WO2021181866A1 - 局所的に軟化された部分を有する鋼部品の製造方法 - Google Patents

局所的に軟化された部分を有する鋼部品の製造方法 Download PDF

Info

Publication number
WO2021181866A1
WO2021181866A1 PCT/JP2021/001266 JP2021001266W WO2021181866A1 WO 2021181866 A1 WO2021181866 A1 WO 2021181866A1 JP 2021001266 W JP2021001266 W JP 2021001266W WO 2021181866 A1 WO2021181866 A1 WO 2021181866A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
temperature
strain
point
Prior art date
Application number
PCT/JP2021/001266
Other languages
English (en)
French (fr)
Inventor
直気 水田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020172764A external-priority patent/JP7464495B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP21768018.0A priority Critical patent/EP4116003A4/en
Priority to CA3169085A priority patent/CA3169085C/en
Priority to MX2022011132A priority patent/MX2022011132A/es
Priority to KR1020227033512A priority patent/KR20220145896A/ko
Priority to US17/905,221 priority patent/US20230138493A1/en
Priority to CN202180019095.XA priority patent/CN115279927A/zh
Priority to BR112022016203A priority patent/BR112022016203A2/pt
Publication of WO2021181866A1 publication Critical patent/WO2021181866A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present disclosure relates to a method for manufacturing a steel part having a locally softened portion.
  • Patent Document 1 discloses a method of covering a portion to be softened when a steel sheet is heated to an austenite single-phase temperature range. As a result, the portion covered with the heat shield is less than the austenite single-phase temperature range even during heating, and the martensitic transformation of the portion after quenching is suppressed, and the portion is compared with the portion not covered with the heat shield. Softens.
  • Patent Document 2 discloses a method of providing a portion where the contact between the steel sheet and the mold is poor when the steel plate is brought into contact with the mold from the austenite single-phase temperature range and rapidly cooled. As a result, a soft structure (ferrite and / or pearlite) is precipitated in the portion, and the portion is softened.
  • Patent Documents 1 and 2 it is not possible to soften only the portion to be softened due to the influence of heat transfer or the like in the steel sheet.
  • Patent Document 1 only the portion covered with the heat shield cover should be softened to be less than the austenite single-phase temperature range, but at the end of the portion covered with the heat shield cover, from the adjacent portion not covered with the heat shield cover. Since heat is transferred, as a result, it cannot be sufficiently softened at the end of the portion covered with the heat shield cover.
  • Patent Document 2 only the portion having poor contact with the mold should be softened without quenching, but heat is transferred from the portion to the adjacent portion having good contact with the mold, resulting in the mold and the mold. A softening effect can also be exerted on the adjacent portion of the. Therefore, it is difficult to locally soften only the portion to be softened by the method of softening by local temperature control as in Patent Documents 1 and 2.
  • the embodiment of the present invention has been made in view of such a situation, and one of the objects thereof is to produce a locally softened high-strength steel part without local temperature control. To provide a method.
  • Aspect 1 of the present invention is C: 0.05 to 0.40% by mass, Si: 0 to 2.0% by mass, Mn: 1.0 to 3.0% by mass, Al: 0.010 to 1.0% by mass, P: More than 0% by mass and less than 0.100% by mass, S: More than 0% by mass and 0.010% by mass or less, N: More than 0% by mass and 0.010% by mass or less, B: 0.0005 to 0.010% by mass, and the balance: a step of preparing a steel sheet having a chemical composition consisting of iron and unavoidable impurities, and A step of heating the steel sheet to a temperature of 1 point (° C.) or more and 3 points (° C.) of Ac and less than 10 ° C.
  • a machining step of adding 0.5% or more of strain at a machining temperature of 675 ° C. or higher and Ac 3 points (° C.) + 10 ° C. or lower After the processing step, a step of holding at the processing temperature for 1 second or more and 120 seconds or less, or a step of slowly cooling for 1 second or more and 120 seconds or less at an average cooling rate of more than 0 ° C./sec and 15 ° C./sec or less. After the step of holding or slowly cooling, the step of cooling to the Ms point (° C.) -50 ° C. is included. This is a method for manufacturing steel parts, in which the average cooling rate from the temperature of the heating step to the Ms point (° C.) -50 ° C. is controlled to 10 ° C./sec or more.
  • Aspect 2 of the present invention C: 0.05 to 0.40% by mass, Si: 0 to 2.0% by mass, Mn: 1.0 to 3.0% by mass, Al: 0.010 to 1.0% by mass, P: More than 0% by mass and less than 0.100% by mass, S: More than 0% by mass and 0.010% by mass or less, N: More than 0% by mass and 0.010% by mass or less, B: 0.0005 to 0.010% by mass, and the balance: a step of preparing a steel sheet having a chemical composition consisting of iron and unavoidable impurities, and A step of heating the steel sheet to a temperature of Acc 3 points (° C.) + 10 ° C. or higher and 1100 ° C.
  • the step of cooling to the Ms point (° C.) -50 ° C. is included. This is a method for manufacturing steel parts, in which the average cooling rate from the temperature in the heating step to the Ms point (° C.) -50 ° C. is controlled to 10 ° C./sec or more.
  • the steel plate is The production method according to Aspect 1 or 2, further comprising one or more selected from the group consisting of Cu: more than 0% by mass and 0.50% by mass or less, and Ni: more than 0% by mass and 0.50% by mass or less. ..
  • the steel plate is Ti: More than 0% by mass and less than 0.10% by mass, Described in any one of aspects 1 to 3, further containing one or more selected from the group consisting of Cr: more than 0% by mass and 3.0% by mass or less, and Nb: more than 0% by mass and 0.10% by mass or less. It is a manufacturing method of.
  • Aspect 5 of the present invention is the manufacturing method according to any one of aspects 1 to 4, which comprises applying the strain by overhang molding.
  • Aspect 6 of the present invention is the manufacturing method according to any one of aspects 1 to 4, which comprises applying the strain by forging.
  • Aspect 7 of the present invention is the manufacturing method according to any one of aspects 1 to 4, which comprises applying the strain by bending back at the time of draw molding.
  • Aspect 8 of the present invention is the manufacturing method according to any one of aspects 1 to 4, which comprises applying the strain by shearing.
  • Aspect 9 of the present invention is the manufacturing method according to any one of aspects 1 to 8, which comprises applying the strain by a plurality of times of processing.
  • Aspect 10 of the present invention is the manufacturing method according to aspect 9, wherein the plurality of times of processing includes a process of adding a deformation and a process of performing the process so as to return the deformation.
  • FIG. 1 is a graph showing the relationship between temperature and displacement when a steel sheet is heated from a low temperature in a four-master test.
  • FIG. 2 is a graph showing the relationship between temperature and displacement when the steel sheet is cooled from a high temperature in the Formaster test in addition to the relationship shown in FIG.
  • FIG. 3 is a schematic view showing a sampling position of an evaluation sample of an example.
  • FIG. 4 is a schematic cross-sectional view taken along line XX shown in FIG.
  • the inventors of the present application examined from various angles in order to realize a method for manufacturing locally softened high-strength steel parts without local temperature control.
  • a steel plate having a predetermined chemical composition is heated to a state in which austenite is relatively unstable, such as a two-phase region of austenite and ferrite, and a slight strain is applied to the portion to be softened, thereby only the portion to be softened.
  • austenite relatively unstable, such as a two-phase region of austenite and ferrite
  • a slight strain is applied to the portion to be softened, thereby only the portion to be softened.
  • Embodiment 2 of the present invention nucleation of soft tissue can be promoted only in the portion to be softened.
  • the “steel part” refers to a steel plate processed into a predetermined shape by the processing steps of the first and second embodiments of the present invention.
  • the production method according to the first embodiment of the present invention is (A) The process of preparing the steel plate and (B) After the step (a), the step of heating and (C) After the step (b), the step of processing and (D) After the step (c), the step of holding or slowly cooling, and (E) After the step (d), the step of cooling and including.
  • the chemical composition of the steel plate according to the first embodiment of the present invention is C: 0.05 to 0.40% by mass, Si: 0 to 2.0% by mass, Mn: 1.0 to 3.0% by mass, Al: 0.010 to 1.0% by mass, P: more than 0% by mass and 0.100% by mass or less, S: more than 0% by mass and 0.010% by mass or less, N: more than 0% by mass It consists of 0.010% by mass or less, B: 0.0005 to 0.010% by mass, and the balance: iron and unavoidable impurities.
  • each element will be described in detail.
  • the C content determines the strength of the steel part.
  • the C content is 0.05% by mass or more, preferably 0.10% by mass or more, and more preferably 0.20% by mass or more.
  • the C content is 0.40% by mass or less, preferably 0.38% by mass or less, and more preferably 0.36% by mass or less.
  • Si is an element optionally contained in the steel sheet. Si contributes to the hardness stability of the steel sheet by increasing the temper softening resistance. Therefore, it is preferable that Si is contained in the steel sheet in an amount of more than 0% by mass.
  • Si facilitates the formation of retained austenite ( ⁇ ) and promotes a decrease in yield strength (YS) and segregation of Mn. Therefore, the Si content is 2.0% by mass or less, preferably 1.8% by mass or less.
  • Mn 1.0 to 3.0% by mass
  • Mn contributes to increasing the strength of steel parts by enhancing the hardenability of the steel sheet.
  • the Mn content is 1.0% by mass or more, preferably 1.2% by mass or more, and more preferably 1.4% by mass or more.
  • the Mn content is 3.0% by mass or less, preferably 2.8% by mass or less, and more preferably 2.6% by mass or less.
  • Al 0.010 to 1.0% by mass
  • Al is an element that acts as an antacid.
  • the amount of Al is 0.010% by mass or more.
  • the amount of Al is preferably 0.020% by mass or more, more preferably 0.025% by mass or more.
  • the amount of Al is set to 1.0% by mass or less.
  • the amount of Al is preferably 0.80% by mass or less, and more preferably 0.70% by mass or less.
  • P More than 0% by mass and less than 0.100% by mass
  • P is an element that is inevitably contained and deteriorates the weldability of the steel sheet, but is also an element that has an effect of contributing to the solid solution strengthening of the ferrite phase.
  • the amount of P is set to 0.100% by mass or less.
  • the amount of P is preferably 0.050% by mass or less, and more preferably 0.020% by mass or less.
  • P is an impurity that is inevitably mixed in steel, and it is impossible for industrial production to reduce the amount to 0% by mass, and usually exceeds 0% by mass, and further 0.00050% by mass or more. Can be contained in.
  • S is an element that is inevitably contained and deteriorates the weldability of the steel sheet. Therefore, the amount of S is set to 0.010% by mass or less.
  • the amount of S is preferably 0.0080% by mass or less, and more preferably 0.0050% by mass or less. Since the amount of S should be as small as possible, the lower limit is not particularly limited, but it is impossible for industrial production to set the amount to 0% by mass, and usually exceeds 0% by mass, further 0.00010% by mass or more. Can be contained in.
  • N More than 0% by mass and 0.010% by mass or less
  • N is an element that is inevitably contained, and when it is contained in an excessive amount, AlN is generated and the deoxidizing effect of Al is reduced. Therefore, the amount of N is set to 0.010% by mass or less.
  • the amount of N is preferably 0.0080% by mass or less, and more preferably 0.0050% by mass or less. Since the amount of N should be as small as possible, the lower limit is not particularly limited, but it is impossible for industrial production to set the amount to 0% by mass, and usually exceeds 0% by mass, further 0.00010% by mass or more. Can be contained in.
  • B (B: 0.0005 to 0.010% by mass) B contributes to increasing the strength of steel parts by enhancing the hardenability of the steel sheet.
  • the B content is 0.0005% by mass or more, preferably 0.0010% by mass or more, and more preferably 0.0015% by mass or more.
  • the B content is 0.010% by mass or less, preferably 0.0080% by mass or less, and more preferably 0.0060% by mass or less.
  • the balance is iron and unavoidable impurities.
  • Inevitable impurities are elements that are brought in depending on the conditions of raw materials, materials, manufacturing equipment, and the like. It should be noted that, for example, there are elements such as P, S and N, which are usually preferable as the content is smaller, and therefore are unavoidable impurities, but the composition range thereof is separately specified as described above. Therefore, in the present specification, the term "unavoidable impurities" constituting the balance is a concept excluding elements whose composition range is separately defined.
  • the steel sheet according to the first embodiment of the present invention may selectively contain the following optional elements as necessary, and the characteristics of the steel parts are further improved according to the contained components.
  • Cu 1 or more selected from the group consisting of more than 0% by mass and 0.50% by mass or less, and Ni: more than 0% by mass and 0.50% by mass or less
  • Cu also has the effect of promoting the formation of iron oxide: ⁇ -FeOOH, which is said to be thermodynamically stable and protective even in the rust generated in the atmosphere.
  • the Cu content is preferably more than 0% by mass, more preferably 0.05% by mass or more, and further preferably 0.10% by mass or more.
  • the Cu content is preferably 0.50% by mass or less.
  • Ni has the same effect as Cu. Therefore, the Ni content is preferably more than 0% by mass, more preferably 0.05% by mass or more, and further preferably 0.10% by mass or more. On the other hand, the Ni content is preferably 0.50% by mass or less.
  • Ti 1 or more selected from the group consisting of more than 0% by mass and 0.10% by mass or less, Cr: more than 0% by mass and 3.0% by mass or less, and Nb: more than 0% by mass and 0.10% by mass or less
  • Ti reduces the amount of BN produced in the steel sheet by producing TiN.
  • the Ti content is preferably more than 0% by mass, more preferably 0.0050% by mass or more, still more preferably 0.0250% by mass or more and 0.050% by mass. That is all.
  • the Ti content is preferably 0.10% by mass or less, more preferably 0.080% by mass or less, and further preferably 0.070% by mass or less.
  • the Cr content is preferably more than 0% by mass.
  • the Cr content is preferably 3.0% by mass or less, more preferably 2.5% by mass or less. Yes, more preferably 2.0% by mass or less.
  • the Nb content is preferably more than 0% by mass, more preferably 0.0050% by mass or more.
  • Nb is contained in an amount of 0.10% by mass or less. It is preferably 0.070% by mass or less, and more preferably 0.050% by mass or less.
  • the steel sheet is heated to Ac 1 point (° C.) or more and Ac 3 points (° C.) + 10 ° C. If it is less than one point of Ac, austenite transformation does not occur, and it becomes difficult to obtain a high-strength steel part after the step (e) cooling described later. On the other hand, when the temperature is set to less than 3 points of Ac + 10 ° C., nucleation of ferrite and / or pearlite, which are soft structures, can be easily promoted in the step (c) processing described later.
  • FIG. 1 is a graph showing the relationship between temperature and displacement when a steel sheet is heated from a low temperature in a four-master test.
  • the steel In the low temperature region, the steel can expand linearly with an increase in temperature at an expansion coefficient corresponding to the crystal structure (bcc) of ferrite. Further increases in temperature may produce austenite with a denser crystal structure (fcc) and begin to shrink.
  • the temperature at which the temperature begins to deviate from the straight line can be set as the Ac1 point.
  • the temperature at which the temperature begins to deviate from the straight line can be set to the Ac3 point.
  • (C) Processing step After the above-mentioned (b) heating step, processing is performed in which a strain of 0.5% or more is applied at a temperature of 675 ° C. or higher and Ac 3 points + 10 ° C. or lower. At the above temperatures, a large number of grain boundaries, which are nucleation sites of ferrite and / or pearlite, which are soft structures, may be present in the steel sheet. By applying a slight strain (that is, 0.5% or more) in such an unstable state, nucleation of ferrite and / or pearlite, which is a soft structure, is remarkably promoted in the strained portion. can do. More preferably, a strain of 5.0% or more is applied, and even more preferably, a strain of 9.0% or more is applied.
  • ... (1) d 0 is the plate thickness of the steel plate before processing or the plate thickness of the unprocessed portion of the steel plate after processing, and d 1 is the plate thickness of the processed portion of the steel plate after processing. In each case, the unit is mm.
  • the strain may be, for example, the equivalent plastic strain obtained by FEM analysis. That is, if the equivalent plastic strain obtained by FEM analysis is 0.5% or more, it can be softened in the same manner.
  • FIG. 2 is a graph showing the relationship between temperature and displacement when the steel sheet is cooled at a relatively high cooling rate after the heating, in addition to the temperature-displacement relationship during heating described in FIG.
  • steel can shrink linearly with a temperature drop at a shrinkage rate according to the crystal structure of austenite. When the temperature is further lowered, it can transform into martensite and begin to expand. The temperature at which the temperature begins to deviate from the straight line can be set as the Ms point.
  • the heating temperature in the step (b) heating is set to Ac 1 point (° C.) or more and Ac 3 points (° C.) + 10 ° C., and the processing temperature is set to less than 675 ° C., the transformation into a soft structure becomes active. The softening of the non-processed portion is also remarkable, and it becomes difficult to manufacture the locally softened steel part only in the processed portion.
  • the heating temperature of the above (b) heating step is set to Ac 1 point (° C.) or higher and Ac 3 points (° C.) + 10 ° C.
  • the processing temperature is set to Ac 3 points + 10 ° C. or higher, crystals that are nucleation sites of soft tissue. Grain boundaries are reduced, and even a slight strain cannot promote nucleation of soft tissue.
  • the processing temperature may be the same as or different from the heating temperature of the step (b) heating. If different, an additional heating and / or cooling step may be included between the steps (b) and (c) above. Further, a step of holding the temperature at a constant temperature may be included after the step (b) and before the step (c).
  • the above processing may be any processing, but for example, press processing, overhang forming, forging, bending back at the time of draw forming, shearing, etc. are preferably used.
  • step (D) Step of holding or slowly cooling After the step of (c) processing described above, holding or slowly cooling is performed at an average cooling rate of 0 to 15 ° C./sec for 1 second or more and 120 seconds or less. That is, it is held at the above processing temperature for 1 second or more and 120 seconds or less, or slowly cooled for 1 second or more and 120 seconds or less at an average cooling rate of more than 0 ° C./sec and 15 ° C./sec or less.
  • ferrite and / or pearlite which are soft structures nucleated in the step (c) of the above, can be grown.
  • the holding time or slow cooling time is preferably more than 1 second, more preferably 3 seconds or more, and further preferably 6 seconds or more.
  • the holding or slow cooling time exceeds 120 seconds, ferrite and / or pearlite, which are soft structures, precipitate and grow even in the unprocessed portion, and high-strength steel parts cannot be obtained. It is preferably 12 seconds or less.
  • Cooling step After the above-mentioned (d) holding or slow cooling step, cooling is performed to the Ms point (° C.) -50 ° C. At this time, the average cooling rate from the heating temperature of the step (b) heating (that is, Ac1 point (° C.) or more and Ac3 point (° C.) + 10 ° C. or less) to Ms point (° C.) -50 ° C. is 10 ° C./. Control over seconds. As a result, martensitic transformation can occur at least in the unprocessed portion, and the strength of the unprocessed portion can be sufficiently ensured.
  • the cooling rate from the Ms point (° C.) -50 ° C. to room temperature is not particularly limited.
  • the production method according to the second embodiment of the present invention is different from the production method according to the first embodiment of the present invention in terms of (b) heating step and (c) processing step.
  • steps different from the first embodiment of the present invention will be described below as (b') heating steps and (c') processing steps.
  • the steel sheet is heated to Ac 3 points (° C.) + 10 ° C. or higher and 1100 ° C. or lower.
  • the heating is performed at Ac 3 points + 10 ° C. or higher in the heating step, if a relatively large strain is applied in the step of processing (c') described later, the same as the first embodiment of the present invention.
  • nucleation of the soft structures ferrite and / or pearlite can be significantly promoted.
  • the temperature exceeds 1100 ° C., decarburization of the steel surface becomes remarkable and the target strength cannot be secured.
  • (C') Processing step After the above (b') heating step, processing is performed in which strain is applied by 10% or more at a temperature of Ms point (° C.) + 50 ° C. or higher and Ac 3 point (° C.) + 10 ° C. or lower.
  • Ms point (° C.) + 50 ° C. or higher and Ac 3 point (° C.) + 10 ° C. austenite becomes relatively unstable. Therefore, the strain was applied by applying a relatively large strain (10% or more). Nucleation of the soft structures ferrite and / or pearlite can be significantly promoted in the portions. More preferably, a strain of 15% or more is applied, and even more preferably, a strain of 40% or more is applied.
  • the strain can be calculated by the above equation (1). Further, the strain may be, for example, an equivalent plastic strain obtained by FEM analysis. That is, if the equivalent plastic strain obtained by FEM analysis is 10% or more, it can be softened in the same manner.
  • austenite becomes a relatively stable state, and even if a relatively large strain is applied, it becomes difficult to promote nucleation of ferrite and / or pearlite, which are soft tissues.
  • Ms point (° C.) + 50 ° C. martensitic transformation may occur, and it becomes difficult to promote nucleation of ferrite and / or pearlite, which are soft tissues.
  • the processing of the above (c') processing step may be any processing, but for example, press processing, overhang forming, forging, bending back at the time of draw forming, shearing, etc. are preferably used.
  • the strains in the processing steps (c) and (c') described above may be applied by a plurality of processings.
  • the strain due to the multiple times of processing can be calculated by the following formula (2).
  • d n is the thickness of the processed portion of the steel sheet after the nth processing, and the unit is mm.
  • the strain of the above formula (2) may be, for example, the sum of the equivalent plastic strains obtained by FEM analysis after each processing.
  • processing steps (c) and (c') are single steps, it is difficult to apply a predetermined strain (0.5% or more in the first embodiment and 10% or more in the second embodiment). In some cases. In such a case, it is advantageous to carry out the steps (c) and (c') above by a plurality of times to accumulate the strain, so that the strain can be easily increased to a predetermined value or more.
  • the transport time from the steps (c) and (c') to the cooling step (e) is less than 1 second.
  • D It may be difficult to secure the time (1 second or more) for the step of holding or slowly cooling.
  • the transfer time between the plurality of processing steps is allocated to the time for holding or slowly cooling the above steps (d). It is advantageous because it can be done.
  • the above-mentioned multiple times of processing may include a processing of adding deformation and a processing of returning the deformation. This makes it possible to apply the above strain to the initial steel plate shape without changing the final steel part shape.
  • the above-mentioned (d) holding or slow cooling step may be performed after each process.
  • a step of performing the first process, then performing the first holding or slow cooling step, and then performing the second process, and then performing the second holding or slow cooling step. May be done.
  • the total of the time of the first holding or slow cooling step and the time of the second holding or slow cooling step is the time specified in step (d) of Embodiments 1 and 2 of the present invention, that is, It may be 1 second or more and 120 seconds or less.
  • the temperatures of the steps (a) to (e), (b') and (c') above are the surface temperatures of the steel plate (or steel parts), and may be measured using a thermocouple or a radiation thermometer.
  • the correspondence between the ambient temperature of the heating line, etc. and the surface temperature of the steel sheet (or steel part) measured by thermoelectric pair, etc. is investigated in advance, and the ambient temperature of the heating line, etc. is used to determine the correspondence between the steel sheet (or steel part).
  • the surface temperature may be read.
  • a method for producing a high-strength steel part in which only a portion to which a predetermined strain or more is strained by processing is locally softened without local temperature control. It is possible to do.
  • the mixture was slowly cooled for 6 seconds at an average cooling rate of 10.8 ° C./sec. Then, it was water-cooled to the Ms point (° C.) -50 ° C. (that is, 335 ° C.) so that the average cooling rate from 880 ° C. to 335 ° C. was 39.5 ° C./sec. Then it was allowed to cool to room temperature.
  • the above is referred to as Production Example 1-2.
  • the Ac1 point, Ac3 point, and Ms point were obtained by the Formaster test. The four master test was conducted under the following conditions.
  • Formaster testing machine FTM-10 manufactured by Fuji Denpa Koki Specimen size: Plate thickness 2.0 mm x width 3.0 mm x length 10 mm (However, there are two holes of ⁇ 0.7 mm x depth 2.0 mm for inserting a thermocouple) Number of tests: 7 times (only the cooling rate is changed, the others are under certain conditions) Heating rate: 10 ° C / s (room temperature to heating temperature) Heating temperature: 950 ° C Holding time at heating temperature: 180 seconds Cooling rate: 2, 5, 10, 15, 20, 30, and 40 ° C./s (heating temperature to room temperature) Further, in Table 1, the steel type No. Since the Cu content of A was at the level of unavoidable impurities (less than 0.01% by mass), it was described as "-".
  • the plate thickness of the overhanging molded portion A is the central portion of the steel part, a position 3.75 mm vertically away from the central portion (referred to as an intermediate portion), and a position 7.5 mm vertically away from the central portion (hem portion). ), Each of which was obtained. Then, using the above equation (1), the central portion of the steel part, the intermediate part and the thickness of the skirt portion and the plate thickness d 1 of the working portion, the thickness of the steel sheet before working the thickness of the non-working part B As d 0 , the strains at the center, middle and hem of the steel part were determined.
  • the Vickers hardness was measured at three points (center part, middle part and hem part) of the overhanging molded part A and at the unprocessed part B.
  • the measurement was carried out using a Vickers hardness tester under the conditions of a load of 1 kg and a holding time of 10 seconds.
  • As for the measurement position when the plate thickness was d, three points of d / 4 from the surface of the steel part were measured in the plate thickness direction.
  • FIG. 4 is a schematic cross-sectional view taken along line XX shown in FIG. 3, showing the hardness measurement position of the overhang molding portion A.
  • the hardness measurement position of the non-processed portion B is not shown, three points of d / 4 from the surface of the steel part in the vertical and horizontal directions and the plate thickness direction of the non-processed portion B were measured.
  • the average Vickers hardness values of the three points (center part, middle part and hem part) of the overhanging molded part A and the three points of the non-processed part B were adopted as the respective Vickers hardness.
  • the temperature (° C.) (referred to as molding temperature), the overhang height (mm), the cooling rate during slow cooling (° C / sec), the slow cooling time (seconds), and the slow cooling time (seconds) from Production Example 1-2.
  • Steel parts were manufactured by changing the average cooling rate (° C./sec) from the heating temperature to the Ms point ⁇ 50 ° C. (referred to as Production Examples 1-1 and 1-3 to 1-8). Then, the strain and Vickers hardness of each steel part were evaluated in the same manner as in the steel parts obtained in Production Example 1-2. The results are shown in Table 2. In Table 2, the underlined values indicate that the values are outside the scope of the first embodiment of the present invention.
  • At least one of the central portion, the middle portion and the hem portion has a Vickers hardness of 20 HV or more lower than that of the non-processed portion, and the hardness of the non-processed portion is reduced. It was judged that the product having a value of 310 HV or more was a production example satisfying the standard as "locally softened high-strength steel parts". In a more preferable production example of the "locally softened" steel part, at least one of the central portion, the intermediate portion and the hem portion has a Vickers hardness of 40 HV or more lower than that of the unprocessed portion. A more preferable production example is one in which the Vickers hardness is reduced by 100 HV or more.
  • a more preferable production example has a Vickers hardness of a non-processed portion of 400 HV or more, and a more preferable production example has a Vickers hardness of 500 HV or more. The same judgment is made in Examples 2 and 3 described later.
  • Production Examples 1-1 to 1-4 in Table 2 are examples that satisfy all the requirements specified in the first embodiment of the present invention, and are more than a predetermined value by processing without local temperature control. It was possible to produce a high-strength steel part in which only the portion to which strain (0.5% or more in the first embodiment of the present invention) was applied was locally softened.
  • Production Examples 1-5 to 1-8 in Table 2 are examples in which the requirements specified in the first embodiment of the present invention are not satisfied, and strains equal to or more than a predetermined value due to processing (in the first embodiment of the present invention, 0. It was not possible to produce locally softened high-strength steel parts in the portion to which 5% or more) was added.
  • the forming temperature was 650 ° C. or 550 ° C., which was less than 675 ° C., so that the entire steel part including the non-processed portion was softened, and the locally softened high strength.
  • the steel parts could not be manufactured.
  • a second overhang molding was performed.
  • the second overhang molding was performed by pressing a ⁇ 10 mm hemispherical punch from the direction opposite to the first overhang molding (that is, from the surface) against the portion where the first overhang molding was performed. ..
  • the mixture was slowly cooled for 6 seconds at an average cooling rate of 6.7 ° C./sec.
  • water cooling was performed to the Ms point (° C.) -50 ° C. (that is, 335 ° C.) so that the average cooling rate from 880 ° C. to 335 ° C. was 26.2 ° C./sec. Then it was allowed to cool to room temperature.
  • the above is referred to as Production Example 2-1.
  • the strain and Vickers hardness of the steel parts obtained in Production Example 2-1 were evaluated in the same manner as in Example 1.
  • the strain was calculated using the above equation (2). Since the first overhang molding is performed in the same manner as in Production Example 1-2, it is assumed that the plate thickness after the first overhang molding is the same as that in Production Example 1-2, and the strain is strained. Is being calculated. The results are shown in Table 3. Since the second overhang molding was performed in the opposite direction to the first overhang molding, the second overhang height was set to a negative value.
  • Production Example 2-1 in Table 3 is an example that satisfies all of the requirements specified in the first embodiment of the present invention, and is a strain of a predetermined value or more due to processing without local temperature control (implementation of the present invention).
  • Reference numeral 3-33 is an example in which the requirements specified in the second embodiment of the present invention are not satisfied, and locally in a portion where a strain of a predetermined value or more (10% or more in the second embodiment of the present invention) is applied by processing. It was not possible to produce softened high-strength steel parts.
  • Production Examples 3-1 to 3-3, 3-8, 3-10, 3-13 and 3-19 in Table 4 and Production Examples 3-33 in Table 5 are all in the central portion, the middle portion and the hem portion. Since the strain was less than 10%, it was not possible to produce locally softened high-strength steel parts.
  • Production Examples 3-12 and 3-17 in Table 4 and Production Examples 3-28 and 3-29 in Table 5 have a slow cooling rate of more than 15 ° C./sec (that is, slow cooling) in the step of (d) holding or slow cooling. Since the time was less than 1 second), it was not possible to produce locally softened high-strength steel parts.
  • the strain applied by processing is 8% in the central portion, which does not satisfy the strain of 10% or more specified in the second embodiment of the present invention, but is referred to as the non-processed portion.
  • the difference in hardness was 20 HV or more. This is the part No. It is possible that manufacturing conditions other than strain (heating temperature, cooling rate, slow cooling time, etc.) were preferable conditions in the central portion of 3-18, but the details are unknown.
  • a second overhang molding was performed.
  • the second overhang molding was performed by pressing a ⁇ 10 mm hemispherical punch from the direction opposite to the first overhang molding (that is, from the surface) against the portion where the first overhang molding was performed. ..
  • the mixture was slowly cooled for 6 seconds at an average cooling rate of 5.3 ° C./sec.
  • water cooling was performed to the Ms point (° C.) -50 ° C. (that is, 335 ° C.) so that the average cooling rate from 950 ° C. to 335 ° C. was 16.6 ° C./sec. Then it was allowed to cool to room temperature.
  • the above is referred to as Production Example 4-1.
  • the strain and Vickers hardness of the steel parts obtained in Production Example 4-1 were evaluated in the same manner as in Example 1.
  • the strain was calculated using the above equation (2).
  • the plate thickness of the central portion was 1.39 mm
  • the plate thickness of the intermediate portion was 1.22 mm
  • the plate thickness of the hem portion was 1.58 mm. Since it was confirmed separately, the strain is calculated by using these plate thicknesses as the plate thickness after the first overhang molding in Production Example 4-1.
  • the results are shown in Table 6. Since the second overhang molding was performed in the opposite direction to the first overhang molding, the second overhang height was set to a negative value.
  • Production Example 4-1 in Table 6 is an example that satisfies all of the requirements specified in the second embodiment of the present invention, and is a strain equal to or more than a predetermined value due to processing without local temperature control (implementation of the present invention).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

C:0.05~0.40質量%、Si:0~2.0質量%、Mn:1.0~3.0質量%、Al:0.010~1.0質量%、P:0質量%超0.100質量%以下、S:0質量%超0.010質量%以下、N:0質量%超0.010質量%以下、B:0.0005~0.010質量%、および残部:鉄および不可避不純物からなる化学組成の鋼板を用意する工程と、前記鋼板をAc1点(℃)以上Ac3点(℃)+10℃未満の温度に加熱する工程と、前記加熱する工程後、675℃以上Ac3点+10℃未満の温度でひずみを0.5%以上加える加工工程と、前記加工工程後、0~15℃/秒の平均冷却速度で1秒以上120秒以下で保持または徐冷する工程と、前記保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する工程とを含み、前記加熱する工程の前記温度から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する、鋼部品の製造方法。

Description

局所的に軟化された部分を有する鋼部品の製造方法
 本開示は、局所的に軟化された部分を有する鋼部品の製造方法に関する。
 近年、自動車衝突時の乗員保護のために、自動車骨格部品全体としては高強度に保ちつつ、衝突時には特定部分を優先的に変形させる技術が必要とされている。そのため、当該技術に利用される、特定部分が局所的に軟化された高強度鋼部品および/またはその製造方法が求められている。
 特許文献1には、鋼板をオーステナイト単相温度域に加熱する際に、軟化させたい部分に遮熱カバーをかける方法が開示されている。これにより、遮熱カバーをかけた部分が加熱時においてもオーステナイト単相温度域未満となり、当該部分の急冷後のマルテンサイト変態が抑制され、当該部分が遮熱カバーをかけていない部分と比較して軟化する。
 特許文献2には、オーステナイト単相温度域から鋼板を金型と接触させて急冷する際に、鋼板と金型との接触が悪い部分を設ける方法が開示されている。これにより、当該部分に軟質組織(フェライトおよび/またはパーライト)が析出して、当該部分が軟化する。
特開第2017-78189号公報 特開第2011-179028号公報
 特許文献1および2では、鋼板中の熱伝達等の影響により、軟化させたい部分のみを軟化させることができない。例えば、特許文献1では遮熱カバーをかけた部分のみをオーステナイト単相温度域未満として軟化させるべきところ、遮熱カバーをかけた部分の端部においては、遮熱カバーをかけていない隣接部分から熱が伝達するため、結果として遮熱カバーをかけた部分の端部において十分に軟化させることができない。特許文献2では、金型との接触を悪くさせた部分のみを急冷させずに軟化させるべきところ、当該部分から金型との接触が良い隣接部分に熱が伝達するため、結果として金型との当該隣接部分にも軟化効果が及び得る。よって、特許文献1および2のように、局所的な温度制御により軟化させる方法では、軟化させたい部分のみを局所的に軟化させることは難しい。
 本発明の実施形態は、このような状況に鑑みてなされたものであり、その目的の1つは、局所的な温度制御をすることなく、局所的に軟化された高強度鋼部品を製造する方法を提供することである。
 本発明の態様1は、
 C :0.05~0.40質量%、
 Si:0~2.0質量%、
 Mn:1.0~3.0質量%、
 Al:0.010~1.0質量%、
 P:0質量%超0.100質量%以下、
 S:0質量%超0.010質量%以下、
 N:0質量%超0.010質量%以下、
 B :0.0005~0.010質量%、および
 残部:鉄および不可避不純物
 からなる化学組成の鋼板を用意する工程と、
 前記鋼板をAc1点(℃)以上Ac3点(℃)+10℃未満の温度に加熱する工程と、
 前記加熱する工程後、675℃以上Ac3点(℃)+10℃未満の加工温度で、ひずみを0.5%以上加える加工工程と、
 前記加工工程後、前記加工温度で1秒以上120秒以下保持するか、または0℃/秒超15℃/秒以下の平均冷却速度で1秒以上120秒以下徐冷する工程と、
 前記保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する工程と、を含み、
 前記加熱する工程の前記温度から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する、鋼部品の製造方法である。
 本発明の態様2は、
 C :0.05~0.40質量%、
 Si:0~2.0質量%、
 Mn:1.0~3.0質量%、
 Al:0.010~1.0質量%、
 P:0質量%超0.100質量%以下、
 S:0質量%超0.010質量%以下、
 N:0質量%超0.010質量%以下、
 B :0.0005~0.010質量%、および
 残部:鉄および不可避不純物
 からなる化学組成の鋼板を用意する工程と、
 前記鋼板をAc3点(℃)+10℃以上1100℃以下の温度に加熱する工程と、
 前記加熱する工程後、Ms点(℃)+50℃以上Ac3点(℃)+10℃未満の加工温度でひずみを10%以上加える加工工程と、
 前記加工工程後、前記加工温度で1秒以上120秒以下保持するか、または0℃/秒超15℃/秒以下の平均冷却速度で1秒以上120秒以下徐冷する工程と、
 前記保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する工程と、を含み、
 前記加熱する工程における前記温度から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する、鋼部品の製造方法である。
 本発明の態様3は、前記鋼板が、
 Cu:0質量%超0.50質量%以下、および
 Ni:0質量%超0.50質量%以下
 よりなる群から選択される一種以上を更に含有する態様1または2に記載の製造方法である。
 本発明の態様4は、前記鋼板が、
 Ti:0質量%超0.10質量%以下、
 Cr:0質量%超3.0質量%以下、および
 Nb:0質量%超0.10質量%以下
 よりなる群から選択される一種以上を更に含有する態様1~3のいずれか1つに記載の製造方法である。
 本発明の態様5は、張り出し成形により前記ひずみを加えることを含む、態様1~4のいずれか1つに記載の製造方法である。
 本発明の態様6は、鍛造により前記ひずみを加えることを含む、態様1~4のいずれか1つに記載の製造方法である。
 本発明の態様7は、ドロー成形時の曲げ戻しにより前記ひずみを加えることを含む、態様1~4のいずれか1つに記載の製造方法である。
 本発明の態様8は、せん断加工により前記ひずみを加えることを含む、態様1~4のいずれか1つに記載の製造方法である。
 本発明の態様9は、複数回の加工により前記ひずみを加えることを含む、態様1~8のいずれか1つに記載の製造方法である。
 本発明の態様10は、前記複数回の加工が、変形を加える加工と、前記変形を戻すように行う加工とを含む態様9に記載の製造方法である。
 本発明の実施形態によれば、局所的な温度制御をすることなく、局所的に軟化された高強度鋼部品を製造する方法を提供することが可能である。
図1は、フォーマスタ試験で鋼板を低温から加熱した際の、温度と変位の関係を示すグラフである。 図2は、図1の関係に加え、フォーマスタ試験で鋼板を高温から冷却した際の、温度と変位の関係を示すグラフである。 図3は、実施例の評価用サンプルの採取位置を示す模式図である。 図4は、図3に示すX-X線断面模式図である。
 本願発明者らは、局所的な温度制御をすることなく、局所的に軟化された高強度鋼部品の製造方法を実現するべく、様々な角度から検討した。
 その結果、所定の化学組成の鋼板を、オーステナイトとフェライトの二相領域などのオーステナイトが比較的不安定な状態に加熱し、軟化させたい部分に若干のひずみを加えることで、軟化させたい部分のみに軟質組織(フェライトおよび/またはパーライト)の核生成を促進し、一定時間保持又は徐冷させることで、当該部分から軟質組織を成長させる製造方法を見出した(以下、本発明の実施形態1と称する)。
 また、上記加熱において、オーステナイト単相領域などのオーステナイトが比較的安定な状態に加熱した場合においても、軟化させたい部分に比較的大きなひずみを加えることによって、本発明の実施形態1と同様に、軟化させたい部分のみに軟質組織の核生成を促進することができることも同時に見出した(以下、本発明の実施形態2と称する)。
 以下に、本発明の実施形態1および2が規定する各要件の詳細を示す。
 なお、本明細書において、「鋼部品」とは、本発明の実施形態1および2の加工する工程により所定形状に加工された鋼板のことをいう。
<本発明の実施形態1>
 本発明の実施形態1に係る製造方法は、
(a)鋼板を用意する工程と、
(b)工程(a)の後、加熱する工程と、
(c)工程(b)の後、加工する工程と、
(d)工程(c)の後、保持または徐冷する工程と、
(e)工程(d)の後、冷却する工程と、
 を含む。
 以下、各工程について説明する。
(a)鋼板を用意する工程
 本発明の実施形態1に係る鋼板の化学組成は、C:0.05~0.40質量%、Si:0~2.0質量%、Mn:1.0~3.0質量%、Al:0.010~1.0質量%、P:0質量%超0.100質量%以下、S:0質量%超0.010質量%以下、N:0質量%超0.010質量%以下、B:0.0005~0.010質量%、および残部:鉄および不可避不純物からなる。
 以下、各元素について詳述する。
 (C:0.05~0.40質量%)
 C含有量は、鋼部品の強度を決定する。鋼部品の十分な強度を得るために、C含有量は0.05質量%以上であり、好ましくは0.10質量%以上であり、より好ましくは、0.20質量%以上である。
 一方で、C含有量が過剰になると、鋼部品の靭性が顕著に低下するとともに、鋼部品の遅れ破壊が生じやすくなる。このため、C含有量は0.40質量%以下であり、好ましくは0.38質量%以下であり、より好ましくは0.36質量%以下である。
 (Si:0~2.0質量%)
 Siは任意で鋼板に含まれる元素である。Siは焼戻し軟化抵抗を高めることにより、鋼板の硬度安定性に寄与する。そのため、Siは鋼板に0質量%超で含まれていることが好ましい。
 一方、Siは、残留オーステナイト(γ)を生成し易くすると共に、降伏強度(YS)の低下やMnの偏析を助長する。このため、Si含有量は、2.0質量%以下とし、好ましくは1.8質量%以下である。
 (Mn:1.0~3.0質量%)
 Mnは、鋼板の焼入れ性を高めることにより鋼部品の高強度化に寄与する。この効果を発揮させるために、Mn含有量は、1.0質量%以上とし、好ましくは1.2質量%以上であり、より好ましくは1.4質量%以上である。
 一方、Mn含有量が過剰になると鋼部品中に粗大な炭化物が析出する可能性がある。そのため、Mn含有量は3.0質量%以下とし、好ましくは2.8質量%以下であり、より好ましくは2.6質量%以下である。
 (Al:0.010~1.0質量%)
 Alは、脱酸剤として作用する元素である。こうした効果を発揮させるために、Al量は、0.010質量%以上とする。Al量は、好ましくは0.020質量%以上、より好ましくは0.025質量%以上である。しかしながら、Alを過剰に含有させることは、製造上のコストアップに繋がると共に、Ac3点を著しく高め、素材加熱温度の高温化による表面品質の悪化(脱炭や減肉)を引き起こす。そのため、Al量は1.0質量%以下とする。Al量は、好ましくは0.80質量%以下であり、より好ましくは0.70質量%以下である。
 (P:0質量%超0.100質量%以下)
 Pは、不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素であるが、フェライト相の固溶強化に寄与する効果を有する元素でもある。このような効果を発揮させつつ鋼板の溶接性を劣化させないためには、P量は0.100質量%以下とする。P量は、好ましくは0.050質量%以下であり、より好ましくは0.020質量%以下である。なお、Pは鋼中に不可避的に混入してくる不純物であり、その量を0質量%にすることは工業生産上不可能であり、通常0質量%超、さらには0.00050質量%以上で含有し得る。
 (S:0質量%超0.010質量%以下)
 Sは、不可避的に含有する元素であり、鋼板の溶接性を劣化させる。したがって、S量は0.010質量%以下とする。S量は、好ましくは0.0080質量%以下であり、より好ましくは0.0050質量%以下である。S量は、できるだけ少ない方が良いため、下限は特に限定されないが、その量を0質量%にすることは工業生産上不可能であり、通常0質量%超、さらには0.00010質量%以上で含有し得る。
 (N:0質量%超0.010質量%以下)
 Nは、不可避的に含有する元素であり、過剰に含まれるとAlNを生成させ、Alによる脱酸効果を低減させる。したがって、N量は0.010質量%以下とする。N量は、好ましくは0.0080質量%以下であり、より好ましくは0.0050質量%以下である。N量は、できるだけ少ない方が良いため、下限は特に限定されないが、その量を0質量%にすることは工業生産上不可能であり、通常0質量%超、さらには0.00010質量%以上で含有し得る。
 (B:0.0005~0.010質量%)
 Bは、鋼板の焼入れ性を高めることにより鋼部品の高強度化に寄与する。この効果を発揮させるために、B含有量は、0.0005質量%以上とし、好ましくは0.0010質量%以上であり、より好ましくは0.0015質量%以上である。
 一方、B含有量が過剰になると、粗大な鉄ボロン化合物が析出し、鋼部品の靭性が低下する。そのため、B含有量は、0.010質量%以下とし、好ましくは0.0080質量%以下であり、より好ましくは0.0060質量%以下である。
 (残部:鉄および不可避不純物)
 好ましい1つの実施形態では、残部は鉄および不可避不純物である。不可避不純物は、原料、資材、製造設備等の状況によって持ち込まれる元素である。
 なお、例えば、P、SおよびNのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。
 さらに、本発明の実施形態1に係る鋼板は、必要に応じて以下の任意元素を選択的に含有してよく、含有される成分に応じて鋼部品の特性が更に改善される。
 (Cu:0質量%超0.50質量%以下、およびNi:0質量%超0.50質量%以下よりなる群から選択される一種以上)
 Cuを含むことにより、鋼板自体の耐食性が向上するため、鋼板の腐食による水素発生を抑制し、耐遅れ破壊性を改善することができる。またCuは、大気中で生成する錆の中でも熱力学的に安定で保護性があるといわれている酸化鉄:α-FeOOHの生成を促進する効果も有している。当該錆の生成促進を図ることで、発生した水素の鋼板への侵入を抑制でき、過酷な腐食環境下において水素による助長割れを抑制することができる。そのため、Cu含有量は0質量%超とすることが好ましく、より好ましくは0.05質量%以上であり、さらに好ましくは0.10質量%以上である。一方、Cu含有量が過剰になると、鋼板製造時のめっき工程でのめっき性およびホットスタンプ後の化成処理性が劣化する。そのため、Cu含有量は0.50質量%以下とすることが好ましい。
 NiもCuと同様の効果があることが知られている。そのため、Ni含有量も0質量%超とすることが好ましく、より好ましくは0.05質量%以上であり、さらに好ましくは0.10質量%以上である。一方、Ni含有量は0.50質量%以下とすることが好ましい。
 (Ti:0質量%超0.10質量%以下、Cr:0質量%超3.0質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選択される一種以上)
 Tiは、TiNを生成することにより鋼板中におけるBNの生成量を少なくする。これにより、鋼板中における固溶Bの量が増加し、Bによる焼入れ性向上の効果を高めることができる。この効果を発揮させるために、Ti含有量は、0質量%超とすることが好ましく、より好ましくは0.0050質量%以上であり、さらに好ましくは0.0250質量%以上、0.050質量%以上である。
 一方、鋼板中にTiが過剰に含まれると、結晶粒界に炭化物が析出し、鋼板の焼入れ性が劣化する。このため、Ti含有量は、0.10質量%以下とすることが好ましく、より好ましくは0.080質量%以下であり、さらに好ましくは0.070質量%以下である。
 Crは、硬度の確保に寄与するとともに、冷却中の粗大な炭化物の析出の抑制に寄与する。これらの効果を発揮させるために、Cr含有量は0質量%超とすることが好ましい。
 一方、鋼板中にCrが過剰に含まれると、鋼板の割れ等を引き起こすおそれがあり、Cr含有量は、3.0質量%以下とすることが好ましく、より好ましくは2.5質量%以下であり、さらに好ましくは2.0質量%以下である。
 炭化物形成元素であり、鋼板の組織微細化に寄与する元素である。そのためNb含有量は0質量%超とすることが好ましく、より好ましくは0.0050質量%以上である。
 一方、鋼板の組織が微細化することで、熱処理時の逆変態は促進されるものの、冷却中にフェライト生成を促進し、鋼部品の強度低下を招き得る。このような効果は、その含有量が増加するにつれて大きくなる。また、冷間圧延性が悪化するという不都合も生じる。こうした観点から、Nbは0.10質量%以下で含有させることが好ましい。好ましくは、0.070質量%以下であり、より好ましくは0.050質量%以下である。
(b)加熱する工程
 本発明の実施形態1では、上記鋼板をAc1点(℃)以上Ac3点(℃)+10℃未満に加熱する。
 Ac1点未満では、オーステナイト変態が起きず、後述する(e)冷却する工程後に高強度鋼部品とすることが困難となる。一方、Ac3点+10℃未満にしておくことで、後述する(c)加工する工程において、軟質組織であるフェライトおよび/またはパーライトの核生成を促進しやすくなる。
 Ac1点およびAc3点は、フォーマスタ試験で加熱中の温度およびその加熱に伴う鋼の膨張収縮による変位履歴を調査することで求めることができる。図1は、フォーマスタ試験で鋼板を低温から加熱した際の、温度と変位の関係を示すグラフである。低温域では、鋼は温度上昇と共にフェライトの結晶構造(bcc)に応じた膨張率で直線的に膨張し得る。さらに温度を上げると、より稠密な結晶構造(fcc)のオーステナイトが生成して、収縮し始め得る。直線から乖離し始めた温度をAc1点とすることができる。さらに温度を上げた高温域では、フェライトがすべてオーステナイトに変態し、オーステナイトの結晶構造に応じた膨張率で再度直線的に膨張し得る。直線に沿って膨張し始める温度をAc3点とすることができる。
(c)加工する工程
 上記の(b)加熱する工程後、675℃以上Ac3点+10℃未満の温度でひずみを0.5%以上加える加工を行う。
 上記のような温度では、鋼板中に、軟質組織であるフェライトおよび/またはパーライトの核生成サイトである結晶粒界が多く存在し得る。このような不安定な状態で、若干の(すなわち0.5%以上の)ひずみを加えることで、当該ひずみを加えた部分に、軟質組織であるフェライトおよび/またはパーライトの核生成を顕著に促進することができる。より好ましくは、5.0%以上のひずみを加えることであり、さらに好ましくは9.0%以上のひずみを加えることである。
 なお、ひずみは下記式(1)により計算され得る。

 ひずみ(%)=|(d-d)/d×100| ・・・(1)

 dは加工前の鋼板の板厚または加工後の鋼板における非加工部分の板厚であり、dは加工後の鋼板のうち加工部分の板厚である。いずれも単位はmmである。
 なお、ひずみは、例えばFEM解析により求めた相当塑性ひずみとしてもよい。すなわち、FEM解析で求めた相当塑性ひずみが0.5%以上であれば、同様に軟化させることができる。
 Ms点は、フォーマスタ試験で冷却中の温度およびその冷却に伴う鋼の膨張収縮による変位履歴を調査することで求めることができる。図2は、図1で説明した加熱時の温度-変位の関係に加えて、当該加熱後に鋼板を比較的速い冷却速度で冷却した際の、温度と変位の関係を示すグラフである。中・高温域では、鋼は温度降下と共にオーステナイトの結晶構造に応じた収縮率で直線的に収縮し得る。さらに温度を下げると、マルテンサイトに変態し、膨張し始め得る。直線から乖離し始めた温度をMs点とすることができる。
 上記(b)加熱する工程の加熱温度をAc1点(℃)以上Ac3点(℃)+10℃未満とした上で、加工温度を675℃未満にすると、軟質組織への変態が活発になるため、非加工部の軟化も顕著となり、加工部のみ局所的に軟化された鋼部品を製造することが困難となる。
 上記(b)加熱する工程の加熱温度をAc1点(℃)以上Ac3点(℃)+10℃未満とした上で、加工温度をAc3点+10℃以上とすると、軟質組織の核生成サイトである結晶粒界が少なくなり、若干のひずみを加えるだけでは、軟質組織の核生成を促進することができなくなる。
 上記加工温度は、上記(b)加熱する工程の加熱温度と同じでも異なっていてもよい。異なっている場合、上記(b)工程と(c)工程との間で、追加の加熱する工程および/または冷却する工程を含んでいてもよい。また、上記(b)工程後(c)工程前に、一定温度に保持する工程を含んでいてもよい。
 上記の加工はどのような加工であってもよいが、例えばプレス加工、張り出し成形、鍛造、ドロー成形時の曲げ戻し、せん断加工等が好適に用いられる。
(d)保持または徐冷する工程
 上記の(c)加工する工程後、0~15℃/秒の平均冷却速度で1秒以上120秒以下保持または徐冷する。すなわち、上記加工温度で1秒以上120秒以下保持するか、0℃/秒超15℃/秒以下の平均冷却速度で1秒以上120秒以下徐冷する。これにより、上記の(c)加工する工程で核生成された、軟質組織であるフェライトおよび/またはパーライトを成長させることができる。
 15℃/秒超の平均冷却速度の場合、または、保持時間または徐冷時間が1秒未満である場合、軟質組織であるフェライトおよび/またはパーライトを十分に析出および成長させることができない。保持時間または徐冷時間は、1秒超であることが好ましく、より好ましくは3秒以上であり、さらに好ましくは6秒以上である。
 一方、保持または徐冷する時間が120秒超だと、非加工部分においても軟質組織であるフェライトおよび/またはパーライトが析出および成長してしまい、高強度鋼部品を得ることができない。好ましくは12秒以下である。
(e)冷却する工程
 上記の(d)保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する。この際、上記(b)加熱する工程の加熱温度(すなわち、Ac1点(℃)以上Ac3点(℃)+10℃以下)から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する。これにより、少なくとも非加工部分において、マルテンサイト変態を起こすことができ、非加工部分の強度を十分に確保できる。平均冷却速度10℃/秒以上の冷却をMs点(℃)-50℃超で終了させてしまうと、非加工部分において十分にマルテンサイト変態を起こすことができない。また、平均冷却速度が10℃/秒未満であっても、非加工部分において十分にマルテンサイト変態を起こすことができない。
 上記の(e)冷却する工程後、例えば室温まで冷却することができる。Ms点(℃)-50℃から室温までの冷却速度は特に限定されない。
<本発明の実施形態2>
 本発明の実施形態2に係る製造方法は、本発明の実施形態1に係る製造方法と比較して、(b)加熱する工程および(c)加工する工程の条件が異なる。以下、本発明の実施形態1とは異なるそれらの工程を、(b’)加熱する工程および(c’)加工する工程として以下に説明する。
(b’)加熱する工程
 本発明の実施形態2では、前記鋼板をAc3点(℃)+10℃以上1100℃以下に加熱する。本発明の実施形態1とは異なり、加熱する工程においてAc3点+10℃以上に加熱しても、後述する(c’)加工する工程で比較的大きなひずみを加えれば、本発明の実施形態1と同様に、軟質組織であるフェライトおよび/またはパーライトの核生成を顕著に促進できる。一方、1100℃超だと鋼表面の脱炭が顕著になり狙いの強度が確保できなくなる。また、酸化が進み減肉する可能性もある。めっき材であれば、酸化や合金化が進み、めっきの硬度が高くなりすぎて後の加工工程で剥離してしまう(鋼板の酸化、押しキズ)などの問題が生じる。
(c’)加工する工程
 上記の(b’)加熱する工程後、Ms点(℃)+50℃以上Ac3点(℃)+10℃未満の温度でひずみを10%以上加える加工を行う。Ms点(℃)+50℃以上Ac3点(℃)+10℃未満では、オーステナイトが比較的不安定な状態となるため、比較的大きな(10%以上の)ひずみを加えることで、当該ひずみを加えた部分に、軟質組織であるフェライトおよび/またはパーライトの核生成を顕著に促進することができる。より好ましくは、15%以上のひずみを加えることであり、さらに好ましくは40%以上のひずみを加えることである。なお、ひずみは上記式(1)により計算され得る。また、ひずみは、例えばFEM解析により求めた相当塑性ひずみとしてもよい。すなわち、FEM解析で求めた相当塑性ひずみが10%以上であれば、同様に軟化させることができる。
 Ac3点+10℃以上の温度では、オーステナイトが比較的安定な状態となり、比較的大きなひずみを加えても、軟質組織であるフェライトおよび/またはパーライトの核生成を促進することが困難となる。一方、Ms点(℃)+50℃未満だと、マルテンサイト変態が起こる可能性があり、軟質組織であるフェライトおよび/またはパーライトの核生成を促進することが困難となる。
 (b’)加熱する工程後の温度(Ac3点(℃)+10℃以上1100℃以下)から、(c’)加工する工程の温度(Ms点(℃)+50℃以上Ac3点(℃)+10℃未満)までの冷却については特に制限されず、どのような平均冷却速度であってもよい。また、上記(b’)工程後(c’)工程前に、一定温度に保持する工程を含んでいてもよい。
 上記(c’)加工する工程の加工はどのような加工であってもよいが、例えばプレス加工、張り出し成形、鍛造、ドロー成形時の曲げ戻し、せん断加工等が好適に用いられる。
 本発明の実施形態1および2において、上記の(c)および(c’)の加工する工程におけるひずみを、複数回の加工により加えてもよい。
 上記(c)および(c’)の加工する工程におけるひずみを、複数回の加工により加える場合、複数回の加工によるひずみは、下記式(2)のように計算され得る。
Figure JPOXMLDOC01-appb-M000001
 dはn回目の加工後の鋼板のうち加工部分の板厚であり、単位はmmである。
 なお、上記式(2)のひずみは、例えば各加工後におけるFEM解析により求めた相当塑性ひずみの総和としてもよい。
 例えば、上記(c)および(c’)の加工する工程が単工程の場合に、所定のひずみ(実施形態1では0.5%以上、実施形態2では10%以上)を加えるのが困難な場合がある。そのような場合に、上記(c)および(c’)工程を複数回の加工により行ってひずみを累積させることで、ひずみを所定値以上にしやすくなり有利である。
 また、上記(c)および(c’)の加工する工程が単工程の場合に、上記(c)および(c’)工程から上記(e)冷却する工程までの搬送時間が1秒未満であり、上記(d)保持または徐冷する工程の時間(1秒以上)を確保しにくい場合がある。そのような場合に、上記(c)および(c’)工程を複数回の加工により行うことで、複数回の加工工程間の搬送時間を上記(d)工程の保持または徐冷する時間に充てることができるため、有利である。
 また、上記複数回の加工が、変形を加える加工と、その変形を戻すように行う加工とを含んでもよい。これにより、初期の鋼板形状に対して、最終的な鋼部品形状を変化させることなしに、上記ひずみを加えることが可能となる。
 上記の(c)および(c’)加工する工程が複数回の加工を含む場合、上記(d)保持又は徐冷する工程を各加工後に行ってもよい。例えば、2回の加工を含む場合、1回目の加工を施してから、1回目の保持又は徐冷する工程を行い、その後2回目の加工を施してから、2回目の保持又は徐冷する工程を行ってもよい。この場合、1回目の保持又は徐冷する工程の時間と、2回目の保持又は徐冷する工程の時間の合計が、本発明の実施形態1および2の(d)工程で規定する時間、すなわち1秒以上120秒以下であればよい。
 上記(a)~(e)、(b’)および(c’)工程の温度は、鋼板(または鋼部品)の表面温度であり、熱電対や放射温度計を用いて測定してもよい。また、事前に加熱ライン等の雰囲気温度と、熱電対等で測定した鋼板(または鋼部品)の表面温度との対応関係を調査しておき、加熱ライン等の雰囲気温度から鋼板(または鋼部品)の表面温度を読み取ってもよい。
 本発明の実施形態1および2によれば、局所的な温度制御をすることなく、加工により所定以上のひずみを加えた部分のみが局所的に軟化された高強度鋼部品を製造する方法を提供することが可能である。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。
 表1の鋼種No.Aに示される化学組成の鋼(Ac1点:778℃、Ac3点:875℃、Ms点:385℃)を用いて、板厚1.6mm、面積100mm×100mmの鋼板を用意し、その鋼板を880℃に加熱した。その後、750℃まで約12℃/秒で放冷し、750℃で張出成形を行った。張出成形は、100mm×100mmの鋼板中央部に対し、φ10mmの半球パンチを裏面から押し当てることにより行った。張出高さは3.0mmとした。張出成形後、10.8℃/秒の平均冷却速度で6秒間徐冷した。その後、Ms点(℃)-50℃(すなわち、335℃)まで水冷し、880℃~335℃までの平均冷却速度が39.5℃/秒となるようにした。その後室温まで放冷した。以上を製造例1-2とする。
 なお、上記Ac1点、Ac3点およびMs点は、フォーマスタ試験により求めた。フォーマスタ試験は、以下の条件で行った。
 フォーマスタ試験機:富士電波工機製FTM-10
 試験片サイズ:板厚2.0mm×幅3.0mm×長さ10mm(ただし、熱電対を挿入するため、Φ0.7mm×深さ2.0mmの穴2箇所あり)
 試験回数:7回(冷却速度のみ変更し、他は一定条件)
 加熱速度:10℃/s(室温~加熱温度)
 加熱温度:950℃
 加熱温度での保持時間:180秒
 冷却速度:2、5、10、15、20、30、および40℃/s(加熱温度~室温)
 また、表1において、鋼種No.AのCu含有量は、不可避不純物レベル(0.01質量%未満)であったため、「-」と記載した。
Figure JPOXMLDOC01-appb-T000002
 製造例1-2により得られた鋼部品のひずみおよび硬度を評価するために、評価用サンプルを採取した。評価用サンプルの採取位置を図3に示す。図3に示すように、鋼部品中央の張出成形部A(縦25mm×横5mm)および張出成形部Aから縦方向に離れた位置の非加工部B(縦10mm×横5mm)を採取した。
 サンプルのひずみを評価するために、光学顕微鏡により断面観察を行って板厚を求めた。
 張出成形部Aの板厚は、鋼部品の中央部、中央部から縦方向に3.75mm離れた位置(中間部と称する)、中央部から縦方向に7.5mm離れた位置(裾部と称する)においてそれぞれ求めた。そして、上記式(1)を用いて、鋼部品の中央部、中間部および裾部の板厚を加工部分の板厚dとし、非加工部Bの板厚を加工前の鋼板の板厚dとして、鋼部品の中央部、中間部および裾部のひずみを求めた。
 張出成形部Aの3箇所(中央部、中間部および裾部)、ならびに非加工部Bにおいてビッカース硬度を測定した。測定は、ビッカース硬度試験機を使用して、荷重1kg、保持時間10秒の条件で行った。測定位置は、板厚をdとしたとき、板厚方向において鋼部品表面からd/4の位置を3点測定した。図4は、図3に示すX-X線断面模式図であり、張出成形部Aの硬度測定位置を示している。
 非加工部Bの硬度測定位置については図示していないが、非加工部Bの縦および横方向における略中央、且つ板厚方向における鋼部品表面からd/4の位置を3点測定した。
 張出成形部Aの3箇所(中央部、中間部および裾部)、ならびに非加工部Bの3点のビッカース硬度平均値を、それぞれのビッカース硬度として採用した。
 製造例1-2から張出成形を行った温度(℃)(成形温度と称する)、張出高さ(mm)、徐冷時の冷却速度(℃/秒)、徐冷時間(秒)および加熱温度~Ms点-50℃までの平均冷却速度(℃/秒)を変更して、鋼部品を製造した(製造例1-1および1-3~1-8と称する)。そして、製造例1-2で得られた鋼部品と同様に、各鋼部品について、ひずみおよびビッカース硬度を評価した。結果を表2に示す。
 なお、表2において、下線を付した数値は本発明の実施形態1の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000003
 製造例1-1~1-8のうち、中央部、中間部および裾部の少なくとも1つが、非加工部のビッカース硬度と比較して、20HV以上ビッカース硬度が低下し、かつ非加工部の硬度が310HV以上であるものを、「局所的に軟化された高強度鋼部品」としての基準を満たす製造例であると判断した。
 なお、「局所的に軟化された」鋼部品として、より好ましい製造例は、中央部、中間部および裾部の少なくとも1つが、非加工部のビッカース硬度と比較して、40HV以上ビッカース硬度が低下したものであり、さらに好ましい製造例は、100HV以上ビッカース硬度が低下したものである。
 また、「高強度鋼部品」として、より好ましい製造例は、非加工部のビッカース硬度が、400HV以上であり、さらに好ましい製造例は、500HV以上である。
 後述する実施例2および3においても同様に判断している。
 表2の結果より、次のように考察できる。表2の製造例1-1~1-4は、いずれも本発明の実施形態1で規定する全ての要件を満足する例であり、局所的な温度制御をすることなく、加工により所定以上のひずみ(本発明の実施形態1では0.5%以上)を加えた部分のみが局所的に軟化された高強度鋼部品を製造することができた。
 一方、表2の製造例1-5~1-8は、本発明の実施形態1で規定する要件を満たしていない例であり、加工により所定以上のひずみ(本発明の実施形態1では0.5%以上)を加えた部分において、局所的に軟化された高強度鋼部品を製造することができなかった。
 製造例1-5~1-8は、成形温度が650℃または550℃であり、675℃未満であったため、非加工部含む鋼部品全体が軟化してしまい、局所的に軟化された高強度鋼部品を製造することができなかった。
 表1の鋼種No.Aに示される化学組成の鋼を用いて、板厚1.6mm、面積100mm×100mmの鋼板を用意し、その鋼板を880℃に加熱した。その後、750℃まで約12℃/秒で放冷し、750℃で1回目の張出成形を行った。1回目の張出成形は、100mm×100mmの鋼板中央部に対し、φ10mmの半球パンチを裏面から押し当てることにより行った。張出高さは3.0mmとした。1回目の張出成形後、10.8℃/秒の平均冷却速度で6秒間徐冷した。1回目の徐冷する工程後、2回目の張出成形を行った。2回目の張出成形は、1回目の張出成形を行った箇所に対して、1回目の張出成形とは逆方向から(即ち、表面から)φ10mmの半球パンチを押し当てることにより行った。2回目の張出成形後、6.7℃/秒の平均冷却速度で6秒間徐冷した。2回目の徐冷する工程後、Ms点(℃)-50℃(すなわち、335℃)まで水冷し、880℃~335℃までの平均冷却速度が26.2℃/秒となるようにした。その後室温まで放冷した。以上を製造例2-1とする。
 製造例2-1で得られた鋼部品について、実施例1と同様に、ひずみおよびビッカース硬度を評価した。ひずみについて、上記式(2)を用いて計算した。なお、1回目の張出成形は製造例1-2と同様に行っているため、1回目の張出成形後の板厚は製造例1-2と同じ板厚であったと仮定して、ひずみを計算している。結果を表3に示す。なお、2回目の張出成形は、1回目とは逆方向に成形しているので、2回目の張出高さは負の値とした。
Figure JPOXMLDOC01-appb-T000004
 表3の結果より、次のように考察できる。表3の製造例2-1は、本発明の実施形態1で規定する要件の全てを満足する例であり、局所的な温度制御をすることなく、加工により所定以上のひずみ(本発明の実施形態1では0.5%以上)を加えた部分のみが局所的に軟化された高強度鋼部品を製造することができた。
 表1の鋼種No.Aに示される化学組成の鋼を用いて、板厚1.6mm、面積100mm×100mmの鋼板を用意し、その鋼板を950℃に加熱し、60秒間保持した。その後、550℃まで約12℃/秒で放冷し、550℃で張出成形を行った。張出成形は、100mm×100mmの鋼板中央部に対し、φ10mmの半球パンチを裏面から押し当てることにより行った。張出高さは0.1mmとした。張出成形後、4.7℃/秒の平均冷却速度で6秒間徐冷した。その後、Ms点(℃)-50℃(すなわち335℃)まで水冷し、950℃~335℃までの平均冷却速度が12.5℃/秒となるようにした。その後室温まで放冷した。以上を製造例3-1とする。
 製造例3-1により得られた鋼部品について、実施例1と同様に、ひずみおよびビッカース硬度を評価した。
 製造例3-1から鋼種、張出成形を行った温度(℃)(成形温度と称する)、張出高さ(mm)、徐冷時の冷却速度(℃/秒)、徐冷時間(秒)および加熱温度~Ms点-50℃までの平均冷却速度(℃/秒)を変更して、鋼部品を製造した(製造例3-2~3-19と称する)。そして、製造例3-1と同様に、各鋼部品について、ひずみおよびビッカース硬度を評価した。結果を表4および表5に示す。なお、表1の鋼種No.Bに示される化学組成の鋼のAc1点は778℃、Ac3点は875℃、Ms点は385℃であった。
 なお、表4および表5において、下線を付した数値は本発明の実施形態2の範囲から外れていることを示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4および表5の結果より、次のように考察できる。表4の製造例3-4~3-6、3-9、3-11および3-14~3-16ならびに表5の製造例3-20~3-27、3-30~3-32および3-34~3-38は、いずれも本発明の実施形態2で規定する全ての要件を満足する例であり、局所的な温度制御をすることなく、加工により所定以上のひずみ(本発明の実施形態2では10%以上)を加えた部分のみが局所的に軟化された高強度鋼部品を製造することができた。
 一方、表4の製造例No.3-1~3-3、3-7~3-8、3-10、3-12~3-13、3-17および3-19、ならびに表5の製造例3-28、3-29および3-33は、本発明の実施形態2で規定する要件を満たしていない例であり、加工により所定以上のひずみ(本発明の実施形態2では10%以上)を加えた部分において、局所的に軟化された高強度鋼部品を製造することができなかった。
 表4の製造例3-1~3-3、3-8、3-10、3-13および3-19ならびに表5の製造例3-33は、中央部、中間部、裾部の全てにおいて、ひずみが10%未満であったため、局所的に軟化された高強度鋼部品を製造することができなかった。
 表4の製造例3-7は、(d)保持または徐冷する工程において徐冷速度が15℃/秒超であり(すなわち徐冷時間1秒未満)、且つ中央部、中間部、裾部の全てにおいてひずみが10%未満であったため、局所的に軟化された高強度鋼部品を製造することができなかった。
 表4の製造例3-12および3-17ならびに表5の製造例3-28および3-29は、(d)保持または徐冷する工程において徐冷速度が15℃/秒超(すなわち徐冷時間1秒未満)であったため、局所的に軟化された高強度鋼部品を製造することができなかった。
 なお、表4の製造例3-18は、中央部において、加工により加えられたひずみが8%であり、本発明の実施形態2で規定するひずみ10%以上を満たさないものの、非加工部との硬度差が20HV以上であった。これは、部品No.3-18の中央部において、ひずみ以外の製造条件(加熱温度、冷却速度および徐冷時間等)が好ましい条件であった可能性があるが、詳細は不明である。
 表1の鋼種No.Aに示される化学組成の鋼を用いて、板厚1.6mm、面積100mm×100mmの鋼板を用意し、その鋼板を950℃に加熱した。その後、750℃まで約12℃/秒で放冷し、750℃で1回目の張出成形を行った。1回目の張出成形は、100mm×100mmの鋼板中央部に対し、φ10mmの半球パンチを裏面から押し当てることにより行った。張出高さは4.0mmとした。1回目の張出成形後、9.7℃/秒の平均冷却速度で6秒間徐冷した。1回目の徐冷する工程後、2回目の張出成形を行った。2回目の張出成形は、1回目の張出成形を行った箇所に対して、1回目の張出成形とは逆方向から(即ち、表面から)φ10mmの半球パンチを押し当てることにより行った。2回目の張出成形後、5.3℃/秒の平均冷却速度で6秒間徐冷した。2回目の徐冷する工程後、Ms点(℃)-50℃(すなわち、335℃)まで水冷し、950℃~335℃までの平均冷却速度が16.6℃/秒となるようにした。その後室温まで放冷した。以上を製造例4-1とする。
 製造例4-1で得られた鋼部品について、実施例1と同様に、ひずみおよびビッカース硬度を評価した。ひずみについて、上記式(2)を用いて計算した。なお、製造例4-1において2回目の張出成形を行わなかった場合の中央部の板厚は1.39mm、中間部の板厚は1.22mmおよび裾部の板厚は1.58mmであることを別途確認したため、これらの板厚を製造例4-1における1回目の張出成形後の板厚として、ひずみを計算している。結果を表6に示す。なお、2回目の張出成形は、1回目とは逆方向に成形しているので、2回目の張出高さは負の値とした。
Figure JPOXMLDOC01-appb-T000007
 表6の結果より、次のように考察できる。表6の製造例4-1は、本発明の実施形態2で規定する要件の全てを満足する例であり、局所的な温度制御をすることなく、加工により所定以上のひずみ(本発明の実施形態2では10%以上)を加えた部分のみが局所的に軟化された高強度鋼部品を製造することができた。
 本発明の実施形態では、局所的な温度制御をすることなく、局所的に軟化された高強度鋼部品を製造する方法を提供することが可能である。そのような高強度鋼部品は、例えば自動車骨格の素材に好適である。
 1   鋼部品
 2   中央部における硬度測定1箇所目
 3   中央部における硬度測定2箇所目
 4   中央部における硬度測定3箇所目
 5   中間部における硬度測定1箇所目
 6   中間部における硬度測定2箇所目
 7   中間部における硬度測定3箇所目
 8   裾部における硬度測定1箇所目
 9   裾部における硬度測定2箇所目
 10  裾部における硬度測定3箇所目
 A   張出成形部
 B   非加工部
 本出願は、出願日が2020年3月11日である日本国特許出願、特願第2020-042274号および出願日が2020年10月13日である日本国特許出願、特願第2020-172764号を基礎出願とする優先権主張を伴う。特願第2020-042274号および特願第2020-172764号は参照することにより本明細書に取り込まれる。

Claims (10)

  1.  C :0.05~0.40質量%、
     Si:0~2.0質量%、
     Mn:1.0~3.0質量%、
     Al:0.010~1.0質量%、
     P:0質量%超0.100質量%以下、
     S:0質量%超0.010質量%以下、
     N:0質量%超0.010質量%以下、
     B :0.0005~0.010質量%、および
     残部:鉄および不可避不純物
     からなる化学組成の鋼板を用意する工程と、
     前記鋼板をAc1点(℃)以上Ac3点(℃)+10℃未満の温度に加熱する工程と、
     前記加熱する工程後、675℃以上Ac3点(℃)+10℃未満の加工温度でひずみを0.5%以上加える加工工程と、
     前記加工工程後、前記加工温度で1秒以上120秒以下保持するか、または0℃/秒超15℃/秒以下の平均冷却速度で1秒以上120秒以下徐冷する工程と、
     前記保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する工程とを含み、
     前記加熱する工程の前記温度から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する、鋼部品の製造方法。
  2.  C :0.05~0.40質量%、
     Si:0~2.0質量%、
     Mn:1.0~3.0質量%、
     Al:0.010~1.0質量%、
     P :0質量%超0.100質量%以下、
     S :0質量%超0.010質量%以下、
     N :0質量%超0.010質量%以下、
     B :0.0005~0.010質量%、および
     残部:鉄および不可避不純物
     からなる化学組成の鋼板を用意する工程と、
     前記鋼板をAc3点(℃)+10℃以上1100℃以下の温度に加熱する工程と、
     前記加熱する工程後、Ms点(℃)+50℃以上Ac3点(℃)+10℃未満の加工温度でひずみを10%以上加える加工工程と、
     前記加工工程後、前記加工温度で1秒以上120秒以下保持するか、または0℃/秒超15℃/秒以下の平均冷却速度で1秒以上120秒以下徐冷する工程と、
     前記保持または徐冷する工程後、Ms点(℃)-50℃まで冷却する工程とを含み、
     前記加熱する工程の前記温度から、Ms点(℃)-50℃までの平均冷却速度を10℃/秒以上に制御する、鋼部品の製造方法。
  3.  以下の(a)および(b)のうち少なくとも1つをさらに含有する請求項1に記載の製造方法。
     (a)Cu:0質量%超0.50質量%以下、およびNi:0質量%超0.50質量%以下よりなる群から選択される一種以上
     (b)Ti:0質量%超0.10質量%以下、Cr:0質量%超3.0質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選択される一種以上
  4.  以下の(a)および(b)のうち少なくとも1つをさらに含有する請求項2に記載の製造方法。

     (a)Cu:0質量%超0.50質量%以下、およびNi:0質量%超0.50質量%以下よりなる群から選択される一種以上
     (b)Ti:0質量%超0.10質量%以下、Cr:0質量%超3.0質量%以下、およびNb:0質量%超0.10質量%以下よりなる群から選択される一種以上
  5.  張り出し成形により前記ひずみを加えることを含む、請求項1~4のいずれか一項に記載の製造方法。
  6.  鍛造により前記ひずみを加えることを含む、請求項1~4のいずれか一項に記載の製造方法。
  7.  ドロー成形時の曲げ戻しにより前記ひずみを加えることを含む、請求項1~4のいずれか一項に記載の製造方法。
  8.  せん断加工により前記ひずみを加えることを含む、請求項1~4のいずれか一項に記載の製造方法。
  9.  複数回の加工により前記ひずみを加えることを含む、請求項1~4のいずれか一項に記載の製造方法。
  10.  前記複数回の加工は、変形を加える加工と、前記変形を戻すように行う加工とを含む請求項9に記載の製造方法。
PCT/JP2021/001266 2020-03-11 2021-01-15 局所的に軟化された部分を有する鋼部品の製造方法 WO2021181866A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21768018.0A EP4116003A4 (en) 2020-03-11 2021-01-15 PROCESS FOR MANUFACTURING A STEEL COMPONENT WITH LOCALLY SOFTENED SECTION
CA3169085A CA3169085C (en) 2020-03-11 2021-01-15 Method for producing steel component having locally softened part
MX2022011132A MX2022011132A (es) 2020-03-11 2021-01-15 Metodo para producir componente de acero con pieza ablandada localmente.
KR1020227033512A KR20220145896A (ko) 2020-03-11 2021-01-15 국소적으로 연화된 부분을 갖는 강 부품의 제조 방법
US17/905,221 US20230138493A1 (en) 2020-03-11 2021-01-15 Method for producing steel component having locally softened part
CN202180019095.XA CN115279927A (zh) 2020-03-11 2021-01-15 具有局部软化部分的钢零件的制造方法
BR112022016203A BR112022016203A2 (pt) 2020-03-11 2021-01-15 Método de produção de um componente de aço

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-042274 2020-03-11
JP2020042274 2020-03-11
JP2020172764A JP7464495B2 (ja) 2020-03-11 2020-10-13 局所的に軟化された部分を有する鋼部品の製造方法
JP2020-172764 2020-10-13

Publications (1)

Publication Number Publication Date
WO2021181866A1 true WO2021181866A1 (ja) 2021-09-16

Family

ID=77672221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001266 WO2021181866A1 (ja) 2020-03-11 2021-01-15 局所的に軟化された部分を有する鋼部品の製造方法

Country Status (8)

Country Link
US (1) US20230138493A1 (ja)
EP (1) EP4116003A4 (ja)
KR (1) KR20220145896A (ja)
CN (1) CN115279927A (ja)
BR (1) BR112022016203A2 (ja)
CA (1) CA3169085C (ja)
MX (1) MX2022011132A (ja)
WO (1) WO2021181866A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193439A (ja) * 1997-12-26 1999-07-21 Nippon Steel Corp 高い動的変形抵抗を有する良加工性高強度鋼板とその製造方法
JP3462922B2 (ja) * 1995-02-16 2003-11-05 新日本製鐵株式会社 強度・靭性に優れた高張力鋼板の製造方法
JP2011179028A (ja) 2010-02-26 2011-09-15 Sumitomo Metal Ind Ltd 成形品の製造方法
WO2014034714A1 (ja) * 2012-08-28 2014-03-06 新日鐵住金株式会社 鋼板
JP2015175051A (ja) * 2014-03-17 2015-10-05 新日鐵住金株式会社 成形性と衝突特性に優れた高強度鋼板
JP2017078189A (ja) 2015-10-19 2017-04-27 Jfeスチール株式会社 ホットプレス部材およびその製造方法
JP2020042274A (ja) 2016-02-04 2020-03-19 三菱ケミカル株式会社 遮音シート部材、及びこれを用いた遮音構造体
JP2020172764A (ja) 2019-04-09 2020-10-22 株式会社シャイン 棟下地及び棟の施工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739669B2 (ja) * 2010-04-20 2015-06-24 株式会社神戸製鋼所 延性に優れた高強度冷延鋼板の製造方法
EP2946848B1 (en) * 2013-01-18 2018-07-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Manufacturing method for hot press formed steel member
JP5884190B2 (ja) * 2013-05-13 2016-03-15 Jfeスチール株式会社 加工性に優れた高強度マルテンサイト−フェライト系ステンレス厚鋼板およびその製造方法
WO2017109539A1 (en) * 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
EP3521458B1 (en) * 2016-09-30 2022-01-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel parts, production method therefor, and steel sheet for steel parts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462922B2 (ja) * 1995-02-16 2003-11-05 新日本製鐵株式会社 強度・靭性に優れた高張力鋼板の製造方法
JPH11193439A (ja) * 1997-12-26 1999-07-21 Nippon Steel Corp 高い動的変形抵抗を有する良加工性高強度鋼板とその製造方法
JP2011179028A (ja) 2010-02-26 2011-09-15 Sumitomo Metal Ind Ltd 成形品の製造方法
WO2014034714A1 (ja) * 2012-08-28 2014-03-06 新日鐵住金株式会社 鋼板
JP2015175051A (ja) * 2014-03-17 2015-10-05 新日鐵住金株式会社 成形性と衝突特性に優れた高強度鋼板
JP2017078189A (ja) 2015-10-19 2017-04-27 Jfeスチール株式会社 ホットプレス部材およびその製造方法
JP2020042274A (ja) 2016-02-04 2020-03-19 三菱ケミカル株式会社 遮音シート部材、及びこれを用いた遮音構造体
JP2020172764A (ja) 2019-04-09 2020-10-22 株式会社シャイン 棟下地及び棟の施工方法

Also Published As

Publication number Publication date
CN115279927A (zh) 2022-11-01
EP4116003A4 (en) 2023-06-21
EP4116003A1 (en) 2023-01-11
BR112022016203A2 (pt) 2022-10-04
CA3169085C (en) 2024-04-16
MX2022011132A (es) 2022-10-13
CA3169085A1 (en) 2021-09-16
KR20220145896A (ko) 2022-10-31
US20230138493A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
EP2823904B1 (en) Warm press forming method for a steel
EP2823905B2 (en) Warm press forming method and automobile frame component
CN101460647B (zh) 高强度钢板及其制造方法
JP6260676B2 (ja) ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法
JP5609945B2 (ja) 高強度冷延鋼板およびその製造方法
WO2010114131A1 (ja) 冷延鋼板およびその製造方法
JP4977185B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法
EP2824195A1 (en) Process for producing press-formed product, and press-formed product
WO2015102051A1 (ja) 熱間成形部材およびその製造方法
JP5585623B2 (ja) 熱間成形鋼板部材およびその製造方法
KR20120135521A (ko) 온간 가공성이 우수한 고강도 강판 및 그 제조 방법
CN102822375A (zh) 超高强度冷轧钢板及其制造方法
US20210095363A1 (en) Hot rolled steel sheet, steel forged part and production method therefor
JP2007154283A (ja) 成形性および形状凍結性に優れる高強度鋼板
CN110506134A (zh) 热轧钢板
JP5835621B2 (ja) 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板
JP2010047786A (ja) 熱間プレス用鋼板およびその製造方法ならびに熱間プレス鋼板部材の製造方法
WO2016035236A1 (ja) フェライト系ステンレス冷延鋼板
JP2014189868A (ja) 高強度鋼板およびその製造方法
JP4497842B2 (ja) 超高温熱間鍛造非調質部品の製造方法
JP6737419B1 (ja) 薄鋼板およびその製造方法
EP3868910A1 (en) Thin steel sheet and method for manufacturing same
WO2021181866A1 (ja) 局所的に軟化された部分を有する鋼部品の製造方法
JP2015024414A (ja) 高強度プレス部品の製造方法
JP2021143416A (ja) 局所的に軟化された部分を有する鋼部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3169085

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016203

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227033512

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022016203

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220815

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768018

Country of ref document: EP

Effective date: 20221007