WO2021175141A1 - 一种棱镜及多线激光雷达 - Google Patents

一种棱镜及多线激光雷达 Download PDF

Info

Publication number
WO2021175141A1
WO2021175141A1 PCT/CN2021/077794 CN2021077794W WO2021175141A1 WO 2021175141 A1 WO2021175141 A1 WO 2021175141A1 CN 2021077794 W CN2021077794 W CN 2021077794W WO 2021175141 A1 WO2021175141 A1 WO 2021175141A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
laser
rotating prism
line lidar
rotation axis
Prior art date
Application number
PCT/CN2021/077794
Other languages
English (en)
French (fr)
Inventor
胡小波
白芳
Original Assignee
深圳市镭神智能***有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能***有限公司 filed Critical 深圳市镭神智能***有限公司
Priority to EP21765511.7A priority Critical patent/EP3992663A4/en
Priority to KR1020227007277A priority patent/KR20220043191A/ko
Priority to JP2022502063A priority patent/JP7356195B2/ja
Publication of WO2021175141A1 publication Critical patent/WO2021175141A1/zh
Priority to US17/569,610 priority patent/US20220128667A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the embodiments of the present application relate to lidar technology, in particular to a multi-line lidar and a self-moving vehicle.
  • Lidar is a radar system that uses lasers to detect the target's position, speed, attitude and other characteristics. Its basic principle is to first launch a detection laser beam to the target, and then receive the signal reflected from the target, and compare the transmitted signal with By receiving the information of the signal, the target's distance, azimuth, height, speed, posture, and even shape can be obtained.
  • lidar At present, in different application places, the requirements for various aspects of Lidar performance parameters are different. For example, some application places require a large detection range, and some applications require a large field of view while trying to avoid blind spots at close distances. But these parameter standards are difficult to achieve at the same time. Many factors of lidar affect each other. For example, lidar with a large field of view will have its angular resolution constrained, while high resolution will be constrained by cost, volume, and debugging, resulting in high cost and large volume. The modulation method is complicated, which is not conducive to popularization and application.
  • a multi-line lidar and a self-moving vehicle are provided.
  • an embodiment of the present application provides a multi-line lidar, including:
  • a rotating prism the rotating prism includes at least three side surfaces, at least three side surfaces are arranged around the scanning rotation axis; wherein at least two of the side surfaces are reflecting surfaces; among all the reflecting surfaces of the rotating prism, there are at least two The angle between the reflective surface and the scanning rotation axis of the rotating prism is not equal;
  • a rotating mechanism which is used to drive the rotating prism to rotate around the scanning rotation axis
  • Two groups of transceiving components are respectively located on both sides of the rotating prism, and the two groups of the transceiving components are arranged asymmetrically with respect to the scanning rotation axis, and the two groups of the transceiving components are between the laser emitting surfaces
  • the included angle of is less than 180 degrees, so that when the rotating mechanism drives the rotating prism to rotate around the scanning rotation axis, at least two scanning fields of view corresponding to the azimuth are formed.
  • an embodiment of the present application also provides a self-moving vehicle, including:
  • the vehicle body has a self-moving mode
  • the multi-line laser radars are arranged on both sides of the front and/or rear of the vehicle body.
  • FIG. 1 is a schematic structural diagram of a multi-line lidar provided by an embodiment of the present application
  • Fig. 2 is a schematic top view of the multi-line lidar shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of another multi-line lidar provided by an embodiment of the present application.
  • 4 and 5 are respectively schematic diagrams of the emitting state of the laser in an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of yet another multi-line lidar provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of yet another multi-line lidar provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of yet another multi-line lidar provided by an embodiment of the present application.
  • FIG. 9 and FIG. 10 are respectively a schematic top view of a structure of a filter cover provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a multi-line lidar provided by an embodiment of the application
  • FIG. 2 is a schematic top view corresponding to the multi-line lidar shown in FIG. 1.
  • the multi-line lidar provided by this embodiment includes a rotating prism 10, a rotating mechanism 30, and two sets of transceiver components 20; the rotating prism 10 includes a top surface 11, a bottom surface 12, and a top surface 11 and a bottom surface 12. At least three side surfaces 13 between (4 side surfaces are taken as an example in FIG.
  • At least three side surfaces 13 are arranged around the scanning rotation axis; at least two of the side surfaces 13 are reflective surfaces; Among all the reflective surfaces of the rotating prism 10, there are at least two reflective surfaces with unequal angles between the scanning axis of the rotating prism 10; the rotating mechanism 30 is used to drive the rotating prism 10 to rotate around the scanning axis of rotation; two sets of transceiver components 20 are respectively located on both sides of the rotating prism 10, and the two sets of transceiver components 20 are arranged asymmetrically with respect to the scanning rotation axis, as shown in FIGS. 1 and 2.
  • the angle between the laser exit surfaces of the two groups of transceiving components 20 is less than 180, so that the two groups of transceiving components 20 can emit laser beams from different directions, and after being scanned by the same rotating prism 10, they are projected to at least two directions.
  • a corresponding scanning field of view is formed, which can provide scanning detection in at least two orientations for the main body with the lidar installed, without the need to install a lidar in different positions of the main body, and has a low-cost and simple structure. advantage.
  • the positions of the two groups of transceiving assemblies 20 relative to the rotating prism 10 can also be described by defining the phase position relationship of the centers of the components.
  • each group of transceiver components 20 includes a laser emitting unit 21 and a laser receiving unit 22, and the laser emitting unit 21 forms a scanning field of view when the rotating prism 10 rotates around the scanning rotation axis.
  • the at least three side surfaces 13 located between the top surface 11 and the bottom surface 12 are all reflective surfaces, and all the reflective surfaces of the rotating prism 10 have at least two reflective surfaces and the scanning rotation axis of the rotating prism 10 The angles are not equal.
  • the number of reflective surfaces of the rotating prism 10 is increased, and the number of lines of the multi-line lidar can be further expanded.
  • the position refers to the position direction. East, south, west, and north are the basic directions, and northeast, southeast, northwest, and southwest are the middle directions.
  • the scanning field of view formed by a group of transceiving components 20 covers at least one azimuth. Therefore, by arranging two groups of transceiving components 20 on both sides of the rotating prism 10, and the two groups of transceiving components 20 are arranged asymmetrically with respect to the scanning axis of rotation, the two groups of transceiving components 20
  • the included angle between the laser exit surfaces of the assembly 20 is less than 180 degrees.
  • the rotating mechanism 30 drives the rotating prism 10 to rotate around the scanning rotation axis, at least two scanning fields of view corresponding to the orientation are formed.
  • the number of transceiving components 20 is greater than two, each group of transceiving components 20 is located on at least two sides of the rotating prism 10, and each group of transceiving components 20 is arranged asymmetrically with respect to the scanning rotation axis, any two groups of transceiving components
  • the included angle between the laser exit surfaces 20 is less than 180, so that each group of transceiver components 20 can emit laser beams from different directions, thereby achieving a wider horizontal scanning angle.
  • the multi-line lidar provided in this embodiment can be used in fields such as unmanned vehicles, automatic navigation robots, etc., and can also be independently applied to applications such as 3D mapping and obstacle avoidance.
  • the transceiver component 20 is used to transmit a detection beam and receive an echo beam.
  • the detection beam can be an infrared laser beam, and a photodetector can be used as a light receiving element to receive the echo beam, which can be selected according to actual conditions during specific implementation.
  • the detection beam emitted by the transceiving component 20 is reflected by the reflective surface of the rotating prism 10 and then transmitted to the target to be measured.
  • each transceiver component 20 can be configured with multiple outputs and multiple receptions to form scanning ranges with different viewing angles.
  • the scanning field of view formed by the two sets of transceiver components 20 does not overlap in the horizontal direction.
  • the scanning field of view formed by the two transceiver components 20 may also partially overlap in the horizontal direction.
  • the laser emitting unit in each group of transceiving components forms a scanning field of view when rotating around the scanning axis of rotation through a rotating prism, so that the two groups of transceiving components can emit laser beams from different directions and pass through the rotation and scanning of the same rotating prism.
  • the two groups of transceiver components 20 include a first transceiver component and a second transceiver component.
  • the first transceiver component forms a first scanning field of view when the rotating prism 10 rotates
  • the second transceiver component forms a second scanning field when the rotating prism 10 rotates. Scanning field of view; the vertical scanning resolution of the first transceiving component in the first scanning field of view is greater than the vertical scanning resolution of the second transceiving component in the second scanning field of view.
  • there are different requirements for scanning and detecting obstacles in different directions For example, when navigating the self-subject, it is necessary to know the distance of the obstacle in front of the road more accurately, and it can be detected.
  • the angular resolution of one group of transceiving components 20 is greater than the angular resolution of the other group of transceiving components 20, so as to not only meet the requirements of use, but also reduce the product cost.
  • the two sets of transceiver components 20 can also have different pulse frequencies. For example, they correspond to the transceiver components 20 that need to detect long distances. The pulse frequency used is smaller than that of the transceiver components that only need to detect obstacles. , So as to ensure that both the distance detection of long-distance obstacles can be realized, and the scanning detection of short-distance obstacles can also be realized.
  • the laser emitting unit 21a in the first group of transceiver components emits the laser beam L1
  • the laser emitting unit 21b in the second group of transceiver components emits the laser beam L2.
  • the rotating prism 10 rotates, The laser beam L1 is scanned to form a first scanning field of view S1, and the laser beam L2 is scanned to form a second scanning field of view S2.
  • the laser emitting unit 21a in the first group of transceiver components emits X-path laser beams with different angles in the vertical direction, and each laser beam passes through the rotating tetrahedral prism to turn into the vertical direction ( Or vertically downwards, see the prism design specifically) 4 laser beams, so the X-path laser beam becomes 4X laser beams for scanning detection, forming the first scanning field of view S1.
  • the laser beam of the first scanning field of view S1 After the laser beam of the first scanning field of view S1 is diffusely reflected on the surface of the detection target, it passes through the tetrahedral prism again, and is respectively received by the corresponding X different photoelectric devices in the laser receiving unit (not shown in Figure 2) in the first group of transceiver components.
  • the detector receives it. Laser beams with different angles can only be received by the corresponding photodetectors. According to actual needs, you can set the corresponding parameters so that the horizontal angle of the first scanning field of view S1 can reach 0-180 degrees, and the detection distance can reach 100 meters, 200 meters, or 300 meters, or more. Within the scanning range, the horizontal direction and The number of lines in the vertical direction is more densely distributed.
  • the laser emitting unit 21b in the second group of transceiver components emits Y (Y can be the same as X or different from X, and can be designed according to actual needs in specific implementation). Laser beams with different angles in the vertical direction are emitted. Each laser beam The rotated tetrahedral prism becomes 4 laser beams in the vertical direction, so the Y laser beam becomes 4Y laser beam for scanning detection, forming a second scanning field of view S2. After the laser beam of the second scanning field of view S2 is diffusely reflected on the surface of the detection target, it passes through the tetrahedral prism again, and is respectively received by the corresponding Y different photodetectors in the laser receiving unit (not shown in Figure 2) in the second group. received.
  • the corresponding parameters can be set to make the horizontal angle of the second scanning field of view S2 reach 0-180 degrees, and the vertical angle reach 0-180 degrees, the detection distance is relatively short, and the horizontal and vertical distributions are sparse , which is mainly used for blind compensation, that is, the existing lidar includes two types of long-distance radar and blind-compensating radar. Fill the blind.
  • the entire horizontal scanning angle of the entire lidar can be greater than 180 degrees, or even more than 270 degrees, so as to achieve a wide field of view scanning.
  • FIG. 3 is a schematic structural diagram of another multi-line lidar provided by an embodiment of the application.
  • each group of transceiver components 20 includes at least one laser emitting unit 21 and at least one laser receiving unit 22;
  • the laser emitting unit 21 includes a plurality of lasers 211, and each laser 211 in the same laser emitting unit 21 emits The beam has a non-zero included angle;
  • multiple lasers 211 of the same laser emitting unit 21 are integrated on the same circuit board;
  • the laser receiving unit 22 includes multiple photodetectors 221, and each photodetector 221 is used to receive the corresponding laser 211 is the light beam emitted and returned by the target to be measured;
  • multiple photodetectors 221 of the same laser receiving unit 22 are integrated on the same circuit board.
  • each laser emitting unit 21 can include multiple lasers 211 and each laser receiving unit 22 to include multiple photodetectors 221, the vertical field of view angle of the multi-line lidar can be effectively increased.
  • the laser 211 can be a laser diode LD or a vertical cavity surface emitting laser VCSEL, where both LD and VCSEL can be free-space output or output via fiber coupling; the laser 211 can also be a fiber laser, a gas laser, or a solid-state laser. Wait.
  • the photodetector 221 can be a plurality of avalanche diodes (Avalanche Photo Diode, APD) arranged in an array, or can be a single large panel APD, a focal plane array detector, a single point arrangement or an array arrangement of silicon photomultiplier tubes (multi -pixelphoton counter (MPPC) detector or other types of array detectors known to those skilled in the art.
  • APD avalanche Photo Diode
  • MPPC multi -pixelphoton counter
  • the emitted light beams of the lasers in the same laser emitting unit are arranged in a divergent state or in a convergent state.
  • FIGS. 4 and 5 are respectively schematic diagrams of the emitting state of the laser in the embodiment of the application. Both FIGS. 4 and 5 schematically show that a laser emitting unit includes 4 lasers. In other embodiments, It can also be other numbers such as 8, 16, etc., and can be selected according to actual needs during specific implementation. 4 and 5, all the laser beams of the 4 lasers are located in the same exit plane M, and the emission elevation angles of the laser beams in the same transceiver assembly are different. When the four spatial angles are different, 4 lasers can generate 16 scan lines. The 4 laser beams in Fig. 4 are arranged in a divergent state, and the 4 laser beams in Fig. 5 are arranged in a convergent state.
  • multiple lasers and multiple photodetectors may be arranged in a single group or in multiple groups, which is not limited in the embodiment of the present application.
  • the multiple photodetectors in the laser receiving unit of the same group are arranged in a single group; when the multiple lasers in the laser emitting unit When arranged in multiple groups (multiple rows and multiple columns), the multiple photodetectors in the same group of laser receiving units are arranged in multiple groups, wherein each group of laser emitting units includes at least two lasers, and each group of laser receiving units includes at least Two photodetectors.
  • the laser emitting unit and the laser receiving unit can also be integrated into one module, so as to facilitate unified installation and debugging.
  • FIG. 6 is a schematic structural diagram of yet another multi-line lidar provided by an embodiment of the application.
  • each group of transceiving components 20 further includes a transmitting mirror group 23 and a receiving mirror group 24.
  • the transmitting mirror group 23 is arranged between the laser transmitting unit 21 and the rotating prism 10 for connecting the laser transmitting unit
  • the laser beam emitted by 21 is collimated and irradiated on the reflective surface of the rotating prism 10.
  • the receiving mirror group 24 is arranged between the laser receiving unit 22 and the rotating prism 10, and is used to converge the laser beams reflected by the reflective surface of the rotating prism 10. It is irradiated on the laser receiving unit 22.
  • an emitting mirror group 23 can be provided on the light emitting side of the laser emitting unit 21 to target the laser emitting unit 21.
  • the outgoing beam is focused and collimated, so that the beam is emitted with a relatively small divergence angle, so as to realize the detection of long-distance targets.
  • the light beam returned by the target to be measured will be attenuated through spatial transmission. Therefore, a receiving mirror group 24 can be set on the light entrance side of the laser receiving unit 22 to enable the laser receiving unit 22 to collect as many echo beams as possible.
  • the field of view of the receiving lens group 24 is between 0° and 180°.
  • both the transmitting lens group and the receiving lens group shown in FIG. 6 include two lenses only schematically showing the structure of each lens group, and the structure of the lens group can be designed according to actual optical path conditions in specific implementation.
  • the included angle between all the reflective surfaces and the scanning rotation axis of the rotating prism is greater than or equal to 0° and less than or equal to 10°.
  • the angle between the reflecting surface and the scanning rotation axis By setting the angle between the reflecting surface and the scanning rotation axis to be between 0° and 10°, it is possible to avoid an excessively large tilt angle of the reflecting surface of the rotating prism, and to improve the stability of the rotating prism during rotation.
  • the rotating prism may include at least four reflective surfaces.
  • the included angle with the scanning axis of rotation is greater than the included angle between its two adjacent reflective surfaces and the scanning axis of rotation, or at the same time less than the angle between its adjacent two reflective surfaces and the scanning axis of rotation.
  • ⁇ 2 is larger than ⁇ 1 and ⁇ 3 at the same time, and ⁇ 3 is smaller than ⁇ 2 and ⁇ 4 at the same time.
  • At least one reflective surface of the rotating prism can also be arranged in a layered structure, for example, at least two reflective areas are sequentially distributed along the direction of the scanning rotation axis, and the angle between each reflective area and the scanning rotation axis is not completely the same.
  • the laser beams emitted by multiple lasers can be non-uniformly distributed in the vertical direction when passing through the layered structure.
  • the angle between the reflection area in the middle and the scanning rotation axis in each reflection area may be greater than the angle between the reflection areas on both sides and the scanning rotation axis, so as to form a middle density in the vertical direction. And under the sparse distribution.
  • FIG. 7 is a schematic structural diagram of another multi-line lidar provided by an embodiment of the application.
  • multiple sides of the rotating prism 10 enclose a hollow shaft 14; the rotating mechanism 30 is disposed in the hollow shaft 14 of the rotating prism 10.
  • FIG. 8 is a schematic structural diagram of another multi-line lidar provided by an embodiment of the application.
  • the multi-line lidar provided in this embodiment further includes an encoder 40, which is arranged on the rotating prism 10 and used to detect and output the angle information of the rotating prism 10 and/or the rotating mechanism 30 And/or the main control board 50, the rotating mechanism 30, the encoder 40, the laser emitting unit and the laser receiving unit in the transceiver assembly 20 are all connected to the main control board 50.
  • the encoder 40 can output the angle information of the rotating prism 10 and feedback the speed information of the rotating mechanism 30 in real time, so as to feed back to the control system to control the rotation speed of the rotating mechanism 30.
  • the encoder 40 can be a photoelectric code disc, a magnetic code disc, and other types of encoders, which can be selected according to actual conditions during specific implementation.
  • each transceiving assembly 20 namely the laser emitting unit and the laser receiving unit, is not shown in FIG. 50 may include a power supply, a Field Programmable Gate Array (FPGA), a network port chip, and an analog-to-digital converter (ADC) and other structures to realize the functions of the lidar.
  • FPGA Field Programmable Gate Array
  • ADC analog-to-digital converter
  • the multi-line lidar provided by the embodiment of the present application further includes a housing and a filter cover; the housing and the filter cover form a closed shell to protect the multi-line lidar; the rotating prism 10, the rotating mechanism 30, and each transceiver
  • the components 20 are all located in the housing, and the filter cover includes two filter areas arranged opposite to the emission directions of the two sets of transceiver components 20.
  • the two filter areas can be curved surfaces, and the junction of the two filter areas can be smooth Transition, or splicing at a certain angle, so that it can provide a larger emission angle to meet the requirements of the large scanning field of view of the lidar in this embodiment.
  • FIGS. 10 are schematic diagrams of the top view structure of a filter cover provided by an embodiment of the present application, and the shape of the filter cover corresponding to the field of view scanned by the multi-line lidar is curved.
  • the volume of the multi-line lidar can be reduced.
  • the laser transmittance will decrease and the reflectivity will increase, which will affect the long-distance detection characteristics of the radar. It will introduce the problem of radar close-range light interference.
  • Designing the filter cover as a curved surface can prevent the light from entering the filter cover at an excessively large angle and improve the performance of the multi-line lidar.
  • An embodiment of the present application also provides a self-moving vehicle, including: a vehicle body with a self-moving mode; and any one of the multi-line lidars provided in the above embodiments, the multi-line lidar is arranged on the front of the vehicle body and/or the vehicle Both sides of the tail.
  • the self-moving vehicle provided in this embodiment includes any of the multi-line lidars provided in the foregoing embodiments, and has the same or corresponding technical effects as the multi-line lidar, which will not be described in detail here.
  • the above-mentioned lidar may be arranged near the vehicle lights, or may be integrated with the vehicle lights in a module.
  • the multi-line lidar is equivalent to being located at the intersection of the two sides of the car body.
  • one group of transceiving components 20 in the multi-line lidar can detect the distance of obstacles in the area in front of the vehicle, and the other group of transceiving components 20 can be used to fill the blind to detect obstacles in the side area, thereby reducing the number of vehicles.
  • the installation quantity of upper lidar greatly reduces the cost and helps to improve the aesthetics of the vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本申请实施例公开了一种多线激光雷达及自移动车辆,该多线激光雷达包括旋转棱镜、旋转机构和两组收发组件;旋转棱镜包括至少三个侧面,至少三个侧面绕扫描旋转轴设置;其中至少两个侧面为反射面;旋转棱镜所有的反射面中,存在至少两个反射面与旋转棱镜的扫描旋转轴之间的夹角不相等;旋转机构用于驱动旋转棱镜绕扫描旋转轴旋转;两组收发组件分别位于旋转棱镜两侧,且两组所述收发组件相对于所述扫描旋转轴非对称设置,两组收发组件的激光出射面之间的夹角小于180度,以在旋转棱镜绕扫描旋转轴转动时形成至少两个方位对应的扫描视场。

Description

一种棱镜及多线激光雷达
本申请要求于2020年03月05日提交中国专利局,申请号为202010146628.8,发明名称为“一种多线激光雷达及自移动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及激光雷达技术,尤其涉及一种多线激光雷达及自移动车辆。
背景技术
随着激光技术的发展和应用,激光扫描技术越来越广泛地应用于测量、交通、驾驶辅助和移动机器人等领域。激光雷达是一种通过激光来探测目标的位置、速度、姿态等特征量的雷达***,其基本原理是先向目标发射探测激光光束,然后将接收从目标反射回来的信号,通过比较发射信号与接收信号的信息,就可获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。
目前,在不同的应用场所,对激光雷达各方面性能参数标准要求不一样,比如有的应用场所需要大的探测量程,有的应用场所需要大视场的同时做到近距离尽量无盲区等,但是这些参数标准很难同时达到。激光雷达很多因素都是相互影响的,比如大视场的激光雷达,其角分辨率就会受到约束,而高分辨率又会受到成本、体积、调试等各方面约束,导致成本高、体积大,调制方式复杂,不利于推广应用。
发明内容
根据本申请的各种实施例,提供一种多线激光雷达及自移动车辆。
第一方面,本申请实施例提供一种多线激光雷达,包括:
旋转棱镜,所述旋转棱镜包括至少三个侧面,至少三个侧面绕扫描旋转轴设置;其中至少两个所述侧面为反射面;所述旋转棱镜所有的反射面中,存在至少两个所述反射面与所述旋转棱镜的扫描旋转轴之间的夹角不相等;
旋转机构,所述旋转机构用于驱动所述旋转棱镜绕所述扫描旋转轴旋转;
两组收发组件,两组所述收发组件分别位于所述旋转棱镜两侧,且两组所述收发组件相对于所述扫描旋转轴非对称设置,两组所述收发组件的激光出射面之间的夹角小于180度,以在所述旋转机构驱动所述旋转棱镜绕所述扫描旋转轴转动时形成至少两个方位对应的扫描视场。
第二方面,本申请实施例还提供一种自移动车辆,包括:
车辆本体,具有自移动模式;以及
上述任意一种多线激光雷达,所述多线激光雷达设置于所述车辆本体的车头和/或车尾的两侧。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是本申请实施例提供的一种多线激光雷达的结构示意图;
图2是图1所示的多线激光雷达的一种俯视示意图;
图3是本申请实施例提供的另一种多线激光雷达的结构示意图;
图4和图5分别是本申请实施例中激光器的出射状态示意图;
图6是本申请实施例提供的又一种多线激光雷达的结构示意图;
图7是本申请实施例提供的又一种多线激光雷达的结构示意图;
图8是本申请实施例提供的又一种多线激光雷达的结构示意图;
图9和图10分别是本申请实施例提供的一种滤光罩的俯视结构示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可以根据具 体情况理解上述术语在本申请中的具体含义。
图1所示为本申请实施例提供的一种多线激光雷达的结构示意图,图2是对应图1所示的多线激光雷达的一种俯视图示意图。参考图1和图2,本实施例提供的多线激光雷达,包括旋转棱镜10、旋转机构30和两组收发组件20;旋转棱镜10包括顶面11、底面12和位于顶面11与底面12之间的至少三个侧面13(图1中以4个侧面为例进行解释说明,并非对本申请的限定),至少三个侧面13绕扫描旋转轴设置;其中至少两个侧面13为反射面;旋转棱镜10所有的反射面中,存在至少两个反射面与旋转棱镜10的扫描旋转轴之间的夹角不相等;旋转机构30用于驱动旋转棱镜10绕扫描旋转轴旋转;两组收发组件20分别位于旋转棱镜10两侧,且两组收发组件20相对于扫描旋转轴为非对称设置,如图1和图2所示。两组收发组件20的激光出射面之间的夹角小于180,从而使得两组收发组件20能够从不同的方位发射激光光束,并经过同一旋转棱镜10的旋转扫描后投射至至少两个方位以形成相应的扫描视场,进而能够为安装了该激光雷达的自主体提供至少两个方位上的扫描探测,而无需再自主体的不同方位上分别安装一个激光雷达,具有低成本且结构简单的优点。在其他的实施例中,也可以通过限定各部件的中心的相位位置关系来说明两组收发组件20相对于旋转棱镜10的位置。具体地,两组收发组件20的中心与旋转棱镜10的中心的连线形成一小于180°的角α。每组收发组件20包括激光发射单元21和激光接收单元22,激光发射单元21在旋转棱镜10绕扫描旋转轴转动时形成扫描视场。
可选的,位于顶面11与底面12之间的至少三个侧面13均为反射面,旋转棱镜10所有的反射面中存在至少两个反射面与旋转棱镜10的扫描旋转轴之间 的夹角不相等。相较于位于顶面11与底面12之间的至少三个侧面13不全为反射面的情况,增加了旋转棱镜10的反射面的数量,可进一步扩展多线激光雷达的线数。
其中,方位指的是位置方向。东、南、西、北为基本方位,东北、东南、西北、西南为中间方位。一组收发组件20形成的扫描视场覆盖至少一个方位,因此,通过设置两组收发组件20分别位于旋转棱镜10两侧,且两组收发组件20相对于扫描旋转轴非对称设置,两组收发组件20的激光出射面之间的夹角小于180度,在旋转机构30驱动旋转棱镜10绕扫描旋转轴转动时,形成至少两个方位对应的扫描视场。
在一些实施例中,收发组件20的数量大于2,各组收发组件20分别位于旋转棱镜10的至少两侧,且各组收发组件20相对于扫描旋转轴为非对称设置,任意两组收发组件20的激光出射面之间的夹角小于180,从而使得各组收发组件20能够从不同的方位发射激光光束,进而实现较宽的水平扫描角度。
可以理解的是,本实施例提供的多线激光雷达可以用于无人驾驶汽车、自动导航机器人等领域,也可以单独适用于3D建图、避障等应用。收发组件20用于发射探测光束和接收回波光束,探测光束可以为红外激光光束,接收回波光束可以采用光电探测器作为光接收元件,具体实施时可以根据实际情况选择。其中收发组件20发射的探测光束被旋转棱镜10的反射面反射后传输到待测目标,待测目标返回的回波光束被旋转棱镜10的反射面反射后被同一收发组件20接收。旋转机构30用于驱动旋转棱镜10旋转,例如可以为电动机。当旋转棱镜10旋转时,各收发组件20发射的探测光束可以实现水平扫描,形成对应的扫描视场。在本实施例中,水平方向指的是垂直于旋转棱镜扫描旋转轴的方 向,垂直方向是指平行于旋转棱镜的扫描旋转轴的方向,其他处不再重复进行说明。在具体实施时,各收发组件20均可以设置多路输出和多路接收,以形成不同视角的扫描范围。
可选的,如图2所示,两组收发组件20形成的扫描视场在水平方向上不重叠。在一些实施例中,两收发组件20形成的扫描视场在水平方向上还可以部分重叠。
本实施例的技术方案,通过设置旋转棱镜的至少两个侧面为反射面,且至少两个反射面与旋转棱镜的扫描旋转轴之间的夹角不相等,当旋转机构驱动旋转棱镜旋转时,每个反射面可以使一条光线实现水平扫描,不同反射面可以将同一条光线变为多条光线,从而增加扫描线数;通过设置两组收发组件,且两组收发组件相对于扫描旋转轴非对称设置,每组收发组件中的激光发射单元通过旋转棱镜绕扫描旋转轴转动时形成扫描视场,从而使得两组收发组件能够从不同的方位发射激光光束,并经过同一旋转棱镜的旋转扫描后投射至至少两个方位以形成相应的扫描视场,进而能够为安装了该激光雷达的自主体提供至少两个方位上的扫描探测,而无需再自主体的不同方位上分别安装一个激光雷达,具有低成本且结构简单的优点。
可选的,两组收发组件20包括第一收发组件和第二收发组件,第一收发组件在旋转棱镜10旋转时形成第一扫描视场,第二收发组件在旋转棱镜10旋转时形成第二扫描视场;第一收发组件在第一扫描视场内的垂直扫描分辨率大于第二收发组件在第二扫描视场内的垂直扫描分辨率。通常在自主体的移动过程中,对不同方位的障碍物扫描探测会有不同的需求,比如说在对自主体进行导航时,需要更加精确的知晓道路前方的障碍物的距离,且可以探测的距离越远 越好,而对于侧面则只需要实现对近距离范围内的障碍物的扫描即可,从而为转向等操作提供参考。因此,本实施例中的激光雷达,其中一组收发组件20的角度分辨率大于另一组收发组件20的角度分辨率,从而既可以满足使用需求,又可以降低产品成本。在另一实施例中,也可以令两组收发组件20中具有不同的脉冲频率,比如对应于需要探测远距离的收发组件20,采用的脉冲频率相对于只需要进行障碍物探测的收发组件小,从而保证既能实现对远距离的障碍物的距离探测,也能够实现对近距离的障碍物扫描检测。
示例性的,继续参考图2,其中第一组收发组件中的激光发射单元21a发射激光光束L1,第二组收发组件中的激光发射单元21b发射激光光束L2,当旋转棱镜10旋转过程中,激光光束L1扫描形成第一扫描视场S1,激光光束L2扫描形成第二扫描视场S2。以四面体的旋转棱镜为例,其中第一组收发组件中的激光发射单元21a发出X路在垂直方向呈不同角度的激光光束,每一路激光光束经过旋转的四面体棱镜变成垂直方向上(或者垂直向下,具体看棱镜设计)4束激光光束,所以X路激光光束变成4X束激光光束进行扫描探测,形成第一扫描视场S1。第一扫描视场S1的激光光束在探测目标表面漫反射后,再次经过四面体棱镜,分别被第一组收发组件中的激光接收单元(图2中未示出)中对应的X个不同光电探测器接收到。不同角度的激光光束只有对应的光电探测器可以接收到。根据实际需求,可以设置对应的参数,使第一扫描视场S1的水平角度达到0~180度,探测距离达到100米、200米或者300米,或者更远,该扫描范围内,水平方向和垂直方向线数分布更密集。
第二组收发组件中的激光发射单元21b发出Y(Y可以和X相同也可以和X不相同,具体实施时可以根据实际需求设计)路在垂直方向呈不同角度的激光 光束,每一路激光光束经过旋转的四面体棱镜变成垂直方向上4束激光光束,所以Y路激光光束变成4Y束激光光束进行扫描探测,形成第二扫描视场S2。第二扫描视场S2的激光光束在探测目标表面漫反射后,再次经过四面体棱镜,分别被第二组中的激光接收单元(图2中未示出)中对应的Y个不同光电探测器接收到。不同角度的激光光束只有对应的光电探测器可以接收到。根据实际需求,可以设置对应的参数,使第二扫描视场S2的水平角度达到0~180度,垂直方向角度达到0度~180度,其探测距离较近,水平方向和垂直方向分布较稀疏,其主要用于补盲,即现有的激光雷达包括测远雷达和补盲雷达为两种类型,本实施例中的多线激光雷达将其合并为同一个雷达,即可同时测远和补盲。整个激光雷达的整个水平扫描角度可以大于180度,甚至超过270度,从而实现宽视场范围的扫描。
在上述实施例的基础上,图3所示为本申请实施例提供的另一种多线激光雷达的结构示意图。参考图3,可选的,每组收发组件20包括至少一个激光发射单元21和至少一个激光接收单元22;激光发射单元21包括多个激光器211,同一激光发射单元21中的各激光器211的出射光束存在不为零的夹角;同一个激光发射单元21的多个激光器211集成在同一电路板上;激光接收单元22包括多个光电探测器221,每个光电探测器221用于接收对应激光器211出射,并被待测目标返回的光束;同一个激光接收单元22的多个光电探测器221集成在同一电路板上。
可以理解的是,通过设置每个激光发射单元21包括多个激光器211,每个激光接收单元22包括多个光电探测器221,可以有效增大多线激光雷达在竖直方向的视场角。在具体实施时,激光器211可以为激光二极管LD或垂直腔面发 射激光器VCSEL,其中,LD或VCSEL均可以为自由空间输出或通过光纤耦合输出;激光器211还可以为光纤激光器、气体激光器或固体激光器等。光电探测器221可以为多个阵列排布的雪崩二极管(Avalanche Photo Diode,APD),也可以为单个大面元APD、焦平面阵列探测器、单点设置或阵列设置的硅光电倍增管(multi-pixelphoton counter,MPPC)探测器或本领域技术人员可知的其他类型的阵列探测器。
可选的,同一激光发射单元中各激光器的出射光束呈发散状态排列或者呈汇聚状态排列。
示例性的,图4和图5所示分别为本申请实施例中激光器的出射状态示意图,图4和图5中均示意性示出一个激光发射单元包括4个激光器,在其他实施例中,还可以为8个、16个等其他数量,具体实施时可以根据实际需求选择。参考图4和图5,4个激光器的所有激光光束位于同一出射平面M中,同一收发组件中各个激光束的发射仰角不同。在四个空间角各不相同的情况下,4个激光器可产生16条扫描线。图4的4个激光光束束呈现发散状态排列,图5的4个激光光束呈现汇聚状态排列。
上述实施例中,通过将多个激光器及多个光电探测器分别集成在一块电路板上,可以统一调试,简化调试难度,降低成本。需要说明的是,在具体实施时,多个激光器和多个光电探测可以单组排列,也可以多组排列,本申请实施例对此不作限定。具体的,当激光发射单元中的多个激光器呈单组排列(单排单列)时,同组的激光接收单元中的多个光电探测器呈单组排列;当激光发射单元中的多个激光器呈多组排列(多排多列)时,同组的激光接收单元中的多个光电探测器呈多组排列,其中,每组激光发射单元包括至少两个激光器,每组激光 接收单元包括至少两个光电探测器。在另一实施例中,也可以将激光发射单元和激光接收单元集成在一个模组上,从而方便统一安装和调试。
图6所示为本申请实施例提供的又一种多线激光雷达的结构示意图。参考图6,可选的,每组收发组件20还包括一发射镜组23和一接收镜组24,发射镜组23设置于激光发射单元21和旋转棱镜10之间,用于将激光发射单元21发射的激光光束准直后照射到旋转棱镜10的反射面上,接收镜组24设置于激光接收单元22和旋转棱镜10之间,用于将旋转棱镜10的反射面反射的激光光束汇聚后照射到激光接收单元22上。
可以理解的是,激光发射单元21中的激光器211直接出射的光束质量可能无法满足雷达探测距离的要求,因此可以在激光发射单元21的出光侧设置发射镜组23,用于对激光发射单元21的出射光束进行聚焦和准直,使光束以比较小的发散角度发射,以实现远距离目标的探测。待测目标返回的光束,经过空间传输会出现衰减,因此可以在激光接收单元22入光侧设置接收镜组24,以使激光接收单元22收集尽可能多的回波光束,在具体实施时,接收镜组24的视场在0°~180°之间。
需要说明的是,图6中示出的发射镜组和接收镜组都包括两片透镜仅是示意性的示出各镜组的结构,具体实施时可以根据实际光路条件设计镜组的结构。
可选的,所有反射面与旋转棱镜的扫描旋转轴的夹角大于或等于0°,小于或等于10°。
通过设置反射面与扫描旋转轴的夹角在0°~10°之间,可以避免旋转棱镜的反射面倾斜角度过大,提高旋转棱镜旋转时的稳定性。
在某个实施例中,旋转棱镜可以包括至少四个反射面。可选的,对于任一 反射面,其与扫描旋转轴的夹角同时大于其相邻两个反射面与扫描旋转轴的夹角,或者同时小于其相邻两个反射面与扫描旋转轴的夹角。举例说明,旋转棱镜的四个反射面顺时针分别与扫描旋转轴的夹角标记为∠1、∠2、∠3、∠4,其中设∠1=0°,∠2=2°,∠3=1°,∠4=1.5°。∠2同时大于∠1和∠3,∠3同时小于∠2和∠4,这样设置可以使得旋转棱镜在旋转过程中更加平稳。进一步的,旋转棱镜的至少一个反射面还可以设置为分层结构,比如沿扫描旋转轴的方向依次分布至少两个反射区,且每一反射区与扫描旋转轴的夹角不完全同,这样可以使得多个激光器发出的激光光束通过分层结构时在竖直方向呈非均匀分布。在一实施例中,可以将各反射区中,位于中间的反射区与扫描旋转轴的夹角大于位于两侧的反射区与扫描旋转轴的夹角,从而在垂直方向上形成中间密,上和下稀疏的分布。
图7所示为本申请实施例提供的又一种多线激光雷达的结构示意图。参考图7,可选的,旋转棱镜10的多个侧面围成空心轴14;旋转机构30设置于旋转棱镜10的空心轴14内。
可以理解的是,通过将旋转机构30设置于旋转棱镜10的空心轴14内,可以有效减小激光雷达的体积,有利于小型化的发展。
图8所示为本申请实施例提供的又一种多线激光雷达的结构示意图。参考图8,可选的,本实施例提供的多线激光雷达还包括编码器40,编码器40设置在旋转棱镜10上,用于检测并输出旋转棱镜10的角度信息和/或旋转机构30的速度信息;和/或主控板50,旋转机构30、编码器40、收发组件20中的激光发射单元和激光接收单元均与主控板50连接。示例性的,在某一实施例中,编码器40可实时输出旋转棱镜10的角度信息以及反馈旋转机构30速度信息, 以反馈给控制***来控制旋转机构30的转速。其中,编码器40可以选用光电码盘、磁码盘等类型的编码器,具体实施时可以根据实际情况选择。
可以理解的是,图8中未示出各收发组件20的具体结构,即激光发射单元和激光接收单元,因此示意性示出主控板50与收发组件20连接,具体实施时,主控板50可以包括电源、现场可编程门阵列(Field Programmable Gate Array,FPGA)、网口芯片和模数转换器(ADC)等结构,以实现激光雷达的功能,具体实施时可以根据实际条件设计。
可选的,本申请实施例提供的多线激光雷达还包括壳体和滤光罩;壳体和滤光罩形成封闭的外壳以保护多线激光雷达;旋转棱镜10、旋转机构30、各收发组件20均位于外壳内,滤光罩包括与两组收发组件20的出射方向相对设置的两个滤光区,两个滤光区可以均采用弧面,两个滤光区的交接处可以圆滑过渡,或者呈一定的角度进行拼接,从而使得其能够提供较大的射出角度,以满足本实施例中的激光雷达的大扫描视场的需求。示意性的,图9和图10所示分别为本申请实施例提供的一种滤光罩的俯视结构示意图,通过将多线激光雷达扫描视场对应区域的滤光罩的形状为弧面,一方面可以减小多线激光雷达的体积,另一方面,因为较大入射角入射到滤光罩时会导致激光透过率降低,反射率增加,即会影响雷达的远距离探测特性,又会引入雷达近距离光干扰的问题。将滤光罩设计为弧面可以避免光线入射到滤光罩的角度过大,提升多线激光雷达的性能。
本申请实施例还提供一种自移动车辆,包括:车辆本体,具有自移动模式;以及上述实施例提供的任意一种多线激光雷达,多线激光雷达设置于车辆本体的车头和/或车尾的两侧。本实施例提供的自移动车辆包括上述实施例提供的任 意一种多线激光雷达,具备多线激光雷达相同或相应的技术效果,此处不再详述。
在一些实施例中,上述激光雷达可以设置在车灯的附近,也可以和车灯集成在一个模块中。此时,多线激光雷达相当于位于车体两个面的交汇处。此时,多线激光雷达中的一组收发组件20能够实现对车辆前方区域的障碍物距离探测,另一组收发组件20则作为补盲,实现对侧面区域的障碍物探测,从而可以减少车辆上激光雷达的安装数量,大大降低成本且有利于提高车辆的美观度。
显然,本申请的上述实施例仅仅是为了清楚说明本申请所作的举例,而并非是对本申请的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请权利要求的保护范围之内。

Claims (23)

  1. 一种多线激光雷达,包括:
    旋转棱镜,所述旋转棱镜包括至少三个侧面,至少三个侧面绕扫描旋转轴设置;其中至少两个所述侧面为反射面;所述旋转棱镜所有的反射面中,存在至少两个所述反射面与所述旋转棱镜的扫描旋转轴之间的夹角不相等;
    旋转机构,所述旋转机构用于驱动所述旋转棱镜绕所述扫描旋转轴旋转;
    两组收发组件,两组所述收发组件分别位于所述旋转棱镜两侧,且两组所述收发组件相对于所述扫描旋转轴非对称设置,两组所述收发组件的激光出射面之间的夹角小于180度,以在所述旋转机构驱动所述旋转棱镜绕所述扫描旋转轴转动时形成至少两个方位对应的扫描视场。
  2. 根据权利要求1所述的多线激光雷达,其特征在于,两组所述收发组件的中心与所述旋转棱镜的中心的连线的夹角小于180°。
  3. 根据权利要求1所述的多线激光雷达,其特征在于,两组所述收发组件形成的扫描视场在水平方向上不重叠或部分重叠。
  4. 根据权利要求1所述的多线激光雷达,其特征在于,两组所述收发组件包括第一收发组件和第二收发组件,所述第一收发组件在所述旋转棱镜旋转时形成第一扫描视场,所述第二收发组件在所述旋转棱镜旋转时形成第二扫描视场;
    所述第一收发组件在所述第一扫描视场内的垂直扫描分辨率大于所述第二收发组件在所述第二扫描视场内的垂直扫描分辨率;
    其中,与所述旋转棱镜的扫描旋转轴平行的方向为垂直方向。
  5. 根据权利要求4所述的多线激光雷达,其特征在于,所述第一收发组件与所述第二收发组件具有不同的脉冲频率。
  6. 根据权利要求4所述的多线激光雷达,其特征在于,所述第一扫描视场的水平角度为0°~180°,所述第二扫描视场的水平角度为0°~180°。
  7. 根据权利要求1所述的多线激光雷达,其特征在于,所述收发组件的数量大于2。
  8. 根据权利要求1或4所述的多线激光雷达,其特征在于,每组所述收发组件包括至少一个激光发射单元和至少一个激光接收单元;所述激光发射单元包括多个激光器,同一所述激光发射单元中的各所述激光器的出射光束存在不为零的夹角;同一个所述激光发射单元的多个激光器集成在同一电路板上;
    所述激光接收单元包括多个光电探测器,每个所述光电探测器用于接收对应激光器出射,并被待测目标返回的光束;同一个所述激光接收单元的多个光电探测器集成在同一电路板上。
  9. 根据权利要求8所述的多线激光雷达,其特征在于,同一所述激光发射单元中的各所述激光器的出射光束呈发射状态排列或呈汇聚状态排列。
  10. 根据权利要求8所述的多线激光雷达,其特征在于,所述激光发射单元的多个激光器的所有出射光束位于同一出射平面中,所述激光发射单元的多个激光器的各个出射光束的发射仰角不同。
  11. 根据权利要求8所述的多线激光雷达,其特征在于,当所述激光发射单元中的多个激光器呈单组排列时,同组的所述激光接收单元中的多个光电探测器呈单组排列;当所述激光发射单元中的多个激光器呈多组排列时,同组的所述激光接收单元中的多个光电探测器呈多组排列,其中,每组所述激光发射单元包括至少两个所述激光器,每组所述激光接收单元包括至少两个所述光电探测器。
  12. 根据权利要求8所述的多线激光雷达,其特征在于,每组所述收发组件的所述激光发射单元和所述激光接收单元集成在一个模组内。
  13. 根据权利要求8所述的多线激光雷达,其特征在于,每组所述收发组件还包括一发射镜组和一接收镜组,所述发射镜组设置于所述激光发射单元和所述旋转棱镜之间,用于将所述激光发射单元发射的激光光束准直后照射到所述旋转棱镜的反射面上,所述接收镜组设置于所述激光接收单元和所述旋转棱镜之间,用于将所述旋转棱镜的反射面反射的激光光束汇聚后照射到所述激光接收单元上。
  14. 根据权利要求1所述的多线激光雷达,所述旋转棱镜所有的反射面与所述扫描旋转轴的夹角大于或等于0°,小于或等于10°。
  15. 根据权利要求1所述的多线激光雷达,其特征在于,对于任一所述反射面,其与所述扫描旋转轴的夹角同时大于其相邻两个反射面与所述扫描旋转轴的夹角,或者同时小于其相邻两个反射面与所述扫描旋转轴的夹角。
  16. 根据权利要求1所述的多线激光雷达,其特征在于,所述旋转棱镜的至少一个反射面包括沿所述扫描旋转轴依次分布的至少两个反射区;每个反射区与所述扫描旋转轴的夹角不完全相同。
  17. 根据权利要求16所述的多线激光雷达,其特征在于,当所述至少两个反射区的数量大于或等于3时,位于所述旋转棱镜中间的所述反射区与所述扫描旋转轴的夹角大于位于所述旋转棱镜两侧的所述反射区所述扫描旋转轴的夹角。
  18. 根据权利要求1所述的多线激光雷达,其特征在于,所述旋转棱镜的多个所述侧面围成空心轴;
    所述旋转机构设置于所述旋转棱镜的空心轴内。
  19. 根据权利要求8所述的多线激光雷达,其特征在于,还包括:
    编码器,所述编码器设置在所述旋转棱镜上,用于检测并输出所述旋转棱镜的角度信息和/或所述旋转机构的速度信息;和/或
    主控板,所述旋转机构、所述编码器、所述收发组件中的所述激光发射单元和所述激光接收单元均与所述主控板连接。
  20. 根据权利要求1所述的多线激光雷达,其特征在于,还包括壳体和滤光罩;所述壳体和所述滤光罩形成封闭的外壳以保护所述多线激光雷达;所述滤光罩包括与两组所述收发组件的出射方向相对设置的两个滤光区。
  21. 根据权利要求20所述的多线激光雷达,其特征在于,两个所述滤光区为弧面结构。
  22. 一种自移动车辆,包括:
    车辆本体,具有自移动模式;以及
    权利要求1~21任一所述的多线激光雷达,所述多线激光雷达设置于所述车辆本体的车头和/或车尾的两侧。
  23. 根据权利要求22所述的自移动车辆,其特征在于,所述多线激光雷达设置于所述车辆本体的车灯内。
PCT/CN2021/077794 2020-03-05 2021-02-25 一种棱镜及多线激光雷达 WO2021175141A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21765511.7A EP3992663A4 (en) 2020-03-05 2021-02-25 PRISM AND MULTILAYER LASER RADAR
KR1020227007277A KR20220043191A (ko) 2020-03-05 2021-02-25 프리즘 및 멀티라인 레이저 레이더
JP2022502063A JP7356195B2 (ja) 2020-03-05 2021-02-25 プリズム及びマルチビームレーザーレーダー
US17/569,610 US20220128667A1 (en) 2020-03-05 2022-01-06 Multi-beam laser radar and self-moving vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010146628.8 2020-03-05
CN202010146628.8A CN111157975A (zh) 2020-03-05 2020-03-05 一种多线激光雷达及自移动车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/569,610 Continuation US20220128667A1 (en) 2020-03-05 2022-01-06 Multi-beam laser radar and self-moving vehicle

Publications (1)

Publication Number Publication Date
WO2021175141A1 true WO2021175141A1 (zh) 2021-09-10

Family

ID=70567041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077794 WO2021175141A1 (zh) 2020-03-05 2021-02-25 一种棱镜及多线激光雷达

Country Status (6)

Country Link
US (1) US20220128667A1 (zh)
EP (1) EP3992663A4 (zh)
JP (1) JP7356195B2 (zh)
KR (1) KR20220043191A (zh)
CN (1) CN111157975A (zh)
WO (1) WO2021175141A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021030480A1 (en) * 2019-08-12 2021-02-18 Dusty Robotics, Inc. Improved position accuracy mobile robot printing system
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能***有限公司 一种多线激光雷达及自移动车辆
CN112859045B (zh) * 2020-12-30 2024-04-02 北京北科天绘科技有限公司 一种激光扫描装置及其激光雷达、无人机或智能车
WO2022156344A1 (zh) * 2021-01-20 2022-07-28 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机
CN112711007A (zh) * 2021-01-20 2021-04-27 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机
CN112946666A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能***有限公司 一种激光雷达***
CN112946665A (zh) * 2021-01-28 2021-06-11 深圳市镭神智能***有限公司 一种激光雷达***
CN112986956B (zh) * 2021-02-04 2024-02-13 广州市慧建科技有限公司 一种激光雷达光波收发控制方法及激光雷达
CN113075681A (zh) * 2021-03-16 2021-07-06 长沙思木锐信息技术有限公司 一种扫描装置和扫描测量***
CN116466324A (zh) * 2021-04-09 2023-07-21 华为技术有限公司 一种探测装置及其控制方法
CN113050102A (zh) * 2021-04-15 2021-06-29 深圳市镭神智能***有限公司 一种激光雷达***
CN113391317A (zh) * 2021-04-15 2021-09-14 深圳市镭神智能***有限公司 一种激光雷达***
CN113391294B (zh) * 2021-06-18 2021-12-31 特斯联科技集团有限公司 多线激光雷达约束调节***及检测方法
CN116027353A (zh) * 2021-10-26 2023-04-28 华为技术有限公司 一种探测装置及扫描器
WO2023108368A1 (zh) * 2021-12-13 2023-06-22 深圳市镭神智能***有限公司 一种激光扫描模组、激光雷达、车辆及机器人
CN114265041A (zh) * 2021-12-14 2022-04-01 北醒(北京)光子科技有限公司 扫描装置和扫描方法
CN116559886A (zh) * 2022-01-29 2023-08-08 华为技术有限公司 激光雷达及终端设备
CN114325735B (zh) * 2022-03-16 2022-06-14 成都量芯集成科技有限公司 一种多点光发射测距装置及方法
CN115598619A (zh) * 2022-11-08 2023-01-13 北醒(北京)光子科技有限公司(Cn) 激光雷达
CN117347980B (zh) * 2023-12-04 2024-03-12 深圳市镭神智能***有限公司 大视场激光雷达和载具
CN117890931A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9239959B1 (en) * 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor
CN107918118A (zh) * 2017-12-20 2018-04-17 武汉万集信息技术有限公司 一种激光雷达
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能***有限公司 一种旋转棱镜和多线激光雷达测距***
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能***有限公司 一种棱镜及多线激光雷达***
CN109870708A (zh) * 2017-12-05 2019-06-11 北科天绘(苏州)激光技术有限公司 一种具有激光雷达装置的智能车
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能***有限公司 一种多线激光雷达及自移动车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4822297A (en) * 1996-10-11 1998-05-11 Schwartz Electro-Optics, Inc. Intelligent vehicle highway multi-lane sensor
JP2003329773A (ja) 2002-05-10 2003-11-19 Hitachi Ltd 複数の距離検知センサを設置した車両制御装置
EP1619469B1 (en) 2004-07-22 2008-02-27 Bea S.A. Light scanning device for detection around automatic doors
JP5050262B2 (ja) 2007-05-14 2012-10-17 株式会社リコー 画像形成装置
JP5267786B2 (ja) 2008-09-17 2013-08-21 株式会社Ihi レーザレーダ及びレーザレーダによる境界監視方法
JP5668207B2 (ja) 2013-01-25 2015-02-12 北陽電機株式会社 物体検出装置、測距装置、ドア制御装置、及び自動ドア装置
US20140247349A1 (en) 2013-03-04 2014-09-04 GM Global Technology Operations LLC Integrated lighting, camera and sensor unit
WO2018052087A1 (ja) 2016-09-15 2018-03-22 株式会社小糸製作所 センサシステム
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
CN109879708A (zh) 2019-04-12 2019-06-14 青岛农业大学 一种GO/Mn改性玉米芯生物炭有机肥及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9239959B1 (en) * 2013-04-08 2016-01-19 Lockheed Martin Corporation Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor
CN109870708A (zh) * 2017-12-05 2019-06-11 北科天绘(苏州)激光技术有限公司 一种具有激光雷达装置的智能车
CN107918118A (zh) * 2017-12-20 2018-04-17 武汉万集信息技术有限公司 一种激光雷达
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能***有限公司 一种旋转棱镜和多线激光雷达测距***
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能***有限公司 一种棱镜及多线激光雷达***
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能***有限公司 一种多线激光雷达及自移动车辆

Also Published As

Publication number Publication date
EP3992663A1 (en) 2022-05-04
CN111157975A (zh) 2020-05-15
KR20220043191A (ko) 2022-04-05
JP2022541007A (ja) 2022-09-21
EP3992663A4 (en) 2022-10-12
JP7356195B2 (ja) 2023-10-04
US20220128667A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
CN108445467A (zh) 一种扫描激光雷达***
CN112965044B (zh) 一种激光雷达
CN210015229U (zh) 一种距离探测装置
CN111308443B (zh) 一种激光雷达
CN111025266B (zh) 一种棱镜及多线激光雷达
CN109738880A (zh) 一种激光雷达***及激光测距装置
CN211718520U (zh) 一种多线激光雷达
CN212275968U (zh) 一种激光雷达***
WO2020142870A1 (zh) 一种测距装置
CN113030911A (zh) 一种激光雷达***
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
CN112946666A (zh) 一种激光雷达***
CN212008925U (zh) 一种多线激光雷达
CN113050102A (zh) 一种激光雷达***
CN111308444A (zh) 一种激光雷达***
CN211554313U (zh) 一种多线激光雷达
CN212569117U (zh) 一种多线激光雷达及自移动车辆
WO2022227609A1 (zh) 激光雷达
CN112946665A (zh) 一种激光雷达***
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
CN212275967U (zh) 一种激光雷达
CN210243829U (zh) 一种激光雷达***及激光测距装置
CN113391317A (zh) 一种激光雷达***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502063

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021765511

Country of ref document: EP

Effective date: 20220127

ENP Entry into the national phase

Ref document number: 20227007277

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE