluorescent color material is unlikely to aggregate inside the resin, and the fluorescence luminous efficiency is sufficiently increased with the minimum necessary amount of the fluorescent color material at low cost. It is possible to reduce the burden on the environment at the time of incineration of the optical laminate.
This makes it possible to obtain an optical laminate having excellent fluorescence color development.
 第2層2の厚さは、特に限定されないが、10μm以上1000μm以下であることが好ましく、20μm以上500μm以下であることがより好ましい。これにより、第2層2は、蛍光層としての効果を十分に発揮することができるとともに、光学性積層体10を曲面形状に成型した際に第2層2にクラックが生じてしまうのを防止することができる。 The thickness of the second layer 2 is not particularly limited, but is preferably 10 μm or more and 1000 μm or less, and more preferably 20 μm or more and 500 μm or less. As a result, the second layer 2 can sufficiently exert the effect as a fluorescent layer, and prevents cracks from occurring in the second layer 2 when the optical laminate 10 is molded into a curved surface shape. can do.
 なお、第2層2は、蛍光色材の他に、さらに、紫外線吸収剤を含有していてもよい。これにより、第1層1および第2層2に含まれる樹脂材料、ひいては光学性積層体10(カバー部材)でカバーすべき対象物が紫外線により劣化するのを的確に抑制または防止することができる。そのため、光学性積層体10は、優れた耐候性を有することができる。 The second layer 2 may further contain an ultraviolet absorber in addition to the fluorescent coloring material. As a result, it is possible to accurately suppress or prevent the resin material contained in the first layer 1 and the second layer 2, and eventually the object to be covered by the optical laminate 10 (cover member) from being deteriorated by ultraviolet rays. .. Therefore, the optical laminate 10 can have excellent weather resistance.
 これらの紫外線吸収剤としては、上記の第1層1で挙げた紫外線吸収剤と同様のものを用いることができる。 As these ultraviolet absorbers, the same ultraviolet absorbers as those mentioned in the first layer 1 above can be used.
 また、第2層2には、上記で挙げた蛍光色材および紫外線吸収剤とは異なる色素(例えば、赤外線光吸収剤等)が含まれていてもよい。この色素としては、特に限定されないが、例えば、顔料、染料等が挙げられ、これらを単独または混合して使用することができる。 Further, the second layer 2 may contain a dye (for example, an infrared light absorber) different from the fluorescent coloring material and the ultraviolet absorber mentioned above. The dye is not particularly limited, and examples thereof include pigments and dyes, and these can be used alone or in combination.
 これらの顔料、染料等としては、上記の第1層1で挙げた顔料、染料等と同様のものを用いることができる。 As these pigments, dyes, etc., the same pigments, dyes, etc. as those mentioned in the first layer 1 above can be used.
<光学性積層体の製造方法>
 以上のような構成をなす光学性積層体10は、例えば、以下のような製造方法により得ることができる。
<Manufacturing method of optical laminate>
The optical laminate 10 having the above configuration can be obtained by, for example, the following manufacturing method.
 光学性積層体10の製造方法は、第1層1を形成する基材層形成工程と、第2層2を形成する蛍光層形成工程と、を有する。これらの工程は、順次行われて、第1層1および第2層2を積層してもよく、共押出で成形してもよい。 The method for producing the optical laminate 10 includes a base material layer forming step for forming the first layer 1 and a fluorescent layer forming step for forming the second layer 2. These steps may be carried out in sequence, and the first layer 1 and the second layer 2 may be laminated or coextruded.
(基材層形成工程)
 [1]まず、帯状をなすシートとされた第1層1を形成する。
 具体的には、溶融状態または軟化状態とした第1層1を形成するための樹脂組成物を帯状に押し出すことで溶融シートを形成する。
(Base material layer forming process)
[1] First, the first layer 1 formed as a strip-shaped sheet is formed.
Specifically, a molten sheet is formed by extruding a resin composition for forming the first layer 1 in a molten state or a softened state in a band shape.
 この工程では、前述した第1層1を構成する構成材料が混練された樹脂組成物を溶融状態とした溶融樹脂を、例えば、Tダイが備える開口部から押し出すことで、帯状をなすシートとされた溶融状態または軟化状態の溶融シートを連続的に送り出すことができる。 In this step, a molten resin in which the resin composition in which the constituent materials constituting the first layer 1 are kneaded described above is in a molten state is extruded from, for example, an opening provided in the T-die to form a strip-shaped sheet. A molten sheet in a molten or softened state can be continuously sent out.
 [2]次に、帯状をなすシートとされた第2層2を形成する。
 具体的には、溶融状態または軟化状態とした第2層2を形成するための樹脂組成物を帯状に押し出すことで溶融シートを形成する。
[2] Next, the second layer 2 formed as a strip-shaped sheet is formed.
Specifically, a molten sheet is formed by extruding a resin composition for forming the second layer 2 in a molten state or a softened state in a band shape.
 この工程では、前述した第2層2を構成する構成材料が混練された樹脂組成物を溶融状態とした溶融樹脂を、例えば、Tダイが備える開口部から押し出すことで、帯状をなすシートとされた溶融状態または軟化状態の溶融シートを連続的に送り出すことができる。 In this step, a molten resin in which the resin composition in which the constituent materials constituting the second layer 2 are kneaded described above is in a molten state is extruded from, for example, an opening provided in the T-die to form a strip-shaped sheet. A molten sheet in a molten or softened state can be continuously sent out.
 本実施形態では、第1層1および第2層2を異なるTダイから同時に押し出して溶融状態または軟化状態の第1層1と、溶融状態または軟化状態の第2層2とを積層して、2層構造の溶融シートを得る。 In the present embodiment, the first layer 1 and the second layer 2 are extruded from different T dies at the same time, and the first layer 1 in the molten or softened state and the second layer 2 in the molten or softened state are laminated. A molten sheet having a two-layer structure is obtained.
 [3]次に、溶融シートの両面を平坦化するとともに、溶融シートを所定の厚さに設定する。この工程は、例えば、2つのロールの間に、溶融シートを供給することにより行われる。 [3] Next, flatten both sides of the molten sheet and set the molten sheet to a predetermined thickness. This step is performed, for example, by supplying a molten sheet between the two rolls.
 この際、2つのロールの外周面は、それぞれ、平滑性を有するロール状をなしている。そのため、溶融シートの両面は、それぞれ、平滑性を有する外周面に押し当てられることにより、平坦化される。 At this time, the outer peripheral surfaces of the two rolls each have a smooth roll shape. Therefore, both sides of the molten sheet are flattened by being pressed against the outer peripheral surface having smoothness.
 また、2つのロールの外周面同士の離間距離は、形成すべき光学性積層体10の厚さに設定され、この離間距離を所定の大きさに適宜設定することで、所望の厚さの溶融シート(光学性積層体10)を得ることができる。 Further, the separation distance between the outer peripheral surfaces of the two rolls is set to the thickness of the optical laminate 10 to be formed, and by appropriately setting this separation distance to a predetermined size, melting of a desired thickness is performed. A sheet (optical laminate 10) can be obtained.
 このように、本工程[3]において、2つのロールは、それぞれ、両面を平坦化するため、ならびに、溶融シートの厚さを設定するために用いられる。 As described above, in this step [3], the two rolls are used for flattening both sides and for setting the thickness of the molten sheet, respectively.
 [4]次に、両面が平坦化され、かつ、所定の厚さに設定された、溶融状態または軟化状態の光学性積層体10(溶融シート)を冷却する(冷却工程)。
 これにより、第1層1と第2層2とが積層された光学性積層体10が形成される。
[4] Next, the optical laminate 10 (melted sheet) in a molten state or a softened state, which is flattened on both sides and set to a predetermined thickness, is cooled (cooling step).
As a result, the optical laminate 10 in which the first layer 1 and the second layer 2 are laminated is formed.
 この冷却工程は、例えば、溶融シートを、冷却手段を備える冷却ロールに当接させることにより行うことができる。 This cooling step can be performed, for example, by bringing the molten sheet into contact with a cooling roll provided with cooling means.
 以上のような工程を経ることで、帯状をなすシートとされた光学性積層体10が形成される。 By going through the above steps, the optical laminate 10 formed into a strip-shaped sheet is formed.
 なお、前記工程[1]では、溶融状態とした溶融樹脂を、直接、シート状とした後、冷却することで、第1層1を形成する場合について説明したが、この場合に限定されず、例えば、次のようにして第1層1を成形してもよい。すなわち、第1層1を形成するための樹脂組成物を溶融状態とした溶融樹脂を用いて、粒状をなす粒状体を成形し、その後、この粒状体を用いて、溶融状態とされたシート状をなす溶融樹脂を得た後に、この溶融樹脂を冷却することで、第1層1を形成してもよい。このことは、第2層2に関しても同様である。 In the step [1], the case where the first layer 1 is formed by directly forming the molten resin in a molten state into a sheet and then cooling it has been described, but the present invention is not limited to this case. For example, the first layer 1 may be formed as follows. That is, a molten resin in which the resin composition for forming the first layer 1 is in a molten state is used to form granular granules, and then the granular material is used to form a sheet in a molten state. The first layer 1 may be formed by cooling the molten resin after obtaining the molten resin forming the above. This also applies to the second layer 2.
 [5] また、平板状をなす光学性積層体10の一部または全部が、曲面形状に成形されたものとする場合には、平板形成工程の後に、平板の一部または全部を、曲面形状に成形する成形工程を実施する。 [5] Further, when a part or all of the optical laminate 10 having a flat plate shape is formed into a curved surface shape, a part or all of the flat plate is formed into a curved surface shape after the flat plate forming step. Perform the molding process of molding.
 光学性積層体10の一部または全部を、曲面形状に成形する方法としては、例えば、平板状をなす光学性積層体10を加熱し、樹脂が軟化した直後に型に押し当てて曲面形状に成形する方法が挙げられる。 As a method of molding a part or all of the optical laminate 10 into a curved surface shape, for example, the optical laminate 10 forming a flat plate is heated and pressed against a mold immediately after the resin is softened to form a curved surface shape. A method of molding can be mentioned.
 また、樹脂を加熱する方法としては、特に限定はされないが、例えば、赤外線乾燥炉やガス式熱風乾燥炉、熱風循環式乾燥炉等の公知の方法が挙げられる。また、熱成形をする方法としては、例えば、真空成型、圧空成形、プレス成形、フリーブロー成形等の方法が挙げられる。 The method for heating the resin is not particularly limited, and examples thereof include known methods such as an infrared drying oven, a gas type hot air drying oven, and a hot air circulation type drying oven. Further, as a method of thermoforming, for example, a method such as vacuum forming, compressed air forming, press molding, free blow molding and the like can be mentioned.
 なお、前記曲面形状とは、湾曲面を有する形状であり、例えば、成形体の断面形状が円弧状である形状等が含まれる。 The curved surface shape is a shape having a curved surface, and includes, for example, a shape in which the cross-sectional shape of the molded body is an arc shape.
 以上のようにして、平板の一部または全部が曲面形状に成形された光学性積層体10を得ることができる。 As described above, it is possible to obtain the optical laminate 10 in which a part or all of the flat plate is formed into a curved surface shape.
 ≪第2実施形態≫
 次に、本発明の光学性積層体の第2実施形態について説明する。
<< Second Embodiment >>
Next, a second embodiment of the optical laminate of the present invention will be described.
 図2は、本発明の光学性積層体の第2実施形態を示す縦断面図である。
 以下、第2実施形態の光学性積層体10Aについて、前記第1実施形態の光学性積層体10との相違点を中心に説明し、同様の事項については、その説明を省略する。
FIG. 2 is a vertical sectional view showing a second embodiment of the optical laminate of the present invention.
Hereinafter, the optical laminate 10A of the second embodiment will be described mainly on the differences from the optical laminate 10 of the first embodiment, and the same matters will be omitted.
 本実施形態の光学性積層体10Aは、第2層2に積層された第3層3(保護層)を有すること以外は、前記第1実施形態と同様である。 The optical laminate 10A of the present embodiment is the same as that of the first embodiment except that it has a third layer 3 (protective layer) laminated on the second layer 2.
<第3層>
 第3層3は、第2層2に積層して設けられることで、第2層2を被覆し、これにより、第2層2を保護するハードコート層(コーティング層)として機能し、光学性積層体10に対して、優れた耐候性、耐久性および耐擦傷性を付与することができる。
<Third layer>
The third layer 3 is provided so as to be laminated on the second layer 2 to cover the second layer 2, thereby functioning as a hard coat layer (coating layer) for protecting the second layer 2 and having optical properties. Excellent weather resistance, durability and scratch resistance can be imparted to the laminated body 10.
 第3層3を形成するために用いられる樹脂組成物は、シリコン変性(メタ)アクリル樹脂と、ウレタン(メタ)アクリレートとを含む。 The resin composition used to form the third layer 3 contains a silicon-modified (meth) acrylic resin and a urethane (meth) acrylate.
 前記樹脂組成物が、シリコン変性(メタ)アクリル樹脂を含むことにより、第3層3の表面硬度が高くなり、優れた耐擦傷性を光学性積層体10に付与することができる。 When the resin composition contains a silicon-modified (meth) acrylic resin, the surface hardness of the third layer 3 is increased, and excellent scratch resistance can be imparted to the optical laminate 10.
 また、前記樹脂組成物が、ウレタン(メタ)アクリレートを含むことにより、第3層3の柔軟性を向上させることができ、光学性積層体10を熱曲げした際の、第3層3表面のクラック発生を抑制し、光学性積層体10に優れた熱成形性を付与することができる。 Further, since the resin composition contains urethane (meth) acrylate, the flexibility of the third layer 3 can be improved, and the surface of the third layer 3 when the optical laminate 10 is thermoformed. It is possible to suppress the occurrence of cracks and impart excellent thermoformability to the optical laminate 10.
 そして、シリコン変性(メタ)アクリル樹脂と、ウレタン(メタ)アクリレートとを組み合わせることにより、優れた耐擦傷性と熱成形性とを高度に両立した光学性積層体10を得ることができる。 Then, by combining the silicon-modified (meth) acrylic resin and the urethane (meth) acrylate, it is possible to obtain an optical laminate 10 having a high degree of both excellent scratch resistance and thermoformability.
(シリコン変性(メタ)アクリル樹脂)
 前記シリコン変性(メタ)アクリル樹脂は、(メタ)アクリロイル基を有する(メタ)アクリルモノマーに由来する構成単位が繰り返された主鎖と、この主鎖に連結し、シロキサン結合を有する構成単位が繰り返された繰り返し体とを有するポリマー(プレポリマー)である。
(Silicone modified (meth) acrylic resin)
In the silicon-modified (meth) acrylic resin, a main chain in which a structural unit derived from a (meth) acrylic monomer having a (meth) acryloyl group is repeated and a structural unit linked to the main chain and having a siloxane bond are repeated. It is a polymer (prepolymer) having a repeating body.
 前記シリコン変性(メタ)アクリル樹脂は、前記主鎖を有することにより、第3層3に透明性を付与し、また、前記シロキサン結合を有する構成単位が繰り返された繰り返し体を有することにより、第3層3に耐擦傷性を付与する。 The silicon-modified (meth) acrylic resin imparts transparency to the third layer 3 by having the main chain, and has a repeating body in which the structural unit having the siloxane bond is repeated. Scratch resistance is imparted to 3 layers 3.
 前記シリコン変性(メタ)アクリル樹脂の主鎖としては、具体的には、下記式(1)および式(2)の少なくとも一方の(メタ)アクリロイル基を有するモノマーに由来する構成単位の繰り返しで構成されているものが挙げられる。 The main chain of the silicon-modified (meth) acrylic resin is specifically composed of repeating structural units derived from a monomer having at least one (meth) acryloyl group of the following formulas (1) and (2). What has been done is mentioned.
Figure JPOXMLDOC01-appb-C000002
(式(1)中、nは、1以上の整数を示し、R1は、独立して炭化水素基、有機基、または水素原子を示し、R0は、独立して炭化水素基または水素原子を示す。)
Figure JPOXMLDOC01-appb-C000002
(In the formula (1), n represents an integer of 1 or more, R1 independently represents a hydrocarbon group, an organic group, or a hydrogen atom, and R0 independently represents a hydrocarbon group or a hydrogen atom. .)
Figure JPOXMLDOC01-appb-C000003
(式(2)中、mは、1以上の整数を示し、R2は、独立して炭化水素基、有機基、または水素原子を示し、R0は、独立して炭化水素基または水素原子を示す。)
Figure JPOXMLDOC01-appb-C000003
(In formula (2), m represents an integer of 1 or more, R2 independently represents a hydrocarbon group, an organic group, or a hydrogen atom, and R0 independently represents a hydrocarbon group or a hydrogen atom. .)
 また、前記主鎖の末端または側鎖には、水酸基(-OH)を有することが好ましい。すなわち、前記式(1)または式(2)の場合には、R1またはR2が水素であることが好ましい。これにより、第2層2としてポリカーボネートを用いた場合には、第3層3とポリカ-ボネートとの密着性を向上させることができる。このため、第3層3の第2層2に対する密着性が高まり、第2層2から第3層3が不本意に剥離することを防ぐことができる。また、後述するイソシアネート基を有する硬化剤を用いる場合には、前記水酸基は硬化剤が有するイソシアネート基と反応してウレタン結合による架橋構造を形成する。 Further, it is preferable that the terminal or side chain of the main chain has a hydroxyl group (-OH). That is, in the case of the formula (1) or the formula (2), it is preferable that R1 or R2 is hydrogen. As a result, when polycarbonate is used as the second layer 2, the adhesion between the third layer 3 and the polycarbonate can be improved. Therefore, the adhesion of the third layer 3 to the second layer 2 is enhanced, and it is possible to prevent the second layer 2 and the third layer 3 from being unintentionally peeled off. When a curing agent having an isocyanate group, which will be described later, is used, the hydroxyl group reacts with the isocyanate group of the curing agent to form a crosslinked structure by a urethane bond.
 これより、前記樹脂組成物の硬化を促進させることができ、第3層3の形成に寄与することができる。 From this, the curing of the resin composition can be promoted, and it is possible to contribute to the formation of the third layer 3.
 前記主鎖の少なくとも1つの末端または側鎖には、シロキサン結合を有する構成単位が繰り返された繰り返し体が結合している。 At least one end or side chain of the main chain is bound to a repeater in which structural units having a siloxane bond are repeated.
 シロキサン結合は、結合力が高いため、前記シリコン変性(メタ)アクリル樹脂が、シロキサン結合を有する構成単位が繰り返された繰り返し体を有することにより、耐熱性、耐候性がより良好な第3層3を得ることができる。また、シロキサン結合の結合力が高いことで、硬質な第3層3を得ることができるため、光学性積層体10の砂ほこりや飛び石などの衝撃に対する耐擦傷性をさらに増大させることができる。 Since the siloxane bond has a high bonding force, the silicon-modified (meth) acrylic resin has a repeating body in which the structural unit having the siloxane bond is repeated, so that the third layer 3 has better heat resistance and weather resistance. Can be obtained. Further, since the hard third layer 3 can be obtained due to the high bonding force of the siloxane bond, the scratch resistance of the optical laminate 10 to impacts such as sand dust and stepping stones can be further increased.
 シロキサン結合を有する構成単位が繰り返された繰り返し体としては、具体的には、下記式(3)および式(4)の少なくとも一方のシロキサン結合を有する構成単位の繰り返しで構成されているものが挙げられる。 Specific examples of the repeating body in which the structural unit having a siloxane bond is repeated include those composed of repeating the structural unit having at least one of the following formulas (3) and (4). Be done.
Figure JPOXMLDOC01-appb-C000004
(式(3)中、Xは、炭化水素基または水酸基を示す。)
Figure JPOXMLDOC01-appb-C000004
(In formula (3), X 1 represents a hydrocarbon group or a hydroxyl group.)
Figure JPOXMLDOC01-appb-C000005
(式(4)中、Xは、炭化水素基または水酸基を示し、Xは、炭化水素基または水酸基から水素が離脱した2価の基を示す。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (4), X 2 represents a hydrocarbon group or a hydroxyl group, and X 3 represents a divalent group in which hydrogen is removed from the hydrocarbon group or the hydroxyl group.)
 前記シロキサン結合を有する構成単位が繰り返された繰り返し体としては、具体的には、ポリオルガノシロキサンを有するものや、シルセスキオキサンを有するものが挙げられる。なお、シルセスキオキサンの構造としては、ランダム構造、籠型構造、ラダー構造(はしご型構造)等、いかなる構造であってもよい。 Specific examples of the repeating body in which the structural unit having the siloxane bond is repeated include those having polyorganosiloxane and those having silsesquioxane. The structure of silsesquioxane may be any structure such as a random structure, a cage structure, and a ladder structure (ladder type structure).
 前記炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等のアルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、ナフチル基、2-メチルフェニル基等のアリール基、ベンジル基、ジフェニルメチル基、ナフチルメチル基等のアラルキル基、フェニル基、ビフェニル基等が挙げられる。 Examples of the hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group and an isopropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group and a naphthyl group, and 2 -An aryl group such as a methylphenyl group, an aralkyl group such as a benzyl group, a diphenylmethyl group and a naphthylmethyl group, a phenyl group, a biphenyl group and the like can be mentioned.
 また、シロキサン結合を有する構成単位が繰り返された繰り返し体の末端または側鎖には、不飽和二重結合が導入されていることが好ましい。これにより、ウレタン(メタ)アクリレートが有する(メタ)アクリロイル基と結合して、シリコン変性(メタ)アクリル樹脂とウレタン(メタ)アクリレートとのネットワークを形成することができる。そのため、第3層3において、シリコン変性(メタ)アクリル樹脂とウレタン(メタ)アクリレートとがより均一に分散し、その結果、第3層3は、前述した特性をその全体にわたってより均一に発現することができる。 Further, it is preferable that an unsaturated double bond is introduced into the terminal or side chain of the repeating body in which the structural unit having a siloxane bond is repeated. As a result, it is possible to form a network of the silicon-modified (meth) acrylic resin and the urethane (meth) acrylate by binding to the (meth) acryloyl group of the urethane (meth) acrylate. Therefore, in the third layer 3, the silicon-modified (meth) acrylic resin and the urethane (meth) acrylate are more uniformly dispersed, and as a result, the third layer 3 more uniformly expresses the above-mentioned characteristics throughout. be able to.
 前記樹脂組成物中における前記シリコン変性(メタ)アクリル樹脂の含有率は、特に限定されないが、5重量%以上、45重量%以下であることが好ましく、11重量%以上、28重量%以下であることがより好ましい。 The content of the silicon-modified (meth) acrylic resin in the resin composition is not particularly limited, but is preferably 5% by weight or more and 45% by weight or less, and 11% by weight or more and 28% by weight or less. Is more preferable.
 前記樹脂組成物中における前記シリコン変性(メタ)アクリル樹脂の含有率が前記下限値未満であると、前記樹脂組成物により得られた第3層3の硬さが低下する場合がある。また、前記樹脂組成物中における前記シリコン変性(メタ)アクリル樹脂の含有率が前記上限値を超えると、前記樹脂組成物中におけるシリコン変性(メタ)アクリル樹脂以外の材料の含有量が相対的に減ってしまい、前記樹脂組成物を用いて形成された第3層3の撓み性が低下してしまう可能性がある。 If the content of the silicon-modified (meth) acrylic resin in the resin composition is less than the lower limit, the hardness of the third layer 3 obtained by the resin composition may decrease. Further, when the content of the silicon-modified (meth) acrylic resin in the resin composition exceeds the upper limit value, the content of the material other than the silicon-modified (meth) acrylic resin in the resin composition is relatively high. This may decrease, and the flexibility of the third layer 3 formed by using the resin composition may decrease.
 (ウレタン(メタ)アクリレート)
 前記ウレタン(メタ)アクリレートは、ウレタン結合(-OCONH-)を有する主鎖と、この主鎖に連結した(メタ)アクリロイル基とを有する化合物である。また、ウレタン(メタ)アクリレートは、モノマーまたはオリゴマーである。
(Urethane (meth) acrylate)
The urethane (meth) acrylate is a compound having a main chain having a urethane bond (-OCONH-) and a (meth) acryloyl group linked to the main chain. The urethane (meth) acrylate is a monomer or an oligomer.
 このウレタン(メタ)アクリレートは、ウレタン結合を有するため、柔軟性に優れた化合物である。このため、第3層3がウレタン(メタ)アクリレートを含むことで、第3層3にさらなる撓み性(柔軟さ)を付与することができる。 This urethane (meth) acrylate is a compound with excellent flexibility because it has a urethane bond. Therefore, when the third layer 3 contains urethane (meth) acrylate, further flexibility (flexibility) can be imparted to the third layer 3.
 したがって、光学性積層体10を曲面形状に成形した際の、曲げ部におけるクラックの発生を抑制することができる。 Therefore, it is possible to suppress the occurrence of cracks in the bent portion when the optical laminate 10 is formed into a curved surface shape.
 また、前記ウレタン(メタ)アクリレート1分子中の(メタ)アクリロイル基の数は、2個以上であることが好ましい。 Further, the number of (meth) acryloyl groups in one molecule of the urethane (meth) acrylate is preferably two or more.
 前記ウレタン(メタ)アクリレート1分子中の(メタ)アクリロイル基の数が2個以上であると、ウレタン(メタ)アクリレートがシリコン変性(メタ)アクリル樹脂と結合してネットワークを形成することができるため、第3層3の硬化を促進することができる。これにより、第3層3の架橋密度があがり、第3層3の硬さをある程度高めることができる。このため、第3層3の耐擦傷性や耐溶剤性などの特性を向上させることができる。 When the number of (meth) acryloyl groups in one molecule of the urethane (meth) acrylate is two or more, the urethane (meth) acrylate can be bonded to the silicon-modified (meth) acrylic resin to form a network. , The curing of the third layer 3 can be promoted. As a result, the crosslink density of the third layer 3 is increased, and the hardness of the third layer 3 can be increased to some extent. Therefore, the properties such as scratch resistance and solvent resistance of the third layer 3 can be improved.
 前記ウレタン(メタ)アクリレートは、ポリオールとジイソシアネートとを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートモノマーとの反応生成物として得ることができる。 The urethane (meth) acrylate can be obtained as a reaction product of an isocyanate compound obtained by reacting a polyol with a diisocyanate and a (meth) acrylate monomer having a hydroxyl group.
 ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートジオールが挙げられる。 Examples of the polyol include polyether polyols, polyester polyols, and polycarbonate diols.
 ポリエーテルポリオールは、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド-プロピレンオキシドランダム共重合で、数平均分子量が1300未満のものが望ましい。数平均分子量が1300以上のポリエーテルポリオールを用いた場合には、第3層3の柔軟さが高すぎて、砂ほこりや飛び石などの衝撃によって第3層3に擦り傷等が付きやすくなるおそれがある。 The polyether polyol is a polyethylene oxide, polypropylene oxide, or ethylene oxide-propylene oxide random copolymer, preferably having a number average molecular weight of less than 1300. When a polyether polyol having a number average molecular weight of 1300 or more is used, the flexibility of the third layer 3 is too high, and there is a risk that the third layer 3 is easily scratched by the impact of sand dust or stepping stones. be.
 前記ポリエステルポリオールは、例えば、ジオールとジカルボン酸もしくはジカルボン酸クロライドとを重縮合反応させたり、ジオールまたはジカルボン酸をエステル化して、エステル交換反応させたりすることにより得ることができる。ジカルボン酸としては、アジピン酸、コハク酸、グルタル酸、ピメリン酸、セバシン酸、アゼライン酸、マレイン酸
、テレフタル酸、イソフタル酸、フタル酸など、ジオールとしてはエチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール、テトラプロピレングリコールなどが用いられる。
The polyester polyol can be obtained, for example, by subjecting a diol to a dicarboxylic acid or a dicarboxylic acid chloride in a polycondensation reaction, or by esterifying a diol or a dicarboxylic acid and causing a transesterification reaction. Dicarboxylic acids include adipic acid, succinic acid, glutaric acid, pimelli acid, sebacic acid, azelaic acid, maleic acid, terephthalic acid, isophthalic acid, phthalic acid, etc., and diols include ethylene glycol, 1,4-butanediol, 1. , 6-Hexenediol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol, tripropylene glycol, tetrapropylene glycol and the like are used.
 前記ポリカーボネートジオールとしては、1,4-ブタンジオール、1,6-へキサンジオール、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジプロピレングリコール、2-エチル-1、3-ヘキサンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、ポリオキシエチレングリコールなどが用いられ、1種でも2種以上を併用しても良い。 Examples of the polycarbonate diol include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, and dipropylene glycol. , 2-Ethyl-1,3-hexanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanediol, polyoxyethylene glycol, etc. are used, and even one kind is 2 Seeds or more may be used together.
 前記水酸基を有するアクリレートモノマーの例として、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールトリアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、3-ヒドロキシブチルアクリレート、ポリエチレングリコールモノアクリレートが挙げられる。 Examples of the acrylate monomer having a hydroxyl group include trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, and 3-hydroxybutyl acrylate. , Polyethylene glycol monoacrylate.
 前記ウレタン(メタ)アクリレートの重量平均分子量は、特に限定されないが、1.0×10以上、2.0×10以下であることが好ましく、1.1×10以上、1.5×10以下であることがより好ましい。前記ウレタン(メタ)アクリレートの重量平均分子量が、前記範囲内であることにより、第3層3の撓み性と硬さとのバランスが良好なものとなり、光学性積層体10を曲面形状に成形した際の、曲げ部におけるクラックの発生を抑制することができる。 The weight average molecular weight of the urethane (meth) acrylate is not particularly limited , but is preferably 1.0 × 10 3 or more and 2.0 × 10 3 or less, and 1.1 × 10 3 or more and 1.5 × and more preferably 10 3 or less. When the weight average molecular weight of the urethane (meth) acrylate is within the above range, the balance between the flexibility and hardness of the third layer 3 becomes good, and when the optical laminate 10 is molded into a curved surface shape. However, it is possible to suppress the occurrence of cracks in the bent portion.
 前記ウレタン(メタ)アクリレートの重量平均分子量は、例えば、GPC(ゲル浸透クロマトグラフィー)により測定することができる。 The weight average molecular weight of the urethane (meth) acrylate can be measured by, for example, GPC (gel permeation chromatography).
 前記樹脂組成物中における前記ウレタン(メタ)アクリレートの含有率は、特に限定されないが、10%以上、75%以下であることが好ましく、17%以上、50%以下であることがより好ましい。 The content of the urethane (meth) acrylate in the resin composition is not particularly limited, but is preferably 10% or more and 75% or less, and more preferably 17% or more and 50% or less.
 前記樹脂組成物中における前記ウレタン(メタ)アクリレートの含有率が、前記下限値未満であると、第3層3の柔軟性が乏しくなる場合がある。また、前記樹脂組成物中における前記ウレタン(メタ)アクリレートの含有率が前記上限値を超えると、前記樹脂組成物中におけるウレタン(メタ)アクリレート以外の材料の含有量が相対的に減少し、光学性積層体10の耐擦傷性が低下するおそれがある。 If the content of the urethane (meth) acrylate in the resin composition is less than the lower limit, the flexibility of the third layer 3 may be poor. Further, when the content of the urethane (meth) acrylate in the resin composition exceeds the upper limit value, the content of the material other than the urethane (meth) acrylate in the resin composition is relatively reduced, and the optics The scratch resistance of the sex laminate 10 may decrease.
 前記樹脂組成物は、さらにアクリレートモノマーを含むものであることが好ましい。
 前記樹脂組成物が、さらにアクリレートモノマーを含むことにより、第2層2と第3層3との密着性が向上し、熱曲げ時に第3層3が、第2層2から剥離し難くなる。また、アクリレートモノマーは、反応性希釈剤としての機能も果たすため、前記樹脂組成物の粘度を低下させることができる。
The resin composition preferably further contains an acrylate monomer.
When the resin composition further contains an acrylate monomer, the adhesion between the second layer 2 and the third layer 3 is improved, and the third layer 3 is less likely to be peeled from the second layer 2 during thermal bending. Further, since the acrylate monomer also functions as a reactive diluent, the viscosity of the resin composition can be reduced.
 前記アクリレートモノマーとしては、特に限定されないが、例えば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパントリアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールトリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキ
シ化ペンタエリスリトールトリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ポリエチレングリコールジアクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化水添ビスフェノールAジアクリレート、エトキシ化シクロヘキサンジメタノールジアクリレート、トリシクロデカンジメタノールジアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、3-ヒドロキシブチルアクリレート、イソボロニルアクリレート等が挙げられる。
The acrylate monomer is not particularly limited, but for example, pentaerythritol tetraacrylate, ditrimethylolpropantriacrylate, trimethylolpropantriacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, ethoxylated trimethylolpropantriacrylate, ethoxy. Pentaerythritol triacrylate, ethoxylated pentaerythritol tetraacrylate, polyethylene glycol diacrylate, ethoxylated bisphenol A diacrylate, ethoxylated hydrogenated bisphenol A diacrylate, ethoxylated cyclohexanedimethanol diacrylate, tricyclodecanedimethanol diacrylate, Examples thereof include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 3-hydroxybutyl acrylate, and isobolonyl acrylate.
 なかでも、光学性積層体10の耐候性を向上させる観点から、芳香族を含まない樹脂を用いることが好ましい。 Among them, from the viewpoint of improving the weather resistance of the optical laminate 10, it is preferable to use an aromatic-free resin.
 前記樹脂組成物中における前記アクリレートモノマーの含有率は、特に限定されないが、15%以上、55%以下であることが好ましく、27%以上、55%以下であることがより好ましい。 The content of the acrylate monomer in the resin composition is not particularly limited, but is preferably 15% or more and 55% or less, and more preferably 27% or more and 55% or less.
 前記樹脂組成物中における前記アクリレートモノマーの含有率が前記下限値未満の場合、第2層2と第3層3の密着性が不足し、熱曲げ時に第3層3が第2層2から剥離しやすくなる。さらには、第3層3の架橋密度が低下する場合があり、光学性積層体10の耐擦傷性が低下する恐れがある。また、前記樹脂組成物中における前記アクリレートモノマーの含有率が前記上限値超える場合、熱曲げ時に第3層3が伸びずに割れてしまう可能性がある。 When the content of the acrylate monomer in the resin composition is less than the lower limit, the adhesion between the second layer 2 and the third layer 3 is insufficient, and the third layer 3 is peeled from the second layer 2 during thermal bending. It will be easier to do. Further, the crosslink density of the third layer 3 may decrease, and the scratch resistance of the optical laminate 10 may decrease. Further, when the content of the acrylate monomer in the resin composition exceeds the upper limit value, the third layer 3 may not be stretched and may be cracked at the time of thermal bending.
 前記樹脂組成物は、さらにシリコン変性(メタ)アクリレートを分子間で結合(架橋)させる架橋剤として、イソシアネートを含むことが好ましい。イソシアネートを架橋剤として用いることにより、シリコン変性(メタ)アクリレートが有する水酸基とイソシアネートが有するイソシアネート基とが反応してウレタン結合で構成された架橋構造を形成する。これにより、前記樹脂組成物の耐擦傷性を向上させることができる。 The resin composition preferably further contains isocyanate as a cross-linking agent for bonding (cross-linking) silicon-modified (meth) acrylate between molecules. By using isocyanate as a cross-linking agent, the hydroxyl group of the silicon-modified (meth) acrylate reacts with the isocyanate group of the isocyanate to form a cross-linked structure composed of urethane bonds. Thereby, the scratch resistance of the resin composition can be improved.
 前記イソシアネートとしては、特に限定されないが、例えば、イソシアネート基を2個以上有するポリイソシアネート等が挙げられ、特に、イソシアネート基を3個以上の多官能イソシアネートも含むことがより好ましく、さらに、耐擦傷性を向上させることができる。 The isocyanate is not particularly limited, and examples thereof include polyisocyanates having two or more isocyanate groups, and more preferably, it also contains a polyfunctional isocyanate having three or more isocyanate groups, and further, scratch resistance. Can be improved.
 前記樹脂組成物中における前記イソシアネートの含有率は、特に限定されないが、3%以上、40%以下であることが好ましく、10%以上、25%以下であることがより好ましい。 The content of the isocyanate in the resin composition is not particularly limited, but is preferably 3% or more and 40% or less, and more preferably 10% or more and 25% or less.
 前記樹脂組成物中における前記イソシアネートの含有率が、前記下限値未満であると、第3層3の耐擦傷性が低下するおそれがある。また、前記樹脂組成物中における前記イソシアネートの含有率が前記上限値を超えると、イソシアネートの未反応物が不純物として塗膜に残るため、塗膜の耐擦傷性および耐久性(塗膜の密着性)が低下してしまう可能性がある。 If the content of the isocyanate in the resin composition is less than the lower limit, the scratch resistance of the third layer 3 may decrease. Further, when the content of the isocyanate in the resin composition exceeds the upper limit value, an unreacted product of isocyanate remains in the coating film as an impurity, so that the coating film has scratch resistance and durability (adhesion of the coating film). ) May decrease.
 また、前記樹脂組成物は、紫外線吸収剤を含んでいても良い。前記紫外線吸収剤としては、特に限定されないが、トリアジン系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系の紫外線吸収剤が挙げられ、これらのうち1種または2種を組み合わせて用いることができる。これらの中でも特に、トリアジン系の紫外線吸収剤が好ましく用いられ、トリアジン系の紫外線吸収剤の中でも、ヒドロキシフェニルトリアジン系の紫外線吸収剤がより好ましい。これにより、第3層3の紫外線による劣化をより確実に防止または抑制することができ、光学性積層体10の耐候性をより増大させることができる。 Further, the resin composition may contain an ultraviolet absorber. The ultraviolet absorber is not particularly limited, and examples thereof include triazine-based, benzophenone-based, benzotriazole-based, and cyanoacrylate-based ultraviolet absorbers, and one or two of these can be used in combination. Among these, a triazine-based ultraviolet absorber is particularly preferably used, and among the triazine-based ultraviolet absorbers, a hydroxyphenyl triazine-based ultraviolet absorber is more preferable. As a result, deterioration of the third layer 3 due to ultraviolet rays can be more reliably prevented or suppressed, and the weather resistance of the optical laminate 10 can be further increased.
 また、前記樹脂組成物中における前記紫外線吸収剤の含有率は、特に限定されないが、0.1重量部以上、20重量部以下であるのが好ましく、1重量部以上、10重量部以下であることがより好ましい。前記樹脂組成物中における前記紫外線吸収剤の含有率が前記下限値未満であると、第3層3の耐候性が低下する場合がある。また、前記樹脂組成物中における前記紫外線吸収剤の含有率が前記上限値を超えても、それ以上の耐候性の向上は見られず、第3層3の透明性や、第3層3の第2層2に対する密着性を損ねる場合がある。 The content of the ultraviolet absorber in the resin composition is not particularly limited, but is preferably 0.1 part by weight or more and 20 parts by weight or less, and is preferably 1 part by weight or more and 10 parts by weight or less. Is more preferable. If the content of the ultraviolet absorber in the resin composition is less than the lower limit, the weather resistance of the third layer 3 may decrease. Further, even if the content of the ultraviolet absorber in the resin composition exceeds the upper limit value, no further improvement in weather resistance is observed, and the transparency of the third layer 3 and the transparency of the third layer 3 and the third layer 3 The adhesion to the second layer 2 may be impaired.
 また、前記樹脂組成物は、光重合開始剤を含んでいても良い。前記光重合開始剤としては、特に限定されないが、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインまたはベンゾインアルキルエーテル類、ベンゾフェノン、ベンゾイル安息香酸などの芳香族ケトン類、ベンジルなどのアルファ-ジカルボニル類、ベンジルジメチルケタール、ベンジルジエチルケタールなどのベンジルケタール類、アセトフェノン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチル-プロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパノン-1などのアセトフェノン類、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノンなどのアントラキノン類、2、4-ジメチルチオキサントン、2-イソプロピルチオキサントン、2、4-ジイソプロピルチオキサントンなどのチオキサントン類、ビス(2、4、6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのフォスヒンオキサイド類、1-フェニル-1、2-プロパンジオン-2-(o-エトキシカルボニル)オキシムなどのアルファ-アシルオキシム類、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミルなどのアミン類などを使用することができ、これらの中でも特に、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチル-プロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパノン-1などのアセトフェノン類であることが好ましい。 Further, the resin composition may contain a photopolymerization initiator. The photopolymerization initiator is not particularly limited, but includes benzoin or benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether, aromatic ketones such as benzophenone and benzoyl benzoic acid, and benzyl. Alpha-dicarbonyls, benzyl ketals such as benzyl dimethyl ketal, benzyl diethyl ketal, acetophenone, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-Hydroxy-2-methyl-1-phenyl-1-propane-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methyl-propane-1-one, 2-methyl-1-[ 4- (Methylthio) Phenyl] -2-Molholinopropanone-1 and other acetophenones, 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone and other anthraquinones, 2,4-dimethylthioxanthone, 2- Thioxanthones such as isopropylthioxanthone, 2,4-diisopropylthioxanthone, phoshinoxides such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1-phenyl-1,2-propandion-2- Alpha-acyloximes such as (o-ethoxycarbonyl) oxime, amines such as ethyl p-dimethylaminobenzoate and isoamyl p-dimethylaminobenzoate can be used, and among these, 1-( 4-Dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenyl-1-propane-1-one, 1- (4) It is preferably acetphenones such as -isopropylphenyl) -2-hydroxy-2-methyl-propane-1-one and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1. ..
 また、前記樹脂組成物中における前記光重合開始剤の含有率は、特に限定されないが、0.5重量部以上、15重量部以下であるのが好ましく、1重量部以上、10重量部以下であるのがより好ましい。前記樹脂組成物中における前記光重合開始剤の含有率が前記下限値未満であると、前記樹脂組成物を十分に硬化させることが難しい場合がある。また、前記樹脂組成物中における前記光重合開始剤の含有率が前記上限値を超えても、それ以上の向上は見られない。 The content of the photopolymerization initiator in the resin composition is not particularly limited, but is preferably 0.5 parts by weight or more and 15 parts by weight or less, and is preferably 1 part by weight or more and 10 parts by weight or less. It is more preferable to have it. If the content of the photopolymerization initiator in the resin composition is less than the lower limit, it may be difficult to sufficiently cure the resin composition. Further, even if the content of the photopolymerization initiator in the resin composition exceeds the upper limit value, no further improvement is observed.
 前記樹脂組成物には、上述した材料以外のその他の材料を含まれていてもよい。
 その他の材料としては、例えば、前記シリコン変性(メタ)アクリル樹脂以外の樹脂材料、着色剤、増感剤、安定剤、界面活性剤、酸化防止剤、還元防止剤、帯電防止剤、表面調整剤および溶剤等が挙げられる。
The resin composition may contain other materials other than the above-mentioned materials.
Examples of other materials include resin materials other than the silicon-modified (meth) acrylic resin, colorants, sensitizers, stabilizers, surfactants, antioxidants, antioxidants, antistatic agents, and surface conditioners. And a solvent and the like.
 溶剤としては、例えばヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、メタノール、エタノール、プロパノール、ブタノールなどのアルコール、メチルエチルケトン、2-ぺンタノン、イソホロン、ジイソブ
チルケトンなどのケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸メトキシプロピルなどのエステル、エチルセロソルブなどのセロソルブ系溶剤、メトキシプロパノール、エトキシプロパノール、メトキシブタノールなどのグリコール系溶剤などが挙げられる。これらは単独または混合して使用することができる。これらの中でも、アルコール系、セロソルブ系、グリコール系は前記樹脂組成物中のイソシアネートと反応してしまう可能性があるため、単独で使用しないことが望ましい。溶剤の主成分として炭化水素系、ケトン系、エステル系を使用することがより好ましい。
Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, propanol and butanol, methyl ethyl ketone, 2-pentanone, isophorone and diisobutyl ketone. Examples thereof include esters such as ketone, ethyl acetate, butyl acetate, isobutyl acetate and methoxypropyl acetate, cellosolve solvents such as ethyl cellosolve, and glycol solvents such as methoxypropanol, ethoxypropanol and methoxybutanol. These can be used alone or in admixture. Among these, alcohol-based, cellosolve-based, and glycol-based materials may react with isocyanates in the resin composition, and therefore it is desirable not to use them alone. It is more preferable to use a hydrocarbon-based solvent, a ketone-based solvent, or an ester-based solvent as the main component of the solvent.
 第3層3の厚さは、特に限定されないが、1μm以上、40μm以下であることが好ましく、2μm以上、30μm以下であることがより好ましく、3μm以上、20μm以下であるがさらに好ましい。第3層3の厚さが前記下限値未満であると、光学性積層体10の耐候性が低下する場合がある。一方、第3層3の厚さが前記上限値を超えると、光学性積層体10を曲面形状に成形した際、曲げ部においてクラックが発生する場合がある。 The thickness of the third layer 3 is not particularly limited, but is preferably 1 μm or more and 40 μm or less, more preferably 2 μm or more and 30 μm or less, and further preferably 3 μm or more and 20 μm or less. If the thickness of the third layer 3 is less than the lower limit, the weather resistance of the optical laminate 10 may decrease. On the other hand, if the thickness of the third layer 3 exceeds the upper limit value, cracks may occur at the bent portion when the optical laminate 10 is formed into a curved surface shape.
 ≪第3実施形態≫
 次に、本発明の光学性積層体の第3実施形態について説明する。
<< Third Embodiment >>
Next, a third embodiment of the optical laminate of the present invention will be described.
 図3は、本発明の光学性積層体の第3実施形態を示す縦断面図である。
 以下、第3実施形態の光学性積層体10Bについて、前記第1実施形態の光学性積層体10との相違点を中心に説明し、同様の事項については、その説明を省略する。
FIG. 3 is a vertical sectional view showing a third embodiment of the optical laminate of the present invention.
Hereinafter, the optical laminate 10B of the third embodiment will be described mainly on the differences from the optical laminate 10 of the first embodiment, and the same matters will be omitted.
 本実施形態では、光学性積層体10Bは、第1層1と、第2層2と、紫外線を吸収する紫外線吸収層5と、を有し、これらが下側から順に積層された積層体である(図3参照)。 In the present embodiment, the optical laminate 10B has a first layer 1, a second layer 2, and an ultraviolet absorbing layer 5 that absorbs ultraviolet rays, and these are laminated in order from the lower side. Yes (see Figure 3).
 また、紫外線吸収層5は、主剤としての透光性を有する樹脂材料と、該樹脂材料中に溶解・分散され、紫外線を吸収する紫外線吸収剤とを含むことで、赤外線および可視光の透過を許容し、紫外線の透過を抑制または防止する機能を有するものである。 Further, the ultraviolet absorbing layer 5 contains a resin material having translucency as a main agent and an ultraviolet absorber that is dissolved and dispersed in the resin material and absorbs ultraviolet rays, thereby transmitting ultraviolet rays and visible light. It has a function of allowing and suppressing or preventing the transmission of ultraviolet rays.
 なお、紫外線吸収層5に含まれる樹脂材料は、各層の主剤として含まれ、各層をそれぞれ基板状に成型するためのものであり、例えば、アクリル系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、ポリカーボネート、塩化ビニル系樹脂、ポリアセタール系樹脂等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。 The resin material contained in the ultraviolet absorbing layer 5 is contained as a main agent of each layer and is for molding each layer into a substrate shape. For example, acrylic resin, polystyrene resin, polyethylene resin, polypropylene resin. Examples thereof include resins, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonates, vinyl chloride resins, polyacetal resins, etc., and one or more of these may be used in combination. can.
 紫外線吸収層5に含まれる紫外線吸収剤は、前記第1実施形態の第1層1に含まれてもよい紫外線吸収剤と同様に、本実施形態では、波長が100nm以上400nm以下の光を吸収する光吸収剤を含んでいることが好ましい。また、この紫外線吸収剤としては、前記第1実施形態において、第1層1に含まれてもよい紫外線吸収剤として説明したのと同様のものを用いることができる。 The ultraviolet absorber contained in the ultraviolet absorbing layer 5 absorbs light having a wavelength of 100 nm or more and 400 nm or less in the present embodiment, similarly to the ultraviolet absorber which may be contained in the first layer 1 of the first embodiment. It is preferable that the light absorber is contained. Further, as the ultraviolet absorber, the same one as described as the ultraviolet absorber that may be contained in the first layer 1 in the first embodiment can be used.
 なお、本実施形態の光学性積層体10Bにおいても、第2実施形態に示したように、第2層2に積層された第3層3(保護層)を有していてもよい。 The optical laminate 10B of the present embodiment may also have the third layer 3 (protective layer) laminated on the second layer 2 as shown in the second embodiment.
 上述したような本発明の光学性積層体は、赤外線センサーの受発光部を覆うカバー部材として用いられる。 The optical laminate of the present invention as described above is used as a cover member for covering the light receiving / receiving portion of the infrared sensor.
 光学性積層体は、自動車や2輪車のような移動体が備える、各種センサーやカメラをカバーするカバー部材等に適用される他、例えば、移動体が備えるブレーキランプやハザードランプが有するカバー部材、移動体が備えるスポイラーや、さらには、監視カメラが備えるレンズ材(カバー部材)等に適用することができる。また、光学性積層体は、眼鏡やサングラス等のレンズ材(カバー部材)等に適用することができる。 The optical laminate is applied to a cover member for covering various sensors and cameras provided in a moving body such as an automobile or a two-wheeled vehicle, and for example, a cover member included in a brake lamp or a hazard lamp provided in the moving body. It can be applied to a spoiler provided on a moving body, a lens material (cover member) provided on a surveillance camera, and the like. Further, the optical laminate can be applied to a lens material (cover member) such as eyeglasses and sunglasses.
 また、本発明の光学性積層体を、各種センサーを覆うカバー部材に適用する際には、上述の通り、自動車のような移動体に設けられる各種センサー(内蔵センサー等)への適用の他、例えば、屋外に設置される自動券売機、自動販売機等が備えるセンサー(内蔵センサー等)への適用であってもよい。 Further, when the optical laminate of the present invention is applied to a cover member covering various sensors, as described above, in addition to application to various sensors (built-in sensors, etc.) provided in a moving body such as an automobile. For example, it may be applied to a sensor (built-in sensor, etc.) provided in an automatic ticket vending machine, a vending machine, etc. installed outdoors.
[移動体]
 本発明の移動体は、上述したような光学性積層体を備えることを特徴とする。
 本発明の移動体は、上述したような光学性積層体を赤外線センサーの受発光部を覆うカバー部材として備えることで、センサユニット外装との意匠適合性を向上させることができ、デザインの幅が広がり意匠性をより向上させることができる。
[Mobile]
The moving body of the present invention is characterized by including an optical laminate as described above.
The moving body of the present invention is provided with the above-mentioned optical laminate as a cover member for covering the light emitting / receiving portion of the infrared sensor, so that the design compatibility with the exterior of the sensor unit can be improved and the design width can be widened. The spread design can be further improved.
 本発明の光学性積層体をカバー部材として備える移動体(本発明の移動体)は、自動車や2輪車(オートバイ、自転車)の他、船舶、鉄道車両、飛行機、バス、フォークリフト、工事現場等で所定の作業をする作業車、ゴルフカート、無人搬送車、ドローン等であってもよい。 The moving body (moving body of the present invention) provided with the optical laminate of the present invention as a cover member includes automobiles, two-wheeled vehicles (motorcycles, bicycles), ships, railroad vehicles, airplanes, buses, forklifts, construction sites, etc. It may be a work vehicle, a golf cart, an unmanned transport vehicle, a drone, etc., which perform a predetermined work in the above.
 以上、本発明の光学性積層体および移動体について説明したが、本発明は、これに限定されない。 The optical laminate and the moving body of the present invention have been described above, but the present invention is not limited thereto.
 例えば、本発明の光学性積層体において、各構成は、同様の機能を発揮し得る任意の構成と置換することができ、あるいは、任意の構成を付加することができる。 For example, in the optical laminate of the present invention, each configuration can be replaced with an arbitrary configuration capable of exhibiting the same function, or an arbitrary configuration can be added.
 本発明によれば、センサユニット外装との意匠適合性が向上した光学性積層体を提供することができる。このような光学性積層体は、赤外線センサーの受発光部を覆うカバー部材として広く利用することができる。したがって、本発明は、産業上の利用可能性を有する。 According to the present invention, it is possible to provide an optical laminate having improved design compatibility with the exterior of the sensor unit. Such an optical laminate can be widely used as a cover member for covering the light receiving / receiving portion of the infrared sensor. Therefore, the present invention has industrial applicability.
 以下、実施例に基づいて本発明をより具体的に説明する。
1.光学シートの検討
1-1.光学シートの作成
 [実施例1]
 [1]まず、99.8wt%のビスフェノールA型ポリカーボネート(三菱エンジニアプラスチックス社製、「ユーピロン E2000FN」)と、0.03wt%の第1光吸収剤(キノリン;有本化学工業社製、「plast yellow 8050」)と、0.05wt%の第2光吸収剤(アントラキノンA;有本化学工業社製、「Plast blue 8590」)と、0.05wt%の第2光吸収剤(アントラキノンB;有本化学工業社製、「SDO-7」)と、0.07wt%の第3光吸収剤(ペリノン;有本化学工業社製、「Plast red 8730」)とを撹拌・混合することにより、第1層形成材料を用意した。
Hereinafter, the present invention will be described in more detail based on Examples.
1. 1. Examination of optical sheet 1-1. Creation of Optical Sheet [Example 1]
[1] First, 99.8 wt% bisphenol A type polycarbonate (manufactured by Mitsubishi Engineer Plastics, "Iupilon E2000FN") and 0.03 wt% of the first light absorber (quinolin; manufactured by Arimoto Chemical Industry Co., Ltd., ""Plast polycarbonate 8050"), 0.05 wt% second light absorber (anthraquinone A; manufactured by Arimoto Chemical Co., Ltd., "Plast blue 8590"), and 0.05 wt% second light absorber (anthraquinone B; Arimoto Chemical Industry Co., Ltd., "SDO-7") and 0.07 wt% third light absorber (Perinone; Arimoto Chemical Industry Co., Ltd., "Plast red 8730") are stirred and mixed. The first layer forming material was prepared.
 [2]また、98.7wt%のビスフェノールA型ポリカーボネート(三菱エンジニアプラスチックス社製、「ユーピロン E2000FN」)と、1.3wt%の蛍光色材(有本化学工業社製「Plast Red 8355」)とを撹拌・混合することにより、第2層形成材料を用意した。 [2] In addition, 98.7 wt% bisphenol A type polycarbonate (manufactured by Mitsubishi Engineering Plastics, "Iupilon E2000FN") and 1.3 wt% fluorescent coloring material ("Plast Red 8355" manufactured by Arimoto Chemical Industry Co., Ltd.). The second layer forming material was prepared by stirring and mixing with.
 [3]次に、第1層形成材料および第2層形成材料を、それぞれ異なる押出機に収納、溶融し、Tダイより共押出し成形を行い、第1層および第2層が積層されたシート材を得た。そして、該シート材を冷却、成形し、平均厚さ2.0mm、平面視で100mm×200mmの矩形状に切り出し、光学性積層体を作成した。 [3] Next, the first layer forming material and the second layer forming material are stored in different extruders, melted, coextruded from a T die, and the first layer and the second layer are laminated. I got the wood. Then, the sheet material was cooled and molded, and cut into a rectangular shape having an average thickness of 2.0 mm and a plan view of 100 mm × 200 mm to prepare an optical laminate.
 なお、得られた光学性積層体の第1層の波長域が300nm~700nmの光の平均透過率は、1%以下であり、波長域が800nm~1100nmの光の平均透過率は、89%であり、波長域が1300nm~1600nmの光の平均透過率は、87%であった。また、光学性積層体の厚さ(総厚み)は2mmであった。
 また、得られた光学性積層体の第2層の厚さは、40μmであった。
The average transmittance of light having a wavelength range of 300 nm to 700 nm in the first layer of the obtained optical laminate is 1% or less, and the average transmittance of light having a wavelength range of 800 nm to 1100 nm is 89%. The average transmittance of light having a wavelength range of 1300 nm to 1600 nm was 87%. The thickness (total thickness) of the optical laminate was 2 mm.
The thickness of the second layer of the obtained optical laminate was 40 μm.
 また、励起光の第1ピークの励起波長は、550nmであり、発光光の第2ピークの蛍光波長は、590nmであり、第2ピークの最大強度は、1570であり、平均波長が905nmの近赤外光の平均透過率は、89%であり、平均波長が1550nmの近赤外光の平均透過率は、87%であった。 The excitation wavelength of the first peak of the excitation light is 550 nm, the fluorescence wavelength of the second peak of the emitted light is 590 nm, the maximum intensity of the second peak is 1570, and the average wavelength is close to 905 nm. The average transmittance of infrared light was 89%, and the average transmittance of near-infrared light having an average wavelength of 1550 nm was 87%.
 [実施例2]
 光学性積層体の構成を表1に示すように変更したこと以外は、前記実施例1と同様にして実施例2の光学性積層体を得た。
[Example 2]
An optical laminate of Example 2 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
 [実施例3]
 光学性積層体の構成を表1に示すように変更したこと以外は、前記実施例1と同様にして実施例3の光学性積層体を得た。
[Example 3]
An optical laminate of Example 3 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
 [実施例4]
 光学性積層体の構成を表1に示すように変更したこと以外は、前記実施例1と同様にして実施例4の光学性積層体を得た。
[Example 4]
An optical laminate of Example 4 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
 [比較例1]
 光学性積層体の構成を表1に示すように変更したこと以外は、前記実施例1と同様にして比較例1の光学性積層体を得た。
[Comparative Example 1]
An optical laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 1.
 [比較例2]
 光学性積層体の構成を表2に示すように変更したこと以外は、前記実施例1と同様にして比較例1の光学性積層体を得た。
[Comparative Example 2]
An optical laminate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the configuration of the optical laminate was changed as shown in Table 2.
1-2.評価
 各実施例および各比較例の光学シートを、以下の方法で評価した。
1-2. Evaluation The optical sheets of each example and each comparative example were evaluated by the following methods.
(光沢度評価(60°))
 JIS Z8741:1997(鏡面光沢度)に準拠して光沢度(gloss値)を測定し、以下のようにして評価を行った。
A:110°未満。
B:110°以上200未満。
C:200°以上。
(Glossiness evaluation (60 °))
The glossiness (gloss value) was measured according to JIS Z8741: 1997 (mirror glossiness), and the evaluation was performed as follows.
A: Less than 110 °.
B: 110 ° or more and less than 200.
C: 200 ° or more.
(意匠性評価)
 シート外観を目視によって以下のようにして評価を行った。
A:光沢感が少なく、周囲に溶け込む自然な調色。
B:光沢感が強く、ミラー調色。周りにミラー調やパール調があった場合にはなじむ。
C:黒。調色できない。
(Design evaluation)
The appearance of the sheet was visually evaluated as follows.
A: A natural toning that has little luster and blends into the surroundings.
B: Strong glossiness, mirror toning. If there is a mirror tone or pearl tone around it, it will be familiar.
C: Black. I can't adjust the color.
 以上のようにして得られた各実施例および各比較例の光学性積層体における評価結果を、それぞれ、下記の表1に示す。 The evaluation results of the optical laminates of each Example and each Comparative Example obtained as described above are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示したように、各実施例における光学性積層体では、各比較例以上に意匠性に優れ、各比較例に対して満足する結果となった。 As shown in Table 1, the optical laminates in each example were superior in design to each comparative example, and the results were satisfactory for each comparative example.
1   第1層(基材層)
2   第2層(蛍光層)
3   第3層(保護層)
5   紫外線吸収層
10  光学性積層体
10A 光学性積層体
10B 光学性積層体
1 First layer (base material layer)
2 Second layer (fluorescent layer)
3 Third layer (protective layer)
5 Ultraviolet absorption layer 10 Optical laminate 10A Optical laminate 10B Optical laminate

Claims (7)

  1.  主剤としてのポリカーボネートと、可視光を吸収する可視光吸収剤と、を含む第1層と、
     前記第1層に積層され、主剤としてのポリカーボネートと、蛍光色材と、を含む第2層と、を備え、
     前記蛍光色材は、200nm以上780nm以下の波長域に励起波長の強度の第1ピークを有する励起光で励起されて、380nm以上780nm以下の波長域に蛍光波長の強度の第2ピークを有する発光光を発光するように構成されていることを特徴とする光学性積層体。
    A first layer containing polycarbonate as a main agent and a visible light absorber that absorbs visible light,
    A second layer laminated on the first layer and containing a polycarbonate as a main agent and a fluorescent coloring material is provided.
    The fluorescent color material is excited by excitation light having a first peak of excitation wavelength intensity in a wavelength region of 200 nm or more and 780 nm or less, and emits light having a second peak of fluorescence wavelength intensity in a wavelength region of 380 nm or more and 780 nm or less. An optical laminate characterized by being configured to emit light.
  2.  前記蛍光色材は、アントラキノン系色素、ペリレン系色素、キノリン系色素、複素環系色素、ベンゾオキサゾール誘導体およびナフタレン系色素からなる群より選択される少なくとも1つである請求項1に記載の光学性積層体。 The optical property according to claim 1, wherein the fluorescent coloring material is at least one selected from the group consisting of anthraquinone dyes, perylene dyes, quinoline dyes, heterocyclic dyes, benzoxazole derivatives and naphthalene dyes. Laminated body.
  3.  前記第2層中における前記蛍光色材の含有量は、0.001wt%以上5.0wt%以下である請求項1または2に記載の光学性積層体。 The optical laminate according to claim 1 or 2, wherein the content of the fluorescent coloring material in the second layer is 0.001 wt% or more and 5.0 wt% or less.
  4.  前記蛍光色材において、前記第1ピークにおける最大強度の波長と、前記第2ピークにおける最大強度の波長との差が10nm以上150nm以下である請求項1ないし3のいずれか1項に記載の光学性積層体。 The optics according to any one of claims 1 to 3, wherein in the fluorescent color material, the difference between the maximum intensity wavelength at the first peak and the maximum intensity wavelength at the second peak is 10 nm or more and 150 nm or less. Sex laminate.
  5.  前記第1層は、850nm以上1100nm以下ないしは1300nm以上1600nm以下の波長域の光の透過率が85%以上95%以下である請求項1ないし4のいずれか1項に記載の光学性積層体。 The optical laminate according to any one of claims 1 to 4, wherein the first layer has a light transmittance of 85% or more and 95% or less in a wavelength range of 850 nm or more and 1100 nm or less or 1300 nm or more and 1600 nm or less.
  6.  赤外線センサーの受発光部を覆うカバー部材として用いられるように構成されている請求項1ないし5のいずれか1項に記載の光学性積層体。 The optical laminate according to any one of claims 1 to 5, which is configured to be used as a cover member for covering a light emitting / receiving portion of an infrared sensor.
  7.  請求項6に記載の光学性積層体を備えることを特徴とする移動体。 A mobile body including the optical laminate according to claim 6.
PCT/JP2021/011229 2020-03-19 2021-03-18 Optical multilayer body and moving body WO2021187600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508443A JPWO2021187600A1 (en) 2020-03-19 2021-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-050183 2020-03-19
JP2020050183 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187600A1 true WO2021187600A1 (en) 2021-09-23

Family

ID=77771069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011229 WO2021187600A1 (en) 2020-03-19 2021-03-18 Optical multilayer body and moving body

Country Status (2)

Country Link
JP (1) JPWO2021187600A1 (en)
WO (1) WO2021187600A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002704A (en) * 2008-06-20 2010-01-07 Mitsubishi Engineering Plastics Corp Resin composition for filter
JP2013101166A (en) * 2011-10-12 2013-05-23 Toyo Ink Sc Holdings Co Ltd Colored composition for color filter, and color filter
JP2016177273A (en) * 2015-03-19 2016-10-06 Jsr株式会社 Curable composition, cured film, infrared transmission filter, and solid state image pickup device
JP2018109742A (en) * 2016-12-28 2018-07-12 住友ベークライト株式会社 Optical layer
JP2018169579A (en) * 2017-03-30 2018-11-01 住友ベークライト株式会社 Optical layer
WO2019022213A1 (en) * 2017-07-28 2019-01-31 株式会社クラレ Layered/extruded resin sheet, and protective sheet for liquid crystal display with infrared sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002704A (en) * 2008-06-20 2010-01-07 Mitsubishi Engineering Plastics Corp Resin composition for filter
JP2013101166A (en) * 2011-10-12 2013-05-23 Toyo Ink Sc Holdings Co Ltd Colored composition for color filter, and color filter
JP2016177273A (en) * 2015-03-19 2016-10-06 Jsr株式会社 Curable composition, cured film, infrared transmission filter, and solid state image pickup device
JP2018109742A (en) * 2016-12-28 2018-07-12 住友ベークライト株式会社 Optical layer
JP2018169579A (en) * 2017-03-30 2018-11-01 住友ベークライト株式会社 Optical layer
WO2019022213A1 (en) * 2017-07-28 2019-01-31 株式会社クラレ Layered/extruded resin sheet, and protective sheet for liquid crystal display with infrared sensor

Also Published As

Publication number Publication date
JPWO2021187600A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6354888B2 (en) Optical layer
CN111630121B (en) Resin composition, optical layer, cover member, and moving object
KR102032591B1 (en) Adhesive laminate
KR102015683B1 (en) Synthetic resin laminate
JP6000962B2 (en) Plastic multilayer structure with low energy transmission
TW201527104A (en) Scratch-resistant polycarbonate resin laminate
WO2020022426A1 (en) Infrared light shielding multilayer sheet and method for producing same
WO2021187600A1 (en) Optical multilayer body and moving body
EP3932669B1 (en) Resin composition, molded body, optical layer, cover member and moving body
WO2021107038A1 (en) Optical layer, cover member and moving body
JP6919163B2 (en) Window members and vehicles
WO2021107040A1 (en) Optical layered body, mobile body, and camera
JP2018169579A (en) Optical layer
JP2001171060A (en) Biaxially oriented polyester film to be affixed on window
JP2014137441A (en) Light control film, method for manufacturing the same, and light control window
JP2022150261A (en) sheet material
JP2021149004A (en) Optical sheet base material
JP6919162B2 (en) Window members and vehicles
WO2020127105A1 (en) Aqueous adhesive layer
JP2019128367A (en) Optical sheet and optical component
JP2008058745A (en) Laminated polyester film for antireflection film
JP2003175577A (en) Biaxially oriented polyester film for being pasted on window
JP2003145701A (en) Biaxially oriented polyester film applied to window
JP2006184532A (en) Near-infrared absorption film and near-infrared absorption filter
JP2012218336A (en) Colored biaxially oriented laminated polyester film for molding processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770802

Country of ref document: EP

Kind code of ref document: A1