WO2021184221A1 - 打码控制及打码方法、***、芯片、电子设备及存储介质 - Google Patents

打码控制及打码方法、***、芯片、电子设备及存储介质 Download PDF

Info

Publication number
WO2021184221A1
WO2021184221A1 PCT/CN2020/079787 CN2020079787W WO2021184221A1 WO 2021184221 A1 WO2021184221 A1 WO 2021184221A1 CN 2020079787 W CN2020079787 W CN 2020079787W WO 2021184221 A1 WO2021184221 A1 WO 2021184221A1
Authority
WO
WIPO (PCT)
Prior art keywords
coding
amplitude
touch screen
noise amplitude
active pen
Prior art date
Application number
PCT/CN2020/079787
Other languages
English (en)
French (fr)
Inventor
唐玲裕
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/079787 priority Critical patent/WO2021184221A1/zh
Priority to CN202080001625.3A priority patent/CN111868669A/zh
Publication of WO2021184221A1 publication Critical patent/WO2021184221A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • This application relates to the field of touch technology, and in particular to a coding control and coding method, system, chip, electronic device and storage medium.
  • capacitive active pen and capacitive touch screen systems both generally work based on a preset communication protocol.
  • the amplitude of the coding signal of the active pen is always fixed during work, in order to ensure that it can be used in the harshest application environment.
  • the amplitude of the active pen coding signal is usually always fixed at a very high value.
  • the purpose of some embodiments of this application is to provide a coding control and coding method, system, chip, electronic device, and storage medium, so that the active pen can adaptively adjust the coding signal amplitude according to the application environment.
  • the active pen is not in a harsh environment, it is helpful to avoid that the coding signal amplitude of the active pen is always at a very high value, thereby reducing the power consumption of the active pen to a certain extent.
  • the embodiment of the present application provides a coding control method applied to a touch screen, including: obtaining the noise amplitude of the touch screen; determining the coding parameter value corresponding to the noise amplitude; wherein, the coding parameter The value includes the amplitude of the coding signal; an uplink signal carrying the amplitude of the coding signal is sent to the active pen interacting with the touch screen for the active pen to perform coding based on the amplitude of the coding signal.
  • the embodiment of the present application also provides a coding method, which is applied to the active pen, and includes: receiving an uplink signal carrying the amplitude of the coding signal sent by a touch screen; wherein, the touch screen is used to obtain the touch screen And determine the coding parameter value corresponding to the noise amplitude, where the coding parameter value includes the coding signal amplitude; coding is performed based on the coding signal amplitude.
  • An embodiment of the present application also provides a chip, including: at least one processor; and a memory communicatively connected with the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor The instruction is executed by the at least one processor, so that the at least one processor can execute the foregoing coding control method or execute the foregoing coding method.
  • An embodiment of the present application also provides an electronic device, including: at least one processor; Instruction, the instruction is executed by the at least one processor; when the electronic device is a touch screen, the at least one processor can execute the coding control method described above; when the electronic device is an active pen At this time, the at least one processor can execute the above coding method.
  • the embodiment of the present application also provides a computer-readable storage medium that stores a computer program that implements the foregoing coding control method or the foregoing coding method when the computer program is executed by a processor.
  • the embodiment of the present application also provides a coding system, including: a touch screen and an active pen; the touch screen is used to obtain the noise amplitude of the touch screen and determine the coding corresponding to the noise amplitude Parameter value, and send an uplink signal carrying the amplitude of the coding signal to the active pen that interacts with the touch screen; wherein, the coding parameter value includes the amplitude of the coding signal; the active pen is used to receive the The amplitude of the coding signal is described, and coding is performed based on the amplitude of the coding signal.
  • the amplitude of the active pen coding signal is usually always fixed at a very high value.
  • the active pen itself is powered by a battery and is more sensitive to power consumption. Many times the active pen is not in a harsh environment. At this time, the high coding signal amplitude will consume more power, which makes the active pen The power consumption is larger.
  • the embodiment of the present application obtains the noise amplitude of the touch screen, and determines the coding parameter value corresponding to the noise amplitude.
  • the coding parameter value includes the coding signal amplitude and is directed to the active pen that interacts with the touch screen. Send an uplink signal carrying the amplitude of the coding signal for the active pen to perform coding based on the amplitude of the coding signal.
  • the noise amplitude of the touch screen can reflect the application environment of the touch screen and the active pen that interacts with the touch screen.
  • the active pen can adaptively adjust the coding signal amplitude according to the application environment, which is beneficial to avoid In a non-harsh environment, the amplitude of the coding signal of the active pen is always at a very high value, which consumes more power, which helps to reduce the power consumption of the active pen to a certain extent.
  • the smaller the noise amplitude the smaller the coding parameter value corresponding to the noise amplitude. Since the coding parameter value includes the coding signal amplitude, that is to say, the smaller the noise amplitude, the smaller the coding signal amplitude corresponding to the noise amplitude, and the smaller the coding signal amplitude, the lower the power consumption of the active pen, which can be compared with the noise amplitude. It can reduce the power consumption of the active pen more effectively.
  • the determining the coding parameter value corresponding to the noise amplitude includes: identifying the threshold range in which the noise amplitude is located from a plurality of preset threshold ranges; and according to the threshold range in which the noise amplitude is located To determine the coding parameter value corresponding to the noise amplitude.
  • the multiple threshold ranges do not overlap each other and the multiple threshold ranges form a continuous interval
  • the smaller the upper limit of the threshold range in which the noise amplitude lies the greater the coding parameter value corresponding to the noise amplitude small.
  • the finally determined noise amplitude is in one of the multiple threshold ranges.
  • the smaller the upper limit of the threshold range of the noise amplitude the smaller the coding parameter value corresponding to the noise amplitude, which is conducive to passing the upper limit of the threshold range of the noise amplitude, which directly reflects the marking corresponding to the noise amplitude.
  • the size of the code parameter value is desirable to pass the upper limit of the threshold range of the noise amplitude.
  • the coding parameter value further includes: a screen detection threshold for the touch screen to determine whether there is an active pen for coding; after the coding parameter value corresponding to the noise amplitude is determined, further It includes: setting the current screen detection threshold of the touch screen to the screen detection threshold corresponding to the noise amplitude.
  • the screen detection threshold can be adjusted adaptively as the noise amplitude of the touch screen changes, which is beneficial to the touch screen More accurately determine whether there is an active pen for coding.
  • the acquiring the noise amplitude of the touch screen includes: determining the working frequency band of the active pen interacting with the touch screen; acquiring the noise amplitude of the noise of the touch screen in the working frequency band.
  • the screen noise of the touch screen may contain noises of different frequencies, by determining the working frequency band of the active pen interacting with the touch screen, it is convenient to obtain the noise amplitude of the noise of the touch screen in the working frequency band of the active pen. It is helpful to obtain the coding parameter value for the active pen.
  • FIG. 1 is a schematic diagram of communication between the touch screen and the active pen according to the first embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of the active pen according to the first embodiment of the present application.
  • Fig. 3 is a flowchart of a coding control method according to the first embodiment of the present application.
  • FIG. 4 is a schematic diagram of the working mode of the touch screen and the active pen according to the first embodiment of the present application;
  • Fig. 5 is a flowchart of a coding control method in a second embodiment of the present application.
  • Fig. 6 is a flowchart of a coding method according to a third embodiment of the present application.
  • Fig. 7 is a schematic diagram of a coding system according to a fourth embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of a chip in a fifth embodiment according to the present application.
  • Fig. 9 is a schematic structural diagram of an electronic device in a sixth embodiment according to the present application.
  • the first embodiment of the present application relates to a coding control method, applied to a touch screen, including: obtaining the noise amplitude of the touch screen, and determining the coding parameter value corresponding to the noise amplitude; wherein the coding parameter value includes a coding signal Amplitude: The amplitude of the coding signal is sent to the active pen that interacts with the touch screen for the active pen to perform coding based on the amplitude of the coding signal.
  • a schematic diagram of communication between the touch screen 100 and the active pen 200 may be as shown in FIG. 1.
  • the primary and secondary electrodes of the active pen 200 can respectively form coupling capacitors with the driving and sensing electrodes of the touch screen 100, and the active pen 200 and the touch screen 100 can communicate with each other through the coupling capacitors.
  • the touch screen 100 may also be provided with a communication module 106, and referring to FIG. 2, which is a schematic structural diagram of the active pen 200, the active pen 200 may also be provided with a communication module 207.
  • the touch screen 100 and the active pen 200 can communicate through the communication module 106 and the communication module 207.
  • the communication module may be a radio frequency communication module, a Bluetooth communication module, and so on.
  • the touch screen 100 includes driving electrodes D0 to D3, sensing electrodes S0 to S3, a multiplexer selector 101, a drive circuit 102, a processor 103, a signal acquisition and demodulation circuit 104, and a multiplexer 105 , And the optional communication module 106.
  • the number of driving electrodes and sensing electrodes is only shown in FIG. 1 as an example.
  • the touch screen may include multiple sets of driving electrodes and sensing electrodes.
  • the active pen 200 includes a main electrode 205, a secondary electrode 206, a driving/receiving circuit 204, a logic controller 203, a power management module 202, a power supply 201 and other modules, and an optional communication module 207.
  • the driving/receiving circuit 204 can drive the main electrode 205 and/or the auxiliary electrode 206 to output coding signals, respectively.
  • the function of driving the main electrode 205 to output a coding signal may be: for the touch screen 100 to determine the coordinate position of the active pen 200; the function of driving the main electrode 205 and the auxiliary electrode 206 to output a coding signal may be: The touch screen 100 is used to determine the position coordinates and the inclination angle of the active pen 200; the function of the driven secondary electrode 206 to output a coding signal may be: to communicate with the touch screen 100. It should be noted that the function of driving the main electrode 205 and/or the auxiliary electrode 206 to output the coding signal can be set according to actual needs, which is not specifically limited in this embodiment. In addition, in FIG.
  • the secondary electrode 206 is connected to the driving/receiving circuit 204, that is, the secondary electrode 206 can be multiplexed as driving and receiving electrodes, and the driving/receiving circuit 204 is connected to the logic controller 203.
  • the main electrode can also be multiplexed as driving and receiving electrodes as required, which is not limited in this embodiment.
  • FIG. 3 The flowchart of the coding control method of the embodiment of the present application may be as shown in FIG. 3, including:
  • Step 301 Obtain the noise amplitude of the touch screen.
  • the noise amplitude of the touch screen can reflect the application environment of the touch screen and the active pen that interacts with the touch screen.
  • the large noise amplitude of the touch screen can reflect the relatively harsh application environment and greater interference.
  • the small noise amplitude of the touch screen can reflect that the application environment is relatively normal and the interference is small.
  • the touch screen can first determine the working frequency band of the active pen that interacts with the touch screen.
  • the touch screen can be paired with the active pen via Bluetooth, and then the active pen can send its working frequency band to the touch screen via Bluetooth.
  • the control screen allows the touch screen to determine the working frequency band of the active pen that interacts with the touch screen.
  • the touch screen can directly obtain the working frequency band of the active pen from the active pen directly based on the Bluetooth connection with the active pen.
  • the touch screen can obtain the noise amplitude of the noise of the touch screen in the working frequency band.
  • the main concern in this embodiment is the noise in the working frequency band of the active pen among the screen end noise. Therefore, in this embodiment, the noise amplitude of the noise of the touch screen in the working frequency band of the active pen can be directly obtained.
  • the touch screen can directly detect the screen-side noise first, and then demodulate the noise amplitude of the noise in the working frequency band of the active pen from the screen-side noise.
  • the sensing electrodes and/or driving electrodes of the touch screen can sense the screen-side noise of the touch screen, and then the signal acquisition and demodulation circuit 104 can demodulate the screen-side noise to demodulate the screen-side noise.
  • the touch screen can obtain the noise amplitude of the touch screen in real time, or periodically obtain the noise amplitude of the touch screen, and it can also start to obtain the touch screen after the active pen is successfully paired and connected. Noise amplitude, however, this embodiment does not specifically limit this.
  • Step 302 Determine the coding parameter value corresponding to the noise amplitude.
  • the corresponding relationship between the noise amplitude and the coding parameter value may be pre-stored, and according to the corresponding relationship, the coding parameter value corresponding to the noise amplitude can be determined.
  • the coding parameter value includes the coding signal amplitude of the active pen, that is, the smaller the noise amplitude, the smaller the coding signal amplitude corresponding to the noise amplitude.
  • the coding parameter value corresponding to the noise amplitude can also be calculated according to a preset formula.
  • the noise amplitude can be brought into the preset calculation formula to obtain the coding parameter value corresponding to the noise amplitude.
  • the preset formula can be set by those skilled in the art according to actual needs, which is not specifically limited in this embodiment.
  • the coding parameter value may also include: a screen detection threshold for the touch screen to determine whether an active pen is used for coding, which may also be referred to as a screen detection threshold for pen signal.
  • a screen detection threshold for the touch screen to determine whether an active pen is used for coding
  • the touch screen detects that the amplitude of the coding signal is greater than the detection threshold of the screen, it can be determined that an active pen is coding, that is, the active pen touches the touch screen.
  • the purpose of setting the detection threshold of the screen is mainly to consider the noise interference in the application environment. After determining the screen detection threshold corresponding to the noise amplitude, the current screen detection threshold of the touch screen can be set to the screen detection threshold corresponding to the noise amplitude. In other words, adaptively adjusting the size of the detection threshold of the screen based on the magnitude of the noise is beneficial to the touch screen to more accurately determine whether there is an active pen for coding.
  • Step 303 Send an uplink signal carrying the amplitude of the coding signal to the active pen interacting with the touch screen for the active pen to perform coding based on the amplitude of the coding signal.
  • the touch screen 100 can send an uplink signal carrying the amplitude of the coding signal to the active pen 200 according to the coupling capacitance formed between the touch screen 100 and the active pen 200, or according to the touch screen 100
  • the communication module 106 of the active pen 200 sends an uplink signal carrying the amplitude of the coding signal to the communication module 207 in the active pen 200.
  • the active pen can obtain the coding signal amplitude carried in the uplink signal by analyzing the uplink signal, so that when performing downlink coding, the coding signal amplitude obtained by the analysis is used for coding. For example, the active pen can detect and analyze the upstream signal in real time.
  • the active pen When the amplitude of the coded signal obtained by the analysis is the same as the previous time, the active pen does not update the amplitude of the coded signal, and directly performs the downstream code. When the last time is different, reset the coding signal amplitude, and perform downlink coding with the coding signal amplitude obtained by this analysis.
  • the amplitude of the coding signal of the active pen downstream coding is the amplitude of the coding signal carried in the received uplink signal. Therefore, when the touch screen is not always in a harsh interference environment, the active pen does not need to always output the highest coding signal amplitude. In this way, for the entire working cycle, the power consumption of the active pen will be reduced, and the system performance can be reduced. guarantee.
  • the working mode of the touch screen and the active pen of this embodiment can be referred to as shown in FIG. 4.
  • the working modes of the touch screen include: uplink coding mode, hand working mode, pen working mode, and noise detection mode.
  • the working mode of the active pen may include: uplink detection mode and downlink coding mode.
  • the mutual sequence, duration, and starting time of each working mode are not limited.
  • the downstream coding mode of the active pen is synchronized with the pen working mode of the touch screen, that is to say, Figure 4 The starting moments of t3 and t6 are synchronized.
  • the uplink coding mode of the touch screen can be understood as: the touch screen sends an uplink signal to the active pen, and the uplink signal is used to notify the active pen to make related settings.
  • the active pen can be notified to set the coding signal amplitude of the active pen.
  • it can also be switching voltage, switching frequency, and so on.
  • the hand working mode of the touch screen can be understood as: the working mode of the touch screen when the hand touch is detected.
  • the drive circuit 102 passes through the multiplexer 101 to output an AC drive signal to the drive electrodes D0 to D3, the sensing electrodes S0 to S3 sense the drive signal and send the sensed drive signal Into the multiplexer 105, the induced drive signal is sent to the signal acquisition and demodulation circuit 104 through the multiplexer 105, and the demodulated signal output by the signal acquisition and demodulation circuit 104 is sent to the processor 103 for processing, and finally Output the hand report information, that is, the position information of the hand on the touch screen.
  • the pen working mode of the touch screen can be understood as: the working mode of the touch screen when the active pen touch is detected. 1, when in the pen working mode, the driving circuit 102 of the touch screen outputs a driving signal to the driving electrodes D0 ⁇ D3 and/or the sensing electrodes S0 ⁇ S3 via the multiplexer 101, and the secondary electrode 206 of the active pen passes The coupling capacitor receives the uplink signal of the touch screen 200 and sends it to the driving/receiving circuit 204 of the active pen. Finally, the logic controller 203 analyzes the uplink signal of the touch screen.
  • the logic controller 203 controls the driving/receiving circuit 204 to output a coding signal to the main electrode 205 and/or the auxiliary electrode 206.
  • the active pen and the touch screen can be pre-configured with a communication protocol, and based on the communication protocol, the active pen can determine whether the received uplink signal is valid.
  • the sensing electrodes S0 ⁇ S3 and the driving electrodes D0 ⁇ D3 of the touch screen receive the coding signal of the active pen and send it to the signal acquisition and receiving circuit 104.
  • the signal acquisition and receiving circuit 104 outputs the demodulated signal and sends it to the processor for processing.
  • the processor calculates the position information of the active pen on the touch screen.
  • the sensing electrodes S0 to S3 of the touch screen send the received coding signal of the active pen to the multiplexer 105, and the coding signal of the active pen is sent to the signal acquisition and receiving circuit 104 through the multiplexer 105.
  • the driving electrodes D0 ⁇ D3 of the touch screen send the received coding signal of the active pen to the multiplexer 101, and the coding signal of the active pen enters the multiplexer 105 through the multiplexer 101, and finally enters the signal Collection and receiving circuit 104.
  • the noise detection mode of the touch screen can be understood as: a working mode for detecting the noise of the touch screen.
  • the driving circuit 102 of the touch screen may not be coded, the sensing electrodes S0 ⁇ S3 and/or the driving electrodes D0 ⁇ D3 can sense the screen end noise of the touch screen, and signal collection and interpretation
  • the modulation circuit 104 can demodulate the noise amplitude of the noise in the working frequency band of the active pen 200, and send it to the processor 103.
  • the processor 103 can determine the corresponding coding parameter value according to the received noise amplitude, that is, determine the coding signal amplitude And the detection threshold of the screen.
  • the current screen detection threshold of the touch screen is set to the screen detection threshold corresponding to the noise amplitude.
  • the uplink signal is sent through the uplink channel formed by the coupling capacitor of the touch screen and the active pen.
  • the uplink signal can carry the amplitude of the coding signal, so that the active pen can parse the amplitude of the coding signal after receiving the uplink signal, based on the coding signal Amplitude for coding.
  • the communication module 106 of the touch screen 100 may also send an uplink signal to the communication module 207 of the active pen 200.
  • the above-mentioned actions of setting the detection threshold of the screen and sending the uplink signal by the touch screen may be performed at the same time, or may be performed in a preset sequence, but this embodiment does not specifically limit this.
  • the uplink detection mode of the active pen can be understood as: after the active pen starts to work, for example, after pairing with the touch screen, it detects and parses the uplink signal from the touch screen in real time. When it detects that the uplink signal is valid, it enters the downlink coding mode.
  • the active pen and the touch screen can be pre-configured with a communication protocol, and the active pen can determine whether the received uplink signal is valid based on the communication protocol.
  • the downlink coding mode of the active pen can be understood as: the active pen performs coding with the parsed coding signal amplitude. Among them, the active pen can parse the received uplink signal to obtain the coding signal amplitude, and the coding signal amplitude of the active pen during coding is the same as the parsed coding signal amplitude. That is, the amplitude of the coding signal of the active pen coding is the amplitude of the coding signal carried in the received uplink signal.
  • the noise amplitude of the touch screen is acquired, and the coding parameter value corresponding to the noise amplitude is determined.
  • the coding parameter value includes the coding signal amplitude, which is sent to the active pen that interacts with the touch screen.
  • the uplink signal carrying the amplitude of the coding signal is used for the active pen to perform coding based on the amplitude of the coding signal.
  • the active pen can adaptively adjust the amplitude of the coding signal according to the application environment, which is beneficial to avoid that the amplitude of the coding signal of the active pen stays at a very high value in a non-harsh environment and consumes more power. , To a certain extent, it helps to reduce the power consumption of the active pen.
  • the second embodiment of the present application relates to a coding control method.
  • the implementation details of the coding control method of this embodiment will be described in detail below. The following content is provided for ease of understanding and is not necessary for implementing this solution.
  • the flowchart of the coding control method of the embodiment of the present application may be as shown in FIG. 5, including:
  • Step 501 Obtain the noise amplitude of the touch screen.
  • step 501 is substantially the same as step 301 in the first embodiment, and will not be repeated here in order to avoid repetition of this embodiment.
  • Step 502 Identify the threshold range in which the noise amplitude is located from the preset multiple threshold ranges.
  • each threshold range can have a corresponding upper limit and lower limit.
  • the multiple threshold ranges do not overlap each other and the multiple threshold ranges form a continuous interval.
  • Each threshold range can be understood as a gear, and the larger the upper limit of the threshold range, the higher the gear can be considered.
  • the multiple threshold ranges do not overlap each other and the multiple threshold ranges form a continuous interval, so that the threshold range in which the noise amplitude is identified is one of the multiple threshold ranges.
  • the way of setting multiple threshold ranges is not limited to this. For example, some threshold ranges can also be set to overlap, and it may happen that the noise amplitude is in more than one threshold range.
  • Step 503 Determine the coding parameter value corresponding to the noise amplitude according to the threshold range of the noise amplitude.
  • the corresponding relationship between the threshold range and the coding parameter value can be pre-stored, and the coding parameter value corresponding to the noise amplitude can be determined according to the pre-stored corresponding relationship.
  • the smaller the upper limit of the threshold range where the noise amplitude is located the smaller the coding parameter value corresponding to the noise amplitude.
  • the threshold range is understood as the gear
  • the coding signal amplitude and the screen detection threshold corresponding to the noise amplitude can be determined according to the gear in which the noise amplitude is located. You can refer to Table 1.
  • Table 1 shows the corresponding relationship between the level of the noise amplitude of the touch screen, the coding signal amplitude of the active pen, and the screen detection threshold set in the pen working mode of the touch screen. It can be seen from Table 1 that if the gear of the noise amplitude is gear 1, the coding signal amplitude and screen detection threshold corresponding to the noise amplitude are coding signal amplitude 1 and screen detection threshold 1 respectively. The higher the gear, the larger the upper limit of the corresponding threshold range, and the larger the coding signal amplitude and screen end detection threshold. That is, in Table 1, the coding signal amplitude 4 and screen end detection threshold 4 corresponding to gear 4 maximum. It should be noted that, in Table 1, only four gears are taken as an example, and the specific implementation is not limited to this.
  • Gear (threshold range) Coded signal amplitude Screen detection threshold Gear 1 Coded signal amplitude 1 Screen detection threshold 1 Gear 2 Coded signal amplitude 2 Screen detection threshold 2 Gear 3 Coded signal amplitude 3 Screen detection threshold 3 Gear 4 Coded signal amplitude 4 Screen detection threshold 4
  • the default gear position that is, the default threshold range
  • the default gear position is generally set to the maximum gear position as shown in Table 1, and of course it can also be other gear positions.
  • Setting the default gear is to set the default value of the coding signal amplitude and the screen end detection threshold, that is, the default value of the coding parameter.
  • the touch screen After the touch screen is paired and connected with the active pen, it can send an uplink signal to notify the active pen to set the coding signal amplitude corresponding to the default gear, and then the active pen can perform downlink coding with the coding signal amplitude.
  • the touch screen can enter the noise detection mode after detecting the active pen contact, or after sending the uplink signal for the first time in a working cycle.
  • the screen end detection threshold of the touch screen can be updated according to the changed gear position, and at the same time, an uplink signal is sent to notify the active pen, so that the active pen is updated
  • the amplitude of the coding signal can carry the coding signal amplitude corresponding to the changed gear for the active pen to update.
  • Step 504 Send an uplink signal carrying the amplitude of the coding signal to the active pen interacting with the touch screen for the active pen to perform coding based on the amplitude of the coding signal.
  • step 504 is substantially the same as step 303 in the first embodiment, and will not be repeated here to avoid repetition.
  • the coding parameter value corresponding to the noise amplitude is in one of the multiple threshold ranges.
  • the third embodiment of the present application relates to a coding method, which is applied to an active pen.
  • the implementation details of the coding method of this embodiment will be described in detail below. The following content is only provided for ease of understanding and is not necessary for the implementation of this solution.
  • the flowchart of the coding method of the embodiment of the present application may be as shown in FIG. 6, and includes:
  • Step 601 Receive an uplink signal carrying the amplitude of the coding signal sent by the touch screen.
  • the touch screen is used to obtain the noise amplitude of the touch screen and determine the coding parameter value corresponding to the noise amplitude, and the coding parameter value includes the coding signal amplitude.
  • determining the coding parameter value corresponding to the noise amplitude includes: identifying the threshold range in which the noise amplitude is located from a plurality of preset threshold ranges; and according to the threshold value in which the noise amplitude is located Range to determine the coding parameter value corresponding to the noise amplitude.
  • the multiple threshold ranges do not overlap each other and the multiple threshold ranges form a continuous interval.
  • the acquiring the noise amplitude of the touch screen includes: determining the working frequency band of the active pen interacting with the touch screen; acquiring the noise of the noise of the touch screen in the working frequency band Amplitude.
  • the coding parameter value further includes: a screen end detection threshold for the touch screen to determine whether there is an active pen for coding; the coding parameter value corresponding to the noise amplitude is determined in the step After that, the method further includes: setting the current screen end detection threshold of the touch screen to the screen end detection threshold corresponding to the noise amplitude.
  • Step 602 Perform coding based on the amplitude of the coding signal.
  • the coding control method involved in the first or second embodiment and the coding method involved in this embodiment can be implemented in cooperation with each other.
  • the related technical details mentioned in the first or second embodiment are still valid in this embodiment, and the technical effects that can be achieved in the first or second embodiment can also be achieved in this embodiment.
  • the related technical details mentioned in this embodiment can also be applied in the first or second embodiment, so in order to reduce repetition, it will not be repeated here.
  • the fourth embodiment of the present application relates to a coding system, as shown in FIG. 7, including: a touch screen 701 and an active pen 702.
  • the touch screen 701 is used to obtain the noise amplitude of the touch screen, determine the coding parameter value corresponding to the noise amplitude, and send the amplitude of the coding signal to the active pen interacting with the touch screen
  • the active pen 702 is used to receive the uplink signal carrying the coding signal amplitude, and perform coding based on the coding signal amplitude code.
  • this embodiment can be understood as a system embodiment corresponding to the first to third embodiments.
  • the related technical details mentioned in the first to third embodiments are still valid in this embodiment, and the technical effects that can be achieved in the first to third embodiments can also be achieved in this embodiment.
  • the related technical details mentioned in this embodiment can also be applied to the first to third embodiments, so in order to reduce repetition, it will not be repeated here.
  • the fifth embodiment of the present application relates to a chip. As shown in FIG. 8, it includes: at least one processor 801; and a memory 802 communicatively connected with the at least one processor 801; The instructions executed by the processor 801 are executed by at least one processor 801, so that the at least one processor 801 can execute the coding control method in the first or second embodiment, or execute the coding method in the third embodiment.
  • the memory 802 and the processor 801 are connected in a bus manner.
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more various circuits of the processor 801 and the memory 802 together.
  • the bus can also connect various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all well-known in the art, and therefore, no further description will be given herein.
  • the bus interface provides an interface between the bus and the transceiver.
  • the transceiver may be one element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on the transmission medium.
  • the data processed by the processor 801 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 801.
  • the processor 801 is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 802 may be used to store data used by the processor 801 when performing operations.
  • the sixth embodiment of the present application relates to an electronic device. As shown in FIG. 9, it includes: at least one processor 901; and a memory 902 communicatively connected with the at least one processor 901; The instructions executed by the processor 901 are executed by at least one processor 901. When the electronic device is a touch screen, the at least one processor 901 can execute the coding control method in the first or second embodiment; When the electronic device is an active pen, the at least one processor 901 can execute the coding method as in the third embodiment.
  • the memory 902 and the processor 901 are connected in a bus manner.
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more various circuits of the processor 901 and the memory 902 together.
  • the bus can also connect various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all well-known in the art, and therefore, no further description will be given herein.
  • the bus interface provides an interface between the bus and the transceiver.
  • the transceiver may be one element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on the transmission medium.
  • the data processed by the processor 901 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 901.
  • the processor 901 is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 902 may be used to store data used by the processor 901 when performing operations.
  • the seventh embodiment of the present invention relates to a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the above method embodiment is realized.
  • the program is stored in a storage medium and includes several instructions to enable a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) that executes all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种打码控制及打码方法、***、芯片、电子设备及存储介质。上述打码控制及打码方法包括:获取触控屏的噪声幅度(301);确定噪声幅度对应的打码参数值(302);其中,打码参数值包括打码信号幅度;向与所述触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码(303)。采用上述打码控制及打码方法,使得主动笔可以根据应用环境自适应地调整打码信号幅度。

Description

打码控制及打码方法、***、芯片、电子设备及存储介质 技术领域
本申请涉及触控技术领域,特别涉及一种打码控制及打码方法、***、芯片、电子设备及存储介质。
背景技术
目前,电容主动笔与电容触控屏***里,两者一般是基于预设的通信协议工作,主动笔的打码信号幅度在工作时一直是固定的,为了保证在最恶劣应用环境下也能正常工作,主动笔打码信号幅度通常会一直固定在一个很高的值。
发明内容
本申请部分实施例的目的在于提供一种打码控制及打码方法、***、芯片、电子设备及存储介质,使得主动笔可以根据应用环境自适应的调整打码信号幅度。当主动笔并不是处在恶劣的环境中时,有利于避免主动笔的打码信号幅度一直处在一个很高的值,从而在一定程度上可以降低主动笔的功耗。
本申请实施例提供了一种打码控制方法,应用于触控屏,包括:获取所述触控屏的噪声幅度;确定所述噪声幅度对应的打码参数值;其中,所述打码参数值包括打码信号幅度;向与所述触控屏交互的主动笔发送携带所述所述打码信号幅度的上行信号,供所述主动笔基于所述打码信号幅度进行打码。
本申请实施例还提供了一种打码方法,应用于主动笔,包括:接收触控屏发送的携带打码信号幅度的上行信号;其中,所述触控屏用于获取所述触控屏的噪声幅度,并确定所述噪声幅度对应的打码参数值,所述打码参数值包括所述打码信号幅度;基于所述打码信号幅度进行打码。
本申请实施例还提供了一种芯片,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的打码控制方法,或者执行上述的打码方法。
本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行;当所述电子设备为触控屏时,所述至少一个处理器能够执行上所述的打码控制方法;当所述电子设备为主动笔时,所述至少一个处理器能够执行上述的打码方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的打码控制方法,或者实现上述的打码方法。
本申请实施例还提供了一种打码***,包括:触控屏和主动笔;所述触控屏,用于获取所述触控屏的噪声幅度,确定与所述噪声幅度对应的打码参数值,并向与所述触控屏交互的主动笔发送携带打码信号幅度的上行信号;其中,所述打码参数值包括所述打码信号幅度;所述主动笔,用于接收所述打码信号幅度,并基于所述打码信号幅度进行打码。
发明人发现现有技术至少存在以下问题:为了保证在最恶劣应用环境下 也能正常工作,主动笔打码信号幅度通常会一直固定在一个很高的值。主动笔本身是利用电池供电的,对电能消耗是比较敏感的,很多时候主动笔并不是处在恶劣的环境中,此时高的打码信号幅度会消耗掉更多的电能,从而使得主动笔的功耗较大。
本申请实施例相对于现有技术而言,获取触控屏的噪声幅度,确定与噪声幅度对应的打码参数值,打码参数值包括打码信号幅度,向与触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码。触控屏的噪声幅度可以反映触控屏和与该触控屏进行交互的主动笔的应用环境,通过本申请实施例使得主动笔可以根据应用环境自适应的调整打码信号幅度,有利于避免非恶劣环境下主动笔的打码信号幅度一直处在一个很高的值从而消耗掉更多的电能,在一定程度上有利于降低主动笔的功耗。
例如,所述噪声幅度越小,所述噪声幅度对应的打码参数值越小。由于打码参数值包括打码信号幅度,也就是说噪声幅度越小,噪声幅度对应的打码信号幅度越小,打码信号幅度越小消耗的主动笔的电能越小,可以在噪声幅度较小时,更加有效的降低主动笔的功耗。
例如,所述确定所述噪声幅度对应的打码参数值,包括:从预设的多个阈值范围中,识别出所述噪声幅度所处的阈值范围;根据所述噪声幅度所处的阈值范围,确定所述噪声幅度对应的打码参数值。提供了一种确定噪声对应的打码参数值的具体实现方式,通过根据噪声幅度所处的阈值范围,确定噪声幅度对应的打码参数值,在一定程度上有利于在噪声幅度存在小范围波动时,避免噪声幅度对应的打码参数值也出现波动的情况,有利于在合理的范围内对打码参数值进行调整。
例如,所述多个阈值范围互不重叠且所述多个阈值范围形成连续的区间,所述噪声幅度所处的阈值范围的上限值越小,所述噪声幅度对应的打码参数值越小。通过将多个阈值范围设置为互不重叠且多个阈值范围形成连续的区间,使得最终确定的噪声幅度处于多个阈值范围中的一个。噪声幅度所处的阈值范围的上限值越小,噪声幅度对应的打码参数值越小,有利于通过噪声幅度所处的阈值范围的上限值的大小,直接反映出噪声幅度对应的打码参数值的大小。
例如,所述打码参数值还包括:用于供所述触控屏确定是否有主动笔进行打码的屏端检测阈值;在所述确定所述噪声幅度对应的打码参数值之后,还包括:将所述触控屏当前的屏端检测阈值设置为所述噪声幅度对应的屏端检测阈值。通过将触控屏当前的屏端检测阈值设置为噪声幅度对应的屏端检测阈值,使得随着触控屏的噪声幅度的变化,还可以自适应的调整屏端检测阈值,有利于触控屏更加准确的确定是否有主动笔进行打码。
例如,所述获取所述触控屏的噪声幅度,包括:确定与所述触控屏交互的主动笔的工作频段;获取所述触控屏的处于所述工作频段的噪声的噪声幅度。考虑到触控屏的屏端噪声可能包含不同频率的噪声,通过确定与触控屏交互的主动笔的工作频段,方便了获取触控屏的处于主动笔的工作频段的噪声的噪声幅度,有利于得到针对该主动笔的打码参数值。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施例中的触控屏与主动笔进行通信的示意图;
图2是根据本申请第一实施例中的主动笔的结构示意图;
图3是根据本申请第一实施例中的打码控制方法的流程图;
图4是根据本申请第一实施例中的触控屏和主动笔的工作模式的示意图;
图5是根据本申请第二实施例中的打码控制方法的流程图;
图6是根据本申请第三实施例中的打码方法的流程图;
图7是根据本申请第四实施例中的打码***的示意图;
图8是根据本申请第五实施例中的芯片的结构示意图;
图9是根据本申请第六实施例中的电子设备的结构示意图。
具体实施例
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请第一实施例涉及一种打码控制方法,应用于触控屏,包括:获取触控屏的噪声幅度,确定噪声幅度对应的打码参数值;其中,打码参数值包括打码信号幅度;向与触控屏交互的主动笔发送打码信号幅度,供主动笔基于打码信号幅度进行打码。下面对本实施例的打码控制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
为方便理解,首先对本申请实施例涉及的触控屏和主动笔进行简单介绍:
在一个例子中,触控屏100和主动笔200之间进行通信的示意图可以如图1所示。主动笔200的主、副电极可以分别与触控屏100的驱动和感应电极形成耦合电容,主动笔200与触控屏100可以通过此耦合电容进行通信。在具体实现中,可以参考图1,触控屏100中还可以设置通信模块106,参考图2,即主动笔200的结构示意图,主动笔200中还可以设置通信模块207。参考图1,触控屏100与主动笔200可以通过通信模块106和通信模块207进行通信。其中,通信模块可以为射频通信模块、蓝牙通信模块等。
图1中,触控屏100包括驱动电极D0~D3、感应电极S0~S3、多路开关选择器101、驱动电路102、处理器103、信号采集与解调电路104、多路开关选择器105、以及可选的通信模块106。需要说明的是,本实施例中,驱动电极和感应电极的数目只是以图1中的为例,在具体实现中触控屏可以包含多组驱动电极和感应电极。
图2中,主动笔200包括主电极205、副电极206、驱动/接收电路204、逻辑控制器203、电源管理模块202、电源201等模块以及可选的通信模块207组成。其中,驱动/接收电路204可以分别驱动主电极205和/或副电极206输出打码信号。在具体实现中,驱动主电极205输出打码信号的作用可以为:供触控屏100确定主动笔200所处的坐标位置;驱动主电极205和副电极206输出打码信号的作用可以为:供触控屏100确定主动笔200的所处的位置坐标和倾斜角度;驱动的副电极206输出打码信号的作用可以为:与触控屏100进行通信。需要说明的是,驱动主电极205和/或副电极206输出打码信号的作用可以根据实际需要进行设置,本实施方式对此不作具体限定。另外,图2中,副电极206连接驱动/接收电路204,也就是说,副电极206可以复用为驱动和接 收电极,驱动/接收电路204连接到逻辑控制器203。然而,在具体实现中,根据需要也可以设置将主电极复用为驱动和接收电极,本实施方式对此不作限定。
本申请实施例的打码控制方法的流程图可以如图3所示,包括:
步骤301:获取触控屏的噪声幅度。
其中,触控屏的噪声幅度可以反映触控屏以及与该触控屏进行交互的主动笔的应用环境,比如,触控屏的噪声幅度大可以反映出应用环境相对较恶劣,干扰较大,反之触控屏的噪声幅度小可以反映出应用环境相对正常,干扰较小。
在一个例子中,触控屏可以先确定与触控屏交互的主动笔的工作频段,比如,触控屏可以与主动笔通过蓝牙配对连接,然后主动笔可以将其工作频段通过蓝牙发送给触控屏,使得触控屏可以确定与触控屏交互的主动笔的工作频段。或者,触控屏可以直接基于与主动笔的蓝牙连接,主动从主动笔中去获取主动笔的工作频段。然后,触控屏可以获取触控屏的处于所述工作频段的噪声的噪声幅度。也就是说,考虑到触控屏的屏端噪声可能包括不同频率的噪声,而本实施例中主要关注的是屏端噪声中处于主动笔的工作频段的噪声。因此,本实施例中可以直接获取触控屏的处于主动笔的工作频段的噪声的噪声幅度。
在另一个例子中,触控屏可以直接先检测出屏端噪声,然后从该屏端噪声中解调出处于主动笔的工作频段的噪声的噪声幅度。比如,参考图1触控屏的感应电极和/或驱动电极可以感应触控屏的屏端噪声,然后信号采集与解调电路104可以对屏端噪声进行解调,解调出屏端噪声中处于主动笔的工作频段的噪声的噪声幅度。
在具体实现中,根据实际需要触控屏可以实时获取触控屏的噪声幅度,也可以周期性的获取触控屏的噪声幅度,还可以在与主动笔配对连接成功后开 始获取触控屏的噪声幅度,然而,本实施例对此不做具体限定。
步骤302:确定噪声幅度对应的打码参数值。
在一个例子中,可以预存有噪声幅度与打码参数值的对应关系,根据该对应关系,可以确定噪声幅度对应的打码参数值。在该对应关系中,噪声幅度越小,噪声幅度对应的打码参数值可以越小,反之噪声幅度越大,噪声幅度对应的打码参数值可以越大。其中,打码参数值包括主动笔的打码信号幅度,即噪声幅度越小,噪声幅度对应的打码信号幅度越小。
在另一个例子中,还可以根据预设的公式计算得到噪声幅度对应的打码参数值,比如可以将噪声幅度带入预设的计算公式,得到噪声幅度对应的打码参数值。其中,预设的公式可以由本领域技术人员根据实际需要进行设置,本实施例对此不作具体限定。
在一个例子中,打码参数值还可以包括:用于供触控屏确定是否有主动笔进行打码的屏端检测阈值,也可以称为:屏端笔信号检测阈值。比如,当触控屏检测到打码信号幅度大于屏端检测阈值,则可以确定有主动笔在打码,即有主动笔接触触控屏。设置该屏端检测阈值的目的主要在于考虑到应用环境中的噪声干扰。在确定噪声幅度对应的屏端检测阈值之后,可以将触控屏当前的屏端检测阈值设置为噪声幅度对应的屏端检测阈值。也就是说,基于噪声幅度自适应调整屏端检测阈值的大小,有利于触控屏更加准确的确定是否有主动笔进行打码。
步骤303:向与触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码。
在一个例子中,参考图1触控屏100可以根据触控屏100与主动笔200 之间形成的耦合电容向主动笔200发送携带打码信号幅度的上行信号,也可以根据触控屏100中的通信模块106向主动笔200中的通信模块207发送携带打码信号幅度的上行信号。主动笔可以通过解析该上行信号得到上行信号中携带的打码信号幅度,从而在进行下行打码时,以解析得到的该打码信号幅度进行打码。比如,主动笔可以实时检测并解析上行信号,当解析得到的打码信号幅度与上一次一样时,主动笔不更新打码信号幅度,直接进行下行打码,当解析得到的打码信号幅度与上一次不同时,重新设置打码信号幅度,以本次解析得到的打码信号幅度进行下行打码。主动笔下行打码的打码信号幅度为接收到的上行信号中携带的打码信号幅度。因此,当触控屏不是一直处在恶劣干扰环境下时,主动笔并不需要一直输出最高的打码信号幅度,这样对于整个工作周期来说,主动笔的功耗会降低,并且***性能能够保证。
在一个例子中,本实施例的触控屏和主动笔的工作模式可以参考图4所示。其中,触控屏的工作模式包括:上行打码模式、手工作模式、笔工作模式、噪声检测模式。主动笔的工作模式可以包括:上行检测模式和下行打码模式。本实施例中对各个工作模式的相互顺序,持续时长,起始时刻不作限制,在具体实现中,主动笔的下行打码模式与触控屏的笔工作模式保持同步,也就是说,图4中t3和t6的起始时刻同步。下面对各种工作模式进行简单说明:
触控屏的上行打码模式可以理解为:触控屏向主动笔发送上行信号,该上行信号用于通知主动笔做相关的设置,比如可以通知主动笔设置主动笔的打码信号幅度,在具体实现中,还可以为切换电压、切换频率等。
触控屏的手工作模式可以理解为:触控屏在检测到手触摸时的工作模式。参考图1,当在手工作模式时,驱动电路102经过多路开关选择器101,输出交 流驱动信号到驱动电极D0~D3,感应电极S0~S3感应到驱动信号并将感应到的驱动信号送入多路开关选择器105,感应到的驱动信号经过多路开关选择器105被送入信号采集与解调电路104,信号采集与解调电路104输出解调信号送入处理器103处理,最终输出手的报点信息,即手在触控屏上的位置信息。
触控屏的笔工作模式可以理解为:触控屏在检测到主动笔触摸时的工作模式。参考图1,当在笔工作模式时,触控屏的驱动电路102经多路开关选择器101输出驱动信号到驱动电极D0~D3和/或感应电极S0~S3,主动笔的副电极206通过耦合电容接收触控屏200的上行信号并送到主动笔的驱动/接收电路204,最后经过逻辑控制器203解析触控屏的上行信号。当主动笔确定接收到有效的上行信号,逻辑控制器203控制驱动/接收电路204输出打码信号到主电极205和/或副电极206。其中,主动笔和触控屏可以预先配置有通信协议,基于该通信协议,主动笔可以确定接收到的上行信号是否有效。触控屏的感应电极S0~S3和驱动电极D0~D3接收主动笔的打码信号并送入信号采集与接收电路104,信号采集与接收电路104输出解调信号送入处理器处理,最终由处理器计算出主动笔在触控屏上的位置信息。其中,触控屏的感应电极S0~S3将接收的主动笔的打码信号发送至多路开关选择器105,主动笔的打码信号通过多路开关选择器105送入信号采集与接收电路104。触控屏的驱动电极D0~D3将接收的主动笔的打码信号发送至多路开关选择器101,主动笔的打码信号通过多路开关选择器101进入多路开关选择器105,最终进入信号采集与接收电路104。
触控屏的噪声检测模式可以理解为:检测触控屏的噪声的工作模式。当在噪声检测模式时,如图1,触控屏的驱动电路102可以不打码,感应电极S0~S3和/或驱动电极D0~D3可以感应触控屏的屏端噪声,信号采集与解调电路104 可以解调出处于主动笔200的工作频段的噪声的噪声幅度,并送往处理器103,处理器103根据接收的噪声幅度可以确定对应的打码参数值,即确定打码信号幅度和屏端检测阈值。然后将触控屏当前的屏端检测阈值设置为噪声幅度对应的屏端检测阈值。通过触控屏与主动笔的耦合电容形成的上行通道发送上行信号,该上行信号可以携带打码信号幅度,使得主动笔接收到上行信号后可以解析得到打码信号幅度,从而基于该打码信号幅度进行打码。在具体实现中,也可以通过触控屏100的通信模块106发送上行信号到主动笔200的通信模块207。在具体实现中,上述设置屏端检测阈值与触控屏发送上行信号的动作可以是同时进行,也可以按预设的先后顺序进行,然而本实施例对此不作具体限定。
主动笔的上行检测模式可以理解为:主动笔在开始工作后,比如在和触控屏配对连接后,实时检测并解析来自触控屏的上行信号。当检测到上行信号有效时进入下行打码模式。其中,主动笔和触控屏可以预先配置有通信协议,基于该通信协议主动笔可以确定接收到的上行信号是否有效。
主动笔的下行打码模式可以理解为:主动笔以解析得到的打码信号幅度进行打码。其中,主动笔可以从接收的上行信号中解析得到打码信号幅度,主动笔在打码时的打码信号幅度与解析得到的打码信号幅度相同。即主动笔打码的打码信号幅度为接收到的上行信号中携带的打码信号幅度。
与现有技术相比,本实施例中获取触控屏的噪声幅度,确定与噪声幅度对应的打码参数值,打码参数值包括打码信号幅度,向与触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码。通过本申请实施例使得主动笔可以根据应用环境自适应的调整打码信号幅度,有利于避免非恶劣环境下主动笔的打码信号幅度一直处在一个很高的值从而消耗 掉更多的电能,在一定程度上有利于降低主动笔的功耗。
本申请第二实施例涉及一种打码控制方法,下面对本实施例的打码控制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本申请实施例的打码控制方法的流程图可以如图5所示,包括:
步骤501:获取触控屏的噪声幅度。
其中,步骤501与第一实施例中步骤301大致相同,为避免重复本实施例在此不再赘述。
步骤502:从预设的多个阈值范围中,识别出噪声幅度所处的阈值范围。
具体的说,多个阈值范围可以根据实际需要进行设置,可以理解的是,每个阈值范围可以具有对应的上限值和下限值。
在一个例子中,多个阈值范围互不重叠且多个阈值范围形成连续的区间。每个阈值范围可以理解为一个档位,阈值范围的上限值越大,可以认为档位越高。多个阈值范围互不重叠且多个阈值范围形成连续的区间,使得识别出噪声幅度所处的阈值范围为多个阈值范围中的一个。然而,在具体实现中,多个阈值范围的设置方式并不以此为限,比如也可以设置为部分阈值范围有重叠,则有可能出现噪声幅度所处的阈值范围不止一个的情况。
步骤503:根据噪声幅度所处的阈值范围,确定噪声幅度对应的打码参数值。
具体的说,可以预存阈值范围与打码参数值的对应关系,根据预存的该对应关系可以确定噪声幅度对应的打码参数值。其中,噪声幅度所处的阈值范围的上限值越小,噪声幅度对应的打码参数值越小。在具体实现中,若将阈值 范围理解为档位,则可以根据噪声幅度所处的档位,确定噪声幅度对应的打码信号幅度和屏端检测阈值。可以参考表1,表1为触控屏的噪声幅度所处的档位分别与主动笔的打码信号幅度、触控屏在笔工作模式下设置的屏端检测阈值的对应关系。从表1可以看出,若噪声幅度所处的档位为档位1,则该噪声幅度对应的打码信号幅度和屏端检测阈值分别为打码信号幅度1和屏端检测阈值1。档位越高,对应的阈值范围的上限值越大,打码信号幅度和屏端检测阈值也越大,即表1中,档位4对应的打码信号幅度4和屏端检测阈值4最大。需要说明的是,表1中只是以四个档位为例,在具体实现中并不以此为限。
表1
档位(阈值范围) 打码信号幅度 屏端检测阈值
档位1 打码信号幅度1 屏端检测阈值1
档位2 打码信号幅度2 屏端检测阈值2
档位3 打码信号幅度3 屏端检测阈值3
档位4 打码信号幅度4 屏端检测阈值4
在一个例子中,触控屏开始工作时,可以设置默认档位即默认的阈值范围,默认档位一般设置为如表1中的最大档位,当然也可以是其他档位。设置默认档位也就是设置打码信号幅度和屏端检测阈值的默认值,即打码参数的默认值。触控屏可以在与主动笔配对连接后,发送上行信号通知主动笔设置默认档位对应的打码信号幅度,然后主动笔以该打码信号幅度进行下行打码。触控屏可以在检测到有主动笔接触后,或者在一个工作周期内第一次发送完上行信号后,进入噪声检测模式。当触控屏检测到触控屏的噪声幅度所处的档位发生 变化后,可以根据变化后的档位更新触控屏的屏端检测阈值,同时发送上行信号通知主动笔,使得主动笔更新打码信号幅度。其中,上行信号中可以携带变化后的档位对应的打码信号幅度,供主动笔进行更新。
步骤504:向与触控屏交互的主动笔发送携带打码信号幅度的上行信号,供主动笔基于打码信号幅度进行打码。
需要说明的是,步骤504与第一实施例中步骤303大致相同,为避免重复在此不再赘述。
与现有技术相比,本实施例中,通过根据噪声幅度所处的阈值范围,确定噪声幅度对应的打码参数值,在一定程度上有利于在噪声幅度存在小范围波动时,避免噪声幅度对应的打码参数值也出现波动的情况,有利于对打码参数值进行合理的调整。通过将多个阈值范围设置为互不重叠且多个阈值范围形成连续的区间,使得最终确定的噪声幅度处于多个阈值范围中的一个。噪声幅度所处的阈值范围的上限值越小,噪声幅度对应的打码参数值越小,有利于通过噪声幅度所处的阈值范围的上限值的大小,直接反映出噪声幅度对应的打码参数值的大小。
本申请第三实施例涉及一种打码方法,应用于主动笔。下面对本实施例的打码方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本申请实施例的打码方法的流程图可以如图6所示,包括:
步骤601:接收触控屏发送的携带打码信号幅度的上行信号。
其中,触控屏用于获取触控屏的噪声幅度,并确定噪声幅度对应的打码参数值,打码参数值包括打码信号幅度。
在一个例子中,噪声幅度越小,所述噪声幅度对应的打码参数值越小。
在一个例子中,确定所述噪声幅度对应的打码参数值,包括:从预设的多个阈值范围中,识别出所述噪声幅度所处的阈值范围;根据所述噪声幅度所处的阈值范围,确定所述噪声幅度对应的打码参数值。
在一个例子中,所述多个阈值范围互不重叠且所述多个阈值范围形成连续的区间,所述噪声幅度所处的阈值范围的上限值越小,所述噪声幅度对应的打码参数值越小。
在一个例子中,所述获取所述触控屏的噪声幅度,包括:确定与所述触控屏交互的主动笔的工作频段;获取所述触控屏的处于所述工作频段的噪声的噪声幅度。
在一个例子中,所述打码参数值还包括:用于供所述触控屏确定是否有主动笔进行打码的屏端检测阈值;在所述确定所述噪声幅度对应的打码参数值之后,还包括:将所述触控屏当前的屏端检测阈值设置为所述噪声幅度对应的屏端检测阈值。
步骤602:基于打码信号幅度进行打码。
需要说明的是,第一或二实施例中涉及的打码控制方法与本实施例中涉及的打码方法可以互相配合实施。第一或第二实施例中提到的相关技术细节在本实施例中依然有效,在第一或第二实施例中所能达到的技术效果在本实施例中也同样可以实现。相应地,本实施例中提到的相关技术细节也可应用在第一或第二实施例中,因此为了减少重复,这里不再赘述。
本申请第四实施例涉及一种打码***,如图7所示,包括:触控屏701和主动笔702。所述触控屏701,用于获取所述触控屏的噪声幅度,确定与所述 噪声幅度对应的打码参数值,并向与所述触控屏交互的主动笔发送携带打码信号幅度的上行信号;其中,所述打码参数值包括所述打码信号幅度;所述主动笔702,用于接收携带所述打码信号幅度的上行信号,并基于所述打码信号幅度进行打码。
需要说明的是,本实施例可以理解为与第一至第三实施例对应的***实施例。第一至第三实施例中提到的相关技术细节在本实施例中依然有效,在第一至第三实施例中所能达到的技术效果在本实施例中也同样可以实现。相应地,本实施例中提到的相关技术细节也可应用在第一至第三实施例中,因此为了减少重复,这里不再赘述。
本申请第五实施例涉及一种芯片,如图8所示,包括:至少一个处理器801;以及,与至少一个处理器801通信连接的存储器802;其中,存储器802存储有可被至少一个处理器801执行的指令,指令被至少一个处理器801执行,以使至少一个处理器801能够执行第一或第二实施例中的打码控制方法,或者执行第三实施例中的打码方法。
其中,存储器802和处理器801采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器801和存储器802的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器801处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器801。
处理器801负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器802可以被用于存储处理器801在执行操作时所使用的数据。
本申请第六实施例涉及一种电子设备,如图9所示,包括:至少一个处理器901;以及,与至少一个处理器901通信连接的存储器902;其中,存储器902存储有可被至少一个处理器901执行的指令,指令被至少一个处理器901执行,当所述电子设备为触控屏时,所述至少一个处理器901能够执行第一或第二实施例中的打码控制方法;当所述电子设备为主动笔时,所述至少一个处理器901能够执行如第三实施例中的打码方法。
其中,存储器902和处理器901采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器901和存储器902的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器901处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器901。
处理器901负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器902可以被用于存储处理器901在执行操作时所使用的数据。
本发明第七实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (18)

  1. 一种打码控制方法,其特征在于,应用于触控屏,包括:
    获取所述触控屏的噪声幅度;
    确定所述噪声幅度对应的打码参数值;其中,所述打码参数值包括打码信号幅度;
    向与所述触控屏交互的主动笔发送携带所述打码信号幅度的上行信号,供所述主动笔基于所述打码信号幅度进行打码。
  2. 如权利要求1所述的打码控制方法,其特征在于,所述噪声幅度越小,所述噪声幅度对应的打码参数值越小。
  3. 如权利要求1所述的打码控制方法,其特征在于,所述确定所述噪声幅度对应的打码参数值,包括:
    从预设的多个阈值范围中,识别出所述噪声幅度所处的阈值范围;
    根据所述噪声幅度所处的阈值范围,确定所述噪声幅度对应的打码参数值。
  4. 如权利要求3所述的打码控制方法,其特征在于,所述多个阈值范围互不重叠且所述多个阈值范围形成连续的区间,所述噪声幅度所处的阈值范围的上限值越小,所述噪声幅度对应的打码参数值越小。
  5. 如权利要求1至4任一项所述的打码控制方法,其特征在于,所述打码参数值还包括:用于供所述触控屏确定是否有主动笔进行打码的屏端检测阈值;
    在所述确定所述噪声幅度对应的打码参数值之后,还包括:
    将所述触控屏当前的屏端检测阈值设置为所述噪声幅度对应的屏端检测阈值。
  6. 如权利要求1所述的打码控制方法,其特征在于,所述获取所述触控屏的噪声幅度,包括:
    确定与所述触控屏交互的主动笔的工作频段;
    获取所述触控屏的处于所述工作频段的噪声幅度。
  7. 如权利要求1所述的打码控制方法,其特征在于,所述主动笔打码的打码信号幅度为接收到的上行信号中携带的所述打码信号幅度。
  8. 一种打码方法,其特征在于,应用于主动笔,包括:
    接收触控屏发送的携带打码信号幅度的上行信号;其中,所述触控屏用于获取所述触控屏的噪声幅度,并确定所述噪声幅度对应的打码参数值,所述打码参数值包括所述打码信号幅度;
    基于所述打码信号幅度进行打码。
  9. 如权利要求8所述的打码方法,其特征在于,所述噪声幅度越小,所述噪声幅度对应的打码参数值越小。
  10. 如权利要求8所述的打码方法,其特征在于,所述确定所述噪声幅度对应的打码参数值,包括:
    从预设的多个阈值范围中,识别出所述噪声幅度所处的阈值范围;
    根据所述噪声幅度所处的阈值范围,确定所述噪声幅度对应的打码参数值。
  11. 如权利要求10所述的打码方法,其特征在于,所述多个阈值范围互不重叠且所述多个阈值范围形成连续的区间,所述噪声幅度所处的阈值范围的上限值越小,所述噪声幅度对应的打码参数值越小。
  12. 如权利要求8至11任一项所述的打码控制方法,其特征在于,所述打码参数值还包括:用于供所述触控屏确定是否有主动笔进行打码的屏端检测阈值;
    在所述确定所述噪声幅度对应的打码参数值之后,还包括:
    将所述触控屏当前的屏端检测阈值设置为所述噪声幅度对应的屏端检测阈值。
  13. 如权利要求8所述的打码方法,其特征在于,所述获取所述触控屏的噪声幅度,包括:
    确定与所述触控屏交互的主动笔的工作频段;
    获取所述触控屏的处于所述工作频段的噪声幅度。
  14. 如权利要求8所述的打码控制方法,其特征在于,所述主动笔打码的打码信号幅度为接收到的上行信号中携带的所述打码信号幅度。
  15. 一种芯片,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一所述的打码控制方法,或者执行如权利要求8至14所述的打码方法。
  16. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行;
    当所述电子设备为触控屏时,所述至少一个处理器能够执行如权利要求1至7中任一所述的打码控制方法;
    当所述电子设备为主动笔时,所述至少一个处理器能够执行如权利要求8至14所述的打码方法。
  17. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的打码控制方法,或者实现如权利要求8至14所述的打码方法。
  18. 一种打码***,其特征在于,包括:触控屏和主动笔;
    所述触控屏,用于获取所述触控屏的噪声幅度,确定与所述噪声幅度对应的打码参数值,并向与所述触控屏交互的主动笔发送携带打码信号幅度的上行信号;其中,所述打码参数值包括所述打码信号幅度;
    所述主动笔,用于接收携带所述打码信号幅度的上行信号,并基于所述打码信号幅度进行打码。
PCT/CN2020/079787 2020-03-17 2020-03-17 打码控制及打码方法、***、芯片、电子设备及存储介质 WO2021184221A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/079787 WO2021184221A1 (zh) 2020-03-17 2020-03-17 打码控制及打码方法、***、芯片、电子设备及存储介质
CN202080001625.3A CN111868669A (zh) 2020-03-17 2020-03-17 打码控制及打码方法、***、芯片、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079787 WO2021184221A1 (zh) 2020-03-17 2020-03-17 打码控制及打码方法、***、芯片、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021184221A1 true WO2021184221A1 (zh) 2021-09-23

Family

ID=72968500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079787 WO2021184221A1 (zh) 2020-03-17 2020-03-17 打码控制及打码方法、***、芯片、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN111868669A (zh)
WO (1) WO2021184221A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114356124A (zh) * 2021-12-06 2022-04-15 深圳市千分一智能技术有限公司 周期自适应方法、装置、主动笔及计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486340A (zh) * 2020-11-27 2021-03-12 维沃移动通信有限公司 触控笔及打码信号控制方法
CN112905047A (zh) * 2021-02-08 2021-06-04 深圳市汇顶科技股份有限公司 抗干扰的方法、触控芯片及主动笔芯片
CN114661189B (zh) * 2022-02-15 2024-06-07 深圳市千分一智能技术有限公司 电容笔的打码方法、***、电容笔以及存储介质
CN116737000A (zh) * 2022-09-20 2023-09-12 荣耀终端有限公司 触控方法、***、电子设备及触控笔
CN116149495A (zh) * 2022-12-05 2023-05-23 深圳市千分一智能技术有限公司 信号处理方法、装置、终端设备与介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040875A1 (en) * 2001-06-12 2003-02-27 Yong Rao System and method for estimating one or more tones in an input signal
CN105573553A (zh) * 2015-12-30 2016-05-11 联想(北京)有限公司 信息处理方法、信息处理装置及电子设备
CN107438941A (zh) * 2017-04-07 2017-12-05 深圳市汇顶科技股份有限公司 主动笔、升压电路及其控制方法
CN110851006A (zh) * 2020-01-16 2020-02-28 深圳市千分一智能技术有限公司 触控笔模式切换方法、装置、设备及可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104219738B (zh) * 2013-05-29 2018-05-11 华为技术有限公司 非连续接收参数配置方法及装置
CN107484249B (zh) * 2016-06-07 2020-08-18 大唐移动通信设备有限公司 一种基于业务类型的预调度方法和***
CN107969152A (zh) * 2016-08-26 2018-04-27 深圳市汇顶科技股份有限公司 信号发射方法、信号解析方法、主动笔及触控屏

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040875A1 (en) * 2001-06-12 2003-02-27 Yong Rao System and method for estimating one or more tones in an input signal
CN105573553A (zh) * 2015-12-30 2016-05-11 联想(北京)有限公司 信息处理方法、信息处理装置及电子设备
CN107438941A (zh) * 2017-04-07 2017-12-05 深圳市汇顶科技股份有限公司 主动笔、升压电路及其控制方法
CN110851006A (zh) * 2020-01-16 2020-02-28 深圳市千分一智能技术有限公司 触控笔模式切换方法、装置、设备及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114356124A (zh) * 2021-12-06 2022-04-15 深圳市千分一智能技术有限公司 周期自适应方法、装置、主动笔及计算机可读存储介质
CN114356124B (zh) * 2021-12-06 2023-09-29 深圳市千分一智能技术有限公司 周期自适应方法、装置、主动笔及计算机可读存储介质

Also Published As

Publication number Publication date
CN111868669A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021184221A1 (zh) 打码控制及打码方法、***、芯片、电子设备及存储介质
US20230325040A1 (en) Sensor controller and stylus
US8922525B2 (en) Touch-controlled electronic device and method for reducing wireless signal interference to touch sensing function
CN110249502B (zh) 具有启动协商的无线充电***
CN104461048B (zh) 电子装置及其控制方法
CN112533232B (zh) 一种节能信号监听时刻的确定方法、配置方法及相关设备
US11789563B2 (en) Touch controller and pen input system
CN107219951B (zh) 触控屏控制方法、装置、存储介质及终端设备
EP3806363A1 (en) Electronic device for controlling voltage conversion mode based on modulation order, and operation method thereof
EP3654624B1 (en) Screen state control method and device, storage medium, and mobile terminal
AU2019351191B2 (en) Receiving Method, Sending Method, Terminal, and Network Side Device
CN112076025A (zh) 一种纸尿裤报警装置与***
US9231735B2 (en) Method and apparatus for stable signal demodulation in communication system
US11625121B2 (en) Detection method and driving circuit thereof
US11513615B2 (en) Digital electromagnetic stylus, input system, and method for controlling same
JP6281584B2 (ja) 通信システム
US20220248243A1 (en) Method and apparatus for determining measurement target, device, and medium
CN113498166B (zh) 资源指示方法和通信设备
TWI789799B (zh) 數位式電磁筆、具有該電磁筆的輸入系統及其控制方法
WO2022165839A1 (zh) 抗干扰的方法、触控芯片及主动笔芯片
US20220035502A1 (en) Method of signal transmission, touch control chip and electronic device
CN110275637B (zh) 接近传感器的校准方法、装置、存储介质和电子设备
CN109743120B (zh) 时序控制电路、时序控制方法和终端
CN109165173B (zh) 一种握手处理方法及移动终端
CN112996088B (zh) 一种辅小区休眠指示方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925744

Country of ref document: EP

Kind code of ref document: A1