WO2021185159A1 - 一种基于协同跟踪的柔性机械臂的振动控制方法 - Google Patents

一种基于协同跟踪的柔性机械臂的振动控制方法 Download PDF

Info

Publication number
WO2021185159A1
WO2021185159A1 PCT/CN2021/080356 CN2021080356W WO2021185159A1 WO 2021185159 A1 WO2021185159 A1 WO 2021185159A1 CN 2021080356 W CN2021080356 W CN 2021080356W WO 2021185159 A1 WO2021185159 A1 WO 2021185159A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible manipulator
flexible
derivative
arm
leader
Prior art date
Application number
PCT/CN2021/080356
Other languages
English (en)
French (fr)
Inventor
刘屿
郑小惠
徐瑞峰
瞿弘毅
姚科
Original Assignee
华南理工大学
广州现代产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广州现代产业技术研究院 filed Critical 华南理工大学
Priority to US17/614,075 priority Critical patent/US12017357B2/en
Publication of WO2021185159A1 publication Critical patent/WO2021185159A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1635Programme controls characterised by the control loop flexible-arm control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39001Robot, manipulator control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39195Control, avoid oscillation, vibration due to low rigidity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40279Flexible arm, link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42156Forward dynamics model fdm

Definitions

  • the invention relates to the technical field of vibration control, in particular to a method for vibration control of a flexible mechanical arm based on cooperative tracking.
  • Flexible structure has the advantages of light weight and low energy consumption, so it is widely used in engineering fields such as robotic arms, mechanical engineering, and spacecraft.
  • Flexible manipulators have important applications in industrial fields, such as robotics, mechanical engineering, and aerospace.
  • Euler-Bernoulli beams are usually used as the basic model.
  • the elastic deformation caused by the external disturbance will cause the flexible mechanical arm to vibrate continuously for a long time and affect the normal operation of the system. Therefore, reducing or eliminating the elastic deformation and vibration of the flexible mechanical arm is a problem that needs to be solved.
  • the flexible manipulator is a typical distributed parameter system, that is, model parameters and working characteristics are functions of time and space coordinates, so its dynamic response in elastic vibration is more complicated. Research on the vibration control of the flexible manipulator can enable it to obtain higher accuracy in actual engineering.
  • Cooperative tracking means that multiple targets simultaneously track the motion trajectory of a specified target to achieve a synergistic effect.
  • the purpose of the present invention is to solve the above-mentioned defects in the prior art and provide a vibration control method of a flexible manipulator based on cooperative tracking.
  • a method for vibration control of a flexible mechanical arm based on cooperative tracking includes the following steps:
  • a flexible manipulator arm group constructed by multiple flexible manipulator arms, designate one of the flexible manipulator arms as the leader and the rest as followers, and the followers follow the leader's movement trajectory;
  • the dynamic characteristics include the kinetic energy, potential energy, and virtual work done by the non-conservative force on the flexible manipulator.
  • the kinetic energy, potential energy, and virtual work are substituted into the Hamiltonian principle to obtain the flexible manipulator.
  • the kinetic model equation is
  • w i (x,t) is the vibration offset of the i-th flexible manipulator in the coordinate system xoy
  • w′ i (x,t) , w′′ i (x,t), w′′′ i (x,t), w′′′′ i (x,t) respectively represent w i (x,t) once for x
  • second derivative, third derivative and fourth derivative abbreviated as w′ i , w′′ i , w′′′ i , w′′′′ i
  • is the uniform mass per unit length of the flexible manipulator
  • m is the flexible manipulator's
  • the tip mass, l is the length of the robotic arm, r is the radius of the rigid hub, I h is the inertia of the hub, ⁇ i , Respectively represent the attitude angle of the i-th flexible manipul
  • u 1i is the controller located at the tip of the flexible robotic arm.
  • a flexible manipulator group composed of multiple flexible manipulator arms, designate one of the flexible manipulator arms as the leader, and the rest as followers, construct the boundary controller, as shown in
  • a ij is the element with the subscript (i,j) in the adjacency matrix A
  • the adjacency matrix A represents the relationship between each flexible manipulator as a follower
  • b i0 is the element of the diagonal matrix B with the subscript (i,j)
  • is a normal number
  • ⁇ 0 is the attitude angle of the flexible manipulator arm as the leader, ⁇ i ,
  • ⁇ ri is the auxiliary angle, Is the first derivative of ⁇ ri with respect to time;
  • the Lyapunov function of the flexible manipulator arm is constructed as follows:
  • V i V 1i +V 2i +V 3i ;
  • boundary controller is configured to suppress the vibration of the flexible manipulator arm, and the flexible manipulator arm as a follower can track the movement trajectory of the flexible manipulator arm as the leader to achieve coordinated control.
  • the present invention has the following advantages and effects:
  • the present invention proposes a vibration control method of a flexible manipulator based on cooperative tracking.
  • the vibration control method based on cooperative tracking can realize the cooperative tracking of a flexible manipulator group composed of multiple flexible manipulator systems. Effective, and can suppress the vibration of the flexible manipulator itself.
  • the control method designed by the present invention includes two boundary controllers, one is mainly used for vibration suppression, the other is mainly used for attitude tracking, and the two boundary controllers generate control input of the desired output, which can effectively improve the performance of the flexible manipulator system. Control quality while realizing collaborative tracking. By adjusting the gain parameters, the stability of the flexible manipulator can be achieved, indicating that the designed boundary controller has a good control effect, which is beneficial to improve its control accuracy and cooperative tracking effect in the industry.
  • FIG. 1 is a schematic flowchart of a vibration control method based on cooperative tracking for a flexible manipulator provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the structure of a flexible mechanical arm in an embodiment of the present invention.
  • Fig. 3 is an example diagram of a network topology of a flexible robotic arm group in an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for vibration control of a flexible manipulator based on collaborative tracking disclosed in an embodiment of the present invention, which includes the following steps:
  • a typical flexible manipulator arm the left boundary of the flexible manipulator arm is fixed at the origin of the coordinate, referred to as the fixed end, the right boundary can carry a load, referred to as the tip, and the boundary controller u 1i And u 2i act on the tip and left positions of the flexible robotic arm, respectively.
  • the length of the flexible manipulator is l, its vibration offset in the xoy coordinate system is w i (x,t), and the vibration offset in the XOY coordinate system is y i (x,t).
  • the kinetic energy of the flexible robotic arm is
  • E ki is the kinetic energy of the ith flexible manipulator
  • is the uniform mass per unit length of the flexible manipulator
  • m is the tip mass of the flexible manipulator
  • l is the length of the manipulator
  • r is the radius of the rigid hub
  • I h is the inertia of the hub
  • ⁇ i Respectively represent the attitude angle and its derivative with respect to time.
  • the potential energy of the flexible manipulator is the potential energy of the flexible manipulator.
  • w i (x,t) is the vibration offset of the i-th flexible manipulator under the coordinate system xoy, abbreviated as w i , w′ i (x,t), w′′ i (x,t) respectively Represents the first and second derivatives of w i (x,t) with respect to x, abbreviated as w′ i , w′′ i , T is tension, and EI is bending stiffness.
  • is the variational sign
  • is the viscous damping coefficient
  • u 1i and u 2i represent the controllers at the tip and fixed end of the flexible manipulator, respectively
  • u 1i is the controller at the tip of the flexible manipulator
  • w′ i (0,t) represents w′ i (x, t)
  • the value at x 0.
  • the flexible manipulator with number 0 is designated as the leader, and the flexible manipulators with other numbers are followers.
  • followers need to track the leader's movement trajectory to achieve the effect of multiple flexible manipulators working together.
  • the arrow symbol indicates the information exchange relationship of each flexible manipulator, which is represented by the adjacency matrix A and the diagonal matrix B.
  • the adjacency matrix A represents the information exchange relationship between the flexible manipulator as the follower
  • the diagonal matrix B represents the information exchange relationship between the flexible manipulator as the follower and the leader.
  • a boundary controller based on cooperative tracking is constructed. Specifically:
  • is a normal number
  • ⁇ 0 is the attitude angle of the flexible manipulator arm as the leader
  • ⁇ i and ⁇ j are the attitude angles of the i-th and j-th flexible manipulator arms.
  • auxiliary variables are used to express the information exchange relationship between each flexible manipulator, and two boundary controllers located at the fixed end and the tip position are further constructed, which can not only achieve the vibration suppression effect, but also achieve multiple flexibility.
  • V i V 1i +V 2i +V 3i (16)
  • V 1i , V 2i , V 3i are respectively
  • the flexible manipulator meets the preset requirements, that is, by verifying the positive definiteness of the Lyapunov function, it is concluded that the flexible manipulator is stable under the Lyapunov theory;
  • the method to verify the positive definiteness of the Lyapunov function is as follows:
  • the Lyapunov function can be obtained as positive definite, namely
  • ⁇ and ⁇ are normal numbers.
  • FIG. 2 is a schematic diagram of a flexible mechanical arm in an embodiment of the present invention.
  • Figure 3 is an example diagram of the network topology of the flexible robotic arm group, which mainly shows the information exchange relationship of each flexible robotic arm.
  • the flexible manipulator group consisting of 6 flexible manipulator arms, where the flexible manipulator arm numbered 0 is the leader, and the other numbered flexible manipulator arms are followers, and the flexible manipulator arms numbered 1 and 2 Followers have information exchanges with the leader numbered 0, and followers numbered 3, 4, and 5 have information exchanges with followers numbered 1, 2, and 3 respectively.
  • the information exchange relationship between each flexible manipulator is represented by an adjacency matrix A and a diagonal matrix B, where the adjacency matrix A represents the information exchange relationship between the flexible manipulators as followers, and the diagonal matrix B represents the followers as followers.
  • MATLAB simulation software can be used to perform digital simulation on the flexible manipulator to obtain the simulation result; according to the simulation result, verify whether the control effect after the control effect on the flexible manipulator is in line with expectations; if so, Then the operation can be ended, if not, the gain parameter of the boundary controller will be corrected, and the digital simulation will be performed again.
  • this embodiment provides a method for vibration control of a flexible manipulator based on cooperative tracking, including constructing a dynamic model of the flexible manipulator; constructing a flexible manipulator group composed of multiple flexible manipulators, and specifying one of them
  • the leader and the follower determine the information exchange relationship and construct the boundary controller based on cooperative tracking, which are located at the fixed end and the tip position of the flexible manipulator respectively; verify the stability of the flexible manipulator under the control action; the present invention can realize the flexible machine
  • the arm is more stable and precise control, and can achieve the effect of coordinated tracking of the flexible mechanical arm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

一种基于协同跟踪的柔性机械臂的振动控制方法,包括:根据动力学特征构建柔性机械臂的动力学模型;构建由多个柔性机械臂组成的柔性机械臂组,指定其中一个柔性机械臂作为领导者,其余作为跟随者,跟随者需跟踪领导者的运动轨迹以实现协同工作,结合李雅普诺夫方法,构造基于协同控制的边界控制器,实现柔性机械臂的协同工作,并抑制柔性机械臂的振动;利用李雅普诺夫直接法,构造Lyapunov函数,验证柔性机械臂在控制器作用下的稳定性。该基于协同跟踪的振动控制方法能够有效抑制柔性机械臂的振动,并且跟随者能够跟踪领导者的运动轨迹,实现多个柔性机械臂协同控制效果。

Description

一种基于协同跟踪的柔性机械臂的振动控制方法 技术领域
本发明涉及振动控制技术领域,具体涉及一种基于协同跟踪的柔性机械臂的振动控制方法。
背景技术
柔性结构有着重量轻、能耗低等优点,因而被广泛地应用于机械臂、机械工程、航天器等工程领域。柔性机械臂在工业领域有着重要的应用,如机器人、机械工程、航空航天等。在柔性机械臂研究中,通常将欧拉-伯努利梁作为基础模型。由于外部扰动的作用产生的弹性形变,会导致柔性机械臂长时间持续的弹性振动,影响***的正常工作。因此减少或消除柔性机械臂的弹性变形与振动,是一个需要解决的问题。柔性机械臂是典型的分布式参数***,即模型参数与工作特性是时间与空间坐标的函数,所以在弹性振动中其动力学响应比较复杂。研究柔性机械臂的振动控制,能够使其在实际工程中获得较高的精度。
协同跟踪指的是多个目标同时跟踪指定目标的运动轨迹,达到协同的效果。在实际工业中,通常有多个柔性机械臂同时工作,如何从控制方面,使得多个柔性机械臂达到协同跟踪的效果,并且能够抑制振动,是一个亟待解决的问题。
目前对于柔性机械臂的振动控制研究大多是采用PID控制、鲁棒控制等方法,关于多个柔性机械臂组成的柔性机械臂组的基于协同跟踪的振动控制方法却鲜少报道。因而本发明的研究,将为柔性机械臂在机器人、机械工程等领域的协同跟踪及振动控制方面提供理论参考。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于协同跟踪的柔性机械臂的振动控制方法。
本发明的目的可以通过采取如下技术方案达到:
一种基于协同跟踪的柔性机械臂的振动控制方法,所述的协同跟踪振动控制方法包括下列步骤:
根据柔性机械臂的动力学特征,构建柔性机械臂的动力学模型;
基于所述的柔性机械臂,构建由多个柔性机械臂构建的柔性机械臂组,指定其中一个柔性机械臂作为领导者,其余作为跟随者,跟随者跟踪领导者的运动轨迹;
基于所述的柔性机械臂,构造基于协同跟踪的边界控制器;
基于所述的柔性机械臂和边界控制器,构建柔性机械臂的Lyapunov函数;
根据所述的Lyapunov函数,验证所述的柔性机械臂的稳定性。
进一步地,所述的动力学特征包括柔性机械臂的动能、势能以及非保守力对所述的柔性机械臂所做的虚功,将动能、势能、虚功代入哈密顿原理,得到柔性机械臂的动力学模型方程为
Figure PCTCN2021080356-appb-000001
Figure PCTCN2021080356-appb-000002
其中,w i(x,t)为第i个柔性机械臂在坐标系xoy下的振动偏移量,
Figure PCTCN2021080356-appb-000003
Figure PCTCN2021080356-appb-000004
分别表示w i(x,t)对时间的一次导数和二次导数,简写为
Figure PCTCN2021080356-appb-000005
Figure PCTCN2021080356-appb-000006
w′ i(x,t) w″ i(x,t)、w″′ i(x,t)、w″″ i(x,t)分别表示w i(x,t)对x的一次导数、二次导数、三次导数和四次导数,简写为w′ i、w″ i、w″′ i、w″″ i,ρ为柔性机械臂的 单位长度均匀质量,m为柔性机械臂的尖端质量,l为机械臂的长度,r为刚性轮毂的半径,I h为轮毂惯性,θ i
Figure PCTCN2021080356-appb-000007
分别表示第i个柔性机械臂的姿态角及其对时间的一次导数、二次导数,T为张力,EI为弯曲刚度,γ为粘性阻尼系数 w″′ i(0,t)、w″″ i(0,t)表示w″′ i(x,t)、w″″ i(x,t)在x=0处的值,w i(l,t)表示w i(x,t)在x=l处的值,u 2i为位于柔性机械臂固定端位置的控制器;
边界条件如下:
Figure PCTCN2021080356-appb-000008
w i(0,t)=w′ i(0,t)=w″ i(l,t)=0
其中,
Figure PCTCN2021080356-appb-000009
分别表示
Figure PCTCN2021080356-appb-000010
在x=l处的值,w′ i(l,t)、w″ i(l,t)分别表示w′ i(x,t)、w″ i(x,t)在x=l处的值,w i(0,t)为w i(x,t)在x=0处的值,w′ i(0,t)表示w′ i(x,t)在x=0处的值,u 1i为位于柔性机械臂尖端位置的控制器。
进一步地,构建由多个柔性机械臂组成的柔性机械臂组,指定其中某个柔性机械臂为领导者,其余作为跟随者,构造边界控制器,具体如
定义辅助变量为
Figure PCTCN2021080356-appb-000011
其中,a ij是邻接矩阵A中下标为(i,j)的元素,邻接矩阵A表征各个作为跟随者的柔性机械臂之间的关系,A=[a ij]∈R k×k是一个非负矩阵,定义为如果两个柔性机械臂之间存在信息交流,则a ij>0,否则,a ij=0;b i0是对角矩阵B中下标为(i,j)的元素,对角矩阵B表征各个作为跟随者的柔性机械臂与领导者之间的关系,B=diag(b 10,b 20,…,b k0)是一个非负对角矩阵,定义为如果作为跟随者的柔性机械臂与领导者之间存在信息交流,则b i0>0,否则,b i0=0;ν是一 个正常数,θ 0为作为领导者的柔性机械臂的姿态角,θ i、θ j分别为第i个及第j个柔性机械臂的姿态角;
定义广义跟踪误差、第二跟踪误差、虚拟控制量分别为
e 1i=θ iri
Figure PCTCN2021080356-appb-000012
其中,θ ri为辅助角,
Figure PCTCN2021080356-appb-000013
为θ ri对时间的一次导数;
定义以下变量
y ei(x,t)=(r+x)e 1i+w i
将y ei(x,t)简写为y ei
构造边界控制器为
Figure PCTCN2021080356-appb-000014
Figure PCTCN2021080356-appb-000015
其中,
Figure PCTCN2021080356-appb-000016
为y ei(x,t)对时间的一次导数,
Figure PCTCN2021080356-appb-000017
Figure PCTCN2021080356-appb-000018
在x=l处的值,S 1i和S 2i分别为
Figure PCTCN2021080356-appb-000019
其中,
Figure PCTCN2021080356-appb-000020
y ei(l,t)分别为
Figure PCTCN2021080356-appb-000021
y ei(x,t)在x=l处的值,α、β、k m、k p1、k p3、k d均为控制参数且为非负数。
进一步地,基于所述的柔性机械臂和边界控制器,构建柔性机械臂的Lyapunov函数,具体如下:
V i=V 1i+V 2i+V 3i
其中,
Figure PCTCN2021080356-appb-000022
Figure PCTCN2021080356-appb-000023
Figure PCTCN2021080356-appb-000024
进一步地,根据所述的Lyapunov函数,验证所述的柔性机械臂的稳定性,具体如下:
通过验证Lyapunov函数的正定性,得出所述的柔性机械臂具有Lyapunov理论下的稳定;
通过验证Lyapunov函数一阶导数的负定性,得出所述的柔性机械臂具有渐进稳定。
进一步地,所述的边界控制器配置为抑制柔性机械臂的振动,并且作为跟随者的柔性机械臂能够跟踪作为领导者的柔性机械臂的运动轨迹的方式实现协同控制。
本发明相对于现有技术具有如下的优点及效果:
本发明提出了一种基于协同跟踪的柔性机械臂的振动控制方法,与传统的控制方法相比,基于协同跟踪的振动控制方法可以实现多个柔性机械臂***组成的柔性机械臂组的协同跟踪效果,且能抑制柔性机械臂自身的振动。本发明所设计的控制方法包含了两个边界控制器,一个主要用于抑制振动,另一个主要用于姿态跟踪,两个边界控制器产生期望输出的控制输入,能有效改善柔性机械臂***的控制质量,同时实现协同跟踪。通过调节增益参数,可以实现柔性机械臂的稳定,说明所设计的边界控制器具有很好的控制效果, 有利于提高其在工业中的控制精度及协同跟踪效果。
附图说明
图1是本发明实施例提供的针对柔性机械臂的基于协同跟踪的振动控制方法的流程示意图;
图2是本发明实施例中柔性机械臂的结构示意图;
图3是本发明实施例中柔性机械臂组的网络拓扑示例图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
参阅图1,图1是本发明实施例公开的基于协同跟踪的柔性机械臂的振动控制方法的流程示图,包括以下步骤:
S101、根据柔性机械臂动力学特征,构建柔性机械臂的动力学模型。
如附图2所示,一种典型的柔性机械臂,其柔性机械臂的左侧边界固定于坐标原点,简称为固定端,右侧边界可搭载负载,简称为尖端,而边界控制器u 1i和u 2i分别作用于柔性机械臂的尖端及左侧位置。柔性机械臂长度为l,其在xoy坐标系的振动偏移量为w i(x,t),在XOY坐标系的振动偏移量为y i(x,t)。
柔性机械臂的动能为
Figure PCTCN2021080356-appb-000025
其中,E ki为第i个柔性机械臂的动能,ρ为柔性机械臂的单位长度均匀质量,y i(x,t)、
Figure PCTCN2021080356-appb-000026
分别为第i个柔性机械臂在XOY坐标系下在时间t位置为x时的弹性形变及其对时间的导数,简写为y i
Figure PCTCN2021080356-appb-000027
为y i(x,t)在x=l处的值,m为柔性机械臂的尖端质量,l为机械臂的长度,r为刚性轮毂的半径,I h为轮毂惯性,θ i
Figure PCTCN2021080356-appb-000028
分别表示姿态角及其对时间的导数。
柔性机械臂的势能为
Figure PCTCN2021080356-appb-000029
其中,w i(x,t)为第i个柔性机械臂在坐标系xoy下的振动偏移量,简写为w i,w′ i(x,t)、w″ i(x,t)分别表示w i(x,t)对x的一次导数、二次导数,简写为w′ i、w″ i,T为张力,EI为弯曲刚度。
以及非保守力对所述的柔性机械臂所做的虚功表示为
Figure PCTCN2021080356-appb-000030
其中,δ为变分符号,γ为粘性阻尼系数,u 1i、u 2i分别表示位于柔性机械臂尖端及固定端位置的控制器,y i(l,t)为y i(x,t)在x=l处的值。
将动能、势能、虚功代入哈密顿原理,得到柔性机械臂的动力学模型方程为:
Figure PCTCN2021080356-appb-000031
Figure PCTCN2021080356-appb-000032
其中,
Figure PCTCN2021080356-appb-000033
分别表示w i(x,t)对时间的一次导数和二次导数,简写为
Figure PCTCN2021080356-appb-000034
Figure PCTCN2021080356-appb-000035
w″′ i(x,t)、w″″ i(x,t)分别表示w i(x,t)对x的三次导数和四次导数, 简写为w″′ i、w″″ i
Figure PCTCN2021080356-appb-000036
表示姿态角θ i对时间的二次导数,w″′ i(0,t)、w″″ i(0,t)表示w″′ i(x,t)、w″″ i(x,t)在x=0处的值,w i(l,t)表示w i(x,t)在x=l处的值,
Figure PCTCN2021080356-appb-000037
边界条件如下:
Figure PCTCN2021080356-appb-000038
w i(0,t)=w′ i(0,t)=w″ i(l,t)=0    (7)
其中,
Figure PCTCN2021080356-appb-000039
分别表示
Figure PCTCN2021080356-appb-000040
在x=l处的值,w′ i(l,t)、w″ i(l,t)分别表示w′ i(x,t) w″ i(x,t)在x=l处的值,u 1i为位于柔性机械臂尖端位置的控制器,w i(0,t)为w i(x,t)在x=0处的值,w′ i(0,t)表示w′ i(x,t)在x=0处的值。
S102、基于所述的柔性机械臂,构建由多个柔性机械臂组成的柔性机械臂组,指定其中的领导者及跟随者,构造基于协同跟踪的柔性机械臂的边界控制器。
如附图3所示,指定编号为0的柔性机械臂为领导者,其余编号的柔性机械臂为跟随者,跟随者需跟踪领导者的运动轨迹,实现多个柔性机械臂协同工作的效果,其箭头符号表示各个柔性机械臂的信息交流关系,用邻接矩阵A及对角矩阵B进行表示。邻接矩阵A表示作为跟随者的柔性机械臂之间的信息交流关系,对角矩阵B表示作为追随者的柔性机械臂与领导者之间的信息交流关系。
为了减少或消除柔性机械臂的振动并实现多个柔性机械臂协同跟踪,构造基于协同跟踪的边界控制器。具体为:
定义辅助变量为
Figure PCTCN2021080356-appb-000041
其中,A=[a ij]∈ k×k是一个非负矩阵,定义为如果两个柔性机械臂之间存在信息交流,则a ij>0,否则,a ij=0;B=diag(b 10,b 20,…,b k0)是一个非负对角矩阵,定义为如果作为跟随者的柔性机械臂与领导者之间存在信息交流,则b i0>0,否则,b i0=0;ν是一个正常数,θ 0为作为领导者的柔性机械臂的姿态角,θ i、θ j为第i个及第j个柔性机械臂的姿态角。
定义广义跟踪误差、第二跟踪误差、虚拟控制量分别为
e 1i=θ iri       (9)
Figure PCTCN2021080356-appb-000042
Figure PCTCN2021080356-appb-000043
其中,
Figure PCTCN2021080356-appb-000044
为θ ri对时间的一次导数;
定义以下变量
y ei(x,t)=(r+x)e 1i+w i       (12)
将y ei(x,t)简写为y ei
构造边界控制器为
Figure PCTCN2021080356-appb-000045
Figure PCTCN2021080356-appb-000046
其中,
Figure PCTCN2021080356-appb-000047
为y ei(x,t)对时间的一次导数,
Figure PCTCN2021080356-appb-000048
Figure PCTCN2021080356-appb-000049
在x=l处的值,S 1i和S 2i分别为
Figure PCTCN2021080356-appb-000050
其中,
Figure PCTCN2021080356-appb-000051
y ei(l,t)分别为
Figure PCTCN2021080356-appb-000052
y ei(x,t)在x=l处的值,α、β、k m、k p1、k p3、k d为所述边界控制器的增益参数且值均大于0。
现有的关于柔性机械臂的振动控制研究大多是针对单个柔性机械臂***的,而且很多采用的是PID控制、鲁棒控制等方式。在本实施例中,通过辅助变量表示各个柔性机械臂之间的信息交流关系,进一步构造两个分别位于固定端及尖端位置的边界控制器,不仅能实现振动抑制效果,还能实现多个柔性机械臂协同跟踪的效果。以上所有信号均可通过传感器或计算得到。
S103、基于柔性机械臂和边界控制器,构建柔性机械臂的Lyapunov函数;
构建Lyapunov函数为
V i=V 1i+V 2i+V 3i      (16)
其中,V 1i、V 2i、V 3i分别为
Figure PCTCN2021080356-appb-000053
Figure PCTCN2021080356-appb-000054
Figure PCTCN2021080356-appb-000055
S104、根据Lyapunov函数,验证柔性机械臂的稳定性;该步骤利用李雅普诺夫直接法验证柔性机械臂的稳定性。
本实施例中,柔性机械臂满足预设要求,即通过验证Lyapunov函数的正定性,得出柔性机械臂具有Lyapunov理论下的稳定;
通过验证Lyapunov函数一阶导数的负定性,得出柔性机械臂具有渐进稳定。
本实施例中,验证Lyapunov函数的正定性,方法如下:
根据不等式
Figure PCTCN2021080356-appb-000056
可以得到
Figure PCTCN2021080356-appb-000057
根据式(16)可以得到Lyapunov函数为正定的,即
Figure PCTCN2021080356-appb-000058
其中,
Figure PCTCN2021080356-appb-000059
Lyapunov函数V i(t)的正定性得证。
验证Lyapunov函数一阶导数的负定性,具体为
求V i(t)对时间的导数为
Figure PCTCN2021080356-appb-000060
分别对式(6)中的V 1i、V 2i和V 3i求时间的导数,可得
Figure PCTCN2021080356-appb-000061
Figure PCTCN2021080356-appb-000062
最终相加得到
Figure PCTCN2021080356-appb-000063
Figure PCTCN2021080356-appb-000064
其中,η和σ为正常数。
选择合适的参数如下
Figure PCTCN2021080356-appb-000065
可得
Figure PCTCN2021080356-appb-000066
Figure PCTCN2021080356-appb-000067
是半负定的。
由式(21)可得
λ 1(V 1i+V 2i+V 3i)≤V i≤λ 2(V 1i+V 2i+V 3i)    (25)
其中,
Figure PCTCN2021080356-appb-000068
当λ满足下列条件
Figure PCTCN2021080356-appb-000069
将式(25)两边同时乘以e λt,经过整理计算可得
Figure PCTCN2021080356-appb-000070
因而,当
Figure PCTCN2021080356-appb-000071
时,
Figure PCTCN2021080356-appb-000072
成立。
根据以上的分析,基于协同跟踪的柔性机械臂的稳定性得证。
需要说明的是,请参阅图2和图3,图2为本发明实施例中的柔性机械臂示意图。图3为柔性机械臂组的网络拓扑示例图,主要表示各个柔性机械臂的信息交流关系。如图3所示,考虑一个由6个柔性机械臂组成的柔性机械臂组,其中,编号为0的柔性机械臂作为领导者,其余编号的柔性机械臂为 跟随者,编号为1和2的跟随者与编号为0的领导者存在信息交流,编号为3、4、5的跟随者分别与编号1、2、3的跟随者存在信息交流。各个柔性机械臂之间的信息交流关系采用邻接矩阵A和对角矩阵B进行表示,其中,邻接矩阵A表示作为跟随者的柔性机械臂之间的信息交流关系,对角矩阵B表示作为追随者的柔性机械臂与领导者之间的信息交流关系。A=[a ij]∈R k×k是一个非负矩阵,定义为如果两个柔性机械臂之间存在信息交流,则a ij>0,否则,a ij=0。B=diag(b 10,b 20,…,b k0)是一个非负对角矩阵,定义为如果作为跟随者的柔性机械臂与领导者之间存在信息交流,则b i0>0,否则,b i0=0。
选择合适的增益参数,验证所述Lyapunov函数的正定性和Lyapunov函数一阶导数的负定性。
在本实施例中,可利用MATLAB仿真软件对所述柔性机械臂进行数字仿真,得到所述仿真结果;根据仿真结果,验证对柔性机械臂施加控制作用后的控制效果是否符合预期;若符合,则可结束该操作,若不符合,则修正边界控制器的增益参数,重新进行数字仿真。
综上所述,本实施例提供了一种基于协同跟踪的柔性机械臂的振动控制方法,包括构建柔性机械臂的动力学模型;构建由多个柔性机械臂组成柔性机械臂组,指定其中的领导者及追随者,确定信息交流关系,构造基于协同跟踪的边界控制器,分别位于柔性机械臂的固定端及尖端位置;在控制作用下验证柔性机械臂的稳定性;本发明能够实现柔性机械臂更稳定、精确的控制,并能实现柔性机械臂协同跟踪的效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述 实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

  1. 一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,所述的协同跟踪振动控制方法包括下列步骤:
    根据柔性机械臂的动力学特征,构建柔性机械臂的动力学模型;
    基于所述的柔性机械臂,构建由多个柔性机械臂构建的柔性机械臂组,指定其中一个柔性机械臂作为领导者,其余作为跟随者,跟随者跟踪领导者的运动轨迹;
    基于所述的柔性机械臂,构造基于协同跟踪的边界控制器;
    基于所述的柔性机械臂和边界控制器,构建柔性机械臂的Lyapunov函数;
    根据所述的Lyapunov函数,验证所述的柔性机械臂的稳定性。
  2. 根据权利要求1所述的一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,所述的动力学特征包括柔性机械臂的动能、势能以及非保守力对所述的柔性机械臂所做的虚功,将动能、势能、虚功代入哈密顿原理,得到柔性机械臂的动力学模型方程为
    Figure PCTCN2021080356-appb-100001
    Figure PCTCN2021080356-appb-100002
    其中,w i(x,t)为第i个柔性机械臂在坐标系xoy下的振动偏移量,
    Figure PCTCN2021080356-appb-100003
    Figure PCTCN2021080356-appb-100004
    分别表示w i(x,t)对时间的一次导数和二次导数,简写为
    Figure PCTCN2021080356-appb-100005
    Figure PCTCN2021080356-appb-100006
    w′ i(x,t)、w″ i(x,t)、w″′ i(x,t)、w″″ i(x,t)分别表示w i(x,t)对x的一次导数、二次导数、三次导数和四次导数,简写为w′ i、w″ i、w″′ i、w″″ i,ρ为柔性机械臂的单位长度均匀质量,m为柔性机械臂的尖端质量,l为机械臂的长度,r为刚性轮毂的半径,I h为轮毂惯性,θ i
    Figure PCTCN2021080356-appb-100007
    分别表示第i个柔性机械臂的姿态 角及其对时间的一次导数、二次导数,T为张力,EI为弯曲刚度,γ为粘性阻尼系数,w″′ i(0,t)、w″″ i(0,t)表示w″′ i(x,t)、w″″ i(x,t)在x=0处的值,w i(l,t)表示w i(x,t)在x=l处的值,u 2i为位于柔性机械臂固定端位置的控制器;
    边界条件如下:
    Figure PCTCN2021080356-appb-100008
    w i(0,t)=w′ i(0,t)=w″ i(l,t)=0
    其中,
    Figure PCTCN2021080356-appb-100009
    分别表示
    Figure PCTCN2021080356-appb-100010
    在x=l处的值,w′ i(l,t)、w″ i(l,t)分别表示w′ i(x,t)、w″ i(x,t)在x=l处的值,w i(0,t)为w i(x,t)在x=0处的值,w′ i(0,t)表示w′ i(x,t)在x=0处的值,u 1i为位于柔性机械臂尖端位置的控制器。
  3. 根据权利要求1所述的一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,构建由多个柔性机械臂组成的柔性机械臂组,指定其中某个柔性机械臂为领导者,其余作为跟随者,构造边界控制器,具体如
    定义辅助变量为
    Figure PCTCN2021080356-appb-100011
    其中,a ij是邻接矩阵A中下标为(i,j)的元素,邻接矩阵A表征各个作为跟随者的柔性机械臂之间的关系,A=[a ij]∈R k×k是一个非负矩阵,定义为如果两个柔性机械臂之间存在信息交流,则a ij>0,否则,a ij=0;b i0是对角矩阵B中下标为(i,j)的元素,对角矩阵B表征各个作为跟随者的柔性机械臂与领导者之间的关系,B=diag(b 10,b 20,…,b k0)是一个非负对角矩阵,定义为如果作为跟随者的柔性机械臂与领导者之间存在信息交流,则b i0>0,否则,b i0=0;ν是一个正常数,θ 0为作为领导者的柔性机械臂的姿态角,θ i、θ j分别为第i个及第 j个柔性机械臂的姿态角;
    定义广义跟踪误差、第二跟踪误差、虚拟控制量分别为
    e 1i=θ iri
    Figure PCTCN2021080356-appb-100012
    其中,θ ri为辅助角,
    Figure PCTCN2021080356-appb-100013
    为θ ri对时间的一次导数;
    定义以下变量
    y ei(x,t)=(r+x)e 1i+w i
    将y ei(x,t)简写为y ei
    构造边界控制器为
    Figure PCTCN2021080356-appb-100014
    Figure PCTCN2021080356-appb-100015
    其中,
    Figure PCTCN2021080356-appb-100016
    为y ei(x,t)对时间的一次导数,
    Figure PCTCN2021080356-appb-100017
    Figure PCTCN2021080356-appb-100018
    在x=l处的值,S 1i和S 2i分别为
    Figure PCTCN2021080356-appb-100019
    其中,
    Figure PCTCN2021080356-appb-100020
    y ei(l,t)分别为
    Figure PCTCN2021080356-appb-100021
    y ei(x,t)在x=l处的值,α、β、k m、k p1、k p3、k d均为控制参数且为非负数。
  4. 根据权利要求3所述的一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,基于所述的柔性机械臂和边界控制器,构建柔性机械臂的Lyapunov函数,具体如下:
    V i=V 1i+V 2i+V 3i
    其中,
    Figure PCTCN2021080356-appb-100022
    Figure PCTCN2021080356-appb-100023
    Figure PCTCN2021080356-appb-100024
  5. 根据权利要求1所述的一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,根据所述的Lyapunov函数,验证所述的柔性机械臂的稳定性,具体如下:
    通过验证Lyapunov函数的正定性,得出所述的柔性机械臂具有Lyapunov理论下的稳定;
    通过验证Lyapunov函数一阶导数的负定性,得出所述的柔性机械臂具有渐进稳定。
  6. 根据权利要求1所述的一种基于协同跟踪的柔性机械臂的振动控制方法,其特征在于,
    所述的边界控制器配置为抑制柔性机械臂的振动,并且作为跟随者的柔性机械臂能够跟踪作为领导者的柔性机械臂的运动轨迹的方式实现协同控制。
PCT/CN2021/080356 2020-03-18 2021-03-12 一种基于协同跟踪的柔性机械臂的振动控制方法 WO2021185159A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/614,075 US12017357B2 (en) 2020-03-18 2021-03-12 Method for controlling vibration of flexible mechanical arm based on cooperative tracking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010191567.7 2020-03-18
CN202010191567.7A CN111360830B (zh) 2020-03-18 2020-03-18 一种基于协同跟踪的柔性机械臂的振动控制方法

Publications (1)

Publication Number Publication Date
WO2021185159A1 true WO2021185159A1 (zh) 2021-09-23

Family

ID=71202537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080356 WO2021185159A1 (zh) 2020-03-18 2021-03-12 一种基于协同跟踪的柔性机械臂的振动控制方法

Country Status (3)

Country Link
US (1) US12017357B2 (zh)
CN (1) CN111360830B (zh)
WO (1) WO2021185159A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660954A (zh) * 2022-02-22 2022-06-24 华南理工大学 一种柔性梁***的边界协同振动控制方法
CN115319746A (zh) * 2022-08-19 2022-11-11 湖南工商大学 基于分散神经网络的柔性基、柔性臂奇异摄动控制方法
CN116277036A (zh) * 2023-05-16 2023-06-23 湖南工商大学 一种柔性基、柔性臂空间机器人快速容错抑振控制方法
CN118305808A (zh) * 2024-06-07 2024-07-09 山东开泰抛丸机械股份有限公司 喷砂机械臂动态状态约束自适应控制方法及***

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360830B (zh) * 2020-03-18 2021-07-16 华南理工大学 一种基于协同跟踪的柔性机械臂的振动控制方法
US20230256607A1 (en) * 2020-08-19 2023-08-17 Beijing Surgerii Robotics Company Limited Robot system and control method thereof
CN112230604B (zh) 2020-12-15 2021-02-26 中国科学院自动化研究所 基于智能材料驱动的柔性碳素悬臂梁的控制方法
CN112799441B (zh) * 2020-12-31 2022-04-12 江南大学 用于柔性海洋立管的振动抑制方法及***
CN113635300B (zh) * 2021-07-27 2023-09-01 北京工业大学 一种基于轨迹规划的变刚度柔性臂抑振控制方法
CN113820978B (zh) * 2021-09-08 2023-05-26 华侨大学 一种网络遥操作机器人***的准同步控制方法
CN114536338B (zh) * 2022-03-03 2023-09-26 深圳亿嘉和科技研发有限公司 一种液压机械臂的控制方法
CN115556101A (zh) * 2022-10-08 2023-01-03 深圳市智鼎自动化技术有限公司 一种多机械手臂协同控制方法及相关装置
CN116442212B (zh) * 2023-03-07 2023-10-10 北京科技大学 预置时间和精度下人在环多机械臂***分群安全控制方法
CN116038773B (zh) * 2023-03-29 2023-07-07 之江实验室 一种柔性关节机械臂振动特性分析方法及装置
CN116021555B (zh) * 2023-03-29 2023-07-07 之江实验室 一种柔性关节机械臂吸振控制方法及装置
CN116985123B (zh) * 2023-07-17 2024-07-05 华东交通大学 一种降低长柔性液压机械臂振动的轨迹规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192008A (ja) * 1990-11-27 1992-07-10 Pentel Kk 多関節ロボット旋回制御方式
CN102540881A (zh) * 2012-02-17 2012-07-04 国电科学技术研究院 基于柔性机械臂的偏微分模型的边界控制律的设计方法
CN104589344A (zh) * 2014-11-21 2015-05-06 电子科技大学 一种抑制柔性机械臂振动的边界控制方法
CN106078742A (zh) * 2016-06-29 2016-11-09 北京科技大学 一种针对带有输出约束的柔性机械臂的振动控制方法
CN108181836A (zh) * 2017-12-29 2018-06-19 广州大学 一种针对柔性Timoshenko梁机械臂抗饱和的边界控制方法
CN110673469A (zh) * 2019-07-23 2020-01-10 华南理工大学 一种基于反步迭代学习的欧拉-伯努利梁的振动控制方法
CN111360830A (zh) * 2020-03-18 2020-07-03 华南理工大学 一种基于协同跟踪的柔性机械臂的振动控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615009A (zh) * 2014-12-19 2015-05-13 华南理工大学 一种柔性臂***二维振动控制方法
CN104570741A (zh) * 2015-01-22 2015-04-29 华南理工大学 一种柔性机械臂横向振动pd边界控制模拟方法
US10207404B2 (en) * 2017-02-09 2019-02-19 X Development Llc Generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot
CN107015567B (zh) * 2017-06-19 2020-07-10 上海航天控制技术研究所 一种超大尺度柔性航天器分散协同控制方法
US11565412B2 (en) * 2017-09-15 2023-01-31 Google Llc Generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot
CN108508929B (zh) * 2018-03-12 2020-10-23 北京理工大学 柔性机械结构的振动控制方法和***
KR102114068B1 (ko) * 2018-04-19 2020-05-25 한국과학기술연구원 계산 토크 방식 제어기, 이의 파라미터 결정 및 성능 평가 방법
US11399906B2 (en) * 2019-06-27 2022-08-02 Cilag Gmbh International Robotic surgical system for controlling close operation of end-effectors
CN110609471B (zh) * 2019-07-23 2021-04-02 华南理工大学 基于反步技术的海洋柔性立管***的边界迭代控制方法
CN110647104B (zh) * 2019-09-02 2021-05-11 华南理工大学 一种基于边界扰动观测器的柔性立管反步边界控制方法
CN111136633B (zh) * 2020-01-13 2021-04-09 燕山大学 针对时变时延下柔性主-从机器人***的全状态控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192008A (ja) * 1990-11-27 1992-07-10 Pentel Kk 多関節ロボット旋回制御方式
CN102540881A (zh) * 2012-02-17 2012-07-04 国电科学技术研究院 基于柔性机械臂的偏微分模型的边界控制律的设计方法
CN104589344A (zh) * 2014-11-21 2015-05-06 电子科技大学 一种抑制柔性机械臂振动的边界控制方法
CN106078742A (zh) * 2016-06-29 2016-11-09 北京科技大学 一种针对带有输出约束的柔性机械臂的振动控制方法
CN108181836A (zh) * 2017-12-29 2018-06-19 广州大学 一种针对柔性Timoshenko梁机械臂抗饱和的边界控制方法
CN110673469A (zh) * 2019-07-23 2020-01-10 华南理工大学 一种基于反步迭代学习的欧拉-伯努利梁的振动控制方法
CN111360830A (zh) * 2020-03-18 2020-07-03 华南理工大学 一种基于协同跟踪的柔性机械臂的振动控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660954A (zh) * 2022-02-22 2022-06-24 华南理工大学 一种柔性梁***的边界协同振动控制方法
CN114660954B (zh) * 2022-02-22 2024-03-29 华南理工大学 一种柔性梁***的边界协同振动控制方法
CN115319746A (zh) * 2022-08-19 2022-11-11 湖南工商大学 基于分散神经网络的柔性基、柔性臂奇异摄动控制方法
CN116277036A (zh) * 2023-05-16 2023-06-23 湖南工商大学 一种柔性基、柔性臂空间机器人快速容错抑振控制方法
CN116277036B (zh) * 2023-05-16 2023-08-22 湖南工商大学 一种柔性基、柔性臂空间机器人快速容错抑振控制方法
CN118305808A (zh) * 2024-06-07 2024-07-09 山东开泰抛丸机械股份有限公司 喷砂机械臂动态状态约束自适应控制方法及***

Also Published As

Publication number Publication date
US20220234198A1 (en) 2022-07-28
US12017357B2 (en) 2024-06-25
CN111360830A (zh) 2020-07-03
CN111360830B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2021185159A1 (zh) 一种基于协同跟踪的柔性机械臂的振动控制方法
CN108646758B (zh) 一种多移动机器人预设性能编队控制器结构及设计方法
JP6740279B2 (ja) 調整装置及び調整方法
CN105598968B (zh) 一种并联机械臂的运动规划与控制方法
CN116277036B (zh) 一种柔性基、柔性臂空间机器人快速容错抑振控制方法
JP2006302282A (ja) ロボットプログラムの最適化方法及びロボット制御システム
CN105045103B (zh) 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法
CN108958036B (zh) 一种基于频率特征识别的柔性操作臂弹性振动抑制方法
CN111103792B (zh) 机器人控制方法、装置、电子设备及可读存储介质
CN111474852B (zh) 一种压电驱动变形机翼的离散滑模控制方法
CN110394801A (zh) 一种机器人的关节控制***
CN109940613A (zh) 一种计算含压电材料机械臂动力学响应及控制的仿真方法
CN115903482A (zh) 一种多柔性臂***的自适应神经网络容错协同控制方法
Jiang et al. Model-free control of flexible manipulator based on intrinsic design
CN113219825B (zh) 一种四足机器人单腿轨迹跟踪控制方法及***
CN116512245A (zh) 一种柔性关节机械臂残余振动抑制的轨迹优化方法及装置
WO2023207164A1 (zh) 一种机器人作业控制方法及装置
Zollo et al. PD control with on-line gravity compensation for robots with flexible links
Bounouara et al. Metaheuristic optimization of PD and PID controllers for robotic manipulators
CN110788859B (zh) 一种控制器参数全域自适应调节***
CN115179290A (zh) 一种机械臂及其轨迹控制方法与装置
Iqbal et al. Robust sliding-mode controller design for a Stewart platform
CN109807893B (zh) 一种焊接机器人运动模型光滑化方法
Zribi et al. Smooth motion profile for trajectory planning of a flexible manipulator
Nguyen et al. A robust descriptor approach for nonlinear tracking control of serial robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21771449

Country of ref document: EP

Kind code of ref document: A1