WO2021175042A1 - 悬挂装置、悬挂减振装置及六轮仿生底盘 - Google Patents

悬挂装置、悬挂减振装置及六轮仿生底盘 Download PDF

Info

Publication number
WO2021175042A1
WO2021175042A1 PCT/CN2021/073562 CN2021073562W WO2021175042A1 WO 2021175042 A1 WO2021175042 A1 WO 2021175042A1 CN 2021073562 W CN2021073562 W CN 2021073562W WO 2021175042 A1 WO2021175042 A1 WO 2021175042A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
suspension
arm
front wheel
hinged
Prior art date
Application number
PCT/CN2021/073562
Other languages
English (en)
French (fr)
Inventor
高源�
郑昌海
Original Assignee
大陆智源科技(北京)有限公司
苏州大陆智源机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010135427.8A external-priority patent/CN111137084A/zh
Priority claimed from CN202022400344.5U external-priority patent/CN214295446U/zh
Priority claimed from CN202011155327.8A external-priority patent/CN112298395B/zh
Application filed by 大陆智源科技(北京)有限公司, 苏州大陆智源机器人科技有限公司 filed Critical 大陆智源科技(北京)有限公司
Priority to EP21764180.2A priority Critical patent/EP4116115A4/en
Priority to US17/441,589 priority patent/US11780282B2/en
Priority to KR1020227021073A priority patent/KR102674772B1/ko
Publication of WO2021175042A1 publication Critical patent/WO2021175042A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/001Arrangements for attachment of dampers
    • B60G13/003Arrangements for attachment of dampers characterised by the mounting on the vehicle body or chassis of the damper unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0161Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during straight-line motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01933Velocity, e.g. relative velocity-displacement sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/02Resilient suspensions for a single wheel with a single pivoted arm
    • B60G3/04Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle
    • B60G3/06Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially transverse to the longitudinal axis of the vehicle the arm being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/02Resilient suspensions for a single wheel with a single pivoted arm
    • B60G3/12Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially parallel to the longitudinal axis of the vehicle
    • B60G3/14Resilient suspensions for a single wheel with a single pivoted arm the arm being essentially parallel to the longitudinal axis of the vehicle the arm being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/008Attaching arms to unsprung part of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/10Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with more than four wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/13Independent suspensions with longitudinal arms only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/142Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/144Independent suspensions with lateral arms with two lateral arms forming a parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/18Multilink suspensions, e.g. elastokinematic arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/44Indexing codes relating to the wheels in the suspensions steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/31Spring/Damper and/or actuator Units with the spring arranged around the damper, e.g. MacPherson strut
    • B60G2202/312The spring being a wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/128Damper mount on vehicle body or chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/129Damper mount on wheel suspension or knuckle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/13Mounting of springs or dampers with the spring, i.e. coil spring, or damper horizontally mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/62Adjustable continuously, e.g. during driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/60Subframe construction
    • B60G2206/604Subframe construction with two parallel beams connected by cross members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/07Off-road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/37Vehicles having steerable wheels mounted on a vertically moving column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/40Variable track or wheelbase vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/50Electric vehicles; Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/823Obstacle sensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/47Climbing vehicles, e.g. facade climbing devices
    • B60Y2200/48Stair-climbing vehicles

Definitions

  • the invention belongs to the technical field of chassis machinery, and particularly relates to a suspension device, a suspension vibration reduction device and a six-wheeled bionic chassis for use in a robot, a mobile robot or a vehicle, and the suspension device and the suspension vibration reduction device are used to improve the robot , The ability of mobile robots or vehicles to overcome obstacles.
  • the suspension damping device can reduce the vibration caused by the mobile robot during the movement and make the mobile robot work stably.
  • the existing suspension vibration damping device uses a linear bearing suspension system.
  • this linear bearing suspension system is not compact in structure and takes up a large space.
  • the cost of the linear bearing itself is also relatively high, and when the linear bearing suspension system is installed When the vibration damping device is suspended, the processing of the mounting surface requires high machining accuracy, so that the life of the entire suspension damping device is reduced, and the cost is also high.
  • tires and steering gear are the main core of controlling the vehicle when turning.
  • the prior art steering gear uses a single-link steering gear, which is characterized by: driving can independently and directly control the tires of the front wheels.
  • driving can independently and directly control the tires of the front wheels.
  • the front is controlled by the steering gear.
  • the wheel will turn in the direction to turn, and the rear wheel of the vehicle will turn and move in the direction in which the vehicle is turning.
  • This type of steering gear is sufficient for a general four-wheeled vehicle, but a single link
  • This type of steering gear cannot be applied to special vehicles that require a large number of wheels, such as buses or multi-wheeled chariots with tracks.
  • the suspension of the vehicle is used to stabilize the vehicle and maintain the stability of the vehicle body in various traveling states, such as running on a general horizontal plane such as the ground, climbing or crossing obstacles.
  • the suspension is mainly composed of springs and shock absorbers. Therefore, the suspension can be regarded as a shock absorber.
  • the suspension can be an independent suspension or a non-independent suspension.
  • the independent suspension is characterized by separate control of the left and right halves of the wheeled chassis.
  • the non-independent suspension controls all the tires of the vehicle in a unified manner.
  • the suspension can also be divided into active or non-active. The difference between the two is that the active suspension can be calculated according to the elastic constant and damping coefficient of the suspension to adapt to different road environments.
  • the elastic constant and damping coefficient of the type suspension are fixed and will not change depending on the environment.
  • the disclosed chassis device is suitable for military vehicles, that is, suitable for environments with rugged terrain, and has good landability, more
  • the chassis device disclosed in the prior art cannot drive the robot to climb ladders, turn or have any walking direction, and the mobile device connected to it is not disclosed as a robot mobile device or Only the vehicle body, that is, the influence of the change of the mobile device on the operation of the chassis is not taken into consideration.
  • the purpose of the present invention is to provide a suspension damping device, which can drive the wheel set to move up and down when the suspension damping device acts, and can maintain the wheel set in contact with the ground or road surface, so the chassis on which the suspension damping device is installed can be stable Overcome obstacles.
  • the present invention discloses a suspension damping device, which is installed on the chassis of a mobile robot, and includes a frame, a control arm group, a spring damper, and a steering device.
  • the frame is located on the ground and fixed to the chassis, and the control arm
  • the group includes an upper control arm and a lower control arm.
  • One end of the upper control arm and the lower control arm is hinged to the frame and the other end is hinged to the steering device, so that the control arm group controls the motion stability of the steering device, and the damping device is opposite to One end of the ground is hinged with the frame, and the other end of the vibration damping device faces the ground and is hinged with the steering device.
  • the present invention also discloses a suspension vibration damping device, which is installed on the chassis of a mobile robot and includes a frame, a control arm group, a suspension shock absorber and a steering device.
  • the frame is located on the ground and fixed to the chassis, and the control arm group includes an upper
  • the control arm and the lower control arm, one end of the upper control arm and the lower control arm are hinged with the frame, and the other end is hinged with the steering device, so that the control arm group controls the movement stability of the steering device, and the vibration damping device is perpendicular to the ground.
  • the end of the vibration damping device opposite to the ground is hinged with the chassis, and the other end of the vibration damping device faces the ground and is hinged with the lower control arm.
  • the present invention further discloses a suspension vibration damping device, which is installed on the chassis of a movable robot, and includes a frame, a wheel set hinge seat, a vibration damping device, and a steering device.
  • the frame is located on the ground and fixed to the chassis.
  • One end is hinged with the frame and the other end is fixedly connected with the steering device, so that the wheel set hinge seat controls the movement stability of the steering device.
  • the other end faces the road surface and is accommodated in the wheel set hinge seat, and the other end of the vibration damping device is hinged on the wheel set hinge seat.
  • the present invention also discloses a suspension assembly, which can be applied to a robot or a vehicle, so that the robot or the vehicle can run smoothly on uneven horizontal surfaces such as gravel roads, dirt roads, etc., to smoothly cross the speed bump , Vertical obstacles.
  • the suspension assembly disclosed in the present invention can adjust the hardness of the suspension assembly to compress the height of the wheel set, so that the entire robot or vehicle has a vibration damping stroke corresponding to the positive and negative range of the compression height.
  • the present invention discloses a suspension assembly, including: a support arm group, composed of a first support arm and a second support arm; the suspension spring assembly is arranged between the first support arm and the second support arm, and the suspension The two ends of the spring assembly are respectively hinged with the first and second arms; and the steering bracket, one end of which is hinged with one of the first and second arms, and the other end is connected with the steering mechanism, and One end of the steering mechanism facing the horizontal plane is pivotally connected to the wheel set.
  • Another object of the present invention is to disclose a six-wheeled bionic chassis.
  • the front wheel suspension spring assembly, the middle wheel suspension spring assembly and the rear wheel suspension spring assembly of the six-wheeled bionic chassis act, they can drive the wheel set to move up and down and keep the front
  • the wheels, middle wheel and rear wheels are always in frontal contact with the horizontal plane to maintain the balance of the six-wheel bionic chassis.
  • the purpose of the present invention is to disclose a six-wheel bionic chassis with compact overall structure, and the load capacity of the six-wheel bionic chassis can be adjusted by adjusting the front wheel suspension spring assembly, the middle wheel suspension spring assembly and the rear wheel suspension spring assembly.
  • Another object of the present invention is to disclose a six-wheeled bionic chassis, which can adjust the hardness of the front wheel suspension assembly, the middle wheel suspension assembly and the rear wheel suspension assembly to compress the height of the front wheel group, the middle wheel group and the rear wheel group, and Let the entire six-wheel bionic chassis have a damping stroke corresponding to the positive and negative range of the compression height.
  • the present invention discloses a six-wheeled bionic chassis with a chassis frame, a controller, a sensor, and a front-wheel suspension assembly pivotally connected to both sides of the front end of the chassis frame facing the horizontal plane, and pivoted on both sides of the middle of the chassis frame.
  • the middle wheel suspension assembly is connected and the rear wheel suspension assembly is pivotally connected to both sides of the rear end of the chassis frame.
  • the controller and the sensor are respectively electrically connected to the front wheel suspension assembly, the middle wheel suspension assembly and the rear wheel suspension assembly.
  • a front wheel suspension assembly includes: the front wheel auxiliary wheel lifting bracket, one end is hinged with the front end of the chassis frame; the front wheel upper arm group is composed of the first front wheel upper arm and a pair of second front wheel upper arms , The first front wheel upper support arm is arranged above the second front wheel upper support arm, one end of the first front wheel upper support arm is hinged with the other end of the front wheel auxiliary wheel lifting bracket and the other end of the first front wheel upper support arm One end is hinged to the front wheel steering bracket, one end of each second front wheel upper arm is hinged to the other end of the front wheel auxiliary lifting bracket, and the other end of each second front wheel upper arm is respectively connected to the front wheel
  • the steering bracket is hinged; the two ends of the front wheel suspension spring assembly are respectively hinged to the two ends of the upper arm group of the front wheels; and the front wheel steering bracket, one end of which is fixedly connected to the front wheel steering mechanism and the end of the front wheel steering mechanism facing the ground direction
  • the front wheel group is pivotally connected, and the front
  • Each middle wheel suspension assembly includes: middle wheel upper support arm group, composed of the first middle wheel upper support arm and a pair of second middle wheel upper support arms, the first middle wheel upper support arm is arranged on the second middle wheel Above the upper support arm, one end of the first middle wheel upper support arm is hinged with the middle of the chassis frame, and the other end of the first middle wheel upper support arm is hinged with the middle wheel steering bracket, and each second middle wheel upper support arm One end is hinged to the middle of the chassis frame and the other end of each second middle wheel upper arm is hinged to the middle wheel steering bracket; the middle wheel suspension spring assembly, wherein the two ends of the wheel suspension spring assembly are respectively connected to the middle wheel The two ends of the arm set are hinged; and the middle wheel steering bracket, one end of which is fixedly connected to the middle wheel steering mechanism and the end of the middle wheel steering mechanism facing the ground is pivotally connected to the middle wheel group, and the middle wheel group is pivoted with the middle wheel hub motor Then, according to this, the middle wheel upper arm group, the middle wheel auxiliary wheel lifting
  • Each rear wheel suspension assembly includes: rear wheel upper support arm group, composed of a first rear wheel upper support arm and a pair of second rear wheel upper support arms, the first rear wheel upper support arm is arranged on the second rear wheel Above the upper support arm, one end of the first rear wheel upper support arm is hinged with the rear end of the chassis frame, and the other end of the first rear wheel upper support arm is hinged with the rear wheel steering support, each second rear wheel upper support arm One end of the rear wheel is hinged to the rear end of the chassis frame and the other end of each second rear wheel upper arm is hinged to the rear wheel steering bracket; the rear wheel suspension spring assembly, its two ends are respectively connected to the rear wheel The two ends are hinged; and the rear wheel steering bracket, one end of which is fixedly connected to the rear wheel steering mechanism and the end of the rear wheel steering mechanism facing the ground direction is pivotally connected to the rear wheel set, and the rear wheel set is pivotally connected to the rear wheel hub motor, according to this ,
  • the present invention also discloses a six-wheeled bionic chassis, which has a chassis frame, a controller, a sensor, and a front wheel suspension assembly pivotally connected to both sides of the front end of the chassis frame, and a middle wheel suspension assembly pivotally connected to the middle two sides of the chassis frame. , And a rear wheel suspension assembly is pivotally connected to both sides of the rear end of the chassis frame.
  • the controller and the sensor are respectively electrically connected with the front wheel suspension assembly, the middle wheel suspension assembly and the rear wheel suspension assembly.
  • each front The wheel suspension assembly includes: a front wheel suspension fixing seat, which is fixed to the front end of the chassis frame; a front wheel auxiliary wheel lifting bracket, one end is hinged to the front wheel suspension fixing seat; a front wheel auxiliary wheel lifting spring assembly, and the front wheel auxiliary lifting wheel
  • the other end of the bracket is hinged, and the other end of the front wheel auxiliary wheel lifting spring assembly is hinged to the front wheel suspension mount;
  • the front wheel upper arm group consists of the first front wheel upper arm and a pair of second front wheel upper arms
  • the upper arm of the first front wheel is arranged above the upper arm of the second front wheel, one end of the upper arm of the first front wheel is hinged with the other end of the front wheel auxiliary wheel lifting bracket and the upper arm of the first front wheel
  • the other end of each second front wheel is hinged to the front wheel steering bracket, one end of each second front wheel upper arm is hinged to the other end of the front wheel auxiliary wheel lifting bracket, and the other end of each second front wheel upper arm is hinged to The
  • Each middle wheel suspension assembly includes: a middle wheel suspension fixing seat, which is fixed to the middle of the chassis frame; a middle wheel upper support arm group, composed of a first middle wheel upper support arm and a pair of second middle wheel upper support arms ,
  • the upper support arm of the first middle wheel is arranged above the upper support arm of the second middle wheel, one end of the upper support arm of the first middle wheel is hinged with the other end of the suspension fixing seat of the middle wheel, and the other end of the upper support arm of the first middle wheel
  • One end is hinged to the middle wheel steering bracket, one end of each second middle wheel upper arm is hinged to the other end of the middle wheel suspension mount, and the other end of each second middle wheel upper arm is hinged to the middle wheel.
  • the bracket is hinged; the middle wheel suspension spring assembly, in which the two ends of the wheel suspension spring assembly are respectively hinged to the two ends of the upper support arm group of the middle wheel; and the middle wheel steering bracket, one end of which is fixedly connected to the middle wheel steering mechanism and the middle wheel steering mechanism The end facing the ground is pivotally connected to the middle wheel group, and the middle wheel group is pivotally connected to the middle wheel hub motor.
  • the middle wheel upper arm group, the middle wheel auxiliary wheel lift bracket and the middle wheel steering in the middle wheel suspension assembly constitutes the middle wheel linkage mechanism to control the trajectory of the middle wheel group when it encounters a vertical obstacle.
  • Each rear wheel suspension assembly includes: a rear wheel suspension mount, fixed to the rear end of the chassis frame, a rear wheel upper arm group, composed of a first rear wheel upper arm and a pair of second rear wheel upper arms ,
  • the first rear wheel upper arm is arranged above the second rear wheel upper arm, one end of the first rear wheel upper arm is hinged with the other end of the rear wheel suspension mount and the other end of the first rear wheel upper arm It is hinged to the rear wheel steering bracket, one end of each second rear wheel upper arm is hinged to the other end of the rear wheel suspension mount, and the other end of each second rear wheel upper arm is hinged to the rear wheel steering bracket Hinged; rear wheel suspension spring assembly, the two ends of which are respectively hinged to the two ends of the rear wheel upper arm group; and the rear wheel steering bracket, one end of which is fixedly connected to the rear wheel steering mechanism and the end of the rear wheel steering mechanism facing the ground direction
  • the rear wheel group is pivotally connected, and the rear wheel group is pivotally connected to the rear wheel hub motor. According to this,
  • Fig. 1 is a three-dimensional schematic diagram showing a suspension damping device according to the technology disclosed in the present invention.
  • Fig. 2 is a side view showing a suspension damping device according to the disclosed technology of the present invention.
  • Fig. 3 is a side view showing that the suspension damping device is installed on the chassis of a mobile robot according to the technology disclosed in the present invention.
  • Fig. 4 is a perspective schematic diagram showing that the suspension vibration damping device is installed on the chassis of a mobile robot according to the technology disclosed in the present invention.
  • Fig. 5 is a three-dimensional schematic diagram showing a suspension damping device according to the technology disclosed in the present invention.
  • Fig. 6 is a side view showing a suspension damping device according to the disclosed technology of the present invention.
  • Fig. 7 is a perspective schematic view showing that a suspension damping device is installed on the chassis of a mobile robot according to the technology disclosed in the present invention.
  • Fig. 8 is a side view showing a suspension damping device according to the technology disclosed in the present invention.
  • Fig. 9 is a three-dimensional schematic diagram showing a suspension damping device according to the technology disclosed in the present invention.
  • Fig. 10 is a perspective schematic view showing that a suspension damping device is installed on the chassis of a mobile robot according to the technology disclosed in the present invention.
  • FIG. 11A is a ⁇ diagram showing an embodiment of the suspension assembly according to the technology disclosed in the present invention.
  • FIG. 11B is a three-dimensional schematic diagram showing an embodiment of the suspension assembly according to the technology disclosed in the present invention.
  • FIG. 12A is a schematic diagram of a three-dimensional structure of another embodiment of a suspension assembly according to the technology disclosed in the present invention.
  • Fig. 12B is a side view showing another embodiment of the suspension assembly according to the technology disclosed in the present invention.
  • FIG. 13A is a perspective schematic diagram showing an embodiment of a six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • Fig. 13B is a top view showing an embodiment of a six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • FIG. 13C is a top view showing an embodiment of the six-wheeled bionic chassis according to the AA line segment in FIG. 13B according to the technology disclosed in the present invention.
  • Fig. 13D is a side view showing an embodiment of a six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • Fig. 14A is a three-dimensional schematic diagram showing a six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • Fig. 14B is a top view showing a six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • Fig. 14C is a schematic cross-sectional view showing a six-wheeled bionic chassis according to the B-B line segment in Fig. 14B according to the technology disclosed in the present invention.
  • 15A is a schematic diagram showing the structure of the front wheel suspension assembly of the six-wheel bionic chassis according to the technology disclosed in the present invention.
  • 15B is a side view showing the front wheel suspension assembly according to the technology disclosed in the present invention.
  • 16 is a schematic diagram showing the structure of the middle wheel suspension assembly of the six-wheel bionic chassis according to the technology disclosed in the present invention.
  • FIG. 17 is a schematic diagram showing the structure of a rear wheel suspension assembly of a six-wheel bionic chassis according to the technology disclosed in the present invention.
  • FIG. 18A is a schematic diagram showing the structure of the six-wheeled bionic chassis lowered according to the technology disclosed in the present invention.
  • FIG. 18B is a schematic diagram showing the structure of the six-wheeled bionic chassis raised according to the technology disclosed in the present invention.
  • Fig. 19 is a schematic diagram showing an embodiment of a six-wheeled bionic chassis when crossing obstacles according to the technology disclosed in the present invention.
  • FIG. 20 is a schematic diagram showing the calculation of the obstacle crossing height of the six-wheeled bionic chassis according to the technology disclosed in the present invention.
  • Fig. 1 is a schematic perspective view showing a suspension damping device
  • Fig. 2 is a side view showing a suspension damping device.
  • the suspension damping device 1a includes a frame 11, a control arm set 12, a damping device 13, and a steering device 14.
  • the frame 11 is located on the ground R and fixed to the chassis of a movable robot (not Shown in the figure).
  • the control arm group 12 is composed of an upper control arm 121 and a lower control arm 122.
  • One ends of the upper control arm 121 and the lower control arm 122 are respectively hinged with the frame 11, and the other end is hinged with the steering device 14 respectively, and the upper control arm 121 There is a proper distance between the upper control arm 121 and the lower control arm 122, and the upper control arm 121 and the lower control arm 122 can be prevented from interfering with each other during operation.
  • both ends of the upper control arm 121 and the lower control arm 122 are articulated with the frame 11 and the steering device 14 respectively, so the control arm group 12 can control the motion stability of the steering device 14.
  • the horizontal plane R referred to in this embodiment refers to the road surface or the ground.
  • the vibration damping device 13 uses a steel spring to achieve a vibration damping effect.
  • the vibration damping device 13 can also use rubber, polyurethane, air damping and other materials to achieve a similar vibration damping effect.
  • FIG. 3 is a side view showing that the suspension damping device is installed on the chassis of the mobile robot
  • FIG. 4 is a perspective schematic diagram showing the chassis after the suspension damping device is installed.
  • the frame 11 is fixed to the chassis 20, wherein the frame 11 is fixed to the chassis 20 by screws (not shown in the figure) to carry a robot (not shown in the figure) or a vehicle (not shown in the figure) ).
  • the suspension vibration damping device 10 also includes a wheel set 15 which is arranged on the steering device 14 and faces the horizontal plane R, and is in contact with the horizontal plane R. The wheel set 15 changes the travel of the entire mobile robot according to the control of the steering device 14 direction.
  • the vibration damping device 13 drives the wheel set 15 to reduce the vibration of the wheel set 15 when it passes obstacles when moving up and down, so that the mobile robot can pass the obstacle road R smoothly.
  • At least 6 sets of suspension damping devices 1a are installed on the chassis 20, and the number of wheel sets 15 can correspond to the number of suspension damping devices 1a.
  • the number of damping devices 13 of the suspension damping device 1a can be two, and the two damping devices 13 are respectively arranged on both sides of the control arm group 12 (as shown in FIG. 2).
  • the vibration damping device 13 on both sides of the control arm group 12 can improve the damping accuracy and further optimize the damping effect.
  • Each damping device 13 can also selectively replace the elastic components to loosen or loosen it. The elastic components are tightened to adjust the load-bearing capacity of the chassis 20.
  • Fig. 5 is a perspective view showing a suspension damping device according to another embodiment of the present invention
  • Fig. 6 is a side view showing the suspension damping device
  • Fig. 7 is a view showing the suspension damping device installed on a mobile robot Three-dimensional schematic diagram of the chassis.
  • the suspension damping device 1b in this embodiment is similar to the aforementioned suspension damping device 1a, so the same components are denoted by the same reference numerals, and will not be repeated here.
  • the difference between the suspension damping device 1b and the suspension damping device 1a is that in the suspension damping device 1b, one end of the damping device 13 relative to the road surface R is hinged with the chassis 20, and the damping device 13 faces the other end of the road surface R and The lower control arm 122 is hinged.
  • the frame link frame 16 is parallel to the ground 30 and perpendicular to the steering device 14, and the two ends of each frame link frame 16 are respectively hinged to two opposite sides.
  • FIG. 8 is a side view showing another embodiment of the suspension vibration damping device disclosed in the present invention
  • FIG. 9 is a perspective view showing another embodiment of the suspension vibration damping device disclosed in the present invention
  • the difference between the suspension damping device 1c and the suspension damping devices 1a, 1b in the previous embodiment is that the suspension damping device 1c includes a wheel set hinge seat 123, one end of which is hinged with the frame 11 and The other end is fixedly connected to the steering device 14. As shown in FIG.
  • the wheel set hinge seat 123 has a groove 124 (as indicated by the arrow in the figure).
  • the groove 124 is used to house the vibration damping device 13, wherein one end of the vibration damping device 13 is hinged to the frame 11. Its other end facing the road surface R is hinged to the groove 124.
  • the frame 11, the wheel set hinge seat 123 and the vibration damping device 13 form a triangle, and the suspension vibration damping device 1c can control the steering through the wheel set hinge seat 123 The movement stability of the device 14.
  • the two ends of the damping device 13 of the suspension damping devices 1a, 1b, 1c are respectively hinged to the frame and the steering device.
  • the suspension damping device 13 can drive the wheel set 15 to move up and down, and can maintain The wheel set 15 is in contact with the road surface at a frontal angle to maintain the balance of the running chassis 20, so that the chassis 20 with suspension damping devices 1a, 1b, 1c can smoothly overcome obstacles.
  • FIG. 11A shows a ⁇ diagram of an embodiment of the suspension assembly disclosed in the present invention
  • FIG. 11B shows a three-dimensional schematic diagram of an embodiment of the suspension assembly disclosed in the present invention
  • the suspension assembly 2a at least includes: a support arm set 30, a suspension spring assembly 32, a steering bracket 34, a steering mechanism (or steering device) 36, a hub motor 38, and a wheel set 40, of which
  • the arm group 30 is composed of a first arm 302 and a second arm 304.
  • the suspension spring assembly 32 is arranged between the first arm 302 and the first arm 304, and two ends of the suspension spring assembly 32 are hinged to the two ends of the first arm 302 and the second arm 304, respectively.
  • the first arm 302 and the second arm 304 are rectangular ribs, so the rectangular ribs serving as the first arm 302 and the second arm 304 can be respectively arranged on the suspension spring assembly 32
  • one of the first arm 302 and the second arm 304 may be a concave-shaped structure, and the other may be a rectangular rib, wherein the concave-shaped structure The two end points on both sides can be hinged to the suspension spring assembly 32 respectively.
  • the second arm 304 may be a rectangular rib and is arranged below the first arm 302 and respectively arranged on both sides of the suspension spring assembly 32; in another preferred embodiment, the first arm 302 is a rectangular rib, The second arm 304 has a concave structure, so that the first arm 302 is arranged on both sides of the suspension spring assembly 32, and the second arm 304 is arranged below the suspension spring assembly 32, and is also arranged at the same time.
  • the load-bearing capacity of the robot (not shown in the figure) or the vehicle (not shown in the figure) can be adjusted by adjusting the suspension spring assembly 32, at one end of the suspension spring assembly 32 With bolts (not shown in the figure), this bolt is used to adjust the elastic force of the suspension spring assembly 32, according to the load of the robot (not shown in the figure) or vehicle (not shown in the figure) and its weight to adjust Or it can be loosened to adapt to the change of the load.
  • the load-bearing capacity of the robot (not shown in the figure) or the vehicle (not shown in the figure) is adjusted by adjusting the suspension spring assembly 32.
  • the wheel set 40 is further provided with an in-wheel motor 38.
  • the in-wheel motor 38 is used to provide forward or reverse torque according to the control of a controller (not shown in the figure) to drive the wheel set 40. The direction of travel.
  • the suspension assembly 2a further includes an auxiliary wheel lifting bracket 42, and the auxiliary wheel lifting bracket 42 is hinged to the other end of the first arm 302 and the second arm 304, and the auxiliary lifting The other end of the wheel bracket 42 is fixedly connected to the robot (not shown in the figure) or the vehicle (not shown in the figure), so that the auxiliary wheel lift bracket 42 forms a link mechanism with the arm 30 and the steering bracket 34.
  • the lever mechanism is used to control the trajectory of the wheel set 40 when it encounters a vertical obstacle.
  • the arm set 30, the auxiliary wheel support bracket 42, and the steering bracket 34 in the suspension assembly 2a constitute a link mechanism, so that when the wheel set 40 of the suspension assembly 2a encounters a vertical obstacle, the link mechanism can be used to The trajectory of the control wheel 40 when it encounters a vertical obstacle.
  • the suspension assembly 2a has a maximum compression height and a compression stroke, where the compression height refers to the height H between the steering mechanism 36 and the bottom of the wheel set 40 (as shown in FIG. 11A), in a more preferred embodiment
  • the compression height H of the suspension assembly 2a to the wheel set 40 is 300 mm.
  • the compression stroke of the suspension assembly 2a refers to the height at which the suspension assembly 2a lifts the wheel set 40 off the ground, and the compression stroke is 0-200mm.
  • Fig. 12A shows a schematic structural view of another embodiment of the suspension assembly disclosed in the present invention
  • Fig. 12B shows a side view of another embodiment of the suspension assembly disclosed in the present invention.
  • the difference from the aforementioned FIGS. 11A-11B is that the suspension assembly 2b further includes a suspension fixing seat 502 and an auxiliary wheel lift spring assembly 506.
  • the suspension assembly 2b at least includes: a suspension fixing seat 502, an auxiliary wheel lifting bracket 504, an auxiliary wheel lifting spring assembly 506, a support arm group 508, a suspension spring assembly 510, a steering bracket 512, and a steering mechanism 514
  • the wheel set 518 is pivotally connected to one end of the steering mechanism 514 facing the horizontal plane, and the hub motor 516 is pivotally connected to the wheel set 518 to drive the wheel set 518.
  • one end 502A of the suspension mount 502 is fixed to the robot (not shown in the figure) or the vehicle (not shown in the figure); one end of the auxiliary wheel support bracket 504 is hinged to the other end 502B of the suspension mount 502; auxiliary One end of the wheel lift spring assembly 506 passes through the suspension fixing base 502 and is hinged with the suspension base 502; the other end of the auxiliary wheel lift spring assembly 506 is hinged with the other end of the auxiliary wheel lift bracket 504; the support arm group 508 is formed by the first A support arm 508a and a second support arm 508b are formed.
  • first support arm 508a is hinged to the other end of the auxiliary wheel support bracket 504, the other end of the first support arm 508a is hinged to the steering support 512, and the second support arm 508b They are respectively arranged on both sides of the auxiliary wheel lifting bracket 504, one end of which is hinged to the auxiliary wheel lifting bracket 504, and the other end of the second arm 508b is hinged to the steering bracket 512, wherein the first arm 508a and the second arm of the arm group 508
  • the arrangement and structure of the two arms 508b are the same as the foregoing, and will not be repeated.
  • the purpose of the arm set 508 is to connect the auxiliary wheel lift bracket 504 and the steering bracket 512, and since the two ends of the arm set 508 are hinged with the auxiliary wheel lift bracket 504 and the steering bracket 512, the auxiliary wheel lift bracket 504 and the steering bracket are hinged. 512 can be adjusted with the height of the entire suspension assembly 2b through the arm set 508; the two ends of the suspension spring assembly 510 are hinged to the two ends of the first arm 508a and the second arm 508b; and the steering bracket 512 One end is hinged with one end of the steering mechanism 514, and the other end of the steering mechanism 514 facing the horizontal direction is pivotally connected with the wheel set 518.
  • the arm set 508, the auxiliary wheel support bracket 504 and the steering bracket 512 in the suspension assembly 2b constitute a connection
  • the rod mechanism allows the suspension assembly 2b to control the movement trajectory of the wheel set 518 when encountering a vertical obstacle through the linkage mechanism.
  • the load-bearing capacity of the robot (not shown in the figure) or the vehicle (not shown in the figure) can be adjusted by adjusting the suspension spring assembly 510.
  • One end of the adjustment suspension spring assembly 510 has a bolt (Not shown in the figure), this bolt (not shown in the figure) is used to adjust the elastic force of the suspension spring assembly 510, according to the loaded robot (not shown in the figure) or the vehicle (not shown in the figure) and The weight can be tightened or loosened to adapt to the change of the load.
  • the load is larger, if the adjustment range of the bolt (not shown in the figure) is exceeded, the spring in the suspension spring assembly 510 can be replaced to match The required load capacity. Therefore, in this embodiment, the carrying capacity of the robot (not shown in the figure) or the vehicle (not shown in the figure) can be adjusted by adjusting the suspension spring assembly 510.
  • the in-wheel motors 38 and 516 are used to drive the steering of the wheel sets 40 and 518.
  • the suspension components 2a, 2b also include sensors (not shown in the figure) to detect the position, speed, and height between the wheels 40, 518 and the horizontal plane of the wheels 40, 518; in addition, the sensors (Not shown in the figure) can also monitor the current positions of the steering mechanisms 36, 514, and the suspension components 2a, 2b.
  • the suspension assembly 2a, 2b further includes a controller (not shown in the figure), which is used to receive the position, speed and wheel set 40 of the wheel set 40, 518 transmitted by the sensor (not shown in the figure). , 518 and the horizontal plane to control the steering of the wheels 40, 518 and control the suspension height of the suspension components 2a, 2b.
  • a controller not shown in the figure
  • the suspension assembly 2a, 2b disclosed in the present invention is connected to a robot (not shown in the figure) or a vehicle (not shown in the figure), when the robot (not shown in the figure) or When a vehicle (not shown in the figure) encounters a vertical obstacle, such as a step, while traveling, the wheel set 40, 518 connected to the suspension assembly 2a, 2b can pass through the hub motor 38, 516 according to the controller (not shown in the The control shown in the figure) provides forward or reverse torque to drive the direction of travel of the wheels 40 and 518, while the wheels 40 and 518 only have two forms of forward or reverse rotation.
  • the wheels 40, 518 and Friction is generated between the vertical surfaces of the steps, and at the same time an upward component force is also generated. Since the compression height of the suspension components 2a, 2b on the wheel sets 40, 518 is 300mm, and the compression stroke is 0-200mm, this upward component is Under the cooperation of the compression stroke, the force overcomes the tension of the suspension spring assembly 32, 510, the wheel set 40, 518 will be lifted by the suspension assembly 2a, 2b and move upward along the vertical plane of the ladder until it exceeds the vertical plane of the ladder. After that, the suspension spring assembly 32, 510 generates a tensile force in the X direction (horizontal direction) to allow the wheel set 40, 518 to move forward to complete the obstacle crossing.
  • the total load of the robot or vehicle (the weight of the robot or the vehicle plus the weight of the payload, and the payload includes the goods or people transported by the robot or vehicle) is 100 kg, for example, and 6 suspension components are used.
  • the compression height of each suspension assembly 2a, 2b to the wheel set 40, 518 is 300mm, and the compression stroke range of the suspension assembly 2a, 2b is 0-200mm.
  • the obstacle crossing ability of the robot or vehicle is positively related to the maximum compression stroke value of the suspension assembly 2a, 2b.
  • the maximum compression stroke is too large, the driving stability of the robot or vehicle will decrease.
  • the structural stability of the suspension assembly or increase the number of wheel sets of the robot or the vehicle (for example, using 8 wheels, 10 wheels or 12 wheels) to improve driving stability.
  • FIG. 13A shows a three-dimensional schematic diagram of an embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 13B shows a top view of an embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 13C shows a six-wheel bionic based on the AA line segment in FIG. 13B
  • a schematic cross-sectional view of an embodiment of the chassis and FIG. 13D show a side view of an embodiment of the six-wheeled bionic chassis disclosed in the present invention.
  • FIGS. 13A-13D shows a three-dimensional schematic diagram of an embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 13B shows a top view of an embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 13C shows a six-wheel bionic based on the AA line segment in FIG. 13B
  • a schematic cross-sectional view of an embodiment of the chassis and FIG. 13D show a side view of an embodiment of the six-wheel
  • the six-wheeled bionic chassis 3 is composed of at least a chassis frame 60, a front wheel suspension assembly 70, a middle wheel suspension assembly 80, and a rear wheel suspension assembly 90.
  • the chassis frame 60 has an upper surface and a lower surface. The lower surface refers to the side facing the ground.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 are respectively arranged on the side of the chassis frame 60 facing the road surface, and the front wheel suspension assembly 70 is arranged at On both sides of the front end of the chassis frame 60 (that is, on the right in the figure), the middle wheel suspension assembly 80 is arranged between the front and rear ends of the chassis frame 60 and the rear wheel suspension assembly 90 is arranged on both sides of the rear end of the chassis frame 60 (Ie, the left side of the figure), and the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 are pivotally connected to the front wheel group 718, the middle wheel group 814, and the rear wheel group 914, respectively.
  • the middle wheel suspension assembly 80 can be arranged in the middle of the chassis frame 60, near the front end of the chassis frame 60, or near the rear end of the chassis frame 60 according to the user's design.
  • FIG. 13A, Figure 13C and Figure 13D Please refer to Figure 13A, Figure 13C and Figure 13D at the same time. Since the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 are symmetrically arranged on the chassis frame 60, when the structure of the six-wheel bionic chassis 3 is disclosed below, a single front wheel suspension assembly 70, center The wheel suspension assembly 80 and the rear wheel suspension assembly 90 are described. In addition, in FIG. 13A to FIG. 13D, the arrow M on the drawing surface indicates the movement direction of the six-wheeled bionic chassis 3.
  • the front wheel suspension assembly 70 at least includes: a front wheel upper arm group 708, a front wheel suspension spring assembly 710, a front wheel steering bracket 712, a front wheel steering mechanism 714, a front wheel hub motor 716, and a front wheel group 718.
  • One end of the auxiliary wheel lifting bracket 704 is hinged to the front end of the chassis frame 60; the front wheel upper arm group 708 is composed of a first front wheel upper arm 708a and a pair of second front wheel upper arms 708b.
  • One end of the upper support arm 708a is hinged with the other end of the front wheel auxiliary lifting bracket 704, the other end of the first front wheel upper support arm 708a is hinged with the front wheel steering support 712, and a pair of second front wheel upper support arms 708b They are respectively arranged on both sides of the front wheel auxiliary wheel lifting bracket 704, one end of which is hinged to the front wheel auxiliary wheel lifting bracket 704, and the other end of the second front wheel upper arm 708b is hinged to the front wheel steering bracket 712, wherein the first front wheel
  • the manner in which the on-wheel support arm 708a and the front-wheel auxiliary wheel lift support 704 and the front-wheel steering support 712 are arranged is to arrange the first front-wheel upper arm 708a above the second front-wheel upper arm 708b.
  • the upper arm 708a of the first front wheel has an undercut structure, and the two ends of the undercut structure are respectively connected to the front wheel auxiliary lifting wheel.
  • the bracket 704 and the front wheel steering bracket 712 are hinged; and the second front wheel upper support arm 708b is a pair of rectangular ribs, which are respectively arranged on both sides of the front wheel auxiliary wheel lifting bracket 704 and the front wheel steering bracket 712 and are arranged in the undercut
  • the front wheel upper support arm group 708 is used to connect the front wheel auxiliary wheel lift bracket 704 and the front wheel steering support 712, and because the front wheel upper support arm group 708
  • the two ends of the front wheel are respectively hinged with the front wheel auxiliary lifting bracket 704 and the front wheel steering bracket 712, so that the front wheel auxiliary lifting bracket 704 and the front wheel steering bracket 712 can follow the entire six-wheel bionic chassis through the front wheel upper arm set 708 3 to adjust its
  • the front wheel upper arm set 708, the front wheel auxiliary wheel lift bracket 704 and the front wheel steering bracket in the front wheel suspension assembly 70 712 constitutes a front wheel linkage mechanism, so that when the front wheel assembly 718 of the six-wheel bionic chassis 3 encounters a vertical obstacle, the front wheel linkage mechanism can be used to control the movement trajectory of the front wheel assembly 718 when encountering a vertical obstacle.
  • the middle wheel suspension assembly 80 includes at least: middle wheel upper arm group 804, middle wheel suspension spring assembly 806, middle wheel steering bracket 808, middle wheel steering mechanism 810, middle wheel hub motor 812, and middle wheel group 814.
  • the wheel support arm group 804 is composed of a first middle wheel upper support arm 804a and a pair of second middle wheel upper support arms 804b.
  • first middle wheel upper support arm 804a is hinged with the chassis frame 60, and the first middle wheel
  • the other end of the support arm 804a is hinged to the middle wheel steering bracket 808, one end of the pair of second middle wheel upper support arms 804b is hinged to the chassis frame 60, and the other end of the second middle wheel upper support arm 804b is hinged to the middle wheel steering
  • the bracket 808 is hinged, wherein the first middle wheel upper arm 804a is arranged above the second front wheel upper arm 804b.
  • the middle wheel suspension spring assembly 806 is arranged in the space formed between the first middle wheel upper arm 804a and the second middle wheel upper arm 804b, and its two ends are connected to the first middle wheel upper arm 804a and the second middle wheel upper arm 804a, respectively. Both ends of the support arm 804b on the middle wheel are hinged.
  • the first middle wheel upper arm 804a of the middle wheel upper arm group 804 has an indented structure, and its indented character
  • the two ends extending outward on both sides of the type structure are respectively hinged with the chassis frame 60; and the second middle wheel upper support arm 804b is a pair of rectangular ribs, one end of which is hinged with the middle of the chassis frame 60, and the other end is hinged with the middle wheel steering bracket 808 is hinged and arranged under the first middle wheel upper support arm 804a of the inverted structure, wherein the middle wheel upper arm group 804 is used to connect the chassis frame 60 and the middle wheel steering bracket 808; and the middle wheel One end of the steering bracket 808 is fixedly connected to the middle wheel steering mechanism 810, and the end of the middle wheel steering mechanism 810 facing the ground direction is pivotally connected to the middle wheel set 814, and the middle wheel set 814 is pivotally connected to the middle wheel hub motor 812.
  • the middle wheel upper arm group 804 and the middle wheel steering bracket 808 in the middle wheel suspension assembly 80 constitute a middle wheel linkage mechanism, so that the six-wheel bionic chassis 3 can use this middle wheel linkage mechanism to control the middle wheel group 814 when it encounters The trajectory of vertical obstacles.
  • the rear wheel suspension assembly 90 at least includes: a rear wheel upper arm group 904, a rear wheel suspension spring assembly 906, a rear wheel steering bracket 408, a rear wheel steering mechanism 910, a rear wheel hub motor (not shown in the figure), and a rear wheel Group 914, wherein the rear wheel upper arm group 904 is composed of a first rear wheel upper arm 904a and a pair of second rear wheel upper arms 904b.
  • first rear wheel upper arm 904a is connected to the chassis frame 60 The rear end is hinged, the other end of the first rear wheel upper arm 904a is hinged with the rear wheel steering bracket 908, one end of a pair of second rear wheel upper arm 904b is hinged with the chassis frame 60, and the second rear wheel upper support The other end of the arm 904b is hinged with the rear wheel steering bracket 908, wherein the first rear wheel upper arm 904a is disposed above the second rear wheel upper arm 904b.
  • the rear wheel suspension spring assembly 906 is arranged in the space formed between the first rear wheel upper arm 904a and the second rear wheel upper arm 904b, and its two ends are connected to the first rear wheel upper arm 904a and the second rear wheel upper arm 904a, respectively. Both ends of the support arm 904b on the rear wheel are hinged.
  • the upper support arm 904a of the first rear wheel has an undercut structure, and the two ends of the undercut structure are respectively connected to the chassis frame 60 and the rear wheel steering bracket. 908 is hinged; and the second rear wheel upper support arm 904b is a pair of rectangular ribs, one end of which is hinged to the middle of the chassis frame 60, and the other end is hinged to both sides of the rear wheel steering bracket 908, and the second rear wheel upper support arm 904b is arranged under the first rear wheel upper support arm 904a of the inverted structure, wherein the rear wheel upper support arm group 904 is used to connect the rear end of the chassis frame 60 and the rear wheel steering bracket 908; and the rear wheel One end of the steering bracket 908 is fixedly connected to the rear wheel steering mechanism 910, and the end of the rear wheel steering mechanism 910 facing the ground direction is pivotally connected to the rear wheel set 914, and the rear wheel set 914 and the rear wheel hub motor (not shown in the figure) According to the above, the rear wheel upper support arm 904b is
  • first front wheel upper arm 708a of the front wheel upper arm group 708, the first middle wheel upper arm 804a of the middle wheel upper arm group 804, and the first rear wheel of the rear wheel upper arm group 904 The on-wheel support arm 904a may be an undercut structure as disclosed above.
  • first front-wheel upper support arm 708a of the front-wheel upper support arm group 708 and the middle-wheel upper support arm group 804 The first middle wheel upper arm 804a and the first rear wheel upper arm 904a of the rear wheel upper arm group 904 may also be a pair of rectangular ribs, and the connection method is the same as the undercut structure, and no further description is given.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 It has a compression height and a compression stroke, where the compression height refers to the top of the steering mechanism (such as the front wheel steering mechanism 714, the middle wheel steering mechanism 810, and the rear wheel steering mechanism 910) to the wheel set (such as the front wheel set 718, the middle wheel set 814) , The height H between the bottoms of the rear wheel set 914) (as shown in Figure 13C).
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 face the wheels
  • the compression height H of the group (such as the front wheel group 718, the middle wheel group 814, and the rear wheel group 914) is 300mm; in addition, the compression stroke of the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 refers to The height at which the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 lift the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 from the ground, respectively, in a more preferred embodiment of the present invention, compress The stroke is 0-200mm.
  • the thrust generated by the front wheel set 718 compresses the front wheel suspension assembly 70, so that the front wheel upper arm set 708, the front wheel auxiliary wheel lift bracket 704 and the front wheel steering bracket 712 of the front wheel linkage mechanism can drive the front wheel set 718
  • the two ends of the middle wheel upper arm group 804 in the middle wheel suspension assembly 80 are hinged with the chassis frame 60 and the middle wheel steering bracket 808, and the rear wheel upper support in the rear wheel suspension assembly 90
  • the two ends of the arm group 904 are hinged with the chassis frame 60 and the rear wheel steering bracket 908, so that the middle wheel upper arm group 804 and the rear wheel upper arm group 904 can move in the Z direction in addition to moving in the Y direction.
  • the movement is just like the movement of the legs of an arthropod, and the middle wheel upper arm group 804 and the rear wheel upper arm group 904 can move in different directions separately, so that the middle wheel upper arm group 804 and the rear wheel upper support
  • the arm set 904 can respectively drive the middle wheel steering bracket 708 and the rear wheel steering bracket 808 to drive the middle wheel set 814 and the rear wheel set 914 to cross obstacles.
  • FIG. 14A-FIG. 14C shows another six-wheeled bionic chassis, please refer to FIG. 14A-FIG. 14C.
  • 14A shows a three-dimensional schematic diagram of another embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 14B shows a top view of another embodiment of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. A schematic cross-sectional view of another embodiment of a six-wheeled bionic chassis In this embodiment, the difference between the aforementioned FIGS.
  • the front wheel suspension assembly 70 of the six-wheeled bionic chassis 3 further includes a front wheel suspension fixing seat, a front wheel auxiliary lifting spring assembly, and a middle wheel suspension
  • the assembly 80 further includes a middle wheel suspension mount and a rear wheel suspension assembly 90 further includes a rear wheel suspension mount, the structure and function of which will be described in detail later.
  • the six-wheeled bionic chassis 4 is composed of at least a chassis frame 60, a front wheel suspension assembly 70, a middle wheel suspension assembly 80, and a rear wheel suspension assembly 90.
  • the chassis frame 60 has an upper surface and a lower surface. The lower surface refers to the side facing the ground.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 are respectively arranged on the side of the chassis frame 60 facing the ground, and the front wheel suspension assembly 70 is arranged at On both sides of the front end of the chassis frame 60 (that is, on the right in the figure), the middle wheel suspension assembly 80 is arranged between the front and rear ends of the chassis frame 60 and the rear wheel suspension assembly 90 is arranged on both sides of the rear end of the chassis frame 60 (Ie, the left side of the figure), and the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 are pivotally connected to the front wheel group 718, the middle wheel group 814, and the rear wheel group 914, respectively.
  • the middle wheel suspension assembly 80 can be arranged in the middle of the chassis frame 60, near the front end of the chassis frame 60, or near the rear end of the chassis frame 60 according to the user's design.
  • FIG. 14C is a schematic cross-sectional view of the BB line segment in FIG. 14B. Since the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 are symmetrically arranged on the chassis frame 60, the six bionic chassis 4 is disclosed below. In the case of the structure, a single front wheel suspension assembly 70, a middle wheel suspension assembly 80 and a rear wheel suspension assembly 90 are used for illustration. In addition, in FIGS. 14A to 14C, the arrow M on the drawing indicates the movement direction of the six-wheeled bionic chassis 4.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 It has a compression height and a compression stroke, where the compression height refers to the top of the steering mechanism (such as the front wheel steering mechanism 714, the middle wheel steering mechanism 810, and the rear wheel steering mechanism 910) to the wheel set (such as the front wheel set 718, the middle wheel set 814) , The height H between the bottom of the rear wheel set 914) (as shown in Figure 14C).
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 are opposed to the wheel set (
  • the compression height H of the front wheel set 718, the middle wheel set 814, and the rear wheel set 914) is 300mm;
  • the compression strokes of the front wheel suspension assembly 720, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 refer to the front wheels
  • the suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 respectively lift the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 off the ground.
  • the compression stroke is 0-200mm.
  • the thrust generated by the front wheel set 718 compresses the front wheel suspension assembly 70, so that the front wheel upper arm set 708, the front wheel auxiliary wheel lift bracket 704 and the front wheel steering bracket 712 of the front wheel linkage mechanism can drive the front wheel set 718
  • the two ends of the middle wheel upper arm group 804 in the middle wheel suspension assembly 80 are hinged with the chassis frame 60 and the middle wheel steering bracket 808, and the rear wheel upper support in the rear wheel suspension assembly 90
  • the two ends of the arm group 904 are hinged with the chassis frame 60 and the rear wheel steering bracket 908, so that the middle wheel upper arm group 804 and the rear wheel upper arm group 904 can move in the Z direction in addition to moving in the Y direction.
  • the movement is just like the movement of the legs of an arthropod, and the middle wheel upper arm group 804 and the rear wheel upper arm group 904 can move in different directions separately, so that the middle wheel upper arm group 804 and the rear wheel upper support
  • the arm set 904 can respectively drive the middle wheel steering bracket 808 and the rear wheel steering bracket 908 to drive the middle wheel set 814 and the rear wheel set 914 to cross obstacles.
  • FIG. 15A is a schematic diagram showing the structure of the front wheel suspension assembly of the six-wheeled bionic chassis disclosed in the present invention
  • FIG. 15B shows a side view of the front wheel suspension assembly.
  • the front wheel suspension assembly 70 at least includes: a front wheel suspension mount 702, a front wheel auxiliary wheel lift bracket 704, a front wheel auxiliary wheel lift spring assembly 706, a front wheel upper arm group 708, and Wheel suspension spring assembly 710, front wheel steering bracket 712, front wheel steering mechanism 714, front wheel hub motor 716, and front wheel assembly 718, wherein one end 702A of the front wheel suspension fixing seat 702 is fixedly connected to the front end of the chassis frame 60; One end of the auxiliary wheel lifting bracket 704 is hinged to the other end 702B of the front wheel suspension fixing base 702; one end of the front wheel auxiliary lifting spring assembly 706 passes through the front wheel suspension fixing base 702 and is hinged to the front wheel suspension fixing base 702 The other end of the front wheel auxiliary wheel lifting spring assembly 706 is hinged to the other end of the front wheel auxiliary wheel lifting bracket 704; the front wheel upper arm group 708 is supported by the first front wheel upper arm 708a and a pair of second front wheels One end of the front wheel suspension fixing seat
  • the second front wheel upper support arms 708b are respectively arranged on both sides of the front wheel auxiliary wheel lifting bracket 704 and one end thereof is hinged with the front wheel auxiliary wheel lifting bracket 704, and the other end of the second front wheel upper support arm 708b is connected to the front wheel
  • the steering bracket 712 is articulated, wherein the first front wheel upper arm 708a is arranged on the front wheel auxiliary wheel lifting bracket 704 and the front wheel steering bracket 712 is arranged by disposing the first front wheel upper arm 708a on the second front wheel. Above the arm 708b.
  • the upper arm 708a of the first front wheel has an undercut structure, and the two ends of the undercut structure are respectively connected to the front wheel auxiliary lifting wheel.
  • the bracket 704 and the front wheel steering bracket 712 are hinged; and the second front wheel upper support arm 708b is a pair of rectangular ribs, which are respectively arranged on both sides of the front wheel auxiliary wheel lifting bracket 704 and the front wheel steering bracket 712 and are arranged in the undercut
  • the front wheel upper support arm group 708 is used to connect the front wheel auxiliary wheel lift bracket 704 and the front wheel steering support 712, and because the front wheel upper support arm group 708
  • the two ends of the front wheel are respectively hinged with the front wheel auxiliary lifting bracket 704 and the front wheel steering bracket 712, so that the front wheel auxiliary lifting bracket 704 and the front wheel steering bracket 712 can follow the entire six-wheel bionic chassis through the front wheel upper arm set 708 3 (shown
  • the front wheel upper arm group 708, the front wheel auxiliary wheel lifting bracket 704 and the front wheel steering bracket 712 in the front wheel suspension assembly 70 constitute a front wheel linkage mechanism, so that it can be used as a six-wheel
  • the bionic chassis 3 and 4 can control the movement trajectory of the current wheel 718 when it encounters a vertical obstacle through the front wheel linkage mechanism.
  • Fig. 16 shows a schematic diagram of the structure of the middle wheel suspension assembly of the six-wheel bionic chassis.
  • the middle wheel suspension assembly 30 includes at least a middle wheel suspension fixing seat 802, a middle wheel upper arm group 804, a middle wheel suspension spring assembly 806, a middle wheel steering bracket 808, a middle wheel steering mechanism 810, and a middle wheel hub.
  • the motor 812 and the middle wheel group 814 in which one end 802A of the middle wheel suspension mount 802 is fixedly connected to the middle of the chassis frame 60; the middle wheel upper arm group 804 consists of a first middle wheel upper arm 804a and a pair of second middle wheels
  • One end of the first middle wheel upper arm 804a is hinged to the other end 802B of the middle wheel suspension mount 802, and the other end of the first middle wheel upper arm 804a is connected to the middle wheel steering bracket 808
  • one end of a pair of second middle wheel upper arms 804b is articulated with the other end 802B of the middle wheel suspension fixing seat 802, and the other end of the second middle wheel upper arm 804b is articulated with the middle wheel steering bracket 808, where the first A middle wheel upper arm 804a is arranged above the second front wheel upper arm 804b.
  • the first middle wheel upper arm 804a has an undercut structure, and the two ends of the undercut structure extend outward. They are respectively hinged to the middle wheel suspension fixing seat 802 and the middle wheel steering bracket 808; and the second middle wheel upper support arm 804b is a pair of rectangular ribs, which are respectively arranged on both sides of the middle wheel suspension fixing seat 802 and the middle wheel steering bracket 808 and It is arranged below the first middle wheel upper support arm 804a of the inverted structure, wherein the middle wheel upper support arm group 804 is used to connect the middle wheel suspension fixing seat 802 and the middle wheel steering bracket 808; and the middle wheel steering One end of the bracket 808 is fixedly connected to the middle wheel steering mechanism 810, and the end of the middle wheel steering mechanism 810 facing the ground direction is pivotally connected to the middle wheel group 814, and the middle wheel group 814 is pivotally connected to the middle wheel hub motor 812.
  • the middle wheel The middle wheel upper arm group 804 and the middle wheel steering bracket 808 in the wheel suspension assembly 80 constitute a middle wheel linkage mechanism, so that the six-wheel bionic chassis 3, 4 can use the middle wheel linkage mechanism to control the middle wheel group 814 when encountering The trajectory of movement when reaching a vertical obstacle.
  • Fig. 17 is a schematic diagram showing the structure of the rear wheel suspension assembly of the six-wheel bionic chassis.
  • the rear wheel suspension assembly 90 includes at least: a rear wheel suspension mount 902, a rear wheel upper arm group 904, a rear wheel suspension spring assembly 906, a rear wheel steering bracket 908, a rear wheel steering mechanism 910, and a rear wheel The hub motor 912 and the rear wheel set 914, wherein one end 902A of the rear wheel suspension mount 902 is fixedly connected to the rear end of the chassis frame 60; the rear wheel upper arm set 904 consists of a first rear wheel upper arm 904a and a pair of second Two rear wheel upper support arms 904b are formed, one end of the first rear wheel upper support arm 904a is hinged with the other end 902B of the rear wheel suspension mount 902, and the other end of the first rear wheel upper support arm 904a is connected to the rear wheel.
  • the bracket 908 is hinged, one end of the second rear wheel upper arm 904b is hinged with the other end 902B of the rear wheel suspension mount 902, and the other end of the second rear wheel upper arm 904b is hinged with the rear wheel steering bracket 908, wherein The first rear wheel upper arm 904a is arranged above the second rear wheel upper arm 904b.
  • the upper support arm 904a of the first rear wheel has an undercut structure, and the two ends of the undercut structure are respectively connected to the rear wheel suspension fixing seat 902 and the rear
  • the wheel steering bracket 908 is articulated; and the second rear wheel upper support arm 904b is a pair of rectangular ribs, which are respectively arranged on both sides of the rear wheel suspension fixing seat 902 and the rear wheel steering bracket 908 and are arranged on the first of the inverted structure Below the rear wheel upper arm 904a, the rear wheel upper arm group 904 is used to connect the rear wheel suspension mount 902 and the rear wheel steering bracket 908; and one end of the rear wheel steering bracket 908 and the rear wheel steering mechanism 910 The end of the rear wheel steering mechanism 910 facing the ground direction is pivotally connected to the rear wheel set 914, and the rear wheel set 914 is pivotally connected to the rear wheel hub motor 912.
  • the rear wheel in the rear wheel suspension assembly 90 is supported on The arm group 904 and the rear wheel steering bracket 908 constitute a rear wheel linkage mechanism, so that the six-wheel bionic chassis 3, 4 can use the rear wheel linkage mechanism to control the movement trajectory of the rear wheel group 914 when encountering a vertical obstacle.
  • the first middle wheel upper arm 804a has an undercut structure, and both sides of the undercut structure extend outward
  • the two ends of the second middle wheel are respectively hinged with the chassis frame 60; and the second middle wheel upper support arm 804b is a pair of rectangular ribs, one end of which is hinged with the middle of the chassis frame 60, and the other end is hinged with the middle wheel steering bracket 808, and is arranged in the undercut Below the first middle wheel upper support arm 804a of the font structure
  • the middle wheel upper arm group 304 is used to connect the chassis frame 60 and the middle wheel steering bracket 808; and one end of the middle wheel steering bracket 808 and the middle wheel
  • the steering mechanism 810 is fixedly connected, and the end of the middle wheel steering mechanism 810 facing the ground direction is pivotally connected to the middle wheel group 814, and the middle wheel group 814 is pivotally connected to the middle wheel hub motor 812.
  • the middle wheel suspension assembly 80 The on-wheel support arm group 804 and the middle wheel steering bracket 808 constitute a middle wheel linkage mechanism, so that the middle wheel linkage mechanism can be used in the six-wheel bionic chassis 3 and 4 to control the movement trajectory of the middle wheel set 814 when encountering vertical obstacles. .
  • the front wheel hub motor 716 of the front wheel suspension assembly 70, the middle wheel hub motor 812 of the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90 The rear wheel hub motor 912 is used to drive the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 to rotate.
  • the six-wheeled bionic chassis 3 and 4 also include sensors (not shown in the figure) to detect the position and speed of the front wheel 718, the middle wheel 814, and the rear wheel 914, and the speed of the front wheel 718 and the middle wheel.
  • the sensor can also monitor the front wheel steering mechanism 714, the middle wheel steering mechanism 810, the rear wheel steering mechanism 910 and the front wheel suspension assembly 70, the middle wheel suspension assembly at the same time 80 and/or the position of the rear wheel suspension assembly 90.
  • the six-wheeled bionic chassis 3, 4 further includes a controller (not shown in the figure), which is used to receive the positions of the front wheel set 718, the middle wheel set 814, and/or the rear wheel set 914 transmitted by the sensors, The speed and the height between the front wheel 718, the middle wheel group 814, and the rear wheel group 914 and the horizontal plane are used to control the steering of the front wheel group 718, the middle wheel group 814 and the rear wheel group 914, and to control the front wheel suspension assembly 70 and the middle wheel group respectively.
  • the suspension height of the wheel suspension assembly 80 and/or the rear wheel suspension assembly 90 are used to receive the positions of the front wheel set 718, the middle wheel set 814, and/or the rear wheel set 914 transmitted by the sensors.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension The component 90 allows the front wheel set 714, the middle wheel set 814 and the rear wheel set 914 to generate a movement stroke of up and down 200mm respectively. Therefore, when encountering vertical obstacles and the height of the vertical obstacle, the front wheels of the six-wheel bionic chassis 3 and 4 cannot be used.
  • the thrust generated by the middle wheel group 814 and the rear wheel group 914 to the front wheel group 718 must be used to compress the front wheel auxiliary wheel lifting spring assembly 706 in the front wheel suspension assembly 70.
  • the front wheel suspension spring assembly 710 of the front wheel suspension assembly 70 of the six-wheel bionic chassis 3, 4, the middle wheel suspension spring assembly 806 of the middle wheel suspension assembly 80, and the The rear wheel suspension spring assembly 906 of the rear wheel suspension assembly 90 can also cause the middle wheel set 814 and the rear wheel set 914 to generate a movement stroke with a height of 300mm for obstacles, as shown in FIG. 18A, in FIG.
  • the six-wheeled bionic chassis 3 , 4 front wheel suspension spring assembly 710, middle wheel suspension spring assembly 806 and rear wheel suspension spring assembly 906 downward (toward the ground) compression stroke range is 0-200mm; and in Figure 18B, the six-wheeled bionic chassis
  • the front wheel suspension spring assembly 710, the middle wheel suspension spring assembly 806, and the rear wheel suspension spring assembly 906 of 3 and 4 rise upward by 300 mm. Therefore, the six-wheel bionic chassis 3 and 4 can have a damping stroke of at least ⁇ 200 mm.
  • suspension damping device as shown in Fig. 1 to Fig. 10
  • suspension components as shown in Figs. 11A-11B and Figs. 12A-12B
  • the suspension damping device Figure 1-10) or the suspension component ( Figure 11A-11B and Figure 12A-12B) can be used as the suspension damping device for the front wheel, the middle wheel and the rear wheel, respectively.
  • Fig. 19 is a schematic diagram of an embodiment of the six-wheeled bionic chassis disclosed according to the present invention when crossing obstacles. While describing FIG. 19, please also refer to FIGS. 15A, 16 and 17 together.
  • the six-wheeled bionic chassis 3 and 4 maintain a constant output at the first peak torque of 10 Newton ⁇ m (N ⁇ m) when traveling on a plane.
  • the sensor senses that the front wheel 718 is in contact with the vertical obstacle Q, At this time, the sensor will send an obstacle signal to notify the controller. After receiving this signal, the controller will send a control signal to the front wheel hub motor 716, the middle wheel hub motor 812, and the rear wheel hub motor 912 with the second peak torque.
  • the front wheel set 718 is subjected to the vertical obstacle Q to produce a reaction force N 3 and the friction force F 3 between the front wheel set 718 and the plane 30.
  • the resultant force will compress the front wheel suspension spring assembly 710.
  • the reaction force N 3 generated by the vertical obstacle Q of the front wheel set 718 and the friction force F 3 between the front wheel set 718 and the plane 30 are combined to compress the front wheel suspension in the front wheel suspension assembly 70
  • the spring assembly 710 and the front wheels assist in lifting the P wheel spring assembly 706, and the front wheel suspension assembly 70 drives the front wheel set 718 to move in the direction of P, so that the front wheel set 718 is lifted, and the vertical obstacle Q can be climbed to achieve obstacle crossing. Purpose.
  • the controller will send a signal to control the front wheel hub motor 716 with the first peak torque of 10N ⁇ m to run.
  • the sensor senses that the middle wheel set 814 is in contact with the vertical obstacle Q
  • the sensor will send a signal to the controller that the obstacle is encountered, and the controller is receiving the signal
  • the center wheel hub motor 812 sends a control signal to run at the second peak torque of 13N ⁇ m.
  • the center wheel set 814 is subjected to the vertical obstacle Q to produce a reaction force N 2 and the friction force F between the center wheel set 814 and the plane 30 2.
  • the resultant force will compress the middle wheel suspension spring assembly 806, specifically the reaction force N 2 generated by the middle wheel set 814 after being subjected to the vertical obstacle Q and the friction force F 2 between the middle wheel set 314 and the road surface R
  • the resultant force compresses the middle wheel suspension spring assembly 806 in the middle wheel suspension assembly 80, and the middle wheel suspension assembly 80 will drive the middle wheel set 814 to also move in the direction of P, so that the middle wheel set 814 uses traction and its own power , It is lifted in a passive manner so that it can climb over the vertical obstacle Q, so that the middle wheel group 814 achieves the purpose of overcoming the obstacle.
  • the front wheel hub motor 716, the middle wheel hub motor 812 and the rear wheel hub motor 912 of the six-wheel bionic chassis 3 and 4 will The first peak torque is 10N ⁇ m to drive the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 to continue forward (toward the direction of arrow M in the figure), when the rear wheel set 914 contacts the vertical obstacle Q
  • the sensor will send a signal to the controller that it encounters an obstacle. After receiving this signal, the controller will send a control signal to the rear wheel hub motor 412 to run at the second peak torque of 13N ⁇ m.
  • the rear wheel set 914 receives a vertical obstacle Q to produce a reaction force N 1 and a frictional force F 1 between the rear wheel set 914 and the plane 30.
  • the resultant force will cause the rear wheel suspension spring assembly 906 to be compressed.
  • the rear wheel set 914 is subjected to vertical
  • the resultant force of the reaction force N 1 generated after the obstacle Q and the frictional force F 1 between the rear wheel set 914 and the plane 30 compresses the rear wheel suspension spring assembly 906 in the rear wheel suspension assembly 90, and the rear wheel suspension assembly 90 will drive
  • the rear wheel set 914 also moves in the direction of P, so that the rear wheel set 914 also uses traction and its own power to be lifted in a passive manner and can climb over the vertical obstacle Q, so that the rear wheel set 914 achieves the purpose of obstacle clearance.
  • the controller will send a signal to control the front wheel hub motor 716 of the six-wheel bionic chassis 3 and 4 .
  • the middle wheel hub motor 812 and the rear wheel hub motor 912 are changed from the second peak torque of 13N ⁇ m to the first peak torque of 10N ⁇ m to drive the front wheel set 718, the middle wheel set 814 and the rear wheel set 914 Continue driving forward (in the direction of arrow M in the figure).
  • the six-wheeled bionic chassis 3 and 4 disclosed in the present invention adjust the hardness of the front wheel suspension assembly 70, the middle wheel suspension assembly 80, and the rear wheel suspension assembly 90, the front wheel suspension assembly 70, the middle wheel suspension assembly 80
  • the compression stroke of the front wheel set 718, the middle wheel set 814 and the rear wheel set 914 is 0-200mm, so the six-wheel bionic chassis 3 and 4 can achieve the vertical obstacle crossing ability with a compression height of 300mm.
  • the specific calculation As described below.
  • Factors affecting the height of obstacles of the six-wheel bionic chassis 3 and 4 may include: the position of the center of gravity of the six-wheel bionic chassis 3, 4, wheel hub motors (front wheel hub motor 716, middle wheel hub motor 812 and rear wheel hub motor 912), wheel The coefficient of friction between the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 and the ground.
  • the position of the center of gravity of the six-wheeled bionic chassis 3 and 4 is related to the structural parameters of the chassis frame 60.
  • the structural parameters may include wheels Group (front wheel group 718, middle wheel group 814 and rear wheel group 914) diameter, damping structure elasticity and suspension stroke, so as shown in Figure 20, in the hub motor (front wheel hub motor 716, middle wheel hub motor 812 and Under the condition that the power of the rear wheel hub motor 912) is sufficient and the wheels (front wheel group 718, middle wheel group 814 and rear wheel group 914) are rolling with the ground, the obstacle height h of the six-wheel bionic chassis 1a, 1b
  • the calculation method is as follows:
  • the obstacle crossing height h can be calculated as:
  • L 1 is the length of each upper arm group
  • L 2 is the length of each steering bracket
  • L 3 is each wheel group (front wheel group 718, middle wheel group 814, and rear wheel group 914).
  • L 4 is the six-wheeled bionic chassis 3 and 4 when driving on a plane
  • m is the horizontal movement distance of each wheel group (front wheel group 718, middle wheel group 814, and rear wheel group 914) before and after the obstacle is crossed.
  • Z is the straight line distance between the center of each wheel group (front wheel group 718, middle wheel group 814, and rear wheel group 914) before and after the obstacle crosses the obstacle. Accordingly, after calculating the front wheel set 718, the middle wheel set 814, and the rear wheel set 914 according to the above formula, the sum of the forward direction forces of the six different positions of the six-wheel bionic chassis 3 and 4 can be obtained, and the six-wheel bionic chassis can be further obtained. 3, 4 obstacle clearance height.
  • the front wheel suspension assembly 70, the middle wheel suspension assembly 80 and the rear wheel suspension assembly 90 of the six-wheeled bionic chassis 3 and 4 disclosed in the present invention can simulate the leg state of arthropods, the six-wheeled bionic chassis 3, 4 can be continuously improved. The ability to climb over vertical obstacles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

一种悬挂减振装置(1a,1b,1c),包括车架(11)、控制臂组(12)及减振装置(13),车架(11)位于路面(R)并固定于底盘(20),控制臂组(12)的一端与车架(11)铰接,另一端与转向装置(14)铰接,使得控制臂组(12)控制转向装置(14)的运动稳定性。减振装置(13)的一端与车架(11)铰接,另一端朝向地面(R)并与转向装置(14)铰接。还涉及一种悬挂组件和六轮仿生底盘。当悬挂减振装置作用时可以带动轮组上下活动,并能够保持轮组与地面或路面的接触,因此安装悬挂减振装置的六轮仿生底盘可以平稳越过障碍,并保持底盘的平衡。

Description

悬挂装置、悬挂减振装置及六轮仿生底盘 技术领域
本发明属于底盘机械技术领域,特别是有关于一种悬挂装置、悬挂减振装置及六轮仿生底盘以应用于机器人、可移动式机器人或是车辆中,利用悬挂装置、悬挂减振装置以提高机器人、可移动式机器人或是车辆的越障能力。
背景技术
现有技术方案中,可移动机器人内部具备一个重要的机构是悬挂减振装置,悬挂减振装置可以减少可移动机器人在移动过程中造成的振动,令可移动机器人稳定工作。现有的悬挂减振装置使用直线轴承式悬挂***,然而这种直线轴承式悬挂***的结构不紧凑,所占空间大,直线轴承本身的成本也比较高,而且当直线轴承式悬挂***安装于悬挂减振装置时,安装面的加工需要很高的加工精度,使得整个悬挂减振装置的寿命降低,成本也很高。
此外,随着科技日新月异,车辆工程的技术也随之进步。一般车辆分为车体和轮式底盘两大架构,常见的轮式底盘至少包括有轮胎、车架、转向器(或称换向器)、动力供给器、煞车器及悬吊器。其中轮胎、转向器及悬吊***是控制车辆的行进方向及避免翻覆的重要组件。一般车辆在行进时,会遇到转弯或是跨越障碍物等问题,因此如何使车辆在行进时保持稳定及能够顺利的转弯是车辆工程中一直不断研究的课题。
关于转弯的课题,轮胎及转向器是控制车辆在转弯时的主要核心,现有技术的转向器是利用单连杆式的转向器,其特点在于:驾驶能单独且直接的控制前轮的轮胎,例如:在四轮的车辆中,具有两个转向器来分别控制车辆的两个前轮,当车辆欲转弯时,驾驶会转动方向盘来控制轮胎朝向欲转弯的方向,受到转向器控制的前轮即会朝着欲转弯的方向转动,车辆的后轮则连带的朝车辆要转弯的方向一并转动且行进,此类型的转向器对于一般的四轮车辆来说已经足够,但是单连杆式的转向器无法应用于需要车轮数较多的特殊车辆,例如公交车或是多轮具有履带的战车。
另外,车辆的悬吊器是用于稳定车辆,保持车体在各种行进状态,例如在一般水平面例如地面行进、爬坡或是越障的稳定性,悬吊器主要是由弹簧及减震筒所组成,因此悬吊器可以视为减震器。在一般大众所使用的车辆中,其悬吊器可以是独立式悬吊器或是非独立式悬吊器,其中独立式悬吊器的特点在于将轮式底盘的左右半部轮胎分开控制,而非独立式悬吊器则是将车辆的所有的轮胎统一控制。悬吊器还可以分为主动式或是非主动式,两者的差异性则是在于:主动式悬吊器可以根据悬吊器的弹力常数与阻尼系数来运算以适应不同的路面环境,非主动式悬吊器的弹力常数及阻尼系数是固定的,不会依据环境的不同而有所改变。
而近年来,则是将机器人应用于车辆的轮式底盘***。由于一般机器人多使用在野外,或是地面崎岖的环境,或是灾难现场,故用于机器人轮式底盘***较用于车辆的轮式底盘***需有更佳适地性及机动性,故将目前用于车辆的轮式底盘***运用在机器人上,技术有很大的改进空间。在现有技术中披露了一种具有活结悬吊的车辆及活结悬吊的使用方法,其所揭露的底盘装置是适用于军用车辆即适用在地形崎岖的环境,具有好的适地性、越障能力及活动性佳的轮胎,但是现有技术所披露的底盘装置并不能驱动机器人爬梯、转向或是具有任意的行走方向,且其所连接到的移动装置并未披露是机器人移动装置或是仅有车体,即未连带考虑到移动装置的改变对于底盘操作的影响。
发明内容
本发明的目的在于,提供一种悬挂减振装置,当悬挂减振装置作用时可以带动轮组上下活动,并能够保持轮组与地面或路面的接触,因此安装悬挂减振装置的底盘可以平稳越过障碍。
根据上述目的,本发明披露一种悬挂减振装置,安装于可移动机器人的底盘,包括车架、控制臂组、弹簧减振器以及转向装置,车架位于地面上并固定于底盘,控制臂组包括上控制臂和下控制臂,上控制臂及下控制臂的一端分别与车架铰接,另一端分别与转向装置铰接,使得控制臂组控制转向装置的运动稳定性,减振装置相反于地面的一端与车架铰接,以及减振装置的另一端朝向地面并与转向装置铰接。
本发明另披露一种悬挂减振装置,安装于可移动机器人的底盘,包括车架、控制臂组、悬挂减振器以及转向装置,车架位于地面上并固定于底盘,控制臂组包括上控制臂和下控制臂,上控制臂及下控制臂的一端分别与车架铰接,另一端分别与转向装置铰接,使得控制臂组控制转向装置的运动稳定性,减振装置与地面呈垂直,且减振装置的相反于地面的一端与底盘铰接,以及减振装置的另一端朝向地面并与下控制臂铰接。
本发明再披露一种悬挂减振装置,安装于可移动机器人的底盘,包括车架、轮组铰接座、减振装置以及转向装置,车架位于地面上并固定于底盘,轮组铰接座的一端与车架铰接及另一端与转向装置固连,使得轮组铰接座控制转向装置的运动稳定性,减振装置设置于车架上且相反于路面的一端铰接于车架,减振装置的另一端朝向路面并容置于轮组铰接座,以及减振装置的另一端铰接于轮组铰接座。
此外,本发明还披露一种悬挂组件,此悬挂组件可以应用于机器人或是车辆上,让机器人或是车辆可以平稳的在石子路、土路等凹凸不平的水平面上行驶,以平稳的越过减速带、垂直障碍。
本发明所披露的悬挂组件,可以调整悬挂组件的硬度,以压缩轮组的高度,而让整个机器人或是车辆具有相对应压缩高度正负范围的减振行程。
根据上述,本发明披露一种悬挂组件,包括有:支臂组,由第一支臂及第二支臂所组成;悬挂弹簧组件设置在第一支臂及第二支臂之间,且悬挂弹簧组件的两端分别与第一支臂及第二支臂的两端铰接;以及转向支架,其一端与第一支臂及第二支臂的一端铰接,另一端与转向机构□接、且转向机构朝向水平面方向的一端与轮组枢接。
本发明的另一目的在于披露一种六轮仿生底盘,其六轮仿生底盘的前轮悬挂弹簧组件、中轮悬挂弹簧组件及后轮悬挂弹簧组件作用时,可带动轮组上下活动,并能保持前轮组、中轮组及后轮组始终与水平面正面接触,保持六轮仿生底盘的平衡。
本发明的目的在于披露一种六轮仿生底盘,其整体结构紧凑,可通过调节前轮悬挂弹簧组件、中轮悬挂弹簧组件及后轮悬挂弹簧组件来调整六轮仿生底盘的承载能力。
本发明的又一目的在于披露一种六轮仿生底盘,可以调整前轮悬挂组件、中轮悬挂组件及后轮悬挂组件的硬度,以压缩前轮组、中轮组及后轮组的高度,而让整个六轮仿生底盘具有相对应压缩高度正负范围的减振行程。
根据上述目的,本发明披露一种六轮仿生底盘,具有底盘架,控制器、传感器及朝向水平面方向于底盘架的前端两侧分别枢接有前轮悬挂组件、于底盘架的中间两侧分别枢接有中轮悬挂组件及于底盘架的后端两侧分别枢接有后轮悬挂组件,且控制器及传感器分别与前轮悬挂组件、中轮悬挂组件及后轮悬挂组件电性连接,每一个前轮悬挂组件包括有:前轮辅助抬轮支架,一端与底盘架的前端铰接;前轮上支臂组,由第一前轮上支臂及一对第二前轮上支臂所组成,第一前轮上支臂配置在第二前轮上支臂的上方,第一前轮上支臂的一端与前轮辅助抬轮支架的另一端铰接及第一前轮上支臂的另一端与前轮转向支架铰接,每一支第二前轮上支臂的一端分别与前轮辅助抬轮支架的另一端铰接及每一支第二前轮上支臂的另一端分别与前轮转向支架铰接;前轮悬挂弹簧组件的两端分别与前轮上支臂组的两端铰接;以及前轮转向支架,一端与前轮转向机构固连且前轮转向机构朝向地面方向的一端与前轮组枢接,前轮组与前轮轮毂电机枢接,据此,前轮悬挂组件中的前轮上支臂组、前轮辅助抬轮支架及前轮转向支架构成前轮连杆机构,用以控制前轮轮组在遇到垂直障碍物时的运动轨迹。
每一个中轮悬挂组件包括有:中轮上支臂组,由第一中轮上支臂及一对第二中轮上支臂所组成,第一中轮上支臂配置在第二中轮上支臂的上方,第一中轮上支臂的一端与底盘架的中间铰接,及第一中轮上支臂的另一端与中轮转向支架铰接,每一支第二中轮上支臂的一端分别与底盘架的中间铰接及每一支第二中轮上支臂的另一端分别与中轮转向支架铰接;中轮悬挂弹簧组件,其中轮悬挂弹簧组件的两端分别与中轮上支臂组的两端铰接;以及中轮转向支架,其一端与中轮转向机构固连且中轮转向机构朝向地面方向的一端与中轮组枢接,且中轮组与中轮轮毂电机枢接,据此,中轮悬挂组件中的中轮上支臂组、中轮辅助抬轮支架及中轮转向支架构成中轮连杆机构用以控制中轮组遇到垂直障碍物时的运动轨迹。
每一个后轮悬挂组件包括有:后轮上支臂组,由第一后轮上支臂及一对第二后轮上支臂所组成,第一后轮上支臂配置在第二后轮上支臂的上方,第一后轮上支臂的一端与底盘架的后端铰接及第一后轮上支臂的另一端与后轮转向支架铰接,每一支第二后轮上支臂的一端分别与底盘架的后端铰接及每一支第二后轮上支臂的另一端分别与后轮转向支架铰接;后轮悬挂弹簧组件,其两端分别与后轮上支臂组的两端铰接;以及后轮转向支架,其一端与后轮转向机构固连且后轮转向机构朝向地面方向的一端与后轮组枢接,且后轮组与后轮轮毂电机枢接,据此,后轮悬挂组件中的后轮上支臂组及后轮转向支架构成后轮连杆机构用以控制后轮组遇到垂直障碍时的运动轨迹。
本发明还披露一种六轮仿生底盘,具有底盘架、控制器、传感器及于底盘架的前端两侧分别枢接有前轮悬挂组件、于底盘架的中间两侧分别枢接有中轮悬挂组件、及于底盘架的后端两侧分别枢接有后轮悬挂组件,控制器及传感器分别与前轮悬挂组件、中轮悬挂组件及后轮悬挂组件电性连接,其特征在于,每一个前轮悬挂组件包括有:前轮 悬挂固定座,固接于底盘架的前端;前轮辅助抬轮支架,一端与前轮悬挂固定座铰接;前轮辅助抬轮弹簧组件,与前轮辅助抬轮支架的另一端铰接,且前轮辅助抬轮弹簧组件的另一端与前轮悬挂固定座铰接;前轮上支臂组,由第一前轮上支臂及一对第二前轮上支臂所组成,第一前轮上支臂配置在第二前轮上支臂的上方,第一前轮上支臂的一端与前轮辅助抬轮支架的另一端铰接及第一前轮上支臂的另一端与前轮转向支架铰接,每一支第二前轮上支臂的一端分别与前轮辅助抬轮支架的另一端铰接及每一支第二前轮上支臂的另一端分别与前轮转向支架铰接;前轮悬挂弹簧组件的两端分别与前轮上支臂组的两端铰接;以及前轮转向支架,一端与前轮转向机构固连且前轮转向机构朝向地面方向的一端与前轮组枢接,前轮组与前轮轮毂电机输接,据此,前轮悬挂组件中的前轮上支臂组、前轮辅助抬轮支架及前轮转向支架构成前轮连杆机构,用以控制前轮组在遇到垂直障碍时的运动轨迹。
每一个中轮悬挂组件包括有:中轮悬挂固定座,固接于底盘架的中间;中轮上支臂组,由第一中轮上支臂及一对第二中轮上支臂所组成,第一中轮上支臂配置在第二中轮上支臂的上方,第一中轮上支臂的一端与中轮悬挂固定座的另一端铰接,及第一中轮上支臂的另一端与中轮转向支架铰接,每一支第二中轮上支臂的一端分别与中轮悬挂固定座的另一端铰接及每一支第二中轮上支臂的另一端分别与中轮转向支架铰接;中轮悬挂弹簧组件,其中轮悬挂弹簧组件的两端分别与中轮上支臂组的两端铰接;以及中轮转向支架,其一端与中轮转向机构固连且中轮转向机构朝向地面方向的一端与中轮组枢接,且中轮组与中轮轮毂电机枢接,据此,中轮悬挂组件中的中轮上支臂组、中轮辅助抬轮支架及中轮转向支架构成中轮连杆机构用以控制中轮组遇到垂直障碍时的运动轨迹。
每一个后轮悬挂组件包括有:后轮悬挂固定座,固接于底盘架的后端后轮上支臂组,由第一后轮上支臂及一对第二后轮上支臂所组成,第一后轮上支臂配置在第二后轮上支臂的上方,第一后轮上支臂的一端与后轮悬挂固定座的另一端铰接及第一后轮上支臂的另一端与后轮转向支架铰接,每一支第二后轮上支臂的一端分别与后轮悬挂固定座的另一端铰接及每一支第二后轮上支臂的另一端分别与后轮转向支架铰接;后轮悬挂弹簧组件,其两端分别与后轮上支臂组的两端铰接;以及后轮转向支架,其一端与后轮转向机构固连且后轮转向机构朝向地面方向的一端与后轮组枢接,且后轮组与后轮轮毂电机枢接,据此,后轮悬挂组件中的后轮上支臂组及后轮转向支架构成后轮连杆机构用以控制后轮组遇到垂直障碍时的运动轨迹。
附图说明
图1是根据本发明所披露的技术,表示悬挂减振装置的立体示意图。
图2是根据本发明所披露的技术,表示悬挂减振装置的侧视图。
图3是根据本发明所披露的技术,表示悬挂减振装置安装于可移动机器人的底盘的侧视图。
图4是根据本发明所披露的技术,表示悬挂减振装置安装于可移动机器人的底盘的立体示意图。
图5是根据本发明所披露的技术,表示悬挂减振装置的立体示意图。
图6是根据本发明所披露的技术,表示悬挂减振装置的侧视图。
图7是根据本发明所披露的技术,表示悬挂减振装置安装于可移动机器人的底盘的立体示意图。
图8是根据本发明所披露的技术,表示悬挂减振装置的侧视图。
图9是根据本发明所披露的技术,表示悬挂减振装置的立体示意图。
图10是根据本发明所披露的技术,表示悬挂减振装置安装于可移动机器人的底盘的立体示意图。
图11A是根据本发明所披露的技术,表示悬挂组件的一实施例的□□图。
图11B是根据本发明所披露的技术,表示悬挂组件的一实施例的立体□构示意图。
图12A是根据本发明所披露的技术,表示悬挂组件的另一实施例的立体结构示意图。
图12B是根据本发明所披露的技术,表示悬挂组件的另一实施例的侧视图。
图13A是根据本发明所披露的技术,表示六轮仿生底盘的一实施例的立体示意图。
图13B是根据本发明所披露的技术,表示六轮仿生底盘的一实施例的俯视图。
图13C是根据本发明所披露的技术,表示根据图13B中的A-A线段的六轮仿生底盘的一实施例的俯视图。
图13D是根据本发明所披露的技术,表示根据六轮仿生底盘的一实施例的侧视图。
图14A是根据本发明所披露的技术,表示六轮仿生底盘的立体示意图。
图14B是根据本发明所披露的技术,表示六轮仿生底盘的俯视图。
图14C是根据本发明所披露的技术,表示根据图14B中的B-B线段的六轮仿生底盘的截面示意图。
图15A是根据本发明所披露的技术,表示六轮仿生底盘的前轮悬挂组件的结构示意图。
图15B是根据本发明所披露的技术,表示前轮悬挂组件的侧示图。
图16是根据本发明所披露的技术,表示六轮仿生底盘的中轮悬挂组件的结构示意图。
图17是根据本发明所披露的技术,表示六轮仿生底盘的后轮悬挂组件的结构示意图。
图18A是根据本发明所披露的技术,表示六轮仿生底盘降低的结构示意图。
图18B是根据本发明所披露的技术,表示六轮仿生底盘升高的结构示意图。
图19是根据本发明所披露的技术,表示六轮仿生底盘在越障时的一实施例的示意图。
图20是根据本发明所披露的技术,表示计算六轮仿生底盘在越障高度的示意图。
具体实施方式
首先,请同时参考图1及图2。图1是表示悬挂减振装置的立体示意图及图2是表示悬挂减振装置的侧视图。在图1及图2中,悬挂减振装置1a包括车架11、控制臂组12、减振装置13以及转向装置14,其中车架11位于地面R上并固定于可移动机器人的底盘(未在图中表示)。控制臂组12由上控制臂121与下控制臂122所组成,其中上控制臂121与下控制臂122的一端分别与车架11铰接,另一端分别与转向装置14铰接,且上控制臂121与下控制臂122之间具有适当的间距,透过此适当的间距可以避免上控制臂121与下控制臂122在操作时互相干涉。另外,上控制臂121与下控制臂122的两端通过分别与车架11及转向装置14铰接,因此控制臂组12可以控制转向装置14的运动稳定性。要说明的是,在本实施例中所指的水平面R指的是路面或是地面。
此外,减振装置13相反于水平面R的一端131与车架11铰接,以及减振装置13朝向地面R的另一端132与转向装置14铰接。本实施例中,减振装置13通过钢质弹簧达到减振效果,然而减振装置13也可以通过橡胶、聚氨酯、空气阻尼等材料达到类似的减振效果。
请参考图3与图4。图3是表示悬挂减振装置安装于可移动机器人的底盘的侧视图,以及图4是表示安装悬挂减振装置后的底盘的立体示意图。在本实施例中,车架11固定于底盘20,其中车架11通过螺钉(未在图中表示)固定于底盘20以承载机器人(未在图中表示)或是车辆(未在图中表示)。此外,悬挂减振装置10还包括轮组15,轮组15设置于转向装置14上且朝向水平面R,并与水平面R接触,轮组15依据转向装置14的控制来改变整个可移动机器人的行进方向。
本实施例中,当安装有悬挂减振装置1a的可移动机器人在凹凸不平的路面R上移动时,轮组15在移动的过程中遇到障碍,例如石头或是凹坑,悬挂减振装置10中的减振装置13会带动轮组15在经过障碍时上下活动,减振装置13除了可以保持轮组15在移动时随时与路面R是正面接触,以维持整个可移动机器人的平衡之外,同时也借由减振装置13带动轮组15在上下活动时减缓轮组15经过障碍时的振动,使得可移动机器人可以平稳地经过障碍的路面R。于本发明的较优选的实施例中,底盘20上至少安装了6组悬挂减振装置1a,轮组15的数量可对应悬挂减振装置1a的数量。另外,悬挂减振装置1a的减振装置13的数量可以是两个,两个减振装置13分别配置于控制臂组12的两侧(如图2所示),当悬挂减振装置10遇到障碍时,透过在控制臂组12的两侧的减振装置13可以提高减振精度进一步地优化减振效果,每个减振装置13也能够选择性的更换弹性组件,借以调松或是调紧弹性组件来调整底盘20的承载能力。
请参考图5至图7。图5是根据本发明所披露的另一实施例,表示悬挂减振装置的立体示意图,图6是表示悬挂减振装置的侧视图,以及图7是表示悬挂减振装置安装于可移动机器人的底盘的立体示意图。于此实施例中的悬挂减振装置1b与前述的悬挂减振装置1a相似,因此相同的组件以相同的标号表示,在此不再赘述。悬挂减振装置1b与悬挂减振装置1a的差异在于:在悬挂减振装置1b中,减振装置13相对于路面R的一端与底盘20铰接,以及减振装置13朝向路面R的另一端与下控制臂122铰接。
此外,在本发明较优选的实施例中,车架链结架16与地面30呈平行且与转向装置14呈垂直设置,而且每个车架链结架16的两端分别铰接于两个相对的悬挂减振装置1b中的车架11。据此,透过车架链结架16将两个相对的悬挂减振装置1b与底盘20链结成一个封闭式框架,以提高悬挂减振装置1b的固定强度,而且当底盘20上方承载的重量增加时,由悬挂减振装置1b与底盘20所构成的封闭式框架可以降低在底盘20的行进过程中,悬挂减振装置 1b朝向+Y或-Y方向的变形量。
接着请同时参考图8至图10。图8是表示本发明所披露的悬挂减振装置的另一实施例的侧视图,图9是表示本发明所披露的悬挂减振装置的另一实施例的立体示意图,以及图10是表示本发明所披露的具有悬挂减振装置的底盘的另一实施例的立体示意图。在图8至图10中,悬挂减振装置1c与前述实施例中的悬挂减振装置1a、1b的区别在于:悬挂减振装置1c包括轮组铰接座123,其一端与车架11铰接以及另一端与转向装置14固连。如图9所示,轮组铰接座123具有凹槽124(如图中箭头所指之处),此凹槽124用以容置减振装置13,其中减振装置13的一端铰接于车架11,其朝向路面R的另一端铰接于凹槽124,据此,车架11、轮组铰接座123与减振装置13构成一个三角形,悬挂减振装置1c可以通过轮组铰接座123控制转向装置14的运动稳定性。
综上所述,悬挂减振装置1a、1b、1c的减振装置13的两端分别与车架及转向装置铰接,当悬挂减振装置13作用时可以带动轮组15上下活动,并能够保持轮组15与路面以正面的角度来接触,以维持在行进中的底盘20的平衡,使得具有悬挂减振装置1a、1b、1c的底盘20可以平稳越过障碍。
接着,本发明还披露了另一种悬挂组件,请参考图11A至图11B。图11A表示本发明所披露的悬挂组件的一实施例的□□图及图11B表示本发明所披露的悬挂组件的一实施例的立体示意图。在图11A及图11B中,悬挂组件2a至少包括有:支臂组30、悬挂弹簧组件32、转向支架34、转向机构(或可称为转向装置)36、轮毂电机38以及轮组40,其中,支臂组30由第一支臂302及第二支臂304所构成。悬挂弹簧组件32,设置在第一支臂302与第一支臂304之间,且悬挂弹簧组件32的两端分别与第一支臂302及第二支臂304的两端铰接。
于本发明较优选的实施例中,第一支臂302与第二支臂304为长方形肋条,因此作为第一支臂302与第二支臂304的长方形肋条可以分别设置在悬挂弹簧组件32的左右两侧,或是分别设置在悬挂弹簧组件32的上方及下方;于另一较优选的实施例中,作为第一支臂302与第二支臂304的长方形肋条的数量可以是一条或是两条,其目的可以与是为了让悬挂弹簧组件32有支撑点,且利用铰接的方式让悬挂弹簧组件32可以在Y方向及Z方向移动。
另外,在本发明另一较优选的实施例中,第一支臂302与第二支臂304的其中之一可以是凹字型结构,而另一个可以是长方形肋条,其中凹字型结构的两侧的两个端点可以分别与悬挂弹簧组件32铰接,因此当第一支臂302为凹字型结构,且以倒置的方式(即倒凹字型)设置在悬挂弹簧组件32的上方时,第二支臂304可以是长方形肋条且设置在第一支臂302的下方并分别设置在悬挂弹簧组件32的两侧边;于另一较优选的实施例,第一支臂302为长方形肋条,第二支臂304为凹字型结构,使得第一支臂302分别设置在悬挂弹簧组件32的两侧边,而第二支臂304则是设置在悬挂弹簧组件32的下方,同时也是设置在第一支臂302的下方。
于另一较优选的实施例中,可以透过调节悬挂弹簧组件32来调整对机器人(未在图中表示)或是车辆(未在图中表示)的承载能力,在悬挂弹簧组件32的一端具有螺栓(未在图中表示),此螺栓是用来调节悬挂弹簧组件32的弹力,根据承载的机器人(未在图中表示)或是车辆(未在图中表示)以及其重量来调紧或是调松,以适应载重量的变化,当载重量愈大时,若超过螺栓的调节范围,则可以更换悬挂弹簧组件32中的弹簧来配合所需要的载重量。因此,于较优选的实施例中,透过调节悬挂弹簧组件32来调整对机器人(未在图中表示)或是车辆(未在图中表示)的承载能力。
转向支架34的一端分别与第一支臂302及第二支臂304的一端铰接,且转向支架34的另一端与转向机构36铰接,且转向机构36朝向所述水平面方向的一端与轮组40枢接。于较优选的实施例中,轮组40还设有轮毂电机38、此轮毂电机38用以根据控制器(未在图中表示)的控制来提供正向或反向扭矩,以驱动轮组40的行进方向。
于另一较优选的实施例中,悬挂组件2a还包括辅助抬轮支架42,且辅助抬轮支架42分别与第一支臂302及第二支臂304的另一端铰接,且所述辅助抬轮支架42的另一端与机器人(未在图中表示)或是车辆(未在图中表示)固连,使得辅助抬轮支架42与支臂□30、转向支架34形成连杆机构,此连杆机构用以控制轮组40遇到垂直障碍时的运动轨迹。
根据上述,悬挂组件2a中的支臂组30、辅助抬轮支架42及转向支架34构成连杆机构,使得当悬挂组件2a的轮组40遇到垂直障碍时,可以透过此连杆机构来控制轮组40遇到垂直障碍时的运动轨迹。
要说明的是,悬挂组件2a具有最大压缩高度及压缩行程,其中压缩高度指的是转向机构36到轮组40的底部之间的高度H(如图11A所示),于较优选的实施例中,悬挂组件2a对轮组40的压缩高度H为300mm。悬挂组件2a的压缩行程指的是悬挂组件2a将轮组40抬离地面的高度,其压缩行程为0-200mm。
接着,本发明还披露另一种悬挂组件,请参考图12A-图12B。图12A表示本发明所披露的悬挂组件的另一实 施例的结构示意图及图12B表示本发明所披露的悬挂组件的另一实施例的侧视图。在此实施例中,与前述图11A-图11B之间的区别在于:悬挂组件2b还进一步包括有悬挂固定座502及辅助抬轮弹簧组件506。
在图12A及图12B中,悬挂组件2b至少包括有:悬挂固定座502、辅助抬轮支架504、辅助抬轮弹簧组件506、支臂组508、悬挂弹簧组件510、转向支架512及转向机构514,轮组518与转向机构514朝向水平面方向的一端枢接,以及轮毂电机516枢接于轮组518,用以驱动所述轮组518。其中,悬挂固定座502的一端502A与机器人(未在图中表示)或是车辆(未在图中表示)固接;辅助抬轮支架504的一端与悬挂固定座502的另一端502B铰接;辅助抬轮弹簧组件506的一端穿设于悬挂固定座502,并与悬挂固定座502铰接;辅助抬轮弹簧组件506的另一端与辅助抬轮支架504的另一端铰接;支臂组508由第一支臂508a及第二支臂508b所构成,第一支臂508a的一端与辅助抬轮支架504的另一端铰接,第一支臂508a的另一端是与转向支架512铰接,第二支臂508b分别设置在辅助抬轮支架504的两侧且其一端与辅助抬轮支架504铰接,及第二支臂508b的另一端与转向支架512铰接,其中支臂组508的第一支臂508a及第二支臂508b的设置方式还有结构与前述相同,不再重复。
支臂组508的目的用以连接辅助抬轮支架504及转向支架512,且由于支臂组508的两端分别与辅助抬轮支架504及转向支架512铰接,使得辅助抬轮支架504及转向支架512可以透过支臂组508随着整个悬挂组件2b的高度调整其高度;悬挂弹簧组件510的两端分别与第一支臂508a及第二支臂508b的两端铰接;以及转向支架512的一端与转向机构514的一端铰接,且转向机构514朝向水平面方向的另一端与轮组518枢接,根据上述,悬挂组件2b中的支臂组508、辅助抬轮支架504及转向支架512构成连杆机构,使得悬挂组件2b可以透过此连杆机构来控制当轮组518遇到垂直障碍物时的运动轨迹。
在此实施例中,可以透过调节悬挂弹簧组件510来调整对机器人(未在图中表示)或是车辆(未在图中表示)的承载能力,在调节悬挂弹簧组件510中的一端具有螺栓(未在图中表示),此螺栓(未在图中表示)是用来调节悬挂弹簧组件510的弹力,根据承载的机器人(未在图中表示)或是车辆(未在图中表示)以及其重量来调紧或是调松,以适应载重量的变化,当载重量愈大时,若超过螺栓(未在图中表示)的调节范围,则可以更换悬挂弹簧组件510中的弹簧来配合所需要的载重量。因此,在本实施例中,可以透过调节悬挂弹簧组件510来调整对机器人(未在图中表示)或是车辆(未在图中表示)的承载能力。
在此要说明的是,在本发明所披露的悬挂组件2a、2b中,轮毂电机38、516是用来驱动轮组40、518的转向。另外,悬挂组件2a、2b还包括有传感器(未在图中表示)是用以侦测轮组40、518的所在位置、速度及轮组40、518与水平面之间的高度;此外,传感器(未在图中表示)亦同时可以监控转向机构36、514、及悬挂组件2a、2b目前的位置。
另外,悬挂组件2a、2b还进一步包括控制器(未在图中表示),其用以接收由传感器(未在图中表示)所传送的轮组40、518的所在位置、速度及轮组40、518与水平面之间的高度来控制轮组40、518的转向及控制悬挂组件2a、2b的悬挂高度。
因此,根据以上所述,在本发明所披露的悬挂组件2a、2b与机器人(未在图中表示)或是车辆(未在图中表示)连接之后,当机器人(未在图中表示)或是车辆(未在图中表示)在行进中遇到垂直障碍物,例如台阶,时,与悬挂组件2a、2b连接的轮组40、518可以透过轮毂电机38、516根据控制器(未在图中显示)的控制来提供正向或反向扭矩,以驱动轮组40、518的行进方向,而轮组40、518只有正转或是反转的两种形式,轮组40、518与台阶的垂直面之间产生摩擦力,且同时也会产生向上的分力,由于悬挂组件2a、2b对轮组40、518的压缩高度为300mm,而压缩行程为0-200mm,此向上的分力在压缩行程的协同下,克服悬挂弹簧组件32、510的张力之后,轮组40、518会被悬挂组件2a、2b拉抬而沿着阶梯的垂直面向上移动,直到超过该阶梯的垂直面之后,悬挂弹簧组件32、510产生X方向(水平方向)的拉力得以让轮组40、518向前移动而完成越障。
于较优选的实施例中,机器人或车辆的总载荷(机器人或车辆的自重加上有效载荷的重量,以有效载荷包括机器人或车辆运送的货物或人员)为100kg为例,采用6个悬挂组件,每个悬挂组件2a、2b对轮组40、518的压缩高度为300mm,悬挂组件2a、2b的压缩行程范围为0-200mm。机器人或车辆的越障能力与悬挂组件2a、2b的最大压缩行程值正相关,轮组40、518可压缩的高度越大,悬挂弹簧组件32(如图11A及图11B所示)、510(如图12A及图12B所示)的伸缩性越强,悬挂组件2a、2b的压缩行程越大,其越障能力越强。然而最大压缩行程过大,会导致机器人或是车辆的行驶稳定性降低。尤其是当机器人或是车辆的有效载荷较大的时候,随着悬挂组件2a、2b的最大压 缩行程的增加,行驶稳定性会急剧降低。此时可采取增加悬挂组件的结构稳定性或增加机器人或是车辆的轮组数量(例如采用8轮、10轮或是12轮)以提高行驶稳定性。经实验测试,发现当总载荷达到100kg的情况下,悬挂组件2a、2b的最大压缩行程若超过200mm会导致行驶稳定性显着降低,当其行驶在石子路等不平坦路面时,车身及有效载荷会剧烈晃动。
根据上述,本发明还披露了一种六轮仿生底盘,请参考图13A-图13D。图13A表示本发明所披露的六轮仿生底盘的一实施例的立体示意图、图13B表示本发明所披露的六轮仿生底盘的一实施例的俯视图、图13C表示根据图13B中的A-A线段的六轮仿生底盘的一实施例的截面示意图及图13D表示本发明所披露的六轮仿生底盘的一实施例的侧视图。在图13A及图13B中,六轮仿生底盘3至少由底盘架60、前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90所构成,其中底盘架60具有上表面及下表面,其中下表面指的是朝向地面方向的那一面,因此前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90分别设置在底盘架60朝向路面的那一面,且前轮悬挂组件70设置在底盘架60的前端的两侧(即图面的右方),中轮悬挂组件80设置在底盘架60的前端和后端之间以及后轮悬挂组件90设置在底盘架60的后端两侧(即图面的左方),且前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90还分别枢接有前轮组718、中轮组814及后轮组914。另外要说明的是,中轮悬挂组件80可以依据用户的设计,将中轮悬挂组件80设置在底盘架60的中间、靠近底盘架60的前端或是靠近底盘架60的后端的位置。
请同时参考图13A、图13C及图13D。由于前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90在底盘架60是左右对称的设置,因此在以下披露六轮仿生底盘3的结构时,以单一一个前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90来说明。另外,在图13A-图13D中,图面上的箭头M表示六轮仿生底盘3的运动行进方向。
前轮悬挂组件70至少包括有:前轮上支臂组708、前轮悬挂弹簧组件710、前轮转向支架712、前轮转向机构714、前轮轮毂电机716以及前轮组718,其中,前轮辅助抬轮支架704的一端与底盘架60的前端铰接;前轮上支臂组708由第一前轮上支臂708a及一对第二前轮上支臂708b所构成,第一前轮上支臂708a的一端与前轮辅助抬轮支架704的另一端铰接,第一前轮上支臂708a的另一端与是与前轮转向支架712铰接,一对第二前轮上支臂708b分别设置在前轮辅助抬轮支架704的两侧且其一端与前轮辅助抬轮支架704铰接,及第二前轮上支臂708b的另一端与前轮转向支架712铰接,其中第一前轮上支臂708a与配置在前轮辅助抬轮支架704及前轮转向支架712的方式是将第一前轮上支臂708a配置在第二前轮上支臂708b的上方。
另外,在本发明的较优选的实施例中,第一前轮上支臂708a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与前轮辅助抬轮支架704及前轮转向支架712铰接;而第二前轮上支臂708b为一对长方形肋条,分别设置在前轮辅助抬轮支架704及前轮转向支架712的两侧且设置在倒凹字型结构的第一前轮上支臂708a的下方,其中前轮上支臂组708的目的用以连接前轮辅助抬轮支架704及前轮转向支架712,且由于前轮上支臂组708的两端分别与前轮辅助抬轮支架704及前轮转向支架712铰接,使得前轮辅助抬轮支架704及前轮转向支架712可以透过前轮上支臂组708随着整个六轮仿生底盘3的高度调整其高度;前轮悬挂弹簧组件710设置在第一前轮上支臂708a与第二前轮上支臂708b之间所构成的空间内,且其两端分别与第一前轮上支臂708a及第二前轮上支臂708b的两端铰接;前轮转向支架712的一端与前轮转向机构714的一端固连,且前轮转向机构714朝向地面方向的另一端与前轮组718枢接,又前轮组718与前轮轮毂电机716枢接,根据上述,前轮悬挂组件70中的前轮上支臂组708、前轮辅助抬轮支架704及前轮转向支架712构成前轮连杆机构,使得当六轮仿生底盘3的前轮组718遇到垂直障碍物时,可以透过此前轮连杆机构来控制前轮组718遇到垂直障碍物时的运动轨迹。
请继续参考图13A、图13C及图13D。中轮悬挂组件80至少包括有:中轮上支臂组804、中轮悬挂弹簧组件806、中轮转向支架808、中轮转向机构810、中轮轮毂电机812以及中轮组814,其中,中轮上支臂组804由第一中轮上支臂804a及一对第二中轮上支臂804b所构成,第一中轮上支臂804a的一端与底盘架60铰接,第一中轮上支臂804a的另一端与是与中轮转向支架808铰接,一对第二中轮上支臂804b的一端与底盘架60铰接,及第二中轮上支臂804b的另一端与中轮转向支架808铰接,其中,第一中轮上支臂804a是配置在第二前轮上支臂804b的上方。中轮悬挂弹簧组件806设置在第一中轮上支臂804a与第二中轮上支臂804b之间所构成的空间内,且其两端分别与第一中轮上支臂804a及第二中轮上支臂804b的两端铰接。
另外,在本发明的较优选的实施例中,与前轮上支臂组708相同,中轮上支臂组804的第一中轮上支臂804a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与底盘架60铰接;而第二中轮上支臂804b为一对长方 形肋条,其一端与底盘架60的中间铰接,另一端与中轮转向支架808铰接,且设置在倒凹字型结构的第一中轮上支臂804a的下方,其中,中轮上支臂组804的目的用以连接底盘架60及中轮转向支架808;以及中轮转向支架808的一端与中轮转向机构810固连,且中轮转向机构810朝向地面方向的一端与中轮组814枢接,且中轮组814与中轮轮毂电机812枢接,根据上述,中轮悬挂组件80中的中轮上支臂组804与中轮转向支架808构成中轮连杆机构,使得在六轮仿生底盘3可以利用此中轮连杆机构来控制中轮组814在遇到垂直障碍时的运动轨迹。
后轮悬挂组件90至少包括有:后轮上支臂组904、后轮悬挂弹簧组件906、后轮转向支架408、后轮转向机构910、后轮轮毂电机(未在图中表示)以及后轮组914,其中,后轮上支臂组904由第一后轮上支臂904a及一对第二后轮上支臂904b所构成,第一后轮上支臂904a的一端与底盘架60的后端铰接,第一后轮上支臂904a的另一端与是与后轮转向支架908铰接,一对第二后轮上支臂904b的一端与底盘架60铰接,及第二后轮上支臂904b的另一端与后轮转向支架908铰接,其中第一后轮上支臂904a是配置在第二后轮上支臂904b的上方。后轮悬挂弹簧组件906设置在第一后轮上支臂904a与第二后轮上支臂904b之间所构成的空间内,且其两端分别与第一后轮上支臂904a及第二后轮上支臂904b的两端铰接。
另外,在较优选的实施例中,第一后轮上支臂904a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与底盘架60及后轮转向支架908铰接;而第二后轮上支臂904b为一对长方形肋条,其一端与底盘架60的中间铰接,及另一端与后轮转向支架908的两侧铰接,且第二后轮上支臂904b设置在倒凹字型结构的第一后轮上支臂904a的下方,其中,后轮上支臂组904的目的用以连接底盘架60的后端及后轮转向支架908;以及后轮转向支架908的一端与后轮转向机构910固连,且后轮转向机构910朝向地面方向的一端与后轮组914枢接,且后轮组914与后轮轮毂电机(未在图中表示)枢接,根据上述,后轮悬挂组件90中的后轮上支臂组904与后轮转向支架908构成后轮连杆机构,使得在六轮仿生底盘3可以利用此后轮连杆机构来控制后轮组914在遇到垂直障碍时的运动轨迹。
要说明的是,前轮上支臂组708的第一前轮上支臂708a、中轮上支臂组804的第一中轮上支臂804a及后轮上支臂组904的第一后轮上支臂904a可以是如上述所披露的倒凹字型结构,于另一实施例中,前轮上支臂组708的第一前轮上支臂708a、中轮上支臂组804的第一中轮上支臂804a及后轮上支臂组904的第一后轮上支臂904a也可以是一对长方形肋条,其连接方式与倒凹字型结构相同,不再多加说明。
因此,根据以上所述,在本发明所披露的六轮仿生底盘3在行进中遇到垂直障碍(未在图中表示)时,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90具有压缩高度及压缩行程,其中压缩高度指的是转向机构(如前轮转向机构714、中轮转向机构810、后轮转向机构910)顶部到轮组(如前轮组718、中轮组814、后轮组914)的底部之间的高度H(如图13C所示),在本发明较优选的实施例中,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90对轮组(如前轮组718、中轮组814、后轮组914)的压缩高度H为300mm;另外,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90的压缩行程指的是前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90分别将前轮组718、中轮组814、后轮组914抬离地面的高度,在本发明较优选的实施例中,压缩行程为0-200mm。因此,当六轮仿生底盘3遇到垂直障碍且其垂直障碍的高度无法让六轮仿生底盘3的前轮组718抬起而跨越垂直障碍时,此时须通过中轮组814及后轮组914向前轮组718所产生的推力,压缩前轮悬挂组件70,使得前轮连杆机构的前轮上支臂组708、前轮辅助抬轮支架704及前轮转向支架712可以带动前轮组718被抬起而可以越障,而中轮悬挂组件80中的中轮上支臂组804的两端是与底盘架60及中轮转向支架808铰接、后轮悬挂组件90中的后轮上支臂组904的两端是与底盘架60及后轮转向支架908铰接,使得中轮上支臂组804及后轮上支臂组904除了可以在Y方向上移动之外,也可以在Z方向移动,就像是节肢动物的腿部动作一样,且中轮上支臂组804及后轮上支臂组904可以分开朝向不同的方向移动,使得中轮上支臂组804及后轮上支臂组904可以分别的带动中轮转向支架708及后轮转向支架808来带动中轮组814及后轮组914来进行越障。
接着,本发明还披露另一种六轮仿生底盘,请参考图14A-图14C。图14A表示本发明所披露的六轮仿生底盘的另一实施例的立体示意图、图14B表示本发明所披露的六轮仿生底盘的另一实施例的俯视图及图14C表示根据图14B中的B-B线段的六轮仿生底盘的另一实施例的截面示意图。在此实施例中,与前述图13A-图13D之间的差异在于,六轮仿生底盘3的前轮悬挂组件70还进一步包括有前轮悬挂固定座及前轮辅助抬轮弹簧组件、中轮悬挂组件80还进一步包括中轮悬挂固定座及后轮悬挂组件90还进一步包括后轮悬挂固定座,其结构以及功能于后详细说明。
在图14A及图14B中,六轮仿生底盘4至少由底盘架60、前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组 件90所构成,其中底盘架60具有上表面及下表面,其中下表面指的是朝向地面方向的那一面,因此前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90分别设置在底盘架60朝向地面的那一面,且前轮悬挂组件70设置在底盘架60的前端的两侧(即图面的右方),中轮悬挂组件80设置在底盘架60的前端和后端之间以及后轮悬挂组件90设置在底盘架60的后端两侧(即图面的左方),且前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90还分别枢接有前轮组718、中轮组814及后轮组914。另外要说明的是,中轮悬挂组件80可以依据用户的设计,将中轮悬挂组件80设置在底盘架60的中间、靠近底盘架60的前端或是靠近底盘架60的后端的位置。
图14C是根据图14B中B-B线段的截面示意图,由于前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90在底盘架60是左右对称的设置,因此在以下披露六生仿生底盘4的结构时,以单一一个前轮悬挂组件70、中轮悬挂组件80以及后轮悬挂组件90来说明。另外,在图14A-图14C中,图面上的箭头M表示六轮仿生底盘4的运动行进方向。
同样的,与前述相同,在本发明所披露的六轮仿生底盘4在行进中遇到垂直障碍(未在图中表示)时,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90具有压缩高度及压缩行程,其中压缩高度指的是转向机构(如前轮转向机构714、中轮转向机构810、后轮转向机构910)顶部到轮组(如前轮组718、中轮组814、后轮组914)的底部之间的高度H(如图14C所示),在较优选的实施例中,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90对轮组(如前轮组718、中轮组814、后轮组914)的压缩高度H为300mm;另外,前轮悬挂组件720、中轮悬挂组件80及后轮悬挂组件90的压缩行程指的是前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90分别将前轮组718、中轮组814、后轮组914抬离地面的高度。在较优选的实施例中,压缩行程为0-200mm。因此,当六轮仿生底盘4遇到垂直障碍且其垂直障碍的高度无法让六轮仿生底盘4的前轮组718抬起而跨越垂直障碍时,此时须通过中轮组814及后轮组914向前轮组718所产生的推力,压缩前轮悬挂组件70,使得前轮连杆机构的前轮上支臂组708、前轮辅助抬轮支架704及前轮转向支架712可以带动前轮组718被抬起而可以越障,而中轮悬挂组件80中的中轮上支臂组804的两端是与底盘架60及中轮转向支架808铰接、后轮悬挂组件90中的后轮上支臂组904的两端是与底盘架60及后轮转向支架908铰接,使得中轮上支臂组804及后轮上支臂组904除了可以在Y方向上移动之外,也可以在Z方向移动,就像是节肢动物的腿部动作一样,且中轮上支臂组804及后轮上支臂组904可以分开朝向不同的方向移动,使得中轮上支臂组804及后轮上支臂组904可以分别的带动中轮转向支架808及后轮转向支架908来带动中轮组814及后轮组914来进行越障。
接着请参考图15A及图15B。图15A是表示本发明所披露的六轮仿生底盘的前轮悬挂组件的结构示意图及图15B表示前轮悬挂组件的侧示图。在图15A及图15B中,前轮悬挂组件70至少包括有:前轮悬挂固定座702、前轮辅助抬轮支架704、前轮辅助抬轮弹簧组件706、前轮上支臂组708、前轮悬挂弹簧组件710、前轮转向支架712、前轮转向机构714、前轮轮毂电机716以及前轮组718,其中,前轮悬挂固定座702的一端702A与底盘架60的前端固接;前轮辅助抬轮支架704的一端与前轮悬挂固定座702的另一端702B铰接;前轮辅助抬轮弹簧组件706的一端穿设于前轮悬挂固定座702,并与前轮悬挂固定座702铰接;前轮辅助抬轮弹簧组件706的另一端与前轮辅助抬轮支架704的另一端铰接;前轮上支臂组708由第一前轮上支臂708a及一对第二前轮上支臂708b所构成,第一前轮上支臂708a的一端与前轮辅助抬轮支架704的另一端铰接,第一前轮上支臂708a的另一端与是与前轮转向支架712铰接,一对第二前轮上支臂708b分别设置在前轮辅助抬轮支架704的两侧且其一端与前轮辅助抬轮支架704铰接,及第二前轮上支臂708b的另一端与前轮转向支架712铰接,其中第一前轮上支臂708a与配置在前轮辅助抬轮支架704及前轮转向支架712的方式是将第一前轮上支臂708a配置在第二前轮上支臂708b的上方。
另外,在本发明的较优选的实施例中,第一前轮上支臂708a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与前轮辅助抬轮支架704及前轮转向支架712铰接;而第二前轮上支臂708b为一对长方形肋条,分别设置在前轮辅助抬轮支架704及前轮转向支架712的两侧且设置在倒凹字型结构的第一前轮上支臂708a的下方,其中前轮上支臂组708的目的用以连接前轮辅助抬轮支架704及前轮转向支架712,且由于前轮上支臂组708的两端分别与前轮辅助抬轮支架704及前轮转向支架712铰接,使得前轮辅助抬轮支架704及前轮转向支架712可以透过前轮上支臂组708随着整个六轮仿生底盘3(如图13A所示)、4(如图14A所示)的高度调整其高度;前轮悬挂弹簧组件710的两端分别与第一前轮上支臂708a及第二前轮上支臂708b的两端铰接;以及前轮转向支架712的一端与前轮转向机构714的一端固连,且前轮转向机构714朝向地面方向的另一端与前轮组718枢接,又前轮组718与前轮轮 毂电机716枢接,根据上述,前轮悬挂组件70中的前轮上支臂组708、前轮辅助抬轮支架704及前轮转向支架712构成前轮连杆机构,使得当六轮仿生底盘3、4可以透过此前轮连杆机构来控制当前轮组718遇到垂直障碍时的运动轨迹。
接着请参考图16。图16表示六轮仿生底盘的中轮悬挂组件的结构示意图。在图16中,中轮悬挂组件30至少包括有中轮悬挂固定座802、中轮上支臂组804、中轮悬挂弹簧组件806、中轮转向支架808、中轮转向机构810、中轮轮毂电机812以及中轮组814,其中,中轮悬挂固定座802的一端802A与底盘架60的中间固接;中轮上支臂组804由第一中轮上支臂804a及一对第二中轮上支臂804b所构成,第一中轮上支臂804a的一端与中轮悬挂固定座802的另一端802B铰接,第一中轮上支臂804a的另一端与是与中轮转向支架808铰接,一对第二中轮上支臂804b的一端与中轮悬挂固定座802的另一端802B铰接,及第二中轮上支臂804b的另一端与中轮转向支架808铰接,其中,第一中轮上支臂804a是配置在第二前轮上支臂804b的上方。
另外,在较优选的实施例中,与前轮上支臂组708相同,第一中轮上支臂804a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与中轮悬挂固定座802及中轮转向支架808铰接;而第二中轮上支臂804b为一对长方形肋条,分别设置在中轮悬挂固定座802及中轮转向支架808的两侧且设置在倒凹字型结构的第一中轮上支臂804a的下方,其中,中轮上支臂组804的目的用以连接中轮悬挂固定座802及中轮转向支架808;以及中轮转向支架808的一端与中轮转向机构810固连,且中轮转向机构810朝向地面方向的一端与中轮组814枢接,且中轮组814与中轮轮毂电机812枢接,根据上述,中轮悬挂组件80中的中轮上支臂组804与中轮转向支架808构成中轮连杆机构,使得在六轮仿生底盘3、4可以利用此中轮连杆机构来控制中轮组814在遇到垂直障碍时的运动轨迹。
请继续参考图17。图17是表示六轮仿生底盘的后轮悬挂组件的结构示意图。在图17中,后轮悬挂组件90至少包括有:后轮悬挂固定座902、后轮上支臂组904、后轮悬挂弹簧组件906、后轮转向支架908、后轮转向机构910、后轮轮毂电机912以及后轮组914,其中,后轮悬挂固定座902的一端902A与底盘架60的后端固接;后轮上支臂组904由第一后轮上支臂904a及一对第二后轮上支臂904b所构成,第一后轮上支臂904a的一端与后轮悬挂固定座902的另一端902B铰接,第一后轮上支臂904a的另一端与是与后轮转向支架908铰接,一对第二后轮上支臂904b的一端与后轮悬挂固定座902的另一端902B铰接,及第二后轮上支臂904b的另一端与后轮转向支架908铰接,其中第一后轮上支臂904a是配置在第二后轮上支臂904b的上方。
另外,在较优选的实施例中,第一后轮上支臂904a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与后轮悬挂固定座902及后轮转向支架908铰接;而第二后轮上支臂904b为一对长方形肋条,分别设置在后轮悬挂固定座902及后轮转向支架908的两侧且设置在倒凹字型结构的第一后轮上支臂904a的下方,其中,后轮上支臂组904的目的用以连接后轮悬挂固定座902及后轮转向支架908;以及后轮转向支架908的一端与后轮转向机构910固连,且后轮转向机构910朝向地面方向的一端与后轮组914枢接,且后轮组914与后轮轮毂电机912枢接,根据上述,后轮悬挂组件90中的后轮上支臂组904与后轮转向支架908构成后轮连杆机构,使得在六轮仿生底盘3、4可以利用此后轮连杆机构来控制后轮组914在遇到垂直障碍时的运动轨迹。
此外,在本发明的较优选的实施例中,与前轮上支臂组708相同,第一中轮上支臂804a为倒凹字型结构,其倒凹字型结构的两侧向外延伸的两端分别与底盘架60铰接;而第二中轮上支臂804b为一对长方形肋条,其一端与底盘架60的中间铰接,另一端与中轮转向支架808铰接,且设置在倒凹字型结构的第一中轮上支臂804a的下方,其中,中轮上支臂组304的目的用以连接底盘架60及中轮转向支架808;以及中轮转向支架808的一端与中轮转向机构810固连,且中轮转向机构810朝向地面方向的一端与中轮组814枢接,且中轮组814与中轮轮毂电机812枢接,根据上述,中轮悬挂组件80中的中轮上支臂组804与中轮转向支架808构成中轮连杆机构,使得在六轮仿生底盘3、4可以利用此中轮连杆机构来控制中轮组814在遇到垂直障碍时的运动轨迹。
在此要说明的是,在本发明所披露的六轮仿生底盘3、4中,前轮悬挂组件70的前轮轮毂电机716、中轮悬挂组件80的中轮轮毂电机812及后轮悬挂组件90的后轮轮毂电机912是分别用来驱动前轮组718、中轮组814及后轮组914旋转。另外,六轮仿生底盘3、4还包括有传感器(未在图中表示)是用以侦测前轮组718、中轮组814及后轮组914的所在位置、速度及前轮组718、中轮组814及后轮组814与水平面之间的高度;此外,传感器亦同时可以监控前轮转向机构714、中轮转向机构810及后轮转向机构910及前轮悬挂组件70、中轮悬挂组件80及/或后轮悬挂组件90的位置。另外,六轮仿生底盘3、4还进一步包括控制器(未在图中表示),其用以接收由传感器所传送 的前轮组718、中轮组814及/或后轮组914的所在位置、速度及前轮组718、中轮组814及后轮组914与水平面之间的高度来分别控制前轮组718、中轮组814及后轮组914的转向及控制前轮悬挂组件70、中轮悬挂组件80及/或后轮悬挂组件90的悬挂高度。
因此,根据以上所述,在本发明所披露的六轮仿生底盘3、4在行进中遇到垂直障碍(未在图中表示)时,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90可以让前轮组714、中轮组814及后轮组914分别产生上下200mm高度的运动行程,因此在遇到垂直障碍且其垂直障碍的高度无法让六轮仿生底盘3、4的前轮组718抬起而跨越垂直障碍时,此时须通过中轮组814及后轮组914向前轮组718所产生的推力,压缩前轮悬挂组件70中的前轮辅助抬轮弹簧组件706,使得前轮组718被抬起而可以越障,而六轮仿生底盘3、4的越障过程于后详述。另外,在六轮仿生底盘3、4进行越障的过程中,六轮仿生底盘3、4的前轮悬挂组件70中的前轮悬挂弹簧组件710、中轮悬挂组件80的中轮悬挂弹簧组件806及后轮悬挂组件90的后轮悬挂弹簧组件906亦可以使中轮组814及后轮组914产生越障高度为300mm的运动行程,如图18A所示,在图18A中是将六轮仿生底盘3、4的前轮悬挂弹簧组件710、中轮悬挂弹簧组件806及后轮悬挂弹簧组件906向下(朝向地面方向)压缩行程范围为0-200mm;而在图18B中,则是将六轮仿生底盘3、4的前轮悬挂弹簧组件710、中轮悬挂弹簧组件806及后轮悬挂弹簧组件906向上升高300mm高度,因此,六轮仿生底盘3、4可以具有至少±200mm高度的减振行程。
因此,综上所述,当轮组(前轮组718、中轮组814、后轮组914)可压缩的高度越大,悬挂弹簧组件(前轮悬挂弹簧组件710、中轮悬挂弹簧组件806、后轮悬挂弹簧组件906)的伸缩性越强,悬挂组件(前轮悬挂组件70、中轮悬挂组件80、后轮悬挂组件90)的压缩行程越大,使得六轮仿生底盘3、4的越障能力越强。
要说明的是,于先前所记载的悬挂减振装置(如图1-图10)或是悬挂组件(如图11A-11B及图12A-12B),亦可以设置于六轮仿生底盘3、4,使得具有上述的悬挂减振装置(如图1-图10)或是悬挂组件(如图11A-11B及图12A-12B)可以分别作为前轮、中轮及后轮的悬挂减振装置或是悬挂组件,让具有悬挂减振装置(如图1-图10)或是悬挂组件(如图11A-11B及图12A-12B)的六轮仿生底盘(未在图中表示)与前述实施例中的六轮仿生底盘3、4一样来进行转弯或是爬坡越障等功能,因此不再针对悬挂减振装置(如图1-图10)或是悬挂组件(如图11A-11B及图12A-12B)与底盘结合之后的内容作进一步的陈述。
接着请参考图19。图19是根据本发明所披露的六轮仿生底盘在越障时的一实施例的示意图。在说明图19的同时,也请一并参考图15A、图16及图17。在图19中,六轮仿生底盘3、4在平面行驶时保持在第一峰值转矩为10牛顿·米(N·m)恒定输出,当传感器感知道前轮组718与垂直障碍Q接触时,此时传感器会发出障碍物的信号通知控制器,控制器在接收到此信号之后,会对前轮轮毂电机716、中轮轮毂电机812及后轮轮毂电机912发出控制信号以第二峰值转矩为13N·m来运行,此时前轮组718受到垂直障碍Q产生反作用力N 3及前轮组718与平面30之间的磨擦力F 3,其合力会使前轮悬挂弹簧组件710压缩,具体来说是前轮组718所受到垂直障碍Q后所产生的反作用力N 3与前轮组718与平面30之间的磨擦力F 3的合力来压缩前轮悬挂组件70中的前轮悬挂弹簧组件710及前轮辅助抬P轮弹簧组件706,而前轮悬挂组件70带动前轮组718朝向P的方向运动,使得前轮组718被抬升,而可以翻越垂直障碍Q而实现越障的目的。
当前轮组718完成越障之后,六轮仿生底盘3、4继续向前行驶(图面中箭头M的方向)时其控制器会发出信号控制前轮轮毂电机716以第一峰值转矩为10N·m来运行。当六轮仿生底盘3、4继续向前行驶时,且当传感器感知到中轮组814与垂直障碍Q接触时,其传感器会再对控制器发出遇到障碍物的信号,控制器在接收到信号之后对中轮轮毂电机812发出控制信号以第二峰值转矩13N·m运行,此时中轮组814受到垂直障碍Q产生反作用力N 2与中轮组814与平面30之间的磨擦力F 2,其合力会使中轮悬挂弹簧组件806被压缩,具体来说是中轮组814受到垂直障碍Q后所产生的反作用力N 2与中轮组314与路面R之间的磨擦力F 2的合力来压缩中轮悬挂组件80中的中轮悬挂弹簧组件806,而中轮悬挂组件80会带动中轮组814同样是朝着P的方向运动,使得中轮组814借助牵引力和自身的动力,以被动的方式被抬升而可以翻越垂直障碍Q,而让中轮组814实现越障的目的。
当六轮仿生底盘3、4完成了前轮组718及中轮组814翻越垂直障碍Q之后,六轮仿生底盘3、4的前轮轮毂电机716、中轮轮毂电机812及后轮轮毂电机912会以第一峰值转矩为10N·m驱动前轮组718、中轮组814及后轮组914继续向前行驶(朝着图面箭头M的方向),当后轮组914与垂直障碍物Q接触时,传感器会再对控制器发出遇到障碍物的信号,控制器在接收到此信号之后,对后轮轮毂电机412发出控制信号以第二峰值转矩13N·m运行,此时 后轮组914受到垂直障碍物Q产生反作用力N 1与后轮组914与平面30之间的磨擦力F 1,其合力会使后轮悬挂弹簧组件906被压缩,具体来说是后轮组914受到垂直障碍Q后所产生的反作用力N 1与后轮组914与平面30之间的磨擦力F 1的合力来压缩后轮悬挂组件90中的后轮悬挂弹簧组件906,而后轮悬挂组件90会带动后轮组914同样是朝着P的方向运动,使得后轮组914同样借助牵引力和自身的动力,以被动的方式被抬升而可以翻越垂直障碍Q,而让后轮组914实现越障的目的。当六轮仿生底盘3、4的前轮组718、中轮组814及后轮组914完成了翻越垂直障碍Q之后,其控制器会发出信号来控制六轮仿生底盘3、4的前轮轮毂电机716、中轮轮毂电机812及后轮轮毂电机912由第二峰值转矩为13N·m变更为以第一峰值转矩为10N·m来驱动前轮组718、中轮组814及后轮组914继续向前行驶(朝着图面箭头M的方向)。要说明的是,本发明所披露的六轮仿生底盘3、4在调整前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90的硬度时,前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90对前轮组718、中轮组814及后轮组914的压缩行程为0-200mm,因此六轮仿生底盘3、4可以实现压缩高度为300mm的垂直越障能力,具体计算如下所述。
影响六轮仿生底盘3、4越障高度的因素其可能包括有:六轮仿生底盘3、4的重心位置、轮毂电机(前轮轮毂电机716、中轮轮毂电机812及后轮轮毂电机912)、轮组(前轮组718、中轮组814及后轮组914)与地面之间的摩擦系数,其中六轮仿生底盘3、4的重心位置与底盘架60的结构参数有关,其结构参数可以包括轮组(前轮组718、中轮组814及后轮组914)直径、减震结构弹力及悬挂行程,因此如图20所示,在轮毂电机(前轮轮毂电机716、中轮轮毂电机812及后轮轮毂电机912)的功率足够的条件下,轮组(前轮组718、中轮组814及后轮组914)与地面滚动的情况下,六轮仿生底盘1a、1b的越障高度h的计算方式如下:
Figure PCTCN2021073562-appb-000001
Figure PCTCN2021073562-appb-000002
Figure PCTCN2021073562-appb-000003
Z 2-m 2=h 2   式(4);
因此,根据上述式(1)-式(4)可以计算得到越障高度h为:
Figure PCTCN2021073562-appb-000004
其中,L 1为各上支臂组的长度、L 2为各转向支架的长度、L 3为各轮组(前轮组718、中轮组814及后轮组914)完成越障时各轮组(前轮组718、中轮组814及后轮组914)的中心与各悬挂固定座(前轮悬挂固定座702、中轮悬挂固定座802、后轮悬挂固定座902)之间的距离、L 4为六轮仿生底盘3、4在平面行驶时,各轮组(前轮组718、中轮组814及后轮组914)的中心对应的各悬挂固定座(前轮悬挂固定座702、中轮悬挂固定座802、后轮悬挂固定座902)之间的距离、m为越障前后,各轮组(前轮组718、中轮组814及后轮组914)于水平方向的移动距离及Z为各轮组(前轮组718、中轮组814及后轮组914)中心越障前后之间的直线距离。据此,将前轮组718、中轮组814及后轮组914依据上述算式计算之后,可以得到六轮仿生底盘3、4六个不同位置的前进方向力的相加,进一步的得到六轮仿生底盘3、4的越障高度。
由于本发明所披露的六轮仿生底盘3、4的前轮悬挂组件70、中轮悬挂组件80及后轮悬挂组件90其结构可以仿真节肢动物的腿部状态,提高六轮仿生底盘3、4可以连续翻越垂直障碍的能力。
以上所述仅为本发明之较佳实施例,并非用以限定本发明之权利范围;同时以上的描述,对于相关技术领域之专门人士应可明了及实施,因此其他未脱离本发明所揭示之精神下所完成的等效改变或修饰,均应包含在申请专利范围中。

Claims (30)

  1. 一种悬挂减振装置,安装于可移动机器人的底盘,其特征在于,包括:
    车架,位于地面上并固定于所述底盘;
    控制臂组,所述控制臂组包括上控制臂和下控制臂,所述上控制臂及所述下控制臂的一端分别与所述车架铰接,另一端分别与转向装置铰接,使得所述控制臂组控制所述转向装置的运动稳定性;以及
    减振装置,所述减振装置相反于所述地面的一端与所述车架铰接,以及所述减振装置的另一端朝向所述地面并与所述转向装置铰接。
  2. 如权利要求1所述的悬挂减振装置,其特征在于,所述减振装置的数量为两个,以及所述两个减振装置分别配置于所述控制臂组的两侧。
  3. 一种悬挂减振装置,安装于可移动机器人的底盘,其特征在于,包括:
    车架,位于地面上并固定于所述底盘;
    控制臂组,所述控制臂组包括上控制臂和下控制臂,所述上控制臂及所述下控制臂的一端分别与所述车架铰接,另一端分别与转向装置铰接,使得所述控制臂组控制所述转向装置的运动稳定性;以及
    减振装置,所述减振装置相反于所述地面的一端与所述底盘铰接,以及所述减振装置的另一端朝向所述地面并与所述下控制臂铰接。
  4. 如权利要求3所述的悬挂减振装置,其特征在于,所述悬挂减振装置的数量为至少两个,以及所述其中一个悬挂减振装置的所述车架通过车架链接架铰接于另一个所述悬挂减振装置的所述车架。
  5. 如权利要求3所述的悬挂减振装置,其特征在于,所述上控制臂的数量为两个,所述下控制臂的数量为两个,以及所述减振装置的所述另一端同时铰接于所述两个下控制臂。
  6. 如权利要求1或3任一项所述的悬挂减振装置,其特征在于,所述上控制臂及所述下控制臂之间具有间距,透过所述间距使得所述上控制臂与所述下控制臂在操作时不互相干涉。
  7. 一种悬挂减振装置,安装于可移动机器人的底盘,其特征在于,包括:
    车架,位于地面上并固定于所述底盘;
    轮组铰接座,所述轮组铰接座的一端与所述车架铰接及另一端与转向装置固连,使得所述轮组铰接座控制所述转向装置的运动稳定性;以及
    减振装置,设置于所述车架上,所述减振装置相反于所述地面的一端铰接于所述车架,所述减振装置的另一端朝向地面且容置于所述轮组铰接座,以及所述减振装置的所述另一端铰接于所述轮组铰接座。
  8. 如权利要求7所述的悬挂减振装置,其特征在于,所述轮组铰接座具有凹槽以容置所述减振装置,以及所述减振装置的所述另一端铰接于所述轮组铰接座的所述凹槽。
  9. 如权利要求1、3或7任一项所述的悬挂减振装置,其特征在于,更包含轮组设置于所述转向装置,所述轮组的另一端与路面接触,以及所述轮组依据所述转向装置改变所述可移动机器人的行进方向。
  10. 一种悬挂组件,包括:
    支臂组,由第一支臂及第二支臂所组成;
    悬挂弹簧组件,设置在第一支臂与所述第二支臂之间,且所述悬挂弹簧组件的两端分别与所述第一支臂与所述第二支臂的两端铰接;以及
    转向支架,所述转向支架的一端分别与所述第一支臂及所述第二支臂的一端铰接,所述转向支架的另一端与转向机构铰接,且所述转向机构朝向所述水平面方向的一端与轮组枢接。
  11. 如权利要求10所述的悬挂组件,其特征在于,所述悬挂组件还包括辅助抬轮支架,所述辅助抬轮支架分别与所述第一支臂及所述第二支臂的另一端铰接且所述辅助抬轮支架的另一端与机器人或是车辆固连,使得所述辅助抬轮支架与所述支臂组、所述转向支架形成连杆机构,所述连杆机构用以控制所述轮组遇到垂直障碍时的运动轨迹。
  12. 如权利要求10所述的悬挂组件,其特征在于,所述悬挂组件更包含悬挂固定座,所述悬挂固定座的一端分别与所述第一支臂及所述第二支臂的另一端铰接。
  13. 如权利要求12所述的悬挂组件,其特征在于,进一步包含辅助抬轮弹簧组件,所述辅助抬轮弹簧组件的一端穿设于所述悬挂固定座,并与所述悬挂固定座铰接。
  14. 如权利要求10所述的悬挂组件,其特征在于,所述第一支臂与所述第二支臂为长方形肋条,所述第一支臂及所述第二支臂设置在所述悬挂弹簧组件的左右两侧或是分别设置在所述悬挂弹簧组件的上方及下方。
  15. 如权利要求10所述的悬挂组件,其特征在于,所述第一支臂或所述第二支臂为倒凹字型结构,另一所述第一支臂或所述第二支臂及所述第二支臂为一对长方形肋条,所述第一支臂或所述第二支臂其中之一设置在所述悬挂弹簧组件的上方及所述第一支臂或所述第二支臂其中之一分别设置在所述悬挂弹簧组件的两侧边。
  16. 如权利要求10所述的悬挂组件,其特征在于,所述轮组还枢设有轮毂电机、所述轮毂电机用以驱动所述轮组。
  17. 如权利要求10所述的悬挂组件,其特征在于,所述悬挂组件还包括有传感器及控制器,所述传感器用以侦测所述轮组的所在位置、速度及所述轮组与水平面之间的高度,并监控所述转向机构及所述悬挂组件的坐标位置、及所述控制器用以接收由所述传感器所传送的所述轮组的所述所在位置、所述速度及所述轮组与水平面之间的所述高度来分别控制所述轮组的转向及所述悬挂组件的悬挂高度。
  18. 如权利要求10所述的悬挂组件,其特征在于,所述悬挂组件对所述轮组的压缩高度为300mm。
  19. 如权利要求10所述的悬挂组件,其特征在于,所述悬挂组件的压缩行程为0-200mm。
  20. 一种六轮仿生底盘,具有底盘架,控制器、传感器及朝向水平面方向于所述底盘架的前端两侧分别枢接有前轮悬挂组件、于所述底盘架的中间两侧分别枢接有中轮悬挂组件及于所述底盘架的后端两侧分别枢接有后轮悬挂组件,且所述控制器及所述传感器分别与所述前轮悬挂组件、所述中轮悬挂组件及所述后轮悬挂组件电性连接,其特征在于,包括:
    各所述前轮悬挂组件,包括:
    前轮辅助抬轮支架,其一端与所述底盘架的前端铰接;
    前轮上支臂组,由第一前轮上支臂及一对第二前轮上支臂所组成,所述第一前轮上支臂配置在所述第二前轮上支臂的上方,所述第一前轮上支臂的一端与所述前轮辅助抬轮支架的所述另一端铰接及所述第一前轮上支臂的另一端与前轮转向支架铰接,各所述第二前轮上支臂的一端分别与所述前轮辅助抬轮支架的所述另一端铰接及各所述第二前轮上支臂的另一端分别与所述前轮转向支架铰接;
    前轮悬挂弹簧组件,所述前轮悬挂弹簧组件的两端分别与所述前轮上支臂组的两端铰接;以及
    所述前轮转向支架,一端与前轮转向机构固连且所述前轮转向机构朝向所述水平面方向的一端与前车轮组枢接,所述前车轮组与前车轮轮毂电机枢接,其中所述前轮悬挂组件中的所述前轮上支臂组、所述前轮辅助抬轮支架及前轮转向支架形成前轮连杆机构,用以控制所述前车轮组遇到垂直障碍时的运动轨迹;
    各所述中轮悬挂组件,包括:
    中轮上支臂组,由第一中轮上支臂及一对第二中轮上支臂所组成,所述第一中轮上支臂配置在所述第二中轮上支臂的上方,所述第一中轮上支臂的一端与所述底盘架铰接,及所述第一中轮上支臂的另一端与中轮转向支架铰接,各所述第二中轮上支臂的一端分别与所述底盘架铰接及各所述第二中轮上支臂的另一端分别与所述中轮转向支架铰接;以及中轮悬挂弹簧组件,所述中轮悬挂弹簧组件的两端分别与所述中轮上支臂组铰接;以及
    所述中轮转向支架,一端与中轮转向机构固连且所述中轮转向机构朝向所述水平面方向的一端与中车轮组枢接,所述中车轮组与中车轮轮毂电机枢接,其中所述中轮悬挂组件中的所述中轮上支臂组及所述中轮转向支架形成中轮连杆机构,用以控制所述中车轮组遇到所述垂直障碍时的运动轨迹;以及
    各所述后轮悬挂组件,包括:
    后轮上支臂组,由第一后轮上支臂及一对第二后轮上支臂所组成,所述第一后轮上支臂配置在所述第二后轮上支臂的上方,所述第一后轮上支臂的一端与所述底盘架的后端铰接,及所述第一后轮上支臂的另一端与后轮转向支架铰接,各所述第二后轮上支臂的一端分别与所述底盘架的所述后端铰接及各所述第二后轮上支臂的另一端分别与所述后轮转向支架铰接;以及
    后轮悬挂弹簧组件,所述后轮悬挂弹簧组件的两端分别与所述后轮上支臂铰接;以及
    所述后轮转向支架,一端与后轮转向机构固连且所述后轮转向机构朝向所述水平面方向的一端与后车轮组枢接,所述后车轮组与后车轮轮毂电机枢接,其中所述后轮悬挂组件中的所述后轮上支臂组及所述后轮转向支架形成后轮连杆机构,用以控制所述后车轮组遇到所述垂直障碍的运动轨迹。
  21. 如权利要求20所述的六轮仿生底盘,其特征在于,各所述前轮悬挂组件更包含前轮悬挂固定座及前轮辅助抬轮弹簧组件,所述前轮悬挂固定座的一端与所述底盘架的前端固接,所述前轮悬挂固定座的另一端与所述前轮辅助抬轮支架铰接,及所述前轮辅助抬轮弹簧组件的一端穿设并与所述前轮悬挂组固定座铰接,以及所述前轮辅助抬轮弹簧组件的另一端与所述前轮辅助抬轮支架的另一端铰接。
  22. 如权利要求20所述的六轮仿生底盘,其特征在于,各所述中轮悬挂组件更包含中轮悬挂固定座,所述中轮悬挂固定座的一端与所述底盘架的中间固接、所述中轮悬挂固定座的另一端与所述第一中轮上支臂的一端铰接及各所述第二中轮上支臂的一端分别与所述中轮悬挂固定座的所述另一端铰接。
  23. 如权利要求20所述的六轮仿生底盘,其特征在于,各所述后轮悬挂组件更包含后轮悬挂固定座,所述后轮悬挂固定座的一端与所述底盘架的后端固接、所述后轮悬挂固定座的另一端与所述第一后轮上支臂的一端铰接及各所述第二后轮上支臂的一端分别与所述后轮悬挂固定座的所述另一端铰接。
  24. 如权利要求20所述的六轮仿生底盘,其特征在于,所述前轮轮毂电机、所述中轮轮毂电机及所述后轮轮毂电机分别驱动所述前轮组、所述中轮组及所述后轮组旋转。
  25. 如权利要求20所述的六轮仿生底盘,其特征在于,所述传感器用以侦测所述前轮组、所述中轮组及所述后轮组的所在位置、速度及所述前轮组、所述中轮组及所述后轮组与水平面之间的高度,且所述控制器用以接收由所述传感器所传送的所述前轮组、所述中轮组及/或所述后轮组的所述所在位置、所述速度及所述前轮组、所述中轮组及所述后轮组与水平面之间的所述高度来分别控制所述前轮组、所述中轮组及所述后轮组的转向及所述前轮悬挂组件、所述中轮悬挂组件及/或所述后轮悬挂组件的悬挂高度。
  26. 如权利要求20所述的六轮仿生底盘,其特征在于,当所述传感器侦测该所述前轮组与垂直障碍接触时,所述控制器发出信号以控制所述前轮轮毂电机以第一峰值转矩运行,使得所述前轮组受垂直障碍反作用力及摩擦力的合力使得所述前轮悬挂弹簧组件压缩,所述前轮悬挂组件带动所述前轮组以远离所述水平面方向向上运动,使得所述前轮组翻越所述垂直障碍、当所述传感器侦测所述中轮组与所述垂直障碍时,所述控制器发出信号以控制所述中轮轮毂电机以第二峰值转矩运行,使得所述中轮组受垂直障碍反作用力及摩擦力的合力使得所述中轮悬挂弹簧组件压缩,所述中轮悬挂组件带动所述中轮组以远离所述水平面方向向上运动,使得所述中轮组翻越所述垂直障碍以及当所述传感器侦测所述后轮组与所述垂直障碍时,所述控制器发出信号以控制所述后轮轮毂电机以第二峰值转矩运行,且所述前轮轮毂电机以所述第一峰值转矩运行,使得所述后轮组受垂直障碍反作用力及摩擦力的合力使得所述后轮悬挂弹簧组件压缩,所述后轮悬挂组件带动所述后轮组以远离所述水平面方向向上运动,使得所述后轮组翻越所述垂直障碍。
  27. 如权利要求26所述的六轮仿生底盘,其特征在于,所述第一峰值转矩为13N·m及所述第二峰值转矩为10N·m。
  28. 如权利要求20所述的六轮仿生底盘,其特征在于,所述前轮悬挂组件、所述中轮悬挂组件及所述后轮悬挂组件分别对所述前轮组、所述中轮组及所述后轮组的压缩高度为300mm。
  29. 如权利要求20所述的六轮仿生底盘,其特征在于,所述传感器监控所述前轮转向机构、所述中轮转向机构及所述后轮转向机构及所述前轮悬挂组件、所述中轮悬挂组件及/或所述后轮悬挂组件的坐标位置。
  30. 如权利要求20所述的六轮仿生底盘,其特征在于,所述前轮悬挂组件、所述中轮悬挂组件及所述后轮悬挂组件的压缩行程为0-200mm。
PCT/CN2021/073562 2020-03-02 2021-01-25 悬挂装置、悬挂减振装置及六轮仿生底盘 WO2021175042A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21764180.2A EP4116115A4 (en) 2020-03-02 2021-01-25 SUSPENSION DEVICE, SUSPENSION DAMPER AND SIX-WHEEL BIONIC CHASSIS
US17/441,589 US11780282B2 (en) 2020-03-02 2021-01-25 Suspension assembly, suspension damping device and six wheels bionic chassis
KR1020227021073A KR102674772B1 (ko) 2020-03-02 2021-01-25 서스펜션 장치, 서스펜션 댐핑 장치 및 6륜 바이오닉 섀시

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010135427.8 2020-03-02
CN202010135427.8A CN111137084A (zh) 2020-03-02 2020-03-02 一种悬挂减振装置
CN202022400344.5 2020-10-26
CN202022400344.5U CN214295446U (zh) 2020-10-26 2020-10-26 悬挂组件
CN202011155327.8 2020-10-26
CN202011155327.8A CN112298395B (zh) 2020-10-26 2020-10-26 六轮仿生底盘

Publications (1)

Publication Number Publication Date
WO2021175042A1 true WO2021175042A1 (zh) 2021-09-10

Family

ID=77614375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073562 WO2021175042A1 (zh) 2020-03-02 2021-01-25 悬挂装置、悬挂减振装置及六轮仿生底盘

Country Status (4)

Country Link
US (1) US11780282B2 (zh)
EP (1) EP4116115A4 (zh)
KR (1) KR102674772B1 (zh)
WO (1) WO2021175042A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408051A (zh) * 2022-02-21 2022-04-29 之江实验室 一种带主动悬挂结构的三轮轻质探测采样轮式机器人
US12005737B2 (en) * 2022-03-10 2024-06-11 Tata Consultancy Services Limited Changeable wheel track mechanism for track width adjustment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220068549A (ko) * 2020-11-19 2022-05-26 현대자동차주식회사 독립 현가 시스템
CN113002254B (zh) * 2021-02-18 2022-07-22 神农智慧农业研究院南京有限公司 自走式田间作物表型监测平台
EP4296012A1 (en) * 2021-06-25 2023-12-27 Samsung Electronics Co., Ltd. Traveling robot device
CN115503828B (zh) * 2022-11-16 2023-03-17 福建省威盛机械发展有限公司 车辆底盘及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2673581Y (zh) * 2004-02-16 2005-01-26 中国科学技术大学 被动式双曲柄越障机构
KR20080054752A (ko) * 2006-12-13 2008-06-19 이영진 주행 로봇 시스템
CN108099523A (zh) * 2017-12-19 2018-06-01 重庆飞逯科技有限公司 轮式机器人及其底盘装置
CN207644108U (zh) * 2017-11-28 2018-07-24 长安大学 一种基于轮毂电机的六轮独立悬挂底盘
CN109176461A (zh) * 2018-10-31 2019-01-11 北京林业大学 轮腿式越障机器人
CN109353407A (zh) * 2018-09-19 2019-02-19 西安交通大学 一种全向行驶车辆模块化驱动转向***及车辆
CN110341793A (zh) * 2019-07-17 2019-10-18 宁波财经学院 机器人移动底盘
CN111137084A (zh) * 2020-03-02 2020-05-12 大陆智源科技(北京)有限公司 一种悬挂减振装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753178A (en) * 1952-03-08 1956-07-03 Zakarian Nouchen Auto damping suspension device
US2818273A (en) * 1956-08-23 1957-12-31 Peter R Weihsmann Motor vehicle with variable ground clearance suspension sensitive to speed
US3387726A (en) * 1965-12-22 1968-06-11 Clark Equipment Co High lift straddle carrier
US3499505A (en) * 1968-03-14 1970-03-10 Bourcier Carbon Christian Elastic shock-absorbing suspension
US3804189A (en) * 1972-07-26 1974-04-16 Rubery Owen & Co Ltd Load carrying vehicles
US3912289A (en) * 1974-08-21 1975-10-14 Jr Edward H Czajkowski Vehicle level control
DE2807518C3 (de) * 1978-02-22 1981-09-24 Habegger, Willy, Hünibach Radaufhängung für ein Fahr- und Schreitwerk
US4534575A (en) * 1982-10-18 1985-08-13 Jlg Industries, Inc. Vehicle suspension and steerage system
US5580089A (en) * 1994-10-11 1996-12-03 Kolka; David B. Vehicle stabilization system and method
US6406043B1 (en) * 1998-01-29 2002-06-18 Charles Balmer Suspension and steering system for a vehicle
US6036201A (en) * 1998-02-23 2000-03-14 General Dynamics Land Systems Adjustable vehicle suspension
US6357770B1 (en) * 1999-10-07 2002-03-19 CARPIAUX ANDRé In-wheel suspension
DE19955199C1 (de) * 1999-11-16 2001-06-13 Karlsruhe Forschzent Treppensteigendes Fahrzeug
US6311795B1 (en) * 2000-05-02 2001-11-06 Case Corporation Work vehicle steering and suspension system
ITPN20000034A1 (it) * 2000-06-02 2001-12-02 Aprilia Spa Perfezionamenti ai veicoli aventi due ruote anteriori rollanti e sterzanti e almeno una ruota motrice posteriore
US8839891B2 (en) * 2003-02-21 2014-09-23 Lockheed Martin Corporation Multi-mode skid steering
US6899191B1 (en) * 2004-01-30 2005-05-31 Sno-Bear Industries, Llc Actuated ski suspension
DE102005007382B3 (de) * 2005-02-18 2006-04-06 Zf Friedrichshafen Ag Schwingungsdämpfer mit einem Anbauteil
DE102005038274C5 (de) * 2005-08-12 2018-01-11 Saf-Holland Gmbh Radaufhängungslenker
WO2007097779A2 (en) * 2005-08-19 2007-08-30 Oshkosh Truck Corporation Modular metamorphic vehicle
JP4908059B2 (ja) * 2006-05-22 2012-04-04 カヤバ工業株式会社 ストラット型ショックアブソーバ
US20110272900A1 (en) * 2006-05-23 2011-11-10 Inicia IP Holdings, LLC. Central multidirectional drive transmission system
GB0815314D0 (en) * 2008-08-22 2008-09-24 Chem Europ Bv Ag Agricultural application machine with variable width track
DE102010008179A1 (de) * 2009-02-19 2010-09-16 Progress-Werk Oberkirch Ag Stoßdämpfergehäuse
US8424881B2 (en) * 2009-08-27 2013-04-23 Hjv Equipment Wheel support for adjusting the ground clearance of a vehicle
DE102010022313A1 (de) * 2010-06-01 2011-12-01 Horsch Maschinen Gmbh Einzelradaufhängung für ein gefedertes, lenkbares Rad
WO2012092003A1 (en) * 2010-12-30 2012-07-05 Agco Corporation Linkage lift mechanism for off-road vehicle
JP2014168971A (ja) 2013-03-01 2014-09-18 Aichi Univ Of Technology 車輪型移動車
US8985610B2 (en) * 2013-03-08 2015-03-24 Gogoro Inc. Suspension structure and driving assembly comprising the same
CN103317987B (zh) 2013-05-16 2015-10-28 姬亮 一种车轮自由起降越野车
CN110494349B (zh) * 2017-03-29 2022-12-13 株式会社久保田 作业车
CN110461690A (zh) * 2017-03-29 2019-11-15 株式会社久保田 作业车
CN107160963B (zh) * 2017-05-04 2020-08-21 大陆智源科技(北京)有限公司 轮式运动底盘
CN111194165B (zh) * 2017-09-19 2022-09-13 联邦科学和工业研究组织 植物扫描车辆
CN110481670B (zh) 2019-08-26 2020-10-09 西安电子科技大学 一种轮腿混合式六足机器人
CN211663015U (zh) 2020-03-02 2020-10-13 大陆智源科技(北京)有限公司 一种悬挂减振装置
US11130519B1 (en) * 2021-05-18 2021-09-28 Kan Cui Parallel maneuvering system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2673581Y (zh) * 2004-02-16 2005-01-26 中国科学技术大学 被动式双曲柄越障机构
KR20080054752A (ko) * 2006-12-13 2008-06-19 이영진 주행 로봇 시스템
CN207644108U (zh) * 2017-11-28 2018-07-24 长安大学 一种基于轮毂电机的六轮独立悬挂底盘
CN108099523A (zh) * 2017-12-19 2018-06-01 重庆飞逯科技有限公司 轮式机器人及其底盘装置
CN109353407A (zh) * 2018-09-19 2019-02-19 西安交通大学 一种全向行驶车辆模块化驱动转向***及车辆
CN109176461A (zh) * 2018-10-31 2019-01-11 北京林业大学 轮腿式越障机器人
CN110341793A (zh) * 2019-07-17 2019-10-18 宁波财经学院 机器人移动底盘
CN111137084A (zh) * 2020-03-02 2020-05-12 大陆智源科技(北京)有限公司 一种悬挂减振装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116115A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114408051A (zh) * 2022-02-21 2022-04-29 之江实验室 一种带主动悬挂结构的三轮轻质探测采样轮式机器人
US12005737B2 (en) * 2022-03-10 2024-06-11 Tata Consultancy Services Limited Changeable wheel track mechanism for track width adjustment

Also Published As

Publication number Publication date
KR102674772B1 (ko) 2024-06-13
US11780282B2 (en) 2023-10-10
KR20220102645A (ko) 2022-07-20
US20220176765A1 (en) 2022-06-09
EP4116115A1 (en) 2023-01-11
EP4116115A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021175042A1 (zh) 悬挂装置、悬挂减振装置及六轮仿生底盘
CN108454718B (zh) 一种履带式被动自适应机器人
Nakajima RT-Mover: a rough terrain mobile robot with a simple leg–wheel hybrid mechanism
CN112298395B (zh) 六轮仿生底盘
CN107521573A (zh) 一种减震履带式无人移动平台
CN111619296B (zh) 一种轮系运动装置用悬挂***、汽车
CN214875226U (zh) 机器人的移动装置及机器人
WO2022105624A1 (zh) 一种可保持特定轮距的独立悬挂装置
CN113183706B (zh) 面向全矢量线控汽车的双纵臂式主动悬架***
WO2021212912A1 (zh) 全向移动设备
CN113173216A (zh) 机器人的移动装置及机器人
CN216185444U (zh) 一种四驱四转的机器人轮系结构
CN213620020U (zh) 多轮仿生底盘
CN214295446U (zh) 悬挂组件
CN113510678A (zh) 一种全地形机器人控制方法及全地形机器人
CN211222946U (zh) 车辆姿态主动调整***及车辆
CN210083396U (zh) 一种无人越障车
CN115476332B (zh) 全地形自适应全向被动摇臂越障搜救机器人及搜救方法
CN111016562A (zh) 一种非载人小车独立悬架装置
CN211223672U (zh) 独立悬架移动机器人用四轮差速滑动转向动力平衡装置
CN215245183U (zh) 一种履带底盘姿态调节装置
CN212579553U (zh) Agv减震装置
CN110562352B (zh) 独立悬架移动机器人用四轮差速滑动转向动力平衡装置
CN213620018U (zh) 带独立悬挂的四轮机器人平台
CN217778810U (zh) 一种机器人四足运动底盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227021073

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764180

Country of ref document: EP

Effective date: 20221004