WO2022165839A1 - 抗干扰的方法、触控芯片及主动笔芯片 - Google Patents

抗干扰的方法、触控芯片及主动笔芯片 Download PDF

Info

Publication number
WO2022165839A1
WO2022165839A1 PCT/CN2021/076019 CN2021076019W WO2022165839A1 WO 2022165839 A1 WO2022165839 A1 WO 2022165839A1 CN 2021076019 W CN2021076019 W CN 2021076019W WO 2022165839 A1 WO2022165839 A1 WO 2022165839A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
active pen
interference
signal
information
Prior art date
Application number
PCT/CN2021/076019
Other languages
English (en)
French (fr)
Inventor
梁启权
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2021/076019 priority Critical patent/WO2022165839A1/zh
Publication of WO2022165839A1 publication Critical patent/WO2022165839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • capacitive active pens are used more and more widely as the main peripheral input accessories of electronic devices.
  • the tip of the active pen emits a coding signal
  • the touch screen can detect the signal emitted by the tip of the pen through detection electrodes, and calculate the two-dimensional position coordinates of the tip on the touch screen according to the detection signal.
  • the touch screen can send a synchronization signal to the active pen through the detection electrode, and the active pen receives the synchronization signal through the pen tip electrode and/or the ring electrode, so as to realize the synchronization and command transmission between the touch screen and the active pen.
  • two-way communication can also be performed between the touch screen and the active pen through wireless communication methods such as Bluetooth to realize the transmission of pressure information, key information and command information.
  • the touch screen When the user uses the active pen, the touch screen periodically sends a synchronization signal to the active pen, and the active pen detects the synchronization signal when it does not transmit the coding signal. After the active pen detects the synchronization signal of the touch screen, it transmits the coding signal with a fixed delay, and the touch screen also samples the coding signal with a fixed delay after sending the synchronization signal. When the sampling timing of the touch screen is consistent with the coding timing of the active pen, the touch screen After the synchronization with the active pen is successful, the touch screen can receive the coding signal of the active pen, and calculate the position coordinate information of the active pen.
  • the embodiments of the present application provide an anti-interference method, a touch control chip, and an active pen chip, which can improve the disconnection problem of the active pen caused by the synchronization signal detection error in an interference scenario, and effectively improve the anti-interference between the touch screen and the active pen. Interference ability, improve user experience.
  • a first aspect provides an anti-interference method, wherein the method is applied to a touch screen, and the method includes: determining that the touch screen is in an interference state; receiving a coding signal based on a continuous coding mode; wherein, the The continuous coding mode is a coding mode after the active pen receives the first information sent by the touch screen after it is determined that the touch screen is in an interference state, and the first information is used to instruct the active pen to enter the continuous coding model.
  • the touch screen detects and determines that the touch screen is in an interference state, and after determining that the touch screen is in an interference scenario where the transmission of synchronization signals is blocked or there is an interference signal, the touch screen sends first information, instructing the active pen to enter the continuous coding mode, The active pen chip continues to code in the continuous coding mode, so that the touch chip can receive the coding signal sent by the active pen chip without synchronizing with the active pen chip, so as to calculate the position information of the active pen.
  • the embodiments of the present application solve the problem that the active pen is disconnected or unable to draw a line in an interference scenario, and effectively improves the anti-interference performance of the touch screen and the active pen.
  • the method further includes: determining that the touch screen is in a non-interference state; receiving a coding signal based on a synchronous signal coding mode; wherein the synchronous signal coding mode is to determine that the touch screen is in a non-interference state; After the non-interference state, the coding mode after the active pen receives the second information sent by the touch screen, and the second information is used to instruct the active pen to exit the continuous coding mode.
  • the embodiment of the present application detects and determines that the touch screen is in a non-interference state through the touch chip, and after it is determined that the interference disappears, the touch screen sends second information to instruct the active pen to exit the continuous coding mode, thereby effectively avoiding the power loss of the active pen in the non-interference scenario.
  • the active pen continuously sends a coding signal in a period.
  • the active pen continues to send coding signals in the idle period of the cycle, and the idle period is all the periods of the active pen except the detection of the synchronization signal in the cycle. That is to say, the active pen continuously sends the coding signal as much as possible in the cycle, so that the touch chip does not need to be successfully synchronized with the active pen chip to receive the coding signal, and the touch chip can upsample at any time in the cycle. The coding signal was successfully received.
  • the embodiments of the present application further improve the disconnection problem of the active pen caused by the error in the detection of the synchronization signal in the interference scenario, and can realize the transmission of the coding signal without synchronizing the touch screen and the active pen, effectively improving the anti-interference of the touch screen and the active pen system performance.
  • the interference state includes a state in which the touch screen has noise interference and/or touch screen interference, wherein the noise interference includes a noise amplitude detected in a noise detection stage; the touch screen Screen disturbance includes the detected channel signal variation during the self-capacitance detection phase.
  • the embodiment of the present application determines that the touch screen has noise interference and/or touch screen interference through noise detection and self-capacitance detection, which can effectively solve the problem that interference signals such as charger noise and touch screen noise affect synchronization signal reception, and when the user's hand touches the screen with a large area Affecting synchronization signal reception, the active pen is disconnected and cannot be scribbled.
  • the determining that the touch screen is in an interference state includes: when the noise amplitude is greater than a preset amplitude, or when the noise amplitude is greater than a preset amplitude and lasts longer than a first time , it is determined that the touch screen is in an interference state.
  • the noise amplitude value includes: the noise amplitude value of a single frequency point, where the single frequency point is the frequency point that interferes the most with the synchronization of the touch screen and the active pen; or, Noise amplitudes of multiple frequency points, wherein the multiple frequency points are the multiple frequency points that interfere the most with the synchronization of the touch screen and the active pen.
  • the noise amplitudes of the multiple frequency points are calculated by the following formula:
  • A is the noise equivalent amplitude of n frequency points
  • Ai is the amplitude corresponding to the ith harmonic frequency point
  • Ki is the weight value corresponding to the ith harmonic frequency point
  • n is a non-zero integer, indicating Number of frequency points
  • i is an integer and 1 ⁇ i ⁇ n
  • i represents one of the n-th harmonics.
  • the determining that the touch screen is in an interference state includes: when the signal change amount of the detection channel is greater than a preset signal amount, or when the change amount of the detection channel signal is greater than the preset signal amount When the signal amount lasts longer than the second time, it is determined that the touch screen is in an interference state.
  • the determining that the touch screen is in an interference state includes: when the first number is greater than a preset threshold, or when the first number is greater than the preset threshold and lasts greater than a second time
  • the first number is the number of detection channels whose signal variation of the detection channel detected by the touch control chip in the self-capacitance detection stage is greater than the preset signal amount.
  • the determining that the touch screen is in an interference state includes: when the second number is greater than a preset threshold, or when the second number is greater than the preset threshold and lasts greater than a second time
  • the second quantity is the change in the detection channel signal in the first direction detected by the touch chip in the self-capacitance detection stage is greater than the preset signal quantity
  • the product of the number of detection channels and the number of detection channels in which the signal change amount of the detection channels in the second direction is greater than the preset signal amount.
  • the first direction and the second direction have an included angle of 0 to 180 degrees.
  • FIG. 3 is a schematic diagram of a normal communication scenario according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an interference scenario according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another interference scenario according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another interference scenario according to an embodiment of the present application.
  • FIG. 7a is a schematic flowchart of a coding method according to an embodiment of the present application.
  • FIG. 7b is another schematic flowchart of the coding method according to the embodiment of the present application.
  • FIG. 8a is a schematic flowchart of another coding method according to an embodiment of the present application.
  • FIG. 8b is another schematic flowchart of the coding method according to the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a possible implementation manner of an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a touch screen according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an active pen according to an embodiment of the present application.
  • active pens there are two types of active pens, one is the active pen for periodic coding. This type of active pen periodically sends a coding signal to the touch screen and is idle during the rest of the period. The touch screen samples the coding signal based on the same period. .
  • the other type is the active pen that triggers coding by a synchronization signal. As shown in Figure 1, the touch screen periodically sends a synchronization signal to the active pen.
  • the active pen After the active pen correctly detects the synchronization signal, it sends a coding signal to the touch screen after a fixed delay; Correspondingly, after sending the synchronization signal, the touch screen starts to sample the coding signal sent by the active pen after a fixed delay; after the active pen sends the coding signal, it continues to detect the synchronization signal until the next time the synchronization signal is detected, and then the coding is sent. signal, the touch screen performs other operations such as noise detection and self-capacitance detection during the idle time of the cycle.
  • the communication scene between the touch screen and the active pen is shown in Figure 2.
  • the touch screen sensing layer usually has a certain number of horizontal and vertical drive channels X and sensing channels Y.
  • the drive channel X and the sensing channel Y can be all or part of the
  • the detection channel of the touch screen is not limited in this embodiment of the present application.
  • the active pen includes a tip electrode 201 , a ring electrode 202 and a communication module 203 .
  • the tip electrode 201 of the active pen sends a coding signal, and the coding signal can be used to calculate the coordinates of the active pen.
  • the coding signal can be a waveform such as a square wave, a sine wave, or a triangular wave. This is not limited.
  • the coding signal is coupled to the channel of the touch screen through the coupling capacitance.
  • the sensing circuit of the touch controller in the touch screen detects the signal amount of the coding signal.
  • the drive channel X and the sensing channel Y can be connected to the sensing circuit through the multiplexing circuit and occupy the sensing circuit in a time-sharing manner.
  • the touch screen only receives signals and does not send drive signals.
  • the touch screen sends a synchronization signal to the active pen.
  • the synchronization signal can be used for synchronization between the active pen and the touch screen, or to send commands to the active pen to notify the active pen of coding frequency, coordinate reporting timing and other information.
  • the transmission of the synchronization signal can be based on the Universal Stylus Initiative (USI) protocol, and the touch screen can send a Direct Sequence Spread Spectrum (DSSS) signal through a touch integrated circuit (IC) as a synchronization signal , the active pen can receive the synchronization signal together with the ring electrode 202 through the ring electrode 202 or the pen tip electrode 201, so as to realize the information transmission of the touch screen to the active pen.
  • USI Universal Stylus Initiative
  • DSSS Direct Sequence Spread Spectrum
  • IC touch integrated circuit
  • the active pen can receive the synchronization signal together with the ring electrode 202 through the ring electrode 202 or the pen tip electrode 201, so as to realize the information transmission of the touch screen to the active pen.
  • the above functions can be completed by the touch chip and the active pen chip.
  • the touch screen and the active pen include a communication module 203, which can realize two-way communication between the touch screen and the active pen through wireless communication such as Bluetooth.
  • the touch screen sends command information to the active pen, and the active pen sends pressure, keys, etc. to the touch screen. information.
  • the synchronization signal sent by the touch screen will be transmitted to the active pen through the hand.
  • the above-mentioned large-area touch screen scene and other situations that affect the synchronization signal caused by the user's hand will cause the touch screen to be in a touch screen interference state, resulting in the weakening of the synchronization signal received by the active pen.
  • the above interference states will affect the reception of the synchronization signal, causing the touch screen and the active pen to be unable to synchronize, and the touch chip cannot detect the signal of the active pen chip, resulting in disconnection and inability to draw lines, affecting the performance of the touch system.
  • an embodiment of the present application provides an anti-interference method.
  • the communication module in the touch screen After the touch screen determines that the touch screen is in an interference state, the communication module in the touch screen sends first information to the active pen, instructing the active pen to enter the continuous coding mode; After the chip determines that the touch screen is in a non-interference state, the communication module in the touch screen sends the second information to the active pen, instructing the active pen to exit the continuous coding mode.
  • the touch chip can sample without synchronizing with the active pen chip, so as to calculate the position information of the active pen, solve the problem of disconnection of the active pen or the inability to draw lines in the interference scene, and effectively improve the anti-interference performance of the touch screen and the active pen system .
  • FIG. 3 is a schematic diagram of a normal communication scenario according to an embodiment of the present application. As shown in Figure 3, in each cycle, the actions performed by the touch chip include at least:
  • the synchronization signal is used to instruct the active pen to synchronize with the touch screen or to send a command to the active pen to notify the active pen of the coding frequency, coordinate reporting timing or other information, and the sending synchronization signal can be controlled by the touch chip in the touch screen. All or part of the inductive channel is sent, which is not limited in this embodiment of the present application;
  • the touch chip After collecting the coding signal, the touch chip starts to sample the coding signal sent by the active pen chip for multiple times after a fixed delay T1, and each sampling lasts for T2. Only when the timing of the code signal is consistent in the period, can the touch screen and the active pen be successfully synchronized, so as to receive the code signal sent by the active pen chip.
  • the touch control chip After receiving the coding signal sent by the active pen chip, the touch control chip demodulates the coding signal sent by the active pen chip, and calculates the demodulated signal carrying information such as the position of the active pen;
  • Noise detection the touch chip performs noise detection at a fixed period of time in the cycle, and the noise detection can be used to determine the size and frequency of the interference signal, the optimal operating frequency of the active pen, the current interference situation of the touch screen, etc.;
  • the touch chip performs self-capacitance detection at a fixed period of time in the cycle. touch area, etc.
  • the active pen chip To detect the synchronization signal, the active pen chip has been detecting the synchronization signal in the cycle. Once the synchronization signal sent by the touch control chip is detected, the detection of the synchronization signal is stopped, and the synchronization with the touch screen is started;
  • both the active pen and the touch screen can communicate through the wireless communication module.
  • the touch screen can send commands to the active pen through Bluetooth, and the active pen can send the collected pressure information to the touch screen through Bluetooth.
  • the successful sampling of the coding signal by the touch chip is based on the consistent sampling timing and coding timing.
  • the coding timing of the active pen chip cannot be consistent with the sampling timing of the touch chip, resulting in the inability of the active pen to draw or disconnect lines on the touch screen.
  • FIG. 4 is a schematic diagram of an interference scenario according to an embodiment of the present application.
  • the active pen chip may be unable to detect the synchronization signal sent by the touch chip. Since the active pen chip cannot detect the synchronization signal, the active pen chip will not code according to the timing agreed with the touch chip, but will always detect the synchronization signal. As a result, the active pen chip does not code in the cycle, so the touch chip cannot collect the coding signal of the active pen chip, and cannot detect the coordinates of the active pen, resulting in disconnection or inability to draw lines.
  • FIG. 5 is a schematic diagram of another interference scenario according to an embodiment of the present application.
  • the active pen chip may detect an incorrect synchronization signal and start coding in advance. For example, a certain feature of the interference signal such as noise is consistent with the synchronization signal, such as co-frequency interference with the same frequency as the synchronization signal, or other interference, the touch screen is in a state of noise interference, and the active pen chip will falsely detect the interference signal as synchronization. Signal, after detecting the interference signal, it starts to send the coding signal after a fixed delay T1, and the touch chip is still sending the synchronization signal and then starts sampling after the delay T1. At this time, the coding timing of the active pen chip will be earlier than The sampling timing of the touch chip causes the coding timing of the active pen chip to be inconsistent with the sampling timing of the touch chip. When the touch screen is in a state of noise interference, the touch chip cannot collect the coding signal of the active pen chip, so it cannot detect the coordinates of the active pen. , the line is broken or the line cannot be drawn.
  • the interference signal such as noise is consistent with the synchronization signal, such
  • FIG. 6 is a schematic diagram of another interference scenario according to an embodiment of the present application.
  • the active pen chip may detect an incorrect synchronization signal and start coding after a delay. For example, when the user's palm touches the screen, the synchronization signal is weakened and cannot be detected by the active pen chip, and a certain feature of the interference signal such as noise is the same as that of the synchronization signal, such as co-channel interference with the same frequency as the synchronization signal, or other interference.
  • the active pen is in a state of noise interference and touch screen interference
  • the active pen chip falsely detects the interference signal as a synchronous signal, and still starts to send the coding signal after a fixed delay T1 after detecting the interference signal, while the touch chip still After the synchronization signal is sent, the time delay T1 elapses before sampling starts.
  • the sampling timing of the touch chip will be earlier than the coding timing of the active pen chip, resulting in inconsistent coding timing of the active pen chip and sampling timing of the touch chip.
  • the touch chip cannot collect the coding signal of the active pen chip, so it cannot detect the coordinates of the active pen, and the line is broken or the line cannot be drawn.
  • the embodiment of the present application provides a coding method, which is applied to the active pen and the touch screen, and the touch chip detects and determines the interference state. After that, the touch screen sends the first information, so that in the interference scenario, the active pen enters the continuous coding mode, and the touch screen can receive the coding signal of the active pen without synchronizing with the active pen, that is, the touch chip and the active pen chip do not need to be synchronized.
  • the touch screen sends a second message to instruct the active pen to exit the continuous coding mode.
  • the touch chip sends a synchronous signal to trigger the active pen chip to code according to the time sequence, and the touch chip samples by time sequence.
  • FIG. 7a is a schematic flowchart of a coding method according to an embodiment of the present application. The method can be performed by a touch chip.
  • the continuous coding mode is a coding mode after the touch screen determines that the touch screen is in an interference state and the active pen receives first information sent by the touch screen, where the first information is used to indicate the active pen Enter the continuous coding mode.
  • the touch control chip detects and determines that the touch screen is in an interference state, and the first information sent by the touch screen instructs the active pen to enter the continuous coding mode.
  • the active pen chip does not need to detect the synchronization signal.
  • the coding signal is continuously sent within. Since the active pen chip continues to code in the cycle, the touch chip can receive the coding signal of the active pen chip without synchronizing with the active pen chip, so as to calculate the position information of the active pen.
  • the embodiments of the present application can effectively solve the problem of disconnection and inability to draw lines caused by the influence of the synchronization signal of the active pen in the interference scenario, and improve the anti-interference performance of the touch screen and the active pen.
  • FIG. 7b is another schematic flowchart of the coding method according to the embodiment of the present application. The method may be performed by an active pen chip.
  • the embodiment of the present application detects and determines that the touch screen is in a non-interference state through the touch chip, and after the interference disappears, the touch screen sends second information to instruct the active pen to exit the continuous coding mode, effectively avoiding power loss of the active pen in non-interference scenarios.
  • the method is applied to an active pen, and the method further includes:
  • the second information is information sent by the touch screen to the active pen after the touch-control chip determines that the touch screen is in a non-interference state, and the second information is used to instruct the active pen to exit the continuous coding mode.
  • the active pen chip continues to code during the idle period of the cycle or the entire cycle, so that the touch chip can receive the coding signal without successfully synchronizing with the active pen chip, and the touch chip samples up at any time in the cycle. can successfully receive the coding signal.
  • the embodiments of the present application further improve the disconnection problem of the active pen chip caused by the synchronization signal detection error in the interference scenario, and effectively improve the anti-interference performance of the touch screen and the active pen.
  • the touch control chip receives the coding signal based on the continuous coding mode, which may be the touch control chip sending synchronization according to the original timing.
  • the signal is then sampled with a fixed delay.
  • the interference state includes a state in which the touch screen has noise interference and/or touch screen interference, wherein the noise interference includes a noise amplitude detected in a noise detection stage; the touch screen Interference includes the amount of signal variation in the detection channel detected in self-capacitance detection.
  • each harmonic frequency is:
  • n is a non-zero integer, indicating the number of frequency points.
  • the fundamental frequency of the Fourier transform is 5kHz
  • each harmonic frequency point is: 5kHz, 10kHz, ..., n*5kHz.
  • the noise amplitude includes the noise amplitude of a single frequency point.
  • the single frequency point is the frequency point that interferes the most with the synchronization of the touch screen and the active pen.
  • the amplitude Ai of the ith harmonic frequency point is greater than the preset amplitude value, it is determined that the touch screen is in an interference state, where n is a non-zero integer, indicating the number of frequency points, i is an integer and 1 ⁇ i ⁇ n, Indicates the one of the n harmonic frequencies that interferes the most with whether the touch screen and the active pen can be synchronized.
  • it may be a frequency point closest to the frequency range of the synchronization signal, or may be a frequency point closest to the frequency range of the synchronization signal and having the largest amplitude.
  • the frequency points that have the greatest influence on whether the touch screen and the active pen can be synchronized may be the frequency points that are relatively close to the frequency range of the synchronization signal, or the frequency points that are closest to the frequency range of the synchronization signal. Multiple frequency points with larger amplitude among the frequency points.
  • n is a non-zero integer, indicating the number of frequency points
  • m is an integer and 1 ⁇ m ⁇ n, indicating multiple frequency points among the n harmonic frequency points that interfere the most with the synchronization of the touch screen and the active pen.
  • the equivalent amplitude A of m harmonic frequency points is calculated by the following formula:
  • A is the noise equivalent amplitude of n frequency points
  • Ai is the amplitude corresponding to the ith harmonic frequency point
  • Ki is the weight value corresponding to the ith harmonic frequency point
  • n is a non-zero integer, indicating Number of frequency points
  • i is an integer and 1 ⁇ i ⁇ n
  • i represents one of the n-th harmonics.
  • FIG. 10 it is a schematic flowchart of a possible implementation manner of the embodiment of the present application.
  • the process shown in FIG. 10 is executed by the touch chip.
  • the first time may be N periods, and N>0.
  • the touch screen will send the first information to the active pen, and after the active pen receives the first information, the active pen chip sends a coding signal in a continuous coding mode according to the first information.
  • the embodiments of the present application determine the interference state of the touch screen by detecting noise interference, which can effectively solve the problem that the active pen is disconnected and unable to draw lines caused by interference signals such as charger noise and touch screen noise affecting synchronization signal reception.
  • noise interference of the single or multiple frequency points that most interfere with the synchronization between the touch screen and the active pen, it is possible to more accurately determine the degree of interference of the current environment to the synchronization signal, which is more conducive to the touch screen to determine the interference state, and effectively improves the Anti-interference ability of touch screen and active pen.
  • the touch screen is in an interference state.
  • the preset semaphore is a threshold for judging whether the touch screen is in touch screen interference, and can be set according to various factors such as touch chip configuration, analog circuit, and software system used by the touch screen.
  • the touch screen interference can be realized by the self-capacitance detection of the touch chip in a fixed period of time in the cycle.
  • the touch screen 110 has a driving channel in the X direction and b sensing channels in the Y direction, wherein the detection channel may be all or part of the driving channel and/or the sensing channel.
  • the application embodiments do not limit this.
  • the touch chip performs self-capacitance detection, the touch chip sends a detection signal to each detection channel, and the detection signal may be a waveform such as a square wave, a sine wave, or a triangular wave, which is not limited in this embodiment of the present application.
  • the touch chip The sensing circuit detects the signal amount of each detection channel.
  • the first number is greater than a preset threshold, or when the first number is greater than the preset threshold and lasts greater than a second time, it is determined that the touch screen is in an interference state; wherein , the first number is the number of detection channels for which the change amount of the detection channel signal detected by the touch control chip through self-capacitance detection is greater than the preset signal amount.
  • the preset threshold is another threshold for judging whether the touch screen is disturbed by the touch screen, and can also be set according to various factors such as the configuration of the touch chip, the analog circuit, and the software system used by the touch screen.
  • the touch chip performs self-capacitance detection in a fixed period of time, counts the number of channels whose signal amount variation on each detection channel is greater than the preset signal amount, and determines whether the number of channels is greater than the preset threshold, thereby Determine whether the touch screen is in an interference state.
  • the second number is greater than a preset threshold, or when the second number is greater than the preset threshold and lasts greater than a second time, it is determined that the touch screen is in an interference state; wherein , the second number is the number of detection channels in which the signal variation of the detection channel in the first direction detected by the self-capacitance detection is greater than the preset signal amount and the number of detection channels in the second direction
  • the signal change amount is greater than the product of the preset signal amount and the number of detection channels.
  • the first direction and the second direction have an included angle of 0 to 180 degrees.
  • the interference state is determined.
  • the touch screen will send the first information to the active pen, and after the active pen receives the first information, the active pen chip sends a coding signal in a continuous coding mode according to the first information.
  • the self-capacitance detection and determination of the touch screen interference can solve the problem of disconnection of the active pen and inability to draw lines caused by affecting the reception of the synchronization signal when the user's hand touches the screen in a large area.
  • this embodiment combines the detection of touch screen interference, and the touch chip can more accurately determine the interference state of the touch screen, so that the judgment of the touch chip on the working mode of the active pen is more efficient and reasonable.
  • the active pen When the transmission of the synchronization signal is interfered or affected, the active pen receives the first information and/or the second information through wireless communication under the interference state, and sends the coding signal according to the first information and/or the second information according to different working modes , which can effectively improve the problem of disconnection and inability to draw lines caused by the failure of the active pen to detect the synchronization signal or the wrong detection of the synchronization signal in the interference scenario, and improve the anti-interference performance of the touch screen and the active pen.
  • receiving the first information and/or the second information through wireless communication is more convenient for the user to use the active pen, which effectively improves the user experience.
  • the touch screen may also send the first information and the second information to the active pen through other means, such as a wired connection.
  • the embodiments of the present application detect the noise interference and/or touch screen interference of the touch screen by the touch chip, so that the interference state of the touch screen can be accurately judged, so that in the interference scenario where the synchronization signal is blocked, the active pen is instructed to enter continuous coding through the first information model.
  • the active pen chip can continue to code, and the touch chip does not need to be synchronized with the active pen chip to sample, thus successfully calculating the position information of the active pen; after the interference scene disappears, the active pen exits the continuous coding mode and automatically
  • the pen chip adopts the synchronous signal coding mode and the touch chip to complete the transmission of position information. It effectively solves the problem of disconnection of the active pen or inability to draw lines caused by the inability of the touch screen and the active pen to synchronize in the interference scenario, which greatly improves the user experience.
  • the embodiments of the present application further provide a touch control chip for implementing the anti-interference method applied to the touch screen in the embodiments of the present application.
  • the touch control chip 1300 shown in FIG. 13 includes:
  • a processing module 1302 configured to detect and determine whether the touch screen is in an interference state or a non-interference state
  • the sampling module 1303 is configured to receive the coding signal based on the continuous coding mode or the synchronous signal coding mode.
  • the continuous coding mode is the coding mode of the active pen after receiving the first information sent by the touch screen, and the first information is used to instruct the active pen to enter the continuous coding mode.
  • the synchronous signal coding mode is the coding mode of the active pen after receiving the second information sent by the touch screen, and the second information is used to instruct the active pen to exit the continuous coding mode.
  • the sampling module 1303 is also used for sending a synchronization signal.
  • the embodiments of the present application further provide an active pen chip, which is used for implementing the anti-interference method applied to the active pen in the embodiments of the present application.
  • the active pen chip 1400 shown in FIG. 14 includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种抗干扰的方法、触控芯片及主动笔芯片。所述方法包括:确定触摸屏处于干扰状态(S701);基于持续打码模式接收打码信号(S702);其中,所述持续打码模式为确定所述触摸屏处于干扰状态后,主动笔接收所述触摸屏发送的第一信息后的打码模式,所述第一信息用于指示所述主动笔进入所述持续打码模式。在持续打码模式下,主动笔芯片持续发送打码信号,使得触摸屏与主动笔不需要成功同步即可完成主动笔位置信息的传输,能够有效提高干扰场景下触摸屏与主动笔***的性能。

Description

抗干扰的方法、触控芯片及主动笔芯片 技术领域
本申请涉及触控感测技术领域,尤其涉及一种抗干扰的方法、触控芯片及主动笔芯片。
背景技术
随着电容式触摸屏的普及,电容式主动笔作为电子设备的主要外设输入配件应用得越来越广泛。主动笔的笔尖处会发射打码信号,而触摸屏可通过检测电极对笔尖处发射出来的信号进行检测,并根据检测信号计算出笔尖在触摸屏上的二维位置坐标。另外,触摸屏可以通过检测电极向主动笔发送同步信号,主动笔通过笔尖电极和/或环电极接收同步信号,实现触摸屏与主动笔间的同步与命令传输。同时,触摸屏和主动笔之间还可以通过蓝牙等无线通信方式进行双向通信,实现压力信息、按键信息以及命令信息的传输。
用户使用主动笔时,触摸屏周期性地向主动笔发送同步信号,主动笔在不发射打码信号时检测同步信号。主动笔检测到触摸屏的同步信号后经固定时延发射打码信号,触摸屏在发送同步信号后也经固定时延进行打码信号采样,当触摸屏的采样时序与主动笔的打码时序一致,触摸屏与主动笔同步成功,触摸屏能够接收主动笔的打码信号,计算得到主动笔的位置坐标信息。但由于显示屏噪声、充电器共模噪声等干扰信号、用户手握主动笔操作或手掌按压触摸屏等大面积触屏场景的存在会影响同步信号的接收,造成触摸屏与主动笔无法同步,严重时,导致触摸屏无法正确识别主动笔发射的信号,出现断线现象。
发明内容
本申请实施例提供了一种抗干扰的方法、触控芯片及主动笔芯片,能够改善干扰场景下主动笔因同步信号检测错误造成的断线问题,有效提高了触摸屏与主动笔之间的抗干扰能力,提升用户体验。
第一方面,提供了一种抗干扰的方法,其特征在于,所述方法应用于触摸屏,所述方法包括:确定所述触摸屏处于干扰状态;基于持续打码模式接收打码信号;其中,所述持续打码模式为确定所述触摸屏处于干扰状态后, 主动笔接收所述触摸屏发送的第一信息后的打码模式,所述第一信息用于指示所述主动笔进入所述持续打码模式。
在第一方面中,触控芯片检测并确定触摸屏处于干扰状态,在确定触摸屏处于同步信号传输受阻或有干扰信号的干扰场景下后,触摸屏发送第一信息,指示主动笔进入持续打码模式,主动笔芯片在持续打码模式下持续打码,使得触控芯片无需与主动笔芯片同步即可接收主动笔芯片发送的打码信号,从而计算主动笔的位置信息。本申请实施例解决了干扰场景下主动笔的断线或无法划线的问题,有效提高了触摸屏与主动笔的抗干扰性能。
在一种可能的实现方式中,所述方法还包括:确定所述触摸屏处于非干扰状态;基于同步信号打码模式接收打码信号;其中,所述同步信号打码模式为确定所述触摸屏处于非干扰状态后,主动笔接收所述触摸屏发送的第二信息后的打码模式,所述第二信息用于指示所述主动笔退出所述持续打码模式。
本申请实施例通过触控芯片检测并确定触摸屏处于非干扰状态,在确定干扰消失后触摸屏发送第二信息,指示主动笔退出持续打码模式,有效避免非干扰场景下主动笔的功耗损失。
在一种可能的实现方式中,在所述持续打码模式中,所述主动笔在周期内持续发送打码信号。
持续打码模式中,主动笔在周期内的空闲时段上持续发送打码信号,空闲时段为周期内主动笔除检测同步信号外的所有时段。即是说主动笔在周期内尽可能多的时间持续发送打码信号,使得触控芯片不需要与主动笔芯片成功同步即可接收打码信号,触控芯片在周期内任何时间上采样都可以成功接收打码信号。本申请实施例进一步改善了干扰场景下主动笔因同步信号检测错误造成的断线问题,不需要触摸屏与主动笔同步即可实现打码信号的传输,有效提升了触摸屏与主动笔***的抗干扰性能。
在一种可能的实现方式中,所述干扰状态包括所述触摸屏存在噪声干扰和/或触屏干扰的状态,其中,所述噪声干扰包括在噪声检测阶段检测到的噪声幅值;所述触屏干扰包括在自容检测阶段检测到的检测通道信号变化量。
本申请实施例通过噪声检测、自容检测确定所述触摸屏存在噪声干扰和/或触屏干扰,能够有效解决充电器噪声、触摸屏噪声等干扰信号影响同步信号接收、以及用户手大面积触屏时影响同步信号接收从而造成的主动笔断线、 无法划线问题。
在一种可能的实现方式中,所述确定触摸屏处于干扰状态,包括:当所述噪声幅值大于预设幅值时,或当所述噪声幅值大于预设幅值并持续大于第一时间时,确定所述触摸屏处于干扰状态。
在一种可能的实现方式中,所述噪声幅值包括:单个频点的噪声幅值,其中,所述单个频点为对所述触摸屏与所述主动笔同步干扰最大的频点;或者,多个频点的噪声幅值,其中,所述多个频点为对所述触摸屏与所述主动笔同步干扰最大的多个频点。
本申请实施例通过检测对触摸屏与主动笔同步影响最大的单个或多个频点的噪声幅值,能够更加精准地判断当前环境对同步信号的干扰程度,从而更有利于触摸屏确定干扰状态,有效提升触摸屏与主动笔的***性能。
在一种可能的实现方式中,所述多个频点的噪声幅值通过下式计算:
Figure PCTCN2021076019-appb-000001
其中,A为n个频点的噪声等效幅值,Ai为第i次谐波频点对应的幅值,Ki为第i次谐波频点对应的权重值,n为非零整数,表示频点数,i为整数且1≤i≤n,i表示n次所述谐波中的一次。
在一种可能的实现方式中,所述确定所述触摸屏处于干扰状态,包括:当所述检测通道信号变化量大于预设信号量时,或当所述检测通道信号变化量大于所述预设信号量并持续大于第二时间时,确定所述触摸屏处于干扰状态。
在一种可能的实现方式中,所述确定所述触摸屏处于干扰状态,包括:当第一数量大于预设阈值时,或当所述第一数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;其中,所述第一数量为所述触控芯片在自容检测阶段检测到的所述检测通道信号变化量大于所述预设信号量的检测通道数量。
在一种可能的实现方式中,所述确定所述触摸屏处于干扰状态,包括:当第二数量大于预设阈值时,或当所述第二数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;其中,所述第二数量为所述触控芯片在自容检测阶段检测到的第一方向上所述检测通道信号变化量大于所述预设信号量的所述检测通道数量与第二方向上所述检测通道信号变化量大于所述预设信号量的所述检测通道数量的乘积。
可选地,第一方向与第二方向间具有0至180度的夹角。
在检测噪声干扰的基础上,本申请实施例结合触屏干扰的检测,触控芯片能够更加准确地确定干扰状态,使得触控芯片对主动笔工作方式的判断更加高效合理。
在一种可能的实现方式中,所述触摸屏通过无线通信的方式向所述主动笔发送所述第一信息和/或所述第二信息。
当同步信号传输被干扰或影响时,触摸屏能够在干扰状态下通过无线通信方式发送第一信息和/或第二信息,指示主动笔的工作模式,提高了触摸屏与主动笔的抗干扰性能。另外,与其他通信方式相比,通过无线通信方式发送第一信息和/或第二信息,更便于用户使用主动笔,有效提升了用户体验。
第二方面,提供了一种抗干扰的方法,其特征在于,所述方法应用于主动笔,所述方法包括:获取第一信息,其中,所述第一信息为触控芯片确定所述触摸屏处于干扰状态后,触摸屏向所述主动笔发送的信息,所述第一信息用于指示所述主动笔进入持续打码模式;根据第一信息,采用所述持续打码模式发送打码信号。
在干扰状态下,主动笔接收第一信息,主动笔芯片获取第一信息进入持续打码模式,在持续打码模式下以持续发送打码信号,使得主动笔无需与触摸屏成功同步即可使触控芯片接收打码信号从而计算位置信息。本申请实施例有效提高了主动笔的抗干扰能力,改善了因主动笔接收不到同步信号无法同步造成的断线或无法划线问题,提升了触摸屏主动笔***的用户体验。
在一种可能的实现方式中,所述方法还包括:获取第二信息,其中,所述第二信息为所述触控芯片确定所述触摸屏处于非干扰状态后,所述触摸屏向所述主动笔发送的信息,所述第二信息用于指示所述主动笔退出所述持续打码模式;根据所述第二信息,采用同步信号打码模式发送打码信号
在非干扰场景下,主动笔接收触摸屏发送的第二信息,主动笔芯片获取第二信息并退出持续打码模式,能够节省非干扰场景下主动笔的功耗,从而提高主动笔的工作效率。
在一种可能的实现方式中,在所述持续打码扰模式中,所述主动笔在周期内持续发送打码信号。
在持续打码模式中,主动笔在周期内持续打码,使得主动笔芯片无需接收同步信号即可与触控芯片进行同步,触摸屏与主动笔***无需同步即可完 成打码信号的传输。本申请实施例避免了因主动笔与触摸屏无法同步造成的主动笔断线或无法划线问题,提升了触摸屏与主动笔的性能。
在一种可能的实现方式中,所述主动笔通过无线通信方式接收所述触摸屏发送的所述第一信息和/或所述第二信息。
当同步信号传输被干扰或影响时,主动笔在干扰状态下通过无线通信方式接收第一信息和/或第二信息,根据第一信息和/或第二信息按照不同的工作模式发送打码信号,能够有效改善干扰场景下主动笔因检测不到同步信号或误检测同步信号造成的断线、无法划线问题,提高了触摸屏与主动笔的抗干扰性能。另外,与其他通信方式相比,通过无线通信方式接收第一信息和/或第二信息,更便于用户使用主动笔,有效提升了用户体验。
第三方面,提供一种触控芯片,其特征在于,所述触控芯片用于执行第一方面中任一种可能的实现方式所述的方法。
本申请实施例的触控芯片通过确定干扰状态,在干扰状态下通过第一信息指示主动笔进入持续打码模式,使得触控芯片与主动笔芯片不同步即能够发送与接收打码信号从而确定位置信息,能够改善干扰状态下触摸屏与主动笔的抗干扰能力。
第四方面,提供一种主动笔芯片,其特征在于,所述主动笔芯片用于执行第二方面中任一种可能的实现方式所述的方法。
本申请实施例的主动笔芯片在干扰状态下通过获取第一信息,进入持续打码模式持续打码,保证触摸屏与主动笔不需要同步即可完成位置信息的传输,极大地提高了干扰场景下主动笔的抗干扰能力,提升了用户体验。
第五方面,提供一种触摸屏,其特征在于包括第三方面所述的触控芯片和无线通信模块。
第六方面,提供一种主动笔,其特征在于包括第四方面所述的主动笔芯片和无线通信模块。
基于上述方案,触控芯片检测和确定干扰状态后,触摸屏以无线通信方式,向主动笔发送第一信息指示主动笔进入持续打码模式,使得干扰场景下,主动笔持续打码,触控芯片无需与主动笔芯片同步即可接收主动笔芯片发送的打码信号;在非干扰场景下,触控芯片检测和确定非干扰状态后,触摸屏以无线通信方式向主动笔发送第二信息指示主动笔退出持续打码模式,基于同步信号触发打码的同步信号打码模式工作,在同步信号打码模式中主动笔 芯片按时序打码,触控芯片按时序采样。避免了同步信号受阻导致的断线或无法划线问题,提高了触摸屏与主动笔的抗干扰能力,有效提升了干扰场景下主动笔的使用性能和用户体验。
附图说明
图1是触摸屏与主动笔通信原理的示意图。
图2是触摸屏与主动笔通信场景的示意图。
图3是本申请实施例的一种正常通信场景的示意图。
图4是本申请实施例的一种干扰场景的示意图。
图5是本申请实施例的另一种干扰场景的示意图。
图6是本申请实施例的又一种干扰场景的示意图。
图7a是本申请实施例的打码方法的示意性流程图。
图7b是本申请实施例的打码方法的另一示意性流程图。
图8a是本申请实施例的又一种打码方法的示意性流程图。
图8b是本申请实施例的打码方法的再一示意性流程图。
图9是本申请实施例的一种打码方法的示意图。
图10是本申请实施例的一种可能的实现方式的示意性流程图。
图11是本申请实施例的一个触摸屏的示意图。
图12是本申请实施例的另一种可能的实现方式的示意性流程图。
图13是本申请实施例的一种触控芯片的示意图。
图14是本申请实施例的一种主动笔芯片的示意图。
图15是本申请实施例的一种触摸屏的示意图。
图16是本申请实施例的一种主动笔的示意图。
具体实施方式
为了使本申请实施例所要解决的技术问题、技术方案及有益效果更加清楚明白,下面将结合附图,对本申请的技术方案进行清楚、完整地描述。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请涉及一种抗干扰的方法,应用于主动笔与触摸屏之间的通信。下面先介绍主动笔与触摸屏的通信方式以及原理。
目前,主动笔包括两类,一类是周期性打码的主动笔,这类主动笔周期 性向触摸屏发送打码信号,并在该周期剩余时间内空闲,触摸屏基于相同的周期采样该打码信号。另一类是同步信号触发打码的主动笔,如图1所示,触摸屏周期性地向主动笔发送同步信号,主动笔正确检测到同步信号后经过固定时延,向触摸屏发送打码信号;相应地,触摸屏在发送同步信号后经过固定时延开始对主动笔发送的打码信号进行采样;主动笔发送打码信号后,继续检测同步信号,直至下一次检测到同步信号后再发送打码信号,触摸屏在该周期的空闲时间进行噪声检测、自容检测等其他操作。
触摸屏与主动笔的通信场景如图2所示,触摸屏感应层上通常分布着一定数量的水平方向和竖直方向的驱动通道X和感应通道Y,驱动通道X和感应通道Y可以全部或部分是触摸屏的检测通道,本申请实施例对此不做限定。主动笔包含笔尖(Tip)电极201、环(Ring)电极202以及通信模块203。在下行场景中,主动笔的笔尖电极201发送打码信号,该打码信号可以用于主动笔的坐标计算,该打码信号可以是方波、正弦波或三角波等波形,本申请实施例对此不做限定。主动笔的笔尖电极与触摸屏的驱动通道X与感应通道Y之间存在耦合电容,打码信号经过耦合电容耦合到触摸屏的通道上,触摸屏中触摸控制器的感应电路随后检测打码信号的信号量,此场景下,驱动通道X与感应通道Y可通过多路复用电路连接到感应电路上并分时占用感应电路,触摸屏在此过程中只接收信号,不发出驱动信号。在上行场景中,触摸屏向主动笔发送同步信号,该同步信号可以用于主动笔与触摸屏之间进行同步,或者向主动笔发送命令以通知主动笔打码频率、坐标上报时序等信息。同步信号的传输可以基于通用触控笔联盟(Universal Stylus Initiative,USI)协议,触摸屏可以通过触控集成电路(Integrated Circuit,IC)发送直接序列扩频(Direct Sequence Spread Spectrum,DSSS)信号作为同步信号,主动笔可以通过环电极202或笔尖电极201与环电极202一起接收同步信号,从而实现触摸屏对主动笔的信息传输。上述功能均可由触控芯片与主动笔芯片完成。另外,触摸屏与主动笔中包括通信模块203,可以通过例如蓝牙等无线通信方式实现触摸屏与主动笔之间的双向通信,例如,触摸屏向主动笔发送命令信息,主动笔向触摸屏发送压力、按键等信息。
主动笔通过耦合电容接收同步信号,在实际应用中,不同的移动产品上会有不同的噪声,例如市电工频及其谐波、开关电源开关频率及其谐波之类的充电器共模噪声、以及如显示屏刷新频率及其谐波之类的显示屏噪声、随 机白噪声等,都会导致触摸屏处于噪声干扰状态,主动笔工作时会耦合进来一些噪声,影响同步信号的接收。另外,用户手握主动笔操作主动笔或手掌按压触摸屏时,用户的手会大面积接触或靠近触摸屏,当有手接触到触摸屏或靠近触摸屏时,触摸屏发送的同步信号会通过手传导到主动笔的地(GND),上述大面积触屏场景以及其他由于用户手导致的影响同步信号的情况,都会使触摸屏处于触屏干扰状态,导致主动笔接收到的同步信号减弱。上述干扰状态都将影响同步信号的接收,导致触摸屏与主动笔无法同步,触控芯片检测不到主动笔芯片的信号造成断线、无法划线,影响触控***的性能。
现有的主动笔与触摸屏***中,仅采用调整主动笔打码信号的工作频点、提高打码信号的信噪比、降低触摸屏的噪声等手段来解决触摸屏与主动笔之间同步信号的传输性能,但当干扰较大时,上述方法仍不能解决主动笔因接收不到信号或接收到错误的干扰信号而无法发送打码信号或在错误的时序上发送打码信号的问题,从而影响主动笔的性能。
有鉴于此,本申请实施例提供一种抗干扰的方法,触控芯片确定触摸屏处于干扰状态后,触摸屏中的通信模块向主动笔发送第一信息,指示主动笔进入持续打码模式;触控芯片确定触摸屏处于非干扰状态后,触摸屏中的通信模块向主动笔发送第二信息,指示主动笔退出持续打码模式,主动笔在持续打码模式下持续打码而不是分时序打码,使得触控芯片无需与主动笔芯片同步即可采样,从而计算主动笔的位置信息,解决了干扰场景下主动笔的断线或无法划线的问题,有效提高了触摸屏与主动笔***的抗干扰性能。
本申请实施例所述的“打码”即“发送打码信号”,该打码信号也可以称为驱动信号;本申请实施例所述“采样”即“接收打码信号”;同步信号也可称为上行信号。
图3是本申请实施例的一种正常通信场景的示意图。如图3所示,在每一个周期内,触控芯片执行的动作至少包括:
发送同步信号,并经过固定时延T1后开始对打码信号进行采样。所述同步信号用于指示主动笔与触摸屏进行同步或用于向主动笔发送命令以通知主动笔的打码频率、坐标上报时序或者其他信息,所述发送同步信号可以由触控芯片控制触摸屏中的全部或部分感应通道发送,本申请实施例对此不做限定;
采集打码信号,触控芯片在经过固定时延T1后开始对主动笔芯片发送 的打码信号进行多次采样,每次采样持续T2,只有当触控芯片的采样时序与主动笔芯片发送打码信号的时序在周期上一致时,触摸屏与主动笔才能成功进行同步,从而接收到主动笔芯片发送的打码信号。触控芯片在接收到主动笔芯片发送的打码信号后,对所述主动笔芯片发送的打码信号进行解调,计算得到携带有主动笔位置等信息的解调信号;
噪声检测,触控芯片在周期内固定时段进行噪声检测,所述噪声检测可用于判断干扰信号的大小及频点、主动笔的最佳工作频率、触摸屏当前的干扰情况等;
自容检测,触控芯片在周期内固定时段进行自容检测,所述自容检测可用于判断触摸屏当前的触控模式(主动笔触控、用户手触控或混合触控)、用户手触摸屏的触摸面积等。
如图3所示,在每一个周期内,主动笔芯片执行的操作至少包括:
检测同步信号,主动笔芯片在周期内一直进行同步信号的检测,一旦检测到触控芯片发出的同步信号,停止同步信号的检测,开始与触摸屏进行同步;
发送打码信号,主动笔芯片在检测到触控芯片发送的同步信号后按照约定好的时序进行打码,在本申请实施例中即主动笔芯片经过固定时延T1后多次发送打码信号,每次持续T2,只有当主动笔芯片正确检测到触控芯片发出的同步信号,主动笔芯片才会经在T1后开始发送打码信号,使得触控芯片的采样时序与主动笔芯片发送打码信号的时序一致,触摸屏与主动笔成功同步,触控芯片才能成功接收主动笔芯片发送的打码信号;
另外,在上述周期内,主动笔与触摸屏均可通过无线通信模块进行通信。比如,触摸屏可以通过蓝牙将命令发送给主动笔,主动笔可以通过蓝牙将采集到的压力信息等发送给触摸屏。
在上述每个周期内,触控芯片对打码信号的成功采样基于一致的采样时序与打码时序。干扰场景下,主动笔芯片的打码时序与触控芯片的采样时序无法保持一致,导致主动笔无法在触摸屏上划线、断线。
图4是本申请实施例的一种干扰场景的示意图。
当前述干扰场景存在时,主动笔芯片可能一直无法检测到触控芯片发送的同步信号。由于主动笔芯片检测不到同步信号,主动笔芯片将不会按照与触控芯片约定的时序进行打码,而是会一直检测同步信号。导致主动笔芯片 在周期内不打码,从而触控芯片也无法采集到主动笔芯片的打码信号,无法检测到主动笔的坐标,出现断线或者无法划线的情况。
图5是本申请实施例的另一种干扰场景的示意图。
当前述干扰场景存在时,主动笔芯片可能检测到错误的同步信号,提前开始打码。例如,噪声等干扰信号的某一特征与同步信号一致,如频点与同步信号一致的同频干扰,或其他干扰的情况下,触摸屏处于噪声干扰状态,主动笔芯片将干扰信号误检成同步信号,在检测到干扰信号后经过固定时延T1开始发送打码信号,而触控芯片仍在发送同步信号后经过时延T1才开始采样,此时,主动笔芯片的打码时序将先于触控芯片的采样时序,导致主动笔芯片的打码时序与触控芯片的采样时序不一致,触摸屏在噪声干扰状态下触控芯片无法采集主动笔芯片的打码信号,故无法检测主动笔的坐标,出现断线或者无法划线的情况。
图6是本申请实施例的又一种干扰场景的示意图。
当前述干扰场景存在时,主动笔芯片可能检测到错误的同步信号,延后开始打码。例如,用户手掌接触屏幕导致同步信号被削弱,无法被主动笔芯片检测到,而噪声等干扰信号的某一特征与同步信号一样,例如频点与同步信号一致的同频干扰,或其他干扰的情况,即主动笔处于噪声干扰状态和触屏干扰状态,主动笔芯片将干扰信号误检成同步信号,依旧在检测到干扰信号后经过固定时延T1开始发送打码信号,而触控芯片仍在发送同步信号后经过时延T1才开始采样,此时,触控芯片的采样时序将先于主动笔芯片的打码时序,导致主动笔芯片的打码时序与触控芯片的采样时序不一致,触控芯片无法采集主动笔芯片的打码信号,故无法检测主动笔的坐标,出现断线或者无法划线的情况。
考虑到上述干扰场景下主动笔与触摸屏无法同步造成的断线或无法划线问题,本申请实施例提供一种打码的方法,应用于主动笔与触摸屏,触控芯片检检测和确定干扰状态后,触摸屏发送第一信息,使得干扰场景下,主动笔进入持续打码模式,触摸屏无需与主动笔同步即可接收主动笔的打码信号,即是触控芯片与主动笔芯片无需同步即可接收主动笔芯片的打码信号;触控芯片检测和确定非干扰状态后,触摸屏发送第二信息指示主动笔退出持续打码模式,在非干扰场景下,基于同步信号打码模式打码,同步信号打码模式通过触控芯片发送同步信号触发主动笔芯片按时序打码,触控芯片按时 序分段采样。本申请实施例避免了同步信号受阻导致的断线或无法划线问题,提高了触摸屏与主动笔***的抗干扰能力,有效提升了干扰场景下主动笔的使用性能和用户体验。
图7a是本申请实施例的打码方法的示意性流程图。该方法可以由触控芯片执行。
S701,确定触摸屏处于干扰状态;
S702,基于持续打码模式接收打码信号。
其中,所述持续打码模式为触控芯片确定所述触摸屏处于干扰状态后,主动笔接收所述触摸屏发送的第一信息后的打码模式,所述第一信息用于指示所述主动笔进入所述持续打码模式。
在该实施例中,触控芯片检测并确定触摸屏处于干扰状态,通过触摸屏发送的第一信息指示主动笔进入持续打码模式,在持续打码模式中,主动笔芯片无需检测同步信号,在周期内持续发送打码信号。由于主动笔芯片在周期内持续打码,触控芯片无需与主动笔芯片同步即可接收主动笔芯片的打码信号,从而计算主动笔的位置信息。本申请实施例能够有效解决干扰场景下主动笔的同步信号受影响造成的断线、无法划线问题,提高了触摸屏与主动笔的抗干扰性能。
图7b是本申请实施例的打码方法的另一示意性流程图。该方法可以由主动笔芯片执行。
S703,获取第一信息;
S704,根据所述第一信息,采用持续打码模式打码;
其中,所述第一信息为触控芯片确定触摸屏处于干扰状态后,所述触摸屏向所述主动笔发送的信息,所述第一信息用于指示所述主动笔进入持续打码模式。
在该实施例中,主动笔通过接收触摸屏发送的第一信息,主动笔芯片获取第一信息进入持续打码模式,在持续打码模式下以持续打码而非按照时序分段打码的方式发送打码信号,使得主动笔芯片无需与触控芯片成功同步即可向触控芯片发送位置信息。本申请实施例有效提高了主动笔的工作效率,解决了干扰场景下因主动笔芯片接收不到同步信号无法同步造成的断线或无法划线问题,有效提高了触摸屏与主动笔***的抗干扰性能,提升了用户体验。
可选地,在一个实施例中,如图8a所示,所述方法还包括:
S801,确定触摸屏处于非干扰状态;
S802,基于同步信号打码模式接收打码信号;
其中,所述同步信号打码模式为触控芯片确定所述触摸屏处于非干扰状态后,主动笔接收所述触摸屏发送的第二信息后的打码模式,所述第二信息用于指示所述主动笔退出所述持续打码模式。
本申请实施例通过触控芯片检测并确定触摸屏处于非干扰状态,在干扰消失后触摸屏发送第二信息,指示主动笔退出持续打码模式,有效避免非干扰场景下主动笔的功耗损失。
可选地,在一个实施例中,如图8b所示,所述方法应用于主动笔,所述方法还包括:
S803,获取第二信息;
S804,根据所述第二信息,采用同步信号打码模式发送打码信号;
其中,所述第二信息为所述触控芯片确定触摸屏处于非干扰状态后,触摸屏向主动笔发送的信息,所述第二信息用于指示所述主动笔退出持续打码模式。
在该实施例中,主动笔接收触摸屏发送的第二信息,主动笔芯片获取第二信息从而退出持续打码模式,使主动笔芯片采用同步信号打码模式发送打码信号,所述同步信号打码模式为触控芯片发送同步信号触发主动笔芯片按时序发送打码信号的模式,本申请实施例能够有效避免非干扰场景下主动笔的功耗损失,提高主动笔的工作效率。
可选地,在一个实施例中,在持续打码模式中,主动笔在周期内空闲时段持续打码。所述空闲时段为主动笔不检测同步信号的时段。作为示例而非限定,主动笔可以在工作周期内一半周期时长的一段时间内持续打码,该持续打码时长远大于触控芯片的采样时长,触控芯片的采样时长无需与主动笔一致即可采样打码信号。
可选地,在一个实施例中,如图9所示,在持续打码模式中,主动笔芯片不检测同步信号,而是在整个周期内持续打码。由于主动笔芯片不检测同步信号,可在每一个周期内的全部或大部分时间内持续打码,触控芯片在每一个周期内任意时间都可采样。
在干扰状态下,主动笔芯片在周期内空闲时段或整个周期内持续打码, 使得触控芯片不需要与主动笔芯片成功同步即可接收打码信号,触控芯片在周期内任何时间上采样都可以成功接收打码信号。本申请实施例进一步改善了干扰场景下主动笔芯片因同步信号检测错误造成的断线问题,有效提升了触摸屏与主动笔的抗干扰性能。
可选地,在一个实施例中,如图9所示,所述持续打码模式中,所述触控芯片基于持续打码模式接收打码信号,可以是触控芯片按照原有时序发送同步信号后经固定时延开始采样。
在干扰模式下,触控芯片可以不改变原有的工作时序,由于主动笔芯片持续打码,触控芯片在原有时序上进行采样也能检测到打码信号,在不改变触控芯片工作时序的情况下,使得触控芯片在干扰场景下也能成功检测到主动笔的坐标信息,本申请实施例能够提高触摸屏与主动笔的抗干扰性能。
可选地,在一个实施例中,所述触控芯片基于持续打码模式接收打码信号,可以是触控芯片不发送同步信号直接在周期内进行采样。
在干扰模式下,触控芯片可以不发送同步信号,即不以先发送同步信号再经固定时延开始采样的方法,而是省去发送同步信号的步骤,可以在周期上任意时间进行采样,由于主动笔芯片持续打码,且打码时长远大于触控芯片采样时长,不论触控芯片何时采样,都能成功接收打码信号,从而计算出主动笔的坐标信息,使得触摸屏与主动笔不需要进行同步就能检测坐标信息,确定主动笔的位置。本申请实施例进一步提高了触摸屏与主动笔***的抗干扰性能。
下面结合图10-11,详细描述触控芯片如何确定其处于干扰状态或非干扰状态。
本申请实施例中,触控芯片能够检测干扰状态,并通过触摸屏的无线通信模块通知主动笔是否进入或退出干扰模式,在持续打码模式下,主动笔芯片在周期内持续打码,触控芯片在周期内任何时候采样都能够接收打码信号,从而确定主动笔的坐标信息,本申请实施例能够有效避免在干扰场景下因主动笔检测不到同步信号或将干扰信号误检成同步信号造成的断线、划线问题。
可选地,在一个实施例中,干扰状态包括所述触摸屏存在噪声干扰和/或触屏干扰的状态,其中,所述噪声干扰包括在噪声检测阶段检测到的噪声幅值;所述触屏干扰包括在自容检测检测到的检测通道信号变化量。
可选地,在一个实施例中,当所述噪声幅值大于预设幅值时,或当所述 噪声幅值大于预设幅值并持续大于第一时间时,确定所述触摸屏处于干扰状态。
其中,第一时间是用于判断触摸屏是否处于噪声干扰的时长条件,可以根据触摸屏自身的硬件、软件进行配置,第一时间大于零。
其中,预设幅值是用于判断触摸屏是否处于噪声干扰的阈值,可以根据触控芯片配置、模拟电路、触摸屏使用的软件***等多种因素进行设定,预设幅值大于零。具体地,噪声干扰可以通过触控芯片在空闲时序上对噪声进行检测采样来实现。例如,对采样的噪声数据进行傅里叶变换,即可得到各个谐波分量的幅值,根据各谐波信号量的幅值即可评估噪声的大小,从而判断噪声干扰状态。
作为示例而非限定,假设噪声采样时间为T,傅里叶变换的基频为:
Figure PCTCN2021076019-appb-000002
由于谐波频点为基频的整倍数频点,故各个谐波频点为:
F n=f 基频*n
其中n为非零整数,表示频点数。比如,当采样时间为200μs时,傅里叶变换的基频为5kHz,各个谐波频点为:5kHz、10kHz、…、n*5kHz。通过对各个谐波频点的噪声分量进行傅里叶变换,得到各个谐波频点的噪声分量的幅值An。当幅值An大于预设幅值,则判断触摸屏处于干扰状态。
可选地,在一个实施例中,噪声幅值包括单个频点的噪声幅值。其中,所述单个频点为对所述触摸屏与所述主动笔同步干扰最大的频点。具体地,当第i个谐波频点的幅值Ai大于预设幅值,则判断触摸屏处于干扰状态,其中,n为非零整数,表示频点数,i为整数且1≤i≤n,表示n个谐波频点中的对所述触摸屏与所述主动笔能否同步干扰最大的一个频点。例如,可以是与同步信号的频率范围最接近的一个频点,也可以是与同步信号频率范围最接近且幅值最大的一个频点。
可选地,在一个实施例中,噪声干扰包括:多个频点的噪声干扰。其中,所述多个频点为对所述触摸屏与所述主动笔同步干扰最大的多个频点。例如,当n个谐波频点中的m个谐波频点的幅值均大于预设的第一阈值,则判断触摸屏处于干扰状态,其中,n为非零整数,表示频点数,m为整数且1≤m≤n,表示n个谐波频点中的对所述触摸屏与所述主动笔能否同步干扰最大的多个频点。例如,对所述触摸屏与所述主动笔能否同步影响最大的多个频 点可以是与同步信号的频率范围较为接近的多个频点,也可以是与同步信号的频率范围最为接近的多个频点中幅值幅值较大的多个频点。
本实施例通过检测对触摸屏与主动笔同步影响最大的单个或多个频点的噪声幅值,能够更加精准地判断当前环境对同步信号的干扰程度,从而更有利于触控芯片确定干扰状态,有效提升触摸屏与主动笔的***性能。
可选地,在一个实施例中,当n个谐波频点中的m个谐波频点的等效幅值A大于预设幅值,则判断触摸屏处于干扰状态。其中,n为非零整数,表示频点数,m为整数且1≤m≤n,表示n个谐波频点中的对所述触摸屏与所述主动笔同步干扰最大的多个频点。m个谐波频点的等效幅值A通过下式计算:
Figure PCTCN2021076019-appb-000003
其中,A为n个频点的噪声等效幅值,Ai为第i次谐波频点对应的幅值,Ki为第i次谐波频点对应的权重值,n为非零整数,表示频点数,i为整数且1≤i≤n,i表示n次所述谐波中的一次。
具体地,如图10所示,是本申请实施例一种可能的实现方式的示意性流程图。图10所示的流程由触控芯片执行。
S1001,检测噪声干扰。
S1002,判断噪声干扰是否大于预设幅值。
如果检测到的噪声干扰大于预设幅值,则执行S1003;如果检测到的噪声干扰小于等于预设幅值,则进入下个周期。
S1003,判断噪声干扰是否持续超过第一时间。
S1004,确定触摸屏处于干扰状态。
如果噪声干扰持续超过第一时间,则执行S1004;如果检测到的噪声持续不超过第一时间,则进入下个周期。其中第一时间可以是N个周期,N>0。
在S1004后,触摸屏会向主动笔发送第一信息,主动笔接收第一信息后主动笔芯片根据第一信息采用持续打码模式发送打码信号。
本申请实施例通过检测噪声干扰确定所述触摸屏的干扰状态,能够有效解决充电器噪声、触摸屏噪声等干扰信号影响同步信号接收从而造成的主动笔断线、无法划线问题。本申请实施例通过检测对触摸屏与主动笔同步干扰最大的单个或多个频点的噪声干扰,能够更加精准地判断当前环境对同步信 号的干扰程度,从而更有利于触摸屏确定干扰状态,有效提升触摸屏与主动笔的抗干扰能力。
可选地,在一个实施例中,当所述检测通道信号变化量大于预设信号量时,或当所述检测通道信号变化量大于所述预设信号量并持续大于第二时间时,确定所述触摸屏处于干扰状态。
其中,预设信号量是用于判断触摸屏是否处于触屏干扰的阈值,可以根据触控芯片配置、模拟电路、触摸屏使用的软件***等多种因素进行设定。触屏干扰可以通过触控芯片在周期内固定时段的自容检测实现。
本申请实施例的一个触摸屏如图11所示,触摸屏110的X方向有a个驱动通道,Y方向有b根感应通道,其中检测通道可以是全部或部分的驱动通道和/或感应通道,本申请实施例对此不做限定。当触控芯片进行自容检测时,触控芯片向各个检测通道发送检测信号,该检测信号可以是方波、正弦波或三角波等波形,本申请实施例对此不做限定,同时触控芯片的感应电路检测各个检测通道的信号量。检测通道分别与外部导体之间存在耦合电容,检测通道与***之间也存在耦合电容。当触摸屏上没有用户手触摸时,触摸屏的各个检测通道的信号量相对一致;当触摸屏上有用户手触摸时,用户手与外部导体间的电容将会耦合到用户手所在位置的检测通道的耦合电容上,从而影响该位置的耦合电容,该点的耦合电容产生变化,触控芯片检测到的该位置的检测通道的信号量也发生变化。根据触摸屏各个检测通道的信号量变化可以判断用户手触屏状态。
可选地,在一个实施例中,当第一数量大于预设阈值时,或当所述第一数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;其中,所述第一数量为所述触控芯片通过自容检测检测到的所述检测通道信号变化量大于所述预设信号量的检测通道数量。
其中,预设阈值是用于判断触摸屏是否处于触屏干扰的另一种阈值,也可以根据触控芯片配置、模拟电路、触摸屏使用的软件***等多种因素进行设定。
具体地,在每一个周期内,触控芯片通过在固定时段进行自容检测,统计各个检测通道上的信号量变化量大于预设信号量的通道数量,判断通道数量是否大于预设阈值,从而判断触摸屏是否处于干扰状态。
可选地,在一个实施例中,当第二数量大于预设阈值时,或当所述第二 数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;其中,所述第二数量为所述触控芯片在自容检测检测到的第一方向上所述检测通道信号变化量大于所述预设信号量的检测通道数量与第二方向上所述检测通道信号变化量大于所述预设信号量的检测通道数量的乘积。
可选地,第一方向与第二方向间具有0至180度的夹角。
具体地,如图12所示,是本申请实施例的另一种可能的实现方式的示意性流程图。图12所示的流程由触控芯片执行。
在S1201中,检测触屏干扰。
在S1202中,统计并计算h*k。
其中,h为正整数,是触控芯片在第一方向上信号变化量大于所述预设信号量的检测通道的数量;k为正整数,是触控芯片在第二方向上信号变化量大于所述预设信号量的检测通道的数量。
在S1203中,判断h*k是否大于预设阈值。
若h*k大于预设阈值,则执行S1204;若h*k小于等于预设阈值,则进入下个周期。
在S1204中,确定干扰状态。
在S1204后,触摸屏会向主动笔发送第一信息,主动笔接收第一信息后主动笔芯片根据第一信息采用持续打码模式发送打码信号。
本实施例通过自容检测并确定触屏干扰,能够解决用户手大面积触屏时影响同步信号接收造成的主动笔断线、无法划线问题。在检测噪声干扰的基础上,本实施例结合触屏干扰的检测,触控芯片能够更加准确地确定触摸屏的干扰状态,使得触控芯片对主动笔工作方式的判断更加高效合理。
可选地,在一个实施例中,触摸屏通过无线通信的方式向所述主动笔发送所述第一信息和/或所述第二信息。即触摸屏可以通过例如蓝牙等无线通信方式向主动笔发送第一信息、第二信息。
当同步信号传输被干扰或影响时,主动笔在干扰状态下通过无线通信方式接收第一信息和/或第二信息,根据第一信息和/或第二信息按照不同的工作模式发送打码信号,能够有效改善干扰场景下主动笔因检测不到同步信号或误检测同步信号造成的断线、无法划线问题,提高了触摸屏与主动笔的抗干扰性能。另外,与其他通信方式相比,通过无线通信方式接收第一信息和/或第二信息,更便于用户使用主动笔,有效提升了用户体验。
可选地,在一个实施例中,触摸屏也可以通过其他方式例如有线连接向主动笔发送第一信息、第二信息。
本申请实施例通过触控芯片检测触摸屏的噪声干扰和/或触屏干扰,能够准确对触摸屏的干扰状态进行判断,从而在同步信号受阻的干扰场景下通过第一信息指示主动笔进入持续打码模式。在干扰场景下,主动笔芯片能够持续打码,触控芯片不需要与主动笔芯片同步即可采样,从而成功计算主动笔的位置信息;干扰场景消失后,主动笔退出持续打码模式,主动笔芯片采用同步信号打码模式与触控芯片完成位置信息的传输。有效解决了干扰场景下因触摸屏与主动笔无法同步造成的主动笔断线或无法划线问题,极大地提高了用户体验。
本申请实施例还提供一种触控芯片,用于执行本申请实施例中应用于触摸屏的抗干扰方法。
在一个实施例中,如图13所示的触控芯片1300包括:
处理模块1302,用于检测并确定触摸屏处于干扰状态或非干扰状态;
采样模块1303,用于基于持续打码模式或基于同步信号打码模式接收打码信号。
持续打码模式为主动笔在接收触摸屏发送的第一信息后的打码模式,所述第一信息用于指示所述主动笔进入所述持续打码模式。同步信号打码模式为主动笔在接收触摸屏发送的第二信息后的打码模式,所述第二信息用于指示所述主动笔退出持续打码模式。采样模块1303还用于发送同步信号。
本申请实施例还提供一种主动笔芯片,用于执行本申请实施例中应用于主动笔的抗干扰方法。
在一个实施例中,如图14所示的主动笔芯片1400,包括:
处理模块1401,用于获取第一信息或第二信息;
打码模块1402,用于根据第一信息或第二信息,采用持续打码模式或同步信号打码模式发送打码信号。
其中,所述第一信息为触控芯片确定所述触摸屏处于干扰状态后,触摸屏向所述主动笔发送的信息,所述第一信息用于指示所述主动笔进入持续打码模式。所述第二信息为触控芯片确定所述触摸屏处于非干扰状态后,触摸屏向所述主动笔发送的信息,所述第二信息用于指示所述主动笔退出持续打码模式。
本申请实施例还提供一种触摸屏,用于执行本申请实施例中应用于触摸屏的抗干扰方法。如图15所示的触摸屏1500,包括上述触控芯片1300以及无线通信模块1501。无线通信模块1501用于在触控芯片1400检测并确定触摸屏处于干扰状态或非干扰状态时以无线通信的方式发送第一信息或第二信息。
本申请实施例还提供一种主动笔,用于执行本申请实施例中应用于主动笔的抗干扰方法。如图16所示的主动笔1600,包括上述主动笔芯片1400以及无线通信模块1501。无线通信模块1601用于以无线通信的方式接收触摸屏发送的第一信息或第二信息后使主动笔芯片1400获取第一信息或第二信息,从而采用持续打码模式或同步信号打码模式发送打码信号。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
本申请实施例中所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略或者不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个***。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种抗干扰的方法,其特征在于,所述方法应用于触摸屏,所述方法包括:
    确定所述触摸屏处于干扰状态;
    基于持续打码模式接收打码信号;
    其中,所述持续打码模式为确定所述触摸屏处于干扰状态后,主动笔接收所述触摸屏发送的第一信息后的打码模式,所述第一信息用于指示所述主动笔进入所述持续打码模式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述触摸屏处于非干扰状态;
    基于同步信号打码模式接收打码信号;
    其中,所述同步信号打码模式为确定所述触摸屏处于非干扰状态后,所述主动笔接收所述触摸屏发送的第二信息后的打码模式,所述第二信息用于指示所述主动笔退出所述持续打码模式。
  3. 根据权利要求1所述的方法,其特征在于,在所述持续打码模式中,所述主动笔在周期内持续发送打码信号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述干扰状态包括所述触摸屏存在噪声干扰和/或触屏干扰的状态,其中,
    所述噪声干扰包括在噪声检测阶段检测到的噪声幅值;
    所述触屏干扰包括在自容检测阶段检测到的检测通道信号变化量。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述触摸屏处于干扰状态,包括:
    当所述噪声幅值大于预设幅值时,或当所述噪声幅值大于预设幅值并持续大于第一时间时,确定所述触摸屏处于干扰状态。
  6. 根据权利要求5所述的方法,其特征在于,所述噪声幅值包括:
    单个频点的噪声幅值,其中,所述单个频点为对所述触摸屏与所述主动笔同步干扰最大的频点;或者,
    多个频点的噪声幅值,其中,所述多个频点为对所述触摸屏与所述主动笔同步干扰最大的多个频点。
  7. 根据权利要求6所述的方法,其特征在于,所述多个频点的噪声幅值通过下式计算:
    Figure PCTCN2021076019-appb-100001
    其中,A为n个频点的噪声等效幅值,Ai为第i次谐波频点对应的幅值,Ki为第i次谐波频点对应的权重值,n为非零整数,表示频点数,i为整数且1≤i≤n,i表示n次所述谐波中的一次。
  8. 根据权利要求4所述的方法,其特征在于,所述确定所述触摸屏处于干扰状态,包括:
    当所述检测通道信号变化量大于预设信号量时,或当所述检测通道信号变化量大于所述预设信号量并持续大于第二时间时,确定所述触摸屏处于干扰状态。
  9. 根据权利要求8所述的方法,其特征在于,所述确定所述触摸屏处于干扰状态,包括:
    当第一数量大于预设阈值时,或当所述第一数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;
    其中,所述第一数量为所述触控芯片在所述自容检测阶段检测到的所述检测通道信号变化量大于所述预设信号量的检测通道数量。
  10. 根据权利要求8所述的方法,其特征在于,所述确定所述触摸屏处于干扰状态,包括:
    当第二数量大于预设阈值时,或当所述第二数量大于所述预设阈值并持续大于第二时间时,确定所述触摸屏处于干扰状态;
    其中,所述第二数量为所述触控芯片在所述自容检测阶段检测到的第一方向上所述检测通道信号变化量大于所述预设信号量的所述检测通道数量与第二方向上所述检测通道信号变化量大于所述预设信号量的所述检测通道数量的乘积。
  11. 根据权利要求1至3中任一项所述的方法,其特征在于,所述触摸屏通过无线通信的方式向所述主动笔发送所述第一信息和/或所述第二信息。
  12. 一种抗干扰的方法,其特征在于,所述方法应用于主动笔,所述方法包括:
    获取第一信息,其中,所述第一信息为触控芯片确定触摸屏处于干扰状态后,所述触摸屏向所述主动笔发送的信息,所述第一信息用于指示所述主动笔进入持续打码模式;
    根据所述第一信息,采用所述持续打码模式发送打码信号。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    获取第二信息,其中,所述第二信息为所述触控芯片确定所述触摸屏处于非干扰状态后,所述触摸屏向所述主动笔发送的信息,所述第二信息用于指示所述主动笔退出所述持续打码模式;
    根据所述第二信息,采用同步信号打码模式发送打码信号。
  14. 根据权利要求13所述的方法,其特征在于,在所述持续打码模式中,所述主动笔在周期内持续发送打码信号。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述主动笔通过无线通信方式接收所述触摸屏发送的所述第一信息和/或所述第二信息。
  16. 一种触控芯片,其特征在于,所述触控芯片用于执行权利要求1至11中任一项所述的方法。
  17. 一种主动笔芯片,其特征在于,所述主动笔芯片用于执行权利要求12至15中任一项所述的方法。
PCT/CN2021/076019 2021-02-08 2021-02-08 抗干扰的方法、触控芯片及主动笔芯片 WO2022165839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076019 WO2022165839A1 (zh) 2021-02-08 2021-02-08 抗干扰的方法、触控芯片及主动笔芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076019 WO2022165839A1 (zh) 2021-02-08 2021-02-08 抗干扰的方法、触控芯片及主动笔芯片

Publications (1)

Publication Number Publication Date
WO2022165839A1 true WO2022165839A1 (zh) 2022-08-11

Family

ID=82740748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076019 WO2022165839A1 (zh) 2021-02-08 2021-02-08 抗干扰的方法、触控芯片及主动笔芯片

Country Status (1)

Country Link
WO (1) WO2022165839A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636582A (zh) * 2017-08-01 2018-01-26 深圳市汇顶科技股份有限公司 确定触摸位置的方法和触摸控制芯片
CN108235746A (zh) * 2017-12-27 2018-06-29 深圳市汇顶科技股份有限公司 信号发射方法及主动笔、信号接收方法及触摸屏
CN110959150A (zh) * 2019-09-30 2020-04-03 深圳市汇顶科技股份有限公司 信号发射与接收方法、处理器芯片、主动笔、触摸屏
CN111930253A (zh) * 2020-09-14 2020-11-13 深圳市汇顶科技股份有限公司 无线通信的方法、主动笔、触摸屏、电子设备和通信***
US20210011579A1 (en) * 2019-03-25 2021-01-14 Shenzhen GOODIX Technology Co., Ltd. Method and system for transmitting signal, active stylus, touch screen and readable storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636582A (zh) * 2017-08-01 2018-01-26 深圳市汇顶科技股份有限公司 确定触摸位置的方法和触摸控制芯片
CN108235746A (zh) * 2017-12-27 2018-06-29 深圳市汇顶科技股份有限公司 信号发射方法及主动笔、信号接收方法及触摸屏
US20210011579A1 (en) * 2019-03-25 2021-01-14 Shenzhen GOODIX Technology Co., Ltd. Method and system for transmitting signal, active stylus, touch screen and readable storage medium
CN110959150A (zh) * 2019-09-30 2020-04-03 深圳市汇顶科技股份有限公司 信号发射与接收方法、处理器芯片、主动笔、触摸屏
CN111930253A (zh) * 2020-09-14 2020-11-13 深圳市汇顶科技股份有限公司 无线通信的方法、主动笔、触摸屏、电子设备和通信***

Similar Documents

Publication Publication Date Title
CN112905047A (zh) 抗干扰的方法、触控芯片及主动笔芯片
CN113238676B (zh) 集成电路
CN109683733A (zh) 触控笔、触控面板、显示装置及触控感测方法
CN109074200B (zh) 触控芯片、电容式触摸屏、电容式主动笔及电容式触摸屏与电容式主动笔的双向通信方法
TWI531934B (zh) 觸控筆、觸控偵測之同步系統以及觸控偵測之同步方法
CN103365505A (zh) 改善电容式触控装置的噪声干扰的感测方法及装置
CN111164553A (zh) 触控感应方法、触控芯片、电子设备以及触控***
WO2012005475A2 (ko) 디지타이징 장치용 전자펜과 태블릿
US20160117047A1 (en) Multiple controller communication method for active stylus data acquisition
CN112000248B (zh) 噪声检测的方法、主动笔和屏幕
KR20200085838A (ko) 능동형 스타일러스 장치 및 방법
KR20170095285A (ko) 동적 전송 프로토콜을 갖는 스타일러스
US20230161425A1 (en) Synchronization method, wireless communication chip, synchronization device, electronic device and active pen
WO2022165839A1 (zh) 抗干扰的方法、触控芯片及主动笔芯片
CN103455194B (zh) 触摸屏扫描方法、***及装置
CN203178955U (zh) 触摸屏扫描装置
US20220011916A1 (en) Synchronization method, wireless communication chip, touch control chip, and driving chip
WO2022087917A1 (zh) 噪声检测的方法、主动笔和屏幕
TW202016700A (zh) 觸控系統、其觸控裝置及輸入裝置、及其訊號傳送方法
US11842004B2 (en) Method of signal transmission, touch control chip and electronic device
WO2024092449A1 (zh) 用于主动笔和触摸屏之间同步的方法、主动笔和触摸屏
US11755144B2 (en) Sensor system
TWI727528B (zh) 觸控系統、其輸入裝置及其訊號傳送方法
WO2021226886A1 (zh) 信号检测的方法、装置和触控芯片
TWI749438B (zh) 電信號偵測方法、裝置與觸控系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923849

Country of ref document: EP

Kind code of ref document: A1