WO2021187418A1 - 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー - Google Patents

船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー Download PDF

Info

Publication number
WO2021187418A1
WO2021187418A1 PCT/JP2021/010375 JP2021010375W WO2021187418A1 WO 2021187418 A1 WO2021187418 A1 WO 2021187418A1 JP 2021010375 W JP2021010375 W JP 2021010375W WO 2021187418 A1 WO2021187418 A1 WO 2021187418A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
propeller
ship
angle
gate
Prior art date
Application number
PCT/JP2021/010375
Other languages
English (en)
French (fr)
Inventor
佐々木 紀幸
栗林 定友
Original Assignee
株式会社ケイセブン
佐々木 紀幸
かもめプロペラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケイセブン, 佐々木 紀幸, かもめプロペラ株式会社 filed Critical 株式会社ケイセブン
Priority to CA3169008A priority Critical patent/CA3169008A1/en
Priority to US17/912,467 priority patent/US20230166825A1/en
Priority to CN202180021757.7A priority patent/CN115298089A/zh
Priority to EP21770860.1A priority patent/EP4122813A4/en
Priority to KR1020227031988A priority patent/KR20220139394A/ko
Publication of WO2021187418A1 publication Critical patent/WO2021187418A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H25/382Rudders movable otherwise than for steering purposes; Changing geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H2025/066Arrangements of two or more rudders; Steering gear therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • B63H2025/387Rudders comprising two or more rigidly interconnected mutually spaced blades pivotable about a common rudder shaft, e.g. parallel twin blades mounted on a pivotable supporting frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/50Slowing-down means not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a gate ladder having a left rudder and a right rudder arranged on both sides of a propeller provided at the stern of a ship.
  • a left rudder and a right rudder extending in the front-rear direction with a predetermined interval in the front-rear direction are provided on both sides of a propeller provided at the stern of the ship, and when the ship is stopped, the left rudder and the right rudder are provided.
  • Kate ladder technology is known to move the rudder to the rear of the propeller.
  • Patent Document 2 the technology of a duct propeller equipped with a left rudder and a right rudder formed in an arc shape along the outer peripheral portion of the propeller on both sides of the propeller is known.
  • a main object of the present invention is to provide a gate ladder capable of reducing energy consumption during the voyage of a ship.
  • Another object of the present invention is to provide a gate ladder capable of suppressing the occurrence of cavitation erosion generated on the inner surface of the left and right rudders.
  • the purpose is to optimize the capacity of the steering gear to a size commensurate with the small rudder area.
  • the present invention that solves the above problems is as follows.
  • the invention according to claim 1 is in a gate ladder including a pair of rudders including a left rudder and a right rudder arranged on both sides of a stern propeller.
  • the rudder is formed by a first rudder portion extending in the left-right direction and a second rudder portion extending linearly in the vertical direction, and the rudder chord length in the front-rear direction of the second rudder portion is defined as described above. It is formed to be 40 to 100% of the diameter of the propeller, and the propeller is provided between the front edge of the second rudder and 15 to 65% of the rudder chord length in the side view, and drives the rudder in the side view.
  • the gate rudder is characterized in that the rudder shaft is provided at a position of 30 to 50% of the rudder chord length from the front edge of the second rudder portion.
  • the invention according to claim 2 is the gate according to claim 1, wherein the rudder shaft for driving the rudder is provided at a position 35 to 45% of the rudder chord length from the leading edge of the second rudder portion in a side view. It is a rudder.
  • the invention according to claim 3 is the gate ladder according to claim 1 or 2, wherein the clearance between the propeller and the second rudder portion is formed to be 4 to 10% of the diameter of the propeller in a rear view.
  • a twist angle is formed in the second rudder portion, and the upper twist angle formed in the upper part of the second rudder portion is changed to the lower portion formed in the upper part of the second rudder portion.
  • the gate ladder according to any one of claims 1 to 3, which is formed to be larger than the twist angle.
  • the invention according to claim 5 is the gate ladder according to claim 4, wherein the upper twist angle is formed to be 3 degrees or more and the lower twist angle is formed to be 5 degrees or less.
  • the invention according to claim 6 is the gate ladder according to any one of claims 1 to 5, which steers the second rudder forward when the ship is stopped.
  • the large rudder force due to the coranda effect and the large rudder force due to the USB effect generated at the rear generate a large thrust that moves the ship forward, reducing energy consumption during the ship's voyage, and at the same time minimizing the rudder torque. It can also be converted.
  • the rudder shaft for driving the rudder is set to 35 to 45 of the rudder chord length from the leading edge of the second rudder portion in the side view. Since it is provided at the% position, a larger rudder force can be generated when the second rudder portion is steered forward, and at the same time, the rudder torque can be further minimized.
  • the clearance between the propeller and the second rudder portion is formed to be 4 to 10% of the diameter of the propeller in the rear view. It is possible to maintain a large steering force due to the USB effect generated at the rear portion of the second rudder portion and prevent the occurrence of cavitation erosion on the inner surface of the second rudder shaft.
  • a twist angle is formed in the second rudder portion and formed on the upper part of the second rudder portion. Since the upper rudder angle formed is larger than the lower rudder angle formed on the upper part of the second rudder, the second rudder facing the shallow draft of the ship where the flow velocity of the suction flow flowing into the propeller is fast. Larger thrust is generated at the top of the section, which can further reduce the energy consumption during the voyage of the ship.
  • the upper twist angle is formed to be 3 degrees or more and the lower twist angle is 5 degrees or less. Since it is formed in, it is possible to reduce the energy consumption during the voyage of an enlarged ship such as a tanker from a thin ship shape such as a container ship.
  • a gate rudder provided with a left rudder and a right rudder on both sides of a propeller. It is a left side view of a gate ladder. It is a right side view of a gate ladder.
  • Cp 0.7
  • the right rudder of the gate ladder (a) is a right side view, (b) is a cross-sectional view of the upper part of the right rudder, (c) is a cross-sectional view of the lower part of the right rudder, and (d) is the twist angle of the right rudder. It is explanatory drawing of. It is a measured value of the resistance value when a model ship equipped with a normal rudder and a gate rudder is navigated at an oblique angle of 0 to 10 degrees. It is a measured value of the rudder lateral force when a model ship equipped with a normal rudder and a gate rudder is navigated at an oblique angle of 0 to 10 degrees. (A) of the disturbance of the flow field of the suction flow is a simulation of a gate ladder having no twist angle formed, and (b) is a simulation of a gate ladder having a twist angle formed.
  • the rudder of the present embodiment (hereinafter referred to as a gate rudder) is formed of a left rudder 2A and a right rudder 2B arranged on both sides of a ship propeller 1.
  • the left rudder 2A is formed of a first left rudder portion 5A extending in the left-right direction and a second left rudder portion 6A extending downward from the left end portion of the first left rudder portion 5A. It is also possible to connect the left end portion of the first left rudder portion 5A and the upper portion of the second left rudder portion 6A with an inclined and gently curved connecting portion (not shown).
  • a left rudder shaft 10A extending in the vertical direction is fixed to the right part of the first left rudder portion 5A, the upper part of the left rudder shaft 10A extends into the engine chamber of the ship, and the upper part of the left rudder shaft 10A is above the left rudder shaft 10A.
  • a left steering machine (not shown) for steering the left steering shaft 10A is connected.
  • the right rudder 2B is formed of a first right rudder portion 5B extending in the left-right direction and a second right rudder portion 6B extending downward from the right end portion of the first right rudder portion 5B. .. It is also possible to connect the left end portion of the first left rudder portion 5A and the upper portion of the second left rudder portion 6A with an inclined and gently curved connecting portion (not shown).
  • a right rudder shaft 10B extending in the vertical direction is fixed to the left portion of the first right rudder portion 5B, the upper part of the right rudder shaft 10B extends into the engine chamber of the ship, and the upper part of the right rudder shaft 10B is above the right rudder shaft 10B.
  • a right steering machine (not shown) for steering the right steering shaft 10B is connected.
  • the left rudder 2A and the right rudder 2B are collectively referred to as the rudder 2, and the first left rudder portion 5A and the first right rudder portion 5B are collectively referred to as the first rudder portion.
  • the left rudder unit 6A and the second right rudder unit 6B are collectively referred to as the second rudder unit 6, and the left rudder shaft 10A and the right rudder shaft 10B are collectively referred to as the rudder shaft.
  • the left rudder chord length CA of the second left rudder portion 6A is preferably formed to be 40 to 100% of the diameter D of the propeller 1 as well as the duct length of the duct propeller. As a result, the rudder force can be efficiently obtained from the second left rudder portion 6A.
  • the distance between the front end portion of the second left rudder portion 6A and 15 to 65% of the left rudder chord length CA that is, the front end portion E of the blade portion of the propeller 1 is set to the front end portion of the second left rudder portion 6A.
  • the rear end F of the blade portion of the propeller 1 is arranged from the front end of the second left rudder portion 6A to the front side of 65% of the left rudder string length CA. It is arranged.
  • the right rudder chord length CB of the second right rudder portion 6B is preferably formed to be 40 to 100% of the diameter D of the propeller 1. As a result, the steering force can be efficiently obtained from the second right steering portion 6B.
  • the distance between the front end portion of the second left rudder portion 6A and 15 to 65% of the right rudder chord length CB, that is, the front end portion E of the blade portion of the propeller 1 is set to the front end portion of the second left rudder portion 6A.
  • the rear end F of the blade portion of the propeller 1 is placed on the rear side of 15% of the right rudder chord length CB, and the rear end portion F of the blade portion of the propeller 1 is located on the front side of the right rudder chord length CB from the front end portion of the second left rudder portion 6A. It is arranged.
  • the left rudder string length CA and the right rudder string length CB are collectively referred to as the rudder string length C.
  • the left rudder shaft 10A is preferably provided from the leading edge of the second left rudder portion 6A to 30 to 50% of the left rudder chord length CA of the second left rudder portion 6A, and the right rudder shaft 10B is the second right rudder portion. It is preferably provided at 30 to 50% of the right rudder chord length CB of the second right rudder portion 6B from the leading edge of 6B. Further, in order to generate a large steering force during forward steering, the left rudder shaft 10A is provided from the front edge of the second left rudder portion 6A to 35 to 45% of the left rudder chord length CA of the second left rudder portion 6A.
  • the rudder force F N generated at the rear part of the second rudder portion 6 extending rearward from the propeller 1 is the rudder force F N1 generated at the rear portion of the second rudder portion 6 located outside the jet flow of the propeller 1.
  • the rudder force F N2 generated in the rear part of the second rudder portion 6 located in the jet flow of the propeller 1 can be substituted into the equation 1 for calculation.
  • the F N1 of the equation 1 can be calculated from the equation 2.
  • [rho is the density
  • U R1 speed at the steering position A R is the rear of the area of the second Hidarikaji portion 6A extending rearward from the propeller 1
  • the C L1 is the lift coefficient.
  • the UR1 of the equation 2 can be calculated from the equation 3.
  • Equation 5 The F N2 of Equation 1 can be calculated from Equation 5.
  • u R2 is a propeller axial component of velocity
  • v R is a circumferential component of velocity
  • the C L2 of Eq. 5 can be calculated from Eq. 7.
  • is the aspect ratio of the rudder and ⁇ is the rudder angle.
  • the ⁇ of the equation 1 can be calculated from the equation 8.
  • FIG. 7 shows the position of the center of action (dimensionless value) of the rudder force obtained from the water tank experiment in comparison with the normal rudder.
  • the outer peripheral line L of the propeller 1 and the left clearance TA of the left inner surface 7A of the second left rudder portion 6A extend forward of the propeller 1 due to the suction flow flowing into the propeller 1 by the suction force of the propeller 1.
  • the outer peripheral line L of the propeller 1 and the right clearance TB of the right inner surface 7B of the second right rudder portion 6B extend forward of the propeller 1 due to the suction flow flowing into the propeller 1 by the suction force of the propeller 1.
  • the left clearance TA and the right clearance TB are set to less than the specified clearance, the inner surfaces of the left and right rudders may be damaged by cavitation, and the left clearance TA and the right clearance TB are set to the specified clearance.
  • the flow velocity of the suction flow and the flow velocity of the jet flow may become low, the Coanda effect and the USB effect may decrease, and the steering force may decrease.
  • the left inner surface 7A and the right inner surface 7B are collectively referred to as an inner surface 7, and the left clearance TA and the right clearance TB are collectively referred to as a clearance T.
  • the left rudder shaft 10A is steered to a ⁇ rudder angle (forward steering angle), and the front portion of the second left rudder portion 6A is positioned on the front right side of the rear portion.
  • the rudder force generated when the rudder is in the rudder position is the second left rudder 6A by steering the left rudder shaft 10A to the + rudder angle (rear steering angle) due to the flap effect due to the interference between the stern and the second left rudder 6A. It is larger than the steering force generated when the front part of the is positioned on the front left side of the rear part.
  • the ⁇ rudder angle of the left rudder shaft 10A is the rudder angle obtained by steering the left rudder shaft 10A forward in the clockwise direction
  • the + rudder angle of the left rudder shaft 10A is the left rudder shaft 10A.
  • the rudder angle is steered backward in the counterclockwise direction
  • the-rudder angle of the right rudder shaft 10B is the rudder angle in which the right rudder shaft 10B is steered forward in the counterclockwise direction
  • the right rudder shaft 10B + rudder angle is This is a rudder angle in which the right rudder shaft 10B is steered backward in the clockwise direction.
  • the maximum steering angle of the-rudder angle of the left rudder shaft 10A is set to 15 degrees, which is the same as the steering force generated when the rudder angle is steered to the + rudder angle by 25 degrees.
  • the rotation angle of the left rudder shaft 10A can be arbitrarily set, but in the present embodiment, the rotation angle is set to 0 to 15 degrees for the ⁇ rudder angle and 0 to 105 degrees for the + rudder angle.
  • the maximum steering angle of the-rudder angle of the right steering shaft 10B is set to 15 degrees, which is the same as the steering force generated when the steering angle is steered to the + steering angle by 25 degrees.
  • the rotation angle of the right rudder shaft 10B can be arbitrarily set, but in the present embodiment, the rotation angle is set to 0 to 15 degrees for the ⁇ rudder angle and 0 to 105 degrees for the + rudder angle.
  • the left rudder shaft 10A is steered 15 degrees to the rudder angle
  • the right rudder shaft 10B is steered 15 degrees to the rudder angle, thereby promoting the idleness of the propeller. Since the water flow from the aircraft can be blocked and the inertial force of the propeller can be reduced, it is easy to shift to the reverse rotation state especially in the case of FPP (fixed pitch propeller), and the stopping performance and the reverse performance can be improved.
  • FPP fixed pitch propeller
  • the clearance T between the outer peripheral line L of the propeller 1 and the inner surface 7 of the second rudder portion 6 can be calculated from Equation 9.
  • Rp is the turning radius of the second rudder unit 6
  • Cp is a value obtained by dividing the length of the leading edge of the second rudder unit 6 and the rudder shaft 6 by the rudder chord length C in the side view (0. 3 to 0.5)
  • is the steering steering shaft at the ⁇ rudder angle of the rudder shaft 10 (set to 15 degrees in this embodiment).
  • the clearance T calculated by increasing from 0.4 to 0.7 is 0.06D to 0.1D. Therefore, it is preferable that the clearance T between the outer peripheral line L of the propeller 1 and the inner surface 7 of the second rudder portion 6 is formed to be 4 to 10% of the diameter D of the propeller 1.
  • the second left rudder portion 6A connects the centers of the second left rudder portion 6A in the width direction, and is a wing composed of a warp line (camber line) having a bulge on the propeller side. It is formed in a mold.
  • a warp line camber line
  • the suction flow generated by the propeller 1 generated on the front edge side of the inner surface 7A of the second left rudder portion 6A causes the Coanda effect, and the lift and the corresponding steering force are generated. Can be increased.
  • the second right rudder portion 6B is formed by an airfoil formed by a warp line (camber line) having a bulge on the propeller side connecting the centers of the second right rudder portion 6B in the width direction. ing.
  • a warp line camber line
  • the suction flow generated by the propeller 1 generated on the front edge side of the inner surface 7B of the second right rudder portion 6B causes the Coanda effect, and the lift and the corresponding steering force are generated. Can be increased.
  • the second left rudder portion 6A illustrated in FIG. 12 has a twist angle ⁇ A formed over the entire length of the rudder chord length of the second left rudder portion 6A, but is on the front side of the left rudder shaft 10A in side view. It is also possible to form a twist angle ⁇ A only in the front portion of the second left rudder portion 6A.
  • the upper left twist angle ⁇ A1 of the upper part of the second left rudder portion 6A is formed larger than the lower left twist angle ⁇ A2 of the lower part of the second left rudder portion 6A.
  • a large thrust is applied to the upper part of the second left rudder portion 6A facing the shallow draft of the ship with a high flow velocity such as the ship suction flow, which is more affected by the suction flow of the propeller than the flow velocity without the propeller operation. It can be generated efficiently.
  • the twist angle ⁇ A is formed on the entire length of the rudder string length of the second left rudder portion 6A, but in the side view, it is in front of the second left rudder portion 6A on the front side of the left rudder shaft 10A. It is also possible to form a twist angle ⁇ A only in the portion.
  • the front portion of the second right steering portion 12 is located on the right side of the virtual line with respect to the virtual line in the front-rear direction, and the second right The right twist angle ⁇ B is formed so that the rear portion of the rudder portion 6B is located on the left side of the virtual line.
  • the suction flow flowing into the propeller 1 and the jet flow ejected from the propeller 1 can flow with respect to the rudder chord line of the second right rudder portion 6B with a predetermined angle of attack, so that the second right rudder 6B can flow.
  • the resistance can be reduced and the lift can be increased.
  • the thrust that propels the ship forward can be increased.
  • the upper right twist angle ⁇ B1 of the upper part of the second right rudder portion 6B is formed larger than the lower right twist angle ⁇ B2 of the lower part of the second right rudder portion 6B.
  • twist angle ⁇ A and the twist angle ⁇ B are collectively referred to as the twist angle ⁇
  • twist angle ⁇ A1 and the twist angle ⁇ B1 are collectively referred to as the upper twist angle ⁇ 1 and are twisted.
  • the clearance angle ⁇ A2 and the twist angle ⁇ B2 are collectively referred to as the lower twist angle ⁇ 2.
  • the upper twist angle ⁇ 1 is formed larger than the lower twist angle ⁇ 2, and the upper twist angle ⁇ 1 is formed to be 3 degrees or more and the lower twist angle ⁇ 1 is formed.
  • the clearance angle ⁇ 2 is preferably formed at 5 degrees or less.
  • the rudder resistance of the gate ladder of the present embodiment is smaller than that of the normal rudder. It was also found that when the oblique angle of the ship is 0 to 9 degrees, the rudder resistance of the gate ladder acts as a thrust to propel the ship forward. From this, it was clarified that when the gate ladder of the present embodiment is used, there is an effect of significantly reducing the energy consumption during the voyage of the ship.
  • the gate ladder of the present embodiment is referred to as the rudder of the present invention, and the normal rudder is referred to as the normal rudder.
  • the rudder lateral force of the gate ladder of the present embodiment that is, the restoring force for returning the ship to the straight-ahead state is higher than that of the normal rudder. It turned out to be big. From this, it was clarified that when the gate ladder of the present embodiment is used, there is an effect of significantly improving the needle holding property of the ship.
  • the gate ladder of the present embodiment is referred to as the rudder of the present invention
  • the normal rudder is referred to as the normal rudder.
  • the gate ladder having the twist angle ⁇ formed in the second left rudder portion 6 attracts the suction flowing into the propeller 1 as compared with the gate ladder not forming the twist angle in the second left rudder portion 6. It was found to suppress the disturbance of the flow field. As a result, it was clarified that there is an effect of preventing a decrease in the flow velocity due to the turbulence of the suction flow, preventing a decrease in the thrust generated in the gate ladder, and maintaining a large thrust.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

【課題】船の航海中のエネルギ消費を低減することができるゲートラダーを提供する。 【解決手段】船尾のプロペラの両側に配置される左舵と右舵からなる一対の舵を備えるゲートラダーにおいて、背面視において、前記舵を左右方向に延在する第1舵部と上下方向に直線状に延在する第2舵部で形成し、前記第2舵部の前後方向の舵弦長さを前記プロペラの直径の40~100%に形成し、側面視において、前記プロペラを第2舵部の前縁から舵弦長さの15~65%の間に設け、側面視において、前記舵を駆動する舵軸を、前記第2舵部の前縁から舵弦長さの30~50%の位置に設けた。

Description

船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー
 本発明は、船の船尾に設けられたプロペラの両側に配置される左舵と右舵を備えるゲートラダーに関するものである。
 従来、船の船尾に設けられたプロペラの両側に、前後方向に所定の間隔を有して前後方向に延在する左舵と右舵を設け、船を停止させる場合には、左舵と右舵をプロペラの後方に移動させるケートラダーの技術が知られている。(特許文献1)
 また、プロペラから噴出される噴流を加速するために、プロペラの両側にプロペラの外周部に沿うように円弧状に形成された左舵と右舵を備えるダクトプロペラの技術が知られている。(特許文献2)
特許第5833278号公報 特開平1-501384号公報
 しかし、特許文献1の技術では、船の直進時に、コアンダ効果や航空機の高揚力装置に使用されるアッパーサーフェイスブローイング(以下、USBと言う)効果による十分な舵力が得られず、船の航海中のエネルギ消費を十分低減できていないという問題があった。また、プロペラの後方へ操舵するという特殊性から、大トルクが発生し、従来よりも小さい面積にも関わらず、従来とほぼ同じ操舵機の容量が必要であった。
 また、特許文献2の技術では、プロペラの効率を上げるために、プロペラと左右舵のクリアランスが小さく設定されているために、左右舵の内部にキャビテーションエロ―ジョンが発生しやすいという問題があった。
 そこで、本発明の主たる課題は、船の航海中のエネルギ消費を低減することができるゲートラダーを提供することにある。また、本発明の次なる課題は、左右舵の内面に発生するキャビテーションエロ―ジョンの発生を抑制することができるゲートラダーを提供することにある。さらに、操舵機の容量を小さな舵面積に見合ったサイズに最適化することにある。
 上記課題を解決した本発明は次記のとおりである。
 請求項1に係る発明は、船尾のプロペラの両側に配置される左舵と右舵からなる一対の舵を備えるゲートラダーにおいて、
 背面視において、前記舵を左右方向に延在する第1舵部と上下方向に直線状に延在する第2舵部で形成し、前記第2舵部の前後方向の舵弦長さを前記プロペラの直径の40~100%に形成し、側面視において、前記プロペラを第2舵部の前縁から舵弦長さの15~65%の間に設け、側面視において、前記舵を駆動する舵軸を、前記第2舵部の前縁から舵弦長さの30~50%の位置に設けたことを特徴とするゲートラダーである。
 請求項2に係る発明は、側面視において、前記舵を駆動する舵軸を、前記第2舵部の前縁から舵弦長さの35~45%の位置に設けた請求項1記載のゲートラダーである。
 請求項3に係る発明は、背面視において、前記プロペラと第2舵部のクリアランスを、前記プロペラの直径の4~10%に形成した請求項1又は2記載のゲートラダーである。
 請求項4に係る発明は、前記第2舵部に捻じり角を形成し、前記第2舵部の上部に形成された上部捻じり角を、前記第2舵部の上部に形成された下部捻じり角よりも大きく形成した請求項1~3のいずれか1項に記載のゲートラダーである。
 請求項5に係る発明は、前記上部捻じり角度を3度以上に形成し、前記下部捻じり角度を5度以下に形成した請求項4記載のゲートラダーである。
 請求項6に係る発明は、船の停止時には、前記第2舵部を前方操舵する請求項1~5のいずれか1項に記載のゲートラダーである。
 請求項1記載の発明によれば、背面視において、舵を左右方向に延在する第1舵部と上下方向に直線状に延在する第2舵部で形成し、第2舵部の前後方向の舵弦長さをプロペラの直径の40~100%に形成し、側面視において、プロペラを第2舵部の前縁から舵弦長さの15~65%の間に設け、側面視において、舵を駆動する舵軸を、第2舵部の前縁から舵弦長さの30~50%の位置に設けたので、船の直進時に、舵の第2舵部の前部に発生するコアンダ効果による大きな舵力と後部に発生するUSB効果による大きな舵力によって、船を前方に移動させる大きな推力が発生して船の航海中のエネルギ消費を低減することができ、同時に舵トルクの最小化を図かることもできる。
 請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、側面視において、舵を駆動する舵軸を、第2舵部の前縁から舵弦長さの35~45%の位置に設けたので、第2舵部を前方操舵した場合により大きな舵力を発生させることができ、同時に舵トルクをより最小化することができる。
 請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、背面視において、プロペラと第2舵部のクリアランスを、プロペラの直径の4~10%に形成したので、第2舵部の後部に発生するUSB効果による大きな舵力を維持すると共に、第2舵軸の内面のキャビテーションエロ―ジョンの発生を防止することができる。
 請求項4記載の発明によれば、請求項1~3のいずれか1項に記載の発明の効果に加えて、第2舵部に捻じり角を形成し、第2舵部の上部に形成された上部捻じり角を、第2舵部の上部に形成された下部捻じり角よりも大きく形成したので、プロペラに流れ込む吸引流の流速が速い船の喫水の浅い部分に対向する第2舵部の上部により大きな推力が発生して船の航海中のエネルギ消費をより低減することができる。
 請求項5記載の発明によれば、請求項1~4のいずれか1項に記載の発明の効果に加えて、上部捻じり角度を3度以上に形成し、下部捻じり角度を5度以下に形成したので、コンテナ船等のやせ型船形からタンカー等の肥大船の航海中のエネルギ消費を低減することができる。
 請求項6記載の発明によれば、請求項1~4のいずれか1項に記載の発明の効果に加えて、船の停止時には、第2舵部を前方操舵するので、船の停止時に、第2舵部に発生する大きな舵力によって船の停止距離を短くすることがでる。
プロペラの両側に左舵と右舵を備えるゲートラダーの斜視図である。 ゲートラダーの左側面図である。 ゲートラダーの右側面図である。 舵の前縁から舵弦長の30%(Cp=0.3)の位置に舵軸を設けた場合に舵角を取った際にプロペラ後流に被覆される舵の面積(全体に対するパーセンテージ)である。 舵の前縁から舵弦長の50%(Cp=0.5)の位置に舵軸を設けた場合に舵角を取った際にプロペラ後流に被覆される舵の面積(全体に対するパーセンテージ)である。 舵の前縁から舵弦長の70%(Cp=0.7)の位置に舵軸を設けた場合に舵角を取った際にプロペラ後流に被覆される舵の面積(全体に対するパーセンテージ)である。 舵角を0~60度操作した場合の舵力中心位置の測定値である。 ゲートラダーの背面図である。 前方操舵舵角から後方操舵舵角に操舵した場合の舵力の測定値である。 Cp=0.3とCp=0.5におけるプロペラとゲートラダーの最適クリアランスのシュミュレーションである。 船の旋回時における旋回角速度の通常の舵の測定値である。 船の旋回時における旋回角速度のゲートラダーの測定値である。 ゲートラダーの平面図である。 ゲートラダーの左舵の(a)は左側面図、(b)は左舵の上部の横断面図、(c)は左舵の下部の横断面図、(d)は左舵の捻じり角の説明図である。 ゲートラダーの右舵の(a)は右側面図、(b)は右舵の上部の横断面図、(c)は右舵の下部の横断面図、(d)は右舵の捻じり角の説明図である。 通常舵とゲートラダーを装備した模型船を斜行角度0~10度で航行した場合の抵抗値の測定値である。 通常舵とゲートラダーを装備した模型船を斜行角度0~10度で航行した場合の舵横力の測定値である。 吸引流れの流場の攪乱の(a)は捻じり角が形成されていないゲートラダー、(b)は捻じり角が形成されているゲートラダーのシュミュレーションである。
 図1に示すように、本実施形態の舵(以下、ゲートラダーと言う)は、船のプロペラ1の両側に配置される左舵2Aと右舵2Bから形成されている。
 左舵2Aは、左右方向に延在する第1左舵部5Aと、第1左舵部5Aの左端部から下方に向かって延在する第2左舵部6Aから形成されている。なお、第1左舵部5Aの左端部と第2左舵部6Aの上部を傾斜状、緩やかな曲線状の連結部(図示省略)で連結することもできる。
 第1左舵部5Aの右部には、上下方向に延在する左舵軸10Aが固定され、左舵軸10Aの上部は船の機関室内に延在し、左舵軸10Aの上部には、左舵軸10Aを操舵させる左操舵機(図示省略)が連結されている。
 同様に、右舵2Bは、左右方向に延在する第1右舵部5Bと、第1右舵部5Bの右端部から下方に向かって延在する第2右舵部6Bから形成されている。なお、第1左舵部5Aの左端部と第2左舵部6Aの上部を傾斜状、緩やかな曲線状の連結部(図示省略)で連結することもできる。
 第1右舵部5Bの左部には、上下方向に延在する右舵軸10Bが固定され、右舵軸10Bの上部は船の機関室内に延在し、右舵軸10Bの上部には、右舵軸10Bを操舵させる右操舵機(図示省略)が連結されている。
 なお、本明細書においては、左舵2Aと右舵2Bを総称して舵2と言い、第1左舵部5Aと第1右舵部5Bを総称して第1舵部と言い、第2左舵部6Aと第2右舵部6Bを総称して第2舵部6と言い、左舵軸10Aと右舵軸10Bを総称して舵軸と言う。
 <第2舵部の舵弦長>
 図2に示すように、第2左舵部6Aの左舵弦長CAは、ダクトプロペラのダクト長さと同様にプロペラ1の直径Dの40~100%に形成するのが好ましい。これにより、第2左舵部6Aから効率良く舵力を得ることができる。
 また、プロペラ1は、第2左舵部6Aの前端部から左舵弦長CAの15~65%の間、すなわち、プロペラ1の羽根部の前端部Eを第2左舵部6Aの前端部から左舵弦長CAの15%よりも後側に配置し、プロペラ1の羽根部の後端部Fを第2左舵部6Aの前端部から左舵弦長CAの65%よりも前側に配置している。
 同様に、図3に示すように、第2右舵部6Bの右舵弦長CBは、プロペラ1の直径Dの40~100%に形成するのが好ましい。これにより、第2右舵部6Bから効率良く舵力を得ることができる。
 また、プロペラ1は、第2左舵部6Aの前端部から右舵弦長CBの15~65%の間、すなわち、プロペラ1の羽根部の前端部Eを第2左舵部6Aの前端部から右舵弦長CBの15%よりも後側に配置し、プロペラ1の羽根部の後端部Fを第2左舵部6Aの前端部から右舵弦長CBの65%よりも前側に配置している。
 なお、本明細書においては、左舵弦長CAと右舵弦長CBを総称して舵弦長Cと言う。
 <舵軸の配置>
 左舵軸10Aは、第2左舵部6Aの前縁から第2左舵部6Aの左舵弦長CAの30~50%に設けるのが好ましく、右舵軸10Bは、第2右舵部6Bの前縁から第2右舵部6Bの右舵弦長CBの30~50%に設けるのが好ましい。また、前方操舵時に大きな舵力を発生させるためには、左舵軸10Aは、第2左舵部6Aの前縁から第2左舵部6Aの左舵弦長CAの35~45%に設けるのが好ましく、右舵軸10Bは、第2右舵部6Bの前縁から第2右舵部6Bの右舵弦長CBの35~45%に設けるのがより好ましい。これにより、左舵軸10Aと右舵軸10Bを操舵させるトルクを小さくすることができ、また、後述するように、船を停止する場合には、船の直進時にプロペラ1よりも後方に延在する第2左舵部6Aと第2右舵部6Bの後部の舵力の減少を抑制することもできる。
 プロペラ1よりも後方に延在する第2舵部6の後部に発生する舵力FNは、プロペラ1の噴流外に位置する第2舵部6の後部の部位に発生する舵力FN1と、プロペラ1の噴流内に位置する第2舵部6の後部の部位に発生する舵力FN2を数1に代入して算出することができる。
Figure JPOXMLDOC01-appb-M000001
 数1のFN1は、数2から算出することができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、ρは密度、UR1は舵位置での速度、ARはプロペラ1よりも後方に延在する第2左舵部6Aの後部の面積、CL1は揚力係数である。
 数2のUR1は、数3から算出することができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、uR1は速度のプロペラ軸方向成分、vRは速度の周方向成分である。
 数2のCL1は、数4から算出することができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、λは舵のアスペクト比、δは舵角である。
 数1のFN2は、数5から算出することができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、ρは密度、UR2は舵位置での速度、ARはプロペラ1よりも後方に延在する第2舵部6の後部の面積、CL2は揚力係数である。
 数5のUR2は、数6から算出することができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、uR2は速度のプロペラ軸方向成分、vRは速度の周方向成分である。
 数5のCL2は、数7から算出することができる。
Figure JPOXMLDOC01-appb-M000007
 ここで、λは舵のアスペクト比、δは舵角である。
  数1のμは、数8から算出することができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、ACVはプロペラ1の噴流内に位置する第2舵部6の後部の部位の面積、ARはプロペラ1よりも後方に延在する第2舵部6の後部の面積、ηはプロペラ1の直径Dと舵2の高さHの比(D/H)である。
 図4~6に示すように、第2舵部6の前縁から第2舵部6の舵弦長Cの50%(Cp=0.5)よりも後方に舵軸10を設けた場合(例えばCp=0.7)には、数2,5のプロペラ1よりも後方に延在する第2舵部6の後部の面積ACVが急激に減少する。これにより、プロペラ1の噴流を受けてプロペラ1よりも後方に延在する第2舵部6の後部に発生する舵力FNが過度に小さくなる恐れがある。よって、プロペラ1よりも後方に延在する第2舵部6の後部に所定の舵力FNを発生させるために舵軸10は、第2舵部6の前縁から第2舵部6の舵弦長Cの50%以下に設けるのが好ましい。なお、図4~6中には、第2舵部6の後部の面積をCOVERED AREAと明記している。
 図7に示すように、操舵機を操作して舵角を0~60度に変更した場合に、舵力の作用中心位置(無次元値)は、通常の舵では舵角の増加と共に単調に20%から始まり40%付近まで変化するのに対して、ゲートラダーでは45%から始まって25%付近まで減少し、それからさらに55%付近に増加する。よって、最大舵トルクを最小にするには、舵軸位置を従来の30%付近から40%付近に移動させる必要がある。なお、図7は、水槽実験から得られた舵力の作用中心位置(無次元値)を通常と舵と比較して示している。
 <プロペラと舵部のクリアランス>
 図8に示すように、プロペラ1の外周線Lと第2左舵部6Aの左内面7Aの左クリアランスTAは、プロペラ1の吸引力によってプロペラ1に流れ込む吸引流によってプロペラ1よりも前方に延在する第2左舵部6Aの前部に発生するコアンダ効果による舵力と、プロペラ1から噴出される噴流によってプロペラ1よりも後方に延在する第2左舵部6Aの後部に発生するUSB効果による舵力に大きな影響を与える。
 同様に、プロペラ1の外周線Lと第2右舵部6Bの右内面7Bの右クリアランスTBは、プロペラ1の吸引力によってプロペラ1に流れ込む吸引流によってプロペラ1よりも前方に延在する第2右舵部6Bの前部に発生するコアンダ効果による舵力と、プロペラ1から噴出される噴流によってプロペラ1よりも後方に延在する第2右舵部6Bの後部に発生するUSB効果による舵力に大きな影響を与える。
 すなわち、左クリアランスTAと右クリアランスTBを所定未満のクリアランスにした場合には、左右舵部の内面にキャビテーションによる損傷を発生する恐れがあり、左クリアランスTAと右クリアランスTBを所定超のクリアランスにした場合には、吸引流の流速と噴流の流速が低速になりコアンダ効果とUSB効果が低下して舵力が小さくなる恐れがある。
 なお、本明細書においては、左内面7Aと右内面7Bを総称して内面7と言い、左クリアランスTAと右クリアランスTBを総称してクリアランスTと言う。
 図9に示すように、左舵2Aの場合には、左舵軸10Aを-舵角(前方操舵舵角)に操舵させて第2左舵部6Aの前部を後部よりも前方右側に位置する姿勢にした場合に発生する舵力は、船尾と第2左舵部6Aの干渉によるフラップ効果によって左舵軸10Aを+舵角(後方操舵舵角)に操舵させて第2左舵部6Aの前部を後部よりも前方左側に位置する姿勢にした場合に発生する舵力よりも大きくなる。
 同様に、左舵2Bの場合には、右舵軸10Bを-舵角に操舵させて第2右舵部6Bの前部を後部よりも前方左側に位置する姿勢にした場合に発生する舵力は、船の船尾と第2右舵部6Bの干渉によるフラップ効果によって右舵軸10Bを+舵角に操舵させて第2右舵部6Bの前部を後部よりも前方右側に位置する姿勢にした場合に発生する舵力よりも大きくなる。
 なお、図13に示すように、左舵軸10Aの-舵角は、左舵軸10Aを時計方向に前方操舵させた舵角であり、左舵軸10Aの+舵角は、左舵軸10Aを反時計方向に後方操舵させた舵角であり、右舵軸10Bの-舵角は、右舵軸10Bを反時計方向に前方操舵させた舵角であり、右舵軸10B+舵角は、右舵軸10Bを時計方向に後方操舵させた舵角である。
 一方、左舵軸10Aの-舵角を過度に操舵して、第2左舵部6Aの前部を船尾に過度に近づけると、プロペラ1に流れ込む吸引流の流場に攪乱が発生して、振動や騒音の原因となるキャビテーションを増大させる恐れがある。そこで、左舵軸10Aの-舵角の最大操舵舵角を+舵角に25度操舵した場合に発生する舵力と同じ舵力が得られる15度に設定するのが好ましい。なお、左舵軸10Aの回転角度は任意に設定することができるが、本実施形態では、-舵角に0~15度、+舵角に0~105度の回転角度に設定している。
 同様に、右舵軸10Bの-舵角を過度に操舵して、第2右舵部6Bの前部を船尾に過度に近づけると、プロペラ1に流れ込む吸引流の流場に攪乱が発生して、振動や騒音の原因となるキャビテーションを増大させる恐れがある。そこで、右舵軸10Bの-舵角の最大操舵舵角を+舵角に25度操舵した場合に発生する舵力と同じ舵力が得られる15度に設定するのが好ましい。なお、右舵軸10Bの回転角度は任意に設定することができるが、本実施形態では、-舵角に0~15度、+舵角に0~105度の回転角度に設定している。
 船を停止する場合には、左舵軸10Aを-舵角に15度操舵して、右舵軸10Bを-舵角に15度操舵することにより、プロペラの遊転を促進している船体前方からの水流を遮断でき、プロペラの慣性力を小さくできるため、特にFPP(固定ピッチプロペラ)の場合に後進回転の状態に移りやすく、停止性能や後進性能を向上させることができる。
 プロペラ1の外周線Lと第2舵部6の内面7のクリアランスTは、数9から算出することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、Rpは第2舵部6の回転半径、Cpは側面視において第2舵部6の前縁と舵軸6の長さを舵弦長Cで割った値(本実施形態では0.3~0.5に設定)、ψは舵軸10の-舵角の操舵舵軸(本実施形態では15度に設定)である。
 図10に示すように、Cp=0.3を数9に代入して、第2舵部6の舵弦長Cをプロペラ1の直径Dで割った値を0.4~0.7まで増加させて算出したクリアランスTは0.04D~0.06Dとなり、Cp=0.5を数9に代入して、第2舵部6の舵弦長Cをプロペラ1の直径Dで割った値を0.4~0.7まで増加させて算出したクリアランスTは0.06D~0.1Dとなる。よって、プロペラ1の外周線Lと第2舵部6の内面7のクリアランスTは、プロペラ1の直径Dの4~10%に形成するのが好ましい。
 これにより、船の直進時に、プロペラ1に流れ込む吸引流によってプロペラ1よりも前方に延在する第2左舵部6Aの前部に発生するコアンダ効果による大きな舵力と、プロペラ1から噴出される噴流によってプロペラ1よりも後方に延在する第2左舵部6Aの後部に発生するUSB効果による大きな舵力が発生して、船を前方に移動させる大きな推力(揚力)を発生させることができる。また、ダクトプロペラのクリアランスである0.03Dよりも大きなクリアランスTを形成することによって第2舵部6の内面Aの前部に発生するキャビテーションエロ―ジョンの発生を防止することができる。
 図11,12に示すように、プロペラの後方、特にCPP(可変ピッチプロペラ)の後方に装備された通常の舵は、-舵角と+舵角の操舵舵角が20度以上では船の旋回力(旋回角速度)が失速する傾向がある。一方、ゲートラダーは、-舵角と+舵角の操舵舵角が20度以上においても舵角に応じた旋回力(旋回角速度)が失速することなく増加傾向を維持することができる。なお、図11中には、本実施形態のゲートラダーをGate Rudderと表記し、通常の舵をFlap Rudderと表記し、横軸は舵角を示し、縦軸は旋回角速度を示している。
 図12に示すように、平面視において第2左舵部6Aは、第2左舵部6Aの幅方向の中心を結び、プロペラ側に膨らみを持った反り線(キャンバーライン)で構成される翼型で形成されている。これにより、特に、前方プロペラ側に向かう揚力が発生するが、第2左舵部6Aの内面7Aの前縁側に発生するプロペラ1による吸引流がコアンダ効果を生じさせ、揚力およびそれに対応する舵力を増加させることができる。
 同様に、平面視において第2右舵部6Bは、第2右舵部6Bの幅方向の中心を結び、プロペラ側に膨らみを持った反り線(キャンバーライン)で構成される翼型で形成されている。これにより、特に、前方プロペラ側に向かう揚力が発生するが、第2右舵部6Bの内面7Bの前縁側に発生するプロペラ1による吸引流がコアンダ効果を生じさせ、揚力およびそれに対応する舵力を増加させることができる。
 <捻じり角>
 図14に示すように、第2左舵部6Aには、前後方向の仮想線に対して、第2左舵部6Aの前部が仮想線よりも左側に位置し、第2左舵部6Aの後部が仮想線よりも右側に位置するように左捻じり角αAが形成されている。これにより、第2左舵部6Aの舵弦線に対してプロペラ1に流れ込む吸引流とプロペラ1から噴出される噴流を所定の迎え角を持って流すことができるので、第2左舵6Aはその抵抗を小さくして、その揚力を大きくすることができる。船を前方に推進する推力を大きくすることができる。なお、図12に図示した第2左舵部6Aは、第2左舵部6Aの舵弦長さの全長に捻じり角αAを形成しているが、側面視において左舵軸10Aよりも前側の第2左舵部6Aの前部のみに捻じり角αAを形成することもできる。
 第2左舵部6Aの上部の上部左捻じり角αA1は、第2左舵部6Aの下部の下部左捻じり角αA2よりも大きく形成されている。これにより、プロペラ作動が無い状態での流速に比べプロペラの吸引流の影響が大きい船吸引流等の流速が速い船の喫水の浅い部分に対向する第2左舵部6Aの上部で大きな推力を効率良く発生させることができる。
 なお、図14では、第2左舵部6Aの舵弦長さの全長に捻じり角αAを形成しているが、側面視において左舵軸10Aよりも前側の第2左舵部6Aの前部のみに捻じり角αAを形成することもできる。
 同様に、図15に示すように、第2右舵部6Bには、前後方向の仮想線に対して、第2右舵部12の前部が仮想線よりも右側に位置し、第2右舵部6Bの後部が仮想線よりも左側に位置するように右捻じり角αBが形成されている。これにより、第2右舵部6Bの舵弦線に対してプロペラ1に流れ込む吸引流とプロペラ1から噴出される噴流を所定の迎え角を持って流すことができるので、第2右舵6Bはその抵抗を小さくして、その揚力を大きくすることができる。船を前方に推進する推力を大きくすることができる。なお、図14に図示した第2右舵部6Bは、第2右舵部6Bの舵弦長さの全長に捻じり角αBを形成しているが、側面視において右舵軸10Bよりも前側の第2右舵部6Bの前部のみに捻じり角αBを形成することもできる。
 第2右舵部6Bの上部の上部右捻じり角αB1は、第2右舵部6Bの下部の下部右捻じり角αB2よりも大きく形成されている。これにより、プロペラ作動が無い状態での流速に比べプロペラの吸引流の影響が大きい船の喫水の浅い部分に対向する第2右舵部6Bの上部で大きな推力を効率良く発生させることができる。
 なお、本明細書においては、捻じり角αAと捻じり角αBを総称して捻じり角αと言い、捻じり角αA1と捻じり角αB1を総称して上部捻じり角α1と言い、捻じり角αA2と捻じり角αB2を総称して下部捻じり角α2と言う。
 本実施形態のゲートラダーにおいては、上部捻じり角α1は3度以上に形成され、下部捻じり角α2は5度以下に形成されている。なお、船の形状によって上部捻じり角α1等は異なり、コンテナ船等のやせ型船においては、上部捻じり角α1は5度、下部捻じり角α2は1度に形成するのが好ましく、タンカー等の肥大船においては、上部捻じり角α1は7度、下部捻じり角α2は3度に形成するのが好ましい。よって、上部捻じり角α1と下部捻じり角α2の関係を整理すると上部捻じり角α1は下部捻じり角α2よりも大きく形成し、上部捻じり角α1は3度以上に形成して下部捻じり角α2は5度以下に形成するのが好ましい。
 図16に示すように、波や風の影響を受けて船が斜行した場合に、本実施形態のゲートラダーの舵抵抗は、通常の舵よりも小さい。また、船の斜行角度が0~9度においては、ゲートラダーの舵抵抗は、船を前方に推進する推力として働くことが判った。これにより、本実施形態のゲートラダーを使用した場合には、船の航海中のエネルギ消費を大幅に削減する効果があることが明らかになった。なお、図16中には、本実施形態のゲートラダーを本発明舵と表記し、通常の舵を通常舵と表記している。
 図17に示すように、波や風の影響を受けて船が斜行した場合に、本実施形態のゲートラダーの舵横力、すなわち、船を直進状態に戻す復元力は、通常舵よりも大きいことが判った。これにより、本実施形態のゲートラダーを使用した場合には、船の保針性を大幅に向上させる効果があることが明らかになった。なお、図17中には、本実施形態のゲートラダーを本発明舵と表記し、通常の舵を通常舵と表記している。
 図18に示すように、第2左舵部6に捻じり角αを形成したゲートラダーは、第2左舵部6に捻じり角を形成しないゲートラダーに比較して、プロペラ1に流れ込む吸引流の流場の攪乱を抑制することが判った。これにより、吸引流の乱れによる流速の低下を防止して、ゲートラダーで発生する推力の低下を防止して大きな推力を維持する効果があることが明らかになった。
 本発明は、船のプロペラの両側に配置される左舵と右舵を備えたゲートラダーに適用することができる。
1    プロペラ
2    舵
2A   左舵
2B   右舵
5    第1舵部
6    第2舵部
10   舵軸
T    クリアランス
α    捻じり角
α1   上部捻じり角
α2   下部捻じり角

Claims (6)

  1.  船尾のプロペラの両側に配置される左舵と右舵からなる一対の舵を備えるゲートラダーにおいて、
     背面視において、前記舵を左右方向に延在する第1舵部と上下方向に直線状に延在する第2舵部で形成し、
     前記第2舵部の前後方向の舵弦長さを前記プロペラの直径の40~100%に形成し、
     側面視において、前記プロペラを第2舵部の前縁から舵弦長さの15~65%の間に設け、
     側面視において、前記舵を駆動する舵軸を、前記第2舵部の前縁から舵弦長さの30~50%の位置に設けたことを特徴とするゲートラダー。
  2.  側面視において、前記舵を駆動する舵軸を、前記第2舵部の前縁から舵弦長さの35~45%の位置に設けた請求項1記載のゲートラダー。
  3.  背面視において、前記プロペラと第2舵部のクリアランスを、前記プロペラの直径の4~10%に形成した請求項1又は2記載のゲートラダー。
  4.  前記第2舵部に捻じり角を形成し、前記第2舵部の上部に形成された上部捻じり角を、前記第2舵部の上部に形成された下部捻じり角よりも大きく形成した請求項1~3のいずれか1項に記載のゲートラダー。
  5.  前記上部捻じり角度を3度以上に形成し、前記下部捻じり角度を5度以下に形成した請求項4記載のゲートラダー。
  6.  船の停止時には、前記第2舵部を前方操舵する請求項1~5のいずれか1項に記載のゲートラダー。
PCT/JP2021/010375 2020-03-19 2021-03-15 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー WO2021187418A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3169008A CA3169008A1 (en) 2020-03-19 2021-03-15 Gate rudder provided with port rudder and starboard rudder disposed on either side of propeller of ship
US17/912,467 US20230166825A1 (en) 2020-03-19 2021-03-15 Gate rudder including left rudder and right rudder disposed left and right of propeller of ship
CN202180021757.7A CN115298089A (zh) 2020-03-19 2021-03-15 具有配置在船的螺旋桨的两侧的左舵和右舵的门舵
EP21770860.1A EP4122813A4 (en) 2020-03-19 2021-03-15 DOOR RUDDER WITH A PORT RUDDER AND A STARBOARD RUDDER ARRANGED ON EITHER SIDE OF A SHIP PROPELLER
KR1020227031988A KR20220139394A (ko) 2020-03-19 2021-03-15 선박의 프로펠러 양측에 배치되는 좌현 타와 우현 타를 구비하는 게이트 러더

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049646 2020-03-19
JP2020049646A JP7493359B2 (ja) 2020-03-19 2020-03-19 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー

Publications (1)

Publication Number Publication Date
WO2021187418A1 true WO2021187418A1 (ja) 2021-09-23

Family

ID=77770975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010375 WO2021187418A1 (ja) 2020-03-19 2021-03-15 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー

Country Status (7)

Country Link
US (1) US20230166825A1 (ja)
EP (1) EP4122813A4 (ja)
JP (1) JP7493359B2 (ja)
KR (1) KR20220139394A (ja)
CN (1) CN115298089A (ja)
CA (1) CA3169008A1 (ja)
WO (1) WO2021187418A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044839A1 (zh) * 2021-09-26 2023-03-30 无锡市东舟船舶设备股份有限公司 一种舵叶装置和船舶

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501384A (ja) 1986-11-20 1989-05-18 マリコ アクスゼセルスカプ 船の操縦装置
JP5833278B1 (ja) 2014-01-31 2015-12-16 株式会社ケイセブン 操舵装置及びその操舵方法
JP2016016777A (ja) * 2014-07-09 2016-02-01 株式会社ケイセブン 操舵装置
JP2016188033A (ja) * 2015-03-30 2016-11-04 株式会社ケイセブン 操舵装置
JP2019034709A (ja) * 2017-08-21 2019-03-07 株式会社ケイセブン 操舵装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833278B2 (ja) 1974-10-25 1983-07-19 株式会社日立製作所 流動床接触分解系における触媒の焼成強化方法
JPH0966895A (ja) * 1995-08-31 1997-03-11 Nippon Souda Syst Kk 高揚力二枚舵装置
JP3751260B2 (ja) * 2001-05-09 2006-03-01 ジャパン・ハムワージ株式会社 大型船用二枚舵システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501384A (ja) 1986-11-20 1989-05-18 マリコ アクスゼセルスカプ 船の操縦装置
JP5833278B1 (ja) 2014-01-31 2015-12-16 株式会社ケイセブン 操舵装置及びその操舵方法
JP2016016777A (ja) * 2014-07-09 2016-02-01 株式会社ケイセブン 操舵装置
JP2016188033A (ja) * 2015-03-30 2016-11-04 株式会社ケイセブン 操舵装置
JP2019034709A (ja) * 2017-08-21 2019-03-07 株式会社ケイセブン 操舵装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4122813A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044839A1 (zh) * 2021-09-26 2023-03-30 无锡市东舟船舶设备股份有限公司 一种舵叶装置和船舶

Also Published As

Publication number Publication date
US20230166825A1 (en) 2023-06-01
JP2021146924A (ja) 2021-09-27
EP4122813A4 (en) 2023-09-06
CN115298089A (zh) 2022-11-04
EP4122813A1 (en) 2023-01-25
JP7493359B2 (ja) 2024-05-31
EP4122813A8 (en) 2023-03-15
CA3169008A1 (en) 2021-09-23
KR20220139394A (ko) 2022-10-14

Similar Documents

Publication Publication Date Title
JP3751260B2 (ja) 大型船用二枚舵システム
AU711398B2 (en) Foldable propeller
JP5250550B2 (ja) 船首部に制御表面部を備えた船
JP2010064739A (ja) 推進舵取り装置
KR200395385Y1 (ko) 선박용 방향타
WO2021187418A1 (ja) 船のプロペラの両側に配置される左舵と右舵を備えるゲートラダー
US8215255B2 (en) Ship rudder and ship provided therewith
NL2003550C2 (en) Rudder and ship-like object having such a rudder.
KR101324965B1 (ko) 러더 및 이를 갖춘 선박
KR101701749B1 (ko) 선박 추진장치
JP7422839B2 (ja)
JP5244341B2 (ja) 船舶用推進装置及び船舶用推進装置の設計方法
JP4363795B2 (ja) 船舶用高揚力二枚舵システム
KR101918925B1 (ko) 선박에 마련되는 제어핀 및 선박
JP7107668B2 (ja)
EP4129816A1 (en) Stern bulbs
JPS59137294A (ja) 舶用屈曲舵
KR101323795B1 (ko) 선박
KR102288939B1 (ko) 러더벌브를 포함하는 선박용 방향타
KR101225148B1 (ko) 프로펠러 추진 선박
KR20230013651A (ko) 선박의 전가동 러더
JPH02151596A (ja) 2軸2舵船の舵
JPH04128999U (ja) 船舶の舵装置
JPH0657557B2 (ja) フイン付き船舶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3169008

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227031988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021770860

Country of ref document: EP

Effective date: 20221019