WO2021185301A1 - 波长测量装置和波长测量的方法 - Google Patents

波长测量装置和波长测量的方法 Download PDF

Info

Publication number
WO2021185301A1
WO2021185301A1 PCT/CN2021/081426 CN2021081426W WO2021185301A1 WO 2021185301 A1 WO2021185301 A1 WO 2021185301A1 CN 2021081426 W CN2021081426 W CN 2021081426W WO 2021185301 A1 WO2021185301 A1 WO 2021185301A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser
measured
detector
transmittance
Prior art date
Application number
PCT/CN2021/081426
Other languages
English (en)
French (fr)
Inventor
李裔
秦华强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021185301A1 publication Critical patent/WO2021185301A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Definitions

  • This application relates to the technical field of wavelength measurement, and in particular to a wavelength measurement device and a wavelength measurement method.
  • the laser wavelength is also the wavelength of the laser output, which is an important parameter of the laser beam output by the laser. Accurate measurement of the laser wavelength is of great significance in the basic research and application fields of optics.
  • a wavelength meter is usually used to measure the laser wavelength.
  • a Michelson wavelength meter can be used to measure the laser wavelength.
  • This type of wavelength meter requires a built-in reference laser in its structure.
  • the reference laser can emit a reference laser with a known wavelength, and the detector can record.
  • the light intensity information of the laser to be measured and the reference laser, the laser wavelength of the laser to be measured can be measured by comparing the light intensity information of the reference laser and the band measuring laser.
  • the built-in reference laser will make the volume of the wavelength meter larger, and the larger volume of the wavelength meter will have poor shock resistance, resulting in lower accuracy of the measured wavelength value.
  • the embodiments of the present application provide a wavelength measurement device and a wavelength measurement method, which can overcome the problems of related technologies.
  • the technical solutions are as follows:
  • a wavelength measuring device which includes an etalon, a rotating part, a spectroscopic part, and a plurality of detectors.
  • a plurality of light beams are obtained by splitting the beam; a reflecting mirror is installed on the rotating component, and the reflecting mirror is located on the optical path where the first light beam of the plurality of light beams is located, and the etalon is located on the reflecting optical path of the reflecting mirror ,
  • the first detector of the plurality of detectors is located on the transmitted light path of the etalon, and the second detector of the plurality of detectors is located on the optical path of the second light beam of the plurality of light beams
  • the rotating component is used to rotate the angle of the reflector to obtain a plurality of transmittance curves of the etalon at a plurality of angles of the reflector, wherein the angle and the transmittance curve are one by one Corresponding; the rotating component is also used to rotate the mirror so that the first detector outputs multiple light intensity values at multiple rotation angles of the mirror
  • the wavelength measuring device may further include a housing, and the housing is provided with a light inlet.
  • the laser light injected into the housing can be received by the light splitting component, and the laser light to be measured is divided into multiple beams.
  • the reflector on the rotating part is located on the optical path where the first beam of the multiple beams is located
  • the second detector is located on the optical path where the second beam of the multiple beams is located
  • the etalon is located on the reflection optical path of the reflector
  • the first detector is located on the transmitted light path of the etalon.
  • the ratio of the light intensity value output by the first detector to the light intensity value output by the second detector can be used as the transmittance of the laser to be measured in the etalon.
  • the transmittance curve is a periodic function of the transmittance with the wavelength. In this way, Knowing the transmittance curve and transmittance, the wavelength value can be obtained.
  • the wavelength measurement device further includes a processing component electrically connected to the rotating component and the multiple detectors; the processing component is configured to The light intensity value output by the second detector, the light intensity value output by the first detector at each of the multiple rotation angles of the reflector, determine the value of the laser beam to be measured passing the etalon at each rotation angle Transmittance; the processing component can also be used to determine, at each corner, the transmittance at the corner corresponds to the candidate wavelength value in the target wavelength period on the transmittance curve at the corner, the target wavelength The period is the wavelength period to which the laser to be measured belongs in the transmittance curve; the processing component may also be used to take the candidate wavelength value close to the maximum slope of the transmittance curve among the plurality of candidate wavelength values as the The wavelength value of the laser to be measured.
  • the transmittance curve and transmittance can be known to obtain wavelength values.
  • the transmittance curve is a periodic function of sine and cosine, one transmittance can obtain multiple wavelength values. Then you can filter by the target wavelength period of the laser to be measured on the transmittance curve, so that one transmittance corresponds to two wavelength values, so that m transmittances can get 2m wavelength values, and these 2m wavelength values can be called Candidate wavelength value. After that, among the plurality of candidate wavelength values, the candidate wavelength value close to the maximum slope of the transmittance curve is used as the wavelength value of the laser to be measured. In this way, according to the maximum slope of the transmittance curve, and no matter which transmittance is used to calculate that the same laser under test has a unique wavelength value, one can be determined from multiple candidate wavelength values as the wavelength value of the laser under test.
  • the processing component is further used to obtain a transmittance curve according to the multiple calibration lasers incident on the etalon at each of the multiple calibration corners;
  • the transmittance curve under the rotation angle determines the calibrated wavelength value corresponding to the transmittance peak within the target wavelength period, wherein the calibrated rotation angle corresponds to the calibrated wavelength value one-to-one; according to each calibrated rotation angle and the corresponding calibration
  • the wavelength value determines the corresponding relationship between the rotation angle and the wavelength; according to the light intensity value output by the first detector at each of the multiple rotation angles of the laser to be measured, the light intensity value of the laser to be measured and Correspondence of the turning angle; determining the spectrum of the laser to be measured according to the correspondence between the turning angle and the wavelength, and the correspondence between the intensity value of the laser to be measured and the turning angle.
  • the wavelength measuring device can not only measure the wavelength value, but also obtain the spectrum of the laser to be measured.
  • the corresponding may be that, first, multiple rotation angles can be selected, and these rotation angles are used to calibrate the rotation angle and the wavelength.
  • the relationship can be called the calibration angle.
  • the calibration angle 1 the calibration angle 2, the calibration angle 3, the more the number of calibration angles is selected, the higher the accuracy of the relationship between the calibration angle and the wavelength.
  • the number of calibration corners needs to be flexibly selected. For ease of introduction, three calibration corners are used as examples.
  • multiple lasers on the transmittance curve can be selected, or all lasers on the transmittance curve can be selected.
  • These lasers are used to enter the etalon to generate the transmittance curve.
  • These lasers can be called calibration lasers, for example, calibration laser 1 , Calibration laser 2, calibration laser 3, the more the number of calibration lasers selected, the higher the accuracy of the relationship between the obtained rotation angle and the wavelength.
  • calibration lasers for example, calibration laser 1 , Calibration laser 2, calibration laser 3, the more the number of calibration lasers selected, the higher the accuracy of the relationship between the obtained rotation angle and the wavelength.
  • Those skilled in the art can flexibly choose the number of calibration lasers according to their needs. Three calibration lasers are used as examples.
  • the calibrated wavelength value is the wavelength value corresponding to the peak of the transmittance curve, so it can also be called the central wavelength value.
  • the laser to be measured enters the wavelength measuring device, the rotating part drives the mirror to rotate, and the first detector outputs a light intensity value at each rotation angle, and the corresponding relationship between the light intensity value and the rotation angle can be obtained.
  • the corresponding relationship between the calibrated rotation angle and the wavelength, and the corresponding relationship between the light intensity value and the rotation angle it is converted into the corresponding relationship between the light intensity value and the wavelength, and then the spectrum of the laser to be measured is obtained, where the light intensity value
  • the correspondence between the wavelength and the wavelength is also the spectrum of the laser to be measured.
  • the wavelength measuring device can also evaluate the quality of the laser produced by the laser through the spectrogram. It can be seen that the applicability of the wavelength measurement device is more extensive.
  • the wavelength measurement device further includes a filter located on the optical path where the third beam of the plurality of beams is located; the third detection of the plurality of detectors The device is located on the transmission light path of the filter, and the light intensity value output by the third detector is used to determine the estimated wavelength value of the laser to be measured with the light intensity value output by the second detector. Determine the target wavelength period to which the laser to be measured belongs in the transmittance curve.
  • the estimated wavelength value can be a specific value or a range of values, but regardless of whether the estimated wavelength value belongs to a value or a range of values, the estimated wavelength value falls within a wavelength period. That is, the target wavelength period of the laser to be measured in the transmittance curve.
  • the ratio between the light intensity value output by the third detector and the light intensity value output by the second detector can be used as the transmittance of the laser to be measured through the filter. Then, according to the corresponding relationship between the transmittance of the filter and the wavelength, the wavelength value corresponding to the calculated transmittance can be obtained, and this wavelength value can be used as the estimated wavelength value of the laser to be measured. After the estimated wavelength value is determined in the above manner, the target wavelength period to which the estimated wavelength value belongs can be determined according to the position of the estimated wavelength value on the transmittance curve.
  • the wavelength measurement device further includes a temperature-resistant substrate, and the etalon, the rotating component, the spectroscopic component, and the multiple detectors are all installed on the temperature-resistant substrate. On the substrate.
  • the temperature-resistant substrate can be made of ceramic materials, and the temperature-resistant substrate has the characteristics of high temperature and non-deformation, which can improve the stability of the components mounted on it, thereby making the wavelength measurement device more effective
  • the stability is high, which can improve the accuracy of measuring the wavelength value.
  • the wavelength measuring device further includes a thermistor for monitoring the temperature inside the wavelength measuring device.
  • the thermistor can be installed on the inner wall of the housing for real-time monitoring of temperature changes in the housing.
  • the thermistor is electrically connected to the processing component, and is used to send the monitored temperature data to the processing component, so that the processing component is based on the difference between the pre-stored temperature and the compensation value of the temperature-affected parameter Correspondence, determine the compensation value of the parameter, so that the calculated wavelength value after temperature compensation is more accurate, and the influence of the temperature on the measurement result can be reduced.
  • the wavelength measurement device further includes a collimator, and the collimator is installed at the position of the light inlet of the wavelength measurement device.
  • the collimator may be a fiber collimator, and the laser to be measured enters the housing through the collimator, which can increase the luminous flux of the laser to be measured into the wavelength measuring device. Stronger.
  • the rotating component is a microelectromechanical system MEMS.
  • the rotating component is a component capable of rotating, for example, it may be a MEMS (micro-electro-mechanical system, micro-electro-mechanical system), and for example, the rotating component may also be a piezoelectric ceramic device.
  • MEMS micro-electro-mechanical system, micro-electro-mechanical system
  • the rotating component may also be a piezoelectric ceramic device.
  • this embodiment does not limit the specific implementation structure of the rotating component, and it is sufficient that the reflector can be rotated to adjust the incident angle into the etalon.
  • a wavelength measurement method characterized in that the method is applied to the above-mentioned wavelength measurement device, and the method includes: obtaining the target wavelength period of the laser to be measured in the transmittance curve According to the light intensity value output by the second detector and the light intensity value output by the first detector at each of the multiple rotation angles of the mirror, determine that the laser to be measured is at each rotation angle Through the transmittance of the etalon; at each corner, determine the candidate wavelength value corresponding to the transmittance at the corner and located in the target wavelength period on the transmittance curve at the corner; Among the candidate wavelength values, the candidate wavelength value close to the maximum slope of the transmittance curve is used as the wavelength value of the laser to be measured.
  • the ratio of the light intensity value output by the first detector to the light intensity value output by the second detector can be used as the transmittance of the laser to be measured in the etalon.
  • the transmittance curve is a periodic function of transmittance with wavelength. In this way, the transmittance curve and transmittance are known , You can get the wavelength value.
  • the transmittance curve is a periodic function of sine and cosine, one transmittance can get multiple wavelength values. Then you can filter by the target wavelength period of the laser to be measured on the transmittance curve, so that one transmittance corresponds to two wavelength values, so that m transmittances can get 2m wavelength values, and these 2m wavelength values can be called Candidate wavelength value. After that, among the plurality of candidate wavelength values, the candidate wavelength value close to the maximum slope of the transmittance curve is used as the wavelength value of the laser to be measured. In this way, according to the maximum slope of the transmittance curve, and no matter which transmittance is used to calculate that the same laser under test has a unique wavelength value, one can be determined from multiple candidate wavelength values as the wavelength value of the laser under test.
  • the method further includes: determining the calibration corresponding to the peak transmittance within the target wavelength period according to the transmittance curve obtained by the calibration laser incident on the etalon at the calibration rotation angle. Wavelength value; determine the corresponding relationship between the rotation angle and the wavelength according to the calibrated rotation angle and the calibrated wavelength value determined under the calibrated rotation angle; according to the light intensity value output by the first detector at each rotation angle of the laser to be measured, Determine the correspondence between the intensity value of the laser to be measured and the rotation angle; determine the spectrum of the laser to be measured according to the correspondence between the rotation angle and the wavelength, and the correspondence between the intensity of the laser to be measured and the rotation angle picture.
  • the spectrum diagram is also the relationship between the light intensity value and the wavelength or frequency.
  • the wavelength measurement device can be used to obtain the corresponding relationship between the rotation angle and the light intensity value. If the wavelength can be calibrated in advance The corresponding relationship between the rotation angle of the measuring device and the wavelength can be obtained from the corresponding relationship between the rotation angle and the light intensity value of the laser to be measured, and the corresponding relationship between the calibrated rotation angle and the wavelength, and the corresponding relationship between the light intensity value and the wavelength can be obtained , That is, the spectrum is obtained.
  • the wavelength measurement device has only one etalon, and an etalon occupies less space in the housing, and the rotating parts, detectors, and spectroscopic components in the housing also occupy less space, so the wavelength measurement Compared with the wavelength meter with a built-in reference laser, the device is small in size, and the small-sized wavelength measurement device has good shock resistance, which can improve the accuracy of the measured wavelength value.
  • FIG. 1 is a schematic structural diagram of a wavelength measurement device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a transmittance curve provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a wavelength measurement device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for measuring wavelength according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for measuring wavelength according to an embodiment of the present application.
  • the embodiment of the application relates to a wavelength measuring device, which is used to measure the wavelength value of a laser, where the wavelength or frequency value of the laser is an important optical parameter, and the dynamic and long-term stability of the wavelength are also used to evaluate the laser An important indicator of performance.
  • the wavelength measuring device provided by this application can not only measure the wavelength value of the laser to be measured, but also obtain the spectrum of the laser to be measured. From the spectrum, not only can the wavelength of the laser be read out, but it can also be used to determine whether the laser is single-wave or multi-wavelength. Wave, can also determine the center wavelength, line width and side mode of the laser.
  • the laser to be measured may be generated by a laser or modulated later, and the source of the laser to be measured is not limited in this embodiment. In order to measure accuracy, generally the spectral bandwidth of the laser to be measured is within one wavelength period on the transmittance curve of the etalon. If the laser to be measured is generated by a laser, after obtaining the spectrum of the laser to be measured in this embodiment, the quality of the laser can also be evaluated through the spectrum.
  • FIG 1 is a schematic structural diagram of the wavelength measuring device.
  • the wavelength measuring device may include an etalon 2, a rotating part 3, a spectroscopic part 4, and a plurality of detectors 5.
  • the spectroscopic part 4 is used to receive the laser to be measured and Split the laser beam to be measured to obtain multiple beams; a mirror 6 is installed on the rotating part 3, and the mirror 6 is located on the optical path where the first beam (marked in Figure 1) of the multiple beams is located, and the etalon 2 Located on the reflection light path of the mirror 6, the first detector 51 of the multiple detectors 5 is located on the transmitted light path of the etalon 2, and the second detector 52 of the multiple detectors 5 is located on the second of the multiple light beams.
  • the intensity value corresponds to one to one; the light intensity value output by the second detector 52, multiple light intensity values output by the first detector 51, and multiple transmittance curves are used to determine the wavelength value of the laser to be measured, and the second detector
  • the light intensity value output by 52 is used as a reference light intensity value, which has nothing to do with the rotation angle of the mirror 6.
  • the wavelength measuring device may further include a housing 1.
  • the etalon 2, the rotating part 3, the spectroscopic part 4, and a plurality of detectors 5 are all installed in the housing 1, and the housing 1 has a light inlet 11,
  • the beam splitting component 4 may be located on the incident light path of the light inlet 11, so that the beam splitting component 4 can receive the laser light to be measured and divide the laser light to be measured into multiple light beams.
  • the etalon 2 can also be called F-P etalon, which is an abbreviation of Fabry-Perot etalon, which is an interferometer mainly composed of two parallel flat glass or quartz plates.
  • F-P etalon is an abbreviation of Fabry-Perot etalon, which is an interferometer mainly composed of two parallel flat glass or quartz plates.
  • it can be an air gap etalon, which is composed of two parallel glass with an air medium in between.
  • the surface of the glass is coated with a film, and the reflectivity can be in the range of 50% to 99% (but not limited to this range), or it can be Other types of etalon.
  • the rotating component 3 is a component capable of rotating, for example, it can be a MEMS (micro-electro-mechanical system, micro-electro-mechanical system), and for another example, the rotating component 3 can also be a piezoelectric ceramic device. Among them, this embodiment does not limit the specific implementation structure of the rotating component 3, and the reflector 6 can be rotated to adjust the incident angle into the etalon 2.
  • MEMS micro-electro-mechanical system, micro-electro-mechanical system
  • the rotating component 3 can also be a piezoelectric ceramic device.
  • this embodiment does not limit the specific implementation structure of the rotating component 3, and the reflector 6 can be rotated to adjust the incident angle into the etalon 2.
  • the rotating part 3 drives the mirror 6 to rotate
  • the phase of the transmittance curve of the etalon changes
  • the transmittance curve is translated on the coordinate axis.
  • the range of the rotation angle of the mirror 6 can make the transmittance curve
  • the translation is exactly one period, for example, the rotation angle of the mirror 6 of the rotating part 3 can be tuned within ⁇ 0.7 degrees.
  • an angle sensor is also installed on the rotating component 3, and the angle sensor can be fixed to the reflector 6. In this way, when the mirror 6 rotates, the rotation angle of the mirror 6 can be obtained through the angle sensor.
  • the light splitting component 4 is used to divide the incident light into multiple light beams.
  • it may include at least one transflective beam splitter, for example, it can also include at least one transflective beam splitting prism,
  • it may also include both a beam splitter and a beam splitting prism, etc.
  • the specific structure of the beam splitting component 4 is not limited in this embodiment, as long as the beam splitting can be achieved.
  • the detector 5 is used to convert the received optical signal into an electrical signal, for example, it may be a photodiode.
  • the light intensity value output by the first detector 51 and the light intensity value output by the second detector are used to calculate the transmittance of the laser in the etalon 2, for example, the light intensity value output by the first detector 51 and the second detector 51
  • the ratio of the light intensity values output by the detector 52 is the transmittance of the laser light in the etalon 2.
  • the rotation angle of the mirror 6 corresponds to the transmittance curve one-to-one
  • the rotation angle of the mirror 6 also corresponds to the light intensity value output by the first detector 51
  • the light intensity output by the first detector 51 The ratio of the value and the light intensity value output by the second detector 52 is the transmittance of the laser to be measured in the etalon 2, so the light intensity value output by the first detector 51 and the transmittance of the laser to be measured in the etalon 2
  • the rotation angle of the mirror 6 corresponds to the transmittance of the laser to be measured in the etalon 2 one-to-one. Therefore, for each rotation angle of the reflection mirror 6, there is a transmittance curve and a transmittance.
  • the transmittance curve is the curve of the transmittance change with wavelength
  • the transmittance curve belongs to the periodic function of sine and cosine
  • the target wavelength period is also the wavelength range of the laser to be measured in the transmittance curve.
  • a light inlet 11 may be provided on the side wall of the housing 1, and the laser light emitted by the laser may enter the wavelength measuring device through the light inlet 11.
  • the light splitting component 4 can be installed on the incident light path of the light inlet 11 in the housing 1 to receive light from the light inlet 11, and then divide the received light into multiple light beams.
  • the light splitting component 4 The division of light into several beams is related to the number of parts in the housing 1 for receiving laser light. For example, if the housing 1 includes two detectors 5 for receiving laser light, the beam splitting component 11 can divide the laser light into two beams. For another example, the housing 1 includes three detectors 5 for receiving laser light. Then the light splitting component 11 can divide the laser light into three light beams.
  • a mirror 6 is installed on the rotating part 3.
  • the mirror 6 also rotates.
  • the reflector 6 can be located on the optical path where one of the multiple light beams emitted from the light splitting component 4 is located (which can be recorded as the first light beam). Since the reflector 6 can rotate, Therefore, the incident angle of the first light beam incident on the reflector 6 can be changed.
  • the etalon 2 may be located on the reflection light path of the reflector 6, and one of the plurality of detectors 5 (may be denoted as the first detector 51) may be located on the transmission light path of the etalon 2.
  • the light intensity values output by the first detector 51 and the second detector 52 can be processed by a processing device electrically connected to the wavelength measuring device, or can be processed by the wavelength measuring device.
  • the wavelength measurement device can be externally connected to a processing device, the wavelength measurement device is electrically connected to the processing device, and further, the detector of the wavelength measurement device 5
  • the collected signal can be transmitted to the processing device, so that the processing device can obtain the wavelength value of the laser to be measured.
  • the wavelength measuring device may include a processing component 7, which is installed in the housing 1, and the processing component 7 is electrically connected to the rotating component 3 and the plurality of detectors 5, respectively. connect.
  • the processing component 7 can determine that the laser to be measured passes the etalon 2 at each rotation angle according to the light intensity value output by the second detector 52 and the light intensity value output by the first detector 51 at each rotation angle of the plurality of rotation angles.
  • the transmittance; at each corner, the processing component 7 can determine the transmittance at the corner and the corresponding candidate wavelength value within the target wavelength period on the transmittance curve at the corner, where the target wavelength period is the laser to be measured
  • the wavelength period that belongs to the transmittance curve; among the multiple candidate wavelength values, the processing component 7 may use the candidate wavelength value close to the maximum slope of the transmittance curve as the wavelength value of the laser to be measured.
  • the wavelength value of the laser to be measured can be calculated according to the light intensity values output by the first detector 51 and the second detector 52.
  • the processing unit 7 of the wavelength measurement device is exemplified.
  • the specific principle of obtaining the wavelength value by the wavelength measuring device may be as follows:
  • I represents the transmittance, that is, the ratio of the light intensity value transmitted from the etalon to the light intensity value incident on the etalon;
  • R represents the reflectivity of the etalon;
  • n represents the refractive index of the etalon;
  • l It represents the cavity length of the etalon;
  • represents the angle between the beam in the etalon and the normal of the end face of the etalon;
  • represents the wavelength value.
  • the transmittance curve is a periodic function of the transmittance change with wavelength.
  • the phase of the transmittance curve can be changed, so that the transmittance curve is in the coordinate of the transmittance on the ordinate and the wavelength as the abscissa. Left and right panning occurs in the system.
  • the incident angle is related to the rotation angle of the reflector 6.
  • the incident angle of the laser incident on the etalon 2 can be adjusted by changing the rotation angle of the reflector 6. Therefore, each rotation angle of the reflector 6 corresponds to a transmittance curve.
  • the light intensity value received by the first detector 51 also changes, so each rotation angle of the reflector 6 also corresponds to an output light intensity value of the first detector 51.
  • the transmittance can be calculated by the ratio of the light intensity value transmitted from the etalon to the light intensity value incident on the etalon
  • the light intensity value transmitted from the etalon can be the light intensity value output by the first detector 51 Sure.
  • the second detector 52 of the plurality of detectors 5 is located on the optical path where the second beam of the plurality of beams is located, and the light intensity value output by the second detector 52 can be used as the light incident on the etalon. Therefore, the light intensity value output by the second detector 52 and the light intensity value output by the first detector 51 are used to calculate the transmittance of the laser light in the etalon 2.
  • the transmittance I through the etalon is Among them, P 1 is the light intensity value output by the first detector 51, and P 2 is the light intensity value output by the second detector 52.
  • the transmittance corresponding to the transmittance curve and the transmittance curve corresponding to the transmittance curve refer to the transmittance curve at the same corner and the transmittance calculated according to the first detector 51 and the second detector 52.
  • the transmittance curve belongs to the periodic function of sine and cosine, then one transmittance can get multiple wavelength values, and multiple transmittances can get multiple wavelength values.
  • one transmittance can get multiple wavelength values, and multiple transmittances can get multiple wavelength values.
  • filter out a wavelength value from multiple wavelength values This can be done in the following ways:
  • the technician can perform the first round of screening according to the target wavelength period to which the estimated wavelength value of the laser to be measured belongs on the transmittance curve.
  • each transmittance corresponds to two wavelength values.
  • the m transmittances can obtain 2m wavelength values, and these 2m wavelength values can be called candidate wavelength values.
  • Figure 2 is a part of the transmittance curve of the transmittance I varying with the wavelength ⁇ .
  • the transmittance curve S 1 and the transmittance curve S 2 are both local curves in the target wavelength period, intersection point 1, intersection point 2.
  • the abscissas of intersection point 3 and intersection point 4 are all candidate wavelength values.
  • the estimated wavelength value of the laser to be measured may be a specific value or a range of values, which is the approximate value or approximate range value of the wavelength of the laser to be measured.
  • the technician can obtain the laser through the laser that generates the laser to be measured, or through the coarse measurement by adding a filter and a detector to the wavelength measurement device, the latter will be introduced below.
  • each transmittance is correct.
  • the wavelength values corresponding to multiple transmittances should be close, then each transmittance can be used
  • the corresponding wavelength values are compared with the wavelength values corresponding to other transmittances respectively, and the second round of screening is performed according to the magnitude of the difference, where the difference here refers to the absolute value.
  • the 2m wavelength values can be changed to m wavelength values.
  • These m wavelength values are correct and can be called correct wavelength values.
  • the wavelength values corresponding to I 1 are the abscissas of intersection 1 and 2, respectively, and the wavelength values corresponding to I 2 are the abscissas of intersection 3 and 4, respectively.
  • the difference between the wavelength values is used to filter out I 1 corresponds to the correct wavelength value, and I 2 corresponds to the correct wavelength value.
  • I 1 in the abscissa difference between intersection 1 and intersection 3 and 4, and the abscissa difference between intersection 2 and intersection 3 and 4, obviously, the difference between intersection 2 and intersection 3 is the smallest. Therefore , the correct wavelength value corresponding to I 1 is the abscissa corresponding to intersection 2.
  • the correct wavelength value corresponding to I 2 is the abscissa corresponding to intersection 3.
  • the transmittance curve shifts in the coordinate system, and only the accuracy of the wavelength value can be changed.
  • the transmittance curve where the slope is the largest, the transmittance changes most drastically with wavelength.
  • the wavelength value calculated by the transmission rate has higher accuracy, so the value corresponding to the calculated transmittance on the transmittance curve is used as the wavelength value.
  • the accuracy is higher, so the slope of the transmittance curve can be screened in the second round.
  • a wavelength value can be obtained, which can be used as the wavelength value of the laser to be measured, and the accuracy of the obtained wavelength value is higher.
  • the slope of I 2 on the corresponding transmittance curve is greater than The slope of I 1 on the corresponding transmittance curve, so the wavelength value corresponding to I 2 can be considered as the wavelength value closest to the maximum slope on the transmittance curve, which can be used as the wavelength value of the laser to be measured.
  • a technician uses the wavelength measuring device to determine the wavelength value of the laser to be measured, he can first pass the period of the laser to be measured in the transmittance curve (which can be recorded as the target wavelength period). Then through the transmittance curve obtained at each corner of the reflector 6 and the transmittance obtained by the first detector 51 and the second detector 52, it is possible to obtain the corresponding and corresponding transmittance curves of each transmittance on the corresponding transmittance curve.
  • the wavelength values within the target wavelength period, these wavelength values can be called candidate wavelength values.
  • a wavelength value can be selected from the candidate wavelength values as the wavelength of the laser to be measured value.
  • the difference between each wavelength value corresponding to each transmittance and the wavelength values corresponding to other transmittances can be used as the screening condition. Filter out the correct wavelength value corresponding to each transmittance from the candidate wavelength values.
  • the wavelength value at the maximum slope on the transmittance curve is the most accurate, and the target correct wavelength value closest to the maximum slope on the transmittance curve can be selected from the multiple correct wavelength values, and the target correct wavelength value As the wavelength value of the laser to be measured.
  • the correct wavelength value is selected as the wavelength value of the laser to be measured.
  • this embodiment does not limit the specific execution sequence of selecting a wavelength value from the candidate wavelength value as the wavelength value of the laser to be measured, and the technician can flexibly choose according to the actual situation.
  • FIG. 2 is a part where the transmittance of the transmission curve I with a wavelength ⁇ changes, angle ⁇ obtained transmittance curve and the transmittance. 1 when S 1 I 1, angle ⁇ transmittance curve obtained when 2 S 2 and transmittance I 2 , where S 1 and S 2 are the transmittance curves in the target wavelength period.
  • the wavelength values can be calculated according to the transmittance curve and transmittance in the target period. These wavelength values can be called It is a candidate wavelength value, that is, the wavelength values corresponding to the intersection point 1 to the intersection point 4 are all candidate wavelength values.
  • the correct wavelength value from the above multiple candidate wavelength values, where the correct wavelength value corresponding to I 1 at S 1 corresponds to the abscissa of intersection 2, and the correct wavelength value corresponding to I 2 at S 2 corresponds to intersection 3.
  • the abscissa therefore, the abscissas corresponding to intersection 2 and intersection 3 are the correct wavelength values.
  • a correct wavelength value closest to the maximum slope of the transmittance curve is selected from the above multiple correct wavelength values as the wavelength value of the laser to be measured.
  • the slope of intersection 3 on S 2 is greater than the slope of intersection 2 on S 2 , so the correct wavelength value corresponding to intersection 3 can be considered as the one closest to the maximum slope on the transmittance curve.
  • the wavelength value can be used as the wavelength value of the laser to be measured.
  • This kind of wavelength measuring device has only one etalon, one etalon occupies less space in the shell, and the rotating parts, detectors and spectroscopic parts in the shell also occupy less space. Therefore, the wavelength measuring device is compared with The wavelength meter with the built-in reference laser is small in size, and the small-sized wavelength measuring device has good shock resistance, which can improve the accuracy of the measured wavelength value.
  • the wavelength measuring device drives the mirror to rotate through the rotating component, and can adjust the incident angle into the etalon to obtain multiple transmittance curves, and then use the wavelength value closest to the maximum slope on the transmittance curve as the waiting The wavelength value of the laser is measured, so that the accuracy of the obtained wavelength value is higher, and the wavelength value measured by the wavelength measuring device is more accurate.
  • this wavelength measuring device can also obtain a spectrogram. After the technician obtains the spectrogram, he can read more information from the spectrogram. For example, the wavelength value of the laser to be measured can be read through the spectrogram, and it can be judged whether the laser to be measured is a single wave or a multiwave. The side mode value of the measured laser and the line width of the measured laser can also be used to determine the quality of the laser emitted by the measured laser through the above-mentioned information, which improves the wide range of use of the wavelength measuring device.
  • the process of obtaining the spectrogram by the wavelength measuring device may be as follows, and the process may be executed by the processing component 7: the processing component 7 can be incident on the etalon 2 at each of the plurality of calibration corners according to the plurality of calibration lasers.
  • the spectrogram is also the relationship between the light intensity value and the wavelength or frequency.
  • the wavelength measurement device can be used to obtain the corresponding relationship between the rotation angle and the light intensity value. If the wavelength measurement device can be pre-calibrated The corresponding relationship between the rotation angle and the wavelength can be obtained from the corresponding relationship between the rotation angle and the light intensity value of the laser to be measured, as well as the corresponding relationship between the calibrated rotation angle and the wavelength, to obtain the corresponding relationship between the light intensity value and the wavelength, that is Obtain a spectrogram.
  • the process of calibrating the corresponding relationship between the rotation angle and the wavelength can be as follows:
  • multiple corners can be selected. These corners are used to calibrate the relationship between the corner and the wavelength, which can be called the calibration corner.
  • the calibration corner 1 the calibration corner 2
  • the calibration corner 3 the calibration corner 3.
  • three calibration corners are used as examples.
  • multiple lasers on the transmittance curve can be selected, or all lasers on the transmittance curve can be selected.
  • These lasers are used to enter the etalon to generate the transmittance curve.
  • These lasers can be called calibration lasers, for example, calibration laser 1 , Calibration laser 2, calibration laser 3, the more the number of calibration lasers selected, the higher the accuracy of the transmittance curve at each calibration angle, and the higher the accuracy of the relationship between the obtained rotation angle and the wavelength.
  • the technology in this field The personnel can flexibly choose the number of calibration lasers according to their needs. For the convenience of introduction, three calibration lasers are used as examples.
  • the rotation angle of the mirror 6 is at the calibration rotation angle 1
  • the calibration laser 1, the calibration laser 2 and the calibration laser 3 are respectively incident on the wavelength measuring device, and the transmittance curve 1 of the etalon 2 corresponding to the calibration rotation angle 1 is obtained.
  • the transmittance curve 1 the wavelength value corresponding to the peak in the target wavelength period is determined, and the wavelength value is marked as the calibrated wavelength value 1, and then a set of (calibrated rotation angle 1, calibrated wavelength value 1) can be obtained.
  • the rotation angle of the reflector 6 is adjusted by rotating the component so that the rotation angle of the reflector 6 is the calibration angle 2.
  • the calibration laser 1, the calibration laser 2 and the calibration laser 3 are respectively incident on the wavelength measuring device, Obtain the transmittance curve 2 of the etalon 2 corresponding to the calibrated rotation angle 2.
  • the transmittance curve 2 determine the wavelength value corresponding to the peak in the target wavelength period. This wavelength value is marked as the calibrated wavelength value 2, and then a set of ( Calibration rotation angle 2, calibration wavelength value 2). Adjust the rotation angle of the reflector 6 through the rotating component 3 again, so that the rotation angle of the reflector 6 is the calibration angle 3, at which the calibration laser 1, the calibration laser 2 and the calibration laser 3 are incident on the wavelength measuring device, respectively, to obtain Calibrate the transmittance curve 3 of the etalon 2 corresponding to the calibrated rotation angle 3.
  • the calibrated wavelength value is the wavelength value corresponding to the peak of the transmittance curve, so it can also be called the central wavelength value.
  • the laser to be measured enters the wavelength measuring device, the rotating part 3 drives the mirror 6 to rotate, and the first detector 51 outputs a light intensity value at each rotation angle, and the corresponding relationship between the light intensity value and the rotation angle can be obtained.
  • the corresponding relationship between the calibrated rotation angle and the wavelength, and the corresponding relationship between the light intensity value and the rotation angle the corresponding relationship between the light intensity value and the wavelength is converted into the corresponding relationship between the light intensity value and the wavelength, and the corresponding relationship between the light intensity value and the wavelength is also The spectrum of the laser to be measured.
  • the wavelength measuring device can also evaluate the quality of the laser produced by the laser through the spectrogram. It can be seen that the applicability of the wavelength measurement device is more extensive.
  • the above-mentioned target wavelength period of the laser to be measured on the transmittance curve can be determined by the estimated wavelength value of the laser to be measured, and the estimated wavelength value can be obtained by the laser that generates the laser to be measured, or Calculated by filters and detectors, the corresponding implementation structure can be as follows:
  • the wavelength measuring device further includes a filter 8, which is installed in the housing 1.
  • the filter 8 is located in the light where the third light beam (marked 3 in Fig. 3) of the multiple light beams is located.
  • the third detector 53 of the plurality of detectors 5 is located on the transmission light path of the filter 8, and the light intensity value output by the third detector 53 is used to determine the light intensity value output by the second detector 52
  • the estimated wavelength of the laser to determine the target wavelength period of the laser to be measured in the transmittance curve.
  • the filter 8 may be a linear filter, or a glass sheet coated on the surface, the transmittance of which is linear or approximately linear with the wavelength of the incident light, and this filter with monotonic transmittance and wavelength is used.
  • the target wavelength period in which the wavelength of the laser to be measured lies in the transmittance curve can be determined.
  • the third detector 53 is similar to the first detector 51 and the second detector 52, and can also be a photodiode for converting the received optical signal into an electrical signal.
  • the filter 8 is located on the third detector 53 on the optical path where the third beam generated by the spectroscopic component 4 is located, the third detector 53 is located on the transmitted light path of the filter 8, and the second detector 52 is located on the optical path generated by the spectroscopic component 4.
  • the optical path where the second beam of light is located.
  • the laser to be measured enters the second detector 52 directly without passing through any objects, the light intensity value output by the second detector 52 can be called the reference light intensity value, and the laser to be measured enters the third detector through the filter 8
  • the light intensity value output by the third detector 53 is the light intensity value after being absorbed by the filter 8.
  • the light intensity value output by the third detector 53 and the light intensity value output by the second detector 52 are different
  • the ratio between the two can be used as the transmittance of the laser to be measured through the filter 8.
  • the wavelength value corresponding to the calculated transmittance can be obtained, and the wavelength value can be used as the estimated wavelength value of the laser to be measured.
  • processing components of the wavelength measuring device 7 is electrically connected to the third detector 53, processing means 7, after receiving a second light intensity value detector 52, P 2 and the third detector 53, light intensity values P 3,
  • the transmittance I of the laser to be measured through the filter 8 can be obtained as
  • the processing component 7 can obtain the wavelength value corresponding to the calculated transmittance according to the corresponding relationship between the transmittance of the filter 8 and the wavelength, and the wavelength value can be used as the estimated wavelength value of the laser to be measured.
  • the target wavelength period to which the estimated wavelength value belongs can be determined according to the position of the estimated wavelength value on the transmittance curve.
  • the environmental temperature of the wavelength measuring device varies greatly.
  • the ambient temperature in summer is relatively high, and the ambient temperature in winter is relatively low, and the ambient temperature in different areas is different.
  • the temperature change causes the components in the housing 1 to deform.
  • the wavelength measuring device may also include a temperature-resistant substrate 9 mounted on the housing 1.
  • the etalon 2, the rotating part 3, the spectroscopic part 4, the processing part 7, the filter 8 and the plurality of detectors 5 are all mounted on the temperature-resistant substrate 9.
  • the temperature-resistant substrate 9 may be made of ceramic material. In this way, the temperature-resistant substrate 9 has the characteristics of being non-deformable at high temperature, which can improve the stability of the components mounted on it, thereby making the wavelength measurement device more stable, thereby improving the accuracy of measuring the wavelength value.
  • the wavelength measurement device further includes a thermistor 10, the thermistor 10 is installed in the housing 1, for example, the thermistor 10 can be installed in The inner wall of the housing 1 is used to monitor the temperature change in the housing 1 in real time.
  • the thermistor 10 is electrically connected to the processing component 7 for sending the monitored temperature data to the processing component 7, so that the processing component 7 can compensate according to the pre-stored temperature and the temperature-affected parameters Correspondence between the values, determine the compensation value of the parameter, so that the calculated wavelength value after temperature compensation is more accurate, and the influence of the temperature on the measurement result can be reduced.
  • the wavelength measuring device may further include a collimator 12, and the collimator 12 It is installed on the outer wall of the housing 1 at a position corresponding to the light inlet 11.
  • the collimator 12 may be an optical fiber collimator.
  • the wavelength measuring device may include a housing 1, an etalon 2, a rotating part 3, a spectroscopic part 4, and a plurality of detectors 5, for example, three detectors, wherein the spectroscopic part 4 may include at least one beam splitter, for example, may include two beam splitters.
  • the above-mentioned components are located in the housing 1 and are mounted on the temperature-resistant substrate 9.
  • a thermistor 10 is also installed on the inner wall of the housing 1, a light inlet 11 is provided on the housing 1, and a collimator 12 is installed on the outer wall of the housing 1 at a position corresponding to the light inlet 11.
  • the first beam splitter of the beam splitter 4 is located on the incident light path of the light inlet 11, and the second beam splitter of the beam splitter 4 is located on the reflected light of the first beam splitter.
  • the mirror 6 of the rotating part 3 is located on the transmission light path of the second beam splitter.
  • the filter 8 is located on the transmission light path of the first beam splitter
  • the third detector 53 is located on the transmission light path of the filter 8
  • the second detector 52 is located on the reflection light path of the second beam splitter.
  • the etalon 2 is located on the reflection light path of the reflector 6, and the first detector 52 is located on the transmission light path of the etalon 2.
  • the wavelength measuring device can measure the wavelength value of the laser to be measured, and can also obtain the spectrum of the laser to be measured.
  • the process of measuring the wavelength of the laser to be measured can be:
  • the estimated wavelength value of the laser to be measured can be obtained by the light intensity values output by the second detector 52 and the third detector 53, and the corresponding relationship between the transmittance of the filter 8 and the wavelength.
  • the ratio of the light intensity value output by the third detector 53 to the light intensity value output by the second detector 52 is used to obtain the transmittance of the laser to be measured through the filter 8, and then according to the correspondence between the transmittance of the filter 8 and the wavelength Relationship, determine the estimated wavelength value of the laser to be measured.
  • the target wavelength period to which the wavelength of the laser to be measured belongs on the transmittance curve can be estimated through the estimated wavelength value of the laser to be measured.
  • the rotating part 3 drives the mirror 6 to rotate, and at each rotation angle of the mirror 6, a light intensity value output by the first detector 51 is obtained.
  • the light intensity value output by the first detector 51 and the second detector 51 The light intensity value output by 52 can get the transmittance of the laser to be measured through the etalon, and there is also a transmittance curve at each corner. In this way, at each corner, a transmittance through the etalon and a transmittance curve can be obtained.
  • the intersection of the transmittance and the corresponding transmittance curve in the target wavelength period can be obtained.
  • Multiple intersection points can be obtained under multiple corners, and then select the intersection point closest to the maximum slope of the transmittance curve and the correct wavelength value of the corresponding transmittance from the multiple intersection points.
  • the wavelength value at this intersection point can be used as the laser to be measured The wavelength value.
  • the above is the process of using the wavelength measuring device to calculate the wavelength value. You can also use the wavelength measuring device to obtain the spectrum of the laser to be measured. You can refer to the following:
  • a transmittance curve at the calibration angle can be obtained. Note that the transmittance curve is located at the target wavelength
  • the wavelength value corresponding to the wave crest in the period can be recorded as the calibration wavelength value, and a set of (calibration rotation angle, calibration wavelength value) is obtained.
  • multiple calibration angles can be obtained in multiple groups (calibration angle, calibration wavelength value). Through these multiple groups (calibrated rotation angle, calibration wavelength value), the corresponding relationship between the rotation angle and the wavelength can be obtained.
  • the laser to be measured is incident on the wavelength measuring device.
  • the first detector 51 can output a light intensity value at each rotation angle, and then the corresponding relationship between the light intensity value and the rotation angle can be obtained. .
  • the corresponding relationship between the intensity value of the laser to be measured and the rotation angle, and the corresponding relationship between the pre-calibrated wavelength and the rotation angle the corresponding relationship between the intensity of the laser to be measured and the wavelength can be obtained, that is, the spectrum of the laser to be measured picture.
  • the wavelength measuring device After obtaining the spectrogram by the wavelength measuring device, not only the wavelength value of the laser to be measured can be read out, but also the line width of the laser to be measured can be read out, and it can be judged whether the laser to be measured is single wave or multiwave, and it can also be evaluated. The quality is good or bad, etc., and it is widely used.
  • the wavelength measuring device has only one etalon, and an etalon occupies less space in the housing, and the rotating parts, detectors, and spectroscopic parts in the housing also occupy less space, so the wavelength Compared with the wavelength meter with a built-in reference laser, the measuring device is small in size, and the small-sized wavelength measuring device has good shock resistance, which can improve the accuracy of the measured wavelength value.
  • This application also provides a method for wavelength measurement, which can be applied to the above-mentioned wavelength measurement device.
  • the method can be executed by a processing device that is electrically connected to the wavelength measurement device, or can be processed by the wavelength measurement device.
  • Component execution This embodiment does not limit the execution subject.
  • the processing component of the wavelength measurement device can be used as an example. As shown in FIG. 4, the method can be executed according to the following process:
  • step 401 the target wavelength period to which the laser to be measured belongs in the transmittance curve of the etalon 2 is obtained.
  • the transmittance curve is the functional relationship between transmittance and wavelength or frequency, which can be determined according to the above-mentioned formula.
  • the processing component may first obtain the estimated wavelength value of the laser to be measured, and then determine the target wavelength period according to the estimated wavelength value, where the estimated wavelength value may be obtained by the laser that generates the laser to be measured, or may be obtained by The light intensity values output by the third detector 53 and the second detector 52 are calculated. For details, please refer to the above description, which will not be repeated here.
  • step 402 according to the light intensity value output by the second detector and the light intensity value output by the first detector at each of the multiple rotation angles of the reflector, it is determined that the laser beam to be measured passes the etalon at each rotation angle. Transmittance.
  • the transmittance through the etalon can be calculated by the light intensity value output by the first detector 51 and the light intensity value output by the second detector 52.
  • the transmittance is the ratio of the light intensity value output by the first detector 51 to the light intensity value output by the second detector 52. Due to the change of the rotation angle, the light intensity value output by the first detector 51 changes, so the rotation angle changes, and the transmittance through the etalon 2 also changes.
  • Each rotation angle corresponds to a transmittance, and the rotation angle is one-to-one with the transmittance through the etalon. correspond.
  • step 403 at each rotation angle, determine the candidate wavelength value corresponding to the transmittance under the rotation angle on the transmittance curve under the rotation angle and located within the target wavelength period.
  • the transmittance I 1 and the transmittance curve S 1 of the etalon 2 are obtained at a certain corner, and the transmittance I 2 and the transmittance curve S 2 of the etalon 2 It is obtained at another corner, and the wavelength values corresponding to intersection 1 to 4 are all candidate wavelength values.
  • step 404 among the multiple candidate wavelength values, the candidate wavelength value close to the maximum slope of the transmittance curve is used as the wavelength value of the laser to be measured.
  • the obtained wavelength value should be close, and the position of intersection 3 is close to the intersection of the maximum slope of the transmittance curve, so the wavelength corresponding to intersection 3
  • the value can be used as the wavelength value of the laser to be measured.
  • the wavelength measurement device can also be used to obtain the spectrum of the laser to be measured.
  • the use of the wavelength measurement device to obtain the spectrum can be performed as follows:
  • step 501 a plurality of calibration lasers are incident on the etalon at each calibration rotation angle among the plurality of calibration rotation angles, and the transmittance curve at each calibration rotation angle is obtained.
  • multiple calibration lasers are incident on the etalon at a calibrated rotation angle to obtain a transmittance curve. Then, if multiple calibration lasers are incident on the etalon at multiple calibrated rotation angles, each The transmittance curve under the calibrated corner, where the calibrated corner corresponds to the transmittance curve one-to-one.
  • step 502 the calibrated wavelength value corresponding to the transmittance peak in the target wavelength period is determined according to the transmittance curve at each calibrated rotation angle.
  • the calibrated rotation angle corresponds to the calibrated wavelength value one-to-one.
  • the transmittance curve at each calibrated rotation angle record the wavelength value corresponding to the peak in the target wavelength period on the transmittance curve.
  • This wavelength value can be called the calibrated wavelength value, so that a Group (calibrated rotation angle, calibrated wavelength value).
  • multiple groups calibrbration angle, calibrated wavelength value
  • step 503 the corresponding relationship between the rotation angle and the wavelength is determined according to each calibration rotation angle and the corresponding calibration wavelength value.
  • the corresponding relationship between the rotation angle and the wavelength can be generated through multiple groups (calibrated rotation angle, calibration wavelength value), where the more the number of (calibration rotation angle, calibration wavelength value), the corresponding relationship between the generated rotation angle and the wavelength The more precise.
  • step 504 according to the light intensity value output by the first detector at each rotation angle of the laser to be measured, the corresponding relationship between the light intensity value of the laser to be measured and the rotation angle is determined.
  • the laser to be measured is incident on the wavelength measuring device, and by rotating the reflector 6, the light intensity values output by the first detector 51 at a series of rotation angles can be obtained, and then the corresponding relationship between the light intensity value and the rotation angle can be obtained.
  • step 505 according to the corresponding relationship between the rotation angle and the wavelength, and the corresponding relationship between the light intensity value of the laser to be measured and the rotation angle, the spectrogram of the laser to be measured is determined.
  • the corresponding relationship between the light intensity value and the rotation angle of the laser to be measured and the corresponding relationship between the rotation angle and the wavelength calibrated in step 503, the corresponding relationship between the light intensity value and the wavelength can be generated, that is, it can be Generate the spectrum of the laser to be measured.
  • the wavelength measuring device has only one etalon, and an etalon occupies less space in the housing, and the rotating parts, detectors, and spectroscopic parts in the housing also occupy less space, so the wavelength Compared with the wavelength meter with a built-in reference laser, the measuring device is small in size, and the small-sized wavelength measuring device has good shock resistance, which can improve the accuracy of the measured wavelength value.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本申请公开了一种波长测量装置和波长测量的方法,属于波长测量技术领域。该波长测量装置包括标准具、转动部件、分光部件和多个探测器,其中分光部件用于接收待测激光并将其分束得到多个光束;转动部件上安装有反射镜,反射镜位于第一光束所在的光路上,标准具位于反射镜的反射光路上,第一探测器位于标准具的透射光路上,第二探测器位于第二光束所在的光路上;转动部件用于转动反射镜以获得多个透射率曲线并使第一探测器输出多个光强值,其中转角分别与透射率曲线和第一探测器输出的光强值一一对应;第二探测器输出的光强值、多个透射率曲线和第一探测器输出的多个光强值用于确定待测激光的波长值。采用本申请,可以提高的波长值的测量精度。

Description

波长测量装置和波长测量的方法
本申请要求于2020年3月19日提交中国国家知识产权局、申请号为202010197614.9、发明名称为“波长测量装置和波长测量的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及波长测量技术领域,特别涉及一种波长测量装置和波长测量的方法。
背景技术
激光波长也即是激光器输出的波长,是激光器输出激光光束的重要参数,精确地测量激光波长在光学的基础研究和应用领域具有重要意义。
目前通常使用波长计测量激光波长,例如,可以使用迈克尔逊波长计测量激光波长,这种波长计在结构上需要内置参考激光器,该参考激光器可以发出波长值已知的参考激光,探测器可以记录待测激光和参考激光的光强信息,通过比对参考激光与带测激光的光强信息可以测量出待测激光的激光波长。
内置参考激光器会使波长计的体积较大,体积较大的波长计其抗震性较差,导致所测量的波长值的准确度较低。
发明内容
本申请实施例提供了一种波长测量装置和波长测量的方法,能够克服相关技术的问题,所述技术方案如下:
一方面,提供了一种波长测量装置,所述波长测量装置包括标准具、转动部件、分光部件、多个探测器,其中:所述分光部件用于接收待测激光并将所述待测激光分束得到多个光束;所述转动部件上安装有反射镜,所述反射镜位于所述多个光束中的第一光束所在的光路上,所述标准具位于所述反射镜的反射光路上,所述多个探测器中的第一探测器位于所述标准具的透射光路上,所述多个探测器中的第二探测器位于所述多个光束中的第二光束所在的光路上;所述转动部件,用于转动所述反射镜角,以获得所述标准具在所述反射镜的多个转角下的多个透射率曲线,其中所述转角与所述透射率曲线一一对应;所述转动部件还用于转动所述反射镜以使所述第一探测器在所述反射镜的多个转角下输出多个光强值,其中所述转角与所述第一探测器输出的光强值一一对应;第二探测器输出的光强值、所述多个透射率曲线和所述第一探测器输出的多个光强值用于确定待测激光的波长值。
本申请实施例所示的方案,该波长测量装置还可以包括壳体,壳体上设置有进光口,分光部件可以位于壳体中且在进光口的入射光路上,这样通过进光***入壳体中的激光可以被 分光部件接收,并将待测激光划分为多个光束。其中,转动部件上的反射镜位于多个光束中的第一光束所在的光路上,第二探测器位于多个光束中的第二光束所在的光路上,标准具位于反射镜的反射光路上,第一探测器位于标准具的透射光路上。
这样,第一探测器输出的光强值与第二探测器输出的光强值之比可以作为待测激光在标准具中的透射率。反射镜的多个转角中的每个转角下,对应一个通过标准具的透射率,还对应一条通过标准具的透射率曲线,其中,透射率曲线是透射率随波长的周期函数式,这样,已知透射率曲线和透射率,可以得到波长值。
在一种可能的实现方式中,所述波长测量装置还包括处理部件,所述处理部件分别与所述转动部件和所述多个探测器电性连接;所述处理部件,用于根据所述第二探测器输出的光强值,反射镜的多个转角中每个转角下所述第一探测器输出的光强值,确定所述待测激光在每个转角下通过所述标准具的透射率;处理部件还可以用于在每个转角下,确定所述转角下的透射率在所述转角下的透射率曲线上对应的且位于目标波长周期内的候选波长值,所述目标波长周期为所述待测激光在透射率曲线中所属的波长周期;处理部件还可以用于在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。
本申请实施例所示的方案,由上述可知,已知透射率曲线和透射率,可以得到波长值,但是由于透射率曲线为正余弦的周期函数,一个透射率可以得到多个波长值。然后可以通过待测激光在透射率曲线上所属的目标波长周期进行筛选,使得一个透射率对应两个波长值,这样,m个透射率可以得到2m个波长值,这2m个波长值可以称为候选波长值。之后,在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。这样,根据透射率曲线的最大斜率,以及无论使用哪一个透射率计算同一个待测激光具有唯一一个波长值,可以从多个候选波长值中确定一个,作为待测激光的波长值。
在一种可能的实现方式中,所述处理部件还用于根据多个标定激光在多个标定转角中每个标定转角下入射到所述标准具中得到透射率曲线;根据所述每个标定转角下的透射率曲线,确定位于所述目标波长周期内的透射率峰值对应的标定波长值,其中所述标定转角与所述标定波长值一一对应;根据每个标定转角和相对应的标定波长值,确定转角与波长的对应关系;根据所述待测激光在多个转角中每个转角下,所述第一探测器输出的光强值,确定所述待测激光的光强值与转角的对应关系;根据所述转角与波长的对应关系,以及所述待测激光的光强值与转角的对应关系,确定所述待测激光的光谱图。
本申请实施例所示的方案,该波长测量装置不仅可以测量波长值,还可以得到待测激光的光谱图,相应的可以是,首先,可以选取多个转角,这些转角用于标定转角与波长的关系可以称为标定转角,例如,标定转角1、标定转角2、标定转角3,其中选取标定转角的数量越多,标定的转角与波长的关系的精度越高,本领域的技术人员可以根据需求灵活选择标定转角的数量,为便于介绍以三个标定转角进行示例。
然后,可以选取透射率曲线上的多个激光,或者选取透射率曲线上的所有激光,这些激光用于入射到标准具中产生透射率曲线,这些激光可以称为标定激光,例如,标定激光1、标定激光2、标定激光3,其中选取的标定激光的数量越多,得到的转角与波长的关系的精度越高,本领域的技术人员可以根据需求灵活选择标定激光的数量,为便于介绍以三个标定激光 进行示例。
之后,反射镜6的转角在标定转角1的情况下,标定激光1、标定激光2和标定激光3分别入射到该波长测量装置,得到标定转角1对应的标准具2的透射率曲线1,在透射率曲线1中确定位于目标波长周期内波峰所对应的波长值,该波长值记为标定波长值1,进而可以得到一组(标定转角1,标定波长值1)。同理,可以分别得到(标定转角2,标定波长值2)和(标定转角2,标定波长值2)。这样在多个标定转角下,得到多组(标定转角,标定波长值)之后,可以通过这多组(标定转角,标定波长值),得到转角与波长之间的对应关系。
其中,标定波长值是透射率曲线上波峰处所对应的波长值,故也可以称为中心波长值。
再之后,待测激光进入到该波长测量装置,转动部件带动反射镜进行转动,每个转角下第一探测器输出一个光强值,可以得到光强值与转角间的对应关系。这样,根据标定好的转角与波长间的对应关系,以及光强值与转角间的对应关系,转换为光强值与波长间的对应关系,进而得到待测激光的光谱图,其中光强值与波长间的对应关系也即是待测激光的光谱图。
这样得到待测激光的光谱图之后,不仅可以从光谱图中读出待测激光的波长值,还可以判断待测激光属于单波还是多波,还可以读出待测激光的中心波长、边模以及待测激光的线宽,其中,中心波长也即是光谱图中峰值处所对应的波长值,边模也即是光谱图中除峰值处以外所对应的波长值。如果光谱图中边模较少,则激光器所产生的激光的质量较好,可见该波长测量装置还可以通过光谱图评价激光器所产生的激光的质量好坏等。可见,该波长测量装置的应用性更加广泛。
在一种可能的实现方式中,所述波长测量装置还包括滤波器,所述滤波器位于所述多个光束中的第三光束所在的光路上;所述多个探测器中的第三探测器位于所述滤波器的透射光路上,所述第三探测器输出的光强值用于和所述第二探测器输出的光强值,确定所述待测激光的预估波长值,以确定所述待测激光在透射率曲线中所属的目标波长周期。
其中,预估波长值可以是一个具体的数值,也可以是一个数值范围,但是无论预估波长值属于一个数值还是属于一个数值范围,预估波长值均落在一个波长周期内,该波长周期也即是待测激光在透射率曲线中所属的目标波长周期。
本申请实施例所示的方案,第三探测器输出的光强值与第二探测器输出的光强值之间的比值,可以作为待测激光通过滤波器的透射率。然后,再根据滤波器的透射率与波长的对应关系,可以得到计算出的透射率所对应的波长值,该波长值可以作为待测激光的预估波长值。通过上述方式确定预估波长值之后,可以根据预估波长值在透射率曲线上所处的位置,确定预估波长值所属的目标波长周期。
在一种可能的实现方式中,所述波长测量装置还包括抗温变基板,所述标准具、所述转动部件、所述分光部件和所述多个探测器均安装在所述抗温变基板上。
本申请实施例所示的方案,抗温变基板可以由陶瓷材料制成,抗温变基板具有高温不变形的特性,可以提高安装在其上的部件的稳定性,进而使得该波长测量装置的稳定性较高,从而可以提高测量波长值的准确性。
在一种可能的实现方式中,所述波长测量装置还包括热敏电阻,用于监测所述波长测量装置内部的温度。
本申请实施例所示的方案,热敏电阻可以安装在壳体的内壁上,用于实时监测壳体内的 温度变化。在电性连接上,热敏电阻与处理部件电性连接,用于将监测到的温度数据发送给处理部件,以使处理部件根据预先存储的温度与受温度影响的参数的补偿值之间的对应关系,确定参数的补偿值,这样进行温度补偿后计算得到的波长值更加准确性,可以降低测量结果受温度的影响。
在一种可能的实现方式中,所述波长测量装置还包括准直器,所述准直器安装在所述波长测量装置的进光口位置处。
本申请实施例所示的方案,准直器可以是光纤准直器,激光器产生的待测激光通过准直器进入到壳体中,可以提高待测激光进入到波长测量装置中的光通量,光线更强。
在一种可能的实现方式中,所述转动部件为微机电***MEMS。
本申请实施例所示的方案,转动部件是能够发生旋转的部件,例如,可以是MEMS(micro-electro-mechanical system,微机电***),又例如,转动部件还可以是压电陶瓷器件。其中,本实施例对转动部件的具体实现结构不做限定,能够使反射镜实现旋转以调整进入到标准具中的入射角即可。
另一方面,还提供了一种波长测量的方法,其特征在于,所述方法应用于上述所述的波长测量装置,所述方法包括:获取待测激光在透射率曲线中所属的目标波长周期;根据所述第二探测器输出的光强值和所述反射镜的多个转角中每个转角下所述第一探测器输出的光强值,确定所述待测激光在每个转角下通过所述标准具的透射率;在每个转角下,确定所述转角下的透射率在所述转角下的透射率曲线上对应的且位于所述目标波长周期内的候选波长值;在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。
本申请实施例所示的方案,第一探测器输出的光强值与第二探测器输出的光强值之比可以作为待测激光在标准具中的透射率。每个转角下,对应一个通过标准具的透射率,还对应一条通过标准具的透射率曲线,其中,透射率曲线是透射率随波长的周期函数式,这样,已知透射率曲线和透射率,可以得到波长值。
但是由于透射率曲线为正余弦的周期函数,一个透射率可以得到多个波长值。然后可以通过待测激光在透射率曲线上所属的目标波长周期进行筛选,使得一个透射率对应两个波长值,这样,m个透射率可以得到2m个波长值,这2m个波长值可以称为候选波长值。之后,在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。这样,根据透射率曲线的最大斜率,以及无论使用哪一个透射率计算同一个待测激光具有唯一一个波长值,可以从多个候选波长值中确定一个,作为待测激光的波长值。
在一种可能的实现方式中,所述方法还包括:根据标定激光在标定转角下入射到所述标准具中得到的透射率曲线,确定位于所述目标波长周期内的透射率峰值对应的标定波长值;根据标定转角和在所述标定转角下确定的标定波长值,确定转角与波长的对应关系;根据所述待测激光在各个转角下,所述第一探测器输出的光强值,确定所述待测激光的光强值与转角的对应关系;根据所述转角与波长的对应关系,以及所述待测激光的光强值与转角的对应关系,确定所述待测激光的光谱图。
本申请实施例所示的方案,光谱图也即是光强值与波长或者频率之间的关系,使用该波长测量装置可以得到转角与光强值之间的对应关系,如果能够预先标定该波长测量装置的转 角与波长的对应关系,便可以由转角与待测激光的光强值间的对应关系,以及标定好的转角与波长间的对应关系,得到光强值与波长之间的对应关系,也即得到光谱图。
本申请实施例中,该波长测量装置只有一个标准具,一个标准具在壳体中的占用空间少,壳体中的转动部件、探测器和分光部件的占用空间也较少,故该波长测量装置相较于具有内置参考激光器的波长计体积小,体积小的波长测量装置其抗震性好,进而可以提高所测量的波长值的准确度。
附图说明
图1是本申请实施例提供的一种波长测量装置的结构示意图;
图2是本申请实施例提供的一种透射率曲线的示意图;
图3是本申请实施例提供的一种波长测量装置的结构示意图;
图4是本申请实施例提供的一种波长测量的方法流程示意图;
图5是本申请实施例提供的一种波长测量的方法流程示意图。
图例说明
1、壳体 2、标准具 3、转动部件 4、分光部件 5、探测器 6、反射镜 7、处理部件 8、滤波器 9、抗温变基板 10、热敏电阻 11、进光口 12、准直器 51、第一探测器 52、第二探测器 53、第三探测器
具体实施方式
本申请实施例涉及一种波长测量装置,该波长测量装置用于测量激光的波长值,其中,激光的波长值或频率值是一项重要的光学参数,波长的动态与长期稳定性也是评价激光器性能的重要指标。本申请所提供的波长测量装置不仅可以测量待测激光的波长值,还可以得到待测激光的光谱图,从光谱图上不仅可以读出激光的波长值,还可以确定激光属于单波还是多波,还可以确定激光的中心波长、线宽和边模等。
其中,待测激光可以是激光器产生的,也可以是后期调制的,本实施例对待测激光的来源不做限定。为了测量的准确性,一般待测激光的光谱宽带在标准具的透射率曲线上的一个波长周期内。如果待测激光是激光器产生的,那么,通过本实施例得到待测激光的光谱图之后,还可以通过光谱图评估激光器的质量好坏。
如图1所示为该波长测量装置的结构示意图,该波长测量装置可以包括标准具2、转动部件3、分光部件4、多个探测器5,其中:分光部件4用于接收待测激光并将待测激光分束得到多个光束;转动部件3上安装有反射镜6,反射镜6位于多个光束中的第一光束(如图1所标记的①)所在的光路上,标准具2位于反射镜6的反射光路上,多个探测器5中的第一探测器51位于标准具2的透射光路上,多个探测器5中的第二探测器52位于多个光束中的第二光束(如图1所标记的②)所在的光路上;转动部件3,用于转动反射镜6,以获得标准具2在反射镜的多个转角下的多个透射率曲线,其中转角与透射率曲线一一对应;转动部件3还用于转动反射镜6以使第一探测器51在反射镜6的多个转角下输出多个光强值,其中转角与第一探测器51输出的光强值一一对应;第二探测器52输出的光强值、第一探测器51输 出的多个光强值和多个透射率曲线用于确定待测激光的波长值,其中第二探测器52输出的光强值作为参考光强值,与反射镜6的转角无关。
其中,该波长测量装置还可以包括壳体1,这样,标准具2、转动部件3、分光部件4和多个探测器5均安装在壳体1中,壳体1上具有进光口11,分光部件4可以位于进光口11入射光路上,使得分光部件4可以接收待测激光并将待测激光划分为多个光束。
其中,标准具2也可以称为F-P标准具,F-P标准具是法布里-珀罗标准具的简称,主要由两块相互平行的平板玻璃或石英板构成的一种干涉仪。例如,可以是空气隙标准具,由中间为空气介质的两片平行玻璃构成,玻璃表面镀膜,反射率可以在50%~99%范围内(但并不局限在此范围内),还可以是其他类型的标准具。
转动部件3是能够发生旋转的部件,例如,可以是MEMS(micro-electro-mechanical system,微机电***),又例如,转动部件3还可以是压电陶瓷器件。其中,本实施例对转动部件3的具体实现结构不做限定,能够使反射镜6实现旋转以调整进入到标准具2中的入射角即可。
例如,转动部件3带动反射镜6进行旋转过程中,标准具的透射率曲线的相位发生改变,透射率曲线在坐标轴上进行平移,例如,反射镜6的转动角度的范围可使透射率曲线恰好平移一个周期,例如,转动部件3的反射镜6的转角可以在±0.7度内进行调谐。
其中,为了便于获取反射镜6的转角情况,相应的,转动部件3上还安装有角度传感器,角度传感器可以与反射镜6相固定。这样,反射镜6旋转时,可以通过角度传感器获取反射镜6的转角。
其中,分光部件4用于将射进的一束光分成多个光束,例如,可以包括至少一个半透半反的分束镜,又例如,也可以包括至少一个半透半反的分光棱镜,又例如,也可以既包括分束镜又包括分光棱镜等,本实施例对分光部件4的具体结构不做限定,能够实现分光即可。
探测器5用于将接收到的光信号转换为电信号,例如,可以是光电二极管。
其中,第一探测器51输出的光强值和第二探测器输出的光强值用于计算激光在标准具2中的透射率,例如,第一探测器51输出的光强值与第二探测器52输出的光强值之比即为激光在标准具2中的透射率。
其中,如上述所述反射镜6的转角与透射率曲线一一对应,反射镜6的转角还与第一探测器51输出的光强值一一对应,而第一探测器51输出的光强值与第二探测器52输出的光强值之比为待测激光在标准具2中的透射率,所以第一探测器51输出的光强值与待测激光在标准具2中的透射率一一对应,因此,可知反射镜6的转角与待测激光在标准具2中的透射率一一对应,故反射镜6的每个转角下,对应有一个透射率曲线和一个透射率。
其中,透射率曲线也即是透射率随波长变化的曲线,透射率曲线属于正余弦的周期函数,目标波长周期也即是待测激光在透射率曲线中所属的波长范围。
在一个示例中,如图1所示,壳体1的侧壁处可以设置有进光口11,激光器发射的激光可以通过进光口11进入到该波长测量装置中。分光部件4可以安装在壳体1中进光口11的入射光路上,用于接收从进光口11射入的光线,然后将接收到的一束光划分为多个光束,其中,分光部件4将光划分为几个光束与壳体1内用于接收激光的部件的个数相关。例如,壳体1中包括两个用于接收激光的探测器5,则分光部件11可以将激光划分为两个光束,又例如,壳体1中包括三个用于接收激光的探测器5,则分光部件11可以将激光划分为三个光束。
如图1所示,转动部件3上安装有反射镜6,转动部件3发生旋转时,反射镜6也跟着进行转动。如图1所示,在位置关系上,反射镜6可以位于从分光部件4射出的多个光束中的一个光束所在的光路(可以记为第一光束)上,由于反射镜6能够发生旋转,故入射到反射镜6上的第一光束的入射角可以发生改变。如图1所示,标准具2可以位于反射镜6的反射光路上,多个探测器5中的一个探测器(可以记为第一探测器51)可以位于标准具2的透射光路上。
其中,第一探测器51和第二探测器52输出的光强值可以由与该波长测量装置电性连接的处理设备来处理,也可以由该波长测量装置来处理。
例如,由与该波长测量装置电性连接的处理设备来处理的情况下,该波长测量装置可以外接一个处理设备,该波长测量装置与处理设备电性连接,进而,该波长测量装置的探测器5采集到的信号便可以传输到处理设备,以使处理设备进行处理得到待测激光的波长值。
又例如,由该波长测量装置来处理的情况下,该波长测量装置可以包括处理部件7,处理部件7安装在壳体1中,处理部件7分别与转动部件3和多个探测器5电性连接。
其中,处理部件7可以根据第二探测器52输出的光强值,多个转角中每个转角下第一探测器51输出的光强值,确定待测激光在每个转角下通过标准具2的透射率;在每个转角下,处理部件7可以确定转角下的透射率在转角下的透射率曲线上对应的且位于目标波长周期内的候选波长值,其中,目标波长周期为待测激光在透射率曲线中所属的波长周期;在多个候选波长值中,处理部件7可以将靠近透射率曲线的最大斜率处的候选波长值,作为待测激光的波长值。
其中,本实施例对实现处理过程的方式不做限定,能够根据第一探测器51和第二探测器52输出的光强值计算得到待测激光的波长值即可,为便于介绍可以以该波长测量装的处理部件7进行示例。
其中,由该波长测量装置得到波长值的具体原理可以如下:
在应用中,标准具的透射率与激光的波长值之间存在如下公式所示的关系:
Figure PCTCN2021081426-appb-000001
式中,I表示透射率,也即是,从标准具透射出的光强值与入射到标准具的光强值之比;R表示标准具的反射率;n表示标准具的折射率;l表示标准具的腔长;θ表示标准具内的光束与标准具端面法线之间的夹角;λ表示波长值。
从上述公式可知,透射率曲线是透射率随波长变化的周期函数,通过改变入射角可以使透射率曲线的相位发生改变,使透射率曲线在以透射率为纵坐标以波长为横坐标的坐标系中发生左右平移。而入射角与反射镜6的转角相关,可以通过改变反射镜6的转角来调整激光入射到标准具2的入射角,故反射镜6的每一个转角,对应一个透射率曲线。由于转角改变,第一探测器51接收到的光强值也改变,故反射镜6的每一个转角,也对应一个第一探测器51的输出的光强值。
而由于透射率可以通过从标准具透射出的光强值与入射到标准具的光强值之比来计算, 从标准具透射出的光强值可以由第一探测器51输出的光强值确定。如图1所示,多个探测器5中的第二探测器52位于多个光束中的第二光束所在的光路上,第二探测器52输出的光强值可以作为入射到标准具的光强值,故第二探测器52输出的光强值与第一探测器51输出的光强值用于计算激光在标准具2中的透射率。例如,通过标准具的透射率I为
Figure PCTCN2021081426-appb-000002
其中,P 1为第一探测器51输出的光强值,P 2为第二探测器52输出的光强值。
因此,反射镜6的转角改变,透射率曲线的相位发生改变,第一探测器51输出的光强值也发生改变,故每一个转角下,对应一个透射率曲线和透射率,下文中所指的透射率曲线对应的透射率,以及透射率所对应的透射率曲线,均指的是同一个转角下的透射率曲线和根据第一探测器51和第二探测器52计算出的透射率。
根据上述公式可知,透射率曲线属于正余弦的周期函数,那么一个透射率可以得到多个波长值,多个透射率可以得到多个波长值,为了从多个波长值中筛选出一个波长值,可以通过如下方式:
首先,技术人员可以根据待测激光的预估波长值在透射率曲线上所属的目标波长周期,进行第一轮筛选,第一轮筛选之后,每一个透射率对应有两个波长值,这样,m个透射率可以得到2m个波长值,这2m个波长值可以称为候选波长值。例如,如图2所示,图2是透射率I随波长λ变化的透射率曲线的一部分,透射率曲线S 1和透射率曲线S 2均是目标波长周期内的局部曲线,交点1、交点2、交点3和交点4的横坐标均为候选波长值。
其中,待测激光的预估波长值,可以是一个具体的数值,也可以是一个数值范围,是待测激光的波长值的大致数值或者大致范围值。技术人员可以通过产生待测激光的激光器来获取,也可以通过在波长测量装置中增加滤波器和探测器来粗测量得到,后者下文将会介绍。
然后,由于同一个激光,只有一个波长值,故每一个透射率对应的两个波长值中只有一个是正确的,多个透射率对应的波长值应当相接近,那么,可以使用每一个透射率对应的各个波长值分别与其他透射率对应的波长值进行做差比较,根据差值的大小进行第二轮筛选,其中,这里的差值指的是绝对值。例如,I i在对应的透射率曲线上得到λ i1和λ i2,λ i1分别与除了λ i2以外的其余波长值进行做差,λ i2分别与除了λ i1以外的其余波长值进行做差,从这些差值中选取最小差值对应的波长值(λ i1或者λ i2),作为I i对应的正确波长值。这样,第二轮筛选后2m个波长值可以变为m个波长值,这m个波长值是正确的,可以称为正确波长值。
例如,如图2所示,I 1对应的波长值分别是交点1和交点2的横坐标,I 2对应的波长值分别是交点3和交点4的横坐标,通过波长值做差,筛选出I 1对应的正确的波长值,以及I 2对应的正确的波长值。对于I 1,交点1分别与交点3、交点4的横坐标差值中,以及交点2分别与交点3、交点4的横坐标差值中,显然交点2与交点3的横坐标差值最小,故I 1对应的正确波长值是交点2对应的横坐标。同样,对于I 2,交点3分别与交点1、交点2的横坐标差值中,以及交点4分别与交点1、交点2的横坐标差值中,显然交点3与交点2的横坐标差值最小,故I 2对应的正确波长值是交点3对应的横坐标。
之后,又由于转角改变,透射率曲线在坐标系中发生平移,只能改变波长值的精度,而透射率曲线上斜率最大处,透射率随波长的变化最为剧烈,理论上使用该处的透射率计算出的波长值的精度更高,故此处使用计算出的透射率在透射率曲线上对应的值作为波长值,其 精度较高,所以可以通过透射率曲线的斜率在第二轮筛选的基础上进行第三轮筛选,便可以得到一个波长值,该波长值可以作为待测激光的波长值,这样得到的波长值的精度较高。
例如,如图2所示,在I 1对应的波长值(交点2的横坐标)和I 2对应的波长值(交点3的横坐标)中,I 2在对应的透射率曲线上的斜率大于I 1在对应的透射率曲线上的斜率,故I 2对应的波长值可以认为是最靠近透射率曲线上最大斜率处的一个波长值,可以作为该待测激光的波长值。
基于上述所述,技术人员在使用该波长测量装置确定待测激光的波长值时,首先可以通过待测激光在透射率曲线中所属的周期(可以记为目标波长周期)。然后通过反射镜6的每个转角下,得到的透射率曲线和由第一探测器51与第二探测器52得到的透射率,可以得到每一个透射率在对应的透射率曲线上对应的且位于目标波长周期内的波长值,这些波长值可以称为候选波长值。之后,可以根据多个透射率对应的波长值应该接近的原则,以及透射率曲线上斜率最大处的波长值最为精准的原则,可以从候选波长值中筛选出一个波长值作为待测激光的波长值。
示例性地,可以先根据多个透射率对应的波长值应该接近的原则,利用每个透射率对应的各个波长值分别与其他透射率对应的波长值之间的差值的大小作为筛选条件,从候选波长值中筛选出每个透射率对应的正确波长值。再根据上述所述的,透射率曲线上斜率最大处的波长值最为精准,可以在上述多个正确波长值中选取最靠近透射率曲线上最大斜率处的目标正确波长值,将目标正确波长值作为待测激光的波长值。
或者,得到候选波长值之后,也可以先根据斜率最大处对应的波长值的精度最高的原理,选择出最大斜率对应透射率,从该透射率对应的两个波长值中,再根据多个透射率对应的波长值应该接近的原理,筛选出正确波长值,作为待测激光的波长值。
其中,本实施例对从候选波长值筛选出一个波长值作为待测激光的波长值的具体执行顺序不做限定,技术人员可以根据实际情况,灵活选择。
例如,如图2所示,其中图2是透射率I随波长λ变化的透射率曲线的一部分,转角β 1时得到透射率曲线S 1和透射率I 1,转角β 2时得到透射率曲线S 2和透射率I 2,其中,S 1和S 2均是目标波长周期内的透射率曲线,相应的,可以根据目标周期内的透射率曲线和透射率计算波长值,这些波长值可以称为候选波长值,也即是,交点1至交点4所对应的波长值均是候选波长值。然后从上述多个候选波长值中,筛选正确波长值,其中,I 1在S 1对应的正确波长值为交点2对应的横坐标,I 2在S 2对应的正确波长值为交点3对应的横坐标,因此,交点2和交点3对应的横坐标均是正确波长值。然后从上述多个正确波长值中选择最靠近透射率曲线的最大斜率处的一个正确波长值,作为待测激光的波长值。如图2所示,交点3在S 2上对应的斜率大于交点2在S 2上对应的斜率,故交点3所对应的正确波长值可以认为是最靠近透射率曲线上的最大斜率处的一个波长值,可以作为待测激光的波长值。
这种波长测量装置只有一个标准具,一个标准具在壳体中的占用空间少,壳体中的转动部件、探测器和分光部件的占用空间也较少,故该波长测量装置相较于具有内置参考激光器的波长计体积小,体积小的波长测量装置其抗震性好,进而可以提高所测量的波长值的准确度。
而且,该波长测量装置通过转动部件带动反射镜旋转,可以调整进入到标准具中的入射 角而得到多个透射率曲线,然后将由最靠近透射率曲线上斜率最大处得到的波长值,作为待测激光的波长值,这样得到的波长值的准确度更高,由该波长测量装置测量出的波长值更加准确。
另外,使用该波长测量装置还可以得到光谱图,技术人员得到光谱图之后,可以从光谱图中读出更多的信息。例如,可以通过光谱图可以读出待测激光的波长值、判断待测激光属于单波还是多波、如果待测激光属于多波还可以读出各个波长值、通过光谱图还可以读出待测激光的边模值,以及待测激光的线宽等,通过读出的上述信息还可以判断该待测激光发射激光的质量好坏等,提高了该波长测量装置的使用广泛性。
其中,通过该波长测量装置得到光谱图的过程可以如下,该过程可以由处理部件7执行:处理部件7可以根据多个标定激光在多个标定转角中每个标定转角下入射到标准具2中,得到每个标定转角下的透射率曲线;根据每个标定转角下的透射率曲线,确定位于目标波长周期内的透射率峰值对应的标定波长值,其中标定转角与标定波长值一一对应;根据每个标定转角和相对应的标定波长值,确定转角与波长的对应关系;根据待测激光在各个转角下,第一探测器51输出的光强值,确定待测激光的光强值与转角的对应关系;根据转角与波长的对应关系,以及待测激光的光强值与转角的对应关系,确定待测激光的光谱图。
在一种示例中,光谱图也即是光强值与波长或者频率之间的关系,使用该波长测量装置可以得到转角与光强值之间的对应关系,如果能够预先标定该波长测量装置的转角与波长的对应关系,便可以由转角与待测激光的光强值间的对应关系,以及标定好的转角与波长间的对应关系,得到光强值与波长之间的对应关系,也即得到光谱图。
其中,标定转角与波长间的对应关系的过程可以如下:
首先,可以选取多个转角,这些转角用于标定转角与波长的关系可以称为标定转角,例如,标定转角1、标定转角2、标定转角3,其中选取标定转角的数量越多,标定的转角与波长的关系的精度越高,本领域的技术人员可以根据需求灵活选择标定转角的数量,为便于介绍以三个标定转角进行示例。
然后,可以选取透射率曲线上的多个激光,或者选取透射率曲线上的所有激光,这些激光用于入射到标准具中产生透射率曲线,这些激光可以称为标定激光,例如,标定激光1、标定激光2、标定激光3,其中选取的标定激光的数量越多,每个标定转角下的透射率曲线的精度越高,得到的转角与波长的关系的精度也越高,本领域的技术人员可以根据需求灵活选择标定激光的数量,为便于介绍以三个标定激光进行示例。
之后,反射镜6的转角在标定转角1的情况下,标定激光1、标定激光2和标定激光3分别入射到该波长测量装置,得到标定转角1对应的标准具2的透射率曲线1,在透射率曲线1中确定位于目标波长周期内波峰所对应的波长值,该波长值记为标定波长值1,进而可以得到一组(标定转角1,标定波长值1)。同理,通过转动部件调整反射镜6的转角,使反射镜6的转角为标定转角2,在该标定转角2下,标定激光1、标定激光2和标定激光3分别入射到该波长测量装置,得到标定转角2对应的标准具2的透射率曲线2,在透射率曲线2中确定位于目标波长周期内波峰所对应的波长值,该波长值记为标定波长值2,进而可以得到一组(标定转角2,标定波长值2)。再次通过转动部件3调整反射镜6的转角,使反射镜6的 转角为标定转角3,在该标定转角3下,标定激光1、标定激光2和标定激光3分别入射到该波长测量装置,得到标定转角3对应的标准具2的透射率曲线3,在透射率曲线3中确定位于目标波长周期内波峰所对应的波长值,该波长值记为标定波长值3,进而可以得到一组(标定转角3,标定波长值3)。这样在多个标定转角下,得到多组(标定转角,标定波长值)之后,可以通过这多组(标定转角,标定波长值),得到转角与波长之间的对应关系。
其中,标定波长值是透射率曲线上波峰处所对应的波长值,故也可以称为中心波长值。
再之后,待测激光进入到该波长测量装置,转动部件3带动反射镜6进行转动,每个转角下第一探测器51输出一个光强值,可以得到光强值与转角间的对应关系。这样,根据标定好的转角与波长间的对应关系,以及光强值与转角间的对应关系,转换为光强值与波长间的对应关系,其中光强值与波长间的对应关系也即是待测激光的光谱图。
这样得到待测激光的光谱图之后,不仅可以从光谱图中读出待测激光的波长值,还可以判断待测激光属于单波还是多波,还可以读出待测激光的中心波长、边模以及待测激光的线宽,其中,中心波长也即是光谱图中峰值处所对应的波长值,边模也即是光谱图中除峰值处以外所对应的波长值。如果光谱图中边模较少,则激光器所产生的激光的质量较好,可见该波长测量装置还可以通过光谱图评价激光器所产生的激光的质量好坏等。可见,该波长测量装置的应用性更加广泛。
其中,上述所述的待测激光在透射率曲线上所属的目标波长周期,可以通过待测激光的预估波长值来确定,其中预估波长值可以通过产生待测激光的激光器获取,也可以通过滤波器和探测器来计算,相应的实现结构可以如下:
如图3所示,该波长测量装置还包括滤波器8,滤波器8安装在壳体1中,滤波器8位于多个光束中的第三光束(如图3所标记的③)所在的光路上;多个探测器5中的第三探测器53位于滤波器8的透射光路上,第三探测器53输出的光强值用于和第二探测器52输出的光强值,确定待测激光的预估波长值,以确定待测激光在透射率曲线中所属的目标波长周期。
其中,滤波器8可以是线性滤波器,可以为表面镀膜的玻璃片,其透射率与入射光的波长呈线性关系或者呈近似线性关系,使用这种透射率与波长具有单调性的滤波器,可以确定待测激光的波长在透射率曲线中所在的目标波长周期。
其中,第三探测器53同第一探测器51和第二探测器52类似,也可以是光电二极管,用于将接收到的光信号转换为电信号。
在实施中,滤波器8位于第三探测器53位于分光部件4产生的第三光束所在的光路上,第三探测器53位于滤波器8的透射光路,第二探测器52位于分光部件4产生的第二光束所在的光路上。这样,待测激光不经过任何物体直接进入到第二探测器52中,第二探测器52输出的光强值可以称为参考光强值,待测激光经过滤波器8进入到第三探测器53中,第三探测器53输出的光强值是经过滤波器8吸收后的光强值,相应的,第三探测器53输出的光强值与第二探测器52输出的光强值之间的比值,可以作为待测激光通过滤波器8的透射率。然后,再根据滤波器8的透射率与波长的对应关系,可以得到计算出的透射率所对应的波长值,该波长值可以作为待测激光的预估波长值。
例如,该波长测量装置的处理部件7与第三探测器53电性连接,处理部件7接收到第二 探测器52的光强值P 2和第三探测器53的光强值P 3之后,可以得到待测激光通过滤波器8的透射率I为
Figure PCTCN2021081426-appb-000003
处理部件7再根据滤波器8的透射率与波长的对应关系,可以得到计算的透射率所对应的波长值,该波长值可以作为待测激光的预估波长值。
这样通过上述方式确定预估波长值之后,可以根据预估波长值在透射率曲线上所处的位置,确定预估波长值所属的目标波长周期。
在一种可能的应用中,该波长测量装置所处的环境温度变化较大,例如,夏季环境温度较高,冬季环境温度较低,而且不同区域内的环境温度也不一样,为了避免因环境温度变化而使壳体1中的部件发生变形,相应的可以是,如图1和图3所示,该波长测量装置还可以包括抗温变基板9,抗温变基板9安装在壳体1中,标准具2、转动部件3、分光部件4、处理部件7、滤波器8和多个探测器5均安装在抗温变基板9上。其中,抗温变基板9可以由陶瓷材料制成。这样抗温变基板9具有高温不变形的特性,可以提高安装在其上的部件的稳定性,进而使得该波长测量装置的稳定性较高,从而可以提高测量波长值的准确性。
在一种可能的应用中,为了进一步提高波长测量的准确性,相应的,该波长测量装置还包括热敏电阻10,热敏电阻10安装在壳体1中,例如热敏电阻10可以安装在壳体1的内壁上,用于实时监测壳体1内的温度变化。在电性连接上,热敏电阻10与处理部件7电性连接,用于将监测到的温度数据发送给处理部件7,以使处理部件7根据预先存储的温度与受温度影响的参数的补偿值之间的对应关系,确定参数的补偿值,这样进行温度补偿后计算得到的波长值更加准确性,可以降低测量结果受温度的影响。
在一种可能的应用中,为了提高待测激光进入到波长测量装置中的光通量,相应的,如图1和图3所示,该波长测量装置还可以包括准直器12,准直器12安装在壳体1的外壁对应进光口11的位置处。其中,准直器12可以是光纤准直器。这样激光器产生的待测激光通过准直器12进入到壳体1中,可以提高待测激光进入到波长测量装置中的光通量,光线更强。
基于上述所述,如图3所示,该波长测量装置可以包括壳体1、标准具2、转动部件3、分光部件4、多个探测器5,例如,三个探测器,其中,分光部件4可以包括至少一个分束镜,例如可以包括两个分束镜,上述各个部件位于壳体1中,且安装在抗温变基板9上。壳体1的内壁上还安装有热敏电阻10,壳体1上设置有进光口11,壳体1的外壁上对应进光口11的位置处安装有准直器12。
上述部件在位置关系上,如图3所示,分光部件4的第一分束镜位于进光口11的入射光路上,分光部件4的第二分束镜位于第一分束镜的反射光路上,转动部件3的反射镜6位于第二分束镜的透射光路上。滤波器8位于第一分束镜的透射光路上,第三探测器53位于滤波器8的透射光路上,第二探测器52位于第二分束镜的反射光路上。标准具2位于反射镜6的反射光路上,第一探测器52位于标准具2的透射光路上。
基于上述结构,该波长测量装置可以测量待测激光的波长值,还可以得到待测激光的光谱图,其中,测量待测激光的波长值的过程可以是:
首先,通过第二探测器52和第三探测器53输出的光强值,以及滤波器8的透射率与波长的对应关系,可以得到待测激光的预估波长值。例如,第三探测器53输出的光强值与第二探测器52输出的光强值之比,得到待测激光通过滤波器8的透射率,再根据滤波器8的透射率与波长的对应关系,确定待测激光的预估波长值。然后,可以通过待测激光的预估波长值可以预估出待测激光的波长在透射率曲线上所属的目标波长周期。
然后,转动部件3带动反射镜6发生旋转,反射镜6的每个转角下都会得到一个第一探测器51输出的光强值,通过第一探测器51输出的光强值和第二探测器52输出的光强值可以得到待测激光通过标准具的透射率,每个转角下也都对应一条透射率曲线。这样,每个转角下,都可以得到一个通过标准具的透射率以及一条透射率曲线,例如,如图2所示,转角β 1时对应有透射率曲线S 1和通过光强值计算得到透射率I 1,转角β 2时对应有透射率曲线S 2和通过光强值计算得到透射率I 2
之后,反射镜6的每个转角下,在以波长为横坐标以透射率为纵坐标的透射率曲线上,可以得到透射率与相对应的透射率曲线,在目标波长周期内的交点。多个转角下可以得到多个交点,然后从多个交点中选取最靠近透射率曲线的最大斜率处且是对应的透射率的正确波长值的交点,该交点处的波长值可以作为待测激光的波长值。
以上是使用该波长测量装置计算波长值的过程,还可以使用该波长测量装置得到待测激光的光谱图,可以参考如下:
首先,选取多个标定转角和多个标定激光,多个标定激光在一个标定转角下入射到标准具2中可以得到一条该标定转角下的透射率曲线,记下该透射率曲线上位于目标波长周期内的波峰处所对应的波长值,该波长值可以记为标定波长值,得到一组(标定转角,标定波长值)。可见,多个标定转角可以得到多组(标定转角,标定波长值)。通过这多组(标定转角,标定波长值)可以得到转角与波长之间的对应关系。
然后,待测激光入射到该波长测量装置中,反射镜6在旋转过程中,每个转角下,第一探测器51均可以输出一个光强值,进而可以得到光强值与转角的对应关系。
之后,通过待测激光的光强值与转角的对应关系,以及预先标定的波长与转角的对应关系,可以得到待测激光的光强值与波长的对应关系,也即是待测激光的光谱图。
通过该波长测量装置得到光谱图之后,不仅可以读出待测激光的波长值,还可以读出待测激光的线宽、判断出待测激光属于单波还是多波,还可以评价待测激光的质量好坏等,应用广泛。
在本申请实施例中,该波长测量装置只有一个标准具,一个标准具在壳体中的占用空间少,壳体中的转动部件、探测器和分光部件的占用空间也较少,故该波长测量装置相较于具有内置参考激光器的波长计体积小,体积小的波长测量装置其抗震性好,进而可以提高所测量的波长值的准确度。
本申请还提供了一种波长测量的方法,该方法可以应用于上述所述的波长测量装置,该方法可以由与波长测量装置电性连接的处理设备执行,也可以由该波长测量装置的处理部件执行,本实施例对执行主体不做限定,可以以波长测量装置的处理部件进行示例,如图4所示,该方法可以按照如下流程执行:
在步骤401中,获取待测激光在所述标准具2的透射率曲线中所属的目标波长周期。
其中,透射率曲线也即是透射率与波长或者频率之间的函数关系式,可以根据上述所述的公式来确定。
在一种示例中,处理部件可以先获取待测激光的预估波长值,然后根据预估波长值确定目标波长周期,其中,预估波长值可以通过产生待测激光的激光器获取,也可以通过第三探测器53和第二探测器52输出的光强值来计算,具体的可以参见上述所述,此处不再一一赘述。
在步骤402中,根据第二探测器输出的光强值和反射镜的多个转角中每个转角下第一探测器输出的光强值,确定待测激光在每个转角下通过标准具的透射率。
在一种示例中,通过标准具的透射率可以通过第一探测器51输出的光强值和第二探测器52输出的光强值来计算,例如,每个转角下,通过标准具2的透射率为第一探测器51输出的光强值与第二探测器52输出的光强值之比。由于转角改变,第一探测器51输出的光强值改变,故转角改变,通过标准具2的透射率也发生改变,每个转角对应有一个透射率,转角与通过标准具的透射率一一对应。
在步骤403中,在每个转角下,确定转角下的透射率在转角下的透射率曲线上对应的且位于目标波长周期内的候选波长值。
在一种示例中,如图2所示,通过标准具2的透射率I 1和透射率曲线S 1是某一个转角下得到的,通过标准具2的透射率I 2和透射率曲线S 2是另一个转角下得到的,交点1至交点4所对应的波长值均是候选波长值。
在步骤404中,在多个候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为待测激光的波长值。
在一种示例中,根据无论使用哪一个透射率计算,所得到的波长值应该相接近,而且交点3所处的位置是靠近透射率曲线的最大斜率处的交点,故交点3所对应的波长值可以作为待测激光的波长值。
如上述所述,使用该波长测量装置还可以得到待测激光的光谱图,相应的,如图5所示,使用该波长测量装置得到光谱图可以按照如下流程执行:
在步骤501中,根据多个标定激光在多个标定转角中每个标定转角下入射到标准具中,得到每个标定转角下的透射率曲线。
在一种示例中,多个标定激光在一个标定转角下入射到标准具中,可以得到一条透射率曲线,那么,多个标定激光在多个标定转角下入射到标准具中,便可以得到各个标定转角下的透射率曲线,其中标定转角与透射率曲线一一对应。
在步骤502中,根据每个标定转角下的透射率曲线,确定位于目标波长周期内的透射率峰值对应的标定波长值。
其中,标定转角与标定波长值一一对应。
在一种示例中,对于每一个标定转角下的透射率曲线,记录该透射率曲线上位于目标波长周期内的峰值处对应的波长值,该波长值可以称为标定波长值,这样可以得到一组(标定转角,标定波长值)。同理,多个标定转角下,可以得到多组(标定转角,标定波长值)。
在步骤503中,根据每个标定转角和相对应的标定波长值,确定转角与波长的对应关系。
在一种示例中,通过多组(标定转角,标定波长值)可以生成转角与波长的对应关系,其中,(标定转角,标定波长值)的个数越多,生成的转角与波长的对应关系越精准。
在步骤504中,根据待测激光在各个转角下,第一探测器输出的光强值,确定待测激光的光强值与转角的对应关系。
在一种示例中,待测激光入射到波长测量装置中,通过转动反射镜6,可以得到一系列转角下第一探测器51输出的光强值,进而得到光强值与转角的对应关系。
在步骤505中,根据转角与波长的对应关系,以及待测激光的光强值与转角的对应关系,确定待测激光的光谱图。
在一种示例中,根据待测激光的光强值与转角的对应关系,以及在步骤503中标定好的转角与波长的对应关系,可以生成光强值与波长的对应关系,也即是可以生成待测激光的光谱图。
其中,生成待测激光的光谱图的应用场景在上文已介绍,可以参见上述介绍,此处不再一一赘述。
在本申请实施例中,该波长测量装置只有一个标准具,一个标准具在壳体中的占用空间少,壳体中的转动部件、探测器和分光部件的占用空间也较少,故该波长测量装置相较于具有内置参考激光器的波长计体积小,体积小的波长测量装置其抗震性好,进而可以提高所测量的波长值的准确度。
以上所述仅为本申请一个实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种波长测量装置,其特征在于,所述波长测量装置包括标准具(2)、转动部件(3)、分光部件(4)和多个探测器(5),其中:
    所述分光部件(4)用于接收待测激光并将所述待测激光分束得到多个光束;
    所述转动部件(3)上安装有反射镜(6),所述反射镜(6)位于所述多个光束中的第一光束所在的光路上,所述标准具(2)位于所述反射镜(6)的反射光路上,所述多个探测器(5)中的第一探测器(51)位于所述标准具(2)的透射光路上,所述多个探测器(5)中的第二探测器(52)位于所述多个光束中的第二光束所在的光路上;
    所述转动部件(3),用于转动所述反射镜(6)以获得所述标准具(2)在所述反射镜(6)的多个转角下的多个透射率曲线,其中所述转角与所述透射率曲线一一对应;
    所述转动部件(3),还用于转动所述反射镜(6)以使所述第一探测器(51)在所述反射镜(6)的多个转角下输出多个光强值,其中所述转角与所述第一探测器(51)输出的光强值一一对应;
    所述第二探测器(52)输出的光强值、所述多个透射率曲线和所述第一探测器(51)输出的多个光强值用于确定所述待测激光的波长值。
  2. 根据权利要求1所述的波长测量装置,其特征在于,所述波长测量装置还包括处理部件(7),所述处理部件(7)分别与所述转动部件(3)和所述多个探测器(5)电性连接;
    所述处理部件(7),用于根据所述第二探测器(52)输出的光强值,所述多个转角中每个转角下所述第一探测器(51)输出的光强值,确定所述待测激光在所述每个转角下通过所述标准具(2)的透射率,其中所述转角与所述透射率一一对应;
    在所述每个转角下,确定所述转角下的透射率在所述转角下的透射率曲线上对应的且位于目标波长周期内的候选波长值,所述目标波长周期为所述待测激光在透射率曲线中所属的波长周期;
    在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。
  3. 根据权利要求2所述的波长测量装置,其特征在于,所述处理部件(7)还用于根据多个标定激光在多个标定转角中每个标定转角下入射到所述标准具(2)中,得到所述每个标定转角下的透射率曲线;
    根据所述每个标定转角下的透射率曲线,确定位于所述目标波长周期内的透射率峰值对应的标定波长值,其中所述标定转角与所述标定波长值一一对应;
    根据所述每个标定转角和相对应的标定波长值,确定转角与波长的对应关系;
    根据所述待测激光在所述多个转角中每个转角下,所述第一探测器(51)输出的光强值,确定所述待测激光的光强值与转角的对应关系;
    根据所述转角与波长的对应关系,以及所述待测激光的光强值与转角的对应关系,确定所述待测激光的光谱图。
  4. 根据权利要求1至3任一所述的波长测量装置,其特征在于,所述波长测量装置还包括滤波器(8),所述滤波器(8)位于所述多个光束中的第三光束所在的光路上;
    所述多个探测器(5)中的第三探测器(53)位于所述滤波器(8)的透射光路上,所述第三探测器(53)输出的光强值用于和所述第二探测器(52)输出的光强值,确定所述待测激光的预估波长值,以确定所述待测激光在透射率曲线中所属的目标波长周期。
  5. 根据权利要求1至4任一所述的波长测量装置,其特征在于,所述波长测量装置还包括抗温变基板(9),所述标准具(2)、所述转动部件(3)、所述分光部件(4)和所述多个探测器(5)均安装在所述抗温变基板(9)上。
  6. 根据权利要求1至5任一所述的波长测量装置,其特征在于,所述波长测量装置还包括热敏电阻(10),所述热敏电阻(10)用于监测所述波长测量装置内部的温度。
  7. 根据权利要求1至6任一所述的波长测量装置,其特征在于,所述波长测量装置还包括准直器(12),所述准直器(12)安装在所述波长测量装置的进光口位置处。
  8. 根据权利要求1至7任一所述的波长测量装置,其特征在于,所述转动部件(3)为微机电***MEMS。
  9. 一种波长测量的方法,其特征在于,所述方法应用于权利要求1至8任一所述的波长测量装置,所述方法包括:
    获取待测激光在所述标准具(2)的透射率曲线中所属的目标波长周期;
    根据所述第二探测器(52)输出的光强值和所述反射镜(6)的多个转角中每个转角下所述第一探测器(51)输出的光强值,确定所述待测激光在所述每个转角下通过所述标准具(2)的透射率;
    在所述每个转角下,确定所述转角下的透射率在所述转角下的透射率曲线上对应的且位于所述目标波长周期内的候选波长值;
    在多个所述候选波长值中,将靠近透射率曲线的最大斜率处的候选波长值,作为所述待测激光的波长值。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据多个标定激光在多个标定转角中每个标定转角下入射到所述标准具(2)中,得到所述每个标定转角下的透射率曲线;
    根据所述每个标定转角下的透射率曲线,确定位于所述目标波长周期内的透射率峰值对应的标定波长值,其中所述标定转角与所述标定波长值一一对应;
    根据所述每个标定转角和相对应的标定波长值,确定转角与波长的对应关系;
    根据所述待测激光在所述多个转角中每个转角下,所述第一探测器(51)输出的光强值,确定所述待测激光的光强值与转角的对应关系;
    根据所述转角与波长的对应关系,以及所述待测激光的光强值与转角的对应关系,确定所述待测激光的光谱图。
PCT/CN2021/081426 2020-03-19 2021-03-18 波长测量装置和波长测量的方法 WO2021185301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197614.9A CN113494967B (zh) 2020-03-19 2020-03-19 波长测量装置和波长测量的方法
CN202010197614.9 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021185301A1 true WO2021185301A1 (zh) 2021-09-23

Family

ID=77770154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081426 WO2021185301A1 (zh) 2020-03-19 2021-03-18 波长测量装置和波长测量的方法

Country Status (2)

Country Link
CN (1) CN113494967B (zh)
WO (1) WO2021185301A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197310A1 (zh) * 2022-04-15 2023-10-19 华为技术有限公司 一种检测***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371957B1 (en) * 2002-06-11 2008-01-09 Jobin Yvon S.A.S. Spectrometer
CN103196569A (zh) * 2013-04-22 2013-07-10 哈尔滨工业大学(威海) 一种旋转法布里-珀罗干涉镜测量激光波长的方法
CN106940220A (zh) * 2016-01-04 2017-07-11 中国计量学院 一种简易低成本的波长实时测量装置
CN109084904A (zh) * 2018-09-28 2018-12-25 中国计量大学 一种基于三f-p标准具的高精度波长测量装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2381662A1 (en) * 1999-08-10 2001-02-15 Reich Watterson Single etalon optical wavelength reference device
JP2002202190A (ja) * 2000-12-27 2002-07-19 Ando Electric Co Ltd 波長モニタ及び波長モニタ内蔵型波長可変光源
GB2399875B (en) * 2003-03-24 2006-02-22 Tsunami Photonics Ltd Optical wavelength meter
US7420686B2 (en) * 2006-02-23 2008-09-02 Picarro, Inc. Wavelength measurement method based on combination of two signals in quadrature
CN102778298A (zh) * 2011-05-11 2012-11-14 桂林优西科学仪器有限责任公司 基于Etalon的激光波长/频率的测量方法、波长计及使用方法
CN107063478A (zh) * 2017-04-17 2017-08-18 深圳大学 一种波长测量***和测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371957B1 (en) * 2002-06-11 2008-01-09 Jobin Yvon S.A.S. Spectrometer
CN103196569A (zh) * 2013-04-22 2013-07-10 哈尔滨工业大学(威海) 一种旋转法布里-珀罗干涉镜测量激光波长的方法
CN106940220A (zh) * 2016-01-04 2017-07-11 中国计量学院 一种简易低成本的波长实时测量装置
CN109084904A (zh) * 2018-09-28 2018-12-25 中国计量大学 一种基于三f-p标准具的高精度波长测量装置

Also Published As

Publication number Publication date
CN113494967A (zh) 2021-10-12
CN113494967B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US6795188B2 (en) High-accuracy wavemeter
EP0875743B1 (en) A wavemeter and an arrangement for the adjustment of the wavelength of an optical source
US7420686B2 (en) Wavelength measurement method based on combination of two signals in quadrature
CN108548658B (zh) 一种单层膜光学元件应力和光学损耗同时测量的方法
WO2017016141A1 (zh) 一种多通道可调激光器的性能测试装置
US4752133A (en) Differential plane mirror interferometer
US6859284B2 (en) Apparatus and method for determining wavelength from coarse and fine measurements
JP2004509351A (ja) 光学信号の波長を検出する波長検出器及び方法
WO2021185301A1 (zh) 波长测量装置和波长测量的方法
JP2004020564A (ja) 安定なファブリペロー干渉計
US7414730B2 (en) High precision interferometer apparatus employing a grating beamsplitter
CN104634370A (zh) 一种基于激光器的传感器
CN106323598A (zh) 一种双频激光干涉仪分光镜分光特性检测方法
CN113916512B (zh) 一种大面积体布拉格光栅的反射率测试装置与方法
CN113008833B (zh) 一种高精度光学薄膜透射率/反射率测量方法及装置
CN107525589B (zh) 一种波长定标***及方法
CN106404695B (zh) 分光光度计
WO2021169518A1 (zh) 波长计、获取波长计的参数的方法以及在线校准的方法
CN111562002B (zh) 高通量高分辨率高对比度的偏振干涉光谱成像装置及方法
US4726684A (en) Measurement apparatus for optical transmission factor
CN113483996A (zh) 一种光学元件高透射率高反射率测量装置及测量方法
KR100898327B1 (ko) 파장판의 각도 정렬을 통한 간섭계의 비선형 오차 보상방법
CN113281256B (zh) 穆勒矩阵测量装置及其测量方法
CN109724633A (zh) 相位展开解调低反射率f-p传感器的方法
CN108469335B (zh) 一种测量倍频腔倍频效率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771527

Country of ref document: EP

Kind code of ref document: A1