WO2021174776A1 - 用于冷凝机组的预保护方法以及冷凝机组 - Google Patents

用于冷凝机组的预保护方法以及冷凝机组 Download PDF

Info

Publication number
WO2021174776A1
WO2021174776A1 PCT/CN2020/111613 CN2020111613W WO2021174776A1 WO 2021174776 A1 WO2021174776 A1 WO 2021174776A1 CN 2020111613 W CN2020111613 W CN 2020111613W WO 2021174776 A1 WO2021174776 A1 WO 2021174776A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
condensing unit
loading time
value
time percentage
Prior art date
Application number
PCT/CN2020/111613
Other languages
English (en)
French (fr)
Inventor
杨继坤
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2021174776A1 publication Critical patent/WO2021174776A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to the field of condensing units, and more specifically, the present disclosure relates to a method capable of pre-protecting a condensing unit, a computer-readable medium including a program for implementing the method, a controller including the computer-readable medium, and The condensing unit of the controller.
  • Condensing units are often used in cold chains such as display cabinets or cold storage in convenience stores or supermarkets to maintain the temperature of stored items in a relatively constant low temperature environment.
  • the condensing unit has a controller that can control the start and stop of the compressor according to the relationship between the suction pressure of the compressor (here, the digital compressor with capacity adjustment function) and the set value, and at the same time through
  • the solenoid valve adjusts the output capacity of the compressor. If the actual suction pressure is higher than the set value, the controller starts the compressor and increases the output capacity of the compressor (the solenoid valve is in the closed state) until the compressor is at the maximum output percentage. If the actual suction pressure is lower than the set value, the controller reduces the output capacity of the compressor until the compressor runs at the lowest output percentage. If the suction pressure further decreases, the controller stops the operation of the compressor.
  • An object of the present disclosure is to provide a pre-protection method capable of reducing the unexpected shutdown of the compressor.
  • Another object of the present disclosure is to provide a condensing system that is more adaptable and can deal with harsh environments.
  • Another object of the present disclosure is to provide a condensing system that can provide a more stable refrigeration effect.
  • Another object of the present disclosure is to provide an improved condensing system in a simple and low-cost manner.
  • the present disclosure provides a pre-protection method for a condensing unit, a controller capable of performing the pre-protection function, and a condensing unit with the pre-protection function.
  • a pre-protection method for a condensing unit includes a digital compressor with a capacity adjustment function and a switching element that controls the load/unload switch of the digital compressor.
  • the pre-protection method It includes the following steps: monitoring the value of the working parameter of the condensing unit, comparing the value of the monitored working parameter with the predetermined value corresponding to the working parameter, and controlling the action of the switching element based on the result of the comparison to adjust the digital compressor The maximum allowable percentage of load time.
  • the working parameter is a parameter that directly or indirectly reflects the size of the condensing pressure of the condensing unit.
  • the working parameter is one or more of the condensing pressure, the condensing temperature, and the compressor operating current of the condensing unit.
  • the predetermined value of the working parameter includes a first predetermined value and a second predetermined value, and the first predetermined value is greater than the second predetermined value.
  • the maximum allowable loading time percentage is reduced by the first difference, where the reduced maximum allowable loading time percentage is not less than the loading set for the digital compressor Lower limit of time percentage.
  • the first difference is a fixed value; or the first difference can be calculated by the following formula:
  • P x is the value of the working parameter
  • P px1 is the corresponding first predetermined value of the working parameter
  • r 1 is the reduction factor
  • the maximum allowable loading time percentage is less than the upper limit of the loading time percentage set for the digital compressor and the value of the working parameter is less than the corresponding second predetermined value, the maximum allowable loading time percentage is increased by the second difference, where The maximum allowable percentage of loading time after the expansion is not higher than the upper limit of percentage of loading time.
  • the second difference is a fixed value
  • the second difference (d 2 ) can be calculated by the following formula:
  • P x is the value of the working parameter
  • P px2 is the corresponding second predetermined value of the working parameter
  • r 2 is the increase coefficient
  • the switching element is a solenoid valve.
  • a computer-readable medium storing a program for pre-protecting a condensing unit, wherein the program implements the steps in the pre-protection method as described above when the program is executed.
  • the computer-readable medium has no additional requirements for the configuration and structure of the existing condensing unit, so it has universal applicability.
  • a controller for pre-protecting a condensing unit includes a digital compressor with a capacity adjustment function with a switching element that can perform a switching action.
  • the load/unload switch of the digital compressor is realized.
  • the digital compressor is set with the upper limit of the load time percentage and/or the lower limit of the load time percentage.
  • the controller includes: a data storage unit, which includes the data storage unit as described above The computer-readable medium of the data collection unit; the data collection unit monitors and collects data about working parameters and transmits the data to the data storage unit; the data processing unit reads the data in the data storage unit and executes the computer Read the program in the medium, and then output the processing result to the digital compressor to adjust the maximum allowable loading time percentage of the digital compressor.
  • condensing unit wherein the condensing unit includes the controller as described above.
  • the unexpected shutdown of the compressor is reduced, and the refrigeration capacity of the condensing unit can be better maintained.
  • the temperature of the stored items is more stable; and the condensing unit is suitable
  • the compatibility is improved, especially the ability to work in harsh environments; in addition, the present disclosure only needs to change the software, and there is no hardware investment cost, so it is cost-saving and easy to implement.
  • Figure 1 is a schematic diagram of the condensing unit.
  • FIG. 2 is a control flowchart of a pre-protection method according to an exemplary embodiment of the present disclosure.
  • Fig. 1 shows a condensing unit 100, which includes a refrigeration circuit for providing refrigeration for stored items and a control device for providing thermostatic control for the refrigeration circuit.
  • the refrigeration circuit mainly includes a compressor 110 (the compressor that can automatically adjust the output capacity, which is a compressor that can automatically adjust the output capacity, here is a digital scroll compressor), a condenser 120 including a condensing fan 121, and an expansion valve connected in sequence. (For example, an electronic expansion valve or a thermal expansion valve) 130, an evaporator 140, and a subcooler 160.
  • the compressor 110 also includes a solenoid valve 170 (herein, as an embodiment of a switching element) that controls the loading or unloading of the compressor through a switching action (on or off).
  • the control device may include a controller 150 and a driver for controlling the operation of the compressor 110.
  • the controller 150 may be divided into a hardware part and a software part containing a control program.
  • the output (control) signals of the fan 121, the expansion valve 130, etc. are used to regulate the working state of these devices.
  • the digital scroll compressor usually controls the loading and unloading of the compressor through a solenoid valve (for example, a PWM valve), that is, the loading and unloading of the digital compressor is realized by opening and closing the PWM solenoid valve to realize the capacity of the digital compressor adjust.
  • a solenoid valve for example, a PWM valve
  • closing the solenoid valve is the loading process
  • opening the solenoid valve is the unloading process.
  • the solenoid valve when the solenoid valve is closed, the pressure in the back pressure chamber on the upper part of the fixed scroll is maintained at a medium-high pressure, so that the pressure at the lower part and the upper part of the fixed scroll is basically the same.
  • the scroll will be sucked in due to gravity, the compressor is loaded, and the compressor transfers the full capacity, that is, the output of the compressor is 100%, and when the solenoid valve is opened, the back pressure cavity of the compressor's static scroll and the suction port are connected , The pressure at the upper part of the stationary scroll becomes lower than the pressure at the lower part of the stationary scroll, so the stationary scroll is lifted up and separated from the movable scroll, and the compressor is unloaded. At this time, the compressor no longer compresses the working fluid.
  • the compressor output value is 0.
  • the compressor is alternately in the loading state and the unloading state. Therefore, the digital scroll compressor realizes the adjustable output capacity of the compressor by controlling the time ratio of loading/unloading.
  • the opening time of the solenoid valve plus the closing time is an operating cycle.
  • the solenoid valve is at the maximum loading time percentage, the solenoid valve is closed during the entire cycle, and when the solenoid valve is at a 50% loading time ratio, the solenoid valve is closed during the entire cycle.
  • the time and opening time are each half.
  • the output power of the condensing unit 100 can be intuitively reflected by the percentage of loading time of the compressor 110.
  • the larger the percentage of loading time of the compressor 110 the greater the output of the condensing unit 100. vice versa.
  • the compressor 110 can automatically adjust the output percentage according to the actual cooling capacity required to match the output with the required cooling capacity, so as to better maintain the temperature of the items at a constant ideal The low temperature environment.
  • the controller may, for example, determine whether to adjust the output capacity of the compressor based on the relationship between the suction pressure of the compressor and the preset value of the suction pressure stored in advance. As an example, if the actual suction pressure is higher than the set value, the controller will start the compressor and increase the output capacity of the compressor by increasing the percentage of compressor loading time (solenoid valve is closed) until the compressor is at maximum loading Operating status. On the contrary, if the actual suction pressure is lower than the set value, the controller can reduce the output percentage of the digital compressor, and if the suction pressure is further reduced, the controller can stop the operation of the compressor.
  • the condensing unit cannot operate completely in accordance with the relationship between the suction pressure and the set value. Especially under the influence of harsh environments, the safety protection switch in the compressor will also be triggered. Conditions that cause the compressor to stop unexpectedly. In particular, the applicant noticed that due to the high-pressure pressure protection switch, under some unfavorable environmental conditions, such as unfavorable ventilation environment, extreme high ambient temperature, or dirty condenser, the condensing pressure will be within a short period of time.
  • the internal increase to the limit value triggers the disconnection of the high-voltage safety switch, resulting in an alarm shutdown, which not only affects the cold preservation effect of the stored goods and food, but also is not conducive to the safety and service life of the condensing unit.
  • the controller 150 of the present disclosure is configured to automatically and adaptively adjust the output capacity of the compressor 110 according to the relationship between the compressor operating parameters and the corresponding predetermined values,
  • the output capacity can be embodied by the percentage of the maximum allowable loading time.
  • the percentage of loading time of the solenoid valve is calculated only based on the relationship between the measured suction pressure and the target value. When the suction pressure is higher than the target value, the percentage of loading time of the solenoid valve will increase to increase The output capacity can reach 100% of the maximum.
  • “loading time percentage” is not exactly the same as "maximum allowable loading time percentage”.
  • the so-called maximum allowable loading time percentage refers to the percentage of the maximum allowable loading time of the compressor in a working cycle of the compressor. It will determine the maximum percentage of loading time that the compressor can achieve in actual operation. When the "maximum allowable percentage of loading time" is reached, even if the suction pressure is still higher than the target value, the percentage of loading time cannot continue to increase.
  • the maximum allowable loading time percentage OCA range is also set in the compressor, which includes the upper limit of the loading time percentage OC max and the lower limit of the loading time percentage OC min .
  • the allowable load time percentage OCA will not be lower than the lower limit of the load time percentage OC min , nor greater than the upper limit of the load time percentage OC max , which can ensure the safety and stability of the compressor while achieving the ideal cooling effect. Running.
  • the compressor operating parameter on which the basis is based can be any operating parameter that can trigger the switching action of the switching element to cause the compressor to unload or stop unexpectedly due to numerical fluctuations, or any operating parameter associated with the triggering of the switching element, thereby making
  • the controller 150's adjustment of the output capacity of the condensing unit 100 not only depends on the suction pressure, but also takes into account the numerical conditions of other working parameters. In this way, the output capacity of the condensing unit 100 is adjusted, so that the numerical fluctuation of the working parameters is slowed down or even tends to Therefore, the time to reach the value that caused the shutdown is prolonged, so that the number of unexpected shutdowns of the compressor 110 caused by the undesirable fluctuation of the values of these operating parameters can be reduced.
  • pre-protection measure is provided for the condensing unit.
  • this pre-protection measure on the one hand, it can ensure that the condensing unit maintains sufficient and appropriate output capacity, and on the other hand, it can also avoid various adverse effects caused by the unexpected shutdown of the compressor under adverse environmental conditions.
  • the controller 150 includes at least a data collection unit 152, a data storage unit 154, and a data processing unit 156.
  • the data collection unit 152 is used to monitor and collect parameter values in real time (as shown by the dotted line in FIG. 1, the operating parameters of the compressor 110 and the pressure and temperature of the condenser 120 can be collected), and the collected The data is transmitted to the data storage unit 154 for storage.
  • the data acquisition unit 152 may include a monitoring device.
  • the monitoring device includes, for example, monitoring and measuring the working conditions or working parameters of the various parts of the condensing unit 100.
  • Components such as pressure sensors, temperature sensors and/or current sensors, where working parameters may include but are not limited to compressor speed, suction pressure, suction saturation temperature, evaporator temperature, evaporation pressure, condensation pressure, condensation temperature, exhaust Air temperature, compressor operating current, etc.
  • the data storage unit 154 includes a computer-readable medium storing control programs and data; the data processing unit 156 processes the relevant data by executing the control program read from the storage unit 154, and transmits the processing results to the relevant The actuator to perform the required operations (including but not limited to adjusting the compressor’s maximum allowable loading time percentage).
  • Computer readable medium refers to any medium that can store computer data.
  • Computer readable media include but are not limited to: memory, random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable Write programmable read-only memory (FFPROM), flash memory, CD-ROM, floppy disk, magnetic tape, other magnetic media, optical media, or any other device or medium capable of storing computer data.
  • Fig. 2 shows a flowchart of a pre-protection method for a condensing unit according to an exemplary embodiment of the present disclosure.
  • P 1 , P 2 ... P n respectively refer to the real-time values of n operating parameters of the compressor, and a predetermined value P for each operating parameter is pre-stored in the controller 150, specifically the data storage unit 154 px and the rated threshold P tx , when the value P x of one or more working parameters reaches the corresponding rated threshold P tx , the switching element in the compressor will perform a switching action and unload or stop the compressor.
  • the predetermined value P px is usually smaller than the rated threshold P tx so that the time for the operating parameters to reach the rated threshold P tx can be prolonged by adjusting the compressor's loading time percentage before shutdown, thereby extending the compressor running time to reduce the frequency of false shutdowns.
  • the predetermined value for each operating parameter are further includes at least a first predetermined value and a second predetermined value P px1 P px2, wherein the first predetermined value is greater than a second predetermined value P px1 P px2
  • the value range between the two can be called the "hysteresis interval".
  • the maximum allowable loading time percentage OCA before and after the adjustment cannot be greater than the upper limit of the loading time percentage OC max , nor can it be less than the lower limit of the loading time percentage OC min .
  • the method includes the following steps: parameter acquisition step S100, monitoring and collecting the real-time values P 1 , P 2 ... P n of n operating parameters of the compressor 110; determining step S102, adding each operating parameter The value P x of, and the corresponding first predetermined value P px1 are respectively compared to determine whether the value of the predetermined number of working parameters is greater than or equal to its first predetermined value P px1 ; If the judgment result of the working parameter is "Yes”, then proceed to step S104 to reduce the current maximum allowable loading time percentage OCA by the first difference d 1 ; on the contrary, if the judgment result is "No", then proceed to the next judgment step S106 In this step, the current maximum allowable loading time percentage OCA is compared with the loading time percentage upper limit value OC max , and the value of each working parameter is compared with the corresponding second predetermined value P px2 to determine whether the current The maximum allowable loading time percentage OCA is less than the loading time percentage upper limit value OC max ,
  • control program is executed once every predetermined time interval, for example, it may be executed once every 10 seconds, 20 seconds or even 1 minute. This can be selected in combination with the actual operating conditions and environmental conditions of the compressor.
  • n number is only an example, where n is any integer greater than or equal to 1.
  • it can be set to execute the adjustment of the maximum allowable loading time percentage OCA when the determination result of a predetermined number of the n working parameters meets the condition.
  • the "predetermined number” may be one or more.
  • the adjustment of the maximum allowable loading time percentage OCA is performed when the determination result of only one working parameter satisfies the condition, which means that the response to the change of the compressor working condition is the fastest.
  • the pre-protection method according to the present disclosure is based on the problem of unexpected shutdown caused by the increase in condensing pressure as exemplified above, and judges the need to increase or decrease by analyzing the working parameters directly or indirectly related to the condensing pressure. Decrease the maximum allowable loading time percentage OCA of the compressor 110.
  • the working parameter can be, for example, the condensing pressure itself, alternatively or additionally, or can be a parameter closely related to the condensing pressure, such as condensing temperature, compressor operating current, and so on.
  • the value of one of the condensing pressure, the condensing temperature, and the compressor operating current is monitored and collected.
  • the condensing pressure is taken as an example.
  • the value of the monitored condensation pressure is compared with the first predetermined value of the pressure.
  • the determination result is yes, and step S104 is executed.
  • the OCA is reduced by the first difference d 1.
  • the first difference d 1 may be a preset fixed value, such as 5%, which may also be calculated by the following equation:
  • P x is the value of a working parameter to be monitored, here the value of the condensing pressure
  • P px1 is the first predetermined value of the one working parameter, here is the first predetermined value of pressure
  • r 1 is adjustable The coefficient, which is essentially the conversion ratio between the working parameter and the percentage of loading time. The size of r 1 determines the reduction of the maximum allowable load time percentage OCA, and the user can choose according to actual needs.
  • the current maximum allowable loading time percentage OCA is compared with the loading time percentage upper limit value OC max , and the condensing pressure The value is compared with the second predetermined value of pressure.
  • the determination result is no, and Proceed to the next execution step S108 to increase the OCA by the second difference d 2.
  • the second difference d 2 can also be a preset fixed value, such as 5%, or can be calculated by the following equation:
  • P x is the value of a working parameter, which is the value of condensing pressure here;
  • P px2 is the second predetermined value of the one working parameter, here is the second predetermined value of pressure;
  • r 2 is the adjustable coefficient, which The essence is the conversion ratio between the working parameter and the percentage of loading time. The size of r 2 determines the increase of the maximum allowable load time percentage OCA, and the user can choose according to actual needs.
  • the condensing pressure increase rate can be delayed on the premise of realizing the ideal cooling capacity, thereby reducing the condensing pressure caused by the unfavorable environment
  • the compressor shutdown caused by the increase can prevent frequent fluctuations of the cooling temperature of the goods on the one hand, and can also reduce the damage to the machine and extend the service life of the machine on the other hand.
  • the output power of the compressor can be reduced in time by reducing the maximum allowable loading time percentage of the compressor, Thereby slowing down the rising speed of working parameters.
  • the condensing unit can ensure the effective operation of the condensing unit and keep the temperature of the items constant.
  • it can also reduce the number of unexpected shutdowns of the machine, and reduce the machine failure or shortened life that may be caused by the frequent start/stop of the compressor. .
  • This makes the condensing unit according to the present disclosure more adaptable and more adaptable to harsh working environments.
  • the working parameters that need to be monitored by the method of the present disclosure such as the condensing pressure of the compressor, the condensing temperature, and the operating current of the compressor, are all conventional monitoring parameters, and there is no need to add additional monitoring devices on the basis of the existing condensing unit. Therefore, the control method provided by the present disclosure is easy to implement and cost-saving.
  • the output percentage can be adjusted in other ways, for example, by adjusting the speed of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种用于冷凝机组(100)的预保护方法、储存该预保护程序的计算机可读介质和包括该可读介质的控制器,以及应用该方法的冷凝机组(100),其中冷凝机组(100)包括容量可调节的数码压缩机(110)及控制其加载/卸载的切换元件(170)。该预保护方法包括以下步骤:监测冷凝机组(100)的工作参数的数值,将该数值与对应的预定值进行比较,基于比较结果来控制切换元件(170)的动作,以调节压缩机(110)的最大允许加载时间百分比。该预保护方法使得冷凝机组(100)能够在恶劣环境下保持良好运行。

Description

用于冷凝机组的预保护方法以及冷凝机组
本公开要求于2020年3月3日提交中国国家知识产权局、申请号为202010139986.6、名称为“用于冷凝机组的预保护方法以及冷凝机组”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及冷凝机组领域,更具体地说,本公开涉及一种能够对冷凝机组进行预保护的方法、包括实现该方法的程序的计算机可读介质、包括该计算机可读介质的控制器以及包括该控制器的冷凝机组。
背景技术
冷凝机组常常应用在诸如便利店或超市的展柜或是冷库等冷链中以将所储存物品的温度维持在相对恒定的低温环境中。
通常而言,冷凝机组具有控制器,该控制器能够根据压缩机(在此为具有容量调节功能的数码压缩机)的吸气压力和设定值的关系来控制压缩机的启停,同时通过电磁阀来调节压缩机的输出能力。如果实际吸气压力高于设定值,则控制器启动压缩机并增加压缩机的输出能力(电磁阀处于闭合状态)直到压缩机处于最大输出百分比。如果实际吸气压力低于设定值,则控制器降低压缩机的输出能力直到压缩机运行在最下输出百分比,如果吸气压力进一步降低,控制器停止压缩机的运行。
在实际应用中,发明人注意到,当冷凝机组在不良环境中运行的情况下,例如,在通风条件不利、极端的环境高温或冷凝器脏堵的情况下,冷凝压力会持续升高,一旦达到额定阈值,就会触发高压安全开关的断开从而导致高压报警以及停机。这种预期以外的停机是不利的,会导致存储的货物、食品的温度上升从而影响存储品质,并且可能造成压缩机的频繁启动/停止,这不仅会导致冷藏物品的温度波动大,还容易造成机器的损耗从而缩短机器的使用寿命。
因此,提供一种能够在恶劣环境下良好运行的冷凝机组是本领域所期望的。
发明内容
在本部分中提供本公开的总概要,而不是本公开完全范围或本公开所有特征的全面公开。
本公开的一个目的在于提供一种能够减少压缩机的意外停机的预保护方 法。
本公开的另一目的在于提供一种适配性更强、更能应对恶劣环境的冷凝***。
本公开的另一目的在于提供一种能够提供更稳定的制冷效果的冷凝***。
本公开的再一目的在于提供一种以简单、低成本的方式改进的冷凝***。
为了实现上述目的中的至少一个,本公开提供了一种用于冷凝机组的预保护方法、能够执行预保护功能的控制器以及具有该预保护功能的冷凝机组。
根据本公开的一方面,提供了一种用于冷凝机组的预保护方法,该冷凝机组包括具有容量调节功能的数码压缩机以及控制数码压缩机的加载/卸载切换的切换元件,该预保护方法包括以下步骤:监测冷凝机组的工作参数的数值,将监测到的工作参数的数值与该工作参数所对应的预定值进行比较,以及基于比较的结果来控制切换元件的动作以调节数码压缩机的最大允许加载时间百分比。
优选地,该工作参数为直接或间接反映冷凝机组的冷凝压力大小的参数。可选地,工作参数为冷凝机组的冷凝压力、冷凝温度和压缩机运行电流中的一者或多者。
其中,工作参数的预定值包括第一预定值和第二预定值,第一预定值大于第二预定值。
当工作参数的数值大于等于对应的第一预定值时,以第一差值减小最大允许加载时间百分比,其中,减小后的最大允许加载时间百分比不低于为数码压缩机设定的加载时间百分比下限值。其中,第一差值为固定值;或者第一差值能够通过如下公式计算得出:
d 1=(P x-P px1)×r 1
其中,P x为工作参数的数值;
P px1为工作参数的对应的第一预定值;
r 1为减小系数。
当最大允许加载时间百分比小于为数码压缩机设定的加载时间百分比上限值并且工作参数的数值小于对应的第二预定值时,以第二差值增大最大允许加载时间百分比,其中,增大后的最大允许加载时间百分比不高于加载时间百 分比上限值。其中,
第二差值为固定值;或者
第二差值(d 2)能够通过如下公式计算得出:
d 2=(P px2-P x)×r 2
其中,P x为工作参数的数值;
P px2为工作参数的对应的第二预定值;
r 2为增大系数。
其中,该切换元件为电磁阀。
根据本公开的另一方面,提供了一种储存有用于对冷凝机组实施预保护的程序的计算机可读介质,其中,该程序被执行时实现如前文所述的预保护方法中的步骤。该计算机可读介质对现有冷凝机组的配置和结构没有额外要求,因此具有普遍适用性。
根据本公开的另一方面,提供一种用于对冷凝机组实施预保护的控制器,该冷凝机组包括带有切换元件的具有容量调节功能的数码压缩机,该切换元件能够通过执行切换动作来实现数码压缩机的加载/卸载切换,数码压缩机设定有加载时间百分比上限值和/或加载时间百分比下限值,该控制器包括:数据存储单元,该数据存储单元包括如前文所述的计算机可读介质;数据采集单元,该数据采集单元监测并采集关于工作参数的数据并将数据传输至数据存储单元;数据处理单元,该处理单元读取数据存储单元中的数据并且执行计算机可读介质中的程序,然后将处理结果输出至数码压缩机以调节数码压缩机的最大允许加载时间百分比。
根据本公开的再一方面,还提供了一种冷凝机组,其中,该冷凝机组包括如前文所述的控制器。
根据本公开所提供的预保护方法,使得压缩机的意外停机减少,能够更好地保持冷凝机组的制冷能力,与现有技术相比,所储藏的物品的温度更加稳定;并且冷凝机组的适配性提高,尤其是能够在恶劣的环境下工作;此外,本公开只需要对软件进行变更,没有硬件的投资成本,因此是节约成本且容易实现的。
附图说明
通过以下参照附图的描述,本公开的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1是冷凝机组的示意图。
图2是根据本公开的示例性实施方式的预保护方法的控制流程图。
具体实施方式
在下文中,将参照附图具体描述本公开的实施方式。本公开的范围不限于所具体描述的实施方式。
图1示出了一种冷凝机组100,其包括用于为储存物品提供制冷的制冷回路以及用于为制冷回路提供恒温控制的控制装置。制冷回路主要包括通过管路依次连接的压缩机110(该压缩机为能够自动调节输出能力的压缩机,在此以数码涡旋压缩机为例)、包括冷凝风机121的冷凝器120、膨胀阀(例如电子膨胀阀或热力膨胀阀)130、蒸发器140以及过冷器160。该压缩机110还包括通过切换动作(接通或断开)控制压缩机的加载或卸载的电磁阀170(在本文中,作为切换元件的一种实施例)。其中,控制装置可以包括控制器150和用于控制压缩机110的运转的驱动器,控制器150可分为硬件部分和包含控制程序的软件部分,主要用于根据监测信息提供针对压缩机110、冷凝风机121和膨胀阀130等的输出(控制)信号(如图1中单点划线所示),以用于对这些装置的工作状态进行调控。
数码涡旋压缩机通常通过电磁阀(例如,PWM阀)控制压缩机的加载和卸载,亦即,通过PWM电磁阀的打开和关闭来实现数码压缩机的加载和卸载从而实现数码压缩机的容量调节。特别地,电磁阀关闭即是加载过程,电磁阀打开即是卸载过程。在一种实现方式中,当电磁阀关闭时,静涡旋盘上部的背压腔中的压力保持为中高压力,从而静涡旋盘下部和上部压力基本相同,此时静涡旋盘和动涡旋盘将因重力吸合,压缩机加载,压缩机传递全部容量,即压缩机的输出为100%,而当电磁阀打开时,压缩机静涡旋盘的背压腔和吸气口相通,静涡旋盘上部压力变为低于静涡旋盘下部的压力,因此静涡旋盘被顶起而与动涡旋盘分离,压缩机卸载,此时压缩机不再对工作流体进行压缩,压缩机输出值为0。压缩机交替处于加载状态和卸载状态。数码涡旋压缩机因此通过控制加载/卸载的时间比来实现压缩机输出能力的可调节。具体地,电磁阀打开时间加上关闭时间就是一个操作周期,当处于最大加载时间百分比时,电磁阀在整个周期中关闭,而当处于50%加载时间比分比时,在整个周期中电磁 阀关闭时间和打开时间各为一半。相应地,在冷凝机组100中,该冷凝机组100的输出功率可以通过压缩机110的加载时间百分比直观反映,压缩机110的加载时间百分比越大,则意味着冷凝机组100的输出量越大,反之亦然。在冷凝机组的理想工作状态下,压缩机110能够根据实际所需的冷却容量来自动调节输出百分比,以使输出量与所需冷却容量相匹配,从而更好地将物品温度维持在恒定的理想的低温环境中。
控制器例如可以根据压缩机的吸气压力与预先存储的吸气压力的设定值之间的关系来判断是否调节压缩机的输出能力。作为示例,如果实际的吸气压力高于设定值,控制器就会启动压缩机并通过增加压缩机的加载时间百分比增加压缩机的输出能力(电磁阀处于闭合状态)直到压缩机处于最大加载运行状态。相反,如果实际的吸气压力低于设定值,控制器则可以降低数码压缩机的输出百分比,如果吸气压力进一步降低,控制器可以停止压缩机的运行。
然而,如前文所述的,有些情况下,冷凝机组并不能完全按照吸气压力与设定值的关系来运行,尤其是在恶劣环境的影响下,还会触发压缩机内的安全保护开关从而导致压缩机意外停机的情况。特别地,申请人注意到,由于设置有高压压力保护开关,在一些不利的环境条件下,例如,不利的通风环境、极端的高环境温度或是冷凝器脏堵,冷凝压力会在较短时间内增高到限值从而触发高压安全开关的断开,导致发生报警停机,这不仅影响所存储的货物、食品的保冷效果,还不利于冷凝机组的安全性和使用寿命。
为了克服因不利的环境条件导致的意外高压报警停机,本公开的控制器150被配置成能够根据压缩机工作参数与相应预定值之间的关系来自动地适应性调节压缩机110的输出能力,作为示例,输出能力可以由最大允许加载时间百分比来体现。在现有技术中,电磁阀的加载时间百分比仅根据测得的吸气压力和目标值的关系计算出来的,当吸气压力高于目标值,电磁阀的加载时间百分比就会增大以提高输出容量并可以达到最大的百分之百。而在此,“加载时间百分比”并不完全等同于“最大允许加载时间百分比”。所谓最大允许加载时间百分比,是指在压缩机的一个工作周期中,所允许的压缩机的最大加载时间在该时间周期内所占的百分比。其将决定了压缩机实际运行中所能达到的最大加载时间百分比,当达到该“最大允许加载时间百分比”时,即使吸气压力仍高于目标值,加载时间百分比也不能继续增大。通常,在压缩机中还会设置有最大允许加载时间百分比OCA的范围,即包括加载时间百分比上限值OC max和加载时间百分比下限值OC min,在压缩机的工作过程中所采用的最大 允许加载时间百分比OCA不会低于加载时间百分比下限值OC min,也不会大于加载时间百分比上限值OC max,由此能够在实现理想的制冷效果的同时确保压缩机的安全、稳定的运转。
所依据的压缩机工作参数可以是任何能够因数值波动而触发切换元件的切换动作导致压缩机意外卸载或停机的工作参数,或者是任何与切换元件的动作触发相关联的工作参数,由此使得控制器150对冷凝机组100的输出能力的调节不仅仅依赖于吸气压力,还兼顾其他工作参数的数值状况,以此方式来调节冷凝机组100的输出能力,使得工作参数的数值波动减缓甚至趋于平稳,由此延长达到导致停机的数值的时间,从而能够减少因这些工作参数数值的不良波动而导致的压缩机110意外停机的次数,因此对冷凝机组提供了一种“预保护”措施。借助于该预保护措施,一方面能够确保冷凝机组保持足够且适当的输出能力,另一方面还避免在环境不利的条件下压缩机的意外停机带来的各种不利影响。
控制器150至少包括数据采集单元152、数据存储单元154和数据处理单元156。数据采集单元152用于实时监测并收集参数数值(如图1中以虚线示例性示出地,可以收集压缩机110的运行参数以及冷凝器120的压力、温度等参数),并将收集到的数据传输至数据存储单元154以进行存储,其中,数据采集单元152可以包括监测装置,该监测装置例如包括设置在冷凝机组100不同位置处的用于监控和测量各部分的工作状况或工作参数的元件,例如压力传感器、温度传感器和/或电流传感器等,其中工作参数可以包括但不限于压缩机转速、吸气压力、吸气饱和温度、蒸发器温度、蒸发压力、冷凝压力、冷凝温度、排气温度、压缩机运行电流等。数据存储单元154包括存储有控制程序和数据等的计算机可读介质;数据处理单元156通过执行从存储单元154处读取的控制程序对相关数据进行处理,并将处理结果作为输出信号传送至相关的执行机构以执行所需的操作(包括但不限于调节压缩机的最大允许加载时间百分比)。
在这里所使用的术语“计算机可读介质”指能够存储计算机数据的任何介质。计算机可读介质包括但不限于:存储器、随机存取存储器(RAM)、只读存储器(ROM)、可编程只读存储器(PROM)、可擦写可编程只读存储器(EPROM)、电可擦写可编程只读存储器(FFPROM)、闪存、只读光盘、软盘、磁带、其他磁性介质、光学介质或能够存储计算机数据的任何其他装置或介质。
图2示出了根据本公开示例性实施方式的用于冷凝机组的预保护方法的流程图。其中,P 1、P 2……P n分别指代压缩机的n个工作参数的实时数值,在控制器150中、具体是数据存储单元154中预先存储有针对每个工作参数的预定值P px以及额定阈值P tx,当一个或多个工作参数的数值P x达到对应的额定阈值P tx时,压缩机内的切换元件将会执行切换动作并使压缩机卸载或停机。而预定值P px通常小于额定阈值P tx以便能够在停机之前通过调整压缩机的加载时间百分比延长工作参数达到额定阈值P tx的时间,从而延长压缩机运转的时间以减少误停机频次。并且在根据本公开的实施方式中,每个工作参数的预定值均还至少包括第一预定值P px1和第二预定值P px2,其中,第一预定值P px1大于第二预定值P px2,两者之间的数值范围可以称为“滞回区间”,大体上,当工作参数的数值落在该滞回区间内时,无需对压缩机的最大允许加载时间百分比执行相关的调整。此外,调节前和调节后的最大允许加载时间百分比OCA均不能大于加载时间百分比上限值OC max,也不能小于加载时间百分比下限值OC min
如图2所示,该方法包括如下步骤:参数获取步骤S100,监测并收集压缩机110的n个工作参数的实时数值P 1、P 2……P n;判定步骤S102,将每个工作参数的数值P x与对应的第一预定值P px1分别进行比较,判断是否预定数量的工作参数的数值大于或等于其第一预定值P px1;如果在判定步骤S102中得出关于一个或多个工作参数的判定结果为“是”,则进入执行步骤S104,以第一差值d 1减小当前最大允许加载时间百分比OCA;相反,如果判定结果为“否”,则进入下一判定步骤S106,在该步骤中,将当前最大允许加载时间百分比OCA与加载时间百分比上限值OC max进行比较,并且将每个工作参数的数值与对应的第二预定值P px2分别进行比较,判断是否当前最大允许加载时间百分比OCA小于加载时间百分比上限值OC max,并且预定数量的工作参数的数值小于或等于第二预定值P px2;如果在判定步骤中得出的判定结果为“是”,则进入另一执行步骤S108,以第二差值d 2增大最大允许加载时间百分比OCA;而如果判定结果均“否”,则维持当前最大允许加载时间百分比OCA不变。
优选地,上述控制程序每间隔预定时间执行一次,例如,可以每10秒、20秒甚至1分钟执行一次。这可以结合压缩机的实际运行情况和环境条件等选定。
在此,需说明的是,“n个”仅是示例,其中n为大于等于1的任意整数。其中,可以设置成当n个工作参数中的预定数量的参数的判定结果满足条件则 执行对最大允许加载时间百分比OCA的调整。其中,“预定数量”可以是一个,也可以是多个。然而可以理解的是,仅一个工作参数的判定结果满足条件时就执行对最大允许加载时间百分比OCA的调整意味着对压缩机工作状况变化的响应最为迅速。
作为示例性实施方式,根据本公开的预保护方法基于前文所例举的因冷凝压力升高而导致的意外停机的问题,通过分析与冷凝压力直接或间接相关的工作参数来判断需要增大或减小压缩机110的最大允许加载时间百分比OCA,当判定需要增大或减小压缩机110的最大允许加载时间百分比OCA时,则通过程序中预设的差值或计算公式计算出需要调节至的最大允许加载时间百分比OCA。其中,工作参数例如可以是冷凝压力本身,替代性的或附加的,也可以是与冷凝压力紧密关联的参数,如冷凝温度、压缩机运行电流等等。
示例性地,在获取步骤S100中,监测并收集冷凝压力、冷凝温度和压缩机运行电流中的一者的数值,在此以冷凝压力为例。在判定步骤S102中,将所监测到的冷凝压力的数值与第一压力预定值进行比较,当判定冷凝压力的数值大于等于其第一预定值时,即判定结果为是,并进入执行步骤S104,以第一差值d 1减小OCA。其中,第一差值d 1可以是预设的固定数值,比如5%,其也可以通过如下等式计算获得:
d 1=(P px1-P x)×r 1
其中,P x为被监测的一个工作参数的数值,在此即冷凝压力的数值;P px1为所述一个工作参数的第一预定值,在此为第一压力预定值;r 1为可调系数,其本质为该工作参数与加载时间百分比之间的换算比率。r 1的大小决定着最大允许加载时间百分比OCA的减小量,用户可以根据实际需求进行选定。
如果在前一判定步骤S102中判定结果为否,进入下一判定步骤S106,在该步骤中,将当前最大允许加载时间百分比OCA与加载时间百分比上限值OC max进行比较,并且将冷凝压力的数值与第二压力预定值进行比较,当判定当前最大允许加载时间百分比OCA小于加载时间百分比上限值OC max,并且冷凝压力的数值小于等于其第二预定值时,即判定结果为否,并进入下一执行步骤S108,以第二差值d 2增大OCA。类似地,第二差值d 2也可以是预设的固定数值,比如5%,或者可以通过如下等式计算获得:
d 2=(P px2-P x)×r 2
其中,P x为一个工作参数的数值,在此即冷凝压力的数值;P px2为所述一 个工作参数的第二预定值,在此为第二压力预定值;r 2为可调系数,其本质为该工作参数与加载时间百分比之间的换算比率。r 2的大小决定着最大允许加载时间百分比OCA的增大量,用户可以根据实际需求进行选定。
根据本实施方式的方法,当压缩机以减小后的最大允许加载时间百分比运行时,能够在实现理想的冷却容量的前提下延缓冷凝压力的升高速度,从而减少由不利环境导致的冷凝压力升高引发的压缩机停机,由此一方面能够防止物品的冷却温度的频繁波动,另一方面还可以减少对机器的损伤、延长机器的使用寿命。
在此,如前文所述的,以上工作参数的选用仅是示例,本领域技术人员可以想到能够采用其他反应冷凝机组工作状态的参数(特别是能够因数值波动导致意外停机的参数)进行判断。
根据本公开所述的方法,使得在有制冷需求的情况下当一些工作参数因外部因素而数值明显升高时,可以及时通过降低压缩机的最大允许加载时间百分比来降低压缩机的输出功率,从而减缓工作参数的升高速度。通过这种调节,一方面能够保证冷凝机组的有效运行,维持物品的温度恒定,另一方面还能够减少机器的意外停机次数,减少可能因压缩机的频繁启动/停止引发的机器故障或寿命缩短。这使得根据本公开的冷凝机组适配性更强,更能适应恶劣的工作环境。
此外,本公开的方法所需要监测的工作参数、诸如压缩机的冷凝压力、冷凝温度、压缩机运行电流等均属于常规的监测参数,不需要在现有冷凝机组的基础上增加额外的监测装置,因此本公开所提供的控制方法是易于实现且节约成本的。
此外,除了通过以最大允许加载时间百分比作为调节对象之外,输出百分比的调节可以通过其他方式实现,例如通过调节压缩机的转速。
另外,本领域技术人员应当理解,第一差值和第二差值的获得方式并不一定局限于借助本文所列举的方式,而是可以采用其他方式。
尽管在此已详细描述本公开的具体实施方式,但是应该理解本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的元素或结构都可以由其他技术性 上等同的元素或结构来代替。

Claims (12)

  1. 一种用于冷凝机组的预保护方法,所述冷凝机组(100)包括具有容量调节功能的数码压缩机(110)以及控制所述数码压缩机的加载/卸载切换的切换元件(170),所述预保护方法包括以下步骤:
    监测所述冷凝机组的工作参数的数值(P x),
    将监测到的所述工作参数的数值与所述工作参数所对应的预定值(P px)进行比较,以及
    基于所述比较的结果来控制所述切换元件的动作以调节所述数码压缩机的最大允许加载时间百分比(OCA)。
  2. 根据权利要求1所述的预保护方法,其中,所述工作参数为直接或间接反映所述冷凝机组的冷凝压力大小的参数。
  3. 根据权利要求2所述的预保护方法,其中,所述工作参数为所述冷凝机组的冷凝压力、冷凝温度和压缩机运行电流中的一者或多者。
  4. 根据权利要求1至3中任一项所述的预保护方法,其中,所述工作参数的预定值包括第一预定值(P px1)和第二预定值(P px2),所述第一预定值大于所述第二预定值。
  5. 根据权利要求4所述的预保护方法,其中,当所述工作参数的数值大于等于对应的第一预定值时,以第一差值(d 1)减小所述最大允许加载时间百分比,其中,减小后的所述最大允许加载时间百分比不低于为所述数码压缩机设定的加载时间百分比下限值(OC min)。
  6. 根据权利要求5所述的预保护方法,其中,
    所述第一差值(d 1)为固定值;或者
    所述第一差值(d 1)能够通过如下公式计算得出:
    d 1=(P x-P px1)×r 1
    其中,P x为所述工作参数的数值;
    P px1为所述工作参数的对应的第一预定值;
    r 1为减小系数。
  7. 根据权利要求4所述的预保护方法,其中,当所述最大允许加载时间百分比小于为所述数码压缩机设定的加载时间百分比上限值(OC max)并且所述工作参数的数值小于对应的第二预定值时,以第二差值(d 2)增大所述最大允许加载时间百分比,其中,增大后的所述最大允许加载时间百分比不高于所述加载时间百分比上限值。
  8. 根据权利要求7所述的预保护方法,其中,
    所述第二差值(d 2)为固定值;或者
    所述第二差值(d 2)能够通过如下公式计算得出:
    d 2=(P px2-P x)×r 2
    其中,P x为所述工作参数的数值;
    P px2为所述工作参数的对应的第二预定值;
    r 2为增大系数。
  9. 根据权利要求1至3中任一项所述的预保护方法,其中,所述切换元件为电磁阀。
  10. 一种储存有用于对冷凝机组实施预保护的程序的计算机可读介质,其中,所述程序被执行时实现如权利要求1至9中任一项所述的预保护方法中的步骤。
  11. 一种用于对冷凝机组实施预保护的控制器(150),所述冷凝机组包括 带有切换元件的具有容量调节功能的数码压缩机,所述切换元件能够通过执行切换动作来实现所述数码压缩机的加载/卸载切换,所述数码压缩机设定有加载时间百分比上限值和/或加载时间百分比下限值,所述控制器包括:
    数据存储单元(152),所述数据存储单元包括如权利要求10所述的计算机可读介质;
    数据采集单元(154),所述数据采集单元监测并采集关于所述工作参数的数据并将所述数据传输至所述数据存储单元;以及
    数据处理单元(156),所述处理单元读取所述数据存储单元中的所述数据并且执行所述计算机可读介质中的所述程序,然后将处理结果输出至所述数码压缩机以调节所述数码压缩机的最大允许加载时间百分比。
  12. 一种冷凝机组(100),其中,所述冷凝机组包括如权利要求11所述的控制器(150)。
PCT/CN2020/111613 2020-03-03 2020-08-27 用于冷凝机组的预保护方法以及冷凝机组 WO2021174776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010139986.6 2020-03-03
CN202010139986.6A CN113418326B (zh) 2020-03-03 2020-03-03 用于冷凝机组的预保护方法以及冷凝机组

Publications (1)

Publication Number Publication Date
WO2021174776A1 true WO2021174776A1 (zh) 2021-09-10

Family

ID=77614478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111613 WO2021174776A1 (zh) 2020-03-03 2020-08-27 用于冷凝机组的预保护方法以及冷凝机组

Country Status (2)

Country Link
CN (1) CN113418326B (zh)
WO (1) WO2021174776A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265434A (en) * 1979-07-31 1993-11-30 Alsenz Richard H Method and apparatus for controlling capacity of a multiple-stage cooling system
CN1607478A (zh) * 1997-09-29 2005-04-20 科普兰公司 采用脉冲宽度调节工作循环的涡卷压缩机的冷冻***的自适应控制
CN110195920A (zh) * 2019-05-31 2019-09-03 北京创意信通科技有限责任公司 一种热交换***及其控制方法和空调器
CN110631283A (zh) * 2019-10-08 2019-12-31 广东纽恩泰新能源科技发展有限公司 一种热泵多机并联***的加卸载控制方法及其***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160296B (zh) * 2019-05-23 2020-10-09 百尔制冷(无锡)有限公司 螺杆并联机组电流动态控制方法
CN110726234A (zh) * 2019-10-14 2020-01-24 珠海格力电器股份有限公司 一种提高机组负荷稳定性的负荷控制方法、装置及机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265434A (en) * 1979-07-31 1993-11-30 Alsenz Richard H Method and apparatus for controlling capacity of a multiple-stage cooling system
CN1607478A (zh) * 1997-09-29 2005-04-20 科普兰公司 采用脉冲宽度调节工作循环的涡卷压缩机的冷冻***的自适应控制
CN110195920A (zh) * 2019-05-31 2019-09-03 北京创意信通科技有限责任公司 一种热交换***及其控制方法和空调器
CN110631283A (zh) * 2019-10-08 2019-12-31 广东纽恩泰新能源科技发展有限公司 一种热泵多机并联***的加卸载控制方法及其***

Also Published As

Publication number Publication date
CN113418326B (zh) 2024-02-02
CN113418326A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN104990294B (zh) 空调器及其控制方法、控制装置
US10208993B2 (en) Fault detection and diagnosis for refrigerator from compressor sensor
US8539786B2 (en) System and method for monitoring overheat of a compressor
WO2017076002A1 (zh) 采用直线压缩机的冰箱及其控制方法
US7975497B2 (en) Refrigeration unit having variable performance compressor operated based on high-pressure side pressure
US10655908B2 (en) Refrigerator controlling method and system with linear compressor
US20100236264A1 (en) Compressor motor control
KR100656164B1 (ko) 공기조화기 및 그 제어방법
CN113701307A (zh) 一种变频空调缺冷媒保护控制方法及空调器
US10670305B2 (en) Refrigeration apparatus and method for controlling the same
WO2021174776A1 (zh) 用于冷凝机组的预保护方法以及冷凝机组
CN110671847B (zh) 变速冷凝机组、容量自适应调节方法、储存介质和控制器
CN114857665A (zh) 多联机***
CN113915723A (zh) 一种空调器室外机的控制方法和空调器
WO2020007272A1 (zh) 变速冷凝机组、容量自适应调节方法、储存介质和控制器
US20130031919A1 (en) Refrigeration plant and methods of control therefor
CN1167926C (zh) 泡菜储藏柜的驱动控制方法
JP4382468B2 (ja) 冷凍機制御装置
WO2011105489A1 (ja) 冷設機器の制御装置
CN110986224B (zh) 一种空调器及其控制方法、存储介质
WO2023138312A1 (zh) 冷藏冷冻装置及其控制方法
EP2491321A2 (en) Refrigeration plant and methods of control therefor
CN114739103A (zh) 一种冰箱及冰箱控制方法
JPS61197970A (ja) 冷凍機の圧縮機保護装置
JP2701634B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923318

Country of ref document: EP

Kind code of ref document: A1